
Generated: 2020-08-18 16:40:02Z

Structure and Interpretation of Computer
Programs, Second Edition
JavaScript Adaptation

Harold Abelson and Gerald Jay Sussman

with Julie Sussman

adapted to JavaScript by

Martin Henz and Tobias Wrigstad

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0

International License.

All JavaScript programs in this work are licensed under the GNU General Public License Version 3.

The �nal version of this work will be published by The MIT Press under a Creative Commons

Attribution-NonCommercial-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.gnu.org/licenses/gpl-3.0.en.html
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

2 Generated 2020-08-18 16:40:02Z

Contents

Foreword 7

Prefaces 11

Acknowledgments 17

1 Building Abstractions with Functions 21
1.1 The Elements of Programming . 23

1.1.1 Expressions . 24

1.1.2 Naming and the Environment . 26

1.1.3 Evaluating Operator Combinations . 27

1.1.4 Compound Functions . 29

1.1.5 The Substitution Model for Function Application 32

1.1.6 Conditional Expressions and Predicates 34

1.1.7 Example: Square Roots by Newton’s Method 39

1.1.8 Functions as Black-Box Abstractions 43

1.2 Functions and the Processes They Generate . 47

1.2.1 Linear Recursion and Iteration . 48

1.2.2 Tree Recursion . 53

1.2.3 Orders of Growth . 58

1.2.4 Exponentiation . 60

1.2.5 Greatest Common Divisors . 64

1.2.6 Example: Testing for Primality . 66

1.3 Formulating Abstractions with Higher-Order Functions 72

1.3.1 Functions as Arguments . 73

1.3.2 Constructing Functions using Lambda Expressions 78

1.3.3 Functions as General Methods . 83

1.3.4 Functions as Returned Values . 89

2 Building Abstractions with Data 97
2.1 Introduction to Data Abstraction . 100

2.1.1 Example: Arithmetic Operations for Rational Numbers 101

2.1.2 Abstraction Barriers . 105

2.1.3 What Is Meant by Data? . 107

2.1.4 Extended Exercise: Interval Arithmetic 110

2.2 Hierarchical Data and the Closure Property . 114

2.2.1 Representing Sequences . 115

2.2.2 Hierarchical Structures . 124

3

2.2.3 Sequences as Conventional Interfaces 130

2.2.4 Example: A Picture Language . 144

2.3 Symbolic Data . 160

2.3.1 Strings . 160

2.3.2 Example: Symbolic Di�erentiation . 162

2.3.3 Example: Representing Sets . 169

2.3.4 Example: Hu�man Encoding Trees . 179

2.4 Multiple Representations for Abstract Data . 188

2.4.1 Representations for Complex Numbers 190

2.4.2 Tagged data . 194

2.4.3 Data-Directed Programming and Additivity 198

2.5 Systems with Generic Operations . 206

2.5.1 Generic Arithmetic Operations . 207

2.5.2 Combining Data of Di�erent Types . 213

2.5.3 Example: Symbolic Algebra . 221

3 Modularity, Objects, and State 237
3.1 Assignment and Local State . 238

3.1.1 Local State Variables . 239

3.1.2 The Bene�ts of Introducing Assignment 245

3.1.3 The Costs of Introducing Assignment 249

3.2 The Environment Model of Evaluation . 256

3.2.1 The Rules for Evaluation . 257

3.2.2 Applying Simple Functions . 261

3.2.3 Frames as the Repository of Local State 264

3.2.4 Internal Declarations . 270

3.3 Modeling with Mutable Data . 274

3.3.1 Mutable List Structure . 274

3.3.2 Representing Queues . 284

3.3.3 Representing Tables . 289

3.3.4 A Simulator for Digital Circuits . 296

3.3.5 Propagation of Constraints . 309

3.4 Concurrency: Time Is of the Essence . 321

3.4.1 The Nature of Time in Concurrent Systems 322

3.4.2 Mechanisms for Controlling Concurrency 327

3.5 Streams . 341

3.5.1 Streams Are Delayed Lists . 342

3.5.2 In�nite Streams . 349

3.5.3 Exploiting the Stream Paradigm . 357

3.5.4 Streams and Delayed Evaluation . 370

3.5.5 Modularity of Functional Programs and Modularity of Objects 376

4 Metalinguistic Abstraction 381
4.1 The Metacircular Evaluator . 384

4.1.1 The Core of the Evaluator . 385

4.1.2 Representing Statements and Expressions 392

4.1.3 Evaluator Data Structures . 402

4.1.4 Running the Evaluator as a Program 407

4 Generated 2020-08-18 16:40:02Z

4.1.5 Data as Programs . 411

4.1.6 Internal Declarations . 414

4.1.7 Separating Syntactic Analysis from Execution 419

4.2 Lazy Evaluation . 425

4.2.1 Normal Order and Applicative Order 425

4.2.2 An Interpreter with Lazy Evaluation 427

4.2.3 Streams as Lazy Lists . 436

4.3 Nondeterministic Computing . 439

4.3.1 Search and amb . 441

4.3.2 Examples of Nondeterministic Programs 445

4.3.3 Implementing the amb Evaluator . 454

4.4 Logic Programming . 467

4.4.1 Deductive Information Retrieval . 469

4.4.2 How the Query System Works . 481

4.4.3 Is Logic Programming Mathematical Logic? 490

4.4.4 Implementing the Query System . 496

5 Computing with Register Machines 519
5.1 Designing Register Machines . 520

5.1.1 A Language for Describing Register Machines 524

5.1.2 Abstraction in Machine Design . 529

5.1.3 Subroutines . 532

5.1.4 Using a Stack to Implement Recursion 537

5.1.5 Instruction Summary . 543

5.2 A Register-Machine Simulator . 544

5.2.1 The Machine Model . 546

5.2.2 The Assembler . 550

5.2.3 Generating Execution Functions for Instructions 554

5.2.4 Monitoring Machine Performance . 562

5.3 Storage Allocation and Garbage Collection . 566

5.3.1 Memory as Vectors . 566

5.3.2 Maintaining the Illusion of In�nite Memory 572

5.4 The Explicit-Control Evaluator . 578

5.4.1 The Core of the Explicit-Control Evaluator 580

5.4.2 Sequence Evaluation and Tail Recursion 586

5.4.3 Conditionals, Assignments, and Declarations and Blocks 589

5.4.4 Running the Evaluator . 592

5.5 Compilation . 598

5.5.1 Structure of the Compiler . 602

5.5.2 Compiling Statements and Expressions 606

5.5.3 Compiling Applications . 614

5.5.4 Combining Instruction Sequences . 620

5.5.5 An Example of Compiled Code . 624

5.5.6 Lexical Addressing . 634

5.5.7 Interfacing Compiled Code to the Evaluator 637

List Of Exercises 644

References 655

5 Generated 2020-08-18 16:40:02Z

Index 662

6 Generated 2020-08-18 16:40:02Z

Foreword

Educators, generals, dieticians, psychologists, and parents program. Armies, students, and some

societies are programmed. An assault on large problems employs a succession of programs,

most of which spring into existence en route. These programs are rife with issues that appear

to be particular to the problem at hand. To appreciate programming as an intellectual activity

in its own right you must turn to computer programming; you must read and write computer

programs—many of them. It doesn’t matter much what the programs are about or what ap-

plications they serve. What does matter is how well they perform and how smoothly they �t

with other programs in the creation of still greater programs. The programmer must seek both

perfection of part and adequacy of collection. In this book the use of “program” is focused

on the creation, execution, and study of programs written in a dialect of Lisp for execution

on a digital computer. Using Lisp we restrict or limit not what we may program, but only the

notation for our program descriptions.

Our tra�c with the subject matter of this book involves us with three foci of phenomena: the

human mind, collections of computer programs, and the computer. Every computer program is

a model, hatched in the mind, of a real or mental process. These processes, arising from human

experience and thought, are huge in number, intricate in detail, and at any time only partially

understood. They are modeled to our permanent satisfaction rarely by our computer programs.

Thus even though our programs are carefully handcrafted discrete collections of symbols,

mosaics of interlocking functions, they continually evolve: we change them as our perception

of the model deepens, enlarges, generalizes until the model ultimately attains a metastable place

within still another model with which we struggle. The source of the exhilaration associated

with computer programming is the continual unfolding within the mind and on the computer

of mechanisms expressed as programs and the explosion of perception they generate. If art

interprets our dreams, the computer executes them in the guise of programs!

For all its power, the computer is a harsh taskmaster. Its programs must be correct, and

what we wish to say must be said accurately in every detail. As in every other symbolic

activity, we become convinced of program truth through argument. Lisp itself can be assigned

a semantics (another model, by the way), and if a program’s function can be speci�ed, say, in the

predicate calculus, the proof methods of logic can be used to make an acceptable correctness

7

argument. Unfortunately, as programs get large and complicated, as they almost always do,

the adequacy, consistency, and correctness of the speci�cations themselves become open to

doubt, so that complete formal arguments of correctness seldom accompany large programs.

Since large programs grow from small ones, it is crucial that we develop an arsenal of standard

program structures of whose correctness we have become sure—we call them idioms—and

learn to combine them into larger structures using organizational techniques of proven value.

These techniques are treated at length in this book, and understanding them is essential to

participation in the Promethean enterprise called programming. More than anything else, the

uncovering and mastery of powerful organizational techniques accelerates our ability to create

large, signi�cant programs. Conversely, since writing large programs is very taxing, we are

stimulated to invent new methods of reducing the mass of function and detail to be �tted into

large programs.

Unlike programs, computers must obey the laws of physics. If they wish to perform rapidly—a

few nanoseconds per state change—they must transmit electrons only small distances (at most

1
1

2
feet). The heat generated by the huge number of devices so concentrated in space has

to be removed. An exquisite engineering art has been developed balancing between multi-

plicity of function and density of devices. In any event, hardware always operates at a level

more primitive than that at which we care to program. The processes that transform our Lisp

programs to “machine” programs are themselves abstract models which we program. Their

study and creation give a great deal of insight into the organizational programs associated

with programming arbitrary models. Of course the computer itself can be so modeled. Think

of it: the behavior of the smallest physical switching element is modeled by quantum me-

chanics described by di�erential equations whose detailed behavior is captured by numerical

approximations represented in computer programs executing on computers composed of . . . !

It is not merely a matter of tactical convenience to separately identify the three foci. Even

though, as they say, it’s all in the head, this logical separation induces an acceleration of

symbolic tra�c between these foci whose richness, vitality, and potential is exceeded in human

experience only by the evolution of life itself. At best, relationships between the foci are

metastable. The computers are never large enough or fast enough. Each breakthrough in

hardware technology leads to more massive programming enterprises, new organizational

principles, and an enrichment of abstract models. Every reader should ask himself periodically

“Toward what end, toward what end?”—but do not ask it too often lest you pass up the fun of

programming for the constipation of bittersweet philosophy.

Among the programs we write, some (but never enough) perform a precise mathematical

function such as sorting or �nding the maximum of a sequence of numbers, determining

primality, or �nding the square root. We call such programs algorithms, and a great deal is

known of their optimal behavior, particularly with respect to the two important parameters of

execution time and data storage requirements. A programmer should acquire good algorithms

8 Generated 2020-08-18 16:40:02Z

and idioms. Even though some programs resist precise speci�cations, it is the responsibility

of the programmer to estimate, and always to attempt to improve, their performance.

Lisp is a survivor, having been in use for about a quarter of a century. Among the active

programming languages only Fortran has had a longer life. Both languages have supported the

programming needs of important areas of application, Fortran for scienti�c and engineering

computation and Lisp for arti�cial intelligence. These two areas continue to be important,

and their programmers are so devoted to these two languages that Lisp and Fortran may well

continue in active use for at least another quarter-century.

Lisp changes. The Scheme dialect used in this text has evolved from the original Lisp and

di�ers from the latter in several important ways, including static scoping for variable binding

and permitting functions to yield functions as values. In its semantic structure Scheme is as

closely akin to Algol 60 as to early Lisps. Algol 60, never to be an active language again, lives

on in the genes of Scheme and Pascal. It would be di�cult to �nd two languages that are the

communicating coin of two more di�erent cultures than those gathered around these two

languages. Pascal is for building pyramids—imposing, breathtaking, static structures built by

armies pushing heavy blocks into place. Lisp is for building organisms—imposing, breathtak-

ing, dynamic structures built by squads �tting �uctuating myriads of simpler organisms into

place. The organizing principles used are the same in both cases, except for one extraordinarily

important di�erence: The discretionary exportable functionality entrusted to the individual

Lisp programmer is more than an order of magnitude greater than that to be found within

Pascal enterprises. Lisp programs in�ate libraries with functions whose utility transcends the

application that produced them. The list, Lisp’s native data structure, is largely responsible

for such growth of utility. The simple structure and natural applicability of lists are re�ected

in functions that are amazingly nonidiosyncratic. In Pascal the plethora of declarable data

structures induces a specialization within functions that inhibits and penalizes casual coopera-

tion. It is better to have 100 functions operate on one data structure than to have 10 functions

operate on 10 data structures. As a result the pyramid must stand unchanged for a millennium;

the organism must evolve or perish.

To illustrate this di�erence, compare the treatment of material and exercises within this

book with that in any �rst-course text using Pascal. Do not labor under the illusion that this

is a text digestible at MIT only, peculiar to the breed found there. It is precisely what a serious

book on programming Lisp must be, no matter who the student is or where it is used.

Note that this is a text about programming, unlike most Lisp books, which are used as a

preparation for work in arti�cial intelligence. After all, the critical programming concerns of

software engineering and arti�cial intelligence tend to coalesce as the systems under inves-

tigation become larger. This explains why there is such growing interest in Lisp outside of

arti�cial intelligence.

9 Generated 2020-08-18 16:40:02Z

As one would expect from its goals, arti�cial intelligence research generates many signi�-

cant programming problems. In other programming cultures this spate of problems spawns

new languages. Indeed, in any very large programming task a useful organizing principle is

to control and isolate tra�c within the task modules via the invention of language. These lan-

guages tend to become less primitive as one approaches the boundaries of the system where we

humans interact most often. As a result, such systems contain complex language-processing

functions replicated many times. Lisp has such a simple syntax and semantics that parsing

can be treated as an elementary task. Thus parsing technology plays almost no role in Lisp

programs, and the construction of language processors is rarely an impediment to the rate

of growth and change of large Lisp systems. Finally, it is this very simplicity of syntax and

semantics that is responsible for the burden and freedom borne by all Lisp programmers. No

Lisp program of any size beyond a few lines can be written without being saturated with

discretionary functions. Invent and �t; have �ts and reinvent! We toast the Lisp programmer

who pens his thoughts within nests of parentheses.

— Alan J. Perlis, New Haven, Connecticut

10 Generated 2020-08-18 16:40:02Z

Prefaces

Preface to the JavaScript Adaptation

You are reading the book Structure and Interpretation of Computer Programs (SICP), second

edition, JavaScript adaptation. Like the original version, this book aims �rstly to establish the

notion that programming is a medium for communicating ideas about methodology. Programs

allow their authors to describe complex processes to their readers, provided that both share

mental models that underly the language in which the programs are written. Secondly it aims

to describe programming as an activity to manage the complexity of software systems, by

using abstraction techniques available in existing programming languages, and by inventing

new languages whenever the need arises.

To succeed in these goals, the original version focuses on a minimal set of idioms of the cho-

sen programming language, Scheme. That set of idioms is not formally taught but assimilated

by students as they make progress digesting the underlying mental models and abstractions.

The book does not aim to teach the language Scheme, but rather the ability to express proce-

dural ideas in Scheme is a side e�ect of achieving its main goals.

Instead of Scheme, this book (SICP JS), uses JavaScript as its programming language. Just

like the original, which it closely follows, the JavaScript adaptation focuses on a minimal set

of idioms of the chosen language. A reader would be ill-advised to use this book in order to

learn JavaScript. As a drastic example, the notion of a JavaScript object—considered one of

its fundamental ingredients by any measure—is not even mentioned! The JavaScript subset

used in SICP JS is designed to be just big enough to express the ideas presented in SICP with a

conciseness and precision that matches the original. (The resulting sublanguage is described

in detail in the web pages that accompany SICP JS.) Just like the subset of Scheme used in

SICP, the subset of JavaScript used in SICP JS does not need to be formally taught; its mastery

is a side e�ect of achieving the goals of SICP.

We sincerely hope that readers for whom this book is their �rst encounter with programming

will use their newly gained understanding of the structure and interpretation of computer

programs to study more programming languages, including Scheme and the full JavaScript

11

language. Readers who have learned JavaScript prior to picking up SICP JS might gain new

insights into the fundamental concepts that underly the language and discover how much

can be achieved with so little. Readers who come to SICP JS with a knowledge of the original

SICP might enjoy seeing familiar ideas presented in a new format—and might appreciate our

comparison version, also available in the web pages.

— Martin Henz and Tobias Wrigstad

Preface to the Second Edition of SICP, 1996

Is it possible that software is not like anything else, that it is meant to

be discarded: that the whole point is to always see it as a soap bubble?

— Alan J. Perlis

The material in this book has been the basis of MIT’s entry-level computer science subject

since 1980. We had been teaching this material for four years when the �rst edition was

published, and twelve more years have elapsed until the appearance of this second edition.

We are pleased that our work has been widely adopted and incorporated into other texts. We

have seen our students take the ideas and programs in this book and build them in as the core

of new computer systems and languages. In literal realization of an ancient Talmudic pun,

our students have become our builders. We are lucky to have such capable students and such

accomplished builders.

In preparing this edition, we have incorporated hundreds of clari�cations suggested by our

own teaching experience and the comments of colleagues at MIT and elsewhere. We have re-

designed most of the major programming systems in the book, including the generic-arithmetic

system, the interpreters, the register-machine simulator, and the compiler; and we have rewrit-

ten all the program examples to ensure that any Scheme implementation conforming to the

IEEE Scheme standard (IEEE 1990) will be able to run the code.

This edition emphasizes several new themes. The most important of these is the central role

played by di�erent approaches to dealing with time in computational models: objects with

state, concurrent programming, functional programming, lazy evaluation, and nondeterminis-

tic programming. We have included new sections on concurrency and nondeterminism, and

we have tried to integrate this theme throughout the book.

The �rst edition of the book closely followed the syllabus of our MIT one-semester subject.

With all the new material in the second edition, it will not be possible to cover everything

in a single semester, so the instructor will have to pick and choose. In our own teaching, we

12 Generated 2020-08-18 16:40:02Z

sometimes skip the section on logic programming (section 4.4), we have students use the

register-machine simulator but we do not cover its implementation (section 5.2), and we give

only a cursory overview of the compiler (section 5.5). Even so, this is still an intense course.

Some instructors may wish to cover only the �rst three or four chapters, leaving the other

material for subsequent courses.

The World Wide Web site of MIT Press provides support for users of this book. This includes

programs from the book, sample programming assignments, supplementary materials, and

downloadable implementations of the Scheme dialect of Lisp.

— Harold Abelson and Gerald Jay Sussman

Preface to the First Edition of SICP, 1984

A computer is like a violin. You can imagine a novice trying �rst a

phonograph and then a violin. The latter, he says, sounds terrible. That

is the argument we have heard from our humanists and most of our

computer scientists. Computer programs are good, they say, for particu-

lar purposes, but they aren’t �exible. Neither is a violin, or a typewriter,

until you learn how to use it.

— Marvin Minsky, “Why Programming Is a Good Medium for

Expressing Poorly-Understood and Sloppily-Formulated Ideas”

“The Structure and Interpretation of Computer Programs” is the entry-level subject in com-

puter science at the Massachusetts Institute of Technology. It is required of all students at MIT

who major in electrical engineering or in computer science, as one-fourth of the “common core

curriculum,” which also includes two subjects on circuits and linear systems and a subject on

the design of digital systems. We have been involved in the development of this subject since

1978, and we have taught this material in its present form since the fall of 1980 to between 600

and 700 students each year. Most of these students have had little or no prior formal training in

computation, although many have played with computers a bit and a few have had extensive

programming or hardware-design experience.

Our design of this introductory computer-science subject re�ects two major concerns. First,

we want to establish the idea that a computer language is not just a way of getting a computer

to perform operations but rather that it is a novel formal medium for expressing ideas about

methodology. Thus, programs must be written for people to read, and only incidentally for

machines to execute. Second, we believe that the essential material to be addressed by a sub-

13 Generated 2020-08-18 16:40:02Z

http://www-mitpress.mit.edu/sicp

ject at this level is not the syntax of particular programming-language constructs, nor clever

algorithms for computing particular functions e�ciently, nor even the mathematical analysis

of algorithms and the foundations of computing, but rather the techniques used to control the

intellectual complexity of large software systems.

Our goal is that students who complete this subject should have a good feel for the elements of

style and the aesthetics of programming. They should have command of the major techniques

for controlling complexity in a large system. They should be capable of reading a 50-page-long

program, if it is written in an exemplary style. They should know what not to read, and what

they need not understand at any moment. They should feel secure about modifying a program,

retaining the spirit and style of the original author.

These skills are by no means unique to computer programming. The techniques we teach

and draw upon are common to all of engineering design. We control complexity by building

abstractions that hide details when appropriate. We control complexity by establishing conven-

tional interfaces that enable us to construct systems by combining standard, well-understood

pieces in a “mix and match” way. We control complexity by establishing new languages for de-

scribing a design, each of which emphasizes particular aspects of the design and deemphasizes

others.

Underlying our approach to this subject is our conviction that “computer science” is not a

science and that its signi�cance has little to do with computers. The computer revolution is a

revolution in the way we think and in the way we express what we think. The essence of this

change is the emergence of what might best be called procedural epistemology—the study of the

structure of knowledge from an imperative point of view, as opposed to the more declarative

point of view taken by classical mathematical subjects. Mathematics provides a framework

for dealing precisely with notions of “what is.” Computation provides a framework for dealing

precisely with notions of “how to.”

In teaching our material we use a dialect of the programming language Lisp. We never

formally teach the language, because we don’t have to. We just use it, and students pick it up

in a few days. This is one great advantage of Lisp-like languages: They have very few ways of

forming compound expressions, and almost no syntactic structure. All of the formal properties

can be covered in an hour, like the rules of chess. After a short time we forget about syntactic

details of the language (because there are none) and get on with the real issues—�guring out

what we want to compute, how we will decompose problems into manageable parts, and how

we will work on the parts. Another advantage of Lisp is that it supports (but does not enforce)

more of the large-scale strategies for modular decomposition of programs than any other

language we know. We can make procedural and data abstractions, we can use higher-order

functions to capture common patterns of usage, we can model local state using assignment and

data mutation, we can link parts of a program with streams and delayed evaluation, and we can

14 Generated 2020-08-18 16:40:02Z

easily implement embedded languages. All of this is embedded in an interactive environment

with excellent support for incremental program design, construction, testing, and debugging.

We thank all the generations of Lisp wizards, starting with John McCarthy, who have fashioned

a �ne tool of unprecedented power and elegance.

Scheme, the dialect of Lisp that we use, is an attempt to bring together the power and elegance

of Lisp and Algol. From Lisp we take the metalinguistic power that derives from the simple

syntax, the uniform representation of programs as data objects, and the garbage-collected

heap-allocated data. From Algol we take lexical scoping and block structure, which are gifts

from the pioneers of programming-language design who were on the Algol committee. We

wish to cite John Reynolds and Peter Landin for their insights into the relationship of Church’s

lambda calculus to the structure of programming languages. We also recognize our debt to

the mathematicians who scouted out this territory decades before computers appeared on the

scene. These pioneers include Alonzo Church, Barkley Rosser, Stephen Kleene, and Haskell

Curry.

— Harold Abelson and Gerald Jay Sussman

15 Generated 2020-08-18 16:40:02Z

16 Generated 2020-08-18 16:40:02Z

Acknowledgments

Acknowledgments from the JavaScript Adaptation, 2020

The JavaScript adaptation was developed at the National University of Singapore (NUS) for

the course CS1101S. The course was co-taught for six years and counting by Low Kok Lim,

whose sound pedagogical judgment was crucial for the success of the course and this project.

The CS1101S teaching team has included many School of Computing colleagues and dozens of

undergraduate student assistants. Their continuous feedback over the past nine years allowed

us to resolve countless JavaScript-speci�c issues and remove unnecessary complications and

yet retain the essential features of both SICP and JavaScript.

SICP JS is a software project in addition to a book project. We obtained the LATEX book sources

from the original authors in 2008. An early version of the SICP JS tool chain was developed

by Liu Hang and re�ned by Feng Piaopiao. Chan Ger Hean developed the tools for the print

edition, based on which Jolyn Tan developed the tools for the e-book edition and He Xinyue

and Wang Qian re-developed the tools for the current web edition.

The online edition of SICP JS and CS1101S rely heavily on a software system called the

Source Academy, and the JavaScript sublanguages it supports are called Source. Many dozens

of students contributed to the Source Academy over the past six years, and the system lists

them prominently as “Contributors.” Most recently the students of the NUS course CS4215,

Programming Language Implementation, contributed several programming language imple-

mentations that are used in SICP JS: The concurrent version of Source used in section 3.4

was developed by Zhengqun Koo and Jonathan Chan, the lazy implementation used in sec-

tion 4.2 was developed by Jellouli Ahmed, Ian Kendall Duncan, Cruz Jomari Evangelista and

Alden Tan, and the nondeterministic implementation used in section 4.3 was developed by

Arsalan Cheema and Anubhav, and Daryl Tan helped integrate these implementations into

the Academy.

We are grateful to STINT, The Swedish Foundation for International Cooperation in Research

and Higher Education, whose sabbatical programme connected Martin and Tobias and allowed

Tobias to work as a co-teacher of CS1101S and join the SICP JS project.

17

Finally, we would like to acknowledge the courageous work of the committee of ECMAScript

2015, led by Allen Wirfs-Brock. SICP JS relies heavily on constant and let declarations and

lambda expressions, all of which were added to JavaScript with ECMAScript 2015. Those

additions allowed us to stay close to the original in the presentation of the most important

ideas of SICP.

— Martin Henz and Tobias Wrigstad

Acknowledgments from Second Edition of SICP, 1996

We would like to thank the many people who have helped us develop this book and this

curriculum.

Our subject is a clear intellectual descendant of “6.231,” a wonderful subject on programming

linguistics and the lambda calculus taught at MIT in the late 1960s by Jack Wozencraft and

Arthur Evans, Jr.

We owe a great debt to Robert Fano, who reorganized MIT’s introductory curriculum in

electrical engineering and computer science to emphasize the principles of engineering design.

He led us in starting out on this enterprise and wrote the �rst set of subject notes from which

this book evolved.

Much of the style and aesthetics of programming that we try to teach were developed in

conjunction with Guy Lewis Steele Jr., who collaborated with Gerald Jay Sussman in the

initial development of the Scheme language. In addition, David Turner, Peter Henderson, Dan

Friedman, David Wise, and Will Clinger have taught us many of the techniques of the functional

programming community that appear in this book.

Joel Moses taught us about structuring large systems. His experience with the Macsyma

system for symbolic computation provided the insight that one should avoid complexities of

control and concentrate on organizing the data to re�ect the real structure of the world being

modeled.

Marvin Minsky and Seymour Papert formed many of our attitudes about programming and

its place in our intellectual lives. To them we owe the understanding that computation provides

a means of expression for exploring ideas that would otherwise be too complex to deal with

precisely. They emphasize that a student’s ability to write and modify programs provides a

powerful medium in which exploring becomes a natural activity.

We also strongly agree with Alan Perlis that programming is lots of fun and we had better

be careful to support the joy of programming. Part of this joy derives from observing great

18 Generated 2020-08-18 16:40:02Z

masters at work. We are fortunate to have been apprentice programmers at the feet of Bill

Gosper and Richard Greenblatt.

It is di�cult to identify all the people who have contributed to the development of our

curriculum. We thank all the lecturers, recitation instructors, and tutors who have worked

with us over the past �fteen years and put in many extra hours on our subject, especially Bill

Siebert, Albert Meyer, Joe Stoy, Randy Davis, Louis Braida, Eric Grimson, Rod Brooks, Lynn

Stein, and Peter Szolovits. We would like to specially acknowledge the outstanding teaching

contributions of Franklyn Turbak, now at Wellesley; his work in undergraduate instruction set

a standard that we can all aspire to. We are grateful to Jerry Saltzer and Jim Miller for helping

us grapple with the mysteries of concurrency, and to Peter Szolovits and David McAllester for

their contributions to the exposition of nondeterministic evaluation in chapter 4.

Many people have put in signi�cant e�ort presenting this material at other universities.

Some of the people we have worked closely with are Jacob Katzenelson at the Technion, Hardy

Mayer at the University of California at Irvine, Joe Stoy at Oxford, Elisha Sacks at Purdue, and

Jan Komorowski at the Norwegian University of Science and Technology. We are exceptionally

proud of our colleagues who have received major teaching awards for their adaptations of this

subject at other universities, including Kenneth Yip at Yale, Brian Harvey at the University of

California at Berkeley, and Dan Huttenlocher at Cornell.

Al Moyé arranged for us to teach this material to engineers at Hewlett-Packard, and for the

production of videotapes of these lectures. We would like to thank the talented instructors—in

particular Jim Miller, Bill Siebert, and Mike Eisenberg—who have designed continuing educa-

tion courses incorporating these tapes and taught them at universities and industry all over

the world.

Many educators in other countries have put in signi�cant work translating the �rst edition.

Michel Briand, Pierre Chamard, and André Pic produced a French edition; Susanne Daniels-

Herold produced a German edition; and Fumio Motoyoshi produced a Japanese edition. We

do not know who produced the Chinese edition, but we consider it an honor to have been

selected as the subject of an “unauthorized” translation.

It is hard to enumerate all the people who have made technical contributions to the devel-

opment of the Scheme systems we use for instructional purposes. In addition to Guy Steele,

principal wizards have included Chris Hanson, Joe Bowbeer, Jim Miller, Guillermo Rozas, and

Stephen Adams. Others who have put in signi�cant time are Richard Stallman, Alan Bawden,

Kent Pitman, Jon Taft, Neil Mayle, John Lamping, Gwyn Osnos, Tracy Larrabee, George Car-

rette, Soma Chaudhuri, Bill Chiarchiaro, Steven Kirsch, Leigh Klotz, Wayne Noss, Todd Cass,

Patrick O’Donnell, Kevin Theobald, Daniel Weise, Kenneth Sinclair, Anthony Courtemanche,

Henry M. Wu, Andrew Berlin, and Ruth Shyu.

19 Generated 2020-08-18 16:40:02Z

Beyond the MIT implementation, we would like to thank the many people who worked

on the IEEE Scheme standard, including William Clinger and Jonathan Rees, who edited the

R4RS, and Chris Haynes, David Bartley, Chris Hanson, and Jim Miller, who prepared the IEEE

standard.

Dan Friedman has been a long-time leader of the Scheme community. The community’s

broader work goes beyond issues of language design to encompass signi�cant educational

innovations, such as the high-school curriculum based on EdScheme by Schemer’s Inc., and

the wonderful books by Mike Eisenberg and by Brian Harvey and Matthew Wright.

We appreciate the work of those who contributed to making this a real book, especially Terry

Ehling, Larry Cohen, and Paul Bethge at the MIT Press. Ella Mazel found the wonderful cover

image. For the second edition we are particularly grateful to Bernard and Ella Mazel for help

with the book design, and to David Jones, TEX wizard extraordinaire. We also are indebted to

those readers who made penetrating comments on the new draft: Jacob Katzenelson, Hardy

Mayer, Jim Miller, and especially Brian Harvey, who did unto this book as Julie did unto his

book Simply Scheme.

Finally, we would like to acknowledge the support of the organizations that have encour-

aged this work over the years, including support from Hewlett-Packard, made possible by Ira

Goldstein and Joel Birnbaum, and support from DARPA, made possible by Bob Kahn.

— Harold Abelson and Gerald Jay Sussman

20 Generated 2020-08-18 16:40:02Z

Chapter 1

Building Abstractions with Functions

The acts of the mind, wherein it exerts its power over simple ideas, are

chie�y these three: 1. Combining several simple ideas into one com-

pound one, and thus all complex ideas are made. 2. The second is bring-

ing two ideas, whether simple or complex, together, and setting them

by one another so as to take a view of them at once, without uniting

them into one, by which it gets all its ideas of relations. 3. The third

is separating them from all other ideas that accompany them in their

real existence: this is called abstraction, and thus all its general ideas

are made.

— John Locke, An Essay Concerning Human Understanding (1690)

We are about to study the idea of a computational process. Computational processes are

abstract beings that inhabit computers. As they evolve, processes manipulate other abstract

things called data. The evolution of a process is directed by a pattern of rules called a program.

People create programs to direct processes. In e�ect, we conjure the spirits of the computer

with our spells.

A computational process is indeed much like a sorcerer’s idea of a spirit. It cannot be seen or

touched. It is not composed of matter at all. However, it is very real. It can perform intellectual

work. It can answer questions. It can a�ect the world by disbursing money at a bank or by

controlling a robot arm in a factory. The programs we use to conjure processes are like a

sorcerer’s spells. They are carefully composed from symbolic expressions in arcane and esoteric

programming languagesthat prescribe the tasks we want our processes to perform.

A computational process, in a correctly working computer, executes programs precisely and

accurately. Thus, like the sorcerer’s apprentice, novice programmers must learn to understand

and to anticipate the consequences of their conjuring. Even small errors (usually called bugsor

21

glitches) in programs can have complex and unanticipated consequences.

Fortunately, learning to program is considerably less dangerous than learning sorcery, be-

cause the spirits we deal with are conveniently contained in a secure way. Real-world pro-

gramming, however, requires care, expertise, and wisdom. A small bug in a computer-aided

design program, for example, can lead to the catastrophic collapse of an airplane or a dam or

the self-destruction of an industrial robot.

Master software engineers have the ability to organize programs so that they can be reason-

ably sure that the resulting processes will perform the tasks intended. They can visualize the

behavior of their systems in advance. They know how to structure programs so that unantici-

pated problems do not lead to catastrophic consequences, and when problems do arise, they can

debug their programs. Well-designed computational systems, like well-designed automobiles

or nuclear reactors, are designed in a modular manner, so that the parts can be constructed,

replaced, and debugged separately.

Programming in JavaScript

We need an appropriate language for describing processes, and we will use for this purpose

the programming language JavaScript. Just as our everyday thoughts are usually expressed in

our natural language (such as English, French, or Japanese), and descriptions of quantitative

phenomena are expressed with mathematical notations, our procedural thoughts will be ex-

pressed in JavaScript. JavaScript was developed in the early 1990s as a programming language

for controlling the behavior of World Wide Web browsers through scripts that are embedded

in web pages. The language was conceived by Brendan Eich, originally under the name Mocha,

which was later renamed to LiveScript, and �nally to JavaScript. The name “JavaScript” is a

trademark of Oracle Corporation.

Despite its inception as a language for scripting the web, JavaScript is a general-purpose

programming language. A JavaScript interpreter is a machine that carries out processes de-

scribed in the JavaScript language. The �rst JavaScript interpreter was implemented by Eich at

Netscape Communications Corporation, for the Netscape Navigator web browser. JavaScript

inherited its core features from the Scheme and Self programming languages. Scheme is a di-

alect of Lisp, and was used as the programming language for the original version of this book.

From Scheme, JavaScript inherited its most fundamental design principles such as lexically

scoped �rst-class functions and dynamic typing.

JavaScript bears only super�cial resemblance to the language Java, after which it was (eventu-

ally) named; both Java and JavaScript use the block structure of the language C. In contrast with

Java and C, which usually employ compilation to lower-level languages, JavaScript programs

were initially interpreted by web browsers. After Netscape Navigator, other web browsers pro-

22 Generated 2020-08-18 16:40:02Z

Building Abstractions with Functions 1.1

vided interpreters for the language, including Microsoft’s Internet Explorer, whose JavaScript

version is called JScript. The popularity of JavaScript for controlling web browsers gave rise

to a standardization e�ort, culminating in ECMAScript. The �rst edition of the ECMAScript

standard was led by Guy Lewis Steele Jr. and completed in June 1997 (Ecma 1997). The sixth

edition, known as ECMAScript 2015, was led by Allen Wirfs-Brock and adopted by the General

Assembly of ECMA in June 2015.

The practice of embedding JavaScript programs in web pages encouraged the developers of

web browsers to implement JavaScript interpreters. As these programs became more complex,

the interpreters became more e�cient in executing them, eventually using sophisticated im-

plementation techniques such as Just-In-Time (JIT) compilation. The majority of JavaScript

programs (as of 2020) are embedded in web pages and interpreted by browsers, but JavaScript is

increasingly used as a general-purpose programming language, using systems such as Node.js.

ECMAScript 2015 possesses a set of features that make it an excellent medium for studying

important programming constructs and data structures and for relating them to the linguistic

features that support them. Its lexically scoped �rst-class functions and their syntactic support

through lambda expressions provide direct and concise access to functional abstraction, and

dynamic typing allows the adaptation to remain close to the Scheme original throughout the

book. Above and beyond these considerations, programming in JavaScript is great fun.

1.1 The Elements of Programming

A powerful programming language is more than just a means for instructing a computer to

perform tasks. The language also serves as a framework within which we organize our ideas

about processes. Thus, when we describe a language, we should pay particular attention to

the means that the language provides for combining simple ideas to form more complex ideas.

Every powerful language has three mechanisms for accomplishing this:

– primitive expressions, which represent the simplest entities the language is concerned

with,

– means of combination, by which compound elements are built from simpler ones, and

– means of abstraction, by which compound elements can be named and manipulated

as units.

In programming, we deal with two kinds of elements: functions and data. (Later we will

discover that they are really not so distinct.) Informally, data is “stu�” that we want to manipu-

late, and functions are descriptions of the rules for manipulating the data. Thus, any powerful

programming language should be able to describe primitive data and primitive functions and

23 Generated 2020-08-18 16:40:02Z

Building Abstractions with Functions 1.1.1

should have methods for combining and abstracting functions and data.

In this chapter we will deal only with simple numerical data so that we can focus on the

rules for building functions.
1

In later chapters we will see that these same rules allow us to

build functions to manipulate compound data as well.

1.1.1 Expressions

One easy way to get started at programming is to examine some typical interactions with an

interpreter for the JavaScript language. Imagine that you are sitting at a computer terminal.

You type a program, and the interpreter responds by displaying the result of its evaluating that

program. JavaScript programs are called statements.

One kind of statement is an expression statement, which consists of an expression, followed

by a semicolon. A simple kind of an expression is a number.

(More precisely, the expression that you type consists of the numerals that represent the

number in base 10.) If you present JavaScript with a number

I486;

the interpreter will respond by printing
2

486

Expressions representing numbers may be combined with operators (such as + or *) to form

a compound expression that represents the application of a corresponding primitive function

to those numbers. For example,

I137 + 349;

486

I1000 - 334;

666

1
The characterization of numbers as “simple data” is a barefaced blu�. In fact, the treatment of numbers is one

of the trickiest and most confusing aspects of any programming language. Some typical issues involved are these:

Some computer systems distinguish integers, such as 2, from real numbers, such as 2.71. Is the real number 2.00

di�erent from the integer 2? Are the arithmetic operations used for integers the same as the operations used for

real numbers? Does 6 divided by 2 produce 3, or 3.0? How large a number can we represent? How many decimal

places of accuracy can we represent? Is the range of integers the same as the range of real numbers? Above

and beyond these questions, of course, lies a collection of issues concerning roundo� and truncation errors—the

entire science of numerical analysis. Since our focus in this book is on large-scale program design rather than

on numerical techniques, we are going to ignore these problems. The numerical examples in this chapter will

exhibit the usual roundo� behavior that one observes when using arithmetic operations that preserve a limited

number of decimal places of accuracy in noninteger operations.

2
Throughout this book, when we wish to emphasize the distinction between the input typed by the user and

the response printed by the interpreter, we will show the latter in slanted characters.

24 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=CwDgbA3EA
http://source-academy.github.io/playground#chap=4&prgrm=IwZg7ABA1BICwE4DcQ
http://source-academy.github.io/playground#chap=4&prgrm=IwBjAIFpwZhgWA3EA

Building Abstractions with Functions 1.1.1

I5 * 99;

495

I10 / 5;

2

I2.7 + 10;

12 . 7

Expressions such as these, which contain other expressions as components, are called com-
binations. Combinations that are formed by an operator symbol in the middle, and operand
expressions to the left and right of it, are called operator combinations. The value of an opera-

tor combination is obtained by applying the function speci�ed by the operator to the arguments
that are the values of the operands.

The convention of placing the operator between the operands is known as in�x notation. It

follows the mathematical notation that the reader is most likely familiar with from school and

everyday life. As in mathematics, operator combinations can be nested, that is, they can have

operands that themselves are operator combinations:

I(3 * 5) + (10 - 6);

19

As usual, parentheses are used to group operator combinations in order to avoid ambiguities.

JavaScript also follows the usual conventions when parentheses are omitted; multiplication

and division bind stronger than addition and subtraction. For example,

I3 * 5 + 10 / 2;

stands for

I(3 * 5) + (10 / 2);

We say that * and / have higher precedence than + and -. Sequences of additions and subtrac-

tions are read from left to right, as are sequences of multiplications and divisions. Thus,

I1 - 5 / 2 * 4 + 3;

stands for

I(1 - ((5 / 2) * 4)) + 3;

We say that the operators +, -, * and / are left-associative.

There is no limit (in principle) to the depth of such nesting and to the overall complexity of

the expressions that the JavaScript interpreter can evaluate. It is we humans who might get

25 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=KwAgVCCckNxA
http://source-academy.github.io/playground#chap=4&prgrm=IwBgBA9GCsDcQ
http://source-academy.github.io/playground#chap=4&prgrm=EwOg7ABA1BCMAMBuIA
http://source-academy.github.io/playground#chap=4&prgrm=BQZgBAVGCsCUYGozAIwAYwFowDZYG4g
http://source-academy.github.io/playground#chap=4&prgrm=MwAgVCCsINQgjABhAehAJgNxA
http://source-academy.github.io/playground#chap=4&prgrm=BQZgBAVGCsCUYGozAIwAYwHowCZYG4g
http://source-academy.github.io/playground#chap=4&prgrm=IwAgtCCsIPQgTCAVCALCA1CAzAbiA
http://source-academy.github.io/playground#chap=4&prgrm=BQRgBAtGzArGB6MAmAlGAVGALK9BqMAZgG4g

Building Abstractions with Functions 1.1.2

confused by still relatively simple expressions such as

I3 * 2 * (4 + (3 - 5)) + 10 * (27 / 6);

which the interpreter would readily evaluate to be 57. We can help ourselves by writing such

an expression in the form

I3 * 2 * (4 + (3 - 5))

+

10 * (27 / 6);

to visually separate the major components of the expression.

Even with complex expressions, the interpreter always operates in the same basic cycle: It

reads a statement from the terminal, evaluates the statement, and prints the result. This mode

of operation is often expressed by saying that the interpreter runs in a read-eval-print loop.

Observe in particular that it is not necessary to explicitly instruct the interpreter to print the

value of the statement.

1.1.2 Naming and the Environment

A critical aspect of a programming language is the means it provides for using names to refer to

computational objects, and our �rst such means are constants. We say that the name identi�es

a constant whose value is the object.

In JavaScript, we name constants with constant declarations. Typing

Iconst size = 2;

causes the interpreter to associate the value 2 with the name size.
3

Once the name size has

been associated with the number 2, we can refer to the value 2 by name:

Isize;

2

I5 * size;

10

Here are further examples of the use of const:

Iconst pi = 3.14159;

Iconst radius = 10;

Ipi * radius * radius;

3
In this book, we do not show the interpreter’s response to evaluating programs that end with declarations,

since this might depend on previous statements.

26 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=MwAgVCBM4gFALCA1HUBaEBWAlN5IBGABhlkgHYQB6EANmwG4g
http://source-academy.github.io/playground#chap=4&prgrm=MwAgVCBM4gFALCA1HUBaEBWAlNkAoFfARgAYZZIB2EAehADZsBuIA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBBCWAvApjAvDATAbiA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBBCWAvApjAvDATAbgFAJWyA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBBCWAvApjAvDATAbgFAFYYAqOJZbIA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBADgSxgXhgZgHQEYAsWCsAnANxA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBATgQwCYEsCuEYF4YEYAMA3EA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBADgSxgXhgZgHQEYAsWCsAnANwBQoksATgIYAmCArhCjFgAxmIwBUMtDZr370mEYkA

Building Abstractions with Functions 1.1.3

314 . 159

Iconst circumference = 2 * pi * radius;

Icircumference;

62 . 8318

Constant declaration is our language’s simplest means of abstraction, for it allows us to use

simple names to refer to the results of compound operations, such as the circumference com-

puted above. In general, computational objects may have very complex structures, and it would

be extremely inconvenient to have to remember and repeat their details each time we want to

use them. Indeed, complex programs are constructed by building, step by step, computational

objects of increasing complexity. The interpreter makes this step-by-step program construc-

tion particularly convenient because name-object associations can be created incrementally

in successive interactions. This feature encourages the incremental development and testing

of programs and is largely responsible for the fact that a JavaScript program usually consists

of a large number of relatively simple functions.

It should be clear that the possibility of associating values with names and later retrieving

them means that the interpreter must maintain some sort of memory that keeps track of

the name-object pairs. This memory is called the environment (more precisely the program
environment, since we will see later that a computation may involve a number of di�erent

environments).
4

1.1.3 Evaluating Operator Combinations

One of our goals in this chapter is to isolate issues about thinking procedurally. As a case

in point, let us consider that, in evaluating operator combinations, the interpreter is itself

following a procedure. To evaluate an operator combination, do the following:

1. Evaluate the operand expressions of the combination.

2. Apply the function that is denoted by the operator to the arguments that are the values

of the operands.

Even this simple rule illustrates some important points about processes in general. First, ob-

serve that the �rst step dictates that in order to accomplish the evaluation process for a com-

bination we must �rst perform the evaluation process on each element of the combination.

Thus, the evaluation rule is recursive in nature; that is, it includes, as one of its steps, the need

to invoke the rule itself.

4
Chapter 3 will show that this notion of environment is crucial, both for understanding how the interpreter

works and for implementing interpreters.

27 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBADgSxgXhgZgHQEYAsWCsAnANwBQoksATgIYAmCArhCjFgAxkXQzAJXBGAWwBmAUypiwwMawBMMAFTwky2g2bEgA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBADgSxgXhgZgHQEYAsWCsAnANwBQoksATgIYAmCArhCjFgAxkXQzAJXBGAWwBmAUypiwwMawBMMAFTwky2g2Zd+g0RKkziQA

Building Abstractions with Functions 1.1.3

Notice how succinctly the idea of recursion can be used to express what, in the case of a

deeply nested combination, would otherwise be viewed as a rather complicated process. For

example, evaluating

I(2 + 4 * 6) * (3 + 12);

requires that the evaluation rule be applied to four di�erent combinations. We can obtain a

picture of this process by representing the combination in the form of a tree, as shown in

�gure 1.1. Each combination is represented by a node with branches corresponding to the

operator and the operands of the combination stemming from it. The terminal nodes (that is,

nodes with no branches stemming from them) represent either operators or numbers. Viewing

evaluation in terms of the tree, we can imagine that the values of the operands percolate

upward, starting from the terminal nodes and then combining at higher and higher levels. In

general, we shall see that recursion is a very powerful technique for dealing with hierarchical,

treelike objects. In fact, the “percolate values upward” form of the evaluation rule is an example

of a general kind of process known as tree accumulation.

1526

242

390

123

64

+

*

*

+

Figure 1.1: Tree representation, showing the value of each subexpression.

Next, observe that the repeated application of the �rst step brings us to the point where we

need to evaluate, not combinations, but primitive expressions such as numerals or names. We

take care of the primitive cases by stipulating that

– the values of numerals are the numbers that they name, and

– the values of names are the objects associated with those names in the environment.

The key point to notice is the role of the environment in determining the meaning of the

names in expressions. In an interactive language such as JavaScript, it is meaningless to speak

of the value of an expression such as x + 1 without specifying any information about the

environment that would provide a meaning for the name x. As we shall see in chapter 3, the

general notion of the environment as providing a context in which evaluation takes place will

play an important role in our understanding of program execution.

Notice that the evaluation rule given above does not handle declarations. For instance, eval-

28 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=BQJgBA1GAsYFRgGwEp5mAZkmAjCZA3EA

Building Abstractions with Functions 1.1.4

uating const x = 3; does not apply an equality operator = to two arguments, one of which

is the value of the name x and the other of which is 3, since the purpose of the declaration is

precisely to associate x with a value. (That is, const x = 3; is not a combination.)

The letters in const are rendered in bold to indicate that it is a keyword in JavaScript. Key-

words carry a particular meaning, and thus cannot be used as names. A keyword or a combi-

nation of keywords in a statement instructs the JavaScript interpreter to treat the statement

in a special way. Each such syntactic form has its own evaluation rule. The various kinds of

statements and expressions (each with its associated evaluation rule) constitute the syntax of

the programming language.

1.1.4 Compound Functions

We have identi�ed in JavaScript some of the elements that must appear in any powerful

programming language:

– Numbers and arithmetic operations are primitive data and functions.

– Nesting of combinations provides a means of combining operations.

– Constant declarations that associate names with values provide a limited means of ab-

straction.

Now we will learn about function declarations, a much more powerful abstraction technique

by which a compound operation can be given a name and then referred to as a unit.

We begin by examining how to express the idea of “squaring.” We might say, “To square

something, take it times itself.” This is expressed in our language as

Ifunction square(x) {

return x * x;

}

We can understand this in the following way:

function square(x) { return x * x; }x x x x x x x
To square something, take it times itself.

We have here a compound function, which has been given the name square. The function

represents the operation of multiplying something by itself. The thing to be multiplied is

given a local name, x, which plays the same role that a pronoun plays in natural language.

Evaluating the declaration creates this compound function and associates it with the name

square.
5

5
Observe that there are two di�erent operations being combined here: we are creating the function, and we

are giving it the name square. It is possible, indeed important, to be able to separate these two notions—to create

29 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3PLU1x4AjABYi7IA

Building Abstractions with Functions 1.1.4

The simplest form of a function declaration is

function name(parameters) { return expression; }

The name is a symbol to be associated with the function de�nition in the environment.
6

The

parameters are the names used within the body of the function to refer to the corresponding

arguments of the function. The parameters are grouped within parentheses, as they will be

in an application of the function being declared. In the simplest form, the body of a function

declaration is a single return statement, which consists of the keyword return followed by

the return expression that will yield the value of the function application, when the formal

parameters are replaced by the actual arguments to which the function is applied.
7

Having declared square, we can now use it in a function application expression, which we

turn into a statement using a semicolon:

Isquare(21);

441

Function applications are—after operator combinations—the second kind of combination of ex-

pressions into larger expressions that we encounter. The general form of a function application

is

f unction-expression(arдument-expressions)

where the function-expression of the application speci�es the function to be applied to the

comma-separated argument-expressions. To evaluate a function application, the interpreter

follows a procedure quite similar to the procedure for operator combinations described in

section 1.1.3.

– To evaluate a function application, do the following:

1. Evaluate the subexpressions of the application, namely the function expression

and the argument expressions.

2. Apply the function that is the value of the function expression to the values of the

argument expressions.

Isquare(2 + 5);

49

Here, the argument expression is itself a compound expression, the operator combination

2 + 5.

functions without naming them, and to give names to functions that have already been created. We will see how

to do this in section 1.3.2.

6
Throughout this book, we will describe the general syntax of expressions by using italic symbols—e.g.,

name—to denote the “slots” in the expression to be �lled in when such an expression is actually used.

7
More generally, the body of the function can be a sequence of statements. In this case, the interpreter evaluates

each statement in the sequence in turn until a return statement determines the value of the function application.

30 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3LU1zwAmAIxF2QA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3LU1zwAmRAGpEAViLsgA

Building Abstractions with Functions 1.1.5

Isquare(square(3));

81

Of course application expressions can also serve as argument expressions.

We can also use square as a building block in de�ning other functions. For example, x2 +y2

can be expressed as

square(x) + square(y);

We can easily de�ne a function sum_of_squares8
that, given any two numbers as arguments,

produces the sum of their squares:

Ifunction sum_of_squares(x,y) {

return square(x) + square(y);

}

Isum_of_squares(3, 4);

25

Now we can use sum_of_squares as a building block in constructing further functions:

Ifunction f(a) {

return sum_of_squares(a + 1, a * 2);

}

If(5);

136

In addition to compound functions, our JavaScript environment provides a number of prim-
itive functions that are built into the interpreter. An example is the function math_log that

computes the natural logarithm of its argument.
9

Primitive functions are used in exactly the

same way as compound functions; evaluating the application math_log(1) results in the num-

ber 0. Indeed, one could not tell by looking at the de�nition of sum_of_squares given above

whether square was built into the interpreter, like math_log, or de�ned as a compound func-

tion.

8
For longer names, the JavaScript adaptation stays close to the original book, using underscores instead of

hyphens to separate words. This practice di�ers from the common JavaScript convention of using “camel-case”,

which would stipulate the name to be sumOfSquares.

9
Our JavaScript environment includes all functions and constants of ECMAScript’s Math library with the

names math_. . .. For example, ECMAScript’s Math.log is available as math_log.

31 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3LU1zx9s+AMxEi7IA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgQoQAWwD6cYKLSZcyQgBoAniQrUaOOgxTps+YogDU2mfmWce5ZCPGTpuuQGZ5iACxF2QA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgQoQAWwD6cYKLSZcyQgBoAniQrUaOOgxTps+YogDU2mfmWceyEeMnTdcgMzzEAFiLsgA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgQoQAWwD6cYKLSZcyQgBoAniQrUaOOgxTps+YogDU2mfmWcefaPCTA8GFZWq16SZCPGTpuuRkOIAjPKIvqwATETm5Lx4AKwRQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgQoQAWwD6cYKLSZcyQgBoAniQrUaOOgxTps+YogDU2mfmWcefaPCTA8GFZWq16SZCPGTpuuRkOIAjPKIvqwATETmvHgArBFAA
https://www.ecma-international.org/ecma-262/9.0/index.html#sec-math-object

Building Abstractions with Functions 1.1.5

1.1.5 The Substitution Model for Function Application

To evaluate a function application, the interpreter follows the process described in section

1.1.4. That is, the interpreter evaluates the elements of the application and applies the function

(which is the value of the function expression of the application) to the arguments (which are

the values of the argument expressions of the application).

We can assume that the mechanism for applying primitive functions to arguments is built

into the interpreter. For compound functions, the application process is as follows:

– To apply a compound function to arguments, evaluate the body of the function with

each formal parameter replaced by the corresponding argument.

To illustrate this process, let’s evaluate the application

If(5)

where f is the function declared in section 1.1.4. We begin by retrieving the return expression

of f:

sum_of_squares(a + 1, a * 2)

Then we replace the parameter a by the argument 5:

sum_of_squares(5 + 1, 5 * 2)

Thus the problem reduces to the evaluation of an application with two arguments and a

function expression sum_of_squares. Evaluating this application involves three subproblems.

We must evaluate the operator to get the function to be applied, and we must evaluate the

argument expressions to get the arguments. Now 5 + 1 produces 6 and 5 * 2 produces 10, so

we must apply the sum_of_squares function to 6 and 10. These values are substituted for the

parameters x and y in the body of sum_of_squares, reducing the expression to

square(6) + square(10)

If we use the declaration of square, this reduces to

(6 * 6) + (10 * 10)

which reduces by multiplication to

36 + 100

and �nally to

136

The process we have just described is called the substitution model for function application.

It can be taken as a model that determines the “meaning” of function application, insofar as the

32 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgQoQAWwD6cYKLSZcyQgBoAniQrUaOOgxTps+YogDU2mfmWcefaPCTA8GFZWq16SZCPGTpuuRkOIAjPKIvqwATETmvHgArBFAA

Building Abstractions with Functions 1.1.5

functions in this chapter are concerned. However, there are two points that should be stressed:

– The purpose of the substitution is to help us think about function application, not to

provide a description of how the interpreter really works. Typical interpreters do not

evaluate function applications by manipulating the text of a function to substitute values

for the parameters. In practice, the “substitution” is accomplished by using a local envi-

ronment for the parameters. We will discuss this more fully in chapters 3 and 4 when

we examine the implementation of an interpreter in detail.

– Over the course of this book, we will present a sequence of increasingly elaborate models

of how interpreters work, culminating with a complete implementation of an interpreter

and compiler in chapter 5. The substitution model is only the �rst of these models—a

way to get started thinking formally about the evaluation process. In general, when

modeling phenomena in science and engineering, we begin with simpli�ed, incomplete

models. As we examine things in greater detail, these simple models become inadequate

and must be replaced by more re�ned models. The substitution model is no exception.

In particular, when we address in chapter 3 the use of functions with “mutable data,”

we will see that the substitution model breaks down and must be replaced by a more

complicated model of function application.
10

Applicative order versus normal order

According to the description of evaluation given in section 1.1.4, the interpreter �rst evaluates

the function and argument expressions and then applies the resulting function to the result-

ing arguments. This is not the only way to perform evaluation. An alternative evaluation

model would not evaluate the arguments until their values were needed. Instead it would

�rst substitute argument expressions for parameters until it obtained an expression involving

only primitive operators, and would then perform the evaluation. If we used this method, the

evaluation of

f(5)

would proceed according to the sequence of expansions

sum_of_squares(5 + 1, 5 * 2)

square(5 + 1) + square(5 * 2)

(5 + 1) * (5 + 1) + (5 * 2) * (5 * 2)

10
Despite the simplicity of the substitution idea, it turns out to be surprisingly complicated to give a rigorous

mathematical de�nition of the substitution process. The problem arises from the possibility of confusion between

the names used for the parameters of a function and the (possibly identical) names used in the expressions to

which the function may be applied. Indeed, there is a long history of erroneous de�nitions of substitution in the

literature of logic and programming semantics. See Stoy 1977 for a careful discussion of substitution.

33 Generated 2020-08-18 16:40:02Z

Building Abstractions with Functions 1.1.6

followed by the reductions

6 * 6 + 10 * 10

36 + 100

136

This gives the same answer as our previous evaluation model, but the process is di�erent. In

particular, the evaluations of 5 + 1 and 5 * 2 are each performed twice here, corresponding

to the reduction of the expression

x * x

with x replaced respectively by 5 + 1 and 5 * 2.

This alternative “fully expand and then reduce” evaluation method is known as normal-
order evaluation, in contrast to the “evaluate the arguments and then apply” method that the

interpreter actually uses, which is called applicative-order evaluation. It can be shown that, for

function applications that can be modeled using substitution (including all the functions in the

�rst two chapters of this book) and that yield legitimate values, normal-order and applicative-

order evaluation produce the same value. (See exercise 1.5 for an instance of an “illegitimate”

value where normal-order and applicative-order evaluation do not give the same result.)

JavaScript uses applicative-order evaluation, partly because of the additional e�ciency ob-

tained from avoiding multiple evaluations of expressions such as those illustrated with above

and, more signi�cantly, because normal-order evaluation becomes much more complicated to

deal with when we leave the realm of functions that can be modeled by substitution. On the

other hand, normal-order evaluation can be an extremely valuable tool, and we will investigate

some of its implications in chapters 3 and 4.
11

1.1.6 Conditional Expressions and Predicates

The expressive power of the class of functions that we can de�ne at this point is very limited,

because we have no way to make tests and to perform di�erent operations depending on the

result of a test. For instance, we cannot declare a function that computes the absolute value

of a number by testing whether the number is positive or not, and taking di�erent actions in

each case according to the rule

|x | =

{
x if x ≥ 0

−x otherwise

11
In chapter 3 we will introduce stream processing, which is a way of handling apparently “in�nite” data

structures by incorporating a limited form of normal-order evaluation. In section 4.2 we will modify the JavaScript

interpreter to produce a normal-order variant of JavaScript.

34 Generated 2020-08-18 16:40:02Z

Building Abstractions with Functions 1.1.6

This construct is a case analysis and can be expressed in JavaScript using a conditional expres-
sion as follows:

Ifunction abs(x) {

return x >= 0 ? x : -x;

}

The general form of a conditional expression is

predicate ? consequent-expression : alternative-expression

Conditional expressions begin with a predicate—that is, an expression whose value is either

true or false, two distinguished boolean values in JavaScript.
12

Note that the primitive boolean

expressions true and false trivially evaluate to the boolean values true and false, respectively.

The predicate is followed by a question mark, the consequent-expression, a colon, and �nally

the alternative-expression.

To evaluate a conditional expression, the interpreter starts by evaluating the predicate of the

expression. If the predicate evaluates to true, the interpreter evaluates the consequent-expression.

If the predicate evaluates to false, it evaluates the alternative-expression.

The word predicate is used for operators and functions that return true or false, as well as for

expressions that evaluate to true or false. The absolute-value function abs makes use of the

primitive predicate >=, an operator that takes two numbers as operands and tests whether the

�rst number is greater than or equal to the second number, returning true or false accordingly.

In addition to primitive predicates such as >=, >, <, <=, ===, and !== that are applied to num-

bers,
13

there are logical composition operations, which enable us to construct compound pred-

icates. The three most frequently used are these:

– expression
1
&& expression

2

This operation expresses logical conjunction.
14

The interpreter evaluates expression
1
. If

it evaluates to false, the value of the whole expression is false, and expression
2

is not

evaluated. If expression
1

evaluates to true, the value of the whole expressionis the value

of expression
2
.

– expression
1
|| expression

2

This operation expresses logical disjunction.
15

The interpreter evaluates expression
1
. If

it evaluates to true, the value of the whole expression is true, and expression
2

is not

evaluated. If expression
1

evaluates to false, the value of the whole expression is the value

12
In JavaScript, other values are automatically converted into true and false according to conversion rules, but

we choose not to make use of these conversion rules in this book.

13
For now, we restrict these operators to number arguments. In sections 2.3.1 and 3.3.1, we shall successively

extend the domains of the predicate ===.

14
meaning roughly the same as the English word “and”

15
meaning roughly the same as the English word “or”

35 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwEYGcAUAPAlIgbwChFTEAnAUyhHKW0QD4BeRABkQH5EGAuRALTYA3EQC+RImiwCArLmFA

Building Abstractions with Functions 1.1.6

of expression
2
.

– ! expression
This operation expresses logical negation.

16
The value of the expression is true when

expression evaluates to false, and false otherwise.

Notice that && and || are syntactic forms, not operators, because their right-hand expression

is not always evaluated. The operator !, on the other hand, follows the evaluation rule of

section 1.1.3. It is a unary operator, which means that it takes only one argument, whereas

the arithmetic operators and primitive predicates encountered so far are binary, taking two

arguments. The operator ! precedes its argument; we call it a pre�x operator. Another pre�x

operator is the unary “minus” operator, an example of which is the expression -x of the function

abs in the beginning of this section.

As an example of how these predicates are used, the condition that a number x be in the

range 5 < x < 10 may be expressed as

x > 5 && x < 10

Note that the binary operator && has lower precedence than the comparison operators > and

<, and that the conditional expression operator · · · ?· · · :· · · has lower precedence than any

other operator, a property we used in the abs function above.

As another example, we can de�ne a predicate to test whether one number is greater than

or equal to another as

Ifunction greater_or_equal(x, y) {

return x > y || x === y;

}

or alternatively as

Ifunction greater_or_equal(x, y) {

return ! (x < y);

}

The function greater_or_equal when applied to two numbers, behaves the same as the op-

erator >=. Unary operators have higher precedence than binary operators, which makes the

parentheses in this example necessary.

Exercise 1.1

Below is a sequence of statements. What is the result printed by the interpreter in response

to each statement? Assume that the sequence is to be evaluated in the order in which it is

presented.

16
meaning roughly the same as the English word “not”

36 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwE4FMCGV2oPpz7oCOImANgBQAeANIgJ4CUiA3gFCJeIZQipJqiAHyNEAH3GIhAXjmMA3OwC+7dmiw58hPCTJUA7PQAsTBUA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwE4FMCGV2oPpz7oCOImANgBQAeANIgJ4CUiA3gFCJeIZQipIAhIhqIAPIyYBudgF927NFhz5CeEmSoB2egBZpQA

Building Abstractions with Functions 1.1.6

I10;

I5 + 3 + 4;

I9 - 1;

I6 / 2;

I2 * 4 + (4 - 6);

Iconst a = 3;

Iconst b = a + 1;

Ia + b + a * b;

Ia === b;

Ib > a && b < a * b

? b : a;

Ia === 4 ? 6 : b === 4 ? 6 + 7 + a : 25;

I2 + (b > a ? b : a);

I(a > b

? a

: a < b

? b

: -1)

*

(a + 1);

Note that the statement

Ia === 4 ? 6 : b === 4 ? 6 + 7 + a : 25;

consists of two conditional expressions, where the second one forms the alternative of the �rst

one. To make that clear, we often indent the lines like this:

Ia === 4

? 6

: b === 4

? 6 + 7 + a

: 25;

37 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=IwBg3EA
http://source-academy.github.io/playground#chap=4&prgrm=KwAg1CDM4gLA3EA
http://source-academy.github.io/playground#chap=4&prgrm=JwAgtCCMDcQ
http://source-academy.github.io/playground#chap=4&prgrm=GwAg9CBMDcQ
http://source-academy.github.io/playground#chap=4&prgrm=EwAgVCAsINQgFNAtCAbASgNxA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAhjAvDAzAbiA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAhjAvDAzAbgFCkrARk+GAahgEY0g
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAhjAvDAzAbgFCkrARk+GAahgEZMET8SEAqGXNIA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAhjAvDAzAbgFCkrARk+GAahgEZMFEqZc0g
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAhjAvDAzAbgFCkrARk+GAahgEZN8A+QgMhpnwB5CAqBmDGLgfnYC54aIA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAhjAvDAzAbgFCkrARk+GAahgEZMFEqYAWGAfhgDYYAuGfK5OxlkgdmKF2AJgCsaIA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAhjAvDAzAbgFCkrARk+GAahgEZMAmYmACnwD5CB+GfALngEo0g
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAhjAvDAzAbgFCkrARk+GAahgEZMAKBAPhlwxgH54GAuQgHjoZie95jsAtKQCUGAFQYqxMqLRA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAhjAvDAzAbgFCkrARk+GAahgEZMFEqYAWGAfhgDYYAuGfK5OxlkgdmKF2AJgCsaIA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAhjAvDAzAbgFCkrARk+GAahgEZMFEqYAWDAfhgDYMAuGfK5GmDGGRk2IwA7MLh8Y7AEwBWNEA

Building Abstractions with Functions 1.1.6

Exercise 1.2

Translate the following expression into JavaScript

5 + 4 +
(
2 −

(
3 − (6 + 4

5
)
))

3(6 − 2)(2 − 7)

Exercise 1.3

Declare a function that takes three numbers as arguments and returns the sum of the squares

of the two larger numbers.

Exercise 1.4

Observe that our model of evaluation allows for applications whose function expressions

are compound expressions. Use this observation to describe the behavior of the following

function:

Ifunction plus(a, b) { return a + b; }

function minus(a, b) { return a - b; }

function a_plus_abs_b(a, b) {

return (b >= 0 ? plus : minus)(a, b);

}

Exercise 1.5

Ben Bitdiddle has invented a test to determine whether the interpreter he is faced with is

using applicative-order evaluation or normal-order evaluation. He declares the following two

functions :

Ifunction p() {

return p();

}

function test(x, y) {

return x === 0 ? 0 : y;

}

Then he evaluates the statement

Itest(0, p());

What behavior will Ben observe with an interpreter that uses applicative-order evaluation?

What behavior will he observe with an interpreter that uses normal-order evaluation? Explain

38 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABABwDYgM4AoCGAaRAIwEpEBvRAJwFMoRKkdEBqIgbkQF8AoUSWBIgC2MMJlwES5KrXqNEAWnZde4aPEYB9NJk05CGTYQlFSZboksy6DRFkKIAfAF5EABkQB+FOgyIAXMKimMQmJGzcPNw42r56BkZYAKwECgAsxGxAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABABwBQEpEG8BQj+IBOAplCIUmugNw4C+OOoksCiUxAzlKgB4A0iAJ6ZcBIqXJJeiALzzEABkQB+JYgBcw2nSA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABABwBQEpEG8BQj+IBOAplCIUmugNw4C+OOoksCiUxAzlKgB4A0iAJ6ZcBIqXJJeiALzzEABkQB+JYgBcw2gw7dUiwVRpA

Building Abstractions with Functions 1.1.7

your answer. (Assume that the evaluation rule for conditional expressions is the same whether

the interpreter is using normal or applicative order: The predicate expression is evaluated �rst,

and the result determines whether to evaluate the consequent or the alternative expression.)

1.1.7 Example: Square Roots by Newton’s Method

Functions, as introduced above, are much like ordinary mathematical functions. They specify

a value that is determined by one or more parameters. But there is an important di�erence be-

tween mathematical functions and computer functions. Computer functions must be e�ective.

As a case in point, consider the problem of computing square roots. We can de�ne the

square-root function as

√
x = the y such that y ≥ 0 and y2 = x

This describes a perfectly legitimate mathematical function. We could use it to recognize

whether one number is the square root of another, or to derive facts about square roots in

general. On the other hand, the de�nition does not describe a computer function. Indeed, it

tells us almost nothing about how to actually �nd the square root of a given number. It will

not help matters to rephrase this de�nition in pseudo-JavaScript:

Ifunction sqrt(x) {

return the y with y >= 0 && square(y) === x;

}

This only begs the question.

The contrast between mathematical function and computer function is a re�ection of the

general distinction between describing properties of things and describing how to do things, or,

as it is sometimes referred to, the distinction between declarative knowledge and imperative

knowledge. In mathematics we are usually concerned with declarative (what is) descriptions,

whereas in computer science we are usually concerned with imperative (how to) descriptions.
17

How does one compute square roots? The most common way is to use Newton’s method of

17
Declarative and imperative descriptions are intimately related, as indeed are mathematics and computer

science. For instance, to say that the answer produced by a program is “correct” is to make a declarative statement

about the program. There is a large amount of research aimed at establishing techniques for proving that programs

are correct, and much of the technical di�culty of this subject has to do with negotiating the transition between

imperative statements (from which programs are constructed) and declarative statements (which can be used to

deduce things). In a related vein, an important current area in programming-language design is the exploration of

so-called very high-level languages, in which one actually programs in terms of declarative statements. The idea

is to make interpreters sophisticated enough so that, given “what is” knowledge speci�ed by the programmer,

they can generate “how to” knowledge automatically. This cannot be done in general, but there are important

areas where progress has been made. We shall revisit this idea in chapter 4.

39 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4CcoAoAeBKRAbwChEzF0BTKEdJKAC0sQE9EASAHSkpyn8IB3GIwC+7VogB8AXkQAGRADIlKVCACGVLCwIz9iHAG5iooA

Building Abstractions with Functions 1.1.7

successive approximations, which says that whenever we have a guess y for the value of the

square root of a number x , we can perform a simple manipulation to get a better guess (one

closer to the actual square root) by averaging y with x/y.
18

For example, we can compute the

square root of 2 as follows. Suppose our initial guess is 1:

Guess Quotient Average

1

2

1

= 2

(2 + 1)

2

= 1.5

1.5
2

1.5
= 1.3333

(1.3333 + 1.5)

2

= 1.4167

1.4167

2

1.4167

= 1.4118

(1.4167 + 1.4118)

2

= 1.4142

1.4142

Continuing this process, we obtain better and better approximations to the square root.

Now let’s formalize the process in terms of functions. We start with a value for the radicand

(the number whose square root we are trying to compute) and a value for the guess. If the

guess is good enough for our purposes, we are done; if not, we must repeat the process with

an improved guess. We write this basic strategy as a function:

Ifunction sqrt_iter(guess, x) {

return good_enough(guess, x)

? guess

: sqrt_iter(improve(guess, x), x);

}

A guess is improved by averaging it with the quotient of the radicand and the old guess:

Ifunction improve(guess, x) {

return average(guess, x / guess);

}

where

Ifunction average(x,y) {

return (x + y) / 2;

}

We also have to say what we mean by “good enough.” The following will do for illustration,

but it is not really a very good test. (See exercise 1.7.) The idea is to improve the answer until

it is close enough so that its square di�ers from the radicand by less than a predetermined

18
This square-root algorithm is actually a special case of Newton’s method, which is a general technique for

�nding roots of equations. The square-root algorithm itself was developed by Heron of Alexandria in the �rst

century a.d. We will see how to express the general Newton’s method as a JavaScript function in section 1.3.4.

40 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwEYGcAUAPAlIgbwChFTEAnAUyhHKW0QD4BeRABkQH5EGAuRALTYA3EQC+RUJFgJE6AI4hkVHPmJkK1WvUQAqHqIlTo8JAHM4cACYB9SmDggzAC0xmQldOgA0PNSTIqGjoUDEwFJRV3T3R8AT9EAB52ADo2NgBGQ0lwE1lkADdKcmQzShxvAE9-DSDtRBxEAGpEasQAekQAJmzjGSQYAFsAB3I4IrcPL188QgDSOpDC4tLy6OmeDsR12N7c-rl5cigbGChiyZiZmsCtEItrOwcnVx3r+Y0Nbh2Pz9J+BTHU7nciYIajcZrKY+PzXbJEQEnM4XADMvi6AFZcMIgA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwG4FMBOyDm6AUAHgDQCeAlIgN4BQi9im6UImSRiA1IhYgPSIATAG4aAXxqhIsBIhgBbAA6Y4GfDhDoAzluKJClWg0bNWSNFlwEN23fv6IbO8qIk0Fy1QQDMewQFYXIA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwG4FMBOyDm6AUAHgDQCeAlIgN4BQi9im6UImSRiA1IhYgPSIATAG4aAXxo00WXAQDMxRADZywoA

Building Abstractions with Functions 1.1.7

tolerance (here 0.001):

Ifunction good_enough(guess, x) {

return abs(square(guess) - x) < 0.001;

}

Finally, we need a way to get started. For instance, we can always guess that the square root

of any number is 1:

Ifunction sqrt(x) {

return sqrt_iter(1, x);

}

If we type these declarations to the interpreter, we can use sqrt just as we can use any

function:

Isqrt(9);

3 .00009155413138

Isqrt(100 + 37);

11 .704699917758145

Isqrt(sqrt(2) + sqrt(3));

1 .7739279023207892

Isquare(sqrt(1000));

1000 .000369924366

The sqrt program also illustrates that the simple functional language we have introduced

so far is su�cient for writing any purely numerical program that one could write in, say,

C or Pascal. This might seem surprising, since we have not included in our language any

iterative (looping) constructs that direct the computer to do something over and over again.

The function sqrt_iter, on the other hand, demonstrates how iteration can be accomplished

using no special construct other than the ordinary ability to call a function.
19

Exercise 1.6

Alyssa P. Hacker doesn’t like the syntax of conditional expressions, involving the characters

? and :. “Why can’t I just declare an ordinary conditional function whose application works

just like conditional expressions?” she asks. Alyssa’s friend Eva Lu Ator claims this can indeed

be done, and she declares a conditional function as follows:

19
Readers who are worried about the e�ciency issues involved in using function calls to implement iteration

should note the remarks on “tail recursion” in section 1.2.1.

41 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwEYGcAUAPAlIgbwChFTEAnAUyhHKW0QD4BeRABkQH5EGAuRALTYA3EQC+RUJFgJE6AI4hkVHPmJkK1WvUQAqHqIlTo8JAHM4cACYB9SmDggzAC0xmQldOgA0PNSTIqGjoUDEwFJRV3T3R8AT9EAB52ADo2NgBGQyIiC2s7BydXDJSAFgzfACZcYSA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwEYGcAUAPAlIgbwChFTEAnAUyhHKW0QD4BeRABkQH5EGAuRALTYA3EQC+RUJFgJE6AI4hkVHPmJkK1WvUQAqHqIlTo8JAHM4cACYB9SmDggzAC0xmQldOgA0PNSTIqGjoUDEwFJRV3T3R8AT9EAB52ADo2NgBGQ0lwE1lkADdKcmQzShxvAE9-DSDtRBxEAGpEasQAekQAJmzjGSQYAFsAB3I4IrcPL188QgDSOpDC4tLy6OmeDsR12N7c-rl5cigbGChiyZiZmsCtEItrOwcnVx3r+Y0Nbh2Pz9J+BTHU7nciYIajcZrKY+PzXPbSUyHY6qOa1O5IQEnM4XDJw8REIiYzAAVlwwiAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwEYGcAUAPAlIgbwChFTEAnAUyhHKW0QD4BeRABkQH5EGAuRALTYA3EQC+RUJFgJE6AI4hkVHPmJkK1WvUQAqHqIlTo8JAHM4cACYB9SmDggzAC0xmQldOgA0PNSTIqGjoUDEwFJRV3T3R8AT9EAB52ADo2NgBGQ0lwE1lkADdKcmQzShxvAE9-DSDtRBxEAGpEasQAekQAJmzjGSQYAFsAB3I4IrcPL188QgDSOpDC4tLy6OmeDsR12N7c-rl5cigbGChiyZiZmsCtEItrOwcnVx3r+Y0Nbh2Pz9J+BTHU7nciYIajcZrKY+PzXPbSUyHY6qOa1O5IQEnM4XDJw8RETGYACcuGEQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwEYGcAUAPAlIgbwChFTEAnAUyhHKW0QD4BeRABkQH5EGAuRALTYA3EQC+RUJFgJE6AI4hkVHPmJkK1WvUQAqHqIlTo8JAHM4cACYB9SmDggzAC0xmQldOgA0PNSTIqGjoUDEwFJRV3T3R8AT9EAB52ADo2NgBGQ0lwE1lkADdKcmQzShxvAE9-DSDtRBxEAGpEasQAekQAJmzjGSQYAFsAB3I4IrcPL188QgDSOpDC4tLy6OmeDsR12N7c-rl5cigbGChiyZiZmsCtEItrOwcnVx3r+Y0Nbh2Pz9J+BTHU7nciYIajcZrKY+PzXPbSUyHY6qOa1O5IQEnM4XDJw8RETGYDLpZqIADMAHZcMIgA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwEYGcAUAPAlIgbwChFTEAnAUyhHKW0QD4BeRABkQH5EGAuRALTYA3EQC+RUJFgJE6AI4hkVHPmJkK1WvUQAqHqIlTo8JAHM4cACYB9SmDggzAC0xmQldOgA0PNSTIqGjoUDEwFJRV3T3R8AT9EAB52ADo2NgBGQ0lwE1lkADdKcmQzShxvAE9-DSDtRBxEAGpEasQAekQAJmzjGSQYAFsAB3I4IrcPL188QgDSOpDC4tLy6OmeDsR12N7c-rl5cigbGChiyZiZmsCtEItrOwcnVx3r+Y0Nbh2Pz9J+BTHU7nciYIajcZrKY+PzXPbSUyHY6qOa1O5IQEnM4XDJw8RETHhI5QTBdfAtQkAZlwuGEQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwEYGcAUAPAlIgbwChFTEAnAUyhHKW0QD4BeRABkQH5EGAuRALTYA3EQC+RUJFgJE6AI4hkVHPmJkK1WvUQAqHqIlTo8JAHM4cACYB9SmDggzAC0xmQldOgA0PNSTIqGjoUDEwFJRV3T3R8AT9EAB52ADo2NgBGQ0lwE1lkADdKcmQzShxvAE9-DSDtRBxEAGpEasQAekQAJmzjGSQYAFsAB3I4IrcPL188QgDSOpDC4tLy6OmeDsR12N7c-rl5cigbGChiyZiZmsCtEItrOwcnVx3r+Y0Nbh2Pz9J+BTHU7nciYIajcZrKY+PzXPbSUyHY6qOa1O5IQEnM4XDJw8RECLKcqYzAZdJsXC4YRAA

Building Abstractions with Functions 1.1.8

Ifunction conditional(predicate, then_clause, else_clause) {

return predicate ? then_clause : else_clause;

}

Eva demonstrates the program for Alyssa:

Iconditional(2 === 3, 0, 5);

evaluates as expected to 5, and

Iconditional(1 === 1, 0, 5);

evaluates as expected to 0. Delighted, Alyssa uses conditional to rewrite the square-root

program:

Ifunction sqrt_iter(guess, x) {

return conditional(good_enough(guess, x),

guess,

sqrt_iter(improve(guess, x),

x));

}

What happens when Alyssa attempts to use this to compute square roots? Explain.

Exercise 1.7

The good_enough test used in computing square roots will not be very e�ective for �nding

the square roots of very small numbers. Also, in real computers, arithmetic operations are

almost always performed with limited precision. This makes our test inadequate for very large

numbers. Explain these statements, with examples showing how the test fails for small and

large numbers. An alternative strategy for implementing good_enough is to watch how guess

changes from one iteration to the next and to stop when the change is a very small fraction of

the guess. Design a square-root function that uses this kind of end test. Does this work better

for small and large numbers?

Exercise 1.8

Newton’s method for cube roots is based on the fact that if y is an approximation to the cube

root of x , then a better approximation is given by the value

x/y2 + 2y

3

Use this formula to implement a cube-root function analogous to the square-root function. (In

section 1.3.4 we will see how to implement Newton’s method in general as an abstraction of

these square-root and cube-root functions.)

42 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBBATGsEEMA2AKABwCcBTdCLKEgGkSgAsSwB9CHLEAZxsRJ29bsuJAJSIA3gEhJiWYgBQcxKSggiSYmRgUqiAPx1GLNh26IAXL34lBpkgG55AXyA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBBATGsEEMA2AKABwCcBTdCLKEgGkSgAsSwB9CHLEAZxsRJ29bsuJAJSIA3gEhJiWYgBQcxKSggiSYmRgUqiAPx1GLNh26IAXL34lBpkgG55AX3kow6TGFx4ATIgC8gYgAzLQADLQArCL2QA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBBATGsEEMA2AKABwCcBTdCLKEgGkSgAsSwB9CHLEAZxsRJ29bsuJAJSIA3gEhJiWYgBQcxKSggiSYmRgUqiAPx1GLNh26IAXL34lBpkgG55AX3kow6TGFx4AjIgC8gYg+tAAMtACsIvZAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBBATGsEEMA2AKABwCcBTdCLKEgGkSgAsSwB9CHLEAZxsRJ29bsuJAJSIA3gEhJiWYgBQcxKSggiSYmRgUqiAPx1GLNh26IAXL34lBpkgG55AX3mhImJFgBGnPAA8xcUU5FTUkP0QAPgBeRAAGfUQIywBaP0cXN2h4JE4ARxAsUn9A4NlQ9STEACokjNdwbIREAHM4OFRmJjgQFvo8FpASTk5aAIky5RJVSu9ffMLiweHOMRSksQAeeIA6OLiARnqsj0QsADcSIiwWkn9qAE9SpQqkf0QAakQnxAB6RAATMdGqcYABbYhwS4DIYjMbPELTMJnS7XW4wlZjP6tWGrYHuHKIfJEKDMDBXDFwjYTF5IyooMDoDy4AbtTrdXr9ZZUgLUSZKAWCpTc0b8oXiuTE0nkoh4cGQ6Ei+F8iWqtVyAIieryKVkqiygDMtABAFYtUA

Building Abstractions with Functions 1.1.8

1.1.8 Functions as Black-Box Abstractions

The function sqrt is our �rst example of a process de�ned by a set of mutually de�ned functions.

Notice that the declaration of sqrt_iter is recursive; that is, the function is de�ned in terms

of itself. The idea of being able to de�ne a function in terms of itself may be disturbing; it

may seem unclear how such a “circular” de�nition could make sense at all, much less specify a

well-de�ned process to be carried out by a computer. This will be addressed more carefully in

section 1.2. But �rst let’s consider some other important points illustrated by the sqrt example.

Observe that the problem of computing square roots breaks up naturally into a number of

subproblems: how to tell whether a guess is good enough, how to improve a guess, and so on.

Each of these tasks is accomplished by a separate function. The entire sqrt program can be

viewed as a cluster of functions (shown in �gure 1.2) that mirrors the decomposition of the

problem into subproblems.

square
/

good_enough

\
abs average

\

improve
/ \

sqrt_iter
|

sqrt

Figure 1.2: Functional decomposition of the sqrt program.

The importance of this decomposition strategy is not simply that one is dividing the program

into parts. After all, we could take any large program and divide it into parts—the �rst ten

lines, the next ten lines, the next ten lines, and so on. Rather, it is crucial that each function

accomplishes an identi�able task that can be used as a module in de�ning other functions.

For example, when we de�ne the good_enough function in terms of square, we are able to

regard the square function as a “black box.” We are not at that moment concerned with how
the function computes its result, only with the fact that it computes the square. The details

of how the square is computed can be suppressed, to be considered at a later time. Indeed,

as far as the good_enough function is concerned, square is not quite a function but rather an

abstraction of a function, a so-called functional abstraction. At this level of abstraction, any

function that computes the square is equally good.

Thus, considering only the values they return, the following two functions squaring a number

should be indistinguishable. Each takes a numerical argument and produces the square of that

number as the value.
20

20
It is not even clear which of these functions is a more e�cient implementation. This depends upon the

hardware available. There are machines for which the “obvious” implementation is the less e�cient one. Consider

43 Generated 2020-08-18 16:40:02Z

Building Abstractions with Functions 1.1.8

Ifunction square(x) {

return x * x;

}

Ifunction square(x) {

return math_exp(double(math_log(x)));

}

function double(x) {

return x + x;

}

So a function should be able to suppress detail. The users of the function may not have

written the function themselves, but may have obtained it from another programmer as a

black box. A user should not need to know how the function is implemented in order to use it.

Local names

One detail of a function’s implementation that should not matter to the user of the function is

the implementer’s choice of names for the function’s parameters. Thus, the following functions

should not be distinguishable:

Ifunction square(x) {

return x * x;

}

Ifunction square(y) {

return y * y;

}

This principle—that the meaning of a function should be independent of the parameter

names used by its author—seems on the surface to be self-evident, but its consequences are

profound. The simplest consequence is that the parameter names of a function must be local

to the body of the function. For example, we used square in the declaration of good_enough

in our square-root function:

Ifunction good_enough(guess, x) {

return abs(square(guess) - x) < 0.001;

}

The intention of the author of good_enough is to determine if the square of the �rst argument

is within a given tolerance of the second argument. We see that the author of good_enough

used the name guess to refer to the �rst argument and x to refer to the second argument. The

argument of square is guess. If the author of square used x (as above) to refer to that argument,

a machine that has extensive tables of logarithms and antilogarithms stored in a very e�cient manner.

44 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3PLU1x4AjABYi7IA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQFsMoALAfRwIAc8ATOCABGAG3zM27EXADmhIgoDc5AL7lQkWAkQDhY+WUrVa9JAUQBqRAWVryaTLjwBGACxFFQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3PLU1x4AjABYi7IA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKATwEpEBvAKESsVyhCyQMQCpECBucgX3PLU1x4AjABYi7IA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwEYGcAUAPAlIgbwChFTEAnAUyhHKW0QD4BeRABkQH5EGAuRALTYA3EQC+RUJFgJE6AI4hkVHPmJkK1WvUQAqHqIlTo8JAHM4cACYB9SmDggzAC0xmQldOgA0PNSTIqGjoUDEwFJRV3T3R8AT9EAB52ADo2NgBGQyIiC2s7BydXDJSAFgzfACZcYSA

Building Abstractions with Functions 1.1.8

we see that the x in good_enough must be a di�erent x than the one in square. Running the

function square must not a�ect the value of x that is used by good_enough, because that value

of x may be needed by good_enough after square is done computing.

If the parameters were not local to the bodies of their respective functions, then the parameter

x in square could be confused with the parameter x in good_enough, and the behavior of

good_enough would depend upon which version of square we used. Thus, square would not

be the black box we desired.

A parameter of a function has a very special role in the function declaration, in that it

doesn’t matter what name the parameter has. Such a name is called bound, and we say that the

function declaration binds its parameters. The meaning of a function declaration is unchanged

if a bound name is consistently renamed throughout the declaration.
21

If a name is not bound,

we say that it is free. The set of expressions for which a binding declares a name is called the

scope of that name. In a function declaration, the bound symbols declared as the parameters

of the function have the body of the function as their scope.

In the declaration of good_enough above, guess and x are bound names but abs and square

are free. The meaning of good_enough should be independent of the names we choose for guess

and x so long as they are distinct and di�erent from abs and square. (If we renamed guess to

abs we would have introduced a bug by capturing the name abs. It would have changed from

free to bound.) The meaning of good_enough is not independent of the choice of its free names,

however. It surely depends upon the fact (external to this declaration) tht the name abs refers

to a function for computing the absolute value of a number. The function good_enough will

compute a di�erent function if we substitute math_cos (JavaScript’s cosine function) for abs

in its declaration.

Internal declarations and block structure

We have one kind of name isolation available to us so far: The parameters of a function are

local to the body of the function. The square-root program illustrates another way in which we

would like to control the use of names. The existing program consists of separate functions:

Ifunction sqrt(x) {

return sqrt_iter(1.0, x);

}

function sqrt_iter(guess, x) {

return good_enough(guess, x)

? guess

: sqrt_iter(improve(guess, x), x);

}

21
The concept of consistent renaming is actually subtle and di�cult to de�ne formally. Famous logicians have

made embarrassing errors here.

45 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwEYGcAUAPAlIgbwChFTEAnAUyhHKW0QD4BeRABkQH5EGAuRALTYA3EQC+RUJFgJE6AI4hkVHPmJkK1WvUQAqHqIlTo8JMgBulcsgDmlHABoAnmpJkqNOohyIA1IhdEAHpEACZDSXATWQVyKFVCN1IPbTl5OIB9GCgrTABGADo2Bx5cCOMZJFioLJzyTBsQSnR0ErxEjRSvGzg4ABMMyjA4EBsACwamlrbcJI0Nbkbm9Dn50n5q2tyYAFsAB3I4S0nlmZnyqMrEHv7B4dGJpenSjvctLzQsBSUVJ-R8AQvAA87CKbDyF2kpkQuwOR3sfxmr2S7zMlmsdhOzwYIT+ZXERCI1UwAFYykA

Building Abstractions with Functions 1.1.8

function good_enough(guess, x) {

return abs(square(guess) - x) < 0.001;

}

function improve(guess, x) {

return average(guess, x / guess);

}

The problem with this program is that the only function that is important to users of sqrt is

sqrt. The other functions (sqrt_iter, good_enough, and improve) only clutter up their minds.

They may not declare any other function called good_enough as part of another program to

work together with the square-root program, because sqrt needs it. The problem is especially

severe in the construction of large systems by many separate programmers. For example, in the

construction of a large library of numerical functions, many numerical functions are computed

as successive approximations and thus might have functions named good_enough and improve

as auxiliary functions. We would like to localize the subfunctions, hiding them inside sqrt

so that sqrt could coexist with other successive approximations, each having its own private

good_enough function. To make this possible, we allow a function to have internal declarations

that are local to that function. For example, in the square-root problem we can write

Ifunction sqrt(x) {

function good_enough(guess, x) {

return abs(square(guess) - x) < 0.001;

}

function improve(guess, x) {

return average(guess, x / guess);

}

function sqrt_iter(guess, x) {

return good_enough(guess, x)

? guess

: sqrt_iter(improve(guess, x), x);

}

return sqrt_iter(1.0, x);

}

Any matching pair of curly braces designates a block, and declarations inside the block are

local to the block. Such nesting of declarations, called block structure, is basically the right

solution to the simplest name-packaging problem. But there is a better idea lurking here.

In addition to internalizing the declarations of the auxiliary functions, we can simplify them.

Since x is bound in the declaration of sqrt, the functions good_enough, improve, and sqrt_iter,

which are declared internally to sqrt, are in the scope of x. Thus, it is not necessary to pass

x explicitly to each of these functions. Instead, we allow x to be a free name in the internal

declarations, as shown below. Then x gets its value from the argument with which the enclosing

function sqrt is called. This discipline is called lexical scoping.
22

22
Lexical scoping dictates that free names in a function are taken to refer to bindings made by enclosing

46 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwEYGcAUAPAlIgbwChFTEAnAUyhHKW0QD4BeRABkQH5EGAuRALTYA3EQC+RUJFgJE6AI4hkVHPmJkK1WvUQAqHqIlTo8JMgBulcsgDmlHABoAnmpJkqNOohyIA1IhdEAHpEACZDSXATWQVyKFVCN1JjGSQbODgAEwB9SjA4EBsAC0wbEEp0dAceVw0ND20UDEwFJRUyivR8ARrEAB52ADo2NgBGUQ0JDRTTRBgAWwAHcjhLUvLK6rxEuvctLwsrW3sOzZ5gxFOuibIpshmY+TjsmCgrdc6t2t3NTzSMnJ5ArFD5nbZJH6QriXDboCFQ3b8WJQF5vciYBbLVYnWFfL43Uh3X6NZGo96jYb48REIjIzAAVlwwiAA

Building Abstractions with Functions 1.2

Ifunction sqrt(x) {

function good_enough(guess) {

return abs(square(guess) - x) < 0.001;

}

function improve(guess) {

return average(guess, x / guess);

}

function sqrt_iter(guess) {

return good_enough(guess)

? guess

: sqrt_iter(improve(guess));

}

return sqrt_iter(1.0);

}

We will use block structure extensively to help us break up large programs into tractable

pieces.
23

The idea of block structure originated with the programming language Algol 60. It

appears in most advanced programming languages and is an important tool for helping to

organize the construction of large programs.

1.2 Functions and the Processes They Generate

We have now considered the elements of programming: We have used primitive arithmetic

operations, we have combined these operations, and we have abstracted these composite op-

erations by declaring them as compound functions . But that is not enough to enable us to say

that we know how to program. Our situation is analogous to that of someone who has learned

the rules for how the pieces move in chess but knows nothing of typical openings, tactics, or

strategy. Like the novice chess player, we don’t yet know the common patterns of usage in the

domain. We lack the knowledge of which moves are worth making (which functions are worth

declaring). We lack the experience to predict the consequences of making a move (executing

a function).

The ability to visualize the consequences of the actions under consideration is crucial to

becoming an expert programmer, just as it is in any synthetic, creative activity. In becoming an

expert photographer, for example, one must learn how to look at a scene and know how dark

each region will appear on a print for each possible choice of exposure and processing options.

Only then can one reason backward, planning framing, lighting, exposure, and processing to

obtain the desired e�ects. So it is with programming, where we are planning the course of

function declarations; that is, they are looked up in the environment in which the function was declared. We

will see how this works in detail in chapter 3 when we study environments and the detailed behavior of the

interpreter.

23
Embedded declarations must come �rst in a function body. The management is not responsible for the

consequences of running programs that intertwine declaration and use; see also footnote 52 in section 1.3.2.

47 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwEYGcAUAPAlIgbwChFTEAnAUyhHKW0QD4BeRABkQH5EGAuRALTYA3EQC+RUJFgJE6AI4hkVHPmJkK1WvUQAqHqIlTo8JMgBulcsgDmlHABoAnmpJkqNOohyIA1IhdEAHpEACZDSXATWQVyKFVCN1JjGSQbODgAEwB9SjA4EBsAC0wbEEp0dFcNDQ9tFAxMBSUVMoqqwR58AB52ADo2NgBGUQ0JDRTTRBgAWwAHcjhLUvLK6prSOq8LK1t7NsqHHmDEA6rRsnGySZj5OOyYKCsV9vWNrbSMnLyC4pe1pIbDbcM6AoEafixKAPJ7kTCzBZLfarKq4C6IK6aTxIKEw55DAZo8REIhQzAAVjRQA

Building Abstractions with Functions 1.2.1

action to be taken by a process and where we control the process by means of a program.

To become experts, we must learn to visualize the processes generated by various types of

functions. Only after we have developed such a skill can we learn to reliably construct programs

that exhibit the desired behavior.

A function is a pattern for the local evolution of a computational process. It speci�es how

each stage of the process is built upon the previous stage. We would like to be able to make

statements about the overall, or global, behavior of a process whose local evolution has been

speci�ed by a function. This is very di�cult to do in general, but we can at least try to describe

some typical patterns of process evolution.

In this section we will examine some common “shapes” for processes generated by simple

functions. We will also investigate the rates at which these processes consume the important

computational resources of time and space. The functions we will consider are very simple.

Their role is like that played by test patterns in photography: as oversimpli�ed prototypical

patterns, rather than practical examples in their own right.

1.2.1 Linear Recursion and Iteration

We begin by considering the factorial function, de�ned by

n! = n · (n − 1) · (n − 2) · · · 3 · 2 · 1

There are many ways to compute factorials. One way is to make use of the observation that

n! is equal to n times (n − 1)! for any positive integer n:

n! = n · [(n − 1) · (n − 2) · · · 3 · 2 · 1] = n · (n − 1)!

Thus, we can compute n! by computing (n − 1)! and multiplying the result by n. If we add the

stipulation that 1! is equal to 1, this observation translates directly into a computer function:

Ifunction factorial(n) {

return n === 1

? 1

: n * factorial(n - 1);

}

48 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMAhtOAnGKA2AKMASkQG8AoRSxDAUyhAySQF5XEBGRCqnqgfg7dePAFyIkAKmRoombPiQBaDoQDcZAL5kyqdFlx4ArGqA

Building Abstractions with Functions 1.2.1

factorial(6)

6 * factorial(5)

6 * (5 * factorial(4))

6 * (5 * (4 * factorial(3)))

6 * (5 * (4 * (3 * factorial(2))))

6 * (5 * (4 * (3 * (2 * factorial(1)))))

6 * (5 * (4 * (3 * (2 * 1))))

6 * (5 * (4 * (3 * 2)))

6 * (5 * (4 * 6))

6 * (5 * 24)

6 * 120

720

Figure 1.3: A linear recursive process for computing 6!.

We can use the substitution model of section 1.1.5 to watch the function in action computing

6!, as shown in �gure 1.3.

Now let’s take a di�erent perspective on computing factorials. We could describe a rule for

computing n! by specifying that we �rst multiply 1 by 2, then multiply the result by 3, then by

4, and so on until we reach n. More formally, we maintain a running product, together with

a counter that counts from 1 up to n. We can describe the computation by saying that the

counter and the product simultaneously change from one step to the next according to the

rule

product← counter · product

counter← counter + 1

and stipulating that n! is the value of the product when the counter exceeds n.

Once again, we can recast our description as a function for computing factorials:
24

Ifunction factorial(n) {

24
In a real program we would probably use the block structure introduced in the last section to hide the

declaration of fact_iter:

Ifunction factorial(n) {
function iter(product, counter) {

return counter > n
? product
: iter(counter * product,

counter + 1);
}
return iter(1, 1);

}
We avoided doing this here so as to minimize the number of things to think about at once.

49 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMAhtOAnGKA2AKMASkQG8AoRSxDAUyhAyVWgH0YoaM8BGAGkT6IiAbjIBfMqEiwEyNFDYcuABwxwAJiGj8IccEv4BbFAA8Wu-cXJVqdBkgtgliAHyJjZx1Ao3fiAPyIqhpa3n6+AFxyrOyceF6ciABUQWqa2j7hWX4JGIgA1AK8mdml7qbmek6EohKS8pjY+ACsNUA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMAhtOAnGKA2AKMASkQG8AoRS5caeJGKAUwzwAcM4ATEaAGkQhxwTDMXJUJiDIyggMSQcOaIAfIiQVJWqgH5E7LjyibtWgFyIGzPIrAjEAKn0dufE6Y+Vb9gNSIAjIQA3CYAvibSsvKWInj+-IEh4WSo6Fi4eACswUA

Building Abstractions with Functions 1.2.1

return fact_iter(1, 1, n);

}

function fact_iter(product, counter, max_count) {

return counter > max_count

? product

: fact_iter(counter * product,

counter + 1,

max_count);

}

factorial(6)

fact_iter(1, 1, 6)

fact_iter(1, 2, 6)

fact_iter(2, 3, 6)

fact_iter(6, 4, 6)

fact_iter(24, 5, 6)

fact_iter(120, 6, 6)

fact_iter(720, 7, 6)

720

Figure 1.4: A linear iterative process for computing 6!.

As before, we can use the substitution model to visualize the process of computing 6!, as

shown in �gure 1.4.

Compare the two processes. From one point of view, they seem hardly di�erent at all. Both

compute the same mathematical function on the same domain, and each requires a number of

steps proportional to n to compute n!. Indeed, both processes even carry out the same sequence

of multiplications, obtaining the same sequence of partial products. On the other hand, when

we consider the “shapes” of the two processes, we �nd that they evolve quite di�erently.

Consider the �rst process. The substitution model reveals a shape of expansion followed by

contraction, indicated by the arrow in �gure 1.3. The expansion occurs as the process builds up

a chain of deferred operations (in this case, a chain of multiplications). The contraction occurs

as the operations are actually performed. This type of process, characterized by a chain of

deferred operations, is called a recursive process. Carrying out this process requires that the

interpreter keep track of the operations to be performed later on. In the computation of n!, the

length of the chain of deferred multiplications, and hence the amount of information needed

to keep track of it, grows linearly with n (is proportional to n), just like the number of steps.

Such a process is called a linear recursive process.

By contrast, the second process does not grow and shrink. At each step, all we need to

keep track of, for any n, are the current values of the names product, counter, and max_count.

50 Generated 2020-08-18 16:40:02Z

Building Abstractions with Functions 1.2.1

We call this an iterative process. In general, an iterative process is one whose state can be

summarized by a �xed number of state variables, together with a �xed rule that describes how

the state variables should be updated as the process moves from state to state and an (optional)

end test that speci�es conditions under which the process should terminate. In computing n!,

the number of steps required grows linearly with n. Such a process is called a linear iterative
process.

The contrast between the two processes can be seen in another way. In the iterative case,

the state variables provide a complete description of the state of the process at any point. If

we stopped the computation between steps, all we would need to do to resume the computa-

tion is to supply the interpreter with the values of the three state variables. Not so with the

recursive process. In this case there is some additional “hidden” information, maintained by

the interpreter and not contained in the state variables, which indicates “where the process is”

in negotiating the chain of deferred operations. The longer the chain, the more information

must be maintained.
25

In contrasting iteration and recursion, we must be careful not to confuse the notion of a

recursive process with the notion of a recursive function. When we describe a function as

recursive, we are referring to the syntactic fact that the function declaration refers (either

directly or indirectly) to the function itself. But when we describe a process as following a

pattern that is, say, linearly recursive, we are speaking about how the process evolves, not about

the syntax of how a function is written. It may seem disturbing that we refer to a recursive

function such as fact_iter as generating an iterative process. However, the process really is

iterative: Its state is captured completely by its three state variables, and an interpreter need

keep track of only three names in order to execute the process.

One reason that the distinction between process and function may be confusing is that most

implementations of common languages (including Ada, Pascal, and C) are designed in such a

way that the interpretation of any recursive function consumes an amount of memory that

grows with the number of function calls, even when the process described is, in principle,

iterative. As a consequence, these languages can describe iterative processes only by resorting

to special-purpose “looping constructs” such as do, repeat, until, for, and while. The imple-

mentation of JavaScript we shall consider in chapter 5 does not share this defect. It will execute

an iterative process in constant space, even if the iterative process is described by a recursive

function. An implementation with this property is called tail-recursive.26
With a tail-recursive

25
When we discuss the implementation of functions on register machines in chapter 5, we will see that any

iterative process can be realized “in hardware” as a machine that has a �xed set of registers and no auxiliary

memory. In contrast, realizing a recursive process requires a machine that uses an auxiliary data structure known

as a stack.

26
Tail recursion has long been known as a compiler optimization trick. A coherent semantic basis for tail

recursion was provided by Carl Hewitt (1977), who explained it in terms of the “message-passing” model of

computation that we shall discuss in chapter 3. Inspired by this, Gerald Jay Sussman and Guy Lewis Steele

Jr. (see Steele 1975) constructed a tail-recursive interpreter for Scheme. Steele later showed how tail recursion is

51 Generated 2020-08-18 16:40:02Z

Building Abstractions with Functions 1.2.1

implementation, iteration can be expressed using the ordinary function call mechanism, so

that special iteration constructs are useful only as syntactic sugar.
27

Exercise 1.9

Each of the following two functions de�nes a method for adding two positive integers in

terms of the functions inc, which increments its argument by 1, and dec, which decrements

its argument by 1.

Ifunction plus(a, b) {

return a === 0 ? b : inc(plus(dec(a), b));

}

Ifunction plus(a, b) {

return a === 0 ? b : plus(dec(a), inc(b));

}

Using the substitution model, illustrate the process generated by each function in evaluating

plus(4, 5);. Are these processes iterative or recursive?

Exercise 1.10

The following function computes a mathematical function called Ackermann’s function.

Ifunction A(x,y) {

return y === 0

? 0

: x === 0

? 2 * y

: y === 1

? 2

: A(x - 1, A(x, y - 1));

}

What are the values of the following expressions?

IA(1, 10);

IA(2, 4);

IA(3, 3);

a consequence of the natural way to compile function calls (Steele 1977). The IEEE standard for Scheme requires

that Scheme implementations be tail-recursive. The ECMA standard for JavaScript eventually followed suit with

ECMAScript 2015 (ECMA 2015). Note however, that as of this writing (2020), most implementations of JavaScript

do not comply with this standard.

27
Syntactic forms that are simply convenient alternative surface structures for things that can be written in

more uniform ways are sometimes called syntactic sugar, to use a phrase coined by Peter Landin. Exercises 4.7 and

4.8 explore JavaScript’s while and for loops as syntactic sugar for functions that give rise to iterative processes.

52 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDSAKAHgSkQbwFCKGIBOAplCMUuogNSICMA3HgL56iSwKIAmpEDNnxES5StUQBaRi3ado8JAAcANiADOqAIYAaRACNhBImQpVE2xAF5biAAyIA-IcQAuZGjWbU-Qdsx9I0wmRDY8PG8tABZ9AFYQoA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDSAKAHgSkQbwFCKGIBOAplCMUuogNSICMA3HgL56iSwKIAmpEDNnxES5StUQBaRi3ado8JAAcANiADOqAIYAaRACNhBImQpVE2xAF5biAAyIA-IcQAuRGs2p+g7Zn0UQSNMOTw8Ly0AFn0AVlCgA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQQBQA8A0BPAlIgbwChFTEAnAUyhHKW0QF5nEAGEszsgfjY684AuROiYt2AybwBMiAFSJs-SWWENmjRAEZlKnomm69iYWlEBabZhQZrDS1ty4A3EQC+RImi3WtrF0A
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQQBQA8A0BPAlIgbwChFTEAnAUyhHKW0QF5nEAGEszsgfjY684AuROiYt2AybwBMiAFSJs-SWWENmjRAEZlKnomm69iYWlEBabZhQZrDS1ty4A3EQC+RNFutbWLoA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQQBQA8A0BPAlIgbwChFTEAnAUyhHKW0QF5nEAGEszsgfjY684AuROiYt2AybwBMiAFSJs-SWWENmjRAEZlKnomm69iYWlEBabZhQZrDS1ty4A3EQC+RNNOsAWF0A
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQQBQA8A0BPAlIgbwChFTEAnAUyhHKW0QF5nEAGEszsgfjY684AuROiYt2AybwBMiAFSJs-SWWENmjRAEZlKnomm69iYWlEBabZhQZrDS1ty4A3EQC+RNAGZrXl0A

Building Abstractions with Functions 1.2.2

Consider the following functions, where A is the function declared above:

Ifunction f(n) {

return A(0, n);

}

function g(n) {

return A(1, n);

}

function h(n) {

return A(2, n);

}

function k(n) {

return 5 * n * n;

}

Give concise mathematical de�nitions for the functions computed by the functions f, g, and h

for positive integer values of n. For example, k(n) computes 5n2
.

1.2.2 Tree Recursion

Another common pattern of computation is called tree recursion. As an example, consider com-

puting the sequence of Fibonacci numbers, in which each number is the sum of the preceding

two:

0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

In general, the Fibonacci numbers can be de�ned by the rule

Fib(n) =

0 if n = 0

1 if n = 1

Fib(n − 1) + Fib(n − 2) otherwise

We can immediately translate this de�nition into a recursive function for computing Fi-

bonacci numbers:

Ifunction fib(n) {

return n === 0

? 0

: n === 1

? 1

: fib(n - 1) + fib(n - 2);

}

53 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQQBQA8A0BPAlIgbwChFTEAnAUyhHKW0QF5nEAGEszsgfjY684AuROiYt2AybwBMiAFSJs-SWWENmjRAEZlKnomm69iYWlEBabZhQZrDS1ty4A3EQC+RUJFgJEwVGD4xJxUNHQ2rNaBrh5e0PBIAOYBQcqhtEhoWlEu7p7g8b4AFimEadQZNtI5MfneCYgA1qXBpOnhAKzyiEgKYLVEzQAsLkA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMGAjAFGAlIg3gKESMQCcBTKEEpJAXnsQAZDjXiB+Jlt1gLkToMAjNx6tOIsT34oMSALSIhOANTI0mRIoBMWANz4Avvnyz0ANn1A

Building Abstractions with Functions 1.2.2

fib5

fib4 fib3

fib3 fib2 fib2 fib1

fib2 fib1 fib1 fib0 fib1 fib0

1 1 10 0

01

fib1 fib0

1

Figure 1.5: The tree-recursive process generated in computing fib(5) .

Consider the pattern of this computation. To compute fib(5), we compute fib(4) and

fib(3). To compute fib(4), we compute fib(3) and fib(2). In general, the evolved process

looks like a tree, as shown in �gure 1.5. Notice that the branches split into two at each level

(except at the bottom); this re�ects the fact that the fib function calls itself twice each time it

is invoked.

This function is instructive as a prototypical tree recursion, but it is a terrible way to compute

Fibonacci numbers because it does so much redundant computation. Notice in �gure 1.5 that

the entire computation of fib(3)—almost half the work—is duplicated. In fact, it is not hard

to show that the number of times the function will compute fib(1) or fib(0) (the number

of leaves in the above tree, in general) is precisely Fib(n + 1). To get an idea of how bad this

is, one can show that the value of Fib(n) grows exponentially with n. More precisely (see

exercise 1.13), Fib(n) is the closest integer to ϕn/
√

5, where

ϕ = (1 +
√

5)/2 ≈ 1.6180

is the golden ratio, which satis�es the equation

ϕ2 = ϕ + 1

Thus, the process uses a number of steps that grows exponentially with the input. On the

other hand, the space required grows only linearly with the input, because we need keep track

only of which nodes are above us in the tree at any point in the computation. In general, the

54 Generated 2020-08-18 16:40:02Z

Building Abstractions with Functions 1.2.2

number of steps required by a tree-recursive process will be proportional to the number of

nodes in the tree, while the space required will be proportional to the maximum depth of the

tree.

We can also formulate an iterative process for computing the Fibonacci numbers. The idea

is to use a pair of integers a and b, initialized to Fib(1) = 1 and Fib(0) = 0, and to repeatedly

apply the simultaneous transformations

a ← a + b

b ← a

It is not hard to show that, after applying this transformation n times, a and b will be equal,

respectively, to Fib(n + 1) and Fib(n). Thus, we can compute Fibonacci numbers iteratively

using the function

Ifunction fib(n) {

return fib_iter(1, 0, n);

}

function fib_iter(a, b, count) {

return count === 0

? b

: fib_iter(a + b, a, count - 1);

}

This second method for computing Fib(n) is a linear iteration. The di�erence in number of

steps required by the two methods—one linear in n, one growing as fast as Fib(n) itself—is

enormous, even for small inputs.

One should not conclude from this that tree-recursive processes are useless. When we con-

sider processes that operate on hierarchically structured data rather than numbers, we will

�nd that tree recursion is a natural and powerful tool.
28

But even in numerical operations,

tree-recursive processes can be useful in helping us to understand and design programs. For

instance, although the �rst fib function is much less e�cient than the second one, it is more

straightforward, being little more than a translation into JavaScript of the de�nition of the Fi-

bonacci sequence. To formulate the iterative algorithm required noticing that the computation

could be recast as an iteration with three state variables.

28
An example of this was hinted at in section 1.1.3: The interpreter itself evaluates expressions using a tree-

recursive process.

55 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMGAjAFGAlIg3gKESMQCcBTKEEpFVAfRijJPQEYAaRABk+wG58AX3yhIsBMjQMmLAIadUnCHHBQcBYqQpUky1YgC8R7oU1nEAfkSpT54gC5J9Rs3SzEAamud5iPWChEAFpEViwBYRE0dAA2cKA

Building Abstractions with Functions 1.2.2

Example: Counting change

It takes only a bit of cleverness to come up with the iterative Fibonacci algorithm. In contrast,

consider the following problem: How many di�erent ways can we make change of $1.00, given

half-dollars, quarters, dimes, nickels, and pennies? More generally, can we write a function to

compute the number of ways to change any given amount of money?

This problem has a simple solution as a recursive function. Suppose we think of the types

of coins available as arranged in some order. Then the following relation holds:

The number of ways to change amount a using n kinds of coins equals

– the number of ways to change amount a using all but the �rst kind of coin, plus

– the number of ways to change amount a − d using all n kinds of coins, where d is the

denomination of the �rst kind of coin.

To see why this is true, observe that the ways to make change can be divided into two

groups: those that do not use any of the �rst kind of coin, and those that do. Therefore, the

total number of ways to make change for some amount is equal to the number of ways to

make change for the amount without using any of the �rst kind of coin, plus the number of

ways to make change assuming that we do use the �rst kind of coin. But the latter number is

equal to the number of ways to make change for the amount that remains after using a coin

of the �rst kind.

Thus, we can recursively reduce the problem of changing a given amount to problems of

changing smaller amounts or using fewer kinds of coins. Consider this reduction rule carefully,

and convince yourself that we can use it to describe an algorithm if we specify the following

degenerate cases:
29

– If a is exactly 0, we should count that as 1 way to make change.

– If a is less than 0, we should count that as 0 ways to make change.

– If n is 0, we should count that as 0 ways to make change.

We can easily translate this description into a recursive function:

Ifunction count_change(amount) {

return cc(amount, 5);

}

function cc(amount, kinds_of_coins) {

return amount === 0

? 1

: amount < 0 ||

kinds_of_coins === 0

29
For example, work through in detail how the reduction rule applies to the problem of making change for 10

cents using pennies and nickels.

56 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBO4oH0IAsCGYDmApgBQ4C2qYUAlIgN4BQiziAToVCK0hBKRWgA0iAKzUA3AwC+DUJFgJkfcpSjCA1jDAATAM7o4wTHC27ajFmw5ckKtIgC8TxAAYmlj4gD8iAIzvPFgAuRDsqRAAeV0QAHxiAwJZNHX1DY1NHZzdEjx9snOClflUNLT0DIxQMgFo-agSCxABqBoLeYvta4BhWXQxtQjA4Mi0cBTBiVsbp5mTytKqwM0EpxrnUypMliWlZcGh4JG7e-sHh0fHidYr07foE9k5uRGuFrd1Mhz9vb6DVpLKG1uHycXwATD8RIg-mtATdFiDnABmH6+FzQ-6zOFvDKgxAAFh+YKhMIKr02uOcUJ8InRIRckhkDBQaEwuAIJDRLgkQA

Building Abstractions with Functions 1.2.2

? 0

: cc(amount, kinds_of_coins - 1)

+

cc(amount - first_denomination(

kinds_of_coins),

kinds_of_coins);

}

function first_denomination(kinds_of_coins) {

return kinds_of_coins === 1 ? 1 :

kinds_of_coins === 2 ? 5 :

kinds_of_coins === 3 ? 10 :

kinds_of_coins === 4 ? 25 :

kinds_of_coins === 5 ? 50 : 0;

}

(The first_denomination function takes as input the number of kinds of coins available

and returns the denomination of the �rst kind. Here we are thinking of the coins as arranged

in order from largest to smallest, but any order would do as well.) We can now answer our

original question about changing a dollar:

Icount_change(100);

292

The function count_change generates a tree-recursive process with redundancies similar to

those in our �rst implementation of fib. (It will take quite a while for that 292 to be computed.)

On the other hand, it is not obvious how to design a better algorithm for computing the result,

and we leave this problem as a challenge. The observation that a tree-recursive process may

be highly ine�cient but often easy to specify and understand has led people to propose that

one could get the best of both worlds by designing a “smart compiler” that could transform

tree-recursive functions into more e�cient functions that compute the same result.
30

Exercise 1.11

A function f is de�ned by the rule that f (n) = n if n < 3 and f (n) = f (n − 1) + 2f (n − 2) +

3f (n−3) if n ≥ 3. Write a JavaScript function that computes f by means of a recursive process.

Write a function that computes f by means of an iterative process.

30
One approach to coping with redundant computations is to arrange matters so that we automatically con-

struct a table of values as they are computed. Each time we are asked to apply the function to some argument,

we �rst look to see if the value is already stored in the table, in which case we avoid performing the redundant

computation. This strategy, known as tabulation or memoization, can be implemented in a straightforward way.

Tabulation can sometimes be used to transform processes that require an exponential number of steps (such as

count_change) into processes whose space and time requirements grow linearly with the input. See exercise 3.27.

57 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBO4oH0IAsCGYDmApgBQ4C2qYUAlIgN4BQiziAToVCK0hBKRWgA0iAKzUA3AwC+DUJFgJkfcpSjCA1jDAATAM7o4wTHC27ajFmw5ckKtIgC8TxAAYmlj4gD8iAIzvPFgAuRDsqRAAeV0QAHxiAwJZNHX1DY1NHZzdEjx9snOClflUNLT0DIxQMgFo-agSCxABqBoLeYvta4BhWXQxtQjA4Mi0cBTBiVsbp5mTytKqwM0EpxrnUypMliWlZcGh4JG7e-sHh0fHidYr07foE9k5uRGuFrd1Mhz9vb6DVpLKG1uHycXwATD8RIg-mtATdFiDnABmH6+FzQ-6zOFvDKgxAAFh+YKhMIKr02uOcUJ8InRIRckhkKDQmFwBBIaJcEiAA

Building Abstractions with Functions 1.2.3

Exercise 1.12

The following pattern of numbers is called Pascal’s triangle.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

. . .

The numbers at the edge of the triangle are all 1, and each number inside the triangle is the sum

of the two numbers above it.
31

Write a function that computes elements of Pascal’s triangle

by means of a recursive process.

Exercise 1.13

Prove that Fib(n) is the closest integer to ϕn/
√

5, where ϕ = (1+
√

5)/2. Hint: Letψ = (1−
√

5)/2.

Use induction and the de�nition of the Fibonacci numbers (see section 1.2.2) to prove that

Fib(n) = (ϕn −ψn)/
√

5.

1.2.3 Orders of Growth

The previous examples illustrate that processes can di�er considerably in the rates at which

they consume computational resources. One convenient way to describe this di�erence is to

use the notion of order of growth to obtain a gross measure of the resources required by a

process as the inputs become larger.

Let n be a parameter that measures the size of the problem, and let R(n) be the amount of

resources the process requires for a problem of size n. In our previous examples we took n to

be the number for which a given function is to be computed, but there are other possibilities.

For instance, if our goal is to compute an approximation to the square root of a number,

we might take n to be the number of digits accuracy required. For matrix multiplication we

might take n to be the number of rows in the matrices. In general there are a number of

properties of the problem with respect to which it will be desirable to analyze a given process.

31
The elements of Pascal’s triangle are called the binomial coe�cients, because the nth row consists of the

coe�cients of the terms in the expansion of (x + y)n . This pattern for computing the coe�cients appeared

in Blaise Pascal’s 1653 seminal work on probability theory, Traité du triangle arithmétique. According to Knuth

(1973), the same pattern appears in the Szu-yuen Yü-chien (“The Precious Mirror of the Four Elements”), published

by the Chinese mathematician Chu Shih-chieh in 1303, in the works of the twelfth-century Persian poet and

mathematician Omar Khayyam, and in the works of the twelfth-century Hindu mathematician Bháscara Áchárya.

58 Generated 2020-08-18 16:40:02Z

Building Abstractions with Functions 1.2.3

Similarly, R(n) might measure the number of internal storage registers used, the number of

elementary machine operations performed, and so on. In computers that do only a �xed number

of operations at a time, the time required will be proportional to the number of elementary

machine operations performed.

We say that R(n) has order of growth Θ(f (n)), written R(n) = Θ(f (n)) (pronounced “theta

of f (n)”), if there are positive constants k1 and k2 independent of n such that k1 f (n) ≤ R(n) ≤

k2 f (n) for any su�ciently large value of n. (In other words, for large n, the value R(n) is

sandwiched between k1 f (n) and k2 f (n).)

For instance, with the linear recursive process for computing factorial described in sec-

tion 1.2.1 the number of steps grows proportionally to the input n. Thus, the steps required

for this process grows as Θ(n). We also saw that the space required grows as Θ(n). For the

iterative factorial, the number of steps is still Θ(n) but the space is Θ(1)—that is, constant.
32

The tree-recursive Fibonacci computation requires Θ(ϕn) steps and space Θ(n), where ϕ is the

golden ratio described in section 1.2.2.

Orders of growth provide only a crude description of the behavior of a process. For example,

a process requiring n2
steps and a process requiring 1000n2

steps and a process requiring

3n2 + 10n + 17 steps all have Θ(n2) order of growth. On the other hand, order of growth

provides a useful indication of how we may expect the behavior of the process to change as

we change the size of the problem. For a Θ(n) (linear) process, doubling the size will roughly

double the amount of resources used. For an exponential process, each increment in problem

size will multiply the resource utilization by a constant factor. In the remainder of section 1.2

we will examine two algorithms whose order of growth is logarithmic, so that doubling the

problem size increases the resource requirement by a constant amount.

Exercise 1.14

Draw the tree illustrating the process generated by the count_change function of section 1.2.2

in making change for 11 cents. What are the orders of growth of the space and number of

steps used by this process as the amount to be changed increases?

Exercise 1.15

The sine of an angle (speci�ed in radians) can be computed by making use of the approximation

sinx ≈ x if x is su�ciently small, and the trigonometric identity sinx = 3 sin
x
3
− 4 sin

3 x
3

to

32
These statements mask a great deal of oversimpli�cation. For instance, if we count process steps as “machine

operations” we are making the assumption that the number of machine operations needed to perform, say, a

multiplication is independent of the size of the numbers to be multiplied, which is false if the numbers are

su�ciently large. Similar remarks hold for the estimates of space. Like the design and description of a process,

the analysis of a process can be carried out at various levels of abstraction.

59 Generated 2020-08-18 16:40:02Z

Building Abstractions with Functions 1.2.4

reduce the size of the argument of sin. (For purposes of this exercise an angle is considered

“su�ciently small” if its magnitude is not greater than 0.1 radians.) These ideas are incorporated

in the following functions:

Ifunction cube(x) {

return x * x * x;

}

function p(x) {

return 3 * x - 4 * cube(x);

}

function sine(angle) {

return !(abs(angle) > 0.1)

? angle

: p(sine(angle / 3.0));

}

a. How many times is the function p applied when sine(12.15) is evaluated?

b. What is the order of growth in space and number of steps (as a function of a) used by

the process generated by the sine function when sine(a) is evaluated?

1.2.4 Exponentiation

Consider the problem of computing the exponential of a given number. We would like a

function that takes as arguments a base b and a positive integer exponent n and computes bn.

One way to do this is via the recursive de�nition

bn = b · bn−1

b0 = 1

which translates readily into the function

Ifunction expt(b,n) {

return n === 0

? 1

: b * expt(b, n - 1);

}

This is a linear recursive process, which requires Θ(n) steps and Θ(n) space. Just as with

factorial, we can readily formulate an equivalent linear iteration:

Ifunction expt(b,n) {

return expt_iter(b,n,1);

}

function expt_iter(b,counter,product) {

return counter === 0

60 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwEYGcAUAPAlIgbwChFTEAnAUyhHKW0QD4BeRABkQH5EGAuRALTYA3EQC+RUJFgJEEEKko58xMhWq16iAFQ8dPURKnR4SAA7LCJMlRp1EAZn0MBiACz75i5YcngTsugwYErIYADmADaUKtaktpqIAISYaFhhUTFM7AB0AIy4cWpq3BnRRcWk-BZBIakR0YgA9I45bLi4vkS1SgC2yFAAFgD6AAoAks2IAEydQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAUwB4AcoAoBGAaMASkQG8AoRSxAJ2ShGqSQF5XEAGCq7qgfkQCMXHtwBciHIgBUKDNnyIkAWkGEA3GQC+ZMmkxYAzHkQAWdUA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAUwB4AcoAoBGAaMASkQG8AoRSxAJ2ShGqTUwH0YplrcC8BGQgNxkAvmVCRYCFBihsOXfBDjh5edNTgATENGLkqNOgyRKVnRAF4riAAwUDDxAH5E6rTqj3HVAFzTW7JzcXt6hDqZg8ogAtIi8eIghYck4iABUrhraukKiZMzYAMwJACyCQA

Building Abstractions with Functions 1.2.4

? product

: expt_iter(b,

counter - 1,

b * product);

}

This version requires Θ(n) steps and Θ(1) space.

We can compute exponentials in fewer steps by using successive squaring. For instance,

rather than computing b8
as

b · (b · (b · (b · (b · (b · (b · b))))))

we can compute it using three multiplications:

b2 = b · b

b4 = b2 · b2

b8 = b4 · b4

This method works �ne for exponents that are powers of 2. We can also take advantage of

successive squaring in computing exponentials in general if we use the rule

bn = (bn/2)2 if is even

bn = b · bn−1
if is odd

We can express this method as a function:

Ifunction fast_expt(b, n) {

return n === 0

? 1

: is_even(n)

? square(fast_expt(b, n / 2))

: b * fast_expt(b, n - 1);

}

where the predicate to test whether an integer is even is de�ned in terms of the operator %,

which computes the remainder after integer division, by

Ifunction is_even(n) {

return n % 2 === 0;

}

The process evolved by fast_expt grows logarithmically with n in both space and number

of steps. To see this, observe that computing b2n
using fast_expt requires only one more

multiplication than computing bn. The size of the exponent we can compute therefore doubles

61 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgSIYyAPo4AbjjB4wJCtRo46DREgCkiAEyIAvHsQAGTjz7R4SYBmRQxBAA5Q8AIwA0quZWq16SJHp2GngrBAPyIAIxBwdQAXEKiElIyRFHR1GFomLh4lta2Ds5uSAD0WkQpadFxTiyIuTY49o6uqogAtBFExuS8Vg1NeADMbgAsXUA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfQKYDcNgBRgCUiA3gFCKWIBOGUI1SSApIgEyIC83iADANxkAvmTKpMOfAHZC-IA

Building Abstractions with Functions 1.2.4

(approximately) with every new multiplication we are allowed. Thus, the number of multipli-

cations required for an exponent of n grows about as fast as the logarithm of n to the base 2.

The process has Θ(logn) growth.
33

The di�erence between Θ(logn) growth and Θ(n) growth becomes striking as n becomes

large. For example, fast_expt for n = 1000 requires only 14 multiplications.
34

It is also pos-

sible to use the idea of successive squaring to devise an iterative algorithm that computes

exponentials with a logarithmic number of steps (see exercise 1.16), although, as is often the

case with iterative algorithms, this is not written down so straightforwardly as the recursive

algorithm.
35

Exercise 1.16

Design a function that evolves an iterative exponentiation process that uses successive squar-

ing and uses a logarithmic number of steps, as does fast_expt. (Hint: Using the observation

that (bn/2)2 = (b2)n/2, keep, along with the exponent n and the base b, an additional state vari-

able a, and de�ne the state transformation in such a way that the product abn is unchanged

from state to state. At the beginning of the process a is taken to be 1, and the answer is given

by the value of a at the end of the process. In general, the technique of de�ning an invariant
quantity that remains unchanged from state to state is a powerful way to think about the

design of iterative algorithms.)

Exercise 1.17

The exponentiation algorithms in this section are based on performing exponentiation by

means of repeated multiplication. In a similar way, one can perform integer multiplication by

means of repeated addition. The following multiplication function (in which it is assumed that

our language can only add, not multiply) is analogous to the expt function:

Ifunction times(a,b) {

return b === 0

? 0

: a + times(a, b - 1);

}

This algorithm takes a number of steps that is linear in b. Now suppose we include, together

33
More precisely, the number of multiplications required is equal to 1 less than the log base 2 of n, plus the

number of ones in the binary representation of n. This total is always less than twice the log base 2 of n. The

arbitrary constants k1 and k2 in the de�nition of order notation imply that, for a logarithmic process, the base to

which logarithms are taken does not matter, so all such processes are described as Θ(logn).
34

You may wonder why anyone would care about raising numbers to the 1000th power. See section 1.2.6.

35
This iterative algorithm is ancient. It appears in the Chandah-sutra by Áchárya, written before 200 b.c. See

Knuth 1981, section 4.6.3, for a full discussion and analysis of this and other methods of exponentiation.

62 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABLAtgUwM4AoCGAaAIwEpEBvAKESsQCc0oQakDEBedxABkut+oH4uPPrwBciHIgDUyGOmz5ELALSIAjEQDc5AL7lyqTFgDMeRABYtQA

Building Abstractions with Functions 1.2.4

with addition, operations double, which doubles an integer, and halve, which divides an (even)

integer by 2. Using these, design a multiplication function analogous to fast_expt that uses a

logarithmic number of steps.

Exercise 1.18

Using the results of exercises 1.16 and 1.17, devise a function that generates an iterative

process for multiplying two integers in terms of adding, doubling, and halving and uses a

logarithmic number of steps.
36

Exercise 1.19

There is a clever algorithm for computing the Fibonacci numbers in a logarithmic number

of steps. Recall the transformation of the state variables a and b in the fib_iter process of

section 1.2.2: a ← a + b and b ← a. Call this transformation T , and observe that applying

T over and over again n times, starting with 1 and 0, produces the pair Fib(n + 1) and Fib(n).

In other words, the Fibonacci numbers are produced by applying Tn
, the nth power of the

transformation T , starting with the pair (1, 0). Now consider T to be the special case of p = 0

and q = 1 in a family of transformations Tpq , where Tpq transforms the pair (a,b) according to

a ← bq + aq + ap and b ← bp + aq. Show that if we apply such a transformation Tpq twice,

the e�ect is the same as using a single transformation Tp ′q′ of the same form, and compute p′

and q′ in terms of p and q. This gives us an explicit way to square these transformations, and

thus we can compute Tn
using successive squaring, as in the fast_expt function. Put this all

together to complete the following function, which runs in a logarithmic number of steps:
37

function fib(n) {

return fib_iter(1, 0, 0, 1, n);

}

function fib_iter(a, b, p, q, count) {

return count === 0

? b

: is_even(count)

? fib_iter(a,

b,

〈??〉, // compute p'

〈??〉, // compute q'

count / 2)

: fib_iter(b * q + a * q + a * p,

b * p + a * q,

36
This algorithm, which is sometimes known as the “Russian peasant method” of multiplication, is ancient.

Examples of its use are found in the Rhind Papyrus, one of the two oldest mathematical documents in existence,

written about 1700 b.c . (and copied from an even older document) by an Egyptian scribe named A’h-mose.

37
This exercise was suggested to us by Joe Stoy, based on an example in Kaldewaij 1990.

63 Generated 2020-08-18 16:40:02Z

Building Abstractions with Functions 1.2.5

p,

q,

count - 1);

}

1.2.5 Greatest Common Divisors

The greatest common divisor (GCD) of two integers a and b is de�ned to be the largest integer

that divides both a and b with no remainder. For example, the GCD of 16 and 28 is 4. In

chapter 2, when we investigate how to implement rational-number arithmetic, we will need

to be able to compute GCDs in order to reduce rational numbers to lowest terms. (To reduce

a rational number to lowest terms, we must divide both the numerator and the denominator

by their GCD. For example, 16/28 reduces to 4/7.) One way to �nd the GCD of two integers is

to factor them and search for common factors, but there is a famous algorithm that is much

more e�cient.

The idea of the algorithm is based on the observation that, if r is the remainder when a

is divided by b, then the common divisors of a and b are precisely the same as the common

divisors of b and r . Thus, we can use the equation

GCD(a,b) = GCD(b, r)

to successively reduce the problem of computing a GCD to the problem of computing the GCD

of smaller and smaller pairs of integers. For example,

GCD(206, 40) = GCD(40, 6)

= GCD(6, 4)

= GCD(4, 2)

= GCD(2, 0)

= 2

reduces GCD(206, 40) to GCD(2, 0), which is 2. It is possible to show that starting with any two

positive integers and performing repeated reductions will always eventually produce a pair

where the second number is 0. Then the GCD is the other number in the pair. This method for

computing the GCD is known as Euclid’s Algorithm.
38

It is easy to express Euclid’s Algorithm as a function:

38
Euclid’s Algorithm is so called because it appears in Euclid’s Elements (Book 7, ca. 300 b.c. According

to Knuth (1973), it can be considered the oldest known nontrivial algorithm. The ancient Egyptian method of

multiplication (exercise 1.18) is surely older, but, as Knuth explains, Euclid’s algorithm is the oldest known to

have been presented as a general algorithm, rather than as a set of illustrative examples.

64 Generated 2020-08-18 16:40:02Z

Building Abstractions with Functions 1.2.6

Ifunction gcd(a, b) {

return b === 0 ? a : gcd(b, a % b);

}

This generates an iterative process, whose number of steps grows as the logarithm of the

numbers involved.

The fact that the number of steps required by Euclid’s Algorithm has logarithmic growth

bears an interesting relation to the Fibonacci numbers:

Lamé’s Theorem: If Euclid’s Algorithm requires k steps to compute the GCD of some

pair, then the smaller number in the pair must be greater than or equal to the kth Fibonacci

number.
39

We can use this theorem to get an order-of-growth estimate for Euclid’s Algorithm. Let n be

the smaller of the two inputs to the function. If the process takes k steps, then we must have

n ≥ Fib(k) ≈ ϕk/
√

5. Therefore the number of steps k grows as the logarithm (to the base ϕ)

of n. Hence, the order of growth is Θ(logn).

Exercise 1.20

The process that a function generates is of course dependent on the rules used by the in-

terpreter. As an example, consider the iterative gcd function given above. Suppose we were

to interpret this function using normal-order evaluation, as discussed in section 1.1.5. (The

normal-order-evaluation rule for conditional expressions is described in exercise 1.5.) Us-

ing the substitution method (for normal order), illustrate the process generated in evaluating

gcd(206, 40) and indicate the remainder operations that are actually performed. How many

remainder operations are actually performed in the normal-order evaluation of gcd(206, 40)?

In the applicative-order evaluation?

39
This theorem was proved in 1845 by Gabriel Lamé, a French mathematician and engineer known chie�y

for his contributions to mathematical physics. To prove the theorem, we consider pairs (ak ,bk), where ak ≥ bk ,

for which Euclid’s Algorithm terminates in k steps. The proof is based on the claim that, if (ak+1, bk+1) →

(ak , bk) → (ak−1, bk−1) are three successive pairs in the reduction process, then we must have bk+1 ≥ bk + bk−1.

To verify the claim, consider that a reduction step is de�ned by applying the transformation ak−1 = bk , bk−1 =

remainder of ak divided by bk . The second equation means that ak = qbk + bk−1 for some positive integer q.

And since q must be at least 1 we have ak = qbk + bk−1 ≥ bk + bk−1. But in the previous reduction step we

have bk+1 = ak . Therefore, bk+1 = ak ≥ bk + bk−1. This veri�es the claim. Now we can prove the theorem

by induction on k , the number of steps that the algorithm requires to terminate. The result is true for k = 1,

since this merely requires that b be at least as large as Fib(1) = 1. Now, assume that the result is true for all

integers less than or equal to k and establish the result for k + 1. Let (ak+1, bk+1) → (ak , bk) → (ak−1, bk−1)

be successive pairs in the reduction process. By our induction hypotheses, we have bk−1 ≥ Fib(k − 1) and

bk ≥ Fib(k). Thus, applying the claim we just proved together with the de�nition of the Fibonacci numbers gives

bk+1 ≥ bk + bk−1 ≥ Fib(k) + Fib(k − 1) = Fib(k + 1), which completes the proof of Lamé’s Theorem.

65 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwgEwBQEMA0iBGAlIgN4BQiliATgKZQjVL6IC87iADIgPyJaIAXCnQZ8eAQFIChANxkAvmTKpMAJk54AjGrlA

Building Abstractions with Functions 1.2.6

1.2.6 Example: Testing for Primality

This section describes two methods for checking the primality of an integer n, one with order

of growth Θ(
√
n), and a “probabilistic” algorithm with order of growth Θ(logn). The exercises

at the end of this section suggest programming projects based on these algorithms.

Searching for divisors

Since ancient times, mathematicians have been fascinated by problems concerning prime

numbers, and many people have worked on the problem of determining ways to test if numbers

are prime. One way to test if a number is prime is to �nd the number’s divisors. The following

program �nds the smallest integral divisor (greater than 1) of a given number n. It does this

in a straightforward way, by testing n for divisibility by successive integers starting with 2.

Ifunction smallest_divisor(n) {

return find_divisor(n, 2);

}

function find_divisor(n, test_divisor) {

return square(test_divisor) > n

? n

: divides(test_divisor, n)

? test_divisor

: find_divisor(n, test_divisor + 1);

}

function divides(a, b) {

return b % a === 0;

}

We can test whether a number is prime as follows: n is prime if and only if n is its own

smallest divisor.

Ifunction is_prime(n) {

return n === smallest_divisor(n);

}

The end test for find_divisor is based on the fact that if n is not prime it must have a divisor

less than or equal to

√
n.

40
This means that the algorithm need only test divisors between 1

and

√
n. Consequently, the number of steps required to identify n as prime will have order of

growth Θ(
√
n).

40
If d is a divisor of n, then so is n/d . But d and n/d cannot both be greater than

√
n.

66 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgQoAthgA2onMigB9ACYwAbjGRwseMCQrUaOOg0TAYYWXMXLV6gDSIATEU48+0eEkPHTSlWrDWokmfKeqpqU2rT0SGiYuHh+Uh7mWCQAfIhgodqZiAD8aRlZ1ABciIEwspKx-gle1hr5BdS5cQFmXvUNiMVuJqVeVojN1aqIANSIAIz23LzgzoKl5ch4GNYARiFhuhGIq4gApIgYiAC8p4gADA7k5Mgi4lW9FgAsduxAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgQoAthgA2onMigB9ACYwAbjGRwseMCQrUaOOg0TAYYWXMXLV6gDSIATEU48+0eEkPHTSlWrDWokmfKeqpqU2rT0SGiYuHh+Uh7mWCQAfIhgodqZiAD8aRlZ1ABciIEwspKx-gle1hr5BdS5cQFmXvUNiMVuJqVeVojN1aqIANSIAIz23LzgzoKl5ch4GNYARiFhuhGIq4gApIgYiAC8p4gADA4z-C6IytIADlgwQvgaZPnh+kinx8JiEnivQsGiu5HuTxe+AALHZ2EA

Building Abstractions with Functions 1.2.6

The Fermat test

The Θ(logn) primality test is based on a result from number theory known as Fermat’s Little

Theorem.
41

Fermat’s Little Theorem: If n is a prime number and a is any positive integer less than n,

then a raised to the nth power is congruent to a modulo n.

(Two numbers are said to be congruent modulo n if they both have the same remainder

when divided by n. The remainder of a number a when divided by n is also referred to as the

remainder of a modulo n, or simply as a modulo n.)

If n is not prime, then, in general, most of the numbers a < n will not satisfy the above

relation. This leads to the following algorithm for testing primality: Given a number n, pick a

random number a < n and compute the remainder of an modulo n. If the result is not equal

to a, then n is certainly not prime. If it is a, then chances are good that n is prime. Now pick

another random number a and test it with the same method. If it also satis�es the equation,

then we can be even more con�dent that n is prime. By trying more and more values of a, we

can increase our con�dence in the result. This algorithm is known as the Fermat test.

To implement the Fermat test, we need a function that computes the exponential of a number

modulo another number:

Ifunction expmod(base, exp, m) {

return exp === 0

? 1

: is_even(exp)

? square(expmod(base, exp / 2, m)) % m

: (base * expmod(base, exp - 1, m)) % m;

}

This is very similar to the fast_expt function of section 1.2.4. It uses successive squaring,

so that the number of steps grows logarithmically with the exponent.
42

41
Pierre de Fermat (1601–1665) is considered to be the founder of modern number theory. He obtained many

important number-theoretic results, but he usually announced just the results, without providing his proofs.

Fermat’s Little Theorem was stated in a letter he wrote in 1640. The �rst published proof was given by Euler

in 1736 (and an earlier, identical proof was discovered in the unpublished manuscripts of Leibniz). The most

famous of Fermat’s results—known as Fermat’s Last Theorem—was jotted down in 1637 in his copy of the book

Arithmetic (by the third-century Greek mathematician Diophantus) with the remark “I have discovered a truly

remarkable proof, but this margin is too small to contain it.” Finding a proof of Fermat’s Last Theorem became

one of the most famous challenges in number theory. A complete solution was �nally given in 1995 by Andrew

Wiles of Princeton University.

42
The reduction steps in the cases where the exponent e is greater than 1 are based on the fact that, for any

integers x , y, and m, we can �nd the remainder of x times y modulo m by computing separately the remainders

of x modulo m and y modulo m, multiplying these, and then taking the remainder of the result modulo m. For

instance, in the case where e is even, we compute the remainder of be/2 modulo m, square this, and take the

remainder modulom. This technique is useful because it means we can perform our computation without ever

having to deal with numbers much larger thanm. (Compare exercise 1.25.)

67 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfQKYDcNgBRgCUiA3gFCKWIBOGUI1SSApIgEyIC83iADANxkAvmVCRYCRCgCOIAIa08AD2LkqNOgyRLEAKkRLBIsdHhIMSgA4BbOABM8AIzkoMAGkQXLH66opVaekZPKy4eXn91KIB+RABGSKiqAC5kdGxcPC9CRKSqWJl5RS9bB2dXDy9EAHp2H0JiVmtcvMRUpxcMPRCbew6KnsQAWnj6xsRrIzIyEr6AFg8AZg8AVkJ+IA

Building Abstractions with Functions 1.2.6

The Fermat test is performed by choosing at random a numbera between 1 andn−1 inclusive

and checking whether the remainder modulo n of the nth power of a is equal to a. The random

number a is chosen using the function random, which we assume is included as a primitive

in JavaScript. The function random returns a nonnegative integer less than its integer input.

Hence, to obtain a random number between 1 and n − 1, we call random with an input of n − 1

and add 1 to the result:

Ifunction fermat_test(n) {

function try_it(a) {

return expmod(a, n, n) === a;

}

return try_it(1 + random(n - 1));

}

The following function runs the test a given number of times, as speci�ed by a parameter.

Its value is true if the test succeeds every time, and false otherwise.

Ifunction fast_is_prime(n, times) {

return times === 0

? true

: fermat_test(n)

? fast_is_prime(n, times - 1)

: false;

}

Probabilistic methods

The Fermat test di�ers in character from most familiar algorithms, in which one computes an

answer that is guaranteed to be correct. Here, the answer obtained is only probably correct.

More precisely, if n ever fails the Fermat test, we can be certain that n is not prime. But the

fact that n passes the test, while an extremely strong indication, is still not a guarantee that n

is prime. What we would like to say is that for any number n, if we perform the test enough

times and �nd that n always passes the test, then the probability of error in our primality test

can be made as small as we like.

Unfortunately, this assertion is not quite correct. There do exist numbers that fool the Fermat

test: numbers n that are not prime and yet have the property that an is congruent to a modulo

n for all integers a < n. Such numbers are extremely rare, so the Fermat test is quite reliable

in practice.
43

43
Numbers that fool the Fermat test are called Carmichael numbers, and little is known about them other than

that they are extremely rare. There are 255 Carmichael numbers below 100,000,000. The smallest few are 561,

1105, 1729, 2465, 2821, and 6601. In testing primality of very large numbers chosen at random, the chance of

stumbling upon a value that fools the Fermat test is less than the chance that cosmic radiation will cause the

computer to make an error in carrying out a “correct” algorithm. Considering an algorithm to be inadequate for

the �rst reason but not for the second illustrates the di�erence between mathematics and engineering.

68 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgSIYyAPo4AbjjB4wJCtRo46DREgCkiAEyIAvHsQAGTjz7R4SHAQAOAWzgATPACMMyHABpElq55tzK1LT0Fta6+gYBClEA-IgAjJFR1ABcQqISUnjeRIlJ1LFomLhZ1naOLm6e3ogA9Fq+RCQaNrl5iKnOrjgsXqUOnZW9VogAtPENTYg2xrzgZoJYGGD2cDYy-gpBKjYYUAAWIsAANnBwWHg7+yKLy6t4JKyyM6YCSMA4WJciUDjIUOtkRIvcyIKBYACeIhg-wwGzyWxCtn6GE8YFRJD0OkQGE4Ch4myUwVBEKh-ziiAA1DQlis1kgxnFGjNeB8vj8-ngAJwAdiI7CAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgSIYyAPo4AbjjB4wJCtRo46DREgCkiAEyIAvHsQAGTjz7R4SHAQAOAWzgATPACMMyHABpElq55tzK1LT0Fta6+gYBClEA-IgAjJFR1ABcQqISUnjeRIlJ1LFomLhZ1naOLm6e3ogA9Fq+RCQaNrl5iKnOrjgsXqUOnZW9VogAtPENTYg2xrzgZoJYGGD2cDYy-gpBKjYYUAAWIsAANnBwWHg7+yKLy6t4JKyyM6YCSMA4WJciUDjIUOtkRIvcyIKBYACeIhg-wwGzyWxCtn6GE8YFRJD0OkQGE4Ch4myUwVBEKh-ziiAA1DQlis1kgxnFGs85q9EMBXFAoaIrFgYDZ8GjQXzfnCqAihfzkGEsRE2vliSAcK0oql3p9dt9fv9ZMqkrF2X8uSIecKZJ5YJLRvEcnKFKqMEc3DNeByjSb+XgAJwAdk8AGYiOwgA

Building Abstractions with Functions 1.2.6

There are variations of the Fermat test that cannot be fooled. In these tests, as with the

Fermat method, one tests the primality of an integer n by choosing a random integer a < n

and checking some condition that depends upon n and a. (See exercise 1.28 for an example of

such a test.) On the other hand, in contrast to the Fermat test, one can prove that, for any n,

the condition does not hold for most of the integers a < n unless n is prime. Thus, if n passes

the test for some random choice of a, the chances are better than even that n is prime. If n

passes the test for two random choices of a, the chances are better than 3 out of 4 that n is

prime. By running the test with more and more randomly chosen values of a we can make the

probability of error as small as we like.

The existence of tests for which one can prove that the chance of error becomes arbitrar-

ily small has sparked interest in algorithms of this type, which have come to be known as

probabilistic algorithms. There is a great deal of research activity in this area, and probabilistic

algorithms have been fruitfully applied to many �elds.
44

Exercise 1.21

Use the smallest_divisor function to �nd the smallest divisor of each of the following num-

bers: 199, 1999, 19999.

Exercise 1.22

Assume a primitive function get_time of no arguments that whenever it is called returns

the number of milliseconds that passed since 00:00:00 UTC Thursday, 1 January 1970.
45

The

following timed_prime_test function, when called with an integer n, prints n and checks to

see if n is prime. If n is prime, the function prints three asterisks
46

followed by the amount of

time used in performing the test.

Ifunction timed_prime_test(n) {

display(n);

return start_prime_test(n, get_time());

}

44
One of the most striking applications of probabilistic prime testing has been to the �eld of cryptography.

Although it is now computationally infeasible to factor an arbitrary 200-digit number, the primality of such

a number can be checked in a few seconds with the Fermat test. This fact forms the basis of a technique for

constructing “unbreakable codes” suggested by Rivest, Shamir, and Adleman (1977). The resulting RSA algorithm
has become a widely used technique for enhancing the security of electronic communications. Because of this and

related developments, the study of prime numbers, once considered the epitome of a topic in “pure” mathematics

to be studied only for its own sake, now turns out to have important practical applications to cryptography,

electronic funds transfer, and information retrieval.

45
This date is called the UNIX epoch and is part of the speci�cation of functions that deal with time in the

UNIX
TM

operating system.

46
The primitive function display returns its argument, but also prints it. Here " *** " is a string, a sequence

of characters that we pass as argument to the display function. Section 2.3.1 introduces strings more thoroughly.

69 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgQoAthgA2onMigB9ACYwAbjGRwseMCQrUaOOg0TAYYWXMXLV6gDSIATEU48+0eEkPHTSlWrDWokmfKeqpqU2rT0SGiYuHh+Uh7mWCQAfIhgodqZiAD8aRlZ1ABciIEwspKx-gle1hr5BdS5cQFmXvUNiMVuJqVeVojN1aqIANSIAIz23LzgzoKl5ch4GNYARiFhuhGIq4gApIgYiAC8p4gADA4z-C6IytIADlgwQvgaZPnh+kinx8JiEnivQsGiuTgESFgrxMTxeOGkzXUG2o8mQD1EGAAnkjOJs9JEoNgZLDXgj-P0AOa6BFwvBEKaOWYQlCErDE56kxE+FlEmmvZFUL5Ie4kt5EdqZXK4B6qdm0qkyKH4EgAWh5bL5OHFHSoxSgWBAODBTNu0tljw5+BwGIeyBwJiVApKynRWLwACIWMxWO6ptpUa7sdaMLb7ZqGeRyEqYZayVI8AAWADM9iAA

Building Abstractions with Functions 1.2.6

function start_prime_test(n, start_time) {

return is_prime(n)

? report_prime(get_time() - start_time)

: true;

}

function report_prime(elapsed_time) {

display(" *** ");

display(elapsed_time);

}

Using this function, write a function search_for_primes that checks the primality of consecu-

tive odd integers in a speci�ed range. Use your function to �nd the three smallest primes larger

than 1000; larger than 10,000; larger than 100,000; larger than 1,000,000. Note the time needed

to test each prime. Since the testing algorithm has order of growth of Θ(
√
n), you should expect

that testing for primes around 10,000 should take about

√
10 times as long as testing for primes

around 1000. Do your timing data bear this out? How well do the data for 100,000 and 1,000,000

support the

√
n prediction? Is your result compatible with the notion that programs on your

machine run in time proportional to the number of steps required for the computation?

Exercise 1.23

The smallest_divisor function shown at the start of this section does lots of needless testing:

After it checks to see if the number is divisible by 2 there is no point in checking to see if it

is divisible by any larger even numbers. This suggests that the values used for test_divisor

should not be 2, 3, 4, 5, 6, . . . but rather 2, 3, 5, 7, 9, To implement this change, declare a

function next that returns 3 if its input is equal to 2 and otherwise returns its input plus 2. Mod-

ify the smallest_divisor function to use next(test_divisor) instead of test_divisor + 1.

With timed_prime_test incorporating this modi�ed version of smallest_divisor, run the

test for each of the 12 primes found in exercise 1.22. Since this modi�cation halves the number

of test steps, you should expect it to run about twice as fast. Is this expectation con�rmed? If

not, what is the observed ratio of the speeds of the two algorithms, and how do you explain

the fact that it is di�erent from 2?

Exercise 1.24

Modify the timed_prime_test function of exercise 1.22 to use fast_is_prime (the Fermat

method), and test each of the 12 primes you found in that exercise. Since the Fermat test has

Θ(logn) growth, how would you expect the time to test primes near 1,000,000 to compare with

the time needed to test primes near 1000? Do your data bear this out? Can you explain any

discrepancy you �nd?

70 Generated 2020-08-18 16:40:02Z

Building Abstractions with Functions 1.2.6

Exercise 1.25

Alyssa P. Hacker complains that we went to a lot of extra work in writing expmod. After all,

she says, since we already know how to compute exponentials, we could have simply written

Ifunction expmod(base, exp, m) {

return fast_expt(base, exp) % m;

}

Is she correct? Would this function serve as well for our fast prime tester? Explain.

Exercise 1.26

Louis Reasoner is having great di�culty doing exercise 1.24. His fast_is_prime test seems

to run more slowly than his is_prime test. Louis calls his friend Eva Lu Ator over to help.

When they examine Louis’s code, they �nd that he has rewritten the expmod function to use

an explicit multiplication, rather than calling square:

Ifunction expmod(base, exp, m) {

return exp === 0

? 1

: is_even(exp)

? expmod(base, exp / 2, m)

* expmod(base, exp / 2, m)

% m

: base

* expmod(base, exp - 1, m)

% m;

}

“I don’t see what di�erence that could make,” says Louis. “I do.” says Eva. “By writing the

function like that, you have transformed the Θ(logn) process into a Θ(n) process.” Explain.

Exercise 1.27

Demonstrate that the Carmichael numbers listed in footnote 43 really do fool the Fermat test.

That is, write a function that takes an integer n and tests whether an is congruent to a modulo

n for every a < n, and try your function on the given Carmichael numbers.

Exercise 1.28

One variant of the Fermat test that cannot be fooled is called the Miller-Rabin test (Miller 1976;

Rabin 1980). This starts from an alternate form of Fermat’s Little Theorem, which states that

if n is a prime number and a is any positive integer less than n, then a raised to the (n − 1)st

71 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgSIYyAPo4AbjjB4wJCtRo46DREgCkiAEyIAvHsQAGTjz7R4SYBmRQxBAA5Q8AIwA0quZWq16SJHp2GngrBAPyIAIxBwdQAXEKiElIyRFHR1GFomLh4lta2Ds5uSAD0WkQpadFxTiyIuTY49o6uqogAtBFExrzgZoKNdgC2cAAmzlY4bgNugx4K3ioDuvoGqdFhkZWx8WKS0gMVW+ko6Nj4A8NjThNT9oilmjPliBqDa2lx48g4tRejX5NEEsOuEniRXt1TAIkH8rjcgfYnmQogsLFYGk0Abc7ODEINuuRYXgACxuADMbgArF0gA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfQKYDcNgBRgCUiA3gFCKWIBOGUI1SSApIgEyIC83iADANxkAvmVCRYCRBgAeABwC2cACZ4ARgEMUGADRS5u+cXJUadBkhmyuPXhRP3EAfkQBGOw6oAuZOmy48loTuHlTOlooqGlq6logA9OwGxMEhVABUegrKapo6mfGJiIYpqYis8iUe3lEYlSEZ4dk1MXKIALSuSYh1HuWCImSNKgAsugDMugCshPxAA

Building Abstractions with Functions 1.3

power is congruent to 1 modulo n. To test the primality of a number n by the Miller-Rabin

test, we pick a random number a < n and raise a to the (n − 1)st power modulo n using the

expmod function. However, whenever we perform the squaring step in expmod, we check to see

if we have discovered a “nontrivial square root of 1 modulo n,” that is, a number not equal to

1 or n − 1 whose square is equal to 1 modulo n. It is possible to prove that if such a nontrivial

square root of 1 exists, then n is not prime. It is also possible to prove that if n is an odd number

that is not prime, then, for at least half the numbers a < n, computing an−1
in this way will

reveal a nontrivial square root of 1 modulo n. (This is why the Miller-Rabin test cannot be

fooled.) Modify the expmod function to signal if it discovers a nontrivial square root of 1, and

use this to implement the Miller-Rabin test with a function analogous to fermat_test. Check

your function by testing various known primes and non-primes. Hint: One convenient way

to make expmod signal is to have it return 0.

1.3 Formulating Abstractions with Higher-Order
Functions

We have seen that functions are, in e�ect, abstractions that describe compound operations on

numbers independent of the particular numbers. For example, when we declare

Ifunction cube(x) {

return x * x * x;

}

we are not talking about the cube of a particular number, but rather about a method for obtain-

ing the cube of any number. Of course we could get along without ever declaring this function,

by always writing expressions such as

3 * 3 * 3;

x * x * x;

y * y * y;

and never mentioning cube explicitly. This would place us at a serious disadvantage, forcing

us to work always at the level of the particular operations that happen to be primitives in

the language (multiplication, in this case) rather than in terms of higher-level operations. Our

programs would be able to compute cubes, but our language would lack the ability to express

the concept of cubing. One of the things we should demand from a powerful programming

language is the ability to build abstractions by assigning names to common patterns and then

to work in terms of the abstractions directly. Functions provide this ability. This is why all but

the most primitive programming languages include mechanisms for declaring functions.

Yet even in numerical processing we will be severely limited in our ability to create abstrac-

72 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBEAjApgCgB4EpEDeAUIqYgE7pQjlLaIBUi9T2A3EQL5FEoaYBmXGyA

Building Abstractions with Functions 1.3.1

tions if we are restricted to functions whose parameters must be numbers. Often the same

programming pattern will be used with a number of di�erent functions. To express such pat-

terns as concepts, we will need to construct functions that can accept functions as arguments

or return functions as values. Functions that manipulate functions are called higher-order
functions. This section shows how higher-order functions can serve as powerful abstraction

mechanisms, vastly increasing the expressive power of our language.

1.3.1 Functions as Arguments

Consider the following three functions. The �rst computes the sum of the integers from a

through b:

Ifunction sum_integers(a, b) {

return a > b

? 0

: a + sum_integers(a + 1, b);

}

The second computes the sum of the cubes of the integers in the given range:

Ifunction sum_cubes(a, b) {

return a > b

? 0

: cube(a) + sum_cubes(a + 1, b);

}

The third computes the sum of a sequence of terms in the series

1

1 · 3
+

1

5 · 7
+

1

9 · 11

+ · · ·

which converges to π/8 (very slowly):
47

Ifunction pi_sum(a, b) {

return a > b

? 0

: 1.0 / (a * (a + 2)) +

pi_sum(a + 4, b);

}

These three functions clearly share a common underlying pattern. They are for the most

part identical, di�ering only in the name of the function, the function of a used to compute

the term to be added, and the function that provides the next value of a. We could generate

each of the functions by �lling in slots in the same template:

47
This series, usually written in the equivalent form

π
4
= 1 − 1

3
+ 1

5
− 1

7
+ · · · , is due to Leibniz. We’ll see how

to use this as the basis for some fancy numerical tricks in section 3.5.3.

73 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZxAWwPozFApgc1wCdkAKAQwBpEAjASkQG8AoRNxI3KEIpcxAHy1W7UewD8iAAwixogFyJ+AahTosOAsTIrEARmr0A3MwC+zZqkzY8hEqQP6pdI0A
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBEAjApgCgB4EpEDeAUIqYgE7pQjlLaIBUi9T2A3EQL5GiSwKIAziAC2AfRQZBmAIYAaRKnzEyFKjSQzEAPkUlVBxAH5EABn2GyALmRosM-AGohoiXelbnARgVKO3ImFxSXRpAGYFAHZcNiA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABABxgfQM4gLYAoCGANIgEYCUiA3gFCJ2IBOAplCA0vogHym33-0A-IgAMfAfwBciAIwA6EYgD0iAogBUqzgGpEAJjIVd4if1SYca3QBZi5ANzUAvtWoAODSnRY8M4jJFAsnsgA

Building Abstractions with Functions 1.3.1

function name(a, b) {

return a > b

? 0

: term(a) + name(next(a), b);

}

The presence of such a common pattern is strong evidence that there is a useful abstraction

waiting to be brought to the surface. Indeed, mathematicians long ago identi�ed the abstraction

of summation of a series and invented “sigma notation,” for example

b∑
n=a

f (n) = f (a) + · · · + f (b)

to express this concept. The power of sigma notation is that it allows mathematicians to deal

with the concept of summation itself rather than only with particular sums—for example,

to formulate general results about sums that are independent of the particular series being

summed.

Similarly, as program designers, we would like our language to be powerful enough so that we

can write a function that expresses the concept of summation itself rather than only functions

that compute particular sums. We can do so readily in our functional language by taking the

common template shown above and transforming the “slots” into parameters:

function sum(term, a, next, b) {

return a > b

? 0

: term(a) + sum(term, next(a), next, b);

}

Notice that sum takes as its arguments the lower and upper bounds a and b together with

the functions term and next. We can use sum just as we would any function. For example, we

can use it (along with a function inc that increments its argument by 1) to de�ne sum_cubes:

Ifunction inc(n) {

return n + 1;

}

function sum_cubes(a, b) {

return sum(cube, a, inc, b);

}

Using this, we can compute the sum of the cubes of the integers from 1 to 10:

Isum_cubes(1, 10);

3025

With the aid of an identity function to compute the term, we can de�ne sum_integers in

74 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBEAjApgCgB4EpEDeAUIqYgE7pQjlLaIBUi9T2A3EQL5GiSwKIAziAC2mKOnIiANIgCGssOmxRZqfMTIUqNJHMQA+RKhJaziAPyIADKfNkAXIglTMc-AGoho8ZJmIlFTdcRWVVY1wObl5oeCQYSEwwDTttaloAxC8ARiiecFiBYREAfRQMQTc1FK1KdKRizHL0WQVEBIhqvKJisrR0SuzZbOtIoA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBEAjApgCgB4EpEDeAUIqYgE7pQjlLaIBUi9T2A3EQL5GiSwKIAziAC2mKOnIiANIgCGssOmxRZqfMTIUqNJHMQA+RKhJaziAPyIADKfNkAXIglTMc-AGoho8ZJmIlFTdcRWVVY1wObl5oeCQYSEwwDTttaloAxC8ARiiecFiBYREAfRQMQTc1FK1KdKRizHL0WQVEBIhqvOKytHRK7Nls60igA

Building Abstractions with Functions 1.3.1

terms of sum:

Ifunction identity(x) {

return x;

}

Ifunction sum_integers(a, b) {

return sum(identity, a, inc, b);

}

Then we can add up the integers from 1 to 10:

Isum_integers(1, 10);

55

We can also declare pi_sum in the same way:
48

Ifunction pi_sum(a, b) {

function pi_term(x) {

return 1.0 / (x * (x + 2));

}

function pi_next(x) {

return x + 4;

}

return sum(pi_term, a, pi_next, b);

}

Using these functions, we can compute an approximation to π :

I8 * pi_sum(1, 1000);

3 .139592655589783

Once we have sum, we can use it as a building block in formulating further concepts. For

instance, the de�nite integral of a function f between the limits a and b can be approximated

numerically using the formula∫ b

a
f =

[
f

(
a +

dx

2

)
+ f

(
a + dx +

dx

2

)
+ f

(
a + 2dx +

dx

2

)
+ · · ·

]
dx

for small values of dx . We can express this directly as a function:

Ifunction integral(f, a, b, dx) {

function add_dx(x) {

return x + dx;

}

return sum(f, a + dx / 2, add_dx, b) * dx;

48
Notice that we have used block structure (section 1.1.8) to embed the declarations of pi_next and pi_term

within pi_sum, since these functions are unlikely to be useful for any other purpose. We will see how to get rid

of them altogether in section 1.3.2.

75 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAJgUzLKBPAFADwEpEBvAKEUsQCc0oRql8BuMgXzLNQyzwBYATIWZA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZxAWwBRQKYCc0A0iAhkWNgB5REBGAlIgN4BQibiu2UIuSxiAPkQ1W7MewD8iAAyjxYgFyIc+DMQYBqFOix5CiclTV0ylasLoBuZgF9moSLASIYkDGAYsxnbrwOItAEZrOwdoeCQYABNsMFgoAE8MCk85Di4eJAoQ+3Bw51Q0AH1XHABzPGQ1WlTvDL9CjGjY+ISiUhdIGpzmQpK47ArcKsCiQOkrIA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZxAWwBRQKYCc0A0iAhkWNgB5REBGAlIgN4BQibiu2UIuSxiAPkQ1W7MewD8iAAyjxYgFyIc+DMQYBqFOix5CiclTV0ylasLoBuZgF9moSLASIYkDGAYsxnbrwOItAEZrOwdoeCQYABNsMFgoAE8MCk85Di4eJAoQ+3Bw51Q0AH1XHABzPGQ1WlTvDL9CjGjY+ISiUhdIGpzCkrjsCtwqwKJA6SsgA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZxAWwBRQKYCc0A0iAhkWNgB5REBGAlIgN4BQibiu2UIuSxiAPkQ1W7MewD8iAAyjxYgFyIc+DMQYBqFOix5CiclTV0ylasLoBuZgF9moSLASIADjAD6qTKQtM5iB2h4JDd3FUwKBhZ5Nk5uXkQARgA6aUQAekQMCkQAKiycrQAmOit-OzFApxCPQyhsqP8xOJ4kQsQAFmsxCvYWhK8MUPCiH1C62jK7ZgAOPNcPQcSiROk1qyA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZxAWwBRQKYCc0A0iAhkWNgB5REBGAlIgN4BQibiu2UIuSxiAPkQ1W7MewD8iAAyjxYgFyIc+DMQYBqFOix5CiclTV0ylasLoBuZgF9moSLASIADjAD6qTKQtM5iB2h4JDd3FUwKBhZ5Nk5uXkQARgA6aUQAekQMCkQAKiycrQAmOit-OzFApxCPQyhsqP8xOJ4kQsQAFmsxCvYWhK8MUPCiH1C62jK7AA481w9BxKJE6VWrIA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZxAWwBRQKYCc0A0iAhkWNgB5REBGAlIgN4BQibiu2UIuSxiAPkQ1W7MewD8iAAyjxYgFyIc+DMQYBqFOix5CiclTV0ylasLoBuZgF9moSLASIIIGtgwUGLMZ269ECkQAKkCQwOs7B2h4JBgwHABzXGIAGwxgIlJhIgATLyY5RGinPlzcgH18z28i3y4eJCCtfOsxO3r-JFRMTJJEFqCAekQAJizyqopaBlDW22ZmeKSU9Nd3ImkiAEZNgDppbasgA

Building Abstractions with Functions 1.3.1

}

Iintegral(cube, 0, 1, 0.01);

0 .24998750000000042

Iintegral(cube, 0, 1, 0.001);

0 .249999875000001

(The exact value of the integral of cube between 0 and 1 is 1/4.)

Exercise 1.29

Simpson’s Rule is a more accurate method of numerical integration than the method illustrated

above. Using Simpson’s Rule, the integral of a function f between a and b is approximated as

h

3

[y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · · + 2yn−2 + 4yn−1 + yn]

where h = (b − a)/n, for some even integer n, and yk = f (a + kh). (Increasing n increases

the accuracy of the approximation.) Declare a function that takes as arguments f , a, b, and n

and returns the value of the integral, computed using Simpson’s Rule. Use your function to

integrate cube between 0 and 1 (with n = 100 and n = 1000), and compare the results to those

of the integral function shown above.

Exercise 1.30

The sum function above generates a linear recursion. The function can be rewritten so that the

sum is performed iteratively. Show how to do this by �lling in the missing expressions in the

following declaration:

function sum(term, a, next, b) {

function iter(a, result) {

return 〈??〉

? 〈??〉

: iter(〈??〉, 〈??〉);

}

return iter(〈??〉, 〈??〉);

}

76 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBEAjApgCgB4EpEDeAUIqYgE7pQjlLaIBUi9T2A3EQL5GiSwKIAziAC2mKOnIiANIgCGssOmxRZqfMTIUqNJHMQA+RKhJaziAPyIADKfNkAXIglTMc-AGoho8ZJmIlFTdcRWVVY1wObl5oeCQYMAkAc3I5ABtMYFkFY1kAEzxCO0QY-j08vIB9ApwNYq1KalpmRC8Cji1uBp1m4TEs+VbEAsQAekQAJmyK6uw1fCZ2riIE5NSMlAxZa1kARm2AOmtdyKA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBEAjApgCgB4EpEDeAUIqYgE7pQjlLaIBUi9T2A3EQL5GiSwKIAziAC2mKOnIiANIgCGssOmxRZqfMTIUqNJHMQA+RKhJaziAPyIADKfNkAXIglTMc-AGoho8ZJmIlFTdcRWVVY1wObl5oeCQYMAkAc3I5ABtMYFkFY1kAEzxCO0QY-j08vIB9ApwNYq1KalpmRC8Cji1uBp1m4TEs+VbEAsQAekQAJmyK6uw1fCZ2riJR8by5Smc4Z3IATxsAOmtrAEZEAHcYKAALRATjcjhzwUkLIgTk1IyUDFlrWROfyO1gmkSAA

Building Abstractions with Functions 1.3.1

Exercise 1.31

a. The sum function is only the simplest of a vast number of similar abstractions that can be

captured as higher-order functions.
49

Write an analogous function called product that

returns the product of the values of a function at points over a given range. Show how

to de�ne factorial in terms of product. Also use product to compute approximations

to π using the formula
50

π

4

=
2 · 4 · 4 · 6 · 6 · 8 · · ·

3 · 3 · 5 · 5 · 7 · 7 · · ·

b. If your product function generates a recursive process, write one that generates an

iterative process. If it generates an iterative process, write one that generates a recursive

process.

Exercise 1.32

a. Show that sum and product (exercise 1.31) are both special cases of a still more gen-

eral notion called accumulate that combines a collection of terms, using some general

accumulation function:

accumulate(combiner, null_value, term, a, next, b);

The function accumulate takes as arguments the same term and range speci�cations as

sum and product, together with a combiner function (of two arguments) that speci�es

how the current term is to be combined with the accumulation of the preceding terms

and a null_value that speci�es what base value to use when the terms run out. Write

accumulate and show how sum and product can both be declared as simple calls to

accumulate.

b. If your accumulate function generates a recursive process, write one that generates an

iterative process. If it generates an iterative process, write one that generates a recursive

process.

49
The intent of exercises 1.31– 1.33 is to demonstrate the expressive power that is attained by using an

appropriate abstraction to consolidate many seemingly disparate operations. However, though accumulation and

�ltering are elegant ideas, our hands are somewhat tied in using them at this point since we do not yet have

data structures to provide suitable means of combination for these abstractions. We will return to these ideas in

section 2.2.3 when we show how to use sequences as interfaces for combining �lters and accumulators to build

even more powerful abstractions. We will see there how these methods really come into their own as a powerful

and elegant approach to designing programs.

50
This formula was discovered by the seventeenth-century English mathematician John Wallis.

77 Generated 2020-08-18 16:40:02Z

Building Abstractions with Functions 1.3.2

Exercise 1.33

You can obtain an even more general version of accumulate (exercise 1.32) by introducing

the notion of a �lter on the terms to be combined. That is, combine only those terms derived

from values in the range that satisfy a speci�ed condition. The resulting filtered_accumulate

abstraction takes the same arguments as accumulate, together with an additional predicate of

one argument that speci�es the �lter. Write filtered_accumulate as a function. Show how

to express the following using filtered_accumulate:

a. the sum of the squares of the prime numbers in the interval a to b (assuming that you

have a is_prime predicate already written)

b. the product of all the positive integers less than n that are relatively prime to n (i.e., all

positive integers i < n such that GCD(i,n) = 1).

1.3.2 Constructing Functions using Lambda Expressions

In using sum as in section 1.3.1, it seems terribly awkward to have to declare trivial functions

such as pi_term and pi_next just so we can use them as arguments to our higher-order func-

tion. Rather than declare pi_next and pi_term, it would be more convenient to have a way

to directly specify “the function that returns its input incremented by 4” and “the function

that returns the reciprocal of its input times its input plus 2.” We can do this by introducing

lambda expressions as a syntactic form for creating functions. Using lambda expressions, we

can describe what we want as

Ix => x + 4;

and

Ix => 1.0 / (x * (x + 2));

Then our pi_sum function can be expressed without declaring any auxiliary functions as

Ifunction pi_sum(a, b) {

return sum(x => 1.0 / (x * (x + 2)),

a,

x => x + 4,

b);

}

Again using a lambda expression, we can write the integral function without having to

declare the auxiliary function add_dx:

Ifunction integral(f, a, b, dx) {

return sum(f,

a + dx / 2.0,

78 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=B4AgvAfCoNQgLAbiA
http://source-academy.github.io/playground#chap=4&prgrm=B4AgvAfCCMB0AMID0IAUoBUbQGoQCYBKQgbiA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZxAWwBRQKYCc0A0iAhkWNgB5REBGAlIgN4BQibiu2UIuSxiAPkQ1W7MewD8iAAyjxYgFyIc+DMQYBqFOix5CiclTV0ylasLoBuZgF9moSLASIADjAD6qTKQtM5HLh4kLwwKRABeIQBGADppRAB6RFDEACpksK0AJjoTf3lxUnyC9jDIxEzEABYCYpKLaztmAA401w8QqKIo6V6rIA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZxAWwBRQKYCc0A0iAhkWNgB5REBGAlIgN4BQibiu2UIuSxiAPkQ1W7MewD8iAAyjxYgFyIc+DMQYBqFOix5CiclTV0ylasLoBuZgF9moSLASIIIGtgwUGLMZ269ECkQAKkCQwOs7B2h4JBgwHABzXGIAGwxgIlJhIgATLyY5Di4eJFRMTKL5cX4tfMQAekQAJgA6aQIq6vYggF4hILqKTu7q+i7xYImxfMjmZniklPTXdyIOxABGdfbNqyA

Building Abstractions with Functions 1.3.2

x => x + dx,

b)

*

dx;

}

In general, lambda expressions are used to create functions in the same way as function

declarations, except that no name is speci�ed for the function and the return keyword and

curly braces are omitted.
51

(parameters) => expression

The resulting function is just as much a function as one that is created using a function

declaration statement. The only di�erence is that it has not been associated with any name in

the environment. We consider

Ifunction plus4(x) {

return x + 4;

}

to be equivalent to
52

Iconst plus4 = x => x + 4;

We can read a lambda expression as follows:

x => x + 4x x x x x
the function of an argument x that results in the value plus 4

Like any expression that has a function as its value, a lambda expression can be used as the

function expression in an application such as

I((x, y, z) => x + y + square(z))(1, 2, 3);

12

or, more generally, in any context where we would normally use a function name.
53

Note

51
If there is only one parameter, the parentheses around the parameter list can also be omitted. In section 2.2.4,

we will extend the syntax of lambda expressions to allow blocks as bodies, as in function declaration statements.

52
In JavaScript, there are subtle di�erences between the two versions: Function declaration statements are

“hoisted” (automatically moved) to the beginning of the surrounding block, whereas constant declarations are

not, and names declared with function declaration can be re-assigned using assignment (see chapter 3.1). In this

book, we are avoiding these features and shall treat function declarations as equivalent to the corresponding

constant declaration.

53
It would be clearer and less intimidating to people learning JavaScript if a term more obvious than lambda

expression, such as function de�nition were used. But the convention is very �rmly entrenched, not just for

Lisp and Scheme but also for JavaScript, Java and other languages, no doubt partly due to the in�uence of the

Scheme editions of this book. The notation is adopted from the λ calculus, a mathematical formalism introduced

79 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABABwDYgM4BYAUAPASkQG9EAoRSxAJwFMoRqk9EBqRLAbnIF8yy0mXAGYCnIA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBADgGwK4QCwwLwwB6YHw4wDUMqA3AFAWIqoAUAzAJRlA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3L0IBpEAT0EAvEgF4AfG0QBqYfJTps+cUTwBGQQCZBAZiLsgA

Building Abstractions with Functions 1.3.2

that => has lower precedence than function application and thus the parentheses around the

lambda expression are necessary here.

Using const to create local names

Another use of lambda expressions is in creating local names. We often need local names in

our functions other than those that have been bound as parameters. For example, suppose we

wish to compute the function

f (x ,y) = x(1 + xy)2 + y(1 − y) + (1 + xy)(1 − y)

which we could also express as

a = 1 + xy

b = 1 − y

f (x ,y) = xa2 + yb + ab

In writing a function to compute f , we would like to include as local names not only x and y

but also the names of intermediate quantities like a and b. One way to accomplish this is to

use an auxiliary function to bind the local names:

Ifunction f(x, y) {

function f_helper(a, b) {

return x * square(a) +

y * b +

a * b;

}

return f_helper(1 + x * y,

1 - y);

}

Of course, we could use a lambda expression to specify an anonymous function for binding

our local names. The body of f then becomes a single call to that function:

Ifunction f(x,y) {

return ((a, b) => x * square(a) +

y * b +

a * b

)(1 + x * y, 1 - y);

}

by the mathematical logician Alonzo Church (1941). Church developed the λ calculus to provide a rigorous

foundation for studying the notions of function and function application. The λ calculus has become a basic tool

for mathematical investigations of the semantics of programming languages.

80 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgSJghADSIAniQrUh4aPCTAA+gAscAGwAOOLHgxiARlMozqteoxYp02fBhIBqRCdOuq4qwcROXb0xk9OGR4ZcwYhVQ1tXQBGbzYrcRFfPz84gFoJIk4eXjwAZjEAFmygA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgSJghADQBPEhWo0cdBojwKMIxACMSAXgB8bFinTZ8GEgGpElaZatWxe1YjMXrzyxjtPnRPAEYHu1mIqvgC0iBKcPLx4AMwqACxE7EA

Building Abstractions with Functions 1.3.2

A more convenient way to declare local names is by using constant declarations within the

body of the function. Using const, the function f can be written as

Ifunction f(x, y) {

const a = 1 + x * y;

const b = 1 - y;

return x * square(a) +

y * b +

a * b;

}

Names that are declared with const inside of a block have the body of the immediately

surrounding block as their scope.
54

Section 4.1.6 shows that declarations of local names can

often be seen as syntactic sugar for applications of lambda expressions that have the declared

names as parameters.

Conditional statements

We have seen that it is often useful to declare names that are local to function declarations.

When functions become big, we should keep the scope of the names as narrow as possible.

Consider for example expmod in exercise 1.26.

Ifunction expmod(base, exp, m) {

return exp === 0

? 1

: is_even(exp)

? expmod(base, exp / 2, m)

* expmod(base, exp / 2, m)

% m

: base

* expmod(base, exp - 1, m)

% m;

54
Note that a name declared in a block using const cannot be used before the declaration fully is evaluated,

not even in the right-hand expression of the declaration itself, and regardless whether the same name is declared

outside of the function. Thus the program

Ifunction h() {
const x = 1;
function i() {

const x = x + 1;
return x;

}
return i();

}
h();
leads to an error, because the x in x + 1 is used before its declaration is fully evaluated. The const declaration

makes sure that the declared name is not used before the evaluation of the declaration is complete, even if it

is declared outside the block already. We will return to this issue in section 4.1.6, after we learn more about

evaluation.

81 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgSJghADSIAniQrVEEBMiiIMiALyIAjIgDUbFhM4y5YBYgBGqjYgC0+ytVr1GetJlx4MJHXZk-xe814+Qcqsppw8vHgAzGIALETsQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfQKYDcNgBRgCUiA3gFCKWIBOGUI1SSApIgEyIC83iADANxkAvmVCRYCRBgAeABwC2cACZ4ARgEMUGADRS5u+cXJUadBkhmyuPXhRP3EAfkQBGOw6oAuZOmy48loTuHlTOlooqGlq6logA9OwGxMEhVABUegrKapo6mfGJiIYpqYis8iUe3lEYlSEZ4dk1MXKIALSuSYh1HuWCImSNKgAsugDMugCshPxAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABACwBQEpEG8BQj+IQIDOUiAHogLyICMA3HgaJLAojBtkwQUWKQrUhAajqNevAE4BTKCClJyEggF8eiWfMUcMjdWnT0gA

Building Abstractions with Functions 1.3.2

}

This function is unnecessarily ine�cient, because it contains two identical calls:

Iexpmod(base, exp / 2, m);

While this can be easily �xed in this example using the square function, this is not so easy

in general. Without using square, we would be tempted to introduce a local name for the

expression as follows:

Ifunction expmod(base, exp, m) {

const to_half = expmod(base, exp / 2, m);

return exp === 0

? 1

: is_even(exp)

? to_half * to_half

% m

: base

* expmod(base, exp - 1, m)

% m;

}

This would make the function not just ine�cient, but actually non-terminating! The problem

is that the constant declaration appears outside the conditional expression, which means that

it is executed even when the base case exp === 0 is met. To avoid this situation, we shall

provide for conditional statements, and allow return statements to appear in several branches

of the statement. Using a conditional statement, the function expmod can be written as follows:

Ifunction expmod(base, exp, m) {

if (exp === 0) {

return 1;

} else {

if (is_even(exp)) {

const to_half = expmod(base, exp / 2, m);

return to_half * to_half % m;

} else {

return base * expmod(base, exp - 1, m) % m;

}

}

}

The general form of a conditional statement is

if (predicate) { consequent } else { alternative }

and, like conditional expressions, their evaluation �rst evaluates the predicate. If it evaluates

to true, the interpreter evaluates the consequent statements and if it evaluates to false, the

interpreter evaluates the alternative statements. Note that any constant declarations occurring

82 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfQKYDcNgBRgCUiA3gFCKWIBOGUI1SSApIgEyIC83iADANxkAvmVCRYCRBgAeABwC2cACZ4ARgEMUGADRS5u+cXJUadBkhmyuPXhRP3EAfkQBGOw6oAuZOmy48loTuHlTOlooqGlq6logA9OwGxMEhVABUegrKapo6mfGJiIYpqYis8iUe3lEYlSEZ4dk1MXKIALSuSYh1HuWCIo0qACy6AMy6AKyE-EA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfQKYDcNgBRgCUiA3gFCKWIBOGUI1SSApIgEyIC83iADANxkAvmVCRYCRBgAeABwC2cACZ4ARgEMUGADRS5u+cXJVEEBCiiIocNAAt1AG2Bc9C5Ws07XiAPTsDhIImtPSM3tycfBQmMYgA-IgAjNGxVABcyOjYuHgysoQpqVQJ1naOzgBUVjb2ToVFVKzy9UUZGlotDVV5iirtXnmIALRJAYidRU2CImQ97gAsugDMugCsgUA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfQKYDcNgBRgCUiA3gFCKWIBOGUI1SSApIgEyIC83iADANxkAvmVCRYCRBgAeABwC2cACZ4ARgEMUGADRS5u+cXJVkwRHhmyuPXkYomqteo0QBGQSaFSANltL2HU3NUTBx8S0I7QMCIBBQoRCg4NAALdW8zTj0FZTVNHWzEAHp2A0J+EwDoyicGJCTU9LMAKkTktIzEVnkPaK8MXwx-apNalw0-VstFFQmCy0QAWjcyrsQeqs8qoQBISpEyadyAFl0AZl0AVnKgA

Building Abstractions with Functions 1.3.3

in either part are local to that part, because both are enclosed in curly braces and thus form

their own block.

Exercise 1.34

Suppose we declare

Ifunction f(g) {

return g(2);

}

Then we have

If(square);

4

If(z => z * (z + 1));

6

What happens if we (perversely) ask the interpreter to evaluate the application f(f)? Explain.

1.3.3 Functions as General Methods

We introduced compound functions in section 1.1.4 as a mechanism for abstracting patterns

of numerical operations so as to make them independent of the particular numbers involved.

With higher-order functions, such as the integral function of section 1.3.1, we began to see a

more powerful kind of abstraction: functions used to express general methods of computation,

independent of the particular functions involved. In this section we discuss two more elaborate

examples—general methods for �nding zeros and �xed points of functions—and show how

these methods can be expressed directly as functions.

Finding roots of equations by the half-interval method

The half-interval method is a simple but powerful technique for �nding roots of an equation

f (x) = 0, where f is a continuous function. The idea is that, if we are given points a and b

such that f (a) < 0 < f (b), then f must have at least one zero between a and b. To locate a

zero, let x be the average of a and b and compute f (x). If f (x) > 0, then f must have a zero

between a and x . If f (x) < 0, then f must have a zero between x and b. Continuing in this way,

we can identify smaller and smaller intervals on which f must have a zero. When we reach a

point where the interval is small enough, the process stops. Since the interval of uncertainty is

reduced by half at each step of the process, the number of steps required grows as Θ(log(L/T)),

83 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMAFAcwJSIN4ChEEBOAplCIUmigEwYDcuAvkA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMAFAcwJSIN4ChEEBOAplCIUmigEwYDcuAvrqJLAogM4COIAhiRQAPLHgJFS5JEMQAqREIbNUPfiXpA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMAFAcwJSIN4ChEEBOAplCIUmigEwYDcuAvrqgF6IC8AfIuwFSIU7ANSIAjBnpA

Building Abstractions with Functions 1.3.3

where L is the length of the original interval andT is the error tolerance (that is, the size of the

interval we will consider “small enough”). Here is a function that implements this strategy:
55

Ifunction search(f, neg_point, pos_point) {

const midpoint = average(neg_point,pos_point);

if (close_enough(neg_point, pos_point)) {

return midpoint;

} else {

const test_value = f(midpoint);

if (positive(test_value)) {

return search(f, neg_point, midpoint);

} else if (negative(test_value)) {

return search(f, midpoint, pos_point);

} else {

return midpoint;

}

}

}

We assume that we are initially given the function f together with points at which its values

are negative and positive. We �rst compute the midpoint of the two given points. Next we

check to see if the given interval is small enough, and if so we simply return the midpoint as

our answer. Otherwise, we compute as a test value the value of f at the midpoint. If the test

value is positive, then we continue the process with a new interval running from the original

negative point to the midpoint. If the test value is negative, we continue with the interval from

the midpoint to the positive point. Finally, there is the possibility that the test value is 0, in

which case the midpoint is itself the root we are searching for. To test whether the endpoints

are “close enough” we can use a function similar to the one used in section 1.1.7 for computing

square roots:
56

Ifunction close_enough(x,y) {

return abs(x - y) < 0.001;

}

The function search is awkward to use directly, because we can accidentally give it points at

which f ’s values do not have the required sign, in which case we get a wrong answer. Instead

we will use search via the following function, which checks to see which of the endpoints

has a negative function value and which has a positive value, and calls the search function

accordingly. If the function has the same sign on the two given points, the half-interval method

55
Note that we slightly extend the syntax of conditional statements described in section 1.3.2 by admitting

another conditional statement in place of the block following else.

56
We have used 0.001 as a representative “small” number to indicate a tolerance for the acceptable error in

a calculation. The appropriate tolerance for a real calculation depends upon the problem to be solved and the

limitations of the computer and the algorithm. This is often a very subtle consideration, requiring help from a

numerical analyst or some other kind of magician.

84 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwG4FMBOyDm6AUAHgDQCeAlIgN4BQi9im6UImSRiA1IhYgPSIATAG4aAXxqhIsBIgAOcAM4xYGIpSqNmrJIUQA+RAAZhiCVOjwkYdDmSqChDVpZtEegDzHT58JdnIAEaK6tR0DEyuugYAvMaIAPzuiABciAC0hKK+0laIEAA2SugA+uhgcCA4ABZEZBrh9JE6KMEc6TyUXkYAdEZGAIzZkn4ySIroyJgQtcDEiDY4JQowYFDzCorLcKtQDQz5CIpQiAC2MAAmK2uIcWhYuASL27vEmy9r5KIHMMCI+IVimUKlVas9rut5EoPnt9gcIto3Ocrjs1t8GGJEOgChMwvCGBAjicoOhjiVUMgCiB0LdEMB8MiIV9GvDfv9NioYGoSWSKVT0OQ4fiDs03BMpjN8HMFrYYfNGai9uj8Zjsbi2fhFvYuQQeVByZTqYK8cKRYjxpNprN5ZcIRtoUzlfDVTiabRTWaomdbYqnQcJP7xDQaOKrRwYoY9AAqZIdAbzIzzQRfIA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwEYGcAUAPAlIgbwChFTEAnAUyhHKW0QD4BeRABkQH5EGAuRALTYA3EQC+RUJFgJEEADZx0lAPqUwcEAHMAFjgA0AT3zEyFarSRosDAYmOIAPOwB0bNgEZREogqWr1TV1MAHYXEIA2AFYAFn1EMMiIiNxhIA

Building Abstractions with Functions 1.3.3

cannot be used, in which case the function signals an error.
57

Ifunction half_interval_method(f, a, b) {

const a_value = f(a);

const b_value = f(b);

return negative(a_value) && positive(b_value)

? search(f, a, b)

: negative(b_value) && positive(a_value)

? search(f, b, a)

: error("values are not of opposite sign");

}

The following example uses the half-interval method to approximate π as the root between 2

and 4 of sin x = 0:

Ihalf_interval_method(math_sin, 2.0, 4.0);

Here is another example, using the half-interval method to search for a root of the equation

x3 − 2x − 3 = 0 between 1 and 2:

Ihalf_interval_method(

x => x * x * x - 2 * x - 3,

1.0,

2.0);

Finding fixed points of functions

A number x is called a �xed point of a function f if x satis�es the equation f (x) = x . For some

functions f we can locate a �xed point by beginning with an initial guess and applying f

repeatedly,

f (x), f (f (x)), f (f (f (x))), . . .

until the value does not change very much. Using this idea, we can devise a function fixed_point

that takes as inputs a function and an initial guess and produces an approximation to a �xed

point of the function. We apply the function repeatedly until we �nd two successive values

whose di�erence is less than some prescribed tolerance:

Iconst tolerance = 0.00001;

function fixed_point(f, first_guess) {

function close_enough(x, y) {

return abs(x - y) < tolerance;

}

function try_with(guess) {

const next = f(guess);

return close_enough(guess, next)

57
This can be accomplished using error, which takes as argument a string that is printed as error message

along with the number of the program line that gave rise to the call of error.

85 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwG4FMBOyDm6AUAHgDQCeAlIgN4BQi9im6UImSRiA1IhYgPSIATAG4aAXxqhIsBIgAOcAM4xYGIpSqNmrJIUQA+RAAZhiCVOjwkYdDmSqChDVpZtEegDzHT58JdnIAEaK6tR0DEyuugYAvMaIAPzuiABciAC0hKK+0laIEAA2SugA+uhgcCA4ABZEZBrh9JE6KMEc6TyUXkYAdEZGAIzZkn4ySIroyJgQtcDEiDY4JQowYFDzCorLcKtQDQz5CIpQiAC2MAAmK2uIcWhYuASL27vEmy9r5KIHMMCI+IVimUKlVas9rut5EoPnt9gcIto3Ocrjs1t8GGJEOgChMwvCGBAjicoOhjiVUMgCiB0LdEMB8MiIV9GvDfv9NioYGoSWSKVT0OQ4fiDs03BMpjN8HMFrYYfNGai9uj8Zjsbi2fhFvYuQQeVByZTqYK8cKRYjxpNprN5ZcIRtoUzlfDVTiabRTWaomdbYqnQcJP7xCNcrJqpTgCVdlg+SVTsxqnALlL5sh5oEhYcwMcUAb+bT6chmQdCVmToFc9T8-h007RdZbNq1MgKwLEAAyNtQ5QOast8gs4VJcVW5MoNP9j30NJanvlvlG9udjk95vzgUD01Dy2S6WBFMTydTrGYTBwTD4ABEa8UKCYCzgJzgfzgcmXNOUODAF+ZEhoYYKEZRpgMZxlACZJqc9jVCUyhgPMgh9PMAAsfRfEAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwG4FMBOyDm6AUAHgDQCeAlIgN4BQi9im6UImSRiA1IhYgPSIATAG4aAXxqhIsBIgAOcAM4xYGIpSqNmrJIUQA+RAAZhiCVOjwkYdDmSqChDVpZtEegDzHT58JdnIAEaK6tR0DEyuugYAvMaIAPzuiABciAC0hKK+0laIEAA2SugA+uhgcCA4ABZEZBrh9JE6KMEc6TyUXkYAdEZGAIzZkn4ySIroyJgQtcDEiDY4JQowYFDzCorLcKtQDQz5CIpQiAC2MAAmK2uIcWhYuASL27vEmy9r5KIHMMCI+IVimUKlVas9rut5EoPnt9gcIto3Ocrjs1t8GGJEOgChMwvCGBAjicoOhjiVUMgCiB0LdEMB8MiIV9GvDfv9NioYGoSWSKVT0OQ4fiDs03BMpjN8HMFrYYfNGai9uj8Zjsbi2fhFvYuQQeVByZTqYK8cKRYjxpNprN5ZcIRtoUzlfDVTiabRTWaomdbYqnQcJP7xCNcrJqpTgCVdlg+SVTsxqnALlL5sh5oEhYcwMcUAb+bT6chmQdCVmToFc9T8-h007RdZbNq1MgKwLEAAyNtQ5QOast8gs4VJcVW5MoNP9j30NJanvlvlG9udjk95vzgUD01Dy2S6WBFMTydTrGYTBwTD4ABEa8UKCYCzgJzgfzgcmXNOUODAF+ZEjDBQjUaYDGcZQAmSanPY1QlMoYDzIIfTzAALH0XxAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwG4FMBOyDm6AUAHgDQCeAlIgN4BQi9im6UImSRiA1IhYgPSIATAG4aAXxqhIsBIgAOcAM4xYGIpSqNmrJIUQA+RAAZhiCVOjwkYdDmSqChDVpZtEegDzHT58JdnIAEaK6tR0DEyuugYAvMaIAPzuiABciAC0hKK+0laIEAA2SugA+uhgcCA4ABZEZBrh9JE6KMEc6TyUXkYAdEZGAIzZkn4ySIroyJgQtcDEiDY4JQowYFDzCorLcKtQDQz5CIpQiAC2MAAmK2uIcWhYuASL27vEmy9r5KIHMMCI+IVimUKlVas9rut5EoPnt9gcIto3Ocrjs1t8GGJEOgChMwvCGBAjicoOhjiVUMgCiB0LdEMB8MiIV9GvDfv9NioYGoSWSKVT0OQ4fiDs03BMpjN8HMFrYYfNGai9uj8Zjsbi2fhFvYuQQeVByZTqYK8cKRYjxpNprN5ZcIRtoUzlfDVTiabRTWaomdbYqnQcJP7xCNcrJqpTgCVdlg+SVTsxqnALlL5sh5oEhYcwMcUAb+bT6chmQdCVmToFc9T8-h007RdZbNq1MgKwLEAAyNtQ5QOast8gs4VJcVW5MoNP9j30NJanvlvlG9udjk95vzgUD01Dy2S6WBFMTydTrGYTBwTD4ABEa8UKCYCzgJzgfzgcmXNOUODAF+ZEjDBQjUaYDGcZQAmSbhHoMSGHoABUyRwXoHSCIgCEZIgADMxDhAMfRYfQgh9F8QA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwEYGcAUAPAlIgbwChFTEAnAUyhHKW0QD4BeRABkQH5EGAuRALTYA3EQC+RCAnRREUOABtK5ZJEqJWbAHRtdbAIyjQkWAkTAY2SgBMA+gAc4MMFEzAANOZjkZtgOYglOjo+MRk5uDQ8EgQCnDolLaUYHAgfgAWOJ4AnqEk4WRUNHQoGDiCiLmIADxyisqqEJSi4RLhxlFmUOTZtgDuMFCZAUEhhPkFiFJgMohglNiyrMCYI8G4LZMU1LQxcQlJKWnDgcGe84u4E1sF3BdQ1zdk-N29A0OY9xvXbYU7Ja9+oNMhYfFB-KcQqIJEQLFY7I5nK4ALbIIa2KToTz6HQbIA

Building Abstractions with Functions 1.3.3

? next

: try_with(next);

}

return try_with(first_guess);

}

For example, we can use this method to approximate the �xed point of the cosine function,

starting with 1 as an initial approximation:
58

Ifixed_point(math_cos, 1.0);

0 .7390822985224023

Similarly, we can �nd a solution to the equation y = siny + cosy:

Ifixed_point(

y => math_sin(y) + math_cos(y),

1.0);

1 .2587315962971173

The �xed-point process is reminiscent of the process we used for �nding square roots in

section 1.1.7. Both are based on the idea of repeatedly improving a guess until the result satis�es

some criterion. In fact, we can readily formulate the square-root computation as a �xed-point

search. Computing the square root of some number x requires �nding a y such that y2 = x .

Putting this equation into the equivalent form y = x/y, we recognize that we are looking for

a �xed point of the function
59 y 7→ x/y, and we can therefore try to compute square roots as

Ifunction sqrt(x) {

return fixed_point(y => x / y, 1.0);

}

Unfortunately, this �xed-point search does not converge. Consider an initial guess y1. The

next guess is y2 = x/y1 and the next guess is y3 = x/y2 = x/(x/y1) = y1. This results in an

in�nite loop in which the two guesses y1 and y2 repeat over and over, oscillating about the

answer.

One way to control such oscillations is to prevent the guesses from changing so much. Since

the answer is always between our guess y and x/y, we can make a new guess that is not as

far from y as x/y by averaging y with x/y, so that the next guess after y is
1

2
(y + x/y) instead

of x/y. The process of making such a sequence of guesses is simply the process of looking for

a �xed point of y 7→ 1

2
(y + x/y):

Ifunction sqrt(x) {

58
Try this during a boring lecture: Set your calculator to radians mode and then repeatedly press the cos button

until you obtain the �xed point.

59 7→ (pronounced “maps to”) is the mathematician’s way of writing lambda expressions. y 7→ x/y means

y => x / y, that is, the function whose value at y is x/y.

86 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwEYGcAUAPAlIgbwChFTEAnAUyhHKW0QD4BeRABkQH5EGAuRALTYA3EQC+RCAnRREUOABtK5ZJEqJWbAHRtdbAIyjQkWAkTAY2SgBMA+gAc4MMFEzAANOZjkZtgOYglOjo+MRk5uDQ8EgQCnDolLaUYHAgfgAWOJ4AnqEk4WRUNHQoGDiCiLmIADxyisqqEJSi4RLhxlFmUOTZtgDuMFCZAUEhhPkFiFJgMohglNiyrMCYI8G4LZMU1LQxcQlJKWnDgcGe84u4E1sF3BdQ1zdk-N29A0OY9xvXbYU7Ja9+oNMhYfFB-KcQqIJBYrHZHM5XABbZBDWxSdCefQ6DZAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwEYGcAUAPAlIgbwChFTEAnAUyhHKW0QD4BeRABkQH5EGAuRALTYA3EQC+RCAnRREUOABtK5ZJEqJWbAHRtdbAIyjQkWAkTAY2SgBMA+gAc4MMFEzAANOZjkZtgOYglOjo+MRk5uDQ8EgQCnDolLaUYHAgfgAWOJ4AnqEk4WRUNHQoGDiCiLmIADxyisqqEJSi4RLhxlFmUOTZtgDuMFCZAUEhhPkFiFJgMohglNiyrMCYI8G4LZMU1LQxcQlJKWnDgcGe84u4E1sF3BdQ1zdk-N29A0OY9xvXbYU7Ja9+oNMhYfFB-KcQqIJBYrHZHM5XNdshpGIgALbIIa2dDOTBVADUGKx6VsUiwuXc130Og2QA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwEYGcAUAPAlIgbwChFTEAnAUyhHKW0QD4BeRABkQH5EGAuRALTYA3EQC+RCAnRREUOABtK5ZJEqJWbAHRtdbAIyjQkWAkTAY2SgBMA+gAc4MMFEzAANOZjkZtgOYglOjo+MRk5uDQ8EgQCnDolLaUYHAgfgAWOJ4AnqEk4WRUNHQoGDiCiLmIADxyisqqEJSi4RLhxlFmUOTZtgDuMFCZAUEhhPkFiFJgMohglNiyrMCYI8G4LZMU1LQxcQlJKWnDgcGe84u4E1sF3BdQ1zdk-N29A0OY9xvXbYU7Ja9+oNMhYfFB-KcQqIJB1TEh0ABHciuPDjcJFXZeKx2RzOVzZDSMHiIAD0lU8+h03wkRERyMwAFYNkA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwEYGcAUAPAlIgbwChFTEAnAUyhHKW0QD4BeRABkQH5EGAuRALTYA3EQC+RCAnRREUOABtK5ZJEqJWbAHRtdbAIyjQkWAkTAY2SgBMA+gAc4MMFEzAANOZjkZtgOYglOjo+MRk5uDQ8EgQCnDolLaUYHAgfgAWOJ4AnqEk4WRUNHQoGDiCiLmIADxyisqqEJSi4RLhxlFmUOTZtgDuMFCZAUEhhPkFiFJgMohglNiyrMCYI8G4LZMU1LQxcQlJKWnDgcGe84u4E1sF3BdQ1zdk-N29A0OY9xvXbYU7Ja9+oNMhYfFB-KcQqIJB1TEhkAA3Bp+ShZKphP7FJDlADUlXwAHpEAAmaFEWHRRDoACO5FceHG4SKuy8VjsjmcrkeT0qGkYKCRKhRmGyngYRNy7m5T30Om+EiINLpmAArBsgA

Building Abstractions with Functions 1.3.3

return fixed_point(

y => average(y, x / y),

1.0);

}

(Note that y = 1

2
(y + x/y) is a simple transformation of the equation y = x/y; to derive it, add

y to both sides of the equation and divide by 2.)

With this modi�cation, the square-root function works. In fact, if we unravel the de�nitions,

we can see that the sequence of approximations to the square root generated here is precisely

the same as the one generated by our original square-root function of section 1.1.7. This

approach of averaging successive approximations to a solution, a technique we call average
damping, often aids the convergence of �xed-point searches.

Exercise 1.35

Show that the golden ratio ϕ (section 1.2.2) is a �xed point of the transformation x 7→ 1 + 1/x ,

and use this fact to compute ϕ by means of the fixed_point function.

Exercise 1.36

Modify fixed_point so that it prints the sequence of approximations it generates, using the

primitive function display shown in exercise 1.22. Then �nd a solution to xx = 1000 by

�nding a �xed point of x 7→ log(1000)/log(x). (Use the primitive function math_log which

computes natural logarithms.) Compare the number of steps this takes with and without

average damping. (Note that you cannot start fixed_point with a guess of 1, as this would

cause division by log(1) = 0.)

Exercise 1.37

– An in�nite continued fraction is an expression of the form

f =
N1

D1 +
N2

D2 +
N3

D3 + · · ·

As an example, one can show that the in�nite continued fraction expansion with the

Ni and the Di all equal to 1 produces 1/ϕ, where ϕ is the golden ratio (described in

section 1.2.2). One way to approximate an in�nite continued fraction is to truncate the

expansion after a given number of terms. Such a truncation—a so-called k-term �nite

87 Generated 2020-08-18 16:40:02Z

Building Abstractions with Functions 1.3.3

continued fraction—has the form

N1

D1 +
N2

. . . +
NK

DK

Suppose that n and d are functions of one argument (the term index i) that return the

Ni and Di of the terms of the continued fraction. Declare a function cont_frac such

that evaluating cont_frac(n, d, k) computes the value of the k-term �nite continued

fraction. Check your function by approximating 1/ϕ using

Icont_frac(i => 1.0,

i => 1.0,

k);

for successive values of k. How large must you make k in order to get an approximation

that is accurate to 4 decimal places?

– If your cont_frac function generates a recursive process, write one that generates an

iterative process. If it generates an iterative process, write one that generates a recursive

process.

Exercise 1.38

In 1737, the Swiss mathematician Leonhard Euler published a memoirDe Fractionibus Continuis,
which included a continued fraction expansion for e − 2, where e is the base of the natural

logarithms. In this fraction, the Ni are all 1, and the Di are successively 1, 2, 1, 1, 4, 1, 1, 6, 1, 1,

8, Write a program that uses your cont_frac function from exercise 1.37 to approximate

e , based on Euler’s expansion.

Exercise 1.39

A continued fraction representation of the tangent function was published in 1770 by the

German mathematician J.H. Lambert:

tanx =
x

1 −
x2

3 −
x2

5 −
x2

. . .

where x is in radians. Declare a function tan_cf(x, k) that computes an approximation to

the tangent function based on Lambert’s formula. As in exercise 1.37, k speci�es the number

88 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEGMHsDsBcH0BmAnAhuUtKgEYFNQB3ZAS1lj2lwE9QBnWAVwBNLYBuevAvADz2TgSdAgEYAdAGYA7ACgocJGnAAKEqAC8APlASADABpZoE6bPrtu8YeNm7AawCU7IA

Building Abstractions with Functions 1.3.4

of terms to compute.

1.3.4 Functions as Returned Values

The above examples demonstrate how the ability to pass functions as arguments signi�cantly

enhances the expressive power of our programming language. We can achieve even more

expressive power by creating functions whose returned values are themselves functions.

We can illustrate this idea by looking again at the �xed-point example described at the end

of section 1.3.3. We formulated a new version of the square-root function as a �xed-point

search, starting with the observation that

√
x is a �xed-point of the function y 7→ x/y. Then

we used average damping to make the approximations converge. Average damping is a useful

general technique in itself. Namely, given a function f , we consider the function whose value

at x is equal to the average of x and f (x).

We can express the idea of average damping by means of the following function:

Ifunction average_damp(f) {

return x => average(x, f(x));

}

The function average_damp is a function that takes as its argument a function f and returns

as its value a function (produced by the lambda expression) that, when applied to a number x,

produces the average of x and f(x). For example, applying average_damp to the square func-

tion produces a function whose value at some number x is the average of x and x2
. Applying

this resulting function to 10 returns the average of 10 and 100, or 55:
60

Iaverage_damp(square)(10);

Using average_damp, we can reformulate the square-root function as follows:

Ifunction sqrt(x) {

return fixed_point(average_damp(y => x / y),

1.0);

}

Notice how this formulation makes explicit the three ideas in the method: �xed-point search,

average damping, and the function y 7→ x/y. It is instructive to compare this formulation of

the square-root method with the original version given in section 1.1.7. Bear in mind that

these functions express the same process, and notice how much clearer the idea becomes

when we express the process in terms of these abstractions. In general, there are many ways

to formulate a process as a function. Experienced programmers know how to choose process

60
Observe that this is a combination whose operator is itself a combination. Exercise 1.4 already demonstrated

the ability to form such combinations, but that was only a toy example. Here we begin to see the real need for

such combinations—when applying a function that is obtained as the value returned by a higher-order function.

89 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwG4FMBOyDm6AUAHgDQCeAlIgN4BQi9im6UImSRiA1IhYgPSIATAG4aAXxqhIsBIgDOARxDImRSrQaNmrJIUQAqRIVESp0eEjRZc6APoATZAFsADvmDq6DJizZHEALwAfCgY2HhExIjAauQmNDRW4XaOrviKykzk+ACMAAxxQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwG4FMBOyDm6AUAHgDQCeAlIgN4BQi9im6UImSRiA1IhYgPSIATAG4aAXxqhIsBCgzY8AfQAmyALYAHfMEq0GjZqySFEAXgB8crLgIlEwIuXKiJU6PCQBnAI4hkTR2o6BiYWNkQTACoIlxo0ayVVTXwfPyZyfABGAAZnIA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwG4FMBOyDm6AUAHgDQCeAlIgN4BQi9im6UImSRiA1IhYgPSIATAG4aAXxqhIsBCgzY8AfQAmyALYAHfMEq0GjZqySFEAXgB8crLgIlEwIuXKiJU6PCTIARgGdH1OgYmFjZEE3NTRAAGRAB+MMQALkQAWkIXGggEHyhEKDgAG2tIdDNogDooqqiARlE3GSRgGEJ0ZUUNOBgwKG1iexhMHMUcEHQfH11A+gaPRAgCuB90RXQwOBAcAAsift49fSDDUO8-ExSeSgAePMLiiHRRfQl9WdkoTFJFAHcYKB3RuNJgFDgwsmAcogwOhCLlIg5ARNnNNDsEjPNFstVutNgCxhN+tDYeQUaDDvEiVBSWSGMkPl9fv98JTkc8UWjQvSfn8ds0hlARvjJhk3kgfABHTC9QhTfQcpotNodLo9fBoaxKVSafCkMyWEwCCjEak0001SrIiQ0CVS-AANmcQA

Building Abstractions with Functions 1.3.4

formulations that are particularly perspicuous, and where useful elements of the process are

exposed as separate entities that can be reused in other applications. As a simple example

of reuse, notice that the cube root of x is a �xed point of the function y 7→ x/y2
, so we can

immediately generalize our square-root function to one that extracts cube roots:
61

Ifunction cube_root(x) {

return fixed_point(average_damp(y => x / square(y)),

1.0);

}

Newton’s method

When we �rst introduced the square-root function, in section 1.1.7, we mentioned that this

was a special case of Newton’s method. If x 7→ д(x) is a di�erentiable function, then a solution

of the equation д(x) = 0 is a �xed point of the function x 7→ f (x) where

f (x) = x −
д(x)

Dд(x)

and Dд(x) is the derivative of д evaluated at x . Newton’s method is the use of the �xed-point

method we saw above to approximate a solution of the equation by �nding a �xed point of the

function f .
62

For many functions д and for su�ciently good initial guesses for x , Newton’s

method converges very rapidly to a solution of д(x) = 0.
63

In order to implement Newton’s method as a function, we must �rst express the idea of

derivative. Note that “derivative,” like average damping, is something that transforms a function

into another function. For instance, the derivative of the function x 7→ x3
is the function

x 7→ 3x2
. In general, if д is a function and dx is a small number, then the derivative Dд of д is

the function whose value at any number x is given (in the limit of small dx) by

Dд(x) =
д(x + dx) − д(x)

dx

Thus, we can express the idea of derivative (taking dx to be, say, 0.00001) as the function

Ifunction deriv(g) {

return x => (g(x + dx) - g(x)) / dx;

}

61
See exercise 1.45 for a further generalization.

62
Elementary calculus books usually describe Newton’s method in terms of the sequence of approximations

xn+1 = xn − д(xn)/Dд(xn). Having language for talking about processes and using the idea of �xed points

simpli�es the description of the method.

63
Newton’s method does not always converge to an answer, but it can be shown that in favorable cases each

iteration doubles the number-of-digits accuracy of the approximation to the solution. In such cases, Newton’s

method will converge much more rapidly than the half-interval method.

90 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwG4FMBOyDm6AUAHgDQCeAlIgN4BQi9im6UImSRiA1IhYgPSIATAG4aAXxqhIsBCgzY8AfQAmyALYAHfMEq0GjZqySFEAXgB8crLgIlEwIuXKiJU6PCTIARgGdH1OgYmFjZEE3NTRAAGRAB+MMQALkQAWkIXGggEHyhEKDgAG2tIdDNogDooqqiARlE3GSRgGEJ0ZUUNOBgwKG1iexhMHMUcEHQfH11A+gaPRAgCuB90RXQwOBAcAAsift49fSDDUO8-ExSeSgAePMLiiHRRfQl9WdkoTFJFAHcYKB3RuNJgFDgwsmAcogwOhCLlIg5ARNnNNDsEjPNFstVutNgCxhN+tDYeQUaDDvEiVBSWSGMkPl9fv98JTkc8UWjQvSfn8ds0hlARvjJhk3kgfABHEDIJj+A70DnGRAAKjCIvA7lkEBAXhWmDgcF6hCm+gVA1a7U63V6aGsSlUmnwpDMlhMAglUplFHIxGpNL9NUqyIkmW1uv1vUEAHZnEA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAJgDxgXhgBgHRu2gjAbgCgAzAVzGCgEtx4BTAJyoDcAKAcwEoYBvQmATAZ0opBmBhJkAPhgdWSANTwE3ALQx2CztwD0KogF9CJcpRoTgpAEZ1tvISLESkAKkkx3CfDGOE4jCysVracrACsnPhAA

Building Abstractions with Functions 1.3.4

along with the declaration

Iconst dx = 0.00001;

Like average_damp, deriv is a function that takes a function as argument and returns a

function as value. For example, to approximate the derivative of x 7→ x3
at 5 (whose exact

value is 75) we can evaluate

Ifunction cube(x) { return x * x * x; }

deriv(cube)(5);

With the aid of deriv, we can express Newton’s method as a �xed-point process:

Ifunction newton_transform(g) {

return x => x - g(x) / deriv(g)(x);

}

function newtons_method(g, guess) {

return fixed_point(newton_transform(g), guess);

}

The newton_transform function expresses the formula at the beginning of this section, and

newtons_method is readily de�ned in terms of this. It takes as arguments a function that

computes the function for which we want to �nd a zero, together with an initial guess. For

instance, to �nd the square root of x , we can use Newton’s method to �nd a zero of the function

y 7→ y2 − x starting with an initial guess of 1.
64

This provides yet another form of the square-

root function:

Ifunction sqrt(x) {

return newtons_method(y => square(y) - x,

1.0);

}

Abstractions and first-class functions

We’ve seen two ways to express the square-root computation as an instance of a more general

method, once as a �xed-point search and once using Newton’s method. Since Newton’s method

was itself expressed as a �xed-point process, we actually saw two ways to compute square

roots as �xed points. Each method begins with a function and �nds a �xed point of some

transformation of the function. We can express this general idea itself as a function:

Ifunction fixed_point_of_transform(g, transform, guess) {

return fixed_point(transform(g), guess);

}

64
For �nding square roots, Newton’s method converges rapidly to the correct solution from any starting point.

91 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAJgDxgXhgBgHRu2gjAbiA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAJgDxgXhgBgHRu2gjAbgCgAzAVzGCgEtx4BTAJyoDcAKAcwEoYBvQmATAZ0opBmBhJkAPhgdWSANTwE3ALQx2CztwD0KogF8S5SjQnBSAIzrbeQkWIlIAVJJhuE+GMcJxGLKyWNpysAKyc+EA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwEYGcAUAPAlIgbwChFTEAnAUyhHKW0QD4BeRABkQH5EGAuRALTYA3EQC+RCAnRREUOABtK5ZJEqJWbAHRtdbAIyjQkWAkTAY2SgBMA+gAc4MMFEzAANOZjkZtgOYglOjo+MRk5uDQ8EgQCnDolLaUYHAgfgAWOJ4AnqEk4WRUNHQoGDiCiLmIADxyisqqEJSi4RLhxlFmUOTZtgDuMFCZAUEhhPkFiFJgMohglNiyrMCYI8G4LZMU1LQxcQlJKWnDgcGe84u4E1sF3BdQ1zdk-N29A0OY9xvXbYU7Ja9+oNMhYfFB-KcQqIJNNZtYGJodHpDEQOqYkNZlDAAG6rPLhIq7HgaRiIVblADUiHh+AEiD8OFw+AA9NSROJUZF0Yh0ABHEDIKiM8YE-70RAAKh40M5JmiPN55FceBFf2KSHmfXkM1sAFtqOk4NZMNkSQqBUKqnTsO5Hk97aR9DpvhI0fLNdrbN1VOhgHByLq8arturicxSQw6QyVazMeQcXjGTK3WYPdI9QajatPGsxmFSISShYrHZHM5XGmwF6VDM-QG8TnIS6iEQ+UrMAA2DZAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwEYGcAUAPAlIgbwChFTEAnAUyhHKW0QD4BeRABkQH5EGAuRALTYA3EQC+RCAnRREUOABtK5ZJEqJWbAHRtdbAIyjQkWAkTAY2SgBMA+gAc4MMFEzAANOZjkZtgOYglOjo+MRk5uDQ8EgQCnDolLaUYHAgfgAWOJ4AnqEk4WRUNHQoGDiCiLmIADxyisqqEJSi4RLhxlFmUOTZtgDuMFCZAUEhhPkFiFJgMohglNiyrMCYI8G4LZMU1LQxcQlJKWnDgcGe84u4E1sF3BdQ1zdk-N29A0OY9xvXbYU7Ja9+oNMhYfFB-KcQqIJNNZtYGJodHpDEQOqYkNZlDAAG6rPLhIq7HgaRiIVblADUiHh+AEiD8OFw+AA9NSROJUZF0XNKH15GBbN1VOhgHByABbPHjP7Fegk4l0hl4RCszHkHF4xnQzkmaI8vnSWzi6jpODWVaeNZjMKkQklCxWOyOZyueYGgVCmaiiV4y2Q74SNF69AARxAyCojOlMqJDAAVDxtUGzKHyK5lTbbf8kG7+egjSazZhsvLQ+HI1U6dh3I8nnXSPodAGiERU64AGwbIA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwEYGcAUAPAlIgbwChFTEAnAUyhHKW0QD4BeRABkQH5EGAuRALTYA3EQC+RCAnRREUOABtK5ZJEqJWbAHRtdbAIyjQkWAkTAY2SgBMA+gAc4MMFEzAANOZjkZtgOYglOjo+MRk5uDQ8EgQCnDolLaUYHAgfgAWOJ4AnqEk4WRUNHQoGDiCiLmIADxyisqqEJSi4RLhxlFmUOTZtgDuMFCZAUEhhPkFiFJgMohglNiyrMCYI8G4LZMU1LQxcQlJKWnDgcGe84u4E1sF3BdQ1zdk-N29A0OY9xvXbYU7Ja9+oNMhYfFB-KcQqIJB1TEhkAA3Bp+ShZKphP7FJDlADUlXwAHpEAAmaFEWHRFBIlQo2zWZAAW3sbjy4SKux4GkYVORqOwnhWeG+MMicMQ6AAjuRXHhxmz-kgLFY7I5nOC4MBbN1VOhgHByAzMI8npUuZyidl3ManojeXTGfYrSaCvodMLyaLKUqbA4nC5bBqtSoZnqDatPNqQ-qGZ41mMMaR2SVvSq-a5I7ro6tcLHIe6iJLpZgAGwbIA

Building Abstractions with Functions 1.3.4

This very general function takes as its arguments a function g that computes some function,

a function that transforms g, and an initial guess. The returned result is a �xed point of the

transformed function.

Using this abstraction, we can recast the �rst square-root computation from this section

(where we look for a �xed point of the average-damped version of y 7→ x/y) as an instance of

this general method:

Ifunction sqrt(x) {

return fixed_point_of_transform(

y => x / y,

average_damp,

1.0);

}

Similarly, we can express the second square-root computation from this section (an instance

of Newton’s method that �nds a �xed point of the Newton transform of y 7→ y2 − x) as

Ifunction sqrt(x) {

return fixed_point_of_transform(

y => square(y) - x,

newton_transform,

1.0);

}

We began section 1.3 with the observation that compound functions are a crucial abstrac-

tion mechanism, because they permit us to express general methods of computing as explicit

elements in our programming language. Now we’ve seen how higher-order functions permit

us to manipulate these general methods to create further abstractions.

As programmers, we should be alert to opportunities to identify the underlying abstractions

in our programs and to build upon them and generalize them to create more powerful ab-

stractions. This is not to say that one should always write programs in the most abstract way

possible; expert programmers know how to choose the level of abstraction appropriate to their

task. But it is important to be able to think in terms of these abstractions, so that we can be

ready to apply them in new contexts. The signi�cance of higher-order functions is that they

enable us to represent these abstractions explicitly as elements in our programming language,

so that they can be handled just like other computational elements.

In general, programming languages impose restrictions on the ways in which computational

elements can be manipulated. Elements with the fewest restrictions are said to have �rst-class
status. Some of the “rights and privileges” of �rst-class elements are:

65

– They may be referred to using names.

65
The notion of �rst-class status of programming-language elements is due to the British computer scientist

Christopher Strachey (1916–1975).

92 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwEYGcAUAPAlIgbwChFTEAnAUyhHKW0QD4BeRABkQH5EGAuRALTYA3EQC+RCAnRREUOABtK5ZJEqJWbAHRtdbAIyjQkWAkTAY2SgBMA+gAc4MMFEzAANOZjkZtgOYglOjo+MRk5uDQ8EgQCnDolLaUYHAgfgAWOJ4AnqEk4WRUNHQoGDiCiLmIADxyisqqEJSi4RLhxlFmUOTZtgDuMFCZAUEhhPkFiFJgMohglNiyrMCYI8G4LZMU1LQxcQlJKWnDgcGe84u4E1sF3BdQ1zdk-N29A0OY9xvXbYU7Ja9+oNMhYfFB-KcQqIJB1TEgLFY7I5nOC4MBbN1VOhgHByABbVaeTEzHH4zxrMZhP7FeGWGwOJwuTDE7G4gl+XDkyHfGGROEoABuDT8lCyVSppCKu0Q5QA1JV8AB6RAAJmhRFh0UFwsS1mQePsbjy4SlJQYzEY2pUIqy5hwuB5Gr5WvQAEdyK48OMTf9aYiGSjbGiMSoSWzMI8npUNJaGMrsu5I09kELrbr9fZE1GCvodI6iG6PZgAGwbIA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwEYGcAUAPAlIgbwChFTEAnAUyhHKW0QD4BeRABkQH5EGAuRALTYA3EQC+RCAnRREUOABtK5ZJEqJWbAHRtdbAIyjQkWAkTAY2SgBMA+gAc4MMFEzAANOZjkZtgOYglOjo+MRk5uDQ8EgQCnDolLaUYHAgfgAWOJ4AnqEk4WRUNHQoGDiCiLmIADxyisqqEJSi4RLhxlFmUOTZtgDuMFCZAUEhhPkFiFJgMohglNiyrMCYI8G4LZMU1LQxcQlJKWnDgcGe84u4E1sF3BdQ1zdk-N29A0OY9xvXbYU7Ja9+oNMhYfFB-KcQqIJB1TEgLFY7I5nOC4MBbN1VOhgHByABbVaeTEzHH4zxrMZhP7FeGWGwOJwuTDE7G4gl+XDkyHfGGROGIdAARxAyCoODy4SKux4iAAVDxoZJpLJrAxNDo9IYiLDoohrMoYAA3VYS6nStWMRCrcoAaj1eAqfnF+AA9PbFTqzPM+vIwBiVCS2SbxmaShaZQJEE6HW79eQjSbxR6+brvb70LY8dR0nBrISo9yQ6QpSUEfTkUy0wh-VjSezOQXRjztSmzELyK4HVTi-9aYiGSjbGia4H8ZhHk9KhpLUKRWKqpHsO4J08q36WXXl5OCvodM2iO3XAA2DZAA

Building Abstractions with Functions 1.3.4

– They may be passed as arguments to functions.

– They may be returned as the results of functions.

– They may be included in data structures.
66

JavaScript, unlike other common programming languages, awards functions full �rst-class

status. This poses challenges for e�cient implementation, but the resulting gain in expressive

power is enormous.
67

Exercise 1.40

Declare a function cubic that can be used together with the newtons_method function in

expressions of the form

newtons_method(cubic(a, b, c), 1);

to approximate zeros of the cubic x3 + ax2 + bx + c .

Exercise 1.41

Declare a function double that takes a function of one argument as argument and returns a

function that applies the original function twice. For example, if inc is a function that adds 1

to its argument, then double(inc) should be a function that adds 2. What value is returned by

Idouble(double(double))(inc)(5);

Exercise 1.42

Let f and д be two one-argument functions. The composition f after д is de�ned to be the

function x 7→ f (д(x)). Declare a function compose that implements composition. For example,

if inc is a function that adds 1 to its argument,

Icompose(square, inc)(6);

49

Exercise 1.43

If f is a numerical function and n is a positive integer, then we can form the nth repeated

application of f , which is de�ned to be the function whose value at x is f (f (. . . (f (x)) . . .)). For

66
We’ll see examples of this after we introduce data structures in chapter 2.

67
The major implementation cost of �rst-class functions is that allowing functions to be returned as values

requires reserving storage for a function’s free names even while the function is not executing. In the JavaScript

implementation we will study in section 4.1, these names are stored in the function’s environment.

93 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEBMHsFcCMBsCmoAulS2QdwE4EsUVEA7DAT1AGcVpwSUBuKxZAUQA1WAlAYQEkAyq1ABGAHQAWEQCgAZtGIBjFHkik8SgBTEAlKADe00MdA5ENHKVIBqUQ2kBfaVDhJNLhIncxPOnZo1FfwBWHQYgA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEGMHsFsAdIM4FNQBdKgEYoO4CcBLVVJAOywE9QFUBXAEzNQG5qkUBRADQ4CUBhAJIBlDqACMAOgAsAJgBQAM1qlwqApHIIAjrQCGeJAAoAHgEpQAb3mhboQ3TzkToAFSgTzeQF8lKtRrkBKpGpBbWdvZIjuTkANQSXr5QcIjGOvqGADSgweBmRgBsZsxAA

Building Abstractions with Functions 1.3.4

example, if f is the function x 7→ x + 1, then the nth repeated application of f is the function

x 7→ x + n. If f is the operation of squaring a number, then the nth repeated application of f

is the function that raises its argument to the 2
n
th power. Write a function that takes as inputs

a function that computes f and a positive integer n and returns the function that computes

the nth repeated application of f . Your function should be able to be used as follows:

Irepeated(square, 2)(5);

Hint: You may �nd it convenient to use compose from exercise 1.42.

Exercise 1.44

The idea of smoothing a function is an important concept in signal processing. If f is a function

and dx is some small number, then the smoothed version of f is the function whose value

at a point x is the average of f (x − dx), f (x), and f (x + dx). Write a function smooth that

takes as input a function that computes f and returns a function that computes the smoothed

f . It is sometimes valuable to repeatedly smooth a function (that is, smooth the smoothed

function, and so on) to obtained the n-fold smoothed function. Show how to generate the n-fold

smoothed function of any given function using smooth and repeated from exercise 1.43.

Exercise 1.45

We saw in section 1.3.3 that attempting to compute square roots by naively �nding a �xed point

ofy 7→ x/y does not converge, and that this can be �xed by average damping. The same method

works for �nding cube roots as �xed points of the average-damped y 7→ x/y2
. Unfortunately,

the process does not work for fourth roots—a single average damp is not enough to make a

�xed-point search for y 7→ x/y3
converge. On the other hand, if we average damp twice (i.e.,

use the average damp of the average damp of y 7→ x/y3
) the �xed-point search does converge.

Do some experiments to determine how many average damps are required to compute nth

roots as a �xed-point search based upon repeated average damping of y 7→ x/yn−1
. Use this to

implement a simple function for computing nth roots using fixed_point, average_damp, and

the repeated function of exercise 1.43. Assume that any arithmetic operations you need are

available as primitives.

Exercise 1.46

Several of the numerical methods described in this chapter are instances of an extremely

general computational strategy known as iterative improvement. Iterative improvement says

that, to compute something, we start with an initial guess for the answer, test if the guess is

good enough, and otherwise improve the guess and continue the process using the improved

94 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3IHpeaOAA44MUHABNEUOIgBGORAHcsMKOKRyAnijoScYKOxQ5FAUQAaZgEoBhAJIBlM4gCMAOgAsAZnK4RYpJ4aJi4ADSIAExEeACsROxAA

Building Abstractions with Functions 1.3.4

guess as the new guess. Write a function iterative_improve that takes two functions as

arguments: a method for telling whether a guess is good enough and a method for improving a

guess. The function iterative_improve should return as its value a function that takes a guess

as argument and keeps improving the guess until it is good enough. Rewrite the sqrt function

of section 1.1.7 and the fixed_point function of section 1.3.3 in terms of iterative_improve.

95 Generated 2020-08-18 16:40:02Z

Building Abstractions with Functions 1.3.4

96 Generated 2020-08-18 16:40:02Z

Chapter 2

Building Abstractions with Data

We now come to the decisive step of mathematical abstraction: we forget

about what the symbols stand for. . . . [The mathematician] need not

be idle; there are many operations which he may carry out with these

symbols, without ever having to look at the things they stand for.

— Hermann Weyl, The Mathematical Way of Thinking

We concentrated in chapter 1 on computational processes and on the role of functions in

program design. We saw how to use primitive data (numbers) and primitive operations (arith-

metic operations), how to combine functions to form compound functions through composi-

tion, conditionals, and the use of parameters, and how to abstract processes by using function

declarations. We saw that a function can be regarded as a pattern for the local evolution of a

process, and we classi�ed, reasoned about, and performed simple algorithmic analyses of some

common patterns for processes as embodied in functions. We also saw that higher-order func-

tions enhance the power of our language by enabling us to manipulate, and thereby to reason

in terms of, general methods of computation. This is much of the essence of programming.

In this chapter we are going to look at more complex data. All the functions in chapter 1

operate on simple numerical data, and simple data are not su�cient for many of the problems

we wish to address using computation. Programs are typically designed to model complex

phenomena, and more often than not one must construct computational objects that have

several parts in order to model real-world phenomena that have several aspects. Thus, whereas

our focus in chapter 1 was on building abstractions by combining functions to form compound

functions, we turn in this chapter to another key aspect of any programming language: the

means it provides for building abstractions by combining data objects to form compound data.

Why do we want compound data in a programming language? For the same reasons that

97

we want compound functions: to elevate the conceptual level at which we can design our

programs, to increase the modularity of our designs, and to enhance the expressive power of

our language. Just as the ability to declare functions enables us to deal with processes at a

higher conceptual level than that of the primitive operations of the language, the ability to

construct compound data objects enables us to deal with data at a higher conceptual level than

that of the primitive data objects of the language.

Consider the task of designing a system to perform arithmetic with rational numbers. We

could imagine an operation add_rat that takes two rational numbers and produces their sum.

In terms of simple data, a rational number can be thought of as two integers: a numerator and

a denominator. Thus, we could design a program in which each rational number would be

represented by two integers (a numerator and a denominator) and where add_rat would be

implemented by two functions (one producing the numerator of the sum and one producing

the denominator). But this would be awkward, because we would then need to explicitly keep

track of which numerators corresponded to which denominators. In a system intended to

perform many operations on many rational numbers, such bookkeeping details would clutter

the programs substantially, to say nothing of what they would do to our minds. It would

be much better if we could “glue together” a numerator and denominator to form a pair—a

compound data object—that our programs could manipulate in a way that would be consistent

with regarding a rational number as a single conceptual unit.

The use of compound data also enables us to increase the modularity of our programs. If we

can manipulate rational numbers directly as objects in their own right, then we can separate

the part of our program that deals with rational numbers per se from the details of how rational

numbers may be represented as pairs of integers. The general technique of isolating the parts

of a program that deal with how data objects are represented from the parts of a program that

deal with how data objects are used is a powerful design methodology called data abstraction.

We will see how data abstraction makes programs much easier to design, maintain, and modify.

The use of compound data leads to a real increase in the expressive power of our program-

ming language. Consider the idea of forming a “linear combination” ax +by. We might like to

write a function that would accept a, b, x , and y as arguments and return the value of ax + by.

This presents no di�culty if the arguments are to be numbers, because we can readily declare

the function

Ifunction linear_combination(a, b, x, y) {

return a * x + b * y;

}

But suppose we are not concerned only with numbers. Suppose we would like to describe a

process that forms linear combinations whenever addition and multiplication are de�ned—for

rational numbers, complex numbers, polynomials, or whatever. We could express this as a

98 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAGxmApgQwE4H0JwC2ARmprAgBSYA0ixdAHnQJ4CUiA3gFCJ+LZ0UENiSZEAKkSNEAanqTELANzcAvt26oMOfEVJhy8MJQCMdAEx0AzHQAsbZUA

function of the form

function linear_combination(a, b, x, y) {

return add(mul(a, x), mul(b, y));

}

where add and mul are not the primitive functions + and * but rather more complex things

that will perform the appropriate operations for whatever kinds of data we pass in as the

arguments a, b, x, and y. The key point is that the only thing linear_combination should need

to know about a, b, x, and y is that the functions add and mul will perform the appropriate

manipulations. From the perspective of the function linear_combination, it is irrelevant what

a, b, x, and y are and even more irrelevant how they might happen to be represented in terms

of more primitive data. This same example shows why it is important that our programming

language provide the ability to manipulate compound objects directly: Without this, there is

no way for a function such as linear_combination to pass its arguments along to add and mul

without having to know their detailed structure.
1

We begin this chapter by implementing the rational-number arithmetic system mentioned

above. This will form the background for our discussion of compound data and data abstraction.

As with compound functions, the main issue to be addressed is that of abstraction as a technique

for coping with complexity, and we will see how data abstraction enables us to erect suitable

abstraction barriers between di�erent parts of a program.

We will see that the key to forming compound data is that a programming language should

provide some kind of “glue” so that data objects can be combined to form more complex

data objects. There are many possible kinds of glue. Indeed, we will discover how to form

compound data using no special “data” operations at all, only functions. This will further blur

the distinction between “ function ” and “data,” which was already becoming tenuous toward

the end of chapter 1. We will also explore some conventional techniques for representing

sequences and trees. One key idea in dealing with compound data is the notion of closure—that

the glue we use for combining data objects should allow us to combine not only primitive data

objects, but compound data objects as well. Another key idea is that compound data objects can

serve as conventional interfaces for combining program modules in mix-and-match ways. We

illustrate some of these ideas by presenting a simple graphics language that exploits closure.

We will then augment the representational power of our language by introducing symbolic

1
The ability to directly manipulate functions provides an analogous increase in the expressive power of a

programming language. For example, in section 1.3.1 we introduced the sum function, which takes a function

term as an argument and computes the sum of the values of term over some speci�ed interval. In order to de�ne

sum, it is crucial that we be able to speak of a function such as term as an entity in its own right, without regard

for how term might be expressed with more primitive operations. Indeed, if we did not have the notion of “a

function”, it is doubtful that we would ever even think of the possibility of de�ning an operation such as sum.

Moreover, insofar as performing the summation is concerned, the details of how term may be constructed from

more primitive operations are irrelevant.

99 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.1

expressions—data whose elementary parts can be arbitrary symbols rather than only numbers.

We explore various alternatives for representing sets of objects. We will �nd that, just as a given

numerical function can be computed by many di�erent computational processes, there are

many ways in which a given data structure can be represented in terms of simpler objects, and

the choice of representation can have signi�cant impact on the time and space requirements of

processes that manipulate the data. We will investigate these ideas in the context of symbolic

di�erentiation, the representation of sets, and the encoding of information.

Next we will take up the problem of working with data that may be represented di�erently

by di�erent parts of a program. This leads to the need to implement generic operations, which

must handle many di�erent types of data. Maintaining modularity in the presence of generic

operations requires more powerful abstraction barriers than can be erected with simple data

abstraction alone. In particular, we introduce data-directed programming as a technique that

allows individual data representations to be designed in isolation and then combined additively
(i.e., without modi�cation). To illustrate the power of this approach to system design, we

close the chapter by applying what we have learned to the implementation of a package for

performing symbolic arithmetic on polynomials, in which the coe�cients of the polynomials

can be integers, rational numbers, complex numbers, and even other polynomials.

2.1 Introduction to Data Abstraction

In section 1.1.8, we noted that a function used as an element in creating a more complex

function could be regarded not only as a collection of particular operations but also as a

functional abstraction. That is, the details of how the function was implemented could be

suppressed, and the particular function itself could be replaced by any other function with the

same overall behavior. In other words, we could make an abstraction that would separate the

way the function would be used from the details of how the function would be implemented

in terms of more primitive functions. The analogous notion for compound data is called data
abstraction. Data abstraction is a methodology that enables us to isolate how a compound data

object is used from the details of how it is constructed from more primitive data objects.

The basic idea of data abstraction is to structure the programs that are to use compound data

objects so that they operate on “abstract data.” That is, our programs should use data in such a

way as to make no assumptions about the data that are not strictly necessary for performing

the task at hand. At the same time, a “concrete” data representation is de�ned independent of

the programs that use the data. The interface between these two parts of our system will be a

set of functions, called selectors and constructors, that implement the abstract data in terms of

the concrete representation. To illustrate this technique, we will consider how to design a set

of functions for manipulating rational numbers.

100 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.1.1

2.1.1 Example: Arithmetic Operations for Rational Numbers

Suppose we want to do arithmetic with rational numbers. We want to be able to add, subtract,

multiply, and divide them and to test whether two rational numbers are equal.

Let us begin by assuming that we already have a way of constructing a rational number

from a numerator and a denominator. We also assume that, given a rational number, we have

a way of extracting (or selecting) its numerator and its denominator. Let us further assume

that the constructor and selectors are available as functions:

– make_rat(n, d) returns the rational number whose numerator is the integer n and

whose denominator is the integer d .

– numer(x) returns the numerator of the rational number x .

– denom(x) returns the denominator of the rational number x .

We are using here a powerful strategy of synthesis: wishful thinking. We haven’t yet said

how a rational number is represented, or how the functions numer, denom, and make_rat should

be implemented. Even so, if we did have these three functions, we could then add, subtract,

multiply, divide, and test equality by using the following relations:

n1

d1

+
n2

d2

=
n1d2 + n2d1

d1d2

n1

d1

−
n2

d2

=
n1d2 − n2d1

d1d2

n1

d1

·
n2

d2

=
n1n2

d1d2

n1/d1

n2/d2

=
n1d2

d1n2

n1

d1

=
n2

d2

if and only if n1d2 = n2d1

We can express these rules as functions:

function add_rat(x, y) {

return make_rat(numer(x) * denom(y) + numer(y) * denom(x),

denom(x) * denom(y));

}

function sub_rat(x, y) {

return make_rat(numer(x) * denom(y) - numer(y) * denom(x),

denom(x) * denom(y));

101 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.1.1

}

function mul_rat(x, y) {

return make_rat(numer(x) * numer(y),

denom(x) * denom(y));

}

function div_rat(x, y) {

return make_rat(numer(x) * denom(y),

denom(x) * numer(y));

}

function equal_rat(x, y) {

return numer(x) * denom(y) === numer(y) * denom(x);

}

Now we have the operations on rational numbers de�ned in terms of the selector and con-

structor functions numer, denom, and make_rat. But we haven’t yet de�ned these. What we

need is some way to glue together a numerator and a denominator to form a rational number.

Pairs

To enable us to implement the concrete level of our data abstraction, our JavaScript environ-

ment provides a compound structure called a pair, which can be constructed with the function

pair. This function takes two arguments and returns a compound data object that contains

the two arguments as parts. Given a pair, we can extract the parts using the functions head

and tail. Thus, we can use pair, head, and tail as follows:

Iconst x = pair(1, 2);

Ihead(x);

1

Itail(x);

2

Notice that a pair is a data object that can be given a name and manipulated, just like a

primitive data object. Moreover, pair can be used to form pairs whose elements are pairs, and

so on:

Iconst x = pair(1, 2);

const y = pair(3, 4);

const z = pair(x, y);

Ihead(head(z));

1

Ihead(tail(z));

102 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAHjAvDADgQwJYCcAUBGAGhgCYBKAbgChKALAUzQBMc4Kg
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAHjAvDADgQwJYCcAUBGAGhgCYBKAbgCgALAUzQBMc4Kg
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAHjAvDADgQwJYCcAUBGAGhgCYBKAbgCgpMAbHOCoA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAHjAvDADgQwJYCcAUBGAGhgCYBKAbgChRJYBPJVTXAZiIBYLrxoYAvRumw44ROl0oALAKZoAJjhnycfUhSA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAHjAvDADgQwJYCcAUBGAGhgCYBKAbgChRJYBPJVTXAZiIBYLrxoYAvRumw44ROlwAWAUzQATHNLk4+pCkA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAHjAvDADgQwJYCcAUBGAGhgCYBKAbgChRJYBPJVTXAZiIBYLrxoYAvRumw44ROlwAWAUzQATHFEwAbHH1IUgA

Building Abstractions with Data 2.1.1

3

In section 2.2 we will see how this ability to combine pairs means that pairs can be used

as general-purpose building blocks to create all sorts of complex data structures. The single

compound-data primitive pair, implemented by the functions pair, head, and tail, is the only

glue we need. Data objects constructed from pairs are called list-structured data.

Representing rational numbers

Pairs o�er a natural way to complete the rational-number system. Simply represent a rational

number as a pair of two integers: a numerator and a denominator. Then make_rat, numer, and

denom are readily implemented as follows:
2

Ifunction make_rat(n, d) {

return pair(n, d);

}

function numer(x) {

return head(x);

}

function denom(x) {

return tail(x);

}

Also, in order to display the results of our computations, we can print rational numbers by

printing the numerator, a slash, and the denominator:
3

Ifunction print_rat(x) {

display(numer(x));

display("/");

display(denom(x));

}

Now we can try our rational-number functions:

2
Another way to de�ne the selectors and constructor is

const make_rat = pair;
const numer = head;
const denom = tail;
The �rst de�nition associates the name make_rat with the value of the expression pair, which is the primitive

function that constructs pairs. Thus make_rat and pair are names for the same primitive constructor.

De�ning selectors and constructors in this way is e�cient: Instead of make_rat calling pair, make_rat is pair,

so there is only one function called, not two, when make_rat is called. On the other hand, doing this defeats

debugging aids that trace function calls or put breakpoints on function calls: You may want to watch make_rat
being called, but you certainly don’t want to watch every call to pair.

We have chosen not to use this style of de�nition in this book.

3
The primitive function display introduced in exercise 1.22 returns its argument, but in the uses of print_rat

below, we show only what the interpreter prints as the value returned by print_rat.

103 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ATqqACjABpEATASkQG8AoRRxXTKEXJAB1Rl2LKoBuOgF86oSLASIwIZJj4APavSbNW7JAAtMqcoWXCxE6PCTlMYOMgMqGTFmw6IoPADa2jdOrPl80WHgEhABMZADMlJSCQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ATqqACjABpEATASkQG8AoRRxXTKEXJAB1Rl2LKoBuOgF86oSLASIwIZJj4APavSbNW7JAAtMqcoWXCxE6PCTlMYOMgMqGTFmw6IoPADa2jdAPTfEnXBgwWDAAcxcdZgIzVDdEIMQETEQ3IOSWAEcQXkwAZ0Rc62TcqECwnz80MBhOEDdohAAuAtKg0JhgAE8XTXzUGTkAIwV44LhEfpKy8IqJsHII5LhOBQI4XEQAakQIVCRhic5OVMwFqHGptvzgddnLsJ2EXahLBrBxcFNpAKCoPAJbLR7IxyDBcsdUJ1CPd2l1iHIFLZqNsAETeFFbFrTDpQixWGzKSiULx0CAIEqJMA4LSxYCIAC8KAwOHwRAAjGQAEzEuh0H7Bf5EJLYGluYDEoA

Building Abstractions with Data 2.1.2

Iconst one_half = make_rat(1, 2);

print_rat(one_half);

1 / 2

const one_third = make_rat(1, 3);

Iprint_rat(add_rat(one_half, one_third));

5 / 6

Iprint_rat(mul_rat(one_half, one_third));

1 / 6

Iprint_rat(add_rat(one_third, one_third));

6 / 9

As the �nal example shows, our rational-number implementation does not reduce rational

numbers to lowest terms. We can remedy this by changing make_rat. If we have a gcd function

like the one in section 1.2.5 that produces the greatest common divisor of two integers, we can

use gcd to reduce the numerator and the denominator to lowest terms before constructing the

pair:

Ifunction make_rat(n, d) {

const g = gcd(n, d);

return pair(n / g, d / g);

}

Now we have

Iprint_rat(add_rat(one_third, one_third));

2 / 3

as desired. This modi�cation was accomplished by changing the constructor make_rat with-

out changing any of the functions (such as add_rat and mul_rat) that implement the actual

operations.

Exercise 2.1

De�ne a better version of make_rat that handles both positive and negative arguments. The

function make_rat should normalize the sign so that if the rational number is positive, both

the numerator and denominator are positive, and if the rational number is negative, only the

numerator is negative.

104 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ATqqACjABpEATASkQG8AoRRxXTKEXJAB1Rl2LKoBuOgF86oSLASIwIZJj4APavSbNW7JAAtMqcoWXCxE6PCTlMYOMgMqGTFmw6IoPADa2jdAPTfEnXBgwWDAAcxcdZgIzVDdEIMQETEQ3IOSWAEcQXkwAZ0Rc62TcqECwnz80MBhOEDdohAAuAtKg0JhgAE8XTXzUGTkAIwV44LhEfpKy8IqJsHII5LhOBQI4XEQAakQIVCRhic5OVMwFqHGptvzgddnLsJ2EXahLBrBxcFNpAKCoPAJbLR7IxyDBcsdUJ1CPd2l1iHIFLZqNsAETeFFbFrTDpQixWGzKSiULwQBAlRJgHBaWLARAAXhQGBw+CIAEYyAAmYl0Og-YL-IhJbDUtzAYlAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ATqqACjABpEATASkQG8AoRRxXTKEXJAB1Rl2LKoBuOgF86oSLASIwIZJj4APavSbNW7JAAtMqcoWXCxE6PCTlMYOMgMqGTFmw6IoPADa2j48Kel7yeAQGZACedmqOmigYOPhEsvJK1ABUFJbWhGGIANQycgqZKWlWNsok9mqVVUwWJbaIqbUZYZReJlJIAM4gAEaBRIqh4Q4azmhY-cT5SQ3FzdQAtHmJhbNNpZTl1duV6-WN6TYtbT4dKCBuk4OIWaojTkjjsUEJBcqzr3xhWzu-e+8HOrHUTeSRmCgwABuVyGtAq6ge0QmcSmKwBcyOm3hvyq-yKn0KrRB7XBmAAjiBUJcUddbvDIs4Cei9lkALzs5YFLKAjKGEEQBCdKCIBA4LRU4CIVlI55EACMZAATESBWAhSKwDgoFpeOQpTLJgrEABmIkAejNiE4uBgYFgYAA5i4dMwCGYqYhbRrMIg3LafSwKbxMJ1EJ1rD6hTbHXQLdEwDBOBc3QgAFxhqDRh0wYAhFyaUOoZY9BSeu1wRBFqO2p2xy2oMB67U+uCcBQEOC4HKICANxAlyucTh+zBNivVx2h4CdusZrM9hC9qCWFNgUG+LjRqBXYaMcgwTrD1AhQgT7O51FvSjUXIAIjNt+7Z5zJ7x1681tt25R-kmouw4puMAZD-tqurvkAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ATqqACjABpEATASkQG8AoRRxXTKEXJAB1Rl2LKoBuOgF86oSLASIwIZJj4APavSbNW7JAAtMqcoWXCxE6PCTlMYOMgMqGTFmw6IoPADa2j48Kel7yeAQGZACedmqOmigYOPhEsvJK1ABUFJbWhGGIANQycgqZKWlWNsok9mqVVUwWJbaIqbUZYZReJlJIAM4gAEaBRIqh4Q4azmhY-cT5SQ3FzdQAtHmJhbNNpZTl1duV6-WN6TYtbT4dKCBuk4OIWaojTkjjsUEJBcqzr3xhWzu-e+8HOrHUTeSRmCgwABuVyGtAq6ge0QmcSmKwBcyOm3hvyq-yKn0KrRB7XBmAAjiBUJcUddbvDIs4Cei9lkALzs5YFLKAjKGEEQBCdKCIBA4LRU4CIVlI55EACMZAATESBWAhSKwDgoFpeOQpTLJgrEABmIkAejNiE4uBgYFgYAA5i4dMwCGYqYhbRrMIg3LafSwKbxMJ1EJ1rD6hTbHXQLdEwDBOBc3QgAFxhqDRh0wYAhFyaUOoZY9BSeu1wRBFqO2p2xy2oMB67U+uCcBQEOC4HKICANxAlyucTh+zBNivVx2h4CdusZrM9hC9qCWFNgUG+LjRqBXYaMcgwTrD1AhQgT7O51FvSjUXIAIjNt+7Z5zJ7x1681tt25RyAuk1F2Dim4wBkAB2q6u+QA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ATqqACjABpEATASkQG8AoRRxXTKEXJAB1Rl2LKoBuOgF86oSLASIwIZJj4APavSbNW7JAAtMqcoWXCxE6PCTlMYOMgMqGTFmw6IoPADa2j48Kel7yeAQGZACedmqOmigYOPhEsvJK1ABUFJbWhGGIANQycgqZKWlWNsok9mqVVUwWJbaIqbUZYZReJlJIAM4gAEaBRIqh4Q4azmhY-cT5SQ3FzdQAtHmJhbNNpZTl1duV6-WN6TYtbT4dKCBuk4OIWaojTkjjsUEJBcqzr3xhWzu-e+8HOrHUTeSRmCgwABuVyGtAq6ge0QmcSmKwBcyOm3hvyq-yKn0KrRB7XBmAAjiBUJcUddbvDIs4Cei9lkALzs5YFLKAjKGEEQBCdKCIBA4KBaXjkRCspHPIgARjIAGYiQB6VWITi4GBgWBgADmLh0zAIZipiB1IrAmEQbh1NpYFN4mE6iE61htQu1Bro6uiYBgnAupoQAC43VBvfqYMAQi5NK7UMsegoLbq4Igk16dYbfRrUGApeKbXBOAoCHBcDlEBAC4gU5nOJw7ZgixnswbXcBK3mI1Gawha1BLCGwKDfFxvVArsNGOQYJ1m6gQoQO9HY6i3pRqLkAESq3fVtcxld47deLU66co-yTUXYcWSsj3x+4KitIA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABGEBbApgJwBQA8CUiA3gFCLmKbpQiZIAW6AhgCZ74DcJAviaJLASIW6MHFTtiZClRp1EUJjAA27Lr37R4SAOYQ2TADSIARoVIVK1WkhOIAvI8QAGRAH5ETRAC5EetibGXgCkppw8fOBaQqhMANboAPqYTFDYYMYs5tLkEAgAzlB+Dn766ZnhlrI2iAAOSjhIAPR+mYgtOuG8JLEJyanYACzGAGycQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABGEBbApgJwBQA8CUiA3gFCLmKbpQiZIAW6AhgCZ74DcJAviaJLASIW6MHFTtiZClRp1EUJjAA27Lr37R4SAOYQ2TADSIARoVIVK1WkhOIAvI8QAGRAH5ETRAC5EetibGXgCkppw8fOBaQqhMANboAPqYTFDYYMYs5tLkEAgAzlB+Dn766ZnhlrI2iAAOSjhIAPR+mYgtOuEaUYJIrCzJqXjGAJ7ZVdbysQmDaSgYOASIAFTCouLYY4gA1MhoWJuEqyJiEgSGOZZX1+QnG0vH6xJjXZEC2oj5ICazw4hbFhkkyQ0ySKTm+0WRzWp0OiAAtHsFnDHrDzpcbpiYfdoXdnvhXppeohUCBlL9cKNxkC5CD4mChvMDg8kQcxhcsZzsWdcU9DoSeh8WDAAG4UqlSCa0kn035MqErbmHDlczF4ySreX89RvaJIdAARxATHJ4L+AMu1XkWpZ6q2jnsrJwW1ROJ1eTAhUQCCSUHoMEwLBKoN+AEZjABmcJEj4hs0ZYTU8hWpD1APlRM6mNCG1JqzSxisNQRbNIdVLQHJ4EKJSqAg6potWqYGBgWBgHQKRiUVLaE2IVvesDoRDKVsjqhGgPofKfcQjwotjskRsysAwWpk3sIXyL1s6GDAEYKGyzrzzExYAdtuCeT5QJedlctJhgIN+kdwWpYVJwTA7RAIFfUwRyYWpajHdB31vPcO1nYA-2fe9H0AhAgKgURtzAXViWbVsoApPNhXyCCmBGbBYIPI90khdhCF2AAiJoGIAyjD3I8sCVePC21+fpfh9RI-QDFhjEE4TAwJDggA

Building Abstractions with Data 2.1.2

2.1.2 Abstraction Barriers

Before continuing with more examples of compound data and data abstraction, let us consider

some of the issues raised by the rational-number example. We de�ned the rational-number

operations in terms of a constructor make_rat and selectors numer and denom. In general, the

underlying idea of data abstraction is to identify for each type of data object a basic set of

operations in terms of which all manipulations of data objects of that type will be expressed,

and then to use only those operations in manipulating the data.

We can envision the structure of the rational-number system as shown in �gure 2.1. The

horizontal lines represent abstraction barriers that isolate di�erent “levels” of the system. At

each level, the barrier separates the programs (above) that use the data abstraction from the

programs (below) that implement the data abstraction. Programs that use rational numbers ma-

nipulate them solely in terms of the functions supplied “for public use” by the rational-number

package: add_rat, sub_rat, mul_rat, div_rat, and equal_rat. These, in turn, are implemented

solely in terms of the constructor and selectors make_rat, numer, and denom, which themselves

are implemented in terms of pairs. The details of how pairs are implemented are irrelevant to

the rest of the rational-number package so long as pairs can be manipulated by the use of pair,

head, and tail. In e�ect, functions at each level are the interfaces that de�ne the abstraction

barriers and connect the di�erent levels.

Programs that use rational numbers

Rational numbers in problem domain

add_rat sub_rat ...

Rational numbers as numerators and denominators

make_rat numer denom

Rational numbers as pairs

pair head tail

However pairs are implemented

Figure 2.1: Data-abstraction barriers in the rational-number package.

This simple idea has many advantages. One advantage is that it makes programs much eas-

ier to maintain and to modify. Any complex data structure can be represented in a variety of

ways with the primitive data structures provided by a programming language. Of course, the

choice of representation in�uences the programs that operate on it; thus, if the representation

105 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.1.2

were to be changed at some later time, all such programs might have to be modi�ed accord-

ingly. This task could be time-consuming and expensive in the case of large programs unless

the dependence on the representation were to be con�ned by design to a very few program

modules.

For example, an alternate way to address the problem of reducing rational numbers to lowest

terms is to perform the reduction whenever we access the parts of a rational number, rather

than when we construct it. This leads to di�erent constructor and selector functions:

Ifunction make_rat(n, d) {

return pair(n, d);

}

function numer(x) {

const g = gcd(head(x), tail(x));

return head(x) / g;

}

function denom(x) {

const g = gcd(head(x), tail(x));

return tail(x) / g;

}

The di�erence between this implementation and the previous one lies in when we compute

the gcd. If in our typical use of rational numbers we access the numerators and denominators

of the same rational numbers many times, it would be preferable to compute the gcd when

the rational numbers are constructed. If not, we may be better o� waiting until access time

to compute the gcd. In any case, when we change from one representation to the other, the

functions add_rat, sub_rat, and so on do not have to be modi�ed at all.

Constraining the dependence on the representation to a few interface functions helps us

design programs as well as modify them, because it allows us to maintain the �exibility to

consider alternate implementations. To continue with our simple example, suppose we are

designing a rational-number package and we can’t decide initially whether to perform the gcd

at construction time or at selection time. The data-abstraction methodology gives us a way to

defer that decision without losing the ability to make progress on the rest of the system.

Exercise 2.2

Consider the problem of representing line segments in a plane. Each segment is represented as

a pair of points: a starting point and an ending point. Declare a constructor make_segment and

selectors start_segment and end_segment that de�ne the representation of segments in terms

of points. Furthermore, a point can be represented as a pair of numbers: the x coordinate and

the y coordinate. Accordingly, specify a constructor make_point and selectors x_point and

y_point that de�ne this representation. Finally, using your selectors and constructors, declare

106 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwgEwBQEMA0iBGAlIgN4BQiliATgKZQjVL6IC87iADIgPyJaIAXCnQZ8eAQFIChANxkAvmVCRYCRAFssAa1oB9aligYweNMXJUa9RkgAOWGNRNm5i5eGjwkYEBtrOAB4WFFQQCADOUChsIpgAFrRYmMF4UI4ANhjBblZ0DEyIicnZxAD0KPJKKl7qaLRgcBqlpKGU4WBRMaxxGMUphGmZpblU+baI6TBZwYgVyFVkZGUVdtQwYLBgyJOJNEbeWBmIG4gItIgZGxd0AI4gTrQRiBFNF1Hr28sVWmAwdiAMgcEMIPhtkDBgABPSa2Z4CXwafABE6bOD8F5QT47b78MBoXYXOB2AJGODURAAakQECwzAuWDsdiutAJUHRYO2z2A5NxnJ2HVpUAawLAHlU3kQaw2UAMRhalioaBgEWZWChGH5kI1iICIypiAARGVDQatdCMPVGs0cm4lGQOl1znp4kdgLEtLo5cYAIx4ABMbjI0s23owztdGWAciAA

Building Abstractions with Data 2.1.3

a function midpoint_segment that takes a line segment as argument and returns its midpoint

(the point whose coordinates are the average of the coordinates of the endpoints). To try your

functions, you’ll need a way to print points:

function print_point(p) {

display("(");

display(x_point(p));

display(",");

display(y_point(p));

display(")");

}

Exercise 2.3

Implement a representation for rectangles in a plane. (Hint: You may want to make use of

exercise 2.2.) In terms of your constructors and selectors, create functions that compute the

perimeter and the area of a given rectangle. Now implement a di�erent representation for

rectangles. Can you design your system with suitable abstraction barriers, so that the same

perimeter and area functions will work using either representation?

2.1.3 What Is Meant by Data?

We began the rational-number implementation in section 2.1.1 by implementing the rational-

number operations add_rat,sub_rat, and so on in terms of three unspeci�ed functions: make_rat,

numer, and denom. At that point, we could think of the operations as being de�ned in terms of

data objects—numerators, denominators, and rational numbers—whose behavior was speci�ed

by the latter three functions.

But exactly what is meant by data? It is not enough to say “whatever is implemented by the

given selectors and constructors.” Clearly, not every arbitrary set of three functions can serve

as an appropriate basis for the rational-number implementation. We need to guarantee that,

if we construct a rational number x from a pair of integers n and d, then extracting the numer

and the denom of x and dividing them should yield the same result as dividing n by d. In other

words, make_rat, numer, and denom must satisfy the condition that, for any integer n and any

non-zero integer d, if x is make_rat(n,d), then

numer(x)

denom(x)
=

n

d

In fact, this is the only condition make_rat, numer, and denom must ful�ll in order to form a

suitable basis for a rational-number representation. In general, we can think of data as de�ned

107 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.1.3

by some collection of selectors and constructors, together with speci�ed conditions that these

functions must ful�ll in order to be a valid representation.
4

This point of view can serve to de�ne not only “high-level” data objects, such as rational

numbers, but lower-level objects as well. Consider the notion of a pair, which we used in order

to de�ne our rational numbers. We never actually said what a pair was, only that the language

supplied functions pair, head, and tail for operating on pairs. But the only thing we need to

know about these three operations is that if we glue two objects together using pair we can

retrieve the objects using head and tail. That is, the operations satisfy the condition that, for

any objects x and y, if z is pair(x, y) then head(z) is x and tail(z) is y. Indeed, we mentioned

that these three functions are included as primitives in our language. However, any triple of

functions that satis�es the above condition can be used as the basis for implementing pairs.

This point is illustrated strikingly by the fact that we could implement pair, head, and tail

without using any data structures at all but only using functions. Here are the de�nitions:
5

Ifunction pair(x, y) {

function dispatch(m) {

return m === 0

? x

: m === 1

? y

: error(m, "Argument not 0 or 1 -- pair");

}

return dispatch;

}

function head(z) {

return z(0);

}

function tail(z) {

return z(1);

}

This use of functions corresponds to nothing like our intuitive notion of what data should

be. Nevertheless, all we need to do to show that this is a valid way to represent pairs is to

4
Surprisingly, this idea is very di�cult to formulate rigorously. There are two approaches to giving such a

formulation. One, pioneered by C. A. R. Hoare (1972), is known as the method of abstract models. It formalizes

the “functions plus conditions” speci�cation as outlined in the rational-number example above. Note that the

condition on the rational-number representation was stated in terms of facts about integers (equality and division).

In general, abstract models de�ne new kinds of data objects in terms of previously de�ned types of data objects.

Assertions about data objects can therefore be checked by reducing them to assertions about previously de�ned

data objects. Another approach, introduced by Zilles at MIT, by Goguen, Thatcher, Wagner, and Wright at IBM (see

Thatcher, Wagner, and Wright 1978), and by Guttag at Toronto (see Guttag 1977), is called algebraic speci�cation.

It regards the “functions” as elements of an abstract algebraic system whose behavior is speci�ed by axioms that

correspond to our “conditions,” and uses the techniques of abstract algebra to check assertions about data objects.

Both methods are surveyed in the paper by Liskov and Zilles (1975).

5
The function error introduced in section 1.3.3 takes as optional second argument a string that gets displayed

before the �rst argument.

108 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABABwIYwE4AoAeAaRATwEpEBvAKEWsVElgUQBMYBnNKCACywFtTKNIYgwBTKCAxJeiALzzEABkRVhagPyIcqtUIBciGfNmIAjCt27NhHZZoHRGDHGy8CAIgCCGAOYheomBQiGBwwcouZogAtNEo6BjuxADctgC+tmISUsxsHNzJAJBqFBl00PBIXKKoTFgAXgKZ4pJI9ViKKaUU5QxIUOgANg1NQlmtiO2mXRkUEAiswThy8ZhYpgQATF3VtbgpQA

Building Abstractions with Data 2.1.3

verify that these functions satisfy the condition given above.

The subtle point to notice is that the value returned by pair(x, y) is a function—namely

the internally de�ned function dispatch, which takes one argument and returns either x

or y depending on whether the argument is 0 or 1. Correspondingly, head(z) is de�ned to

apply z to 0. Hence, if z is the function formed by pair(x, y), then z applied to 0 will yield x.

Thus, we have shown that head(pair(x, y)) yields x, as desired. Similarly, tail(pair(x, y))

applies the function returned by pair(x, y) to 1, which returns y. Therefore, this functional

implementation of pairs is a valid implementation, and if we access pairs using only pair, head,

and tail we cannot distinguish this implementation from one that uses “real” data structures.

The point of exhibiting the functional representation of pairs is not that our language works

this way (an e�cient implementation of pairs might use JavaScript’s primitive data structures

of arrays or objects) but that it could work this way. The functional representation, although

obscure, is a perfectly adequate way to represent pairs, since it ful�lls the only conditions that

pairs need to ful�ll. This example also demonstrates that the ability to manipulate functions

as objects automatically provides the ability to represent compound data. This may seem a

curiosity now, but functional representations of data will play a central role in our programming

repertoire. This style of programming is often called message passing, and we will be using it

as a basic tool in chapter 3 when we address the issues of modeling and simulation.

Exercise 2.4

Here is an alternative functional representation of pairs. For this representation, verify that

head(pair(x, y)) yields x for any objects x and y.

Ifunction pair(x, y) {

return m => m(x, y);

}

function head(z) {

return z((p, q) => p);

}

What is the corresponding de�nition of tail? (Hint: To verify that this works, make use of

the substitution model of section 1.1.5.)

Exercise 2.5

Show that we can represent pairs of nonnegative integers using only numbers and arithmetic

operations if we represent the pair a and b as the integer that is the product 2
a
3
b
. Give the

corresponding de�nitions of the functions pair, head, and tail.

109 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABABwIYwE4AoAeAaRATwEpEBvAKEWsQwFMoQMkBbRAXgD5EXcCSA3BQC+FUJFgJEACzqoAJlgBepSjVoMmSJVizICAR1JcUxIaIoQEAZyiIcHFOmwBGAgCYzFWQtxmgA

Building Abstractions with Data 2.1.4

Exercise 2.6

In case representing pairs as functions wasn’t mind-boggling enough, consider that, in a lan-

guage that can manipulate functions, we can get by without numbers (at least insofar as

nonnegative integers are concerned) by implementing 0 and the operation of adding 1 as

Iconst zero = f => x => x;

function add_1(n) {

return f => x => f(n(f)(x));

}

This representation is known as Church numerals, after its inventor, Alonzo Church, the logi-

cian who invented the λ calculus. De�ne one and two directly (not in terms of zero and add_1).

(Hint: Use substitution to evaluate add_1(zero)). Give a direct de�nition of the addition func-

tion plus (not in terms of repeated application of add_1).

2.1.4 Extended Exercise: Interval Arithmetic

Alyssa P. Hacker is designing a system to help people solve engineering problems. One feature

she wants to provide in her system is the ability to manipulate inexact quantities (such as

measured parameters of physical devices) with known precision, so that when computations

are done with such approximate quantities the results will be numbers of known precision.

Electrical engineers will be using Alyssa’s system to compute electrical quantities. It is

sometimes necessary for them to compute the value of a parallel equivalent resistance Rp of

two resistors R1 and R2 using the formula

Rp =
1

1/R1 + 1/R2

Resistance values are usually known only up to some tolerance guaranteed by the manufac-

turer of the resistor. For example, if you buy a resistor labeled “6.8 ohms with 10% tolerance” you

can only be sure that the resistor has a resistance between 6.8−0.68 = 6.12 and 6.8+0.68 = 7.48

ohms. Thus, if you have a 6.8-ohm 10% resistor in parallel with a 4.7-ohm 5% resistor, the re-

sistance of the combination can range from about 2.58 ohms (if the two resistors are at the

lower bounds) to about 2.97 ohms (if the two resistors are at the upper bounds).

Alyssa’s idea is to implement “interval arithmetic” as a set of arithmetic operations for com-

bining “intervals” (objects that represent the range of possible values of an inexact quantity).

The result of adding, subtracting, multiplying, or dividing two intervals is itself an interval,

representing the range of the result.

Alyssa postulates the existence of an abstract object called an “interval” that has two end-

110 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAXgUwE4hgXhgM3QPhgD1wIG4AoTAVzGCgEtwYBDAE2YH0BGACjAEoYA3qRgiYSBFApIwWIoTR5MPLpl5d8vXmQC+QA

Building Abstractions with Data 2.1.4

points: a lower bound and an upper bound. She also presumes that, given the endpoints of an

interval, she can construct the interval using the data constructor make_interval. Alyssa �rst

writes a function for adding two intervals. She reasons that the minimum value the sum could

be is the sum of the two lower bounds and the maximum value it could be is the sum of the

two upper bounds:

Ifunction add_interval(x, y) {

return make_interval(lower_bound(x) + lower_bound(y),

upper_bound(x) + upper_bound(y));

}

Alyssa also works out the product of two intervals by �nding the minimum and the maximum

of the products of the bounds and using them as the bounds of the resulting interval. (math_min

and math_max are primitives that �nd the minimum or maximum of any number of arguments.)

Ifunction mul_interval(x, y) {

const p1 = lower_bound(x) * lower_bound(y);

const p2 = lower_bound(x) * upper_bound(y);

const p3 = upper_bound(x) * lower_bound(y);

const p4 = upper_bound(x) * upper_bound(y);

return make_interval(math_min(p1, p2, p3, p4),

math_max(p1, p2, p3, p4));

}

To divide two intervals, Alyssa multiplies the �rst by the reciprocal of the second. Note that

the bounds of the reciprocal interval are the reciprocal of the upper bound and the reciprocal

of the lower bound, in that order.

Ifunction div_interval(x,y) {

return mul_interval(x, make_interval(1 / upper_bound(y),

1 / lower_bound(y)));

}

Exercise 2.7

Alyssa’s program is incomplete because she has not speci�ed the implementation of the inter-

val abstraction. Here is a de�nition of the interval constructor:

function make_interval(x, y) {

return pair(x, y);

}

De�ne selectors upper_bound and lower_bound to complete the implementation.

111 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9GYqYBOAbqgDYAUAHgDSICeAlIgN6IBQiXihmUIhJAAdUMQtTpMA3BwC+7UJFgJEZOAHci2AEZxwAEwoxmbTt179BiABaZUh41PbzF0eEhBChW3QaMmObh4+ASQoUUpHZ3YAehjEIUI8WDAAc0QoW0RkolIybKQETFU8Yt4ARxAxTABnRBq4ZGKaqCS02Pi0MBghEDJUZTAALnrWvFSYYHoM0LrURDAQZG0iAqg4RHmWtvSOzbB9DKy4b0IBuEJEAGpECFQkFc2vMhhMQ-XRnbrgC73t8duCDuBDAA3cCnAbhUiWSuHwuXI-lYZi4FlCiAARABtTFcG7-NKTegUNSaQg6PQHfzMG4ooJBDGIOiM-FjQlTCieU4UvzGGm4gC6GKcLkhg02+n0cIIJERtAYJjpaKsaCw0oRlFJPkphio-K15N8VKYNDp9PNFu4XO1fj110Q1sNOooTEYIvY7Bh+HVsso9ilOV9FFVOEDeQoAEY6AAmRh0M2WxPmkM+8MAZjoAFZGDmpEA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9GYqYBOAbqgDYAUAHgDSICeAlIgN6IBQiXihmUIhJAAdUMQtTpMA3BwC+7UJFgJEZOAHci2AEZxwAEwoxmbTt179BiABaZUh41PbzF0eEhBChW3QaMmObh4+ASQoUUpHZ3YAehjEIUI8WDAAc0QoW0RkolIybKQETFU8Yt4ARxAxTABnRBq4ZGKaqCS02Pi0MBghEDJUZTAALnrWvFSYYHoM0LrURDAQZG0iAqg4RHmWtvSOzbB9DKy4b0IBuEJEAGpECFQkFc2vMhhMQ-XRnbrgC73t8duCDuBDAA3cCnAbhUiWSuHwuXI-lYZi4FlCiAARABtTFcG7-NKTegUNSaQg6PQHfzMG4ooJBDGIOiM-FjQlTCieU4UvzGGm4gC6GKcLkhgxQfThBBIiNoDBMdIgCBaCQAjIgALyqDQ+SmGKjMABU2rJPKp0kVyqgCQATJqTbq-AbEMauY7zYwnEElWAVUIAMz2t3k3xU53G0nuwwW71WhIAFiDXij1CNiGDZujnrpaKsaCwUoRlDQmWwyDwFCEqroQhtNf9NfjjBodPpbfb3BL1jLqColertvrjcY2fk7Bh+ELMuLkpy04o+Zwc7yFAHNubgQ7W+3i6nK4biAArCPPUA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9GYqYBOAbqgDYAUAHgDSICeAlIgN6IBQiXihmUIhJAAdUMQtTpMA3BwC+7UJFgJEZOAHci2AEZxwAEwoxmbTt179BiABaZUh41PbzF0eEhBChW3QaMmObh4+ASQoUUpHZ3YAehjEIUI8WDAAc0QoW0RkolIybKQETFU8Yt4ARxAxTABnRBq4ZGKaqCS02Pi0MBghEDJUZTAALnrWvFSYYHoM0LrURDAQZG0iAqg4RHmWtvSOzbB9DKy4b0IBuEJEAGpECFQkFc2vMhhMQ-XRnbrgC73t8duCDuBDAA3cCnAbhUiWSuHwuXI-lYZi4FlCiAARABtTFcG7-NKTegUNSaQg6PQHfzMG4ooJBDGIOiM-FjQlTCieU4UvzGGm4gC6GKcLkhgxQfThBBIiNoDBMdIgCBaCQAjIgALyqDQ+SmGKjMABU2rJPKp0kVyqgCQATJqTbq-AbEMauY7zYwnEElWAVUIAMz2t3k3xU53G0nuwwW71WhIAFiDXij1CNiGDZujnrpaKsaCwUoRlDQmWwyDwFCEqroQhtNf9NfjjBodPpbfb3BL1jLqColertvrjcY2dFSnciH0MGIhZllFoTGRQVzSGQkpyc4kKAwOA3eQo6viGdDWZbHfPF8v3EPDpDeooTBHIvY7Bh+Fn+6nM73iPzu-hm4DjazaBFeYFcH+H6Ig2iAAKwjp6QA

Building Abstractions with Data 2.1.4

Exercise 2.8

Using reasoning analogous to Alyssa’s, describe how the di�erence of two intervals may be

computed. De�ne a corresponding subtraction function, called sub_interval.

Exercise 2.9

Thewidth of an interval is half of the di�erence between its upper and lower bounds. The width

is a measure of the uncertainty of the number speci�ed by the interval. For some arithmetic

operations the width of the result of combining two intervals is a function only of the widths

of the argument intervals, whereas for others the width of the combination is not a function

of the widths of the argument intervals. Show that the width of the sum (or di�erence) of two

intervals is a function only of the widths of the intervals being added (or subtracted). Give

examples to show that this is not true for multiplication or division.

Exercise 2.10

Ben Bitdiddle, an expert systems programmer, looks over Alyssa’s shoulder and comments

that it is not clear what it means to divide by an interval that spans zero. Modify Alyssa’s

program to check for this condition and to signal an error if it occurs.

Exercise 2.11

In passing, Ben also cryptically comments: “By testing the signs of the endpoints of the in-

tervals, it is possible to break mul_interval into nine cases, only one of which requires more

than two multiplications.” Rewrite this function using Ben’s suggestion.

After debugging her program, Alyssa shows it to a potential user, who complains that her

program solves the wrong problem. He wants a program that can deal with numbers repre-

sented as a center value and an additive tolerance; for example, he wants to work with intervals

such as 3.5 ± 0.15 rather than [3.35, 3.65]. Alyssa returns to her desk and �xes this problem

by supplying an alternate constructor and alternate selectors:

Ifunction make_center_width(c, w) {

return make_interval(c - w, c + w);

}

function center(i) {

return (lower_bound(i) + upper_bound(i)) / 2;

}

function width(i) {

return (upper_bound(i) - lower_bound(i)) / 2;

}

112 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9GYqYBOAbqgDYAUAHgDSICeAlIgN6IBQiXihmUIhJAAdUMQtTpMA3BwC+7UJFgJEZOAHci2AEZxwAEwoxmbTt179BiABaZUh41PbzF0eEhBChW3QaMmObh4+ASQoUUpHZwVwNxU0LGwITHwtdRh9KGsKCDp1EzMuC1CUDBw8AhJyHMQAWkR1OghEAGoGxicXWOUkZNTxY1ZC4MskCjVNQh09MAdmNs9vKd9Z-2YAekQAJk6YpXcGjKz-IaDiqwpFnxm5utUNa79jDe3d9ggEAGcoFHpcftIZEQAF5Sok+pVsOlMtkAIx0AAMADoAKwddjQ47IP4VIiAjpAA

Building Abstractions with Data 2.1.4

Unfortunately, most of Alyssa’s users are engineers. Real engineering situations usually in-

volve measurements with only a small uncertainty, measured as the ratio of the width of the

interval to the midpoint of the interval. Engineers usually specify percentage tolerances on

the parameters of devices, as in the resistor speci�cations given earlier.

Exercise 2.12

De�ne a constructor make_center_percent that takes a center and a percentage tolerance

and produces the desired interval. You must also de�ne a selector percent that produces the

percentage tolerance for a given interval. The center selector is the same as the one shown

above.

Exercise 2.13

Show that under the assumption of small percentage tolerances there is a simple formula for

the approximate percentage tolerance of the product of two intervals in terms of the tolerances

of the factors. You may simplify the problem by assuming that all numbers are positive.

After considerable work, Alyssa P. Hacker delivers her �nished system. Several years later,

after she has forgotten all about it, she gets a frenzied call from an irate user, Lem E. Tweakit.

It seems that Lem has noticed that the formula for parallel resistors can be written in two

algebraically equivalent ways:

R1R2

R1 + R2

and

1

1/R1 + 1/R2

He has written the following two programs, each of which computes the parallel-resistors

formula di�erently:

Ifunction par1(r1, r2) {

return div_interval(mul_interval(r1, r2),

add_interval(r1, r2));

}

function par2(r1, r2) {

const one = make_interval(1, 1);

return div_interval(one,

add_interval(div_interval(one, r1),

div_interval(one, r2)));

}

Lem complains that Alyssa’s program gives di�erent answers for the two ways of computing.

This is a serious complaint.

113 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9GYqYBOAbqgDYAUAHgDSICeAlIgN6IBQiXihmUIhJAAdUMQtTpMA3BwC+7UJFgJEZOAHci2AEZxwAEwoxmbTt179BiABaZUh41PbzF0eEhBChW3QaMmObh4+ASQoUUpHZ3YAehjEIUI8WDAAc0QoW0RkolIybKQETFU8Yt4ARxAxTABnRBq4ZGKaqCS02Pi0MBghEDJUZTAALnrWvFSYYHoM0LrURDAQZG0iAqg4RHmWtvSOzbB9DKy4b0IBuEJEAGpECFQkFc2vMhhMQ-XRnbrgC73t8duCDuBDAA3cCnAbhUiWSuHwuXI-lYZi4FlCiAARABtTFcG7-NKTegUNSaQg6PQHfzMG4ooJBDGIOiM-FjQlTCieU4UvzGGm4gC6GKcLkhg02+n0cIIJERtAYJjpaKsaCw0oRlFJPkphio-K15N8VKYNDp9PNFu4XO1fj110Q1sNOooTEYIohSncKD66tllHlTGRQQgCBaCQAjIgALyqDQ2ql2gBUsbJPONbrpIbAYaEACZoyn47rmMnHWnDNJM6GoAkAMwFstG4uIZMG8sujPB6sJAAsDa8ReoJYdA6dfkrQWVSFVOByfooaEy2GQeAoQnDdDzm9rm57jFNlsPlsX1mXqCoa43CVz293jAzos9Kn0MGIvryEkDLCVIRVPrnH7yjO76IpG8SNs6JpmkeMGwdwYGFmO6b3u6rjiiIhDhhQmF0IQuaKpOv5IC+b4AYiyD-vC844Tw+EHnBR72FKZGUDReEodEaFehhubYVe7FBtwWZhkUBbASxFBXuGnbmERiAkSBlBFPRDGWkxikUApEnKTw0kqapBncFpVEfjp7EcfI7AvjUQj9MSML4BpGFYSIYgUD2NAAGz7gkojiAA7DQAAc94cVZMA2XZa5tFATmoHha5+e5Xk+a5AXBaFbpAA

Building Abstractions with Data 2.2

Exercise 2.14

Demonstrate that Lem is right. Investigate the behavior of the system on a variety of arithmetic

expressions. Make some intervalsA andB, and use them in computing the expressionsA/A and

A/B. You will get the most insight by using intervals whose width is a small percentage of the

center value. Examine the results of the computation in center-percent form (see exercise 2.12).

Exercise 2.15

Eva Lu Ator, another user, has also noticed the di�erent intervals computed by di�erent but

algebraically equivalent expressions. She says that a formula to compute with intervals using

Alyssa’s system will produce tighter error bounds if it can be written in such a form that

no name that represents an uncertain number is repeated. Thus, she says, par2 is a “better”

program for parallel resistances than par1. Is she right? Why?

Exercise 2.16

Explain, in general, why equivalent algebraic expressions may lead to di�erent answers. Can

you devise an interval-arithmetic package that does not have this shortcoming, or is this task

impossible? (Warning: This problem is very di�cult.)

2.2 Hierarchical Data and the Closure Property

As we have seen, pairs provide a primitive “glue” that we can use to construct compound data

objects. Figure 2.2 shows a standard way to visualize a pair—in this case, the pair formed by

pair(1, 2).

21

Figure 2.2: Box-and-pointer representation of pair(1, 2).

In this representation, which is called box-and-pointer notation, each compound object is

shown as a pointer to a box. The box for a pair has two parts, the left part containing the head

of the pair and the right part containing the tail.

We have already seen that pair can be used to combine not only numbers but pairs as well.

(You made use of this fact, or should have, in doing exercises 2.2 and 2.3.) As a consequence,

114 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.2.1

pairs provide a universal building block from which we can construct all sorts of data structures.

Figure 2.3 shows two ways to use pairs to combine the numbers 1, 2, 3, and 4.

1

4

2 3

3 4

1 2

pair(pair(1, 2),
 pair(3, 4))

pair(pair(1,
 pair(2, 3)),
 4)

Figure 2.3: Two ways to combine 1, 2, 3, and 4 using pairs.

The ability to create pairs whose elements are pairs is the essence of list structure’s im-

portance as a representational tool. We refer to this ability as the closure property of pair. In

general, an operation for combining data objects satis�es the closure property if the results of

combining things with that operation can themselves be combined using the same operation.
6

Closure is the key to power in any means of combination because it permits us to create hier-
archical structures—structures made up of parts, which themselves are made up of parts, and

so on.

From the outset of chapter 1, we’ve made essential use of closure in dealing with functions,

because all but the very simplest programs rely on the fact that the elements of a combination

can themselves be combinations. In this section, we take up the consequences of closure

for compound data. We describe some conventional techniques for using pairs to represent

sequences and trees, and we exhibit a graphics language that illustrates closure in a vivid way.

2.2.1 Representing Sequences

1 42 3

Figure 2.4: The sequence 1, 2, 3, 4 represented as a chain of pairs.

6
The use of the word “closure” here comes from abstract algebra, where a set of elements is said to be closed

under an operation if applying the operation to elements in the set produces an element that is again an element

of the set. The programming languages community also (unfortunately) uses the word “closure” to describe a

totally unrelated concept: A closure is an implementation technique for representing functions with free names.

We do not use the word “closure” in this second sense in this book.

115 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.2.1

One of the useful structures we can build with pairs is a sequence—an ordered collection of

data objects. There are, of course, many ways to represent sequences in terms of pairs. One

particularly straightforward representation is illustrated in �gure 2.4, where the sequence 1, 2,

3, 4 is represented as a chain of pairs. The head of each pair is the corresponding item in the

chain, and the tail of the pair is the next pair in the chain. The tail of the �nal pair signals

the end of the sequence by pointing to a distinguished value that is not a pair, represented in

box-and-pointer diagrams as a diagonal line and in programs as JavaScript’s primitive value

null. The entire sequence is constructed by nested pair operations:

Ipair(1,

pair(2,

pair(3,

pair(4, null))));

Such a sequence of pairs, formed by nested pair applications, is called a list, and our JavaScript

environment provides a primitive called list to help in constructing lists.
7

The above sequence could be produced by list(1, 2, 3, 4). In general,

list(a1, a2, . . ., an)

is equivalent to

pair(a1, pair(a2, pair(. . ., pair(an, null). . .)))

Our interpreter prints pairs using a textual representation of box-and-pointer diagrams,

which we shall call box notation. The result of pair(1, 2) is printed as [1, 2], and the data

object in �gure 2.4 is printed as [1, [2, [3, [4, null]]]]:

Iconst one_through_four = list(1, 2, 3, 4);

Box notation is sometimes di�cult to read. When we want to indicate the list nature of a

data structure, we shall often employ the alternative list notation, using the list function: We

simply write applications of list whose evaluation would result in the desired structure. So

for example, instead of the box notation [1, [2, [[3, [4, null]], [5, null]]]] we can

write list(1, 2, list(3, 4), 5) in list notation.

We can think of head as selecting the �rst item in the list, and of tail as selecting the sublist

consisting of all but the �rst item. Nested applications of head and tail can be used to extract

the second, third, and subsequent items in the list. The constructor pair makes a list like the

original one, but with an additional item at the beginning.

Ihead(one_through_four);

1

7
In this book, we use list to mean a chain of pairs terminated by the end-of-list marker. In contrast, the term

list structure refers to any data structure made out of pairs, not just to lists.

116 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=A4QwlgTgFAjANAAgFANa0koCZErf9caAZlwPPw2gBZEA7AVwBsmBKd1gbiA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBOCmB9KALATiArgcxYgZlmjALwwA2AltABQCMANDAExMDMTALAJQDcAUPwTJ0WXASK8gA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBOCmB9KALATiArgcxYgZlmjALwwA2AltABQCMANDAExMDMTALAJQDcAUCngBDACY0EydFlwEifIA

Building Abstractions with Data 2.2.1

Itail(one_through_four);

[2 , [3 , [4 , nu l l]]]

or in list notation

l i s t (2 , 3 , 4)

Ihead(tail(one_through_four));

2

Ipair(10, one_through_four);

[1 0 , [1 , [2 , [3 , [4 , nu l l]]]]]
(us ing box no ta t i on)

Ipair(5, one_through_four);

l i s t (5 , 1 , 2 , 3 , 4)
(us ing l i s t no ta t i on)

The value null, used to terminate the chain of pairs, can be thought of as a sequence of no

elements, the empty list.8

List operations

The use of pairs to represent sequences of elements as lists is accompanied by conventional

programming techniques for manipulating lists by successively “tailing down” the lists. For

example, the function list_ref takes as arguments a list and a number n and returns the

nth item of the list. It is customary to number the elements of the list beginning with 0. The

method for computing list_ref is the following:

– For n = 0, list_ref should return the head of the list.

– Otherwise, list_ref should return the (n − 1)st item of the tail of the list.

Ifunction list_ref(items, n) {

return n === 0

? head(items)

: list_ref(tail(items), n - 1);

}

Iconst squares = list(1, 4, 9, 16, 25);

list_ref(squares, 3);

8
The value null is used in JavaScript for various purposes, but in this book we shall only use it to represent

the empty list.

117 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBOCmB9KALATiArgcxYgZlmjALwwA2AltABQCMANDAExMDMTALAJQDcAUFACGlcjQTJ0WXASJ8gA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBOCmB9KALATiArgcxYgZlmjALwwA2AltABQCMANDAExMDMTALAJQDcAUCngBDACY0owyuRoJk6LLgJFufIA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBOCmB9KALATiArgcxYgZlmjALwwA2AltABQCMANDAExMDMTALAJQDcAUAAcAhpTT0ADEwTJ0WXASJ8gA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBOCmB9KALATiArgcxYgZlmjALwwA2AltABQCMANDAExMDMTALAJQDcAUAAcAhpTQ0ArEwTJ0WXASJ8gA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAGxgZygfQE4FNgAUMUuAtmgDSJgCUiA3gFCIuJ5QjZJIC8fiABmasRrAPyIAFrgCGAEyIlyNYaJEAuFOix5CUGTGSKyaGlSQBaRAEYaAbkYBfRowgIMiNAEcQMvGkQeLQwCayoAFioATiprADYqACYAVnsXVAwcfAJvX38qAGZ7IA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAGxgZygfQE4FNgAUMUuAtmgDSJgCUiA3gFCIuJ5QjZJIC8fiABmasRrAPyIAFrgCGAEyIlyNYaJEAuFOix5CUGTGSKyaGlSQBaRAEYaAbkYBfRhAQZEaAI4gZeNIh4tDAJrKgAWKgBOKmsANioAJgBWe0ZGVAwcfAIvHz8qAGZ7IA

Building Abstractions with Data 2.2.1

16

Often we tail down the whole list. To aid in this, our JavaScript environment includes a

predicate is_null, which tests whether its argument is the empty list. The function length,

which returns the number of items in a list, illustrates this typical pattern of use:

Ifunction length(items) {

return is_null(items)

? 0

: 1 + length(tail(items));

}

The length function implements a simple recursive plan. The reduction step is:

– The length of any list is 1 plus the length of the tail of the list.

This is applied successively until we reach the base case:

– The length of the empty list is 0.

We could also compute length in an iterative style:

Ifunction length(items) {

function length_iter(a, count) {

return is_null(a)

? count

: length_iter(tail(a), count + 1);

}

return length_iter(items, 0);

}

Another conventional programming technique is to “pair up” an answer list while tailing

down a list, as in the function append, which takes two lists as arguments and combines their

elements to make a new list:

Iappend(squares, odds);

l i s t (1 , 4 , 9 , 16 , 25 , 1 , 3 , 5 , 7)
(l i s t no ta t i on)

Iappend(odds, squares);

[1 , [3 , [5 , [7 , [1 , [4 , [9 , [1 6 , [2 5 , nu l l]]]]]]]]]
(box no ta t i on)

The function append is also implemented using a recursive plan. To append lists list1 and

list2, do the following:

– If list1 is the empty list, then the result is just list2.

– Otherwise, append the tail of list1 and list2, and pair the head of list1 onto the

118 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAGwKZgOZQBYAoZSoC2AzgJSIDeAUInYgE6pQgNIwkD6YIyy+hUmVr1R9APyIADCLGiAXIgCMiANQp0WPFACGMfgWLkyAbmoBfatQgISURHAAmjkogC8KDlFxKANIgBmfwBWfwB2Uys0TBxcJxdTIA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAGwKZgOZQBYAoZSoC2AzgJSIDeAUInYqJLAiultgPoGoBOuAhgBpEEOOCgUa9aYh6ooIHkhgkOYEMmQCytGXvoB+EWLBRd+vQC5WmHF0J8o-GFv5lho8YgDUiAIxkANzmiAC+IXIKSjbs9rz4hKTCAAxB1OHUomAkUIhwACb5JIgAvCgqULh+wgDMwgCswgDsadRotngFRUFAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwA6oKZgCYAoA2MAzlAIwA0ihJATAJSIDeAUIm4gE4ZQgdLEB9MCHz4CxMnVbsZ7APxUJNabJkAuRKmQwOuABYZkeapMppMOXFG1iTpOpRP06AbmYBfZhAQlERAI4gyFxEiAC8iiS4FIgALJQAnJSkAGyUNACsrl4+UIhw2NihESbRlADMlBmUAOzZ5lh4AUEhlAVFrkA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwA6oKZgCYAoA2MAzlAIwA0ihJATAJSIDeAUIm4gE4ZQgdLEB9MCHz4CxMnVbsZ7APxUJNabJkAuRKmQwOuABYZkeapMppMOXFG1iTpOpRP06AbmYBfZhAQlERAI4gyFxEiAC8iiS4FIgALJQAnJSkAGyUNACsrl4+UIhw2NihESbRlADMlBmUAOzZ5lh4BUWUAUEhrkA

Building Abstractions with Data 2.2.1

result:

Ifunction append(list1, list2) {

return is_null(list1)

? list2

: pair(head(list1), append(tail(list1), list2));

}

Exercise 2.17

De�ne a function last_pair that returns the list that contains only the last element of a given

(nonempty) list:

Ilast_pair(list(23, 72, 149, 34));

[3 4 , nu l l]

Exercise 2.18

De�ne a function reverse that takes a list as argument and returns a list of the same elements

in reverse order:

Ireverse(list(1, 4, 9, 16, 25));

[2 5 , [1 6 , [9 , [4 , [1 , nu l l]]]]]

Exercise 2.19

Consider the change-counting program of section 1.2.2. It would be nice to be able to easily

change the currency used by the program, so that we could compute the number of ways to

change a British pound, for example. As the program is written, the knowledge of the cur-

rency is distributed partly into the function first_denomination and partly into the function

count_change (which knows that there are �ve kinds of U.S. coins). It would be nicer to be

able to supply a list of coins to be used for making change.

We want to rewrite the function cc so that its second argument is a list of the values of the

coins to use rather than an integer specifying which coins to use. We could then have lists

that de�ned each kind of currency:

Iconst us_coins = list(50, 25, 10, 5, 1);

const uk_coins = list(100, 50, 20, 10, 5, 2, 1, 0.5);

We could then call cc as follows:

Icc(100, us_coins);

119 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBBCOBXAhgJwKYRgXhgGwEtoAKARgBoYAWSgTktIDZKAmAVgEoBuAKFElggAJkKy5CJCjADMlNpQDs3HgDNEYYFALgYyAA570YIcQlQpZlhxgBvHjAcwMURKjAwiAfTCI8eU0TmHPaOoY4A-PiBLCFhoQBcMHrIBKjEABboyCZmpByU+obGxFAp-rn5UdBWygC+PDyFRiYIKBgQlMKi3EA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEBsEMGcBcH0AOkCWAnUsD2oBGBTUAcxQDd8A7PAT1DgFcATS2AKCjiVTQApwU4PAEwBmADSgA7EIkBGACwBOCSPkBKNQG4gA
http://source-academy.github.io/playground#chap=4&prgrm=E4UwbiwM4gFANgSygF1gRgDQAIAsOBOHdANhwCYBWASmoG4g
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBArhA+qAlpGBeGAbF0AUArAAwA0MATIeQIxkzUw0CUA3AFCiSxwDWyINBEw48UfHXolyFenXKMKtcsQB0hNkA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMEsCcGcBcD6ATApgOwPYFtLoIbySboA0oqAHgMaoAOSUcSaWuBRJAUCKPuslBZE2TNFSh4mUACMJAc0gA3DLICeoBAFdW8LuC3pqndKGrUAFPlGH45apjyIl+ADZbUsAJSgA3l1BA0HF4LWhTa0xbUABeONAABgCglKCAflAARmTUlIAuPht0eFAAHkTQAB9KoUwRMVQLBycXd08vHNyUjKSu3ILzKyK7Tr7cqloGRCYEFAwcPEJidCbHdGc3D28OsdyAalHdwcjogFoIGFnWBY5l1ZbN9vJD3cDm9datrwBuLgBfLgOdAIUBaWCId6wWKgVyQBAWACsCXIACYEeRMsjQOisj9ASQQVoANYQtZQmIwuHwCyYrFI1FYzHkHEojHkBIAOgReMGtPIYNJeG83yAA

Building Abstractions with Data 2.2.1

292

To do this will require changing the program cc somewhat. It will still have the same form,

but it will access its second argument di�erently, as follows:

Ifunction cc(amount, coin_values) {

return amount === 0

? 1

: amount < 0 || no_more(coin_values)

? 0

: cc(amount,

except_first_denomination(coin_values))

+

cc(amount - first_denomination(coin_values),

coin_values);

}

De�ne the functions first_denomination, except_first_denomination, and no_more in

terms of primitive operations on list structures. Does the order of the list coin_values a�ect

the answer produced by cc? Why or why not?

Exercise 2.20

In the presence of higher-order functions, it is not strictly necessary for functions to have mul-

tiple parameters; one would su�ce.
9

If we have a function such as plus that naturally requires

two parameters, we could write a variant of the function to which we pass the arguments one

at at time. An application of the variant to the �rst argument could return a function that we

can then apply to the second argument, and so on. This practice—called currying and named

after the American mathematician and logician Haskell Brooks Curry—is quite common in

programming languages such as Haskell
10

and Ocaml. In JavaScript, a curried version of plus

looks as follows.

Ifunction plus_curried(x) {

return y => x + y;

}

Write a function brooks, that takes a curried function as �rst argument and as second argu-

ment a list of arguments to which the curried function is then applied, one by one, in the

given order. For example, the following application of brooks should have the same e�ect as

plus_curried(3)(4).

Ibrooks(plus_curried, list(3, 4));

9
Exercise 2.20 of the original book deals with Scheme operators that take variable numbers of arguments.

This concept exists in JavaScript, but plays a less prominent role and is therefore omitted in this adaptation. The

book adaptors decided to sneak in currying on this occasion.

10
The attentive reader might venture a guess after whom this programming language is named.

120 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMEsCcGcBcD6ATApgOwPYFtLoIbySboA0oqAHgMaoAOSUcSaWuBRJAUCKPuslBZE2TNFSh4mUACMJAc0gA3DLICeoBAFdW8LtRIJQW2IgN5YoALygANpAQAKAKwAGcgCZn5AIzvQ3qA+AJQA3PqG8MYA1maYFtZ2DvCOfv5unv5+5IEevuSuAHTOYVzgWujUnOig1NSO+KIV8OTm6IhK+LZaqLDBoADeXKAjoOLwWtA1jZjN1lY2rsOjK6MA-EHLqysAXHxN6FEAPKCuoAA+50KYImKojm0dXT19W9srG0vv23t1DQctN7fbZUWgMRBMBAoDA4PCEYjoB7xdqdbq9YLBIHA0AAaixwL+MzmAFoIDAoaxYRwEUi8E80X1yPjsbVkfSXqUAL5cfT1NLkExxCxhIA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABABwDYgM4H0IgE54wCmAJgBQAeAlIgN4CQiTiAUM4nkVPkgJ6IBeAHyIKiANSJeAbhYBfFizSYc+QqTIBmKmQAsVaUA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABABwDYgM4H0IgE54wCmAJgBQAeAlIgN4CQiTiAUM4nkVPkgJ6IBeAHyIKiANSJeAbhYBfFgHpFiAEZ44cANYZEUOGqKIA7oShQiSVfygALIxm4lLUFus06yaTDnyFSADSIqDCOZADMQQAsVFTSQA

Building Abstractions with Data 2.2.1

While we are at it, we might as well curry the function brooks! Write a function brooks_curried

that can be applied as follows, to yield the same result 7:

Ibrooks_curried(list(plus_curried, 3, 4));

With this function brooks_curried what are the results of evaluating the following two state-

ments?

Ibrooks_curried(list(brooks_curried,

list(plus_curried, 3, 4)));

Ibrooks_curried(list(brooks_curried,

list(brooks_curried,

list(plus_curried, 3, 4))));

Mapping over lists

One extremely useful operation is to apply some transformation to each element in a list and

generate the list of results. For instance, the following function scales each number in a list by

a given factor:

Ifunction scale_list(items, factor) {

return is_null(items)

? null

: pair(head(items) * factor,

scale_list(tail(items), factor));

}

We can abstract this general idea and capture it as a common pattern expressed as a higher-

order function, just as in section 1.3. The higher-order function here is called map. The function

map takes as arguments a function of one argument and a list, and returns a list of the results

produced by applying the function to each element in the list:

Ifunction map(fun, items) {

return is_null(items)

? null

: pair(fun(head(items)),

map(fun, tail(items)));

}

Imap(abs, list(-10, 2.5, -11.6, 17));

[1 0 , [2 . 5 , [1 1 . 6 , [1 7 , nu l l]]]]

Imap(x => x * x, list(1, 2, 3, 4));

[1 , [4 , [9 , [1 6 , nu l l]]]]

Now we can give a new de�nition of scale_list in terms of map:

121 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABABwDYgM4H0IgE54wCmAJgBQAeAlIgN4CQiTiAUM4nkVPkgJ6IBeAHyIKiANSJeAbhYBfFgHpFiAEZ44cANbZcBYiURQ4aoogDuhKFCJJV-KAAszGbiVtQW6zTpz5CpGSoMK5kaJh++qQANIgAzLEALFRU0kA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABABwDYgM4H0IgE54wCmAJgBQAeAlIgN4CQiTiAUM4nkVPkgJ6IBeAHyIKiANSJeAbhYBfFgHpFiAEZ44cANbZcBYiURQ4aoogDuhKFCJJV-KAAszGbiVtQW6zTpz5CpGSoMK5k3tq6-gYANGzs8QnswaFomH76pNGIAMxZACxUhdJAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABABwDYgM4H0IgE54wCmAJgBQAeAlIgN4CQiTiAUM4nkVPkgJ6IBeAHyIKiANSJeAbhYBfFgHpFiAEZ44cANbZcBYiURQ4aoogDuhKFCJJV-KAAszGbiVtQW6zTpz5CpGSoMK5k3tq6-gYANGzs8QnswaHhvnoBJNGsiTm5iMlQZGiYfvqkWQDMWQAsVHVU0kA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwgQwDYFMD6GbJQAUMUWAtsgDSLBrRwBOAlIgN4BQi3ijWUIRkgI4wIDBhJlKzLj3k8A-IjES5C+QC5EABzQxGRABZY0AEykVkrAFS16UJjXUbX3VJlz5CRKPsmkVsw0dAwszADcHAC+HBwe2HgExN7EAIw0AEw0AMw0ACw0AKzBiGkADJFAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwEYGcAUAPAlIgbwChFTEAnAUyhHKW0QD4BeRABkQH5EGAuRALTYA3EQC+RUJFgJEAW2QAHTFIA0iGFEpz0+YmQrVaSGOgD6YEABsrmTdt0kDzroks2nLsv0XIY5FXBMAAtKZAATOy0dXFx1Ty9EhWU1RCg-W3sY2NEJImTMNHR1K1MoTAEARjZ1ACYAOgBWdSrK+oA2dUqAdhygA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwEYGcAUAPAlIgbwChFTEAnAUyhHKW0QD4BeRABkQH5EGAuRALTYA3EQC+RUJFgJEAW2QAHTFIA0iGFEpz0+YmQrVaSGOgD6YEABsrmTdt0kDzroks2nLsv0XIY5FXBMAAtKZAATOy0dXFx1Ty9EhWU1RCg-W3sY2NEJZMw0dHUrUyhMAQBGNnUAJgA6AFZ1Soq6gDZ1CoB2HKA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYAcAUowBpExQCmyAzgJSIDeAUIvYgE5FQiNIykD6YIANn0yESFOg3EMA-Il4CxE8QC5E6VDEbZwmABZFUAEyHEy5cvnkLL9NFhz4oawcJOmA3DQC+NG5gAeiAF4APkR-ACpQ-D5OKEwARnwAJnwAZnwAFjcgA

Building Abstractions with Data 2.2.1

Ifunction scale_list(items, factor) {

return map(x => x * factor, items);

}

The function map is an important construct, not only because it captures a common pat-

tern, but because it establishes a higher level of abstraction in dealing with lists. In the orig-

inal de�nition of scale_list, the recursive structure of the program draws attention to the

element-by-element processing of the list. De�ning scale_list in terms of map suppresses

that level of detail and emphasizes that scaling transforms a list of elements to a list of results.

The di�erence between the two de�nitions is not that the computer is performing a di�erent

process (it isn’t) but that we think about the process di�erently. In e�ect, map helps estab-

lish an abstraction barrier that isolates the implementation of functions that transform lists

from the details of how the elements of the list are extracted and combined. Like the barriers

shown in �gure 2.1, this abstraction gives us the �exibility to change the low-level details of

how sequences are implemented, while preserving the conceptual framework of operations

that transform sequences to sequences. section 2.2.3 expands on this use of sequences as a

framework for organizing programs.

Exercise 2.21

The function square_list takes a list of numbers as argument and returns a list of the squares

of those numbers.

Isquare_list(list(1, 2, 3, 4));

[1 , [4 , [9 , [1 6 , nu l l]]]]

Here are two di�erent de�nitions of square_list. Complete both of them by �lling in the

missing expressions:

Ifunction square_list(items) {

return is_null(items)

? null

: pair(〈??〉, 〈??〉);

}

Ifunction square_list(items) {

return map(〈??〉, 〈??〉);

}

Exercise 2.22

Louis Reasoner tries to rewrite the �rst square_list function of exercise 2.21 so that it evolves

an iterative process:

122 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwgQwDYFMD6GbJQAUMUWAtsgDSLBrRwBOAlIgN4BQi3ijWUIRknJoADkQAeiALwA+RFIBUtelCY1SFZMwDcHAL4cOqTLnyEi54gEYaAJhoBmGgBYaAVmY1rABl1A
http://source-academy.github.io/playground#chap=4&prgrm=M4RwrghgTgpg+gGwJbAC4AplvQRgDQAEATIQMyEAsAlFQNxA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmB9AGxmSgAoYocBbZASkQG8AoRVxXKELJYvMEAgXKUa9FmwlsA-In6DxkiQC5EABwwwspACQAdAhjABzAjkRSpurIZM5tAGkR6Dx0+cvXXd2gG4mAXyYmNExcQmIyIhJSAEZHACZHAGZHABZaXyA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmB9AGxmSgAoYocBbZASkQG8AoRV3KELJKjAB1IAkAHQIYwAcwI5EAfhlCsYyTgEAaRMNESps+Yu0raAbiYBfJkzSZchYmSIlSARnUAmdQGZ1AFlrGgA

Building Abstractions with Data 2.2.2

Ifunction square_list(items) {

function iter(things, answer) {

return is_null(things)

? answer

: iter(tail(things),

pair(square(head(things)),

answer));

}

return iter(items, null);

}

Unfortunately, de�ning square_list this way produces the answer list in the reverse order of

the one desired. Why? Louis then tries to �x his bug by interchanging the arguments to pair:

Ifunction square_list(items) {

function iter(things, answer) {

return is_null(things)

? answer

: iter(tail(things),

pair(answer,

square(head(things))));

}

return iter(items, null);

}

This doesn’t work either. Explain.

Exercise 2.23

The function for_each is similar to map. It takes as arguments a function and a list of elements.

However, rather than forming a list of the results, for_each just applies the function to each

of the elements in turn, from left to right. The values returned by applying the function to the

elements are not used at all—for_each is used with functions that perform an action, such as

printing. For example,

Ifor_each(x => display(x),

list(57, 321, 88));

57
321
88

The value returned by the call to for_each (not illustrated above) can be something arbitrary,

such as true. Give an implementation of for_each.

123 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3IHpfEAFQASASQDKiCYgByAeUGIAgogDCcgEoaAoqsXi5AGQCqg0XJnlQkWAhTpsOAPoAbGMih4YUHAFtkJBTUiNbQ8EjeOFh4UAAWMGAA5sgANIgYYMgA7lGBlMHUtPQRyE5gIC4uMfFJAYj5BY1UAPzpmTlYDU0FAFyIkdFQGDBVcQnJRGld3TOIAA7D0WiYuHixOBgAJtXjAZP1s4eNGdm5RJzBPMFFDP0+0ZH+aeWV59zk5MuOru6ebh54ACMaQATGkAMxpAAsRHOQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3IHpfEAFQASASQDKiCYgByAeUGIAgogDCcgEoaAoqsXi5AGQCqg0XJnlQkWAhTpsOAPoAbGMih4YUHAFtkJBTU1tDwSN44WHhQABYwYADmyAA0iBhgyADukYGU1NS09OHITmAgLi7RcYkBefn11AD8aRnZWHUN9QBciBFRUBgwlbHxSUSpHZ1TVAAOg1HpWZET06udaJi4eDE4GAAmVaMBRCec1DwFOHQMvT5REf6pZRVEnDzkG46u7p5uHngARlSACZUgBmVIAFlOQA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMHsCcH0FMCGBjAFqALpUAjeoBzASwDd4A7XAT1AGcMBXAEwowCgo4k0AKAD1ABeAHygmRWgAcANoir8AlABpQbUOo0bpEjDwCsAdhUBmAEwBGFQA4rChQG4gA

Building Abstractions with Data 2.2.2

2.2.2 Hierarchical Structures

The representation of sequences in terms of lists generalizes naturally to represent sequences

whose elements may themselves be sequences. For example, we can regard the object

[[1, [2, null]], [3, [4, null]]]

constructed by

Ipair(list(1, 2), list(3, 4));

as a list of three items, the �rst of which is itself a list, [1, [2, null]]. Figure 2.5 shows the

representation of this structure in terms of pairs.

[1, [2, null]]

4

1 2

3

[3, [4, null]][[1, [2, null]], [3, [4, null]]]

Figure 2.5: Structure formed by pair(list(1, 2), list(3, 4)).

Another way to think of sequences whose elements are sequences is as trees. The elements

of the sequence are the branches of the tree, and elements that are themselves sequences are

subtrees. Figure 2.6 shows the structure in �gure 2.5 viewed as a tree.

[[1, [2, []]], [3, [4, []]]]

[1, [2, []]]

3 4

1 2

Figure 2.6: The list structure in �gure 2.5 viewed as a tree.

Recursion is a natural tool for dealing with tree structures, since we can often reduce op-

erations on trees to operations on their branches, which reduce in turn to operations on the

branches of the branches, and so on, until we reach the leaves of the tree. As an example,

compare the length function of section 2.2.1 with the count_leaves function, which returns

the total number of leaves of a tree:

124 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=A4QwlgTgFANmDOAXKBGANAAgEwEpNySgGZMAWHHAbiA

Building Abstractions with Data 2.2.2

Iconst x = pair(pair(1, pair(2,null)), pair(3, pair(4,null)));

Ilength(x);

3

Icount_leaves(x);

4

Ilist(x, x);

l i s t (l i s t (l i s t (1 , 2) , 3 , 4) ,
l i s t (l i s t (1 , 2) , 3 , 4))

Ilength(list(x, x));

2

Icount_leaves(list(x, x));

8

To implement count_leaves, recall the recursive plan for computing length:

– The length of a list x is 1 plus the length of the tail of x.

– The length of the empty list is 0.

The function count_leaves is similar. The value for the empty list is the same:

– count_leaves of the empty list is 0.

But in the reduction step, where we strip o� the head of the list, we must take into account that

the head may itself be a tree whose leaves we need to count. Thus, the appropriate reduction

step is

– count_leaves of a tree x is count_leaves of the head of x plus count_leaves of the tail

of x.

Finally, by taking heads we reach actual leaves, so we need another base case:

– count_leaves of a leaf is 1.

To aid in writing recursive functions on trees, our JavaScript environment provides the prim-

itive predicate is_pair, which tests whether its argument is a pair. Here is the complete

function:

Ifunction count_leaves(x) {

return is_null(x)

? 0

: ! is_pair(x)

? 1

125 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAHjAvDADgQwJYCcAU7s4CMANKprgEzFgCuANnQJSOn64DMr5OALNfU2YBuIA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAHjAvDADgQwJYCcAU7s4CMANKprgEzFgCuANnQJSOn64DMr5OALNfU2YBuAFB0ApmADmUABY44jIUA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAHjAvDADgQwJYCcAU7s4CMANKprgEzFgCuANnQJSOn64DMr5OALNfU2YBuAFAAzGmGBQM4GKElQA+nQCmaAG6qIOOIxgBvETBMwsqqDSxgYGCEtoNdjY6bemA-DAAMr924AuGABCW3s2Zz9-Ny9CKOiTIIUwZTVNbRwAC3UAE2d9AGp4hJNk1PUtHShMOnzRAF8RMpUKjL0hIA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAHjAvDADgQwJYCcAU7s4CMANKprgEzFgCuANnQJSOn64DMr5OALNfU2YBuAFB0M0HHFJxGQoA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAHjAvDADgQwJYCcAU7s4CMANKprgEzFgCuANnQJSOn64DMr5OALNfU2YBuAFB0ApmADmUABY46GaDjik4woA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAHjAvDADgQwJYCcAU7s4CMANKprgEzFgCuANnQJSOn64DMr5OALNfU2YBuAFAAzGmGBQM4GKElQA+nQCmaAG6qIOOIxgBvETBMwsqqDSxgYGCEtoNdjY6bemA-DAAMr924AuGABCW3s2Zz9-Ny9CKOiTIIUwZTVNbRwAC3UAE2d9AGp4hJNk1PUtHShMOnzRAF8RMpUKjLo7KF1SPUYhIA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBO4oH0A2BTAhgN2wGcAKADwEpEBvAKEQcQCdsoQmkYj0wRNNyFeoxGMA-IgAMw0SIBciAISIu6AA64YTQTNkiJARl16GClGix5CpABZ4AJoKoBqYyYbmwGHAWIkomgKUFADctAC+tLSe3lZ+GlokmFxQJAYANIgATBSZyUSpAMyZACwU5SFAA

Building Abstractions with Data 2.2.2

: count_leaves(head(x)) +

count_leaves(tail(x));

}

Exercise 2.24

Suppose we evaluate the expression list(1, list(2, list(3, 4))). Give the result printed

by the interpreter, the corresponding box-and-pointer structure, and the interpretation of this

as a tree (as in �gure 2.6).

Exercise 2.25

Give combinations of heads and tails that will pick 7 from each of the following lists, given

in list notation:

list(1, 3, list(5, 7), 9)

list(list(7))

list(1, list(2, list(3, list(4, list(5, list(6, 7))))))

Exercise 2.26

Suppose we de�ne x and y to be two lists:

Iconst x = list(1, 2, 3);

const y = list(4, 5, 6);

What result is printed by the interpreter in response to evaluating each of the following ex-

pressions:

Iappend(x, y);

Ipair(x, y);

Ilist(x, y);

Exercise 2.27

Modify your reverse function of exercise 2.18 to produce a deep_reverse function that takes

a list as argument and returns as its value the list with its elements reversed and with all

sublists deep-reversed as well. For example,

Iconst x = list(list(1, 2), list(3, 4));

126 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAHjAvDANgS2gCgIwBoYBM+AzAJQDcAUJaJLAJ5KoZSYAs+ArPgGwVA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAHjAvDANgS2gCgIwBoYBM+AzAJQDcAUJaJLAJ5KoZSYAs+ArPgGwWUBDAA5CApmAAmmOPnoUgA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAHjAvDANgS2gCgIwBoYBM+AzAJQDcAUJaJLAJ5KoZSYAs+ArPgGwWUAHAIZoATpjj56FIA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAHjAvDANgS2gCgIwBoYBM+AzAJQDcAUJaJLAJ5KoZSYAs+ArPgGwWXoscfPQpA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAHjAvDANgS2gCnVgjAGhgCYBKQnKTAZkIBYSSBuIA

Building Abstractions with Data 2.2.2

Ix;

l i s t (l i s t (1 , 2) , l i s t (3 , 4))

Ireverse(x);

l i s t (l i s t (3 , 4) , l i s t (1 , 2))

Ideep_reverse(x);

l i s t (l i s t (4 , 3) , l i s t (2 , 1))

Exercise 2.28

Write a function fringe that takes as argument a tree (represented as a list) and returns a list

whose elements are all the leaves of the tree arranged in left-to-right order. For example,

Iconst x = list(list(1, 2), list(3, 4));

Ifringe(x);

l i s t (1 , 2 , 3 , 4)

Ifringe(list(x, x));

l i s t (1 , 2 , 3 , 4 , 1 , 2 , 3 , 4)

Exercise 2.29

A binary mobile consists of two branches, a left branch and a right branch. Each branch is a

rod of a certain length, from which hangs either a weight or another binary mobile. We can

represent a binary mobile using compound data by constructing it from two branches (for

example, using list):

Ifunction make_mobile(left, right) {

return list(left, right);

}

A branch is constructed from a length (which must be a number) together with a structure,

which may be either a number (representing a simple weight) or another mobile:

Ifunction make_branch(length, structure) {

return list(length, structure);

}

a. Write the corresponding selectors left_branch and right_branch, which return the

branches of a mobile, and branch_length and branch_structure, which return the com-

ponents of a branch.

127 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAHjAvDANgS2gCnVgjAGhgCYBKQnKTAZkIBYSSBuAKDkaA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAHjAvDANgS2gCnVgjAGhgCYBKQnKTAZkIBYSSBuAKADMBXMYKNcGAJwCmAN0H8IgzGiiCAthBIwA3sxhqYHLjz5DR4wQH1pYqTPmEhEdiiiKV6hwMFR2-MDAwGw1lKbkLVRyD1AH4nKxtA4KCALic9CSMZfkwoAEM0X2N5MmYASGjCxwAHDJSAC0E0gBM-HItBCNsmKJgAX1ahFzd4sUTjFOyIQm8UFBaO3T7JOCYgA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAHjAvDANgS2gCnVgjAGhgCYBKQnKTAZkIBYSSBuAKAHpWYATAU24AcA+gCduAN25CI3GFBAwARtIDuQtFCjcwCgJ4xoAVx5gozHv2FiJUzHCZA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAHjAvDANgS2gCnVgjAGhgCYBKQnKTAZkIBYSSBuIA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAHjAvDANgS2gCnVgjAGhgCYBKQnKTAZkIBYSSBuAKAHpWYAzAJzTAHMApjCggYAI2EB3XlCiCwEgJ4xoAVwAmCqMx58hmOEyA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAHjAvDANgS2gCnVgjAGhgCYBKQnKTAZkIBYSSBuAKAHpWYAzAJzTAHMApjCggYAI2EB3XlCiCwEgJ4xoAVwAmCqMx58h2DJTiE4DRkA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ZcBGMANpgBQnBQA0iATjAOYAWUAlIgN4BQivtmUELSREYAZyjlMlGvWZsA3FwC+QA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ARgJ1UgAsAKAG0zAHMpiAaRAZynxGhH0wEpEBvAFCJhXKJyTkYLClVoNmrdmK7cA3AIC+QA

Building Abstractions with Data 2.2.2

b. Using your selectors, de�ne a function total_weight that returns the total weight of a

mobile.

c. A mobile is said to be balanced if the torque applied by its top-left branch is equal to

that applied by its top-right branch (that is, if the length of the left rod multiplied by the

weight hanging from that rod is equal to the corresponding product for the right side)

and if each of the submobiles hanging o� its branches is balanced. Design a predicate

that tests whether a binary mobile is balanced.

d. Suppose we change the representation of mobiles so that the constructors are

Ifunction make_mobile(left, right) {

return pair(left, right);

}

function make_branch(length, structure) {

return pair(length, structure);

}

How much do you need to change your programs to convert to the new representation?

Mapping over trees

Just as map is a powerful abstraction for dealing with sequences, map together with recursion is

a powerful abstraction for dealing with trees. For instance, the scale_tree function, analogous

to scale_list of section 2.2.1, takes as arguments a numeric factor and a tree whose leaves

are numbers. It returns a tree of the same shape, where each number is multiplied by the factor.

The recursive plan for scale_tree is similar to the one for count_leaves:

Ifunction scale_tree(tree, factor) {

return is_null(tree)

? null

: ! is_pair(tree)

? tree * factor

: pair(scale_tree(head(tree), factor),

scale_tree(tail(tree), factor));

}

Iscale_tree(list(1, list(2, list(3, 4), 5), list(6, 7)),

10);

l i s t (1 0 , l i s t (2 0 , l i s t (3 0 , 4 0) , 5 0) , l i s t (6 0 , 7 0))

Another way to implement scale_tree is to regard the tree as a sequence of sub-trees and

use map. We map over the sequence, scaling each sub-tree in turn, and return the list of results.

In the base case, where the tree is a leaf, we simply multiply by the factor:

Ifunction scale_tree(tree, factor) {

return map(sub_tree => is_pair(sub_tree)

128 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ZcBGMANpgBQnBQA0iATjAOYAWUAlIgN4BQivtmUELSQAHVDFrlMlGvWZsA3FwC+XUJFgIUGHPlqpITKWAZQmNAM5RaIaEMztuvOgKGjxkkibOXrtwfysSspAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwgQwDYFMD6UBOWWAFAUQDSLBrRz4CUiA3gFCLuKFQj5IzI4wIDBlKEs9Nh2kcA-IiEipM6QC5EAQkT8cABzQx8YopJVn5ZLIgBUVGlDrKzHdfsPFUmXJeIALLGgAJsYSlNS0DJROzs6e2HjipAailvRh9nT09ADcLAC+LCxx3okY-FDEAIyUZcgVAEw15cQAzJQALGmIAKxdtRUAbJQA7Fnk0SqVAAw5QA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwgQwDYFMD6UBOWWAFAUQDSLBrRz4CUiA3gFCLuKFQj5IzI4wIDBlKEs9Nh2kcA-IiEipM6QC5EAQkT8cABzQx8YopJVn5ZLIgBUVGlDrKzHdfsPFUmXJeIALLGgAJsYSlNS0DJROzs6e2HjipAailvRh9nT09ADcLAC+LHHeiRj8UMQAjJSlyOUATNVlxADMlAAsaYgArJ015QBslADsWeTRKhUADDlAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwgQwDYFMD6UBOWWAFAUQDSLBrRz4CUiA3gFCLuKFQj5IC2aAA7FkIAEZ5CWRAF4AfIhjIcgtDHwjxkovTYd9Bw0cQB+FOmzaSoiWSyVqtBnuOvjALhRa7iAFRUaKDpKFzd2O3oAbhYAXxYWVExcO2IMJShiAEZKNOQMgCYc9OIAZkoAFnpKAFYqxFyMgDZKAHZ6KtCjTIAGKKA

Building Abstractions with Data 2.2.2

? scale_tree(sub_tree, factor)

: sub_tree * factor,

tree);

}

Many tree operations can be implemented by similar combinations of sequence operations

and recursion.

Exercise 2.30

Declare a function square_tree analogous to the square_list function of exercise 2.21. That

is, square_tree should behave as follows:

Isquare_tree(list(1,

list(2, list(3, 4), 5),

list(6, 7)));

l i s t (1 , l i s t (4 , l i s t (9 , 1 6) , 2 5) , l i s t (3 6 , 4 9)))

Declare square_tree both directly (i.e., without using any higher-order functions) and also

by using map and recursion.

Exercise 2.31

Abstract your answer to exercise 2.30 to produce a function tree_map with the property that

square_tree could be de�ned as

Ifunction square_tree(tree) {

return tree_map(square, tree);

}

Exercise 2.32

We can represent a set as a list of distinct elements, and we can represent the set of all subsets

of the set as a list of lists. For example, if the set is list(1, 2, 3), then the set of all subsets

looks as follows:

list(null, list(3), list(2), list(2, 3),

list(1), list(1, 3), list(1, 2),

list(1, 2, 3))

Complete the following declaration of a function that generates the set of subsets of a set and

give a clear explanation of why it works:

Ifunction subsets(s) {

if (is_null(s)) {

129 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEGcEcFcEMCcCmB9ALkxpUHtQCNMB3eAS1VUQDt8BPCVaAEytQCgo4k0MAKAGxLhUPAIwAaVqCnSZsqQKE8ATGNALhAZlUAWAJSqArPtCS5Z6ep4A2VQHZdDgNxA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEBcCcFNofQLYEMAOED2oBG1QHdIBLccaAO2wE9QBncAVwBNzwAoAM3rIGNxD0KNAI70kMOFFgAKSdACUoAN6tQqmA0gVZiVFOGiYAGggx5AblYBfIA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZxAI2QUysgFMgSkQG8AoRCxGYRXGZAfTBABsX8CizKfEAnbCD5IW9KLmZsCAbnKUAvokwssJOb0QQEyKP0w7EAXhTosOXFACGMdoRnreAqEKSWADm8xgAJrgE6AGkQAW3dcABIAHRZLMABzFkxEAH5kyL5YhMxwoP8oTlkeeVJ5IA

Building Abstractions with Data 2.2.3

return list(null);

} else {

const rest = subsets(tail(s));

return append(rest, map(〈??〉, rest));

}

}

2.2.3 Sequences as Conventional Interfaces

In working with compound data, we’ve stressed how data abstraction permits us to design pro-

grams without becoming enmeshed in the details of data representations, and how abstraction

preserves for us the �exibility to experiment with alternative representations. In this section,

we introduce another powerful design principle for working with data structures—the use of

conventional interfaces.

In section 1.3 we saw how program abstractions, implemented as higher-order functions, can

capture common patterns in programs that deal with numerical data. Our ability to formulate

analogous operations for working with compound data depends crucially on the style in which

we manipulate our data structures. Consider, for example, the following function, analogous

to the count_leaves function of section 2.2.2, which takes a tree as argument and computes

the sum of the squares of the leaves that are odd:

Ifunction sum_odd_squares(tree) {

return is_null(tree)

? 0

: ! is_pair(tree)

? (is_odd(tree) ? square(tree) : 0)

: sum_odd_squares(head(tree))

+

sum_odd_squares(tail(tree));

}

On the surface, this function is very di�erent from the following one, which constructs a

list of all the even Fibonacci numbers Fib(k), where k is less than or equal to a given integer n:

Ifunction even_fibs(n) {

function next(k) {

if (k > n) {

return null;

} else {

const f = fib(k);

return is_even(f)

? pair(f, next(k + 1))

: next(k + 1);

}

130 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgSIYyAPpwAJuLxgSFajRx0GiJAFJEAJkQBeXYgCMnHn2jwkyEAFsxkkWky5keKLhyzK1WvSTCRYEAA2Ac6uRB7yEQD8iAAM4RHUAFyIAIRCogAOGDBYIThu8QnU0Xi+ElIu+STR9tj4lW6IyTFhRQnJFtblduh1TgAWOBgVoa1tCQDUheMoVjbiPQ44TlDZwQ1EREbk5J3zi314AcJQRyd4GgA0iADMRNfHyKcALNcArJtbQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfQKYDcNgBRgCUiA3gFCKWIBOGUI1SSApIgEyIC83iADANxkAvmVCRYCRMBgAjAsXJUadBky49eFJdsQB+Plp1UAXIiTdOiAIyGjVfTbvbT0uUgC014gGopsgoiebISCImLQ8EjYuGiuKPKktuESTBgAHlB4ANYKtkowwIjZiAB8ZrlOVLT0jGYgADb1gnZCiBj1KBiJlZQQCChQUlx+cjnNPdWqyOjR+MCEeT32iAAOAIYw1HjAADRm6ZlZiL5WhAtLRqZgB8UnIYuUIkpPVSq11xl4vPciZLOxsniAE4QkA

Building Abstractions with Data 2.2.3

}

return next(0);

}

Despite the fact that these two functions are structurally very di�erent, a more abstract

description of the two computations reveals a great deal of similarity. The �rst program

– enumerates the leaves of a tree;

– �lters them, selecting the odd ones;

– squares each of the selected ones; and

– accumulates the results using +, starting with 0.

The second program

– enumerates the integers from 0 to n;

– computes the Fibonacci number for each integer;

– �lters them, selecting the even ones; and

– accumulates the results using pair, starting with the empty list.

A signal-processing engineer would �nd it natural to conceptualize these processes in terms

of signals �owing through a cascade of stages, each of which implements part of the program

plan, as shown in �gure 2.7. In sum_odd_squares, we begin with an enumerator, which gener-

ates a “signal” consisting of the leaves of a given tree. This signal is passed through a �lter,
which eliminates all but the odd elements. The resulting signal is in turn passed through a

map, which is a “transducer” that applies the square function to each element. The output of

the map is then fed to an accumulator, which combines the elements using +, starting from an

initial 0. The plan for even_fibs is analogous.

enumerate: filter: map: accumulate:

enumerate: map: filter: accumulate:

tree leaves is_odd square +, 0

integers fib is_even pair, null

Figure 2.7: The signal-�ow plans for the functions sum_odd_squares (top) and even_fibs (bot-

tom) reveal the commonality between the two programs.

Unfortunately, the two function declarations above fail to exhibit this signal-�ow structure.

For instance, if we examine the sum_odd_squares function, we �nd that the enumeration is

implemented partly by the is_null and is_pair tests and partly by the tree-recursive structure

of the function. Similarly, the accumulation is found partly in the tests and partly in the addition

used in the recursion. In general, there are no distinct parts of either function that correspond

131 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.2.3

to the elements in the signal-�ow description. Our two functions decompose the computations

in a di�erent way, spreading the enumeration over the program and mingling it with the map,

the �lter, and the accumulation. If we could organize our programs to make the signal-�ow

structure manifest in the functions we write, this would increase the conceptual clarity of the

resulting program.

Sequence Operations

The key to organizing programs so as to more clearly re�ect the signal-�ow structure is to

concentrate on the “signals” that �ow from one stage in the process to the next. If we represent

these signals as lists, then we can use list operations to implement the processing at each of

the stages. For instance, we can implement the mapping stages of the signal-�ow diagrams

using the map function from section 2.2.1:

Imap(square, list(1, 2, 3, 4, 5));

l i s t (1 , 4 , 9 , 16 , 25)

Filtering a sequence to select only those elements that satisfy a given predicate is accom-

plished by

Ifunction filter(predicate, sequence) {

return is_null(sequence)

? null

: predicate(head(sequence))

? pair(head(sequence),

filter(predicate, tail(sequence)))

: filter(predicate, tail(sequence));

}

For example,

Ifilter(is_odd, list(1, 2, 3, 4, 5));

l i s t (1 , 3 , 5)

Accumulations can be implemented by

Ifunction accumulate(op, initial, sequence) {

return is_null(sequence)

? initial

: op(head(sequence),

accumulate(op, initial, tail(sequence)));

}

Iaccumulate(plus, 0, list(1, 2, 3, 4, 5));

15

132 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgSIAthgAOePgBpEMKDiHISFajRx0GM5AH0wIADZ68s+YsorziAPyJdBsxeoAuRKIwwsE8HgAWODABMjOQUiIml7B0iRcSlEKDdDYxDQzh5ovDRMXGk9GGQoPABGaQAmaQBmaQAWaQBWFKA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMGAbKBTATgCgA5YYAmMEAhpgDSIDOGAjiBpBgJSIDeAUIr4oVBBYkMGgH0wIVKhx1GzCGx58VfAPyJJ05apUAuRAWKkKGHAAsMZIrIZMWrVjt0qNeMjFyXrt+Q+rOLkHIaJi4RiTkVIhQHjJy9oqOTsH6IejY+ISRptSxaL6JbKwA3FwAvlxcoJCwCIiiYnBENmDs3CoCQkhIAKSIAEyIALyjiACMZZUoGbiNzUTUqKJQOOPUA9QAzNQALNQArI4lQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMGAbKBTATgCgA5YYAmMEAhpgDSIDOGAjiBpBgJSIDeAUIr4oVBBYkMGgH0wIVKhx1GzCGx58VfAPyJJ05apUAuRAWKkKGHAAsMZIrIZMWrVjt0qNeMjFyXrt+Q+rOLkHIaJi4RiTkVIhQHjJy9oqOTsH6IejY+ISRptSxaL6JbKwA3FwAvlygkLAIiKJicEQ2YOzcKgJCSEgApIgATIgAvCOIAIxllSgZuA1NRNSoolA4Y9T91ADM1AAs1ACsjiVAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwhEBbEAbZUCmAFHAA4A0iMYMsy2FAzvgI4j6T4CUiA3gFCJBiAE74oIYUhgMA+mBzZCTVuwhcBQzUID8larWwatmgFyJShABb5kAEyUs2HThSPH3qdFlwFi5PTQwdBRQyDCKyk5qnDEA3HwAvkA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwhEBbEAbZUCmAFHAA4A0iMYMsy2FAzvgI4j6T4CUiA3gFCJBiAE74oIYUhgMA+mBzZCTVuwhcBQzUID8larWwatmgFyJShABb5kAEyUs2HThSPH3qdFlwFi5PTQwdBRQyDCKyk5qnDEA3HwAvnygkLAIiCTYIAyEAB4UAJ7c-Jqi4pKIuYgA1IgF8UmemDh4RJnZFAAMFNjSUIQAjBQATBQAzBQALBQArHFAA

Building Abstractions with Data 2.2.3

Iaccumulate(times, 1, list(1, 2, 3, 4, 5));

120

Iaccumulate(pair, null, list(1, 2, 3, 4, 5));

l i s t (1 , 2 , 3 , 4 , 5)

All that remains to implement signal-�ow diagrams is to enumerate the sequence of elements

to be processed. For even_fibs, we need to generate the sequence of integers in a given range,

which we can do as follows:

Ifunction enumerate_interval(low, high) {

return low > high

? null

: pair(low,

enumerate_interval(low + 1, high));

}

Ienumerate_interval(2, 7);

l i s t (2 , 3 , 4 , 5 , 6 , 7)

To enumerate the leaves of a tree, we can use
11

Ifunction enumerate_tree(tree) {

return is_null(tree)

? null

: ! is_pair(tree)

? list(tree)

: append(enumerate_tree(head(tree)),

enumerate_tree(tail(tree)));

}

Ienumerate_tree(list(1, list(2, list(3, 4)), 5));

l i s t (1 , 2 , 3 , 4 , 5)

Now we can reformulate sum_odd_squares and even_fibs as in the signal-�ow diagrams.

For sum_odd_squares, we enumerate the sequence of leaves of the tree, �lter this to keep only

the odd numbers in the sequence, square each element, and sum the results:

Ifunction sum_odd_squares(tree) {

return accumulate(plus,

0,

map(square,

filter(is_odd,

enumerate_tree(tree))));

11
This is, in fact, precisely the fringe function from exercise 2.28. Here we’ve renamed it to emphasize that it

is part of a family of general sequence-manipulation functions.

133 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwhEBbEAbZUCmAFHAA4A0iMYMsy2FAzvgI4j6T4CUiA3gFCJBiAE74oIYUhgMA+mBzZCTVuwhcBQzUID8larWwatmgFyJShABb5kAEyUs2HThSPH3qdFlwFi5PTQwdBRQyDCKyk5qnDEA3HwAvnygkLAIiLAY+AyEAB4UAJ7c-Jqi4pKIuYgAVIgF8UmemDh4RJnZFACMFNjSUITdiABMFADMFAAsFACscUA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwhEBbEAbZUCmAFHAA4A0iMYMsy2FAzvgI4j6T4CUiA3gFCJBiAE74oIYUhgMA+mBzZCTVuwhcBQzUID8larWwatmgFyJShABb5kAEyUs2HThSPH3qdFlwFi5PTQwdBRQyDCKyk5qnDEA3HwAvnyemDh4RCRhwhTy2PSI2NJQhACMFABMFADMFAAsFACscUA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAUzCAtsgTgQysgfRjHywDccAbACkrgHcAaRACxgHMWBKRAbwChEQxFmRQQWJHXqIAfKw4tBwlcID8iNJUrLVKgFyIADjhhZaDRrr02hqDNjyFipCjWmIA1IgCMzNpxcXADc-AC+-Pz2mLj4RCTYbtQATMwA7CFAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAUzCAtsgTgQysgfRjHywDccAbACkrgHcAaRACxgHMWBKRAbwChEQxFmRQQWJHXqIAfKw4tBwlcID8iNJUrLVKgFyIADjhhZaDRrr02hqDNjyFipCjWmIA1IgCMzNpxcXADc-AC+-PaYuPhEJNhu1ABMzADsIUA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAUzCAtsgTgQysgfSi2WQApjSBKRAbwChEnESoQskYBnAtAGz4USyKo2bjmAfkT8+YieIBciAISJuBAA44YWIdXkLx0vtyj6Rho02U5Nm1ABMyqDNjyFK5ABbIczryoqABora3DXTFx8ImEKHUFAoIBuegBfenpI9xivMlMucwBGYMQC8wAmUvKyAGZSgBYg0oBWFKA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAUzCAtsgTgQysgfSi2WQApjSBKRAbwChEnESoQskYBnAtAGz4USyKo2bjmAfkT8+YieIBciAISJuBAA44YWIdXkLx0vtyj6Rho02U5Nm1ABMyqDNjyFK5ABbIczryoqABora3DXTFx8ImEKHUFAoIBuegBfekj3GK8yUy5zAEZgxHzzACYSsrIAZhKAFiCSgFYUoA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgSIADgBsQyQgBpEATxIVqNHHQZtEAalmcefaPCQxkAfTgATU3jDzK1WvSRIApIgBMiALyfEARm29weoI4YCAAtjhYGFA4RlC4+HE4ONaKdqqGRiEiIniJyTaKhQD8iFkiBYXUAFyIAISIGUIYMFi58UQVldQlIoZQbUkdXZU1GEJCwRbBYRFRMXl4ABY4GBZ5RESSncM70+GR0bHxuc056xt+ugJIyGEm5kZomLgS62QVaUgYEBBhICJzPCicTSbY7LoABlB4JhiFCYzwT2wOGhsLRwBgImirQyZlMqLRhMUe1mhwW5wu3HI5FuoXupke6GREl6yH6rP6LmkAGZNogOXgACzSACsGyI7CAA

Building Abstractions with Data 2.2.3

}

For even_fibs, we enumerate the integers from 0 to n, generate the Fibonacci number for

each of these integers, �lter the resulting sequence to keep only the even elements, and accu-

mulate the results into a list:

Ifunction even_fibs(n) {

return accumulate(pair,

null,

filter(is_even,

map(fib,

enumerate_interval(0, n))));

}

The value of expressing programs as sequence operations is that this helps us make program

designs that are modular, that is, designs that are constructed by combining relatively indepen-

dent pieces. We can encourage modular design by providing a library of standard components

together with a conventional interface for connecting the components in �exible ways.

Modular construction is a powerful strategy for controlling complexity in engineering de-

sign. In real signal-processing applications, for example, designers regularly build systems by

cascading elements selected from standardized families of �lters and transducers. Similarly,

sequence operations provide a library of standard program elements that we can mix and

match. For instance, we can reuse pieces from the sum_odd_squares and even-fibs functions

in a program that constructs a list of the squares of the �rst n + 1 Fibonacci numbers:

Ifunction list_fib_squares(n) {

return accumulate(pair,

null,

map(square,

map(fib,

enumerate_interval(0, n))));

}

Ilist_fib_squares(10);

l i s t (0 , 1 , 1 , 4 , 9 , 25 , 64 , 169 , 441 , 1156 , 3025)

We can rearrange the pieces and use them in computing the product of the squares of the

odd integers in a sequence:

Ifunction product_of_squares_of_odd_elements(sequence) {

return accumulate(times,

1,

map(square,

filter(is_odd, sequence)));

}

134 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfQKYDcNgBRgCUiA3gFCKWIBOGUI1SSApIgEyIC83iADANxkAvmVCRYCRMBgAjAsXJUadBky49eFJdsQB+Plp1UAXIiTdOiAIyGjVfTbvbT0uUgC014gGopsgoiebISCImLQ8Ei4IAC2GNQAhlAYaDBgydRYCQA2eNlwAO4ANIgAFjAA5qUKtrT0jIj5BYgAfGWVpbZG+mAg2dldOqYADgkw1HmFRYNOVNFxicmp6fFZuU2IvlYl5VWEIcKi4BGS2LhorijypLUqDQkQELF9SRh4o+MlM7Pavf1fPx+0myGTwqEwODAAMBMKoMQSwzwrmhsNRlHm8VeywyazwvBKRH2BxEZDOYAusiuAE4QkA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgSJgMAEZ4wJCtRo46DREgC8yxAAZK0zYgD8ajVuoAuBYmWLEARn0Hquqzc3HhYpAFpLJANRDR4xO4AmIk4ePmh4JBwwEABbHCwMKBwAfRgwJKwANwwAGzwcuAB3ABpEAAsYAHMyyWtaeiQCwsQAPnKqsusDXWicnK6tYwAHDBgsfKLigYdqKNj4xJS0jOy8psRvC1KK6qJg7l5wcMEcmGQoZOdktExcZHFa6Xr5DAgIWJAcxbwRsdLpmaaXo5f6AwExDBDPA3bA4UFghEQqHOeEItGIOZxBJJVLpeKrPCqUoSPb7HjkU7nS6ia7oWH3CyqYJAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgSJgMAEZ4wJCtRo46DREgC8yxAAZK0zYgD8ajVuoAuBYmWLEARn0Hquqzc3HhYpAFpLJANRDR4xO4AmIk4ePmh4JBwwEABbHCwMKBwAfRgwJKwANwwAGzwcuAB3ABpEAAsYAHMyyWtaeiQCwsQAPnKqsusDXWicnK6tYwAHDBgsfKLigYdqKNj4xJS0jOy8psRvC1KK6qJg7l5wcMEcmGQoZOdktExcZHFa6Xr5DAgIWJAcxbwRsdLpmaaXo5f6AwExDBDPA3bA4UFghEQqHOeEItGIOZxBJJVLpeKrPCqUoSPb7Hinc6XUTXdCw+4WVTBIA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgSIYyAPpwAJuLxgSFajRx0GiJAFJEAJkQBeXYgCMnHn2jwksALY5khADSIAnrMrVa9Ri0dHe4U4IAOWBIg0GLAImiYuKJw4RLiIjgANjhWYFA2yDjoOJA4zvJuyhgQECAWIEkYUPiW1vYu8k3NTfoNLR0tFhj+eJHYOO2dw83AMEk1WHjCYpL2WTl5RMve5IHBobER6AMxcZKJKWkZeEnCUHhtmvYAzPYALPYArCtAA

Building Abstractions with Data 2.2.3

Iproduct_of_squares_of_odd_elements(list(1, 2, 3, 4, 5));

225

We can also formulate conventional data-processing applications in terms of sequence op-

erations. Suppose we have a sequence of personnel records and we want to �nd the salary of

the highest-paid programmer. Assume that we have a selector salary that returns the salary

of a record, and a predicate is_programmer that tests if a record is for a programmer. Then we

can write

Ifunction salary_of_highest_paid_programmer(records) {

return accumulate(math_max,

0,

map(salary,

filter(is_programmer, records)));

}

These examples give just a hint of the vast range of operations that can be expressed as

sequence operations.
12

Sequences, implemented here as lists, serve as a conventional interface that permits us to com-

bine processing modules. Additionally, when we uniformly represent structures as sequences,

we have localized the data-structure dependencies in our programs to a small number of se-

quence operations. By changing these, we can experiment with alternative representations of

sequences, while leaving the overall design of our programs intact. We will exploit this capa-

bility in section 3.5, when we generalize the sequence-processing paradigm to admit in�nite

sequences.

Exercise 2.33

Fill in the missing expressions to complete the following de�nitions of some basic list-manipulation

operations as accumulations:

Ifunction map(f, sequence) {

return accumulate((x, y) => 〈??〉,

null, sequence);

}

function append(seq1, seq2) {

12
Richard Waters (1979) developed a program that automatically analyzes traditional Fortran programs, viewing

them in terms of maps, �lters, and accumulations. He found that fully 90 percent of the code in the Fortran

Scienti�c Subroutine Package �ts neatly into this paradigm. One of the reasons for the success of Lisp as a

programming language is that lists provide a standard medium for expressing ordered collections so that they

can be manipulated using higher-order operations. The programming language APL owes much of its power and

appeal to a similar choice. In APL all data are represented as arrays, and there is a universal and convenient set

of generic operators for all sorts of array operations.

135 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgSIYyAPpwAJuLxgSFajRx0GiJAFJEAJkQBeXYgCMnHn2jwksALY5khADSIAnrMrVa9Ri0dHe4U4IAOWBIg0GLAImiYuKJw4RLiIjgANjhWYFA2yDjoOJA4zvJuyhgQECAWIEkYUPiW1vYu8k3NTfoNLR0tFhj+eJHYOO2dw83AMEk1WHjCYpL2WTl5RMvegcGhsRHoAzFxkokpaRl4ScJQeG2a9gDM9gAs9gCsK0A
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwIYBtUCcCeB9OYPACxgHNiBTZKPAB1RgBN6s4ytUBbLyrACiyUIcLE2QBKRAG8AUIgWIhUEFiSoIEEFxCYolfl1RRieIwA8ANInmK79h4oAM124-f2jdfmky5XHoGOwDDo+gIwyKzsnDx81kIiYpISEgDcsgC+srIiYDSIXPiJouKIALyI6JFQ-NU0-ABEADIwYCDIjdaNdGwc3LxYXYgAzE7jThKWbkGB9bWNAEowEMTYTMM9fbGDwwBMAKwTUzOz7vNNAEKh6JtGYKhkfPtHE5PpsqCQsAiIkdH9OICEpiKRyOzKVRIKioJj8KCMdCCYSlVIVcqVLYxAbPDLZL7QeBIXzYHDIpJMMEzSFqRAwuEI0LwxHk1GpPGyEm4AhEUgUai0BjMAE7PiGYoo5LpIA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYAcAUwA0iDOApgI4iGSECUiA3gFCKOIBOhUIzSqEEIyIAG1RRCmTAA88AT2oBeAHyIAJAB0hYAOYDCiAPy6VzVJu1K8DJpavWmYQQLxFS5CFQDcdAL506oSLAREDHRyABNMJwBGRxIAJmp6S1Z2TiCePkFhUXRUGGY8VXUtHX1DY2KzZTVy7T0DIxNCJUoPb19waHgkbU0oAAsIkjIKBItGZI4udP4hEUxCmpL6xcqABhjnEdafNCw0foB9fGJmKDwBGHwoTGjEWLwAZjwAFkoWugB6D6D0ELBwi5XG54e6IB6Uc6Xa7PPAAVjwADY3h4vogehp+phAddbqCnohXi0gA

Building Abstractions with Data 2.2.3

return accumulate(pair, 〈??〉, 〈??〉);

}

function length(sequence) {

return accumulate(〈??〉, 0, sequence);

}

Exercise 2.34

Evaluating a polynomial in x at a given value of x can be formulated as an accumulation. We

evaluate the polynomial

anx
n + an−1x

n−1 + · · · + a1x + a0

using a well-known algorithm called Horner’s rule, which structures the computation as

(· · · (anx + an−1)x + · · · + a1)x + a0

In other words, we start with an, multiply by x , add an−1, multiply by x , and so on, until we

reach a0.
13

Fill in the following template to produce a function that evaluates a polynomial

using Horner’s rule. Assume that the coe�cients of the polynomial are arranged in a sequence,

from a0 through an.

Ifunction horner_eval(x, coefficient_sequence) {

return accumulate((this_coeff, higher_terms) => 〈??〉,

0,

coefficient_sequence);

}

For example, to compute 1 + 3x + 5x3 + x5
at x = 2 you would evaluate

Ihorner_eval(2, list(1, 3, 0, 5, 0, 1));

Exercise 2.35

Rede�ne count_leaves from section 2.2.2 as an accumulation:

Ifunction count_leaves(t) {

13
According to Knuth (1981), this rule was formulated by W. G. Horner early in the nineteenth century, but

the method was actually used by Newton over a hundred years earlier. Horner’s rule evaluates the polynomial

using fewer additions and multiplications than does the straightforward method of �rst computing anx
n

, then

adding an−1x
n−1

, and so on. In fact, it is possible to prove that any algorithm for evaluating arbitrary polynomials

must use at least as many additions and multiplications as does Horner’s rule, and thus Horner’s rule is an

optimal algorithm for polynomial evaluation. This was proved (for the number of additions) by A. M. Ostrowski

in a 1954 paper that essentially founded the modern study of optimal algorithms. The analogous statement for

multiplications was proved by V. Y. Pan in 1966. The book by Borodin and Munro (1975) provides an overview

of these and other results about optimal algorithms.

136 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABACzgJzAUzQfUwNwEMAbACgA8AaRCOTYYGCGTMKHAZ0wEcRWJMASkQBvAFCJJiNJiggMiQhAggAtiGKEomUqSjIYHHLXrBqBgObJsObWlUdhAXgB8iACQAdTWAvFMiAD8gZ5ohL7+7pQSUrFx8VIADNQxCWlxJgxMLGycPHyQQgDcYgC+YmKoGDYEJKQATNTEhlCkAIzUAMzUyYgArD3UbYKCRUA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABACzgJzAUzQfUwNwEMAbACgA8AaRCOTYYGCGTMKHAZ0wEcRWJMASkQBvAFCJJiNJiggMiQhAggAtiGKEomUqSjIYHHLXrBqBgObJsObWlUdhAXgB8iACQAdTWAvFMiAD8gZ5ohL7+7pQSUrFx8VIADNQxCWlxJgxMLGycPHyQQgDcYgC+YqgYNgQkpABM1MSGUKQAjNQAzNTJiACs3dStgoJFQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBO4oH0A2BTAhgN2wGcAKKASkQG8AoRexAJ2yhEaVwghAFsRNcUbCQAkAHQFgA5jkQB+OWMa5pOEQBpE4yTOzzFy1dg2IeuAA6iJK3fqU21m7Q70L7RkeXIBuGgF8aGhQ0LDxCUnNcGEYSTBgiKBIARk0AJnJNOISSAGZNABYvHyA

Building Abstractions with Data 2.2.3

return accumulate(〈??〉, 〈??〉, map(〈??〉, 〈??〉));

}

Exercise 2.36

The function accumulate_n is similar to accumulate except that it takes as its third argument a

sequence of sequences, which are all assumed to have the same number of elements. It applies

the designated accumulation function to combine all the �rst elements of the sequences, all

the second elements of the sequences, and so on, and returns a sequence of the results. For

instance, if s is a sequence containing four sequences

list(list(1, 2, 3),

list(4, 5, 6),

list(7, 8, 9),

list(10, 11, 12))

then the value of accumulate_n(plus, 0, s) should be the sequence list(22, 26, 30). Fill

in the missing expressions in the following de�nition of accumulate_n:

Ifunction accumulate_n(op, init, seqs) {

return is_null(head(seqs))

? null

: pair(accumulate(op, init, 〈??〉),

accumulate_n(op, init, 〈??〉));

}

Exercise 2.37

Suppose we represent vectors v = (vi) as sequences of numbers, and matrices m = (mij) as

sequences of vectors (the rows of the matrix). For example, the matrix

1 2 3 4

4 5 6 6

6 7 8 9

is represented as the following sequence:

list(list(1, 2, 3, 4),

list(4, 5, 6, 6),

list(6, 7, 8, 9))

With this representation, we can use sequence operations to concisely express the basic matrix

and vector operations. These operations (which are described in any book on matrix algebra)

are the following:

137 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwhEBbEAbZUCmA+mABRwAOANIjGDFNQM74COjAlIgN4BQi-iAE74oIQUhiNiObCQAW+ZABMSzNu3Z8B2gQH5EYGVp3aAXInLIYgkqnRZcBMlRp0GiACQAdXGADm2PiIurpegsj+gR7s1MYm8fx2mDh4RKQU1LT01N6+AUEhYRH50ewA3DwAvjw8EAiMUIhqhGqIALyI2JJQJF0NJACM1ABM1ADMMZ3dJAAs1ACs1ABsk3EJ6309AOzUABzUAJyTm4MADNQDQ4gDwxoVSQ6pxCTk2CCM1OdNrC2s5UA

Building Abstractions with Data 2.2.3

– dot_product(v, w) returns the sum

∑
i viwi .

– matrix_times_vector(m, v) returns the vector t , where ti =
∑

jmijvj .

– matrix_times_matrix(m, n) returns the matrix p, where pij =
∑

kmiknkj .

– transpose(m) returns the matrix n, where nij =mji .

We can de�ne the dot product as
14

Ifunction dot_product(v, w) {

return accumulate(plus, 0,

accumulate_n(times, 1, list(v, w)));

}

Fill in the missing expressions in the following functions for computing the other matrix

operations. (The function accumulate_n is declared in exercise 2.36.)

Ifunction matrix_times_vector(m, v) {

return map(〈??〉, m);

}

function transpose(mat) {

return accumulate_n(〈??〉, 〈??〉, mat);

}

function matrix_times_matrix(n, m) {

const cols = transpose(n);

return map(〈??〉, m);

}

Exercise 2.38

The accumulate function is also known as fold_right, because it combines the �rst element

of the sequence with the result of combining all the elements to the right. There is also a

fold_left, which is similar to fold_right, except that it combines elements working in the

opposite direction:

Ifunction fold_left(op, initial, sequence) {

function iter(result, rest) {

return is_null(rest)

? result

: iter(op(result, head(rest)),

tail(rest));

}

return iter(initial, sequence);

}

14
This de�nition uses the function accumulate_n from exercise 2.36.

138 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABABwDYgM4AoAeAaRATwEpEBvAKEWsQCcBTKEWpHRAaiIG4KBfC0JFgJEsALb1s+IqUo06jZq0QAqbnwHho8JAEMIEEGJCpdUegH0wWOMgIwwMKAQz0AjhllUaDJi0QwGFYmqFgAFvS6ACZYrh7ExN7yyQD8iGAhSck0AFwoujC0WPqGxqbmNnYBjs6IYrrIuIgAvAB8iBHRuMQu7p49WdlDiCVGJmaW1rb2NQT1jWxtogWhOD2Icf3EPPyC2iJRcFAWyLRwUSDQWABuBADuXvK+SiMGY+X0WGiYBAAMBINhkDRmUJlYsOJJAQAIwEVCBKA3e4JbYaCiHY6nc6XRHwjCI2GIABM6zxiIAzAQACwJLhAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIZQE4wB4H1bICmAzrgG6HRwYAUyANImQJSIDeAUIt4hoVCAxI0ABxoASADoAbVGADm0wogD8KyRjmLC4xsmYBuDgF8OHUJFgJEmOcRFxihOulacevfoKSoIEEMggslCEuGASMlpKquqaCkq6iFKy8cpqGlE6eq5Gpubg0PDC6Fh4BCS4aJg4NGB6blw8EAjEUIjN0sSIALw2cfaOzmCGjdx8AkIoqGLJmTEZqYn6uUA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMOAbAJgfVQU2FACjgAcAaRGMGWAQ1XIGccBHEHSHASkQG8AoRIOTho8JNRwAnApJwMQqKOVkMo3fkM2JZUEJPENMYBahly1ArVaEB+bXIVRL1qwC4KUKUWJn5i8gAWODTovmqc5M4u0YJQNDCmKuEA3FEAvlE6euKe0pTUMHSMLGwcnKkZfCgY2HiEqDCq5Mao9IgNqgQAjOQATOQAzJzlQA

Building Abstractions with Data 2.2.3

What are the values of

Ifold_right(divide, 1, list(1, 2, 3));

Ifold_left(divide, 1, list(1, 2, 3));

Ifold_right(list, null, list(1, 2, 3));

Ifold_left(list, null, list(1, 2, 3));

Give a property that op should satisfy to guarantee that fold_right and fold_left will pro-

duce the same values for any sequence.

Exercise 2.39

Complete the following de�nitions of reverse (exercise 2.18) in terms of fold_right and

fold_left from exercise 2.38:

Ifunction reverse(sequence) {

return fold_right((x, y) => 〈??〉, null, sequence);

}

Ifunction reverse(sequence) {

return fold_left((x, y) => 〈??〉, null, sequence);

}

Nested Mappings

We can extend the sequence paradigm to include many computations that are commonly

expressed using nested loops.
15

Consider this problem: Given a positive integer n, �nd all ordered pairs of distinct positive

integers i and j, where 1 ≤ j < i ≤ n, such that i + j is prime. For example, if n is 6, then the

pairs are the following:

i 2 3 4 4 5 6 6

j 1 2 1 3 2 1 5

i + j 3 5 5 7 7 7 11

A natural way to organize this computation is to generate the sequence of all ordered pairs

of positive integers less than or equal to n, �lter to select those pairs whose sum is prime, and

then, for each pair (i, j) that passes through the �lter, produce the triple (i, j, i + j).

15
This approach to nested mappings was shown to us by David Turner, whose languages KRC and Miranda

provide elegant formalisms for dealing with these constructs. The examples in this section (see also exercise 2.42)

are adapted from Turner 1981. In section 3.5.3, we’ll see how this approach generalizes to in�nite sequences.

139 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEGcEMFsFNUuBBjZBXaaA2kAusAoZAewDtxdQAzYrAEwH0AnASwHMALSgXhXUxz4A3ASppSyXCzKg6LAG4s6sABQAPADSgAngEpQAbwKgToJrFxompUGtBhtIgL6jajVp1wq5i5VoCMWlgsFCqBoABMWgDMurpCQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMOAbAJgfVQU2FACjgAcAaRGMGWAQ1XIGccBHEHSHASkQG8AoRIOTho8JNRwAnApJwMQqKOVkMo3fkM2JZUEJPENMYBahly1ArVaEB+bXIVRL1qwC4KUKUWJn5i8gAWODTovmqc5M4u0YJQNDCmKuEA3FEAvlE6euKe0pTUMHSMLGwcnKkZoJCwCIjoMABuMOg4BAAe5ACe6pk4uvqIbYgA9IidFXwoGNh4hPVNLeQAjOSoMKoEK4gATOQAzJzlQA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEGcEMFsFNUuBBjZBXaaA2kAusAoZAewDtxdQAzYrAEwH0AnASwHMALSgXhXUxz4A3ARr1m7LgAosLCgBpQpbFkWyKUgIyKATIoDMASkNCgA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMOAbAJgfVQU2FACjgAcAaRGMGWAQ1XIGccBHEHSHASkQG8AoRIOTho8JNRwAnApJwMQqKOVkMo3fkM2JZUEJPENMYBahly1ArVaEB+bXIVRL1qwC4KUKUWJn5i8gAWODTovmqc5M4u0YJQNDCmKuEA3FEAvlE6euKe0pTUMHSMLGwcnKkZKBjYeISoMKrkxqj0iPWqBACM5ABM5ADMnOVAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAJwKYDdXIM6oBS4COIqkqAlIgN4BQi9KqUIySwcANgCYD6yMAcwAWUPHgAeAGkQBPSgF4AfIgAkAHQ4BDMAI6pEAfgNrk23ahXSwIDh2lESZcgG4aAXxo00mHPg4xsUQBGaQAWaQBOaSCANmkAJgBWchcgA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAJwKYDdXIM6oBS4COIqkqAlIgN4BQi9KqUIySwcANgCYD6HqwKHjwAPADSIAnpQC8APkQASADocAhmADm-RAH5dy5Bu2pFEsCA4cJREmXIBuGgF8aNNJhz4OMbEICMEgAsEgCcEv4AbBIATACs5I5AA

Building Abstractions with Data 2.2.3

Here is a way to generate the sequence of pairs: For each integer i ≤ n, enumerate the

integers j < i , and for each such i and j generate the pair (i, j). In terms of sequence operations,

we map along the sequence enumerate_interval(1, n). For each i in this sequence, we map

along the sequence enumerate_interval(1, i - 1). For each j in this latter sequence, we

generate the pair list(i, j). This gives us a sequence of pairs for each i . Combining all

the sequences for all the i (by accumulating with append) produces the required sequence of

pairs:
16

Iaccumulate(append,

null,

map(i => map(j => list(i, j),

enumerate_interval(1, i - 1)),

enumerate_interval(1, n)));

The combination of mapping and accumulating with append is so common in this sort of

program that we will isolate it as a separate function:

Ifunction flatmap(f, seq) {

return accumulate(append, null, map(f, seq));

}

Now �lter this sequence of pairs to �nd those whose sum is prime. The �lter predicate is

called for each element of the sequence; its argument is a pair and it must extract the integers

from the pair. Thus, the predicate to apply to each element in the sequence is

Ifunction is_prime_sum(pair) {

return is_prime(head(pair) + head(tail(pair)));

}

Finally, generate the sequence of results by mapping over the �ltered pairs using the follow-

ing function, which constructs a triple consisting of the two elements of the pair along with

their sum:

Ifunction make_pair_sum(pair) {

return list(head(pair), head(tail(pair)),

head(pair) + head(tail(pair)));

}

Combining all these steps yields the complete function:

Ifunction prime_sum_pairs(n) {

return map(make_pair_sum,

filter(is_prime_sum,

flatmap(i => map(j => list(i, j),

enumerate_interval(1, i - 1)),

enumerate_interval(1, n))));

16
We’re representing a pair here as a list of two elements rather than as an ordinary pair. Thus, the “pair” (i, j)

is represented as list(i, j), not pair(i, j).

140 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAUzCAtsgTgQysgfRjHywDccAbACkrgHcAaRACxgHMWBKRAbwChEQxFmRQQWJHXqIAfKw4tBwlcID8iNJUrLVKgFyIADjhhZaDRrr02hqDNjyFipCjWmIA1IgCMzNpxcXADc-AC+-BAIAM5QmogAvIgAbKE4EBAYIJRO1DhGRqgAJszWNlqUpbbC6PnUMInytUbUAFaNiJQwsfXMrVxW1UOq9pi4+EQk2G7UfogNALS+QYPDwqOOEy7TVLPMYEEhQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMANgQygWzQBwBTAA0iAzgKYCOAlIgN4BQiTiATmVCC0mhBCJiHRQyeXDjJgAJsTCCUxbPiKlKVKgG56AX3r1UGRXgAeiALwA+RChgkox4karFrtvAEZiAJmIBmYgBY1dSA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgQoAthgA2onMigB9ACYwAbjGRwseMCQrUaOOg0TAYYWXMXLV6gDSIATEU48+0eEkPHTSlWrDWokmfKeqpqU2rT0SGiYuHh+Uh7mWCQAfIhgodqZiAD8aRlZ1ABciIEwspKx-gle1hr5BdS5cQFmXvUNiMVuJqVeVojN1aqIANSIAIz23LzgzoKl5ch4GNYARiFhuhGIq4gApIgYiAC8p4gADA4z-C6IytIADlgwQvgaZPnh+kinx8JiEnivQsGiuTgESHuTxeOGkyBAQjwDwwMCSH02ekhyEez1eeAAFjgMLIkSi0WNCcTYijRKTUUQGVdyFDcbD4YjRMooHgABzWACcjKAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ADqmAJ2wGcRkAKfIgSkQG8AoRFxQzKEQpAGxhKgUAFplQATKgUI0ANIhHiKUAj0m1ZiZq207WCidWmIA1PNETlMVYZq2A3IwC+jRmix4ppchT4CKADjkATnsgA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ADqmAJ2wGcRkAKfIgSkQG8AoRFxQzKEQpAGxhKgUAFplQATKgUI0ANIhHiKUAj0m1ZiZq207WCidWmIA1PNETlMVYZq2A3IwC+jUJFgJEJAI4hU7CgAedEza7JzciAGIAFSRDs6u0PBIJGg8PJgC2GIwAG78cIQUYMFaLGFcSMAwYGLZeQVFYHIATDTxLuBJHtW19fkkhcVyUJlQ-Y2lOhUR3r7+o1k5A4V0AHyIYGW6rAD8m9s7iABciMswYplKYxODhHIlh0eI+4vj53dPR6e9dR9DzUQb1uhRMiAAjO0nJ03Mkzg1LiQKKg5AAjKasGZIVGIACkiFQiAAvCTEAAGDqJdxIfh4QgwZCYYoY8ocSqbYmk1KodI3f5NKEJLrUxC03D0xmkchqIwhTFsiJiiVM-QyuimVWWaxSWyCmHdKo8VBQNC4CjAOQkTBeFlsBVIVAQCDkEBG0bI3C4TC1B6unhyU3my3W+zQqlw73kTCEY04GqjQi5HkUHhwADuciEMAA5kJbVjEKm04gNlnc19tPswH6K6xToYU+mZLXnpHGTHRth49Gk6oi2DwZmc3m9eGPOKGTgyMg8FIkSUGNsC4G0FhZ0Qpcg5C3WNUeAmKErJ5vt89dMA3YGYMSNoGAFY3wv8QQwOR3jQ7s9ftvR2NdsAJr2FCDqKiAALQQrYzZfjBP4dnGAE9smIElLqHSMBOkrTuuhBIgAbO0QA

Building Abstractions with Data 2.2.3

}

Nested mappings are also useful for sequences other than those that enumerate intervals.

Suppose we wish to generate all the permutations of a set S ; that is, all the ways of ordering

the items in the set. For instance, the permutations of {1, 2, 3} are {1, 2, 3}, {1, 3, 2}, {2, 1, 3},

{2, 3, 1}, {3, 1, 2}, and {3, 2, 1}. Here is a plan for generating the permutations of S : For each

item x in S , recursively generate the sequence of permutations of S − x ,
17

and adjoin x to the

front of each one. This yields, for each x in S , the sequence of permutations of S that begin

with x . Combining these sequences for all x gives all the permutations of S :
18

Ifunction permutations(s) {

return is_null(s) // empty set?

? list(null) // sequence containing empty set

: flatmap(x => map(p => pair(x, p),

permutations(remove(x, s))),

s);

}

Notice how this strategy reduces the problem of generating permutations of S to the problem

of generating the permutations of sets with fewer elements than S . In the terminal case, we

work our way down to the empty list, which represents a set of no elements. For this, we

generate list(null), which is a sequence with one item, namely the set with no elements.

The remove function used in permutations returns all the items in a given sequence except

for a given item. This can be expressed as a simple �lter:

Ifunction remove(item, sequence) {

return filter(x => !(x === item),

sequence);

}

Exercise 2.40

De�ne a function unique_pairs that, given an integer n, generates the sequence of pairs (i, j)

with 1 ≤ j < i ≤ n. Use unique_pairs to simplify the de�nition of prime_sum_pairs given

above.

Exercise 2.41

Write a function to �nd all ordered triples of distinct positive integers i , j, and k less than or

equal to a given integer n that sum to a given integer s .

17
The set S − x is the set of all elements of S , excluding x .

18
The character sequence // in JavaScript programs is used to introduce comments. Everything from // to

the end of the line is ignored by the interpreter. In this book we don’t use many comments; we try to make our

programs self-documenting by using descriptive names.

141 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMANgQygWzQBwBTAA0iAzgKYCOAlIgN4BQiTiATmVCC0mhBCJiHRQyeXDjJgAJsTCCUxbPiKlKVKgG56AX3qhIsBInEsBUDPDAk8JGg2at2nJDBIB9WShTWa938wD0-ohkmDhQAJ4qUAD8jH720YgoLlB4Hig+8UyBKhQgEhBkiBAIZjBg5QDmwaERUXFZiABcyEKKeAAeiAC8AHyI7Tg9-ThoMCydxDhUhA2N81nGpuYIVmyYcABuIh3ENmqzC-M2mjr0SyBmBpZ4ySSpAIzEAEzEAMxq6kA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAJwKYFs4DdUAoZQYA0iAzqgI4iqSoCUiA3gFCJsqpQjJLAwA2hZLgAeiALwA+RAEJRE8eMQEMdIq3aatW8lRoR6AbmYBfZs340A5lAAWuNJhy4AzCX4xSUXAEYSAJhI3RAAWEgBWOijDIA

Building Abstractions with Data 2.2.3

Exercise 2.42

Figure 2.8: A solution to the eight-queens puzzle.

The “eight-queens puzzle” asks how to place eight queens on a chessboard so that no queen

is in check from any other (i.e., no two queens are in the same row, column, or diagonal). One

possible solution is shown in �gure 2.8. One way to solve the puzzle is to work across the

board, placing a queen in each column. Once we have placed k − 1 queens, we must place the

kth queen in a position where it does not check any of the queens already on the board. We

can formulate this approach recursively: Assume that we have already generated the sequence

of all possible ways to place k − 1 queens in the �rst k − 1 columns of the board. For each of

these ways, generate an extended set of positions by placing a queen in each row of the kth

column. Now �lter these, keeping only the positions for which the queen in the kth column is

safe with respect to the other queens. This produces the sequence of all ways to place k queens

in the �rst k columns. By continuing this process, we will produce not only one solution, but

all solutions to the puzzle.

We implement this solution as a function queens, which returns a sequence of all solutions to

the problem of placing n queens on an n × n chessboard. The function queens has an internal

function queens_cols that returns the sequence of all ways to place queens in the �rst k

columns of the board.

Ifunction queens(board_size) {

function queen_cols(k) {

return k === 0

? list(empty_board)

: filter(

142 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMANgQygWzQBwBTAA0iAzgKYCOAlIgN4BQiTiATmVCC0mhBCJiHRQyeXDjJgAJsTCCUxbPiKlKVKgG56AX3qhIsBIgn8yLDGQD6MMMJYA3NCjwo4Ad2IALGAHMPNBsys7JxILq6IAHyIXr6MgfGIAPyIsigocQnMAFyIOGgwLM5uhBmZZcaYpuZWNqYOTmGIANSIAIyePn4a2rrg0PBIFCBkEiR4AEZwaCySFiQwAF5k-qV6-YZDI2AWEHAoYwDWK2VsHFyIB4gAvDeIAAylZczJKDAkUHhkmDhQAJ4Wk2mkiojyeiBywBgKFseFBYPiODg8wMYBI1yibzmaGAIgOxERyIGJCoxDh8OYqAwijwbHeFjgwAsm1G6MQ9AAkJz4tSwGRXBYWG5WWhJAArODWCwEmAo2Hk+UKhK8-mC9wXEqKzUK2lQemM5moklsrWaipVYQ1Wz1PDtY0mk2AmZzRbLEkcrmBA07PaHRAAWjaam6zB0zFOIUQXt2+wmUyd8yW3R09ANYwAHBogA

Building Abstractions with Data 2.2.4

positions => is_safe(k, positions),

flatmap(rest_of_queens =>

map(new_row => adjoin_position(

new_row, k,

rest_of_queens),

enumerate_interval(1,

board_size)),

queen_cols(k - 1)));

}

return queen_cols(board_size);

}

In this function rest_of_queens is a way to place k − 1 queens in the �rst k − 1 columns,

and new_row is a proposed row in which to place the queen for the kth column. Complete

the program by implementing the representation for sets of board positions, including the

function adjoin_position, which adjoins a new row-column position to a set of positions,

and empty_board, which represents an empty set of positions. You must also write the function

is_safe, which determines for a set of positions, whether the queen in the kth column is safe

with respect to the others. (Note that we need only check whether the new queen is safe—the

other queens are already guaranteed safe with respect to each other.)

Exercise 2.43

Louis Reasoner is having a terrible time doing exercise 2.42. His queens function seems to

work, but it runs extremely slowly. (Louis never does manage to wait long enough for it to

solve even the 6 × 6 case.) When Louis asks Eva Lu Ator for help, she points out that he has

interchanged the order of the nested mappings in the flatmap, writing it as

flatmap(new_row =>

map(rest_of_queens => adjoin_position(

new_row, k,

rest_of_queens),

queen_cols(k - 1)),

enumerate_interval(1, board_size));

Explain why this interchange makes the program run slowly. Estimate how long it will take

Louis’s program to solve the eight-queens puzzle, assuming that the program in exercise 2.42

solves the puzzle in time T .

143 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.2.4

2.2.4 Example: A Picture Language

This section presents a simple language for drawing pictures that illustrates the power of

data abstraction and closure, and also exploits higher-order functions in an essential way. The

language is designed to make it easy to experiment with patterns such as the ones in �gure 2.9,

which are composed of repeated elements that are shifted and scaled.
19

In this language, the

data objects being combined are represented as functions rather than as list structure. Just as

pair, which satis�es the closure property, allowed us to easily build arbitrarily complicated

list structure, the operations in this language, which also satisfy the closure property, allow

us to easily build arbitrarily complicated patterns.

(a)

Figure 2.9: Designs generated with the picture language.

The picture language

When we began our study of programming in section 1.1, we emphasized the importance of

describing a language by focusing on the language’s primitives, its means of combination, and

its means of abstraction. We’ll follow that framework here.

Part of the elegance of this picture language is that there is only one kind of element,

called a painter. A painter draws an image that is shifted and scaled to �t within a desig-

nated parallelogram-shaped frame. For example, there’s a primitive painter we’ll call wave that

makes a crude line drawing, as shown in �gure 2.10.

19
The picture language is based on the language Peter Henderson created to construct images like M.C. Escher’s

“Square Limit” woodcut (see Henderson 1982). The woodcut incorporates a repeated scaled pattern, similar to the

arrangements drawn using the square_limit function in this section.

144 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.2.4

Figure 2.10: Images produced by the wave painter, with respect to four di�erent frames. The

frames, shown with dotted lines, are not part of the images.

The actual shape of the drawing depends on the frame—all four images in �gure 2.10 are

produced by the same wave painter, but with respect to four di�erent frames. Painters can be

more elaborate than this: The primitive painter called rogers paints a picture of MIT’s founder,

William Barton Rogers, as shown in �gure 2.11.
20

The four images in �gure 2.11 are drawn

20

William Barton Rogers (1804–1882) was the founder and �rst president of MIT. A geologist and talented

teacher, he taught at William and Mary College and at the University of Virginia. In 1859 he moved to Boston,

where he had more time for research, worked on a plan for establishing a “polytechnic institute,” and served as

Massachusetts’s �rst State Inspector of Gas Meters.

When MIT was established in 1861, Rogers was elected its �rst president. Rogers espoused an ideal of “useful

learning” that was di�erent from the university education of the time, with its overemphasis on the classics,

which, as he wrote, “stand in the way of the broader, higher and more practical instruction and discipline of the

natural and social sciences.” This education was likewise to be di�erent from narrow trade-school education. In

Rogers’s words:

The world-enforced distinction between the practical and the scienti�c worker is utterly futile,

and the whole experience of modern times has demonstrated its utter worthlessness.

Rogers served as president of MIT until 1870, when he resigned due to ill health. In 1878 the second president

of MIT, John Runkle, resigned under the pressure of a �nancial crisis brought on by the Panic of 1873 and strain

of �ghting o� attempts by Harvard to take over MIT. Rogers returned to hold the o�ce of president until 1881.

Rogers collapsed and died while addressing MIT’s graduating class at the commencement exercises of 1882.

Runkle quoted Rogers’s last words in a memorial address delivered that same year:

“As I stand here today and see what the Institute is, . . . I call to mind the beginnings of science.

I remember one hundred and �fty years ago Stephen Hales published a pamphlet on the subject

of illuminating gas, in which he stated that his researches had demonstrated that 128 grains of

bituminous coal—”

“Bituminous coal,” these were his last words on earth. Here he bent forward, as if consulting some

notes on the table before him, then slowly regaining an erect position, threw up his hands, and was

translated from the scene of his earthly labors and triumphs to “the tomorrow of death,” where the

mysteries of life are solved, and the disembodied spirit �nds unending satisfaction in contemplating

the new and still unfathomable mysteries of the in�nite future.

In the words of Francis A. Walker (MIT’s third president):

145 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.2.4

with respect to the same four frames as the wave images in �gure 2.10.

Figure 2.11: Images of William Barton Rogers, founder and �rst president of MIT, painted with

respect to the same four frames as in �gure 2.10 (original image reprinted with the permission

of the MIT Museum).

To combine images, we use various operations that construct new painters from given

painters. For example, the beside operation takes two painters and produces a new, com-

pound painter that draws the �rst painter’s image in the left half of the frame and the second

painter’s image in the right half of the frame. Similarly, below takes two painters and produces

a compound painter that draws the �rst painter’s image below the second painter’s image.

Some operations transform a single painter to produce a new painter. For example, flip_vert

takes a painter and produces a painter that draws its image upside-down, and flip_horiz

produces a painter that draws the original painter’s image left-to-right reversed.

All his life he had borne himself most faithfully and heroically, and he died as so good a knight

would surely have wished, in harness, at his post, and in the very part and act of public duty.

146 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.2.4

Iconst wave2 = beside(wave, flip_vert(wave));

const wave4 = below(wave2, wave2);

Figure 2.12: Creating a complex �gure, starting from the wave painter of �gure 2.10.

Figure 2.12 shows the drawing of a painter called wave4 that is built up in two stages starting

from wave:

Iconst wave2 = beside(wave, flip_vert(wave));

const wave4 = below(wave2, wave2);

In building up a complex image in this manner we are exploiting the fact that painters are

closed under the language’s means of combination. The beside or below of two painters is itself

a painter; therefore, we can use it as an element in making more complex painters. As with

building up list structure using pair, the closure of our data under the means of combination

is crucial to the ability to create complex structures while using only a few operations.

Once we can combine painters, we would like to be able to abstract typical patterns of

combining painters. We will implement the painter operations as JavaScript functions. This

means that we don’t need a special abstraction mechanism in the picture language: Since the

means of combination are ordinary JavaScript functions, we automatically have the capability

to do anything with painter operations that we can do with functions. For example, we can

abstract the pattern in wave4 as

Ifunction flipped_pairs(painter) {

const painter2 = beside(painter, flip_vert(painter));

return below(painter2, painter2);

}

and de�ne wave4 as an instance of this pattern:

Iconst wave4 = flipped_pairs(wave);

147 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAFgUwIYCcoCYYF4YCMEQCWAJggBSKpQA0MAZgDaEAOA+gG4JoXJoCUfANwAoAPSiYoSLEpoALNhjQkwANY8q6WrIxDhwiHBAB3DWnR7xSo6Z1yhQA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAFgUwIYCcoCYYF4YCMEQCWAJggBSKpQA0MAZgDaEAOA+gG4JoXJoCUfANwAoAPSiYoSLEpoALNhjQkwANY8q6WrIxDhwiHBAB3DWnR7xSo6Z1yhQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMANjADugpgEwProCGMATgM4AURMYUWJAlIgN4BQiHiECZUi1tegCZEAXkQAjLGRg4sVYoJIAaZGnR4AbvSgKadRgwDc7TiSxQQJJL0IQA1nqVDVAg0OOsAvq1bcwvIgAFliEJFAALGJqGNj41OQUIWFQnmRBcADuSaHhEcZAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMANjADugpgEwProCGMATgM4AURMYUWJAlIgN4BQiHiECZUi1tegCZEAXkQAjLGRg4sVYoJIAaZGnR4AbvSgKadRgwDc7TiSxQQJJL0IQA1nqVDVAg0OOsAvq25heiAAWWIQkUAAsYmoY2PjU5BTBoVCeZIFwAO6JIWHhxkA

Building Abstractions with Data 2.2.4

right_split

identity

right_split

right_split(n)

right_split

corner_splitup_split

n--1

up_split

right_split

identity

n--1n--1

n--1

n--1

corner_split(n)

n--1

n--1

Figure 2.13: Recursive plans for right_split(n) and corner_split(n).

We can also de�ne recursive operations. Here’s one that makes painters split and branch

towards the right as shown in �gures 2.13 and �gures 2.14.

Ifunction right_split(painter, n) {

if (n === 0) {

return painter;

} else {

const smaller = right_split(painter, n - 1);

return beside(painter, below(smaller, smaller));

}

}

148 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAJxgcwBZQPoGcAOANjFABT4CGMYUApsgDSJgCUiA3gFCI+IzCJSSALyjEABjZdeMlLSghkSStTrIA3N14BfRLUK5aHLbMQQEuKIlwBbCoUL1EwlOix4iJclRr0mSAFpEAEYWTVMeZHlFJAAjWlwYABNab1U-aygKCABrUlt7R0ZrOwd6FjCTRG1OGs5cDDgAd1JUTBwCYjIMWgpkKCYAFgr1IA

Building Abstractions with Data 2.2.4

We can produce balanced patterns by branching upwards as well as towards the right (see

exercise 2.44 and �gure 2.13).

Ifunction corner_split(painter, n) {

if (n === 0) {

return painter;

} else {

const up = up_split(painter, n - 1);

const right = right_split(painter, n - 1);

const top_left = beside(up, up);

const bottom_right = below(right, right);

const corner = corner_split(painter, n - 1);

return beside(below(painter, top_left),

below(bottom_right, corner));

}

}

149 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAJxgcwBZQPoGcAOANjFABT4CGMYUApsgDSJgCUiA3gFCI+IzCJSSALyjEABjZdeMlLSghkSStTrIA3N14BfRLUK5aHLbMQQEuKIlwBbCoUL1EwlOix4iJclRr0mSAFpEAEYWTVMeZHlFJAAjWlwYABNab1U-aygKCABrUlt7R0ZrOwd6FjCTRG1OGtBIWAREEHwPYjIVX2LWYxl+QRExSV6IqIUlRE61cJ09AyNpCPMwSxLCpxcWtq8pjMCQyoi5caRLbLz4xJT80qKmArLkFiZdp5meGrrwaHgkcyV6NsOj41P4pFV+kJnENwaNohNXu9qnNDCNZMtVi1nM1WgR2mkuv5EEFQkjeBirKhMFYXFT3HidiC9sSDmSeBTEFA4K1HMAaYhLslUi0mC1DqYObE4FAuTZsHT+WdcqQFUwFeL0RYrP8wBszHAAcggQTQcwWaSqrwxjFMudSILrlyebQ+UwdeUGJajhEHalXkwpTK4HL1RrqrVOJxcBg4AB3Ujuo0MsgYWgUZBQJgAFgq6iAA

Building Abstractions with Data 2.2.4

right_split(wave, 5) right_split(rogers, 5)

corner_split(wave, 5) corner_split(rogers, 5)

Figure 2.14: The recursive operation right_split applied to the painters wave and rogers.

Combining four corner_split �gures produces symmetric square_limit as shown in �g-

ure 2.9.

By placing four copies of a corner_split appropriately, we obtain a pattern called square_limit,

whose application to wave and rogers is shown in �gure 2.9:

Ifunction square_limit(painter, n) {

const quarter = corner_split(painter, n);

const half = beside(flip_horiz(quarter), quarter);

return below(flip_vert(half), half);

}

150 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAJxgcwBZQPoGcAOANjFABT4CGMYUApsgDSJgCUiA3gFCI+IzCJSSALyjEABjZdeMlLSghkSStTrIA3N14BfRLUK5aHLbMQQEuKIlwBbCoUL1EwlOix4iJclRr0mSAFpEAEYWTVMeZHlFJAAjWlwYABNab1U-aygKCABrUlt7R0ZrOwd6FjCTRG1OGtBIWAREEHwPYjIVX2LWYxl+QRExSV6IqIUlRE61cJ09AyNpCPMwSxLCpxcWtq8pjMCQyoi5caRLbLz4xJT80qKmArLkFiZdp5meGrrwaHgkcyV6NsOj41P4pFV+kJnENwaNohNXu9qnNDCNZMtVi1nM1WgR2mkuv5EEFQkjeBirKhMFYXFT3HidiC9sSDmSeBTEFA4K1HMAaYhLslUi0mC1DqYObE4FAuTZsHT+WdcqQFUwFeL0RYrP8wBszHAAcggQTQcwWaSqrwxjFMudSILrlyebQ+UwdeUGJajhEHalXkwpTK4HL1RrqrVOPUfk1cABHEAUKLYYg2Rnpbqw8laxDxxNqbHuo0M4HpsFIjktfCAjD2AQuX2kYDEVoYA0wABepFzyDUzxzCZ75XL2cIcAA7tXa9iGydsC0rrRsElx2AuwPe57vVvt02YK0AG70Mjd3th60TJV5SuTwjAJijidGmu3yo1Ti4Vtj-LdxcprwYWg8yYABWCp1CAA

Building Abstractions with Data 2.2.4

Exercise 2.44

De�ne the function up_split used by corner_split. It is similar to right_split, except that

it switches the roles of below and beside.

Higher-order operations

In addition to abstracting patterns of combining painters, we can work at a higher level, ab-

stracting patterns of combining painter operations. That is, we can view the painter operations

as elements to manipulate and can write means of combination for these elements—functions

that take painter operations as arguments and create new painter operations.

For example, flipped_pairs and square_limit each arrange four copies of a painter’s image

in a square pattern; they di�er only in how they orient the copies. One way to abstract this

pattern of painter combination is with the following function, which takes four one-argument

painter operations and produces a painter operation that transforms a given painter with those

four operations and arranges the results in a square.
21

The functions tl, tr, bl, and br are the

transformations to apply to the top left copy, the top right copy, the bottom left copy, and the

bottom right copy, respectively.

Ifunction square_of_four(tl, tr, bl, br) {

return painter => {

const top = beside(tl(painter), tr(painter));

const bottom = beside(bl(painter), br(painter));

return below(bottom, top);

};

}

Then flipped_pairs can be de�ned in terms of square_of_four as follows:
22

Ifunction flipped_pairs(painter) {

const combine4 = square_of_four(identity, flip_vert,

identity, flip_vert);

return combine4(painter);

}

21
In square_of_four, we make use of an extension of the syntax of lambda expressions, compared to sec-

tion 1.3.2: The body of a lambda expression can be a block, not just a single return expression. Such lambda

expressions have the following shape:

(parameters) => { statements }

22
Equivalently, we could write

Iconst flipped_pairs =
square_of_four(identity, flip_vert, identity, flip_vert);

151 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAJgUzLKBPAFADwEpEBvAKEUsQCc0oRql8BuMgXzNElgUQGcAjiACGtAPpxgY4HAa4oAGwA0iKNRUAjZYg3Vi5KjToMkAB2ExMaaogC8APn5RhEANa4NaPqjTyFuc0soa0IVNQCLKz1QikM4+IS4z290D39AqNCdagigkMJCVg4yPgALOAB3XEERcUlpWRz6RjEQUxS0MRRKsBUfTBgcFVjE0cQhUWDqMWawMWoYAHNSqBUJ6imZkzEFNGAoQhHKXFK0ScPDQqA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmB9OYPYOELACigBsAaRKLOgI1sSawEpEBvAKEQGJcUMkgAOGGGCg4siALwA+FFAwQA1uSY5kMACY5KVchKkzOdBicnTZHDjX6DnL124HbdBrcdO2LbBR+5vYcANy8AL68oJCwCIj6ONIwUACe5AAeXHzOwqKImRHRsdDwSMBUMGJiOHp4pljI1mZ2PE4CEAjIUIhdALZMUjgALAoo6Nj4hMSkFCJYYHggYl74enAA7mB0ldV4AG6yUHQd7ucXrntieAAWcFgwAF50SSnp4Wf5i31wg8MjFr+T7RXjIe6bcjXWr1RrNW44bBQexhIA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmB9OYPYOELACigBsAaRKLOgI1sSawEpEBvAKEQGJcUMkgAOGGGCg4siALwA+FFAwQA1uSY5kMACY5KVchKkzOdBicnTZHDjX6DnL124HbdBrcdO2LbBR+5vYcANy8AL68oJCwCIj6ONIwUACe5AAeXHzOwqKImRHREAjIUIjAVDBiYjh6eKZYyApOAmiYuAREJGSUonggYl74enAA7mB0VTV4AG6yUHRt7u4zYngAFnBYMABedEkp6eG8vMjb4+TrdQ1NyOSbONhQ9mFAA

Building Abstractions with Data 2.2.4

and square_limit can be expressed as
23

Ifunction square_limit(painter, n) {

const combine4 = square_of_four(flip_horiz, identity,

rotate180, flip_vert);

return combine4(corner_split(painter, n));

}

Exercise 2.45

The functions right_split and up_split can be expressed as instances of a general splitting

operation. Declare a function split with the property that evaluating

Iconst right_split = split(beside, below);

const up_split = split(below, beside);

produces functions right_split and up_split with the same behaviors as the ones already

de�ned.

Frames

Before we can show how to implement painters and their means of combination, we must �rst

consider frames. A frame can be described by three vectors—an origin vector and two edge

vectors. The origin vector speci�es the o�set of the frame’s origin from some absolute origin

in the plane, and the edge vectors specify the o�sets of the frame’s corners from its origin. If

the edges are perpendicular, the frame will be rectangular. Otherwise the frame will be a more

general parallelogram.

Figure 2.15 shows a frame and its associated vectors. In accordance with data abstraction, we

need not be speci�c yet about how frames are represented, other than to say that there is a con-

structor make_frame, which takes three vectors and produces a frame, and three corresponding

selectors origin_frame, edge1_frame, and edge2_frame (see exercise 2.47).

23
The function rotate180 rotates a painter by 180 degrees. Instead of rotate180 we could say

compose(flip_vert, flip_horiz), using the compose function from exercise 1.42.

152 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmB9OYPYOELACigBsAaRKLOgI1sSawEpEBvAKEQGJcUMkgAOGGGCg4siALwA+FFAwQA1uSY5kMACY5KVchKkzOdBicnTZHDjX6DnL124HbdBrcdO2LbBR+5vYcANy8AL68oJCwCIj6ONIwUACe5AAeXHzOwqKImRHRsdDwSFgwAOYAFlB4yGJUqdZmsnRgOU4CMMCI5EjyQ4gADF3u+VjiNuYRzpGIOFTIODzdLhAIyFAoALYYVFSyCkLVdQ1NLcHtiEgAtIgAjOHreTgiU2w6Sa3+dNtqTTIfaHG7Ag5HTgveZRGLgMoJEBiC7NKC-cwdcaCXr9QbDMZrCbvArXLBzQQLJYrQluTZgbZ7CHHeSIJEoq4zG73J7QtyTJAAjRab7ecGgxiM8UORCk3kCaIleHxJCbKaydlo0mYmk9PoDBT4rEufkyzlk9aU5arXKuOkMpEnNmNVHormIB7PckbLY7Sq1HYsv3nZ0ctoS7me14CO07KBwZFHYABr5eQxIuhIuXOGNsOBQOO7PBB5OCzTFujFrOCHOqsDMxC19UhzVmjrunlet4fAWqIWeH5xhM4JN0RsWKPuVz97xa3P5uCFytZhVwuLlFDobD4Zq7UN-W5Ghs+o+7JhSHAAFhOaEwuAIRBIZHIwGayJqcEqAC86EkUuk6BOk5AUB3Z4EiqZ4HocAAO5gHQL4wMiABushQFmJqbKe54XuQY4aq64b2MUvC8Mg77QeQN5bngO4tDUODYFAdAXkRQA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aoDOAHANo+p5lQAjAU1AHcAnPeUtYgTw3kgBN74AoWVdfGgHMAFvAD6WXPgC8GHHgAUZdIg4AaEqWzIKASgDcPPvkiYJ8mXKlKtOjctWkDQA

Building Abstractions with Data 2.2.4

frame
edge1
vector

frame
edge2
vector

frame
origin
vector

(0, 0) point on
display screen

Figure 2.15: A frame is described by three vectors—an origin and two edges.

We will use coordinates in the unit square (0 ≤ x ,y ≤ 1) to specify images. With each frame,

we associate a frame coordinate map, which will be used to shift and scale images to �t the

frame. The map transforms the unit square into the frame by mapping the vector v = (x ,y) to

the vector sum

Origin(Frame) + x · Edge
1

(Frame) + y · Edge
2

(Frame)

For example, (0, 0) is mapped to the origin of the frame, (1, 1) to the vertex diagonally opposite

the origin, and (0.5, 0.5) to the center of the frame. We can create a frame’s coordinate map

with the following function:
24

Ifunction frame_coord_map(frame) {

return v => add_vect(origin_frame(frame),

add_vect(scale_vect(xcor_vect(v),

edge1_frame(frame)),

scale_vect(ycor_vect(v),

edge2_frame(frame))));

}

Observe that applying frame_coord_map to a frame returns a function that, given a vector,

returns a vector. If the argument vector is in the unit square, the result vector will be in the

frame. For example,

Iframe_coord_map(a_frame)(make_vect(0, 0));

returns the same vector as

Iorigin_frame(a_frame);

24
The function frame_coord_map uses the vector operations described in exercise 2.46 below, which we assume

have been implemented using some representation for vectors. Because of data abstraction, it doesn’t matter

what this vector representation is, so long as the vector operations behave correctly.

153 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9Abp6ACgA8AaRATwEpEBvAKEScQCdMoQWkAHVGFkuWoBuegF96oSLASJiEOCzwEohfNEU0GzVu05IAFplQATNSs2iJU6PCQUFS9auea6jZmw5dEUPgBtzDRYqK0lwW1kAZwhUfxxnQmBUYPJXEPcdL30UDASVJJSoRUQAKjlHZSJ0qnIPHQbGnWTgsspKxJrQ8XDpO0RTEyqXCxYARjTRgCYtet1vJDQsYZIOgvSxmkQ5pt2mAGoKxRX0mbq9i6YHY87RzaYdy4bD66d16apu6wiZJCiQABGJzuk2CM0ynj0PiW+SI8hu72C922Tz2AFojm9qh9zqimq9gUito88YgMQTbmDPmEbL9cstgCxUMhMIRFDAAOYwMDkTAmDmYCaIPkC8HaSELRD+GBRVTsrk84X8wW85UzGk-fry7nYRnM1l6lmzLJQpDS2XYNjAJJMlnkAAMX16kSQIsFuttBs9xolOXNUEtmGthsw5E2Gr6sjdUw9+pt+p9TGyPn9geDnvI6p6tP6IewCkUQzQ3HjRohSdNiFwiAAvAA+AYmIaJbVgWMs0uYWoo0l7QYrGJxWGqeFYlzdkm9qcNN1jdtehMT6e9wfxFYU9ZL5fbmdq+edz7Unr0BRgWUoCjYVu1+nDwhjAB09szT+6p-PyEvbuwYxvMJWADMT7kAALK+ojvlAF7YN+Ux-nkKwAKzAYgABs4EnggH6XiG8EMp6hCfleLCcty5BEd+QoUcq2BZpB0EFiwRaoNwN55oxzElkRIZvlhUFEekeF3o+z6IFMGH0URxbcHywwlDWDFwIW2DFoRl41KIUksTJzajMIQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9Abp6ACgA8AaRATwEpEBvAKEScQCdMoQWkAHVGFkuWoBuegF96oSLASJiEOCzwEohfNEU0GzVu05IAFplQATNSs2iJU6PCQUFS9auea6jZmw5dEUPgBtzDRYqK0lwW1kAZwhUfxxnQmBUYPJXEPcdL30UDASVJJSoRUQAKjlHZSJ0qnIPHQbGnWTgsspKxJrQ8XDpO0RTEyqXCxYARjTRgCYtet1vJDQsYZIOgvSxmkQ5pt2mAGoKxRX0mbq9i6YHY87RzaYdy4bD66d16apu6wiZJCiQABGJzuk2CM0ynj0PiW+SI8hu72C922Tz2AFojm9qh9zqimq9gUito88YgMQTbmDPmEbL9cstgCxUMhMIRFDAAOYwMDkTAmDmYCaIPkC8HaSELRD+GBRVTsrk84X8wW85UzGk-fry7nYRnM1l6lmzLJQpDS2XYNjAJJMlnkAAMX16kSQIsFuttBs9xolOXNUEtmGthsw5E2Gr6sjdUw9+pt+p9TGyPn9geDnvI6p6tP6IewCkUQzQ3HjRohSdNiFwiAAvAA+AYmIaJbVgWMs0uYWoo0l7QYrGJxWGqeFYlzdkm9qcNN1jdtehMT6e9wfxFYU9ZL5fbmdq+edz7UnoKMCygbz2v0nAhwgwlZjAB09szT63O50d8SAGYn+QACyvqQk7Lp+BQAKy-ogEGOt0eYFiwRaoCWqDzlQt55Csz6IDBwhAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9Abp6ACgA8AaRATwEpEBvAKEScQCdMoQWkAHVGFkuWoBuegF96oSLASJiEOCzwEohfNEU0GzVu05IAFplQATNSs2iJU6PCQUFS9auea6jZmw5dEUPgBtzDRYqK0lwW1kAZwhUfxxnQmBUYPJXEPcdL30UDASVJJSoRUQAKjlHZSJ0qnIPHQbGnWTgsspKxJrQ8XDpO0RTEyqXCxYARjTRgCYtet1vJDQsYZIOgvSxmkQ5pt2mAGoKxRX0mbq9i6YHY87RzaYdy4bD66d16apu6wiZJCiQABGJzuk2CM0ynj0PiW+SI8hu72C922Tz2AFojm9qh9zqimq9gUito88YgMQTbmDPmEbL9cstgCxUMhMIRFDAAOYwMDkTAmDmYCaIPkC8HaSELRD+GBRVTsrk84X8wW85UzGk-fry7nYRnM1l6lmzLJQpDS2XYNjAJJMlnkAAMX16kSQIsFuttBs9xolOXNUEtmGthsw5E2Gr6sjdUw9+pt+p9TGyPn9geDnvI6p6CjAsoGsZZiAAvPScCHCDCVmMAHT2zO12oo0mXSuJADMtfIABYG6QSc2dK2CgBWTuIUeO7rasAF1moWehIA

Building Abstractions with Data 2.2.4

Exercise 2.46

A two-dimensional vectorv running from the origin to a point can be represented as a pair con-

sisting of an x-coordinate and a y-coordinate. Implement a data abstraction for vectors by giv-

ing a constructor make_vect and corresponding selectors xcor_vect and ycor_vect. In terms

of your selectors and constructor, implement functions add_vect, sub_vect, and scale_vect

that perform the operations vector addition, vector subtraction, and multiplying a vector by a

scalar:

(x1,y1) + (x2,y2) = (x1 + x2,y1 + y2)

(x1,y1) − (x2,y2) = (x1 − x2,y1 − y2)

s · (x ,y) = (sx , sy)

Exercise 2.47

Here are two possible constructors for frames:

function make_frame(origin, edge1, edge2) {

return list(origin, edge1, edge2);

}

function make_frame(origin, edge1, edge2) {

return pair(origin, pair(edge1, edge2));

}

For each constructor supply the appropriate selectors to produce an implementation for frames.

Painters

A painter is represented as a function that, given a frame as argument, draws a particular

image shifted and scaled to �t the frame. That is to say, if p is a painter and f is a frame, then

we produce p’s image in f by calling p with f as argument.

The details of how primitive painters are implemented depend on the particular characteris-

tics of the graphics system and the type of image to be drawn. For instance, suppose we have

a function draw_line that draws a line on the screen between two speci�ed points. Then we

can create painters for line drawings, such as the wave painter in �gure 2.10, from lists of line

segments as follows:
25

25
The function segments_to_painter uses the representation for line segments described in exercise 2.48

below. It also uses the for_each function described in exercise 2.23.

154 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.2.4

Ifunction segments_to_painter(segment_list) {

return frame =>

for_each(segment =>

draw_line(frame_coord_map(frame)

(start_segment(segment)),

frame_coord_map(frame)

(end_segment(segment))),

segment_list);

}

The segments are given using coordinates with respect to the unit square. For each segment

in the list, the painter transforms the segment endpoints with the frame coordinate map and

draws a line between the transformed points.

Representing painters as functions erects a powerful abstraction barrier in the picture lan-

guage. We can create and intermix all sorts of primitive painters, based on a variety of graphics

capabilities. The details of their implementation do not matter. Any function can serve as a

painter, provided that it takes a frame as argument and draws something scaled to �t the

frame.
26

Exercise 2.48

A directed line segment in the plane can be represented as a pair of vectors—the vector running

from the origin to the start-point of the segment, and the vector running from the origin to

the end-point of the segment. Use your vector representation from exercise 2.46 to de�ne a

representation for segments with a constructor make_segment and selectors start_segment

and end_segment.

Exercise 2.49

Use segments_to_painter to de�ne the following primitive painters:

a. The painter that draws the outline of the designated frame.

b. The painter that draws an “X” by connecting opposite corners of the frame.

c. The painter that draws a diamond shape by connecting the midpoints of the sides of the

frame.

26
For example, the rogers painter of �gure 2.11 was constructed from a gray-level image. For each point in a

given frame, the rogers painter determines the point in the image that is mapped to it under the frame coordinate

map, and shades it accordingly. By allowing di�erent types of painters, we are capitalizing on the abstract data

idea discussed in section 2.1.3, where we argued that a rational-number representation could be anything at

all that satis�es an appropriate condition. Here we’re using the fact that a painter can be implemented in any

way at all, so long as it draws something in the designated frame. Section 2.1.3 also showed how pairs could be

implemented as functions. Painters are our second example of a functional representation for data.

155 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9Abp6ACgA8AaRATwEpEBvAKEScQCdMoQWkAHVGFkuWoBuegF96oSLASJiEOCzwEohfNEU0GzVu05IAFplQATNSs2iJU6PCQUFS9auea6jZmw5dEUPgBtzDRYqK0lwW1kAZwhUfxxnQmBUYPJXEPcdL30UDASVJJSoRUQAKjlHZSJ0qnIPHQbGnWTgsspKxJrQ8XDpO0RTEyqXCxYARjTRgCYtet1vJDQsYZIOgvSxmkQ5pt2mAGoKxRX0mbq9i6YHY87RzaYdy4bD66d16apu6wiZJCiQABGJzuk2CM0ynj0PiW+SI8hu72C922Tz2AFojm9qh9zqimq9gUito88YgMQTbmDPmEbL9cstgCxUMhMIRFDAAOYwMDkTAmDmYCaIPkC8HaSELRD+GBRVTsrk84X8wW85UzGk-fry7nYRnM1l6lmzLJQpDS2XYNjAJJMlnkAAMX16kSQIsFuttBs9xolOXNUEtmGthsw5E2Gr6sjdUw9+pt+p9TGyPn9geDnvI6p6tP6IewCkUQzQ3HjRohSdNiFwiAAvAA+AYmIaJbVgWMs0uYWoo0l7QYrGJxWGqeFYlzdkm9qcNN1jdtehMT6e9wfxFYU9ZL5fbmdq+edz7U7Oa2Qw7BRTAcllgFznvwsKBpbCYMAmRPzHK8fhqO+oB9Pl83wjF1EFlP8AwvK8X3HcsPx8IxTDUJ0cyjV9z0va8YPFCtJT8GBAlwJ0AHoiMQAAiEwmQAd25DkBilblMDIxAjDYUCYGQEB-FQKA+XoEjEABChEG4FhuVgMA6KgIxEALFgTG5HjMCiRA4GAfjSOkzBQPvKABlfYUDLU3wZOlMBMGdOlKNQKjsDM1lcF-f8q2fV93wUqJuG4ihCDI+ydPA2iBigMjuh0DyvNQHzHLAh8wuYCLvN8-zAKCnjQtEcKZUi6LXKA49Iz+DDoKibBimwL8b0wARIMwuyZSgd9kyQENawbScmmAY5jAgAxCFq6C2p7HcGms2z7M7fM4ELbBiwPDqRqafrdPQqCb364qb0+XFFtRPM5KLVASxDKgFt2nRCEA1bMI2tbGu24adwGm96tlJ16AUMBZRQChsFbWt6WHQgxgAOntTMwe6T7vuQX63WwMYAbPRIAGYwfIAAWSHRGhvTYefZVsCmJG8hWABWdHEAANmxj6EBh37WprQH93x1tyHx+GhU5wmszpr68d+2KA0R5nkYKe1KdBx0cfpwW8oRknlkSaWw1p3Gfuu6DFbF0nntUfHhYRjm4bQ8MAEhGnofmGacgNid15WJcpqZ1blzWrodlnEld8HEF9qH3cNzb7aVnB9cIQ2VqmE2FfVS2GmtjX8cq3iWAB-XSvK1PqsIM6nn9SOhZD43Nf1omj3oFO+CqgR8ZO4QgA

Building Abstractions with Data 2.2.4

Transforming and combining painters

An operation on painters (such as flip_vert or beside) works by creating a painter that

invokes the original painters with respect to frames derived from the argument frame. Thus,

for example, flip_vert doesn’t have to know how a painter works in order to �ip it—it just has

to know how to turn a frame upside down: The �ipped painter just uses the original painter,

but in the inverted frame.

Painter operations are based on the function transform_painter, which takes as arguments

a painter and information on how to transform a frame and produces a new painter. The

transformed painter, when called on a frame, transforms the frame and calls the original painter

on the transformed frame. The arguments to transform_painter are points (represented as

vectors) that specify the corners of the new frame: When mapped into the frame, the �rst

point speci�es the new frame’s origin and the other two specify the ends of its edge vectors.

Thus, arguments within the unit square specify a frame contained within the original frame.

Ifunction transform_painter(painter, origin,

corner1, corner2) {

return frame => {

const m = frame_coord_map(frame);

const new_origin = m(origin);

return painter(make_frame(

new_origin,

sub_vect(m(corner1),

new_origin),

sub_vect(m(corner2),

new_origin)));

};

}

Here’s how to �ip painter images vertically:

Ifunction flip_vert(painter) {

return transform_painter(painter,

make_vect(0.0, 1.0), // new origin

make_vect(1.0, 1.0), // new end of edge1

make_vect(0.0, 0.0)); // new end of edge2

}

Using transform_painter, we can easily de�ne new transformations. For example, we can

de�ne a painter that shrinks its image to the upper-right quarter of the frame it is given:

Ifunction shrink_to_upper_right(painter) {

return transform_painter(painter,

make_vect(0.5, 0.5),

make_vect(1.0, 0.5),

make_vect(0.5, 1.0));

156 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9Abp6ACgA8AaRATwEpEBvAKEScQCdMoQWkAHVGFkuWoBuegF96oSLASJiEOCzwEohfNEU0GzVu05IAFplQATNSs2iJU6PCQUFS9auea6jZmw5dEUPgBtzDRYqK0lwW1kAZwhUfxxnQmBUYPJXEPcdL30UDASVJJSoRUQAKjlHZSJ0qnIPHQbGnWTgsspKxJrQ8XDpO0RTEyqXCxYARjTRgCYtet1vJDQsYZIOgvSxmkQ5pt2mAGoKxRX0mbq9i6YHY87RzaYdy4bD66d16apu6wiZJCiQABGJzuk2CM0ynj0PiW+SI8hu72C922Tz2AFojm9qh9zqimq9gUito88YgMQTbmDPmEbL9cstgCxUMhMIRFDAAOYwMDkTAmDmYCaIPkC8HaSELRD+GBRVTsrk84X8wW85UzGk-fry7nYRnM1l6lmzLJQpDS2XYNjAJJMlnkAAMX16kSQIsFuttBs9xolOXNUEtmGthsw5E2Gr6sjdUw9+pt+p9TGyPn9geDnvI6p6tP6IewCkUQzQ3HjRohSdNiFwiAAvAA+AYmIaJbVgWMs0uYWoo0l7QYrGJxWGqeFYlzdkm9qcNN1jdtehMT6e9wfxFYU9ZL5fbmdq+edz7U7Oa2Qw7BRTAcllgFznvwsKBpbCYMAmRPzHK8fhqO+oB9Pl83wjF1EFlP8AwvK8X3HcsPx8IxTDUJ0cyjV9z0va8YPFCtJT8GBAlwJ0AHoiMQAAiEwmQAd25DkBilblMDIxAjDYUCYGQEB-FQKA+XoEjEABChEG4FhuVgMA6KgIxEALFgTG5HjMCiRA4GAfjSOkzBQPvKABlfYUDLU3wZOlMBMGdOlKNQKjsDM1lcF-f8q2fV93wUqJuG4ihCDI+ydPA2iBigMjuh0DyvNQHzHLAh8wuYCLvN8-zAKCnjQtEcKZUi6LXKA49Iz+DDoKibBimwL8b0wARIMwuyZSgd9kyQENawbScmmAY5jAgAxCFq6C2p7HcGms2z7M7fM4ELbBiwPDqRqafrdPQqCb364qb0+XFFtRPM5KLVASxDKgFt2nRCEA1bMI2tbGu24adwGm96tlJ0FDAWVVJAKB7KcgMxlrelh0Ie0ADp7QdCHug+r64B+v6rsBmtgZWMYIahx1RFhvT4d+xjrug7BkdR565QRgnYoBnbzsuPHEbQ8N6Bx778fM-7sCmIGz0SdHIcQcGseZhA4Yp9mrq5lGeYKPmw2h7GRdxsWcDJznubyQn1vpymVqmGnab2bXxbQrMWaNlWVoAZnV5ZeYxxA+ZhxXWYZoZraljXEkFuWhbN5XNYDd3Sc28m2Yt8DsEt-WDaac28sjp3PqVsOOYAFhtkHvYd+XhaTl2Cau9OPdtgos8FxPRZT1Wi+Du62X9qnsFT6OY4aOPC4r5O-sq3iWCBsnSvKnvqsIM7l39euq5D4mW5juPVb1+gAEgV6X5h5+nqPl9X9eG+n1OjxZ8AYADVsM5WMuc6PsAT+fZVifPu3+fLhW8+PgM3TV4vM-tx3X6+9+85z4hkIIA1ss8RqAM-hMMe04oH3yzChFq0puDKAfIQYeGRsJwSQFAJkn0uosGQBVPgVUBCYIgU0aWRAs6O3IIgAS5kqKqTEgqWBzBqGqFltnR09DGGYGYYBVSwAlQCjGOwpgnDQb23LqEBhpEmGGRMMI0RmApgFRAng1ABDFDEMwRg0hvdyDgIkU8Rw5lxjkHMdVMUcxmqIFavWWCewWbICBvtaa8lZpHQPJlMxzsmHYDPlLNkrDuTxUuPY-RZ4QGmLxIE8Bj1ab-CBIkZAhBrHjC3K3XYCSwlgGyQbFJKx0mZLOEknJOg8mcnCUeS4Ygwi5y+sAFB3A+RBP9pg2sC0WkwFQfgdBcdMHdEkK09pQzDEj0ASdYQQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9Abp6ACgA8AaRATwEpEBvAKEScQCdMoQWkAHVGFkuWoBuegF96oSLASJiEOCzwEohfNEU0GzVu05IAFplQATNSs2iJU6PCQUFS9auea6jZmw5dEUPgBtzDRYqK0lwW1kAZwhUfxxnQmBUYPJXEPcdL30UDASVJJSoRUQAKjlHZSJ0qnIPHQbGnWTgsspKxJrQ8XDpO0RTEyqXCxYARjTRgCYtet1vJDQsYZIOgvSxmkQ5pt2mAGoKxRX0mbq9i6YHY87RzaYdy4bD66d16apu6wiZJCiQABGJzuk2CM0ynj0PiW+SI8hu72C922Tz2AFojm9qh9zqimq9gUito88YgMQTbmDPmEbL9cstgCxUMhMIRFDAAOYwMDkTAmDmYCaIPkC8HaSELRD+GBRVTsrk84X8wW85UzGk-fry7nYRnM1l6lmzLJQpDS2XYNjAJJMlnkAAMX16kSQIsFuttBs9xolOXNUEtmGthsw5E2Gr6sjdUw9+pt+p9TGyPn9geDnvI6p6tP6IewCkUQzQ3HjRohSdNiFwiAAvAA+AYmIaJbVgWMs0uYWoo0l7QYrGJxWGqeFYlzdkm9qcNN1jdtehMT6e9wfxFYU9ZL5fbmdq+edz7U7Oa2RQJlgKLARTIbC8blQTACO9gB8scit0iT5eOMCPoU-x8xTmZMkBDWsG3FS4FAvKAUFrRA8wLFgi1QEsQ26VFoNlRBfwAd2wVt4OQNkWE5bkMKeEDEGfV9CBhfcvx3PCCNIhVcR3Jp-iBRJiIA8Ytw40lmNbATBJ0LiVl4xRfxYM4ezE1FhNY8ij0uMQIxdekcCiTAORZF81GwWVUBYKA0mwTAwBMRN5hyO8BFwIy-FM8zLOsjS6WM0yjN0-Tx3LWyfCMUw1CdHMoysny9Ms-zIMCpA-BgQJcCdAB6VLEAAIhMJlcO5DkBilblMEyxAjDYRAohgZAQH8VAHxMeh0sQAEKGo0iX3y3wjEQJCTG5erMCiRA4GAJqMqgHqvNg1ArOFObRu6zAit-Z06Ry1B8OlX9DOm1yrJs-qom4OqKEITLtuW6auvqzKKKYI6TtQM7HOm+7EEe07zsu+b+rAArbvez7nsMtywpPP5fJiqJsGKW8+BfR9CB06KX2wf0bKosD63kp4ryUYwIAMZGoZfcDcbEjatuKzt8zgQtsGLA9GIU5hkecgMUb8knUagT52NZvZEPp5DGdQ5nBcuQg3Ki7muZiw8Be3eW0YxsIsNguAQCgS6nJMgMxiIvIVntAA6e0HXN7oNZG7XdZlw2ay0lYxnNy3HVEG2tZ14rZZi7BHedlW5Tt33poDpXJcab37ci8N6C90Pfz17ypiN5ZEldi3EDNj2E4QbCY99mW06d+jM7dxAs+tgvNaT7TSYDUug8btl65TpvI6jnQi+Tkua5g22feT8OAGZ0+HQgs7DK3PdrofY6Gcey+NxJc5nvPE+HhveewZeW95tvt47veu+7phe5wGXR4Hwv2-DgAWCeTcr6u58Hy+LMip+V4zgp15zrPfOH976N2wD-A+3NP6PzPufT+MsH63zrsfGij54LBxhnDVBAgWbLn9EfXWwcI4U27tAsBUxPwAEhqGUOYGQ3eo8qE0LoaA3eiCkGIHADAAMhFf6TwAbnDhXCAxugDs-Cu2dBHv2wsIiyypsDN3Lv-V+QCbayOxs7EMhBZEfhIWJWRoiJi4OnAY+RWZwqgWlNwZQplCDYMxpWM8s1LzXnhveJG2DYFNCUUQAB1dyCIGanhEaykwDGOYD41Q08q5WwCUEzAuFfojWAEqAUYxwlMEiYQARVtQiBIysEtyyTUmYCmD0YB2FgBWO4HyAi7dsG1kYlUmA1j8C2M-vY0Qkhqm1I6QjWi6jvTCCAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9Abp6ACgA8AaRATwEpEBvAKEScQCdMoQWkAHVGFkuWoBuegF96oSLASJiEOCzwEohfNEU0GzVu05IAFplQATNSs2iJU6PCQUFS9auea6jZmw5dEUPgBtzDRYqK0lwW1kAZwhUfxxnQmBUYPJXEPcdL30UDASVJJSoRUQAKjlHZSJ0qnIPHQbGnWTgsspKxJrQ8XDpO0RTEyqXCxYARjTRgCYtet1vJDQsYZIOgvSxmkQ5pt2mAGoKxRX0mbq9i6YHY87RzaYdy4bD66d16apu6wiZJCiQABGJzuk2CM0ynj0PiW+SI8hu72C922Tz2AFojm9qh9zqimq9gUito88YgMQTbmDPmEbL9cstgCxUMhMIRFDAAOYwMDkTAmDmYCaIPkC8HaSELRD+GBRVTsrk84X8wW85UzGk-fry7nYRnM1l6lmzLJQpDS2XYNjAJJMlnkAAMX16kSQIsFuttBs9xolOXNUEtmGthsw5E2Gr6sjdUw9+pt+p9TGyPn9geDnvI6p6tP6IewCkUQzQ3HjRohSdNiFwiAAvAA+AYmIaJbVgWMs0uYWoo0l7QYrGJxWGqeFYlzdkm9qcNN1jdtehMT6e9wfxFYU9ZL5fbmdq+edz7U7Oa2RQJlgKLARTIbC8blQTACO9gB8scit0iT5eOMCPoU-x8xTmZMkBDWsG3FS4FAvKAUFrRA8wLFgi1QEsQ26VFoNlRBfwAd2wVt4OQNkWE5bkMKeEDEGfV9CBhfcvx3PCCNIhVcR3Jp-iBRJiIA8Ytw40lmNbATBJ0LiVl4xRfxYM4ezE1FhNY8ij0uMQIxdekcCiTAORZF81GwWVUBYKA0mwTAwBMRN5hyO8BFwIy-FM8zLOsjS6WM0yjN0-Tx3LWyfCMUw1CdHMoysny9Ms-zIMCpA-BgQJcCdAB6VLEAAIhMJlcO5DkBilblMEyxAjDYRAohgZAQH8VAHxMeh0sQAEKGo0iX3y3wjEQJCTG5erMCiRA4GAJqMqgHqvNg1ArOFObRu6zAit-Z06Ry1B8OlX9DOm1yrJs-qom4OqKEITLtuW6auvqzKKKYI6TtQM7HOm+7EEe07zsu+b+rAArbvez7nsMtywpPP5fJiqJsGKW8+BfR9CB06KX2wf0bKosD63kp4ryUYwIAMZGoZfcDcbEjatuKzt8zgQtsGLA9GIU5hkecgMUb8knUagT52NZvZEPp5DGdQ5nBcuQg3Ki7muZiw8Be3eW0YxsIsNguAQCgS6nJMgMxiIvIVntAA6e0HXN7oNZG7XdZlw2ay0lYxnNy3HVEG2tZ14rZZi7BHedlW5Tt33poDpXJcab37ci8N6C90Pfz17ypiN5ZEldi3EDNj2E4QbCY99mW06d+jM7dxAs+tgvNaT7TSYDUug8btl65TpvI6jnQi+Tkua5g22feT8OAGZ0+HQgs7DK3PdrofY6Gcey+NxJc5nvPE+HhveewZeW95tvt47veu+7phe5wGXR4Hwv2-DgAWCeTcr6u58Hy+LMip+V4zgp15zrPfOH976N2wD-A+3NP6PzPufT+MsH63zrsfGij54LBxhnDVBAgWbLn9EfXWwcI4U27tAsBUxPwAEhqGUOYGQ3eo8qE0LoaA3eiCkGIHADAAMhFf6TwAbnDhXCAxugDs-Cu2dBHv2wsIiyypsDN3Lv-V+QCbayOxs7EMhBZEfhIWJWRoiJi4OnAY+RWZwp-AMB1dAsM4DYBANwbgj5LScgMKobBmNKxnlmpea88N7xI2wbA7cSiiBmwAKyW3CaJBSoTVDT0AdE4Jy44mEAiRvI8EhgHYSiFY8ANjP7YNrIxXJ1jbH2Mcc41ibiCG+w8aIegpT8kEXbtg7RYBuHzlCEAA

Building Abstractions with Data 2.2.4

}

Other transformations rotate images counterclockwise by 90 degrees
27

Ifunction rotate90(painter) {

return transform_painter(painter,

make_vect(1.0, 0.0),

make_vect(1.0, 1.0),

make_vect(0.0, 0.0));

}

or squash images towards the center of the frame:
28

Ifunction squash_inwards(painter) {

return transform_painter(painter,

make_vect(0.0, 0.0),

make_vect(0.65, 0.35),

make_vect(0.35, 0.65));

}

Frame transformation is also the key to de�ning means of combining two or more painters.

The beside function, for example, takes two painters, transforms them to paint in the left and

right halves of an argument frame respectively, and produces a new, compound painter. When

the compound painter is given a frame, it calls the �rst transformed painter to paint in the

left half of the frame and calls the second transformed painter to paint in the right half of the

frame:

Ifunction beside(painter1, painter2) {

const split_point = make_vect(0.5, 0.0);

const paint_left = transform_painter(painter1,

make_vect(0.0, 0.0),

split_point,

make_vect(0.0, 1.0));

const paint_right = transform_painter(painter2,

split_point,

make_vect(1.0, 0.0),

make_vect(0.5, 1.0));

return frame => {

paint_left(frame);

paint_right(frame);

};

}

Observe how the painter data abstraction, and in particular the representation of painters

as functions, makes beside easy to implement. The beside function need not know anything

27
The function rotate90 is a pure rotation only for square frames, because it also stretches and shrinks the

image to �t into the rotated frame.

28
The diamond-shaped images in �gures 2.10 and 2.11 were created with squash_inwards applied to wave and

rogers.

157 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9Abp6ACgA8AaRATwEpEBvAKEScQCdMoQWkAHVGFkuWoBuegF96oSLASJiEOCzwEohfNEU0GzVu05IAFplQATNSs2iJU6PCQUFS9auea6jZmw5dEUPgBtzDRYqK0lwW1kAZwhUfxxnQmBUYPJXEPcdL30UDASVJJSoRUQAKjlHZSJ0qnIPHQbGnWTgsspKxJrQ8XDpO0RTEyqXCxYARjTRgCYtet1vJDQsYZIOgvSxmkQ5pt2mAGoKxRX0mbq9i6YHY87RzaYdy4bD66d16apu6wiZJCiQABGJzuk2CM0ynj0PiW+SI8hu72C922Tz2AFojm9qh9zqimq9gUito88YgMQTbmDPmEbL9cstgCxUMhMIRFDAAOYwMDkTAmDmYCaIPkC8HaSELRD+GBRVTsrk84X8wW85UzGk-fry7nYRnM1l6lmzLJQpDS2XYNjAJJMlnkAAMX16kSQIsFuttBs9xolOXNUEtmGthsw5E2Gr6sjdUw9+pt+p9TGyPn9geDnvI6p6tP6IewCkUQzQ3HjRohSdNiFwiAAvAA+AYmIaJbVgWMs0uYWoo0l7QYrGJxWGqeFYlzdkm9qcNN1jdtehMT6e9wfxFYU9ZL5fbmdq+edz7U7Oa2RQJlgKLARTIbC8blQTACO9gB8scit0iT5eOMCPoU-x8xTmZMkBDWsG3FS4FAvKAUFrRA8wLFgi1QEsQ26VFoNlRBfwAd2wVt4OQNkWE5bkMKeEDEGfV9CBhfcvx3PCCNIhVcR3Jp-iBRJiIA8Ytw40lmNbATBJ0LiVl4xRfxYM4ezE1FhNY8ij0uMQIxdekcCiTAORZF81GwWVUBYKA0mwTAwBMRN5hyO8BFwIy-FM8zLOsjS6WM0yjN0-Tx3LWyfCMUw1CdHMoysny9Ms-zIMCpA-BgQJcCdAB6VLEAAIhMJlcO5DkBilblMEyxAjDYRAohgZAQH8VAHxMeh0sQAEKGo0iX3y3wjEQJCTG5erMCiRA4GAJqMqgHqvNg1ArOFObRu6zAit-Z06Ry1B8OlX9DOm1yrJs-qom4OqKEITLtuW6auvqzKKKYI6TtQM7HOm+7EEe07zsu+b+rAArbvez7nsMtywpPP5fJiqJsGKW8+BfR9CB06KX2wf0bKosD63kp4ryUYwIAMZGoZfcDcbEjatuKzt8zgQtsGLA9GIU5hkecgMUb8knUagT52NZvZEPp5DGdQ5nBcuQg3Ki7muZiw8Be3eW0YxsIsNguAQCgS6nJMgMxiIvIVntAA6e0HXN7oNZG7XdZlw2ay0lYxnNy3HVEG2tZ14rZZi7BHedlW5Tt33poDpXJcab37ci8N6C90Pfz17ypiN5ZEldi3EDNj2E4QbCY99mW06d+jM7dxAs+tgvNaT7TSYDUug8btl65TpvI6jnQi+Tkua5g22feT8OAGZ0+HQgs7DK3PdrofY6Gcey+NxJc5nvPE+HhveewZeW95tvt47veu+7phe5wGXR4Hwv2-DgAWCeTcr6u58Hy+LMip+V4zgp15zrPfOH976N2wD-A+3NP6PzPufT+MsH63zrsfGij54LBxhnDVBAgWbLn9EfXWwcI4U27tAsBUxPwAEhqGUOYGQ3eo8qE0LoaA3eiCkGIHADAAMhFf6TwAbnDhXCAxugDs-Cu2dBHv2wsIiyypsDN3Lv-V+QCbayOxs7EMhBZEfhIWJWRoiJi4OnAY+RWZwpIBYHAPwD4ACc9pCDYMxpWM8s1LzXnhveJG2DYHbiUUQaegDHS+OXP41QgTq4hOnGEwgAirZOmAdhKxNi+QEXbtg2sjFkmDXsQQ32TjRD0GyQ1NJKCEa0XUd6YQQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9Abp6ACgA8AaRATwEpEBvAKEScQCdMoQWkAHVGFkuWoBuegF96oSLASJiEOCzwEohfNEU0GzVu05IAFplQATNSs2iJU6PCQUFS9auea6jZmw5dEUPgBtzDRYqK0lwW1kAZwhUfxxnQmBUYPJXEPcdL30UDASVJJSoRUQAKjlHZSJ0qnIPHQbGnWTgsspKxJrQ8XDpO0RTEyqXCxYARjTRgCYtet1vJDQsYZIOgvSxmkQ5pt2mAGoKxRX0mbq9i6YHY87RzaYdy4bD66d16apu6wiZJCiQABGJzuk2CM0ynj0PiW+SI8hu72C922Tz2AFojm9qh9zqimq9gUito88YgMQTbmDPmEbL9cstgCxUMhMIRFDAAOYwMDkTAmDmYCaIPkC8HaSELRD+GBRVTsrk84X8wW85UzGk-fry7nYRnM1l6lmzLJQpDS2XYNjAJJMlnkAAMX16kSQIsFuttBs9xolOXNUEtmGthsw5E2Gr6sjdUw9+pt+p9TGyPn9geDnvI6p6tP6IewCkUQzQ3HjRohSdNiFwiAAvAA+AYmIaJbVgWMs0uYWoo0l7QYrGJxWGqeFYlzdkm9qcNN1jdtehMT6e9wfxFYU9ZL5fbmdq+edz7U7Oa2RQJlgKLARTIbC8blQTACO9gB8scit0iT5eOMCPoU-x8xTmZMkBDWsG3FS4FAvKAUFrRA8wLFgi1QEsQ26VFoNlRBfwAd2wVt4OQNkWE5bkMKeEDEGfV9CBhfcvx3PCCNIhVcR3Jp-iBRJiIA8Ytw40lmNbATBJ0LiVl4xRfxYM4ezE1FhNY8ij0uMQIxdekcCiTAORZF81GwWVUBYKA0mwTAwBMRN5hyO8BFwIy-FM8zLOsjS6WM0yjN0-Tx3LWyfCMUw1CdHMoysny9Ms-zIMCpA-BgQJcCdAB6VLEAAIhMJlcO5DkBilblMEyxAjDYRAohgZAQH8VAHxMeh0sQAEKGo0iX3y3wjEQJCTG5erMCiRA4GAJqMqgHqvNg1ArOFObRu6zAit-Z06Ry1B8OlX9DOm1yrJs-qom4OqKEITLtuW6auvqzKKKYI6TtQM7HOm+7EEe07zsu+b+rAArbvez7nsMtywpPP5fJiqJsGKW8+BfR9CB06KX2wf0bKosD63kp4ryUYwIAMZGoZfcDcbEjatuKzt8zgQtsGLA9GIU5hkecgMUb8knUagT52NZvZEPp5DGdQ5nBcuQg3Ki7muZiw8Be3eW0YxsIsNguAQCgS6nJMgMxiIvIVntAA6e0HXN7oNZG7XdZlw2ay0lYxnNy3HVEG2tZ14rZZi7BHedlW5Tt33poDpXJcab37ci8N6C90Pfz17ypiN5ZEldi3EDNj2E4QbCY99mW06d+jM7dxAs+tgvNaT7TSYDUug8btl65TpvI6jnQi+Tkua5g22feT8OAGZ0+HQgs7DK3PdrofY6Gcey+NxJc5nvPE+HhveewZeW95tvt47veu+7phe5wGXR4Hwv2-DgAWCeTcr6u58Hy+LMip+V4zgp15zrPfOH976N2wD-A+3NP6PzPufT+MsH63zrsfGij54LBxhnDVBAgWbLn9EfXWwcI4U27tAsBUxPwAEhqGUOYGQ3eo8qE0LoaA3eiCkGIHADAAMhFf6TwAbnDhXCAxugDs-Cu2dBHv2wsIiyypsDN3Lv-V+QCbayOxs7EMhBZEfhIWJWRoiJi4OnAY+RWZwp-AAI4gFQFEAw2BuS4RMiYKIhBsGY0rGeWal5rzw3vEjbBsDtxKKIAIq2QTlwhNUGbAAbAAVktqPOJokFJRMIGbJJlt4lHgkMA7CURrG2KMEMT+2DayMQKTYuxDiwBOOQq40pCNXzdHoJUopfICLt2wdosA3D5yhCAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9Abp6ACgA8AaRATwEpEBvAKEScQCdMoQWkAHVGFkuWoBuegF96oSLASJiEOCzwEohfNEU0GzVu05IAFplQATNSs2iJU6PCQUFS9auea6jZmw5dEUPgBtzDRYqK0lwW1kAZwhUfxxnQmBUYPJXEPcdL30UDASVJJSoRUQAKjlHZSJ0qnIPHQbGnWTgsspKxJrQ8XDpO0RTEyqXCxYARjTRgCYtet1vJDQsYZIOgvSxmkQ5pt2mAGoKxRX0mbq9i6YHY87RzaYdy4bD66d16apu6wiZJCiQABGJzuk2CM0ynj0PiW+SI8hu72C922Tz2AFojm9qh9zqimq9gUito88YgMQTbmDPmEbL9cstgCxUMhMIRFDAAOYwMDkTAmDmYCaIPkC8HaSELRD+GBRVTsrk84X8wW85UzGk-fry7nYRnM1l6lmzLJQpDS2XYNjAJJMlnkAAMX16kSQIsFuttBs9xolOXNUEtmGthsw5E2Gr6sjdUw9+pt+p9TGyPn9geDnvI6p6tP6IewCkUQzQ3HjRohSdNiFwiAAvAA+AYmIaJbVgWMs0uYWoo0l7QYrGJxWGqeFYlzdkm9qcNN1jdtehMT6e9wfxFYU9ZL5fbmdq+edz7U7Oa2RQJlgKLARTIbC8blQTACO9gB8scit0iT5eOMCPoU-x8xTmZMkBDWsG3FS4FAvKAUFrRA8wLFgi1QEsQ26VFoNlRBfwAd2wVt4OQNkWE5bkMKeEDEGfV9CBhfcvx3PCCNIhVcR3Jp-iBRJiIA8Ytw40lmNbATBJ0LiVl4xRfxYM4ezE1FhNY8ij0uMQwiw2DwBgANCJrelh0Ie0ADp7QdUzuk0xBtIDN1sDGIi8hWMZTPMx1RCsmzsDsqZHOWRITLMxAXPc+hPLAHT5z8nAQ0ILyP3khSmC8uyJkY7cUuVbAsxzWR6KiTAORZF81GwWVUBYKA0m8sATETeYcjvARcDKvxKuqzBaqdXK-jagMCqKzrx3LBqfCMUw1G6k9XVqsrCuK4bINGpA-BgQJcCdAB6TbEAAIhMJlcO5DkBilblMF2xAjDYRAohgZAQH8VAHxMehtsQAEKGo0iX2O3wjEQJCTG5Z7MCiRA4GAN6dqgAHysqgZauFJHIf+zAzt-Z06QO1B8OlX9SvhqqqxquqRuBqJuCeihCF2-H0aJv7nt2iimApqnUBplqidZxB2ep2n6eR4GwBO5nef5znSs6uqIxdW75qGqJsGKW8+BfR9CAGhbsH9eqqLA+tEsuK8lGMCADC1xWX3A43BJxvHzs7fM4ELbBiwPdKksQLW+rmwaSu1obPnY73dkQ13kPd1DPbDi5CBl-2FqtgOoEPUPtyDl9dZlNONIQbDiFaiqAwc-T6IC1zEECyyC9govE7LgznKrkLa5guQk6G+zoq7kqi6J+yM7DhvZvDMK687wffPLpzEhCtz28L0nst7yugrbjzJ4H62Axn5us5HYvKuy4fvdHoYsysouaMfeDD+V1Xb4EL3p39Eg+9Ls+R8-7Kjxv9WtEvLoVED1D6YMYAmFZM-IUz8gI6CspTaUAZuBwHvGvAoJkACsi9RAIMnjRXWQZYL6TPKgC8psbzP0IDA7+24K6YKrjXOhy4kGRVQfeFh04GFEECmGCyvMrKENYgYEhvhzyXmvGre8ms4FcKnGwlBaCXzyN7Dw1QC9q4WVUaSdRRljI4OCgIvBvofCGwgq-JghD4jAFUCAyx1FAGWk5KIg8Ji9jqR6PQAEECoEf2fuQABMiQhxQigGEBQA

Building Abstractions with Data 2.2.4

about the details of the component painters other than that each painter will draw something

in its designated frame.

Exercise 2.50

De�ne the transformation flip_horiz, which �ips painters horizontally, and transformations

that rotate painters counterclockwise by 180 degrees and 270 degrees.

Exercise 2.51

De�ne the below operation for painters. The function below takes two painters as arguments.

The resulting painter, given a frame, draws with the �rst painter in the bottom of the frame

and with the second painter in the top. De�ne below in two di�erent ways—�rst by writing a

function that is analogous to the beside function given above, and again in terms of beside

and suitable rotation operations (from exercise 2.50).

Levels of language for robust design

The picture language exercises some of the critical ideas we’ve introduced about abstraction

with functions and data. The fundamental data abstractions, painters, are implemented using

functional representations, which enables the language to handle di�erent basic drawing ca-

pabilities in a uniform way. The means of combination satisfy the closure property, which

permits us to easily build up complex designs. Finally, all the tools for abstracting functions

are available to us for abstracting means of combination for painters.

We have also obtained a glimpse of another crucial idea about languages and program de-

sign. This is the approach of strati�ed design, the notion that a complex system should be

structured as a sequence of levels that are described using a sequence of languages. Each level

is constructed by combining parts that are regarded as primitive at that level, and the parts

constructed at each level are used as primitives at the next level. The language used at each

level of a strati�ed design has primitives, means of combination, and means of abstraction

appropriate to that level of detail.

Strati�ed design pervades the engineering of complex systems. For example, in computer

engineering, resistors and transistors are combined (and described using a language of ana-

log circuits) to produce parts such as and-gates and or-gates, which form the primitives of a

language for digital-circuit design.
29

These parts are combined to build processors, bus struc-

tures, and memory systems, which are in turn combined to form computers, using languages

29
Section 3.3.4 describes one such language.

158 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.2

appropriate to computer architecture. Computers are combined to form distributed systems,

using languages appropriate for describing network interconnections, and so on.

As a tiny example of strati�cation, our picture language uses primitive elements (primitive

painters) that specify points and lines to provide the shapes of a painter like rogers. The

bulk of our description of the picture language focused on combining these primitives, using

geometric combiners such as beside and below. We also worked at a higher level, regarding

beside and below as primitives to be manipulated in a language whose operations, such as

square_of_four, capture common patterns of combining geometric combiners.

Strati�ed design helps make programs robust, that is, it makes it likely that small changes

in a speci�cation will require correspondingly small changes in the program. For instance,

suppose we wanted to change the image based on wave shown in �gure 2.9. We could work at

the lowest level to change the detailed appearance of the wave element; we could work at the

middle level to change the way corner_split replicates the wave; we could work at the highest

level to change how square_limit arranges the four copies of the corner. In general, each level

of a strati�ed design provides a di�erent vocabulary for expressing the characteristics of the

system, and a di�erent kind of ability to change it.

Exercise 2.52

Make changes to the square limit of wave shown in �gure 2.9 by working at each of the levels

described above. In particular:

a. Change the pattern constructed by corner_split (for example, by using only one copy

of the up_split and right_split images instead of two).

b. Modify the version of square_limit that uses square_of_four so as to assemble the

corners in a di�erent pattern.

159 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.3.1

2.3 Symbolic Data

All the compound data objects we have used so far were constructed ultimately from numbers.

In this section we extend the representational capability of our language by introducing the

ability to work with strings of characters as data.

2.3.1 Strings

So far, we have used strings in order to display messages, using the functions display and

error, as for example in exercise 1.22). We can form compound data using strings and have

lists such as

list("a", "b", "c", "d")

list(23, 45, 17)

list(list("Norah", 12), list("Molly", 9),

list("Anna", 7), list("Lauren", 6),

list("Charlotte", 4))

Note that in order to distinguish strings from names, we surround them with double quotation

marks. For example, the JavaScript expression z denotes the value of the name z, whereas the

JavaScript expression "z" denotes a string that consists of one single character, namely the

last letter in the English alphabet in lower case.

Via quotation marks, we can distinguish between strings and names:

Iconst a = 1;

const b = 2;

Ilist(a, b);

[1 , [2 , nu l l]]

Ilist("a", "b");

[" a " , [" b " , nu l l]]

Ilist("a", b);

[" a " , [2 , nu l l]]

In section 1.1.6, we applied the primitive predicate === to numbers. From now on, we shall

allow === to take strings as operands, in which case it returns true if and only if the two strings

are the same.
30

Using ===, we can implement a useful function called member. This takes two

30
We can consider two strings to be “the same” if they consist of the same characters in the same order. Such a

de�nition skirts a deep issue that we are not yet ready to address: the meaning of “sameness” in a programming

language. We will return to this in chapter 3 (section 3.1.3).

160 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAhjAvDAjAbgFCkrARkmAJjSA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAhjAvDAjAbgFCkrARkmAJkwBsBLaACjgBoZcBKNIA
http://source-academy.github.io/playground#chap=4&prgrm=DYSwzgLgFARAhjANAAhgIxgSgNxA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAhjAvDAjAbgFCkrARkmAJkwBsBLaACgCI5qAaGXASjSA

Building Abstractions with Data 2.3.1

arguments, a string and a list. If the string is not contained in the list (i.e., is not === to any item

in the list), then member returns null. Otherwise, it returns the sublist of the list beginning

with the �rst occurrence of the string:

Ifunction member(item, x) {

return is_null(x)

? null

: item === head(x)

? x

: member(item, tail(x));

}

For example, the value of

Imember("apple", list("pear", "banana", "prune"));

is null, whereas the value of

Imember("apple",

list("x", list("apple","sauce"), "y", "apple", "pear"));

is ["apple", ["pear", null]].

Exercise 2.53

What would the interpreter print in response to evaluating each of the following statements?

Ilist("a", "b", "c");

Ilist(list("george"));

Itail(list(list("x1", "x2"), list("y1", "y2")));

Itail(head(list(list("x1", "x2"), list("y1", "y2"))));

Imember("red", list(list("red", "shoes"), list("blue", "socks")));

Imember("red", list("red", "shoes", "blue", "socks"));

Exercise 2.54

Two lists are said to be equal if they contain equal elements arranged in the same order. For

example,

Iequal(list("this", "is", "a", "list"),

list("this", "is", "a", "list"));

is true, but

Iequal(list("this", "is", "a", "list"),

161 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwKbIEaoE4AoZToA0iAHgJSIDeAUIvYtqlCNkjAM4D6YIANn1wU6DUQH5EvASNH0AXIgLpEAXjWIAFqgCGAEyHkZs+hNJHjCtJhz5CyElG0xBFcgG4aAXxo0rWPABE2gAOwXyoASR8nFC4AcE62JGIARjaYOnayfHY4BHk7kA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwKbIEaoE4AoZToA0iAHgJSIDeAUIvYtqlCNkjAM4D6YIANn1wU6DUQH5EvASNH0AXIgLpEAXjWIAFqgCGAEyHkZs+hNJHjCtJhz5CyElG0xBFcgG4aAXxpWseAETaAA5BfKj+JHycULj+QTrYEYj+GNpgadpJcdjg4eTuQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwKbIEaoE4AoZToA0iAHgJSIDeAUIvYtqlCNkjAM4D6YIANn1wU6DUQH5EvASNH0AXIgLpEAXjWIAFqgCGAEyHkZs+hNJHjCtJhz5CyElG0xBFcgG4aAXxpWseAETaAA5BfKj+ROb0fJxQuP6kEYgxHHGBIWER-hzaIBDh5CT+AJ5J6aHhRUE62P7k7kA
http://source-academy.github.io/playground#chap=4&prgrm=DYSwzgLgFARAhjANAAhgIyagxjAlAbiA
http://source-academy.github.io/playground#chap=4&prgrm=DYSwzgLgFKlQRAcwKYHsBOL4EpsG4g
http://source-academy.github.io/playground#chap=4&prgrm=C4QwlgNgFBYM7BvRAiAHgRhQGgAToCYUBKPWBKFATyz2qOMYG4g
http://source-academy.github.io/playground#chap=4&prgrm=C4QwlgNgFAFgpiAJlCYDOwXswIgB4CMOANAAT4BMOAlGahlDgJ5FnNXWfUDcQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwKbIEaoE4AoZToA0iAHgJSIDeAUIvYtqlCNkjAM4D6YIANn1wU6DUQH5EvASNH0AXIgLpEAXjWIAFqgCGAEyHkZs+hNJHjCtJhz5CyElG0xBFcgG4aAXxpWseAERMuv4kfJxQuGEcEYGowST+HBpwqBz+5KHhuP4YfCCoIYiJcBAA1mnklW5AA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwKbIEaoE4AoZToA0iAHgJSIDeAUIvYtqlCNkjAM4D6YIANn1wU6DUQH5EvASNH0AXIgLpEAXjWIAFqgCGAEyHkZs+hNJHjCtJhz5CyElG0xBFcgG4aAXxpWseAERMuv4kfJxQuIGowST+HBpwqBwhiP4YfCCoKXFwEADWyeTuQA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aoCmBHSBDANqPMqAEbqgDuATovPOmiQJ6gDO8kAJg-AFBa48ACjyJ2QgETwAFmIkAaUBLmKJOBUtHsJASkW9Qho1viSZKpRbUaJJ3ToDcQA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aoCmBHSBDANqPMqAEbqgDuATovPOmiQJ6gDO8kAJg-AFBa48ACjyJ2QgETwAFmIkAaUBLmKJOBUtHsJASnm9Qho1viSZK0CckW1u1Sd06A3EA

Building Abstractions with Data 2.3.2

list("this", list("is", "a"), "list"));

is false. To be more precise, we can de�ne equal recursively in terms of the basic === equality

of strings by saying that a and b are equal with respect to equal if they are both strings and

the strings are equal with respect to ===, or if they are both lists such that head(a) is equal

with respect to equal to head(b) and tail(a) is equal with respect to equal to tail(b). Using

this idea, implement equal as a function.
31

Exercise 2.55

The JavaScript interpreter reads the characters after the double quotation mark " until it �nds

another double quotation mark. All characters between the two are part of the string, excluding

the double quotation marks, themselves. What if we want a string to contain double quotation

marks? For this purpose, JavaScript also allows single quotation marks to form strings, as

for example in 'say your name aloud'. Within singly-quoted strings, we can use double

quotation marks, and vice versa, so 'say "your name" aloud' and "say 'your name' aloud"

are valid strings that have di�erent characters in positions 5 and 15, if we start counting at 1.

Depending on the font in use, two single quotation marks might not be easily distinguishable

from a double quotation mark. Can you spot which is which and work out the value of the

following expression?

I'"' === ""

2.3.2 Example: Symbolic Di�erentiation

As an illustration of symbol manipulation and a further illustration of data abstraction, consider

the design of a function that performs symbolic di�erentiation of algebraic expressions. We

would like the function to take as arguments an algebraic expression and a variable and

to return the derivative of the expression with respect to the variable. For example, if the

arguments to the function are ax2 +bx +c and x , the function should return 2ax +b. Symbolic

di�erentiation is of special historical signi�cance in Lisp. It was one of the motivating examples

behind the development of a computer language for symbol manipulation. Furthermore, it

marked the beginning of the line of research that led to the development of powerful systems

for symbolic mathematical work, which are currently being used by a growing number of

applied mathematicians and physicists.

In developing the symbolic-di�erentiation program, we will follow the same strategy of data

31
In practice, programmers use equal to compare lists that contain numbers as well as strings. Numbers are

not considered to be strings. A better de�nition of equal (such as the one we assume given in our JavaScript

environment) would also stipulate that if a and b are both numbers, then a and b are equal with respect to equal
if they are numerically equal.

162 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=OQImAIF5vEQbiA

Building Abstractions with Data 2.3.2

abstraction that we followed in developing the rational-number system of section 2.1.1. That

is, we will �rst de�ne a di�erentiation algorithm that operates on abstract objects such as

“sums,” “products,” and “variables” without worrying about how these are to be represented.

Only afterward will we address the representation problem.

The di�erentiation program with abstract data

In order to keep things simple, we will consider a very simple symbolic-di�erentiation pro-

gram that handles expressions that are built up using only the operations of addition and

multiplication with two arguments. Di�erentiation of any such expression can be carried out

by applying the following reduction rules:

dc

dx
= 0 for c a constant or a variable di�erent from x

dx

dx
= 1

d(u +v)

dx
=
du

dx
+
dv

dx

d(uv)

dx
= u

(
dv

dx

)
+v

(
du

dx

)
Observe that the latter two rules are recursive in nature. That is, to obtain the derivative of

a sum we �rst �nd the derivatives of the terms and add them. Each of the terms may in turn

be an expression that needs to be decomposed. Decomposing into smaller and smaller pieces

will eventually produce pieces that are either constants or variables, whose derivatives will be

either 0 or 1.

To embody these rules in a function we indulge in a little wishful thinking, as we did in

designing the rational-number implementation. If we had a means for representing algebraic

expressions, we should be able to tell whether an expression is a sum, a product, a constant,

or a variable. We should be able to extract the parts of an expression. For a sum, for example

we want to be able to extract the addend (�rst term) and the augend (second term). We should

also be able to construct expressions from parts. Let us assume that we already have functions

to implement the following selectors, constructors, and predicates:

163 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.3.2

is_variable(e) Is e a variable?

is_same_variable(v1, v2) Are v1 and v2 the same variable?

is_sum(e) Is e a sum?

addend(e) Addend of the sum e.

augend(e) Augend of the sum e.

make_sum(a1, a2) Construct the sum of a1 and a2.

is_product(e) Is e a product?

multiplier(e) Multiplier of the product e.

multiplicand(e) Multiplicand of the product e.

make_product(m1, m2) Construct the product of m1 and m2.

Using these, and the primitive predicate is_number, which identi�es numbers, we can express

the di�erentiation rules as the following function:

Ifunction deriv(exp, variable) {

return is_number(exp)

? 0

: is_variable(exp)

? (is_same_variable(exp, variable)) ? 1 : 0

: is_sum(exp)

? make_sum(deriv(addend(exp), variable),

deriv(augend(exp), variable))

: is_product(exp)

? make_sum(make_product(multiplier(exp),

deriv(multiplicand(exp),

variable)),

make_product(deriv(multiplier(exp),

variable),

multiplicand(exp)))

: error(exp,

"unknown expression type in deriv");

}

This deriv function incorporates the complete di�erentiation algorithm. Since it is expressed

in terms of abstract data, it will work no matter how we choose to represent algebraic expres-

sions, as long as we design a proper set of selectors and constructors. This is the issue we must

address next.

164 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfQG4EMBOMsBGANgKYAUAHgJSIDeAUIk4jiVCDkqmilHmAHNKVANz0AvvVCRYCZOhRYAtiUy58xchgCMAGkQYATDQbMWbDl3TY8hUmR00AZE8Zn38tbc0PjiFwbaiAC8oQaGYpLS0PBWPCBKwnRuTKzsnJ4ADlgwOEkBABYkWAAmSaHBiABEANRVkVLgMXJKWADWqigJZFh6iFh+psxplohEqFBktVX6vbPGDdGySK0daJk4cCUg0GRKfUqDKebpSOO8UwBUM4j7+oeiEo0ysf0lJSRgZSgmxyMZRVKZCgOSIZB+jyiTWW-RAAk+31+Zn+SEBZRBMDBGLBEMhz2acQ2Wx2k2oyWRFgy3GyuXyTkQaPKYSq10W0NeShARFgmXGJDyP3Jw0pqOK6NB4KoeKWHK5PPGECwX0lQtSIoZYuBEuxkqlbJecg+eAwZBIFEy+hsGlISOFp08YASBH5pvNVGOHkQAH5EAAGD0eABcnitdnIZsy7s9Hh9ZG4ihUXmt4fNlvUYal3sQQWD-uj7mD8e6Eaj+fcPtWnW6RpgJtKH2VJbT3htugDZbLNbrcIRrsjzeTUvb0cL6CJ212JeH+Yr7SriUr602E8mnO5MF5MBdTenHb3Xb2co3CqVZR3e4vF9Dmilbcv+cX45JZAPa-lW7y5-v37L19bu5-B8j03RVGzdIcf2DflNk-VMAMvKpwDaMA4AAdyQCNWBQFBXigABPTISGQJAuyqPF6APc5JhZG4qKuG4qgoBi8LI-Q6OmfRGJuABmW9qiY0QgA

Building Abstractions with Data 2.3.2

Representing algebraic expressions

We can imagine many ways to use list structure to represent algebraic expressions. For example,

we could use lists of symbols that mirror the usual algebraic notation, representing ax + b

as list("a", "*", "x", "+", "b"). However, it will be more convenient, if we re�ect the

mathematical structure of the expression in the JavaScript value representing it; that is, to

represent ax +b as list("+", list("*", "a", "x"), "b"). Then our data representation for

the di�erentiation problem is as follows:

– The variables are strings. They are identi�ed by the primitive predicate is_string:

Ifunction is_variable(x) {

return is_string(x);

}

– Two variables are the same if the strings representing them are equal:

Ifunction is_same_variable(v1, v2) {

return is_variable(v1) &&

is_variable(v2) && v1 === v2;

}

– Sums and products are constructed as lists:

Ifunction make_sum(a1, a2) {

return list("+", a1, a2);

}

Ifunction make_product(m1, m2) {

return list("*", m1, m2);

}

– A sum is a list whose �rst element is the string "+":

Ifunction is_sum(x) {

return is_pair(x) && head(x) === "+";

}

– The addend is the second item of the sum list:

Ifunction addend(s) {

return head(tail(s));

}

– The augend is the third item of the sum list:

Ifunction augend(s) {

return head(tail(tail(s)));

}

– A product is a list whose �rst element is the string "*":

Ifunction is_product(x) {

return is_pair(x) && head(x) === "*";

165 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfQG4EMBOMsBGANgKYAUAHgJSIDeAUIk4jiVCDkqmilHmAHNKVANz0AvvXrdseQqTIAiCgE8AXotFA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfQG4EMBOMsBGANgKYAUAHgJSIDeAUIk4jiVCDkqmilHmAHNKVANz0AvvVCRYCZOhRYAtiUy58xchgCMAGkQYATDQbMWbDl3TY8hUmR00AZE8Zn38tbc0PjiFwbaiAC8oQaGYpL03IoqXhr2AEQUAJ4AXon6yemJokA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ADgJzgBMRoAKZARgBoUAmASkQG8AoRDxfTKEfJADYwAzlDIAiAFTjaVWYwDcrAL6tQkWAhQYcwkMjKoaiVIxbtO3Xv0RDREgNQyTx0wyWrWaLNj0HvOATEpGLiAB7OAMwMsjp4hCTk4gCezuIAXuIM7kA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9AziZAClQEYAaRVAJgEpEBvAKERcQCdMoQ2kAbGXFEIAiANTCKpSbQDcjAL6NQkWAhQYcABzZwAJiGiFk5FLQbNWHLj0T9BIgFQSUJ5LIWNGaLHgJGN2Np6BkLCAB7OAMw0FN5aOvqGwgCezsIAXsI0NDJAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9AziZAClQEYAaRVAJgEpEBvAKERcQCdMoQ2kAbGXFEIAiANTCKpSbQDcjAL6NQkWAkQC8BQgA86TVu07ckGgA6oYbHXQBkNxAAtMqACbXEAXi+IxwuYsYNfCI0LE0iYW0JRABmGhoZIA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9AziZAClQEYAaRVAJgEpEBvAKERcQCdMoQ2kAbGXFEIAiANTCKpSbQDcjAL6NQkWAkoATdZjDrCuOk1btO3JAAtMqXVFQxeemjTmLGVrTsJoseAiIAeEogAzI4yQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9AziZAClQEYAaRVAJgEpEBvAKERcQCdMoQ2kAbGXFEIAiANTCKpSbQDcjAL6NQkWAkogA5pjAATQrjpNW7TtyQALTKj1RUMXoVv39NV3MWNUm7XrRY8BCIAHhKIAMxuQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9AziZAClQEYAaRVAJgEpEBvAKERcQCdMoQ2kAbGXFEIAiANTCKpSbQDcjAL6NQkWAhQYcABzZwAJiGiFk5FLQbNWHLj0T9BIgFQSUJ5LIVLw0eEgHZtegZCAB50TKzsnNy+uP6oMGyEoYgAZCmIABaYqLpJdAC8hYjCTnKKjH4B+oZoWP461ULCwc4AzDQ0MkA

Building Abstractions with Data 2.3.2

}

– The multiplier is the second item of the product list:

Ifunction multiplier(s) {

return head(tail(s));

}

– The multiplicand is the third item of the product list:

Ifunction multiplicand(s) {

return head(tail(tail(s)));

}

Thus, we need only combine these with the algorithm as embodied by deriv in order to have

a working symbolic-di�erentiation program. Let us look at some examples of its behavior:
32

Ideriv(list("+", "x", 3), "x");

l i s t ("+ " , 1 , 0)

Ideriv(list("*", "x", "y"), "x");

l i s t ("+ " , l i s t (" ∗ " , " x " , 0) ,
l i s t (" ∗ " , 1 , " y "))

Ideriv(list("*", list("*", "x", "y"), list("+", "x", 3)), "x");

l i s t ("+ " , l i s t (" ∗ " , l i s t (" ∗ " , " x " , " y ") ,
l i s t ("+ " , 1 , 0)) ,

l i s t (" ∗ " , l i s t ("+ " , l i s t (" ∗ " , " x " , 0) ,
l i s t (" ∗ " , 1 , " y ")) ,

l i s t ("+ " , " x " , 3)))

The program produces answers that are correct; however, they are unsimpli�ed. It is true

that

d(xy)

dx
= x · 0 + 1 · y

but we would like the program to know that x · 0 = 0, 1 · y = y, and 0 +y = y. The answer for

the second example should have been simply y. As the third example shows, this becomes a

serious issue when the expressions are complex.

Our di�culty is much like the one we encountered with the rational-number implementation:

we haven’t reduced answers to simplest form. To accomplish the rational-number reduction,

we needed to change only the constructors and the selectors of the implementation. We can

adopt a similar strategy here. We won’t change deriv at all. Instead, we will change make_sum

so that if both summands are numbers, make_sum will add them and return their sum. Also, if

one of the summands is 0, then make_sum will return the other summand.

32
The box notation introduced in section 2.2.1 becomes hard to read when nested lists are involved. Thus we

shall take the liberty to indicate the list structure by abusing the name list where convenient.

166 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9AziZAClQEYAaRVAJgEpEBvAKERcQCdMoQ2kAbGXFEIAiANTCKpSbQDcjAL6NQkWAhQYcABzZwAJiGiFk5FLQbNWHLj0T9BIgFQSUJ5LIVLw0eEmQhesJr8mGyEuHRMrOyc3EgAFpiouoRQqDC8YTQ0coqMfgEwQTAhRhrY2noGQsIAHs4AzFkyQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9AziZAClQEYAaRVAJgEpEBvAKERcQCdMoQ2kAbGXFEIAiANTCKpSbQDcjAL6NQkWAhQYcABzZwAJiGiFk5FLQbNWHLj0T9BIgFQSUJ5LIVLw0eEmQhesJr8EKhguoS4dEys7JzcSAAWmKjhUKgwvIRpGRE0eXKKjH4BMEEwIWFGGtjaegZCwgAezgDM+UA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfQG4EMBOMsBGANgKYAUAHgJSIDeAUIk4jiVCDkqmilHmAHNKVANz0AvvVCRYCZOhRYAtiUy58xchgCMAGkQYATDQbMWbDl3TY8hUmR00AZE8Zn38tbc0PjiFwbaiAC8oQaGYpLS0PBWPCBKwnRuTKzsnJ4ADlgwOEkBABYkWAAmSaHBiABEANRVkVLgMXJKWADWqigJZFh6iFh+psxplohEqFBktVX6vbPGDdGySK0daJk4cCUg0GRKfUqDKebpSOO8UwBUM4j7+oeiEo0ysf0lJSRgZSgmxyMZRVKZCgOSIZB+jyiTWW-RAAk+31+Zn+SEBZRBMDBGLBEMhz2acQ2Wx2k2oyWRFgy3GyuXyTkQaPKYSq10W0NeShARFgmXGJDyP3Jw0pqOK6NB4KoeKWHK5PPGECwX0lQtSIoZYuBEuxkqlbJecg+eAwZBIFEy+hsGlISOFp08YASBH5pvNVGOHkQAH5EAAGD0eABcnitdnIZsy7s9Hh9ZG4ihUXmt4fNlvUYal3sQQWD-uj7mD8e6Eaj+fcPtWnW6RpgJtKH2VJbT3htugDZbLNbrcIRrsjzeTUvb0cL6CJ212JeH+Yr7SriUr602E8mnO5MF5MBdTenHb3Xb2co3CqVZR3e4vF9Dmilbcv+cX45JZAPa-lW7y5-v37L19bu5-B8j03RVGzdIcf2DflNk-VMAMvKpwDaMA4AAdyQCNWBQFBXigABPTISGQJAuyqPED3OSZpn0KoKBuABmKgaLo0QgA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfQG4EMBOMsBGANgKYAUAHgJSIDeAUIk4jiVCDkqmilHmAHNKVANz0AvvVCRYCZOhRYAtiUy58xchgCMAGkQYATDQbMWbDl3TY8hUmR00AZE8Zn38tbc0PjiFwbaiAC8oQaGYpLS0PBWPCBKwnRuTKzsnJ4ADlgwOEkBABYkWAAmSaHBiABEANRVkVLgMXJKWADWqigJZFh6iFh+psxplohEqFBktVX6vbPGDdGySK0daJk4cCUg0GRKfUqDKebpSOO8UwBUM4j7+oeiEo0ysf0lJSRgZSgmxyMZRVKZCgOSIZB+jyiTWW-RAAk+31+Zn+SEBZRBMDBGLBEMhz2acQ2Wx2k2oyWRFgy3GyuXyTkQaPKYSq10W0NeShARFgmXGJDyP3Jw0pqOK6NB4KoeKWHK5PPGECwX0lQtSIoZYuBEuxkqlbJecg+eAwZBIFEy+hsGlISOFp08YASBH5pvNVGOHkQAH5EAAGD0eABcnitdnIZsy7s9Hh9ZG4ihUXmt4fNlvUYal3sQQWD-uj7mD8e6Eaj+fcPtWnW6RpgJtKH2VJbT3htugDZbLNbrcIRrsjzeTUvb0cL6CJ212JeH+Yr7SriUr602E8mnO5MF5MBdTenHb3Xb2co3CqVZR3e4vF9Dmilbcv+cX45JZAPa-lW7y5-v37L19bu5-B8j03RVGzdIcf2DflNk-VMAMvKpwDaMA4AAdyQCNWBQFBXigABPTISGQJAuyqPED3OSYWRuKoKBovCyP0WiyJEIA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfQG4EMBOMsBGANgKYAUAHgJSIDeAUIk4jiVCDkqmilHmAHNKVANz0AvvVCRYCZOhRYAtiUy58xchgCMAGkQYATDQbMWbDl3TY8hUmR00AZE8Zn38tbc0PjiFwbaiAC8oQaGYpLS0PBWPCBKwnRuTKzsnJ4ADlgwOEkBABYkWAAmSaHBiABEANRVkVLgMXJKWADWqigJZFh6iFh+psxplohEqFBktVX6vbPGDdGySK0daJk4cCUg0GRKfUqDKebpSOO8UwBUM4j7+oeiEo0ysf0lJSRgZSgmxyMZRVKZCgOSIZB+jyiTWW-RAAk+31+Zn+SEBZRBMDBGLBEMhz2acQ2Wx2k2oyWRFgy3GyuXyTkQaPKYSq10W0NeShARFgmXGJDyP3Jw0pqOK6NB4KoeKWHK5PPGECwX0lQtSIoZYuBEuxkqlbJecg+eAwZBIFEy+hsGlISOFp08YASBH5pvNVGOHkQAH5EAAGD0eABcnitdnIZsy7s9Hh9ZG4ihUXmt4fNlvUYal3sQQWD-uj7mD8e6Eaj+fcPtWnW6RpgJtKH2VJbT3htugDZbLNbrcIRrsjzeTUvb0cL6CJ212JeH+Yr7SriUr602E8mnO5MF5MBdTenHb3Xb2co3CqVZR3e4vF9Dmilbcv+cX45JZAPa-lW7y5-v37L19bu5-B8j03RVGzdIcf2DflNk-VMAMvKpwDaMA4AAdyQCNWBQFBXigABPTISGQJAuyqPED3OSYWRuSirhuKoKHovCyP0Wjpn0BibgAZlvapGNEIA

Building Abstractions with Data 2.3.2

Ifunction make_sum(a1, a2) {

return number_equal(a1, 0)

? a2

: number_equal(a2, 0)

? a1

: is_number(a1) && is_number(a2)

? a1 + a2

: list("+", a1, a2);

}

This uses the function number_equal, which checks whether an expression is equal to a given

number:

Ifunction number_equal(exp, num) {

return is_number(exp) && exp === num;

}

Similarly, we will change make_product to build in the rules that 0 times anything is 0 and 1

times anything is the thing itself:

Ifunction make_product(m1, m2) {

return number_equal(m1, 0) || number_equal(m2, 0)

? 0

: number_equal(m1, 1)

? m2

: number_equal(m2, 1)

? m1

: is_number(m1) && is_number(m2)

? m1 * m2

: list("*", m1, m2);

}

Here is how this version works on our three examples:

Ideriv(list("+", "x", 3), "x");

1

Ideriv(list("*", "x", "y"), "x");

" y "

Ideriv(list("*", list("*", "x", "y"), list("+", "x", 3)), "x");

l i s t ("+ " ,
l i s t (" ∗ " , " x " , " y ") ,
l i s t (" ∗ " , " y " , l i s t ("+ " , " x " , 3)))

Although this is quite an improvement, the third example shows that there is still a long way to

go before we get a program that puts expressions into a form that we might agree is “simplest.”

167 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABGEBbARgUwE4H1MCOIAhgDYAUmAHgA4A0yaAlIgN4BQiXi2mUI2JDADOuFBhyVaLAGQzE1GogC8qxqgDc7AL7tQkWAkSpiAa0y5hacsQCMDYgCYWHbjz4Ck4rHkIkKdgwADEycbuGIAPyITmER3ABc6j74RGQ2jsGh8RHRduwAkOFJImJoPja2svKl3pJO2Tm5MbaIANQxjnFNiYikIlDkAERtQw72nUxauuwm5pbWmYgAzFNAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABGEBbARgUwE4H1MCOIAhgDYAUmAHgA4A0yaAlIgN4BQiXi2mUI2JDADOuFBhyVaLAGQzE1GogC8qxqgDc7AL7t24rHkIkKAZgammGoA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABGEBbARgUwE4H1MCOIAhgDYAUmAHgA4A0yaAlIgN4BQiXi2mUI2JDADOuFBhyVaLAGQzE1GogC8qxqgDc7AL7tQkWAkSpiAa0y4a2OABMQ0cqgCMDVACYWHbjz4Ck4rDxCEgpnBgAGFgAfKPVA-CIyRzcIpk5vDMQAfkRw9MzuAC44nASQxxdEJzSCzJz3fNquYoDS4KT3BmrGpvqnHtrikTE0QIrZeWHW7GSapoy+xAAqYzcBpuLSEShyACIl3ddK9yYtXXYTc0trOwcUxABmU6A
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfQG4EMBOMsBGANgKYAUAHgJSIDeAUIk4jiVCDkqmilHmAHNKVANz0AvvVCRYCZOhRYAtiUy58xchgCMAGkQYATDQbMWbDl3TY8hUmR00AZE8Zn38tbc0PjiFwbaiAC8oQaGYpLS0PBWPCBKwnRuTKzsnJ4ADlgwOEkBABYkWAAmSaHBiABEANRVkVLgMXJgCQQkOGgkAI4gWERkJBSZ+q1KJinm6XFj7XlDmc5OiAshYWMN0bJISlgA1qooCWRYeohYfqbMaZaIsx1dvf0nZwAMVJMeiAD854afHgAXHc2g8en0Bhd9O8AV9fqd6ABIdzA7j3PKnJaedEnYywr4-c5BGp-fFfYFEVBQMi1Kr6U704ybJrbRC7A5oTI4OAlEDQMhKM5KS6TG4ZdGPCECt40AA+spBSjmkuewuhHwJzF+rzJTGBEvBqrO2g1mq1bP+ZuY+tBnUNAzViBNuvNgpdeuxtulWLRXuFpqtTF+gsQACoLe7rYhKbwaaG6WyhUyJI0ZLFziUSiQwGUUBMzGKkEVSmQoDkBnnRCmtumsCABNnc-nrhYMsWymWYANOxWqH3mWm5NwuTy+dTqMkC624tlcvllu3ymEqvGB80diAiLBMpSOmQ85OW9NEIue-v+9WWemlJvt5SIFgc+fD6lpyfih3y6Wv5Wq1Er3IWZ4BggzDPoNgaKQzavsevpKnuCwBgS2ouqi1jqHY5CIZGvxkNwigqF4kFYWBBgYZofaEkEwI6oGiBofEiTYXRQZsvshzHEBMAgaUWZPoh4HkVBuiRnRXE8fWjagYsgneFBSFWgxI68vyzEsax7IcYkmmctyKnUjeW4wDuMAIcMVAiepVmIOJAq3sZ96PmUAmidZXwQZhfaWW5mo6cpY5kLZhl3qZ8zmd5PmRcwHkURFUXWcFDkwA+-HmX2rkeh03JhSMGWalU4B7GAcAAO5IAsrAoCg6ZQAAnpkJDIEg4lVH+9C2TG1K0voVQUAmADMFnVH1ohAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfQG4EMBOMsBGANgKYAUAHgJSIDeAUIk4jiVCDkqmilHmAHNKVANz0AvvVCRYCZOhRYAtiUy58xchgCMAGkQYATDQbMWbDl3TY8hUmR00AZE8Zn38tbc0PjiFwbaiAC8oQaGYpLS0PBWPCBKwnRuTKzsnJ4ADlgwOEkBABYkWAAmSaHBiABEANRVkVLgMXJgCQQkOGgkAI4gWERkJBSZ+q1KJinm6XFj7XlDmc5OiAshYWMN0bJISlgA1qooCWRYeohYfqbMaZaIsx1dvf0nZwAMVJMeiAD854afHgAXHc2g8en0Bhd9O8AV9fqd6ABIdzA7j3PKnJaedEnYywr4-c5BGp-fFfYFEVBQMi1Kr6U704ybJrbRC7A5oTI4OAlEDQMhKM5KS6TG4ZdGPCECt40AA+spBSjmkuewuhHwJzF+rzJTGBEvBqrO2g1mq1bP+ZuY+tBnUNAzViBNuvNgpdeuxtulWLRXuFpqtTF+gsQACoLe7rYhKbwaaG6WyhUyJI0ZLFziUSiQwGUUBMzGKkEVSmQoDkBnnRCmtumsCABNnc-nrhYMsWymWYANOxWqH3mWm5NwuTy+dTqMkC624tlcvllu3ymEqvGB80diAiLBMpSOmQ85OW9NEIue-v+9WWemlJvt5SIFgc+fD6lpyfih3y6Wv5Wq1Er3IWZ4BggzDPoNgaKQzavsevpKnuCwBgS2ouqi1jqHY5CIZGvxkNwigqF4kFYWBBgYZofaEkEwI6oGiBofEiTYXRQZsvshzHEBMAgaUWZPoh4HkVBuiRnRXE8fWjagYsgneFBSFWgxI68vyzEsax7IcYkmmctyKnUjeW4wDuMAIcMVAiepVmIOJAq3sZ96PmUAmidZXwQZhfaWW5mo6cpY5kLZhl3qZ8zmd5PmRcwHkURFUXWcFDkwA+-HmX2rkeh03JhSMGWalU4B7GAcAAO5IAsrAoCg6ZQAAnpkJDIEg4lVH+9C2TG1IrgmVQUD1tWtfovWtSIQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfQG4EMBOMsBGANgKYAUAHgJSIDeAUIk4jiVCDkqmilHmAHNKVANz0AvvVCRYCZOhRYAtiUy58xchgCMAGkQYATDQbMWbDl3TY8hUmR00AZE8Zn38tbc0PjiFwbaiAC8oQaGYpLS0PBWPCBKwnRuTKzsnJ4ADlgwOEkBABYkWAAmSaHBiABEANRVkVLgMXJgCQQkOGgkAI4gWERkJBSZ+q1KJinm6XFj7XlDmc5OiAshYWMN0bJISlgA1qooCWRYeohYfqbMaZaIsx1dvf0nZwAMVJMeiAD854afHgAXHc2g8en0Bhd9O8AV9fqd6ABIdzA7j3PKnJaedEnYywr4-c5BGp-fFfYFEVBQMi1Kr6U704ybJrbRC7A5oTI4OAlEDQMhKM5KS6TG4ZdGPCECt40AA+spBSjmkuewuhHwJzF+rzJTGBEvBqrO2g1mq1bP+ZuY+tBnUNAzViBNuvNgpdeuxtulWLRXuFpqtTF+gsQACoLe7rYhKbwaaG6WyhUyJI0ZLFziUSiQwGUUBMzGKkEVSmQoDkBnnRCmtumsCABNnc-nrhYMsWymWYANOxWqH3mWm5NwuTy+dTqMkC624tlcvllu3ymEqvGB80diAiLBMpSOmQ85OW9NEIue-v+9WWemlJvt5SIFgc+fD6lpyfih3y6Wv5Wq1Er3IWZ4BggzDPoNgaKQzavsevpKnuCwBgS2ouqi1jqHY5CIZGvxkNwigqF4kFYWBBgYZofaEkEwI6oGiBofEiTYXRQZsvshzHEBMAgaUWZPoh4HkVBuiRnRXE8fWjagYsgneFBSFWgxI68vyzEsax7IcYkmmctyKnUjeW4wDuMAIcMVAiepVmIOJAq3sZ96PmUAmidZXwQZhfaWW5mo6cpY5kLZhl3qZ8zmd5PmRcwHkURFUXWcFDkwA+-HmX2rkeh03JhSMGWalU4B7GAcAAO5IAsrAoCg6ZQAAnpkJDIEg4lVH+9C2TG1IrgmnVxgmVQUP1tWtfovW0voA0JgAzF51SDaIQA

Building Abstractions with Data 2.3.2

The problem of algebraic simpli�cation is complex because, among other reasons, a form that

may be simplest for one purpose may not be for another.

Exercise 2.56

Show how to extend the basic di�erentiator to handle more kinds of expressions. For instance,

implement the di�erentiation rule

d(un)

dx
= nun−1

(
du

dx

)
by adding a new clause to the deriv program and de�ning appropriate functions is_exp, base,

exponent, and make_exp. (You may use the string "**" to denote exponentiation.) Build in the

rules that anything raised to the power 0 is 1 and anything raised to the power 1 is the thing

itself.

Exercise 2.57

Extend the di�erentiation program to handle sums and products of arbitrary numbers of (two

or more) terms. Then the last example above could be expressed as

Ideriv(list("*", "x", "y", list("+", "x", 3)), "x");

Try to do this by changing only the representation for sums and products, without changing

the deriv function at all. For example, the addend of a sum would be the �rst term, and the

augend would be the sum of the rest of the terms.

Exercise 2.58

Suppose we want to modify the di�erentiation program so that it works with ordinary mathe-

matical notation, in which "+" and "*" are in�x rather than pre�x operators. Since the di�er-

entiation program is de�ned in terms of abstract data, we can modify it to work with di�erent

representations of expressions solely by changing the predicates, selectors, and constructors

that de�ne the representation of the algebraic expressions on which the di�erentiator is to

operate.

a. Show how to do this in order to di�erentiate algebraic expressions presented in in�x

form, as in this example:

list("x", "+",

list(3, "*",

list("x", "+",

list("y", "+", 2))))

168 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfQG4EMBOMsBGANgKYAUAHgJSIDeAUIk4jiVCDkqmilHmAHNKVANz0AvvVCRYCZOhRYAtiUy58xchgCMAGkQYATDQbMWbDl3TY8hUmR00AZE8Zn38tbc0PjiFwbaiAC8oQaGYpLS0PBWPCBKwnRuTKzsnJ4ADlgwOEkBABYkWAAmSaHBiABEANRVkVLgMXJgCQQkOGgkAI4gWERkJBSZ+q1KJinm6XFj7XlDmc5OiAshYWMN0bJISlgA1qooCWRYeohYfqbMaZaIsx1dvf0nZwAMVJMeiAD854afHgAXHc2g8en0Bhd9O8AV9fqd6ABIdzA7j3PKnJaedEnYywr4-c5BGp-fFfYFEVBQMi1Kr6U704ybJrbRC7A5oTI4OAlEDQMhKM5KS6TG4ZdGPCECt40AA+spBSjmkuewuhHwJzF+rzJTGBEvBqrO2g1mq1bP+ZuY+tBnUNAzViBNuvNgpdeuxtulWLRXuFpqtTF+gsQACoLe7rYhKbwaaG6WyhUyJI0ZLFziUSiQwGUUBMzGKkEVSmQoDkBnnRCmtunuFyeXzqdRkgWLBk6zk8s3CsUys2KtV48y03IlCAiLBMpSOmQ8y3rm2i73S+XZ1Qq5IAPSbxAQApYQQkRBQIrmLkkFDZsusuDAY8dJQoejbxAEACeiCzwBgYB-AnOIACNmJTnDmbLjpOlIQAeJT0KmzRIFmeAYIMwz6DYGikPmC7TJ6SozgsAYEtqLqotY6h2OQhGRr8ZDcIoKheJhVFoQYFGaDQvxBMCMKBogZHxIk1F8UGbL7IcxxITAKGlFmOaoYs6HsVhuiRnxUkyYBwEKVQSneFhRFWgJ9a8vywkiaJ7ISYkVmctypnUmOE4wFOMAEcMulqRZzAaQKEEuVBME6ap3mhe4GGUeuIVhZqtkmY2ZBeaFvlOZBbnzB50UxaFEUcVl2Wxf5rnQfJhHrkl-ErDg3IZSMFUElU4B7GAcAAO5IAsrAoCg6ZQG+mRHj+n4dNJVQbvQvkxtSVTxvoVQUAmVRvgmU00nUc0LfoADMUXVAtohAA

Building Abstractions with Data 2.3.3

To simplify the task, assume that "+" and "*" always take two arguments and that

expressions are fully parenthesized.

b. The problem becomes substantially harder if we allow a notation closer to in�x notation,

assuming that multiplication has higher precedence than addition, as in this example:

list("x", "+", "3", "*", list("x", "+", "y", "+", 2))

Can you design appropriate predicates, selectors, and constructors for this notation such

that our derivative program still works?

2.3.3 Example: Representing Sets

In the previous examples we built representations for two kinds of compound data objects:

rational numbers and algebraic expressions. In one of these examples we had the choice of

simplifying (reducing) the expressions at either construction time or selection time, but other

than that the choice of a representation for these structures in terms of lists was straightforward.

When we turn to the representation of sets, the choice of a representation is not so obvious.

Indeed, there are a number of possible representations, and they di�er signi�cantly from one

another in several ways.

Informally, a set is simply a collection of distinct objects. To give a more precise de�nition

we can employ the method of data abstraction. That is, we de�ne “set” by specifying the opera-

tions that are to be used on sets. These are union_set, intersection_set, is_element_of_set,

and adjoin_set. The function is_element_of_set is a predicate that determines whether a

given element is a member of a set. The function adjoin_set takes an object and a set as ar-

guments and returns a set that contains the elements of the original set and also the adjoined

element. The function union_set computes the union of two sets, which is the set containing

each element that appears in either argument. The function intersection_set computes the

intersection of two sets, which is the set containing only elements that appear in both argu-

ments. From the viewpoint of data abstraction, we are free to design any representation that

implements these operations in a way consistent with the interpretations given above.
33

33
If we want to be more formal, we can specify “consistent with the interpretations given above” to mean that

the operations satisfy a collection of rules such as these:

– For any set S and any object x, is_element_of_set(x,S) is true (informally: “Adjoining an object to a set

produces a set that contains the object”).

– For any sets S and T and any object x, is_element_of_set(x,union_set(S,T)) is equal to

is_element_of_set(x,S) || is_element_of_set(x,T) (informally: “The elements of union(S,T) are

the elements that are in S or in T”).

– For any object x, is_element_of_set(x,null) is false (informally: “No object is an element of the empty

set”).

169 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.3.3

Sets as unordered lists

One way to represent a set is as a list of its elements in which no element appears more than

once. The empty set is represented by the empty list. In this representation,is_element_of_set

is similar to the function member of section 2.3.1. It uses equal instead of === so that the set

elements need not be just numbers or strings:

Ifunction is_element_of_set(x, set) {

return ! is_null(set) &&

(equal(x, head(set)) ||

is_element_of_set(x, tail(set)));

}

Using this, we can write adjoin_set. If the object to be adjoined is already in the set, we

just return the set. Otherwise, we use pair to add the object to the list that represents the set:

Ifunction adjoin_set(x, set) {

return is_element_of_set(x, set)

? set

: pair(x, set);

}

For intersection_set we can use a recursive strategy. If we know how to form the inter-

section of set2 and the tail of set1, we only need to decide whether to include the head of

set1 in this. But this depends on whether head(set1) is also in set2. Here is the resulting

function:

Ifunction intersection_set(set1, set2) {

return is_null(set1) || is_null(set2)

? null

: is_element_of_set(head(set1), set2)

? pair(head(set1),

intersection_set(tail(set1), set2))

: intersection_set(tail(set1), set2);

}

In designing a representation, one of the issues we should be concerned with is e�ciency.

Consider the number of steps required by our set operations. Since they all use is_element_of_set,

the speed of this operation has a major impact on the e�ciency of the set implementation as

a whole. Now, in order to check whether an object is a member of a set, is_element_of_set

may have to scan the entire set. (In the worst case, the object turns out not to be in the set.)

Hence, if the set has n elements, is_element_of_set might take up to n steps. Thus, the num-

ber of steps required grows as Θ(n). The number of steps required by adjoin-set, which uses

this operation, also grows as Θ(n). For intersection_set, which does an is_element_of_set

check for each element of set1, the number of steps required grows as the product of the sizes

170 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwCYCs4zAfQM4CmUAFAB4A0ihUAlIgN4BQiLiATkSG0jHjgQBsCAWwJgoOOMHxEylajWatlrAPxUiSlcoBciAA7IYbORtoBuRgF9GoSLASJe-IaPGTp1UwoZaOULiQAQic+MBABAWIfADIYxC1tRGJEAgBHEGQoikQACwI0aKIaOgAfUoSklWdBETEJKRkSHKgjKIU6GksbRhrXeo8m4gBGAFZyRLRMbCHhgAZKKaxcLzHFjGWhgCYFxHDIkpLzIA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfQKYBsMFsNhRpzBooZQAUAHgDSLlQCUiA3gFCJcBOFI3SAITJ0YEFiyVGLAGQzEnLkuWVEGAI4gAhpLqIAFhi0ATKRSYsAPpYXK7S1Jhz5CxUoxr0oWmJOksmAG52AF92UEhYBEQTACs4GDAyCk8GczZFHj4BESc8AiISZKo9aUz7LgB+NKhyioAuRAAHH25U6WCw9jiEpI8ARgAGeh7E4sp+gFYR43ixjwAmYcQxCQsgoA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfQKYBsMFsNhRpzBooZQAUAHgDSLlQCUiA3gFCJcBOFI3SAITJ0YEFiyVGLAGQzEnLkuWVEGAI4gAhpLqIAFhi0ATKRSYsAPpYXK7S1Jhz5CxUoxr0oWmJOksmAG52AF92UEhYBEQTACs4GDAyCk8GczZFHj4BESc8AiISZKo9aUz7LgB+NKhyioAuRAAHH25U6WCwiOh4JESoDG5yHoRisygARnpGACYWDmVeKH4+0XE-CgmrG0cxCXG5uvtqvawju0bHbHzXIo9DE3Gt6YpDiuPm1soH00Zn8-edn6g2GUSSHm8vieTBeUDmTABF2QhBBGBG4JSkI2kxhNTmnXY7GBQzRYLGmTiCQxVAmAAZ6JTEmMZvSYsZ4kyPABmVmnCwwinsqljOkMoWclITACsYo51MoLPofP5gSAA

Building Abstractions with Data 2.3.3

of the sets involved, or Θ(n2) for two sets of size n. The same will be true of union_set.

Exercise 2.59

Implement the union_set operation for the unordered-list representation of sets.

Exercise 2.60

We speci�ed that a set would be represented as a list with no duplicates. Now suppose we allow

duplicates. For instance, the set {1, 2, 3} could be represented as the list list(2, 3, 2, 1, 3,

2, 2). Design functions is_element_of_set, adjoin_set, union_set, and intersection_set

that operate on this representation. How does the e�ciency of each compare with the corre-

sponding function for the non-duplicate representation? Are there applications for which you

would use this representation in preference to the non-duplicate one?

Sets as ordered lists

One way to speed up our set operations is to change the representation so that the set elements

are listed in increasing order. To do this, we need some way to compare two objects so that

we can say which is bigger. For example, we could compare symbols lexicographically, or we

could agree on some method for assigning a unique number to an object and then compare the

elements by comparing the corresponding numbers. To keep our discussion simple, we will

consider only the case where the set elements are numbers, so that we can compare elements

using > and <. We will represent a set of numbers by listing its elements in increasing order.

Whereas our �rst representation above allowed us to represent the set {1, 3, 6, 10} by listing

the elements in any order, our new representation allows only the list list(1, 3, 6, 10).

One advantage of ordering shows up in is_element_of_set: In checking for the presence

of an item, we no longer have to scan the entire set. If we reach a set element that is larger

than the item we are looking for, then we know that the item is not in the set:

Ifunction is_element_of_set(x,set) {

return ! is_null(set) && x === head(set)

? true

: x < head(set)

? false

: is_element_of_set(x, tail(set));

}

How many steps does this save? In the worst case, the item we are looking for may be the

largest one in the set, so the number of steps is the same as for the unordered representation.

On the other hand, if we search for items of many di�erent sizes we can expect that sometimes

171 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfQKYBsMFsNhRpzBooZQAUAHgDTlQCUiA3gFCKeIBOFI3SAITJ0YEFiyUGzAGQzE1RAF4ViABYYAhgBMpFRhy5GuAfkRRuIDIeNGAXAsQAedVt3Sbto2eCas5Ty9OB1RMHHxCYlIGGlpzTRhJaUYAbjYAXzY2UOw8AiISMgpKAEYAVjisVCoSgAY48riAJlrGVKA

Building Abstractions with Data 2.3.3

we will be able to stop searching at a point near the beginning of the list and that other times

we will still need to examine most of the list. On the average we should expect to have to

examine about half of the items in the set. Thus, the average number of steps required will be

about n/2. This is still Θ(n) growth, but it does save us, on the average, a factor of 2 in number

of steps over the previous implementation.

We obtain a more impressive speedup with intersection_set. In the unordered represen-

tation this operation required Θ(n2) steps, because we performed a complete scan of set2 for

each element of set1. But with the ordered representation, we can use a more clever method.

Begin by comparing the initial elements, x1 and x2, of the two sets. If x1 equals x2, then that

gives an element of the intersection, and the rest of the intersection is the intersection of the

tails of the two sets. Suppose, however, that x1 is less than x2. Since x2 is the smallest element

in set2, we can immediately conclude that x1 cannot appear anywhere in set2 and hence is

not in the intersection. Hence, the intersection is equal to the intersection of set2 with the

tail of set1. Similarly, if x2 is less than x1, then the intersection is given by the intersection

of set1 with the tail of set2. Here is the function:

Ifunction intersection_set(set1, set2) {

if (is_null(set1) || is_null(set2)) {

return null;

} else {

const x1 = head(set1);

const x2 = head(set2);

return x1 === x2

? pair(x1, intersection_set(tail(set1),

tail(set2)))

: x1 < x2

? intersection_set(tail(set1), set2)

: intersection_set(set1,

tail(set2));

}

}

To estimate the number of steps required by this process, observe that at each step we reduce

the intersection problem to computing intersections of smaller sets—removing the �rst element

from set1 or set2 or both. Thus, the number of steps required is at most the sum of the sizes

of set1 and set2, rather than the product of the sizes as with the unordered representation.

This is Θ(n) growth rather than Θ(n2)—a considerable speedup, even for sets of moderate size.

172 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDMUCmAnAzm68wD6OUAFMQIwA0ixATAJSIDeAUIu8sIiTFgWCAA2gsmijlGAH0nI+A4aKgNGrDmsQYxIDEnmCA3Gw4BfRGkE5mRtRARYoiAB7lEAXkQALNAEMAJoolDdURbMHsnWjdPH386eiD1TShtJGc3V3dHWmtgtQB+RAAHbxgMEmdqFHRsXFgEIjESKBKRCnpKHNyu7p72ZphWsWV6Tq6ALicXAB4IxFHugqrMHDx64iaWgPaaIZHetQmlmtXCdYoO-cvu-sGlenic4xYnliOVutPG60FeUnIABmotEBiAAzP92t9fiQAdRyABWIEQ+JAA

Building Abstractions with Data 2.3.3

Exercise 2.61

Give an implementation of adjoin_set using the ordered representation. By analogy with

is_element_of_set show how to take advantage of the ordering to produce a function that

requires on the average about half as many steps as with the unordered representation.

Exercise 2.62

Give a Θ(n) implementation of union_set for sets represented as ordered lists.

Sets as binary trees

We can do better than the ordered-list representation by arranging the set elements in the

form of a tree. Each node of the tree holds one element of the set, called the “entry” at that

node, and a link to each of two other (possibly empty) nodes. The “left” link points to elements

smaller than the one at the node, and the “right” link to elements greater than the one at the

node. Figure 2.16 shows some trees that represent the set {1, 3, 5, 7, 9, 11}. The same set may

be represented by a tree in a number of di�erent ways. The only thing we require for a valid

representation is that all elements in the left subtree be smaller than the node entry and that

all elements in the right subtree be larger.

7 3 5

3 9 1 7 93

1 11 5 9 1 7 11

11

5

Figure 2.16: Various binary trees that represent the set {1, 3, 5, 7, 9, 11}.

The advantage of the tree representation is this: Suppose we want to check whether a number

x is contained in a set. We begin by comparing x with the entry in the top node. If x is less than

this, we know that we need only search the left subtree; if x is greater, we need only search

the right subtree. Now, if the tree is “balanced,” each of these subtrees will be about half the

size of the original. Thus, in one step we have reduced the problem of searching a tree of size

n to searching a tree of size n/2. Since the size of the tree is halved at each step, we should

173 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.3.3

expect that the number of steps needed to search a tree of size n grows as Θ(logn).34
For large

sets, this will be a signi�cant speedup over the previous representations.

We can represent trees by using lists. Each node will be a list of three items: the entry at

the node, the left subtree, and the right subtree. A left or a right subtree of the empty list will

indicate that there is no subtree connected there. We can describe this representation by the

following functions:
35

Ifunction entry(tree) {

return head(tree);

}

function left_branch(tree) {

return head(tail(tree));

}

function right_branch(tree) {

return head(tail(tail(tree)));

}

function make_tree(entry,left,right) {

return list(entry,left,right);

}

Now we can write the is_element_of_set function using the strategy described above:

Ifunction is_element_of_set(x, set) {

return ! is_null(set) &&

(x === entry(set) ||

(x < entry(set)

? is_element_of_set(x, left_branch(set))

: is_element_of_set(x, right_branch(set))

)

);

}

Adjoining an item to a set is implemented similarly and also requires Θ(logn) steps. To

adjoin an item x, we compare x with the node entry to determine whether x should be added

to the right or to the left branch, and having adjoined x to the appropriate branch we piece

this newly constructed branch together with the original entry and the other branch. If x is

equal to the entry, we just return the node. If we are asked to adjoin x to an empty tree, we

generate a tree that has x as the entry and empty right and left branches. Here is the function:

Ifunction adjoin_set(x,set) {

return is_null(set)

34
Halving the size of the problem at each step is the distinguishing characteristic of logarithmic growth, as we

saw with the fast-exponentiation algorithm of section 1.2.4 and the half-interval search method of section 1.3.3.

35
We are representing sets in terms of trees, and trees in terms of lists—in e�ect, a data abstraction built upon

a data abstraction. We can regard the functions entry, left_branch, right_branch, and make_tree as a way of

isolating the abstraction of a “binary tree” from the particular way we might wish to represent such a tree in

terms of list structure.

174 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAUzFATgTwBQecgSkQG8AoRC9ZKEdJAC2QEMATXKwgblIF9TRIsBIgA2yYFAD6AI3RNI9dviJkKiKjTqJGrXExgilhAtz4Do8JOhgBzelNnyIivIRLlK1Wg2Zso+w38DIwJQ035wC2EAWyYAa2RJV2xUDEwAGjEJdOs7KBUPdS8tERgAZygUtCxM8Sgc23sTXlJSVKxsDyyHOQVOtXVGnqdFQrVYhKSObABGAAZ0sYHltTAQERFFle3x+MTkgGYFpZ3TgYn96YAmBbWN9LuRAi2z14HH0M-OIA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAUzFATgTwBQecgSkQG8AoRC9ZKEdJAC2QEMATXKwgblIF9TRIsBIgA2yYFAD6AI3RNI9dviJkKiKjTqJGrXExgilhAtz4Do8JOhgBzelNnyIivIRLlK1Wg2Zso+w38DIwJQ035wC2EAWyYAa2RJV2xUDEwAGjEJdOs7KBUPdS8tERgAZygUtCxM8Sgc23sTXgjBS0RyyWQxaNTJOGBJMupsAA90xGH89zUizSQAQg6yyTAQEUMpogAybcLZ2exEUcQAXnOUapwtxAAfW-2Dw+PEAB5LtOwtx6fZgH5ll0en0BkMRuNRHUZHIFF9qKEfr8KAAuQHdZC9ND9QZTMYTXL2aFORRbAiIp5kpFqZp8UiddGYqSg3EAJgADBN9rEEkkONgAIwc8lrDbpcncxLJADMQqpaglvPw2HZExFIlV6xEBDFcooatCJiAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAUzFATgTwBQecgSkQG8AoRC9ZKEdJAC2QEMATXKwgblIF9TRIsBIgA2yYFAD6AI3RNI9dviJkKiKjTqJGrXExgilhAtz4Do8JOhgBzelNnyIivIRLlK1Wg2Zso+w38DIwJQ035wC2EAWyYAa2RJV2xUDEwAGjEJdOs7KBUPdS8tERgAZygUtCxM8Sgc23sTXgjBS0RWACs4GDBJMupsAA90gfz3NSLNJHLJMBARQzGCQsnJgH5EWISkjmH0xHnFg6ORFbWLgC5EIcQAXgeUapxl1Yu1TbG398Rr24AeJ5pbCvH7vTbbRLJVJYEHUAjpb5gi5dHp9Mb7UR1GRyBRw-IIpHIya5ew4pyKZbnYlqa6Q3b4KrA5aImlgrIOXHOfGEtk-VG9fqDEbqRqcik8sItUgC9GDACMAAYDrKhZV5QBWFUsbqCjEAJmVhwWZzCQA

Building Abstractions with Data 2.3.3

? make_tree(x, null, null)

: x === entry(set)

? set

: x < entry(set)

? make_tree(entry(set),

adjoin_set(x, left_branch(set)),

right_branch(set))

: make_tree(entry(set),

left_branch(set),

adjoin_set(x, right_branch(set)));

}

The above claim that searching the tree can be performed in a logarithmic number of steps

rests on the assumption that the tree is “balanced,” i.e., that the left and the right subtree of

every tree have approximately the same number of elements, so that each subtree contains

about half the elements of its parent. But how can we be certain that the trees we construct

will be balanced? Even if we start with a balanced tree, adding elements with adjoin_set may

produce an unbalanced result. Since the position of a newly adjoined element depends on how

the element compares with the items already in the set, we can expect that if we add elements

“randomly” the tree will tend to be balanced on the average. But this is not a guarantee. For

example, if we start with an empty set and adjoin the numbers 1 through 7 in sequence we

end up with the highly unbalanced tree shown in �gure 2.17. In this tree all the left subtrees

are empty, so it has no advantage over a simple ordered list. One way to solve this problem

is to de�ne an operation that transforms an arbitrary tree into a balanced tree with the same

elements. Then we can perform this transformation after every few adjoin_set operations to

keep our set in balance. There are also other ways to solve this problem, most of which involve

designing new data structures for which searching and insertion both can be done in Θ(logn)

steps.
36

36
Examples of such structures include B-trees and red-black trees. There is a large literature on data structures

devoted to this problem. See Cormen, Leiserson, and Rivest 1990.

175 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.3.3

1

2

3

4

5

6

7

Figure 2.17: Unbalanced tree produced by adjoining 1 through 7 in sequence.

Exercise 2.63

Each of the following two functions converts a binary tree to a list.

Ifunction tree_to_list_1(tree) {

return is_null(tree)

? null

: append(tree_to_list_1(left_branch(tree)),

pair(entry(tree),

tree_to_list_1(right_branch(tree))));

}

Ifunction tree_to_list_2(tree) {

function copy_to_list(tree, result_list) {

return is_null(tree)

? result_list

: copy_to_list(left_branch(tree),

pair(entry(tree),

copy_to_list(right_branch(tree),

result_list)));

}

return copy_to_list(tree, null);

}

a. Do the two functions produce the same result for every tree? If not, how do the results

di�er? What lists do the two functions produce for the trees in �gure 2.16?

b. Do the two functions have the same order of growth in the number of steps required to

convert a balanced tree with n elements to a list? If not, which one grows more slowly?

176 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAUzFATgTwBQecgSkQG8AoRC9ZKEdJAC2QEMATXKwgblIF9TRIsBIgA2yYFAD6AI3RNI9dviJkKiKjTqJGrXExgilhAtz4Do8JOhgBzelNnyIivIRLlK1Wg2Zso+w38DIwJQ035wC2EAWyYAa2RJV2xUDEwAGjEJdOs7KBUPdS8tERgAZygUtCxM8Sgc23sTXgjBS0RXJLhJUorJAEYQ9zUizSRyyTAQEUCOAkKRkYB+RCmZhcWKAC5EJgAHPdQ-Di6e8qlBrIc5BRCCdI3Np4o9-XQqtJCH55-nzqhur0LthcvYZDdnHcwrwgA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAUzFATgTwBQecgSkQG8AoRC9ZKEdJAC2QEMATXKwgblIF9TRIsBIgA2yYFAD6AI3RNI9dviJkKiKjTqJGrXExgilhAtz4Do8JOhgBzelNnyIivIRLlK1Wg2Zso+w38DIwJQ035wC2EAWyYAa2RJV2xUDEwAGjEJdOs7KBUPdS8tERgAZygUtCxM8Sgc23sTXgjBS0RXJLhJUorJACYQ9zVEcyEkCDgAB0wunvLK13SispARKV784ZG1DW9EcskwNcCOAkKdy8QAfhW1jYWLq5GALkRJmbnN7CyHOQUQukns9nlN9OgqmlAcCQbD3tNZlBut9cvYZP9nNC4dirlRVut5hVQs0RnwRnstB9EciFkZlscRCJmjwgA

Building Abstractions with Data 2.3.3

Exercise 2.64

The following function list_to_tree converts an ordered list to a balanced binary tree. The

helper function partial_tree takes as arguments an integer n and list of at least n elements

and constructs a balanced tree containing the �rst n elements of the list. The result returned

by partial_tree is a pair (formed with pair) whose head is the constructed tree and whose

tail is the list of elements not included in the tree.

Ifunction list_to_tree(elements) {

return head(partial_tree(elements,length(elements)));

}

function partial_tree(elts, n) {

if (n === 0) {

return pair(null,elts);

} else {

const left_size = math_floor((n - 1) / 2);

const left_result = partial_tree(elts, left_size);

const left_tree = head(left_result);

const non_left_elts = tail(left_result);

const right_size = n - (left_size + 1);

const this_entry = head(non_left_elts);

const right_result = partial_tree(tail(non_left_elts),

right_size);

const right_tree = head(right_result);

const remaining_elts = tail(right_result);

return pair(make_tree(this_entry,

left_tree,

right_tree),

remaining_elts);

}

}

a. Write a short paragraph explaining as clearly as you can how partial_treeworks. Draw

the tree produced by list_to_tree for the list list(1, 3, 5, 7, 9, 11).

b. What is the order of growth in the number of steps required by list_to_tree to convert

a list of n elements?

177 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAUzFATgTwBQecgSkQG8AoRC9ZKEdJAC2QEMATXKwgblIF9TRIsBIgA2yYFAD6AI3RNI9dviJkKiKjTqJGrXExgilhAtz4Do8JOhgBzelNnyIivIRLlK1Wg2Zso+w38DIwJQ035wC2EAWyYAa2RJV2xUDEwAGjEJdOs7KBUPdS8tERgAZygUtCxM8Sgc23sTXgjBS1FyqSg4JI4UsWjUsoK1DW9tX2wAByZ0WCYRXvx+5EG0MtqwGyhFZAGh0OazSKEkGbmYBaXkfqgNxDARtRhgRGwkAF4vxAAGJ7VPJozvp0O8QCIROk9ndmgCeCgRGVkO4AWoIAgKqI6pIyjAAF7Ij6IWI7STAERwOCg96IAC0iAAjEQAPSIABMsNRiHRYExWSkVDK4KgiCJ53mi2S0Pu-Jx+K4hQBPL52NcoomullguFnNRypFYAQkll0vVQUMWuQQpE+W4XO5GJFuXscoJ6qQ9OwstxboA1IzdUrHYgduVJKksOqdGxDWBjdjpYG0cHnQKrcL1eLLpK+ub3kaTTbhulFfay+WK6NGlIfQr7fr1NXrlHJqnJNqbUmKA2qLEYGB+zZw0WzQFsG2O7bS4DxjMYKDYglrrh6GGIxlENPK9vZa50pvt4eAW3XAQS0fUb39AOtsOYXa1Hw+KRShUkj1kq-Kgyfvu2b-EAAZj+EwgA

Building Abstractions with Data 2.3.3

Exercise 2.65

Use the results of exercises 2.63 and 2.64 to give Θ(n) implementations of union_set and

intersection_set for sets implemented as (balanced) binary trees.
37

Sets and information retrieval

We have examined options for using lists to represent sets and have seen how the choice of

representation for a data object can have a large impact on the performance of the programs

that use the data. Another reason for concentrating on sets is that the techniques discussed

here appear again and again in applications involving information retrieval.

Consider a data base containing a large number of individual records, such as the personnel

�les for a company or the transactions in an accounting system. A typical data-management

system spends a large amount of time accessing or modifying the data in the records and

therefore requires an e�cient method for accessing records. This is done by identifying a part

of each record to serve as an identifying key. A key can be anything that uniquely identi�es the

record. For a personnel �le, it might be an employee’s ID number. For an accounting system,

it might be a transaction number. Whatever the key is, when we de�ne the record as a data

structure we should include a key selector function that retrieves the key associated with a

given record.

Now we represent the data base as a set of records. To locate the record with a given key we

use a function lookup, which takes as arguments a key and a data base and which returns the

record that has that key, or false if there is no such record. The function lookup is implemented

in almost the same way as is_element_of_set. For example, if the set of records is implemented

as an unordered list, we could use

Ifunction lookup(given_key, set_of_records) {

return ! is_null(set_of_records) &&

(equal(given_key, key(head(set_of_records)))

? head(set_of_records)

: lookup(given_key, tail(set_of_records))

);

}

Of course, there are better ways to represent large sets than as unordered lists. Information-

retrieval systems in which records have to be “randomly accessed” are typically implemented

by a tree-based method, such as the binary-tree representation discussed previously. In de-

signing such a system the methodology of data abstraction can be a great help. The designer

can create an initial implementation using a simple, straightforward representation such as

37
Exercises 2.63– 2.65 are due to Paul Hil�nger.

178 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ATpiOXAEwAosBPAGkWNSlQEpEBvASEUQChPP8oQuJAAdUMXOUzVa9JgG4uAXy6hIsBIkql8hEsxa9uh-oKQALTKjI6ixRguWro8JHQbaCt-T14mhiBhgAGw9dOwcVcGcNILg4dBBhUgBzGAA3TDBsShoAZ0wobDhgPE8SXO9jAtNEAEJEGFzsMBAgkPzC4tKwisQAMj6fQ2HSREwARxBUENSMrJzNKVILK1IOopKbcsYdoeHhgH5EFbJ1rq3iCr393gAuRFj4xJT0zOypGkD2go3u2wrGNd9vYlFwuI8EkkAMw0IKNKCkNBYP4kUgAJhoACIAGqZEC5TGMGhAm6cJE4C6kACsWIAUokYFBMLhCVQSaTySiyAAWLEAWVQuAJRPZN05lJhiExAFFBVAzKzRftxWUyAA2LEAZXopkJOzkQA

Building Abstractions with Data 2.3.4

unordered lists. This will be unsuitable for the eventual system, but it can be useful in pro-

viding a “quick and dirty” data base with which to test the rest of the system. Later on, the

data representation can be modi�ed to be more sophisticated. If the data base is accessed in

terms of abstract selectors and constructors, this change in representation will not require any

changes to the rest of the system.

Exercise 2.66

Implement the lookup function for the case where the set of records is structured as a binary

tree, ordered by the numerical values of the keys.

2.3.4 Example: Hu�man Encoding Trees

This section provides practice in the use of list structure and data abstraction to manipulate

sets and trees. The application is to methods for representing data as sequences of ones and

zeros (bits). For example, the ASCII standard code used to represent text in computers encodes

each character as a sequence of seven bits. Using seven bits allows us to distinguish 2
7
, or 128,

possible di�erent characters. In general, if we want to distinguish n di�erent symbols, we will

need to use log
2
n bits per symbol. If all our messages are made up of the eight symbols A, B,

C, D, E, F, G, and H, we can choose a code with three bits per character, for example

A 000 C 010 E 100 G 110
B 001 D 011 F 101 H 111

With this code, the message

BACADAEAFABBAAAGAH

is encoded as the string of 54 bits

001000010000011000100000101000001001000000000110000111

Codes such as ASCII and the A-through-H code above are known as �xed-length codes, because

they represent each symbol in the message with the same number of bits. It is sometimes

advantageous to use variable-length codes, in which di�erent symbols may be represented by

di�erent numbers of bits. For example, Morse code does not use the same number of dots and

dashes for each letter of the alphabet. In particular, E, the most frequent letter, is represented

by a single dot. In general, if our messages are such that some symbols appear very frequently

and some very rarely, we can encode data more e�ciently (i.e., using fewer bits per message)

179 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.3.4

if we assign shorter codes to the frequent symbols. Consider the following alternative code

for the letters A through H:

A 0 C 1010 E 1100 G 1110
B 100 D 1011 F 1101 H 1111

With this code, the same message as above is encoded as the string

100010100101101100011010100100000111001111

This string contains 42 bits, so it saves more than 20% in space in comparison with the �xed-

length code shown above.

One of the di�culties of using a variable-length code is knowing when you have reached

the end of a symbol in reading a sequence of zeros and ones. Morse code solves this problem

by using a special separator code (in this case, a pause) after the sequence of dots and dashes

for each letter. Another solution is to design the code in such a way that no complete code for

any symbol is the beginning (or pre�x) of the code for another symbol. Such a code is called

a pre�x code. In the example above, A is encoded by 0 and B is encoded by 100, so no other

symbol can have a code that begins with 0 or with 100.

In general, we can attain signi�cant savings if we use variable-length pre�x codes that take

advantage of the relative frequencies of the symbols in the messages to be encoded. One

particular scheme for doing this is called the Hu�man encoding method, after its discoverer,

David Hu�man. A Hu�man code can be represented as a binary tree whose leaves are the

symbols that are encoded. At each non-leaf node of the tree there is a set containing all the

symbols in the leaves that lie below the node. In addition, each symbol at a leaf is assigned a

weight (which is its relative frequency), and each non-leaf node contains a weight that is the

sum of all the weights of the leaves lying below it. The weights are not used in the encoding

or the decoding process. We will see below how they are used to help construct the tree.

180 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.3.4

{A B C D E F G H} 17

{B C D E F G H} 9

A 8

{B C D} 5

{C D} 2

D 1C 1

B 3

{E F G H} 4

{G H} 2

{E F} 2

E 1 F 1

H 1G 1

Figure 2.18: A Hu�man encoding tree.

Figure 2.18 shows the Hu�man tree for the A-through-H code given above. The weights at

the leaves indicate that the tree was designed for messages in which A appears with relative

frequency 8, B with relative frequency 3, and the other letters each with relative frequency 1.

Given a Hu�man tree, we can �nd the encoding of any symbol by starting at the root and

moving down until we reach the leaf that holds the symbol. Each time we move down a left

branch we add a 0 to the code, and each time we move down a right branch we add a 1. (We

decide which branch to follow by testing to see which branch either is the leaf node for the

symbol or contains the symbol in its set.) For example, starting from the root of the tree in

�gure 2.18, we arrive at the leaf for D by following a right branch, then a left branch, then a

right branch, then a right branch; hence, the code for D is 1011.

To decode a bit sequence using a Hu�man tree, we begin at the root and use the successive

zeros and ones of the bit sequence to determine whether to move down the left or the right

branch. Each time we come to a leaf, we have generated a new symbol in the message, at which

point we start over from the root of the tree to �nd the next symbol. For example, suppose we

are given the tree above and the sequence 10001010. Starting at the root, we move down the

right branch, (since the �rst bit of the string is 1), then down the left branch (since the second

bit is 0), then down the left branch (since the third bit is also 0). This brings us to the leaf for B,

so the �rst symbol of the decoded message is B. Now we start again at the root, and we make

a left move because the next bit in the string is 0. This brings us to the leaf for A. Then we

start again at the root with the rest of the string 1010, so we move right, left, right, left and

reach C. Thus, the entire message is BAC.

181 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.3.4

Generating Hu�man trees

Given an “alphabet” of symbols and their relative frequencies, how do we construct the “best”

code? (In other words, which tree will encode messages with the fewest bits?) Hu�man gave an

algorithm for doing this and showed that the resulting code is indeed the best variable-length

code for messages where the relative frequency of the symbols matches the frequencies with

which the code was constructed. We will not prove this optimality of Hu�man codes here, but

we will show how Hu�man trees are constructed.
38

The algorithm for generating a Hu�man tree is very simple. The idea is to arrange the tree

so that the symbols with the lowest frequency appear farthest away from the root. Begin with

the set of leaf nodes, containing symbols and their frequencies, as determined by the initial

data from which the code is to be constructed. Now �nd two leaves with the lowest weights

and merge them to produce a node that has these two nodes as its left and right branches. The

weight of the new node is the sum of the two weights. Remove the two leaves from the original

set and replace them by this new node. Now continue this process. At each step, merge two

nodes with the smallest weights, removing them from the set and replacing them with a node

that has these two as its left and right branches. The process stops when there is only one

node left, which is the root of the entire tree. Here is how the Hu�man tree of �gure 2.18 was

generated:

Initial leaves {(A, 8), (B, 3), (C, 1), (D, 1), (E, 1), (F , 1), (G, 1), (H , 1)}

Merge {(A, 8), (B, 3), ({C,D}, 2), (E, 1), (F , 1), (G, 1), (H , 1)}

Merge {(A, 8), (B, 3), ({C,D}, 2), ({E, F }, 2), (G, 1), (H , 1)}

Merge {(A, 8), (B, 3), ({C,D}, 2), ({E, F }, 2), ({G,H }, 2)}

Merge {(A, 8), (B, 3), ({C,D}, 2), ({E, F ,G,H }, 4)}

Merge {(A, 8), ({B,C,D}, 5), ({E, F ,G,H }, 4)}

Merge {(A, 8), ({B,C,D,E, F ,G,H }, 9)}

Final merge {({A,B,C,D,E, F ,G,H }, 17)}

The algorithm does not always specify a unique tree, because there may not be unique

smallest-weight nodes at each step. Also, the choice of the order in which the two nodes are

merged (i.e., which will be the right branch and which will be the left branch) is arbitrary.

38
See Hamming 1980 for a discussion of the mathematical properties of Hu�man codes.

182 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.3.4

Representing Hu�man trees

In the exercises below we will work with a system that uses Hu�man trees to encode and

decode messages and generates Hu�man trees according to the algorithm outlined above. We

will begin by discussing how trees are represented.

Leaves of the tree are represented by a list consisting of the string "leaf", the symbol at the

leaf, and the weight:

Ifunction make_leaf(symbol, weight) {

return list("leaf", symbol, weight);

}

function is_leaf(object) {

return head(object) === "leaf";

}

function symbol_leaf(x) {

return head(tail(x));

}

function weight_leaf(x) {

return head(tail(tail(x)));

}

A general tree will be a list of a string "code_tree", a left branch, a right branch, a set of

symbols, and a weight. The set of symbols will be simply a list of the symbols, rather than

some more sophisticated set representation. When we make a tree by merging two nodes, we

obtain the weight of the tree as the sum of the weights of the nodes, and the set of symbols as

the union of the sets of symbols for the nodes. Since our symbol sets are represented as lists,

we can form the union by using the append function we de�ned in section 2.2.1:

Ifunction make_code_tree(left,right) {

return list("code_tree", left, right,

append(symbols(left), symbols(right)),

weight(left) + weight(right));

}

If we make a tree in this way, we have the following selectors:

Ifunction left_branch(tree) {

return head(tail(tree));

}

function right_branch(tree) {

return head(tail(tail(tree)));

}

function symbols(tree) {

return is_leaf(tree)

? list(symbol_leaf(tree))

: head(tail(tail(tail(tree))));

183 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ANp1YACgGcBPZAIzlwBpEB3TGAcwAsoBKRAbwChEggE6YoIIUlwwSUIgCJ8hOfXJUa9Jqw6cA3HwC+fUJFgJE0vAWJxKAK0zRu-QYhFiJiNgQAmRG-cdEAF4QxAUrOT1DY2h4JFVqXEtCIgAPJwFXUXEkL1RfKFQYXDTOXQMjcFizTXYoZOJ03kys91yfIkLizqKS9LKovj4IBBkUMgbglAwcRWI5AEFlRAAOcr5ajgaiZAm53SA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ANp1YACgGcBPZAIzlwBpEB3TGAcwAsoBKRAbwChEggE6YoIIUlwwSUIgCJ8hOfXJUa9Jqw6cA3HwC+fUJFgJE0vAWJxKAK0zRu-QYhFiJiNgQAmRG-cdEAF4QxAUrOT1DY2h4JFVqXEtCIgAPJwFXUXEkL1RfKFQYXDTOXQMjcFizTXYoZOJ03kys91yfIkLizqKS9LKoypM4xHxgesohVEg2TpFMDJdWnM8OrpKoeYGKmNMkIS0JqZm5zAXmpbcVvILenu7Ns7Ly6Kq9xASaElPz5xcrjwWRTER4LFpLJYAflG0lknySwJ+ZXBEMEAC5Vvl7hs7uskc9BrsRrUOEiLv9soCSA0kSjUdCSfVEaDOHSIRibtiuXieVtni8htUkGgsNgIHBvDhQUQxlBaAc6osKW0YTJ5OLJdhQcpRphxvQFRxaGzUS5UAAHc2YMC+eHfWWcFQURLfQ1cR0m02MZh1GV6riIADU3sORDd20MfHFYBkKDIDWwAEZgigMDhEXIAII6gAc5WjseQ8eB2AATCmRemrPIAEI6gDM5T4lbFEql8yIRYTifoXZLpd0QA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ANp1YACgGcBPZAIzlwBpEB3TGAcwAsoBKRAbwChEggE6YoIIUlwwSUIgCJ8hOfXJUa9Jqw6cA3HwC+fUJFgJE0vAWJxKAK0zRu-QYhFiJiNgQAmRG-cdEAF4QxAUrOT1DY2h4JFVqXEtCIgAPJwFXUXEkL1RfKFQYXDTOXQMjcFizTXYoZOJ03kys91yfIkLizqKS9LKoypM4lAwcCDhvHCgRTCJ8YChaIS0uZpdWnMQpGXkJqewZzExlbcxF+hW62haNu43UAAdHzDBfBJoSefOuFQpEr5XbScG73MEuWocb6LbgAakYzDqRCBXHK0SqpkkP2wlCEqEgbE6swyGzcWzyBV6ROOAwqMUxrlWOLxBOpmBJLjJHgpPW6XRKR3ZtPRwzMH1wX0FHOE2Q8FkUxCltzBAH5ttJZOKGmyysr7gAuTwdfm8gVUqVlNFDapISGyKXrTmypDyqw6vV3NV27VK8EuQ08k1B83m4mWq18CZgGQoMgNbAARmCoyw2rkAEFTgAOcpRmPIOMK7AAJmTaFTCvkACFTgBmXMIfNxwVlsbYfbTWZEAvxhP0HtF4vlPh27vN4k6IA

Building Abstractions with Data 2.3.4

}

function weight(tree) {

return is_leaf(tree)

? weight_leaf(tree)

: head(tail(tail(tail(tail(tree)))));

}

The functions symbols and weight must do something slightly di�erent depending on

whether they are called with a leaf or a general tree. These are simple examples of generic
functions (functions that can handle more than one kind of data), which we will have much

more to say about in sections 2.4 and 2.5.

The decoding function

The following function implements the decoding algorithm. It takes as arguments a list of

zeros and ones, together with a Hu�man tree.

Ifunction decode(bits, tree) {

function decode_1(bits, current_branch) {

if (is_null(bits)) {

return null;

} else {

const next_branch = choose_branch(head(bits),

current_branch);

return is_leaf(next_branch)

? pair(symbol_leaf(next_branch),

decode_1(tail(bits), tree))

: decode_1(tail(bits), next_branch);

}

}

return decode_1(bits, tree);

}

function choose_branch(bit, branch) {

return bit === 0

? left_branch(branch)

: bit === 1

? right_branch(branch)

: error(bit, "bad bit -- choose_branch");

}

The function decode_1 takes two arguments: the list of remaining bits and the current posi-

tion in the tree. It keeps moving “down” the tree, choosing a left or a right branch according to

whether the next bit in the list is a zero or a one. (This is done with the function choose_branch.)

When it reaches a leaf, it returns the symbol at that leaf as the next symbol in the message by

pairing it onto the result of decoding the rest of the message, starting at the root of the tree.

184 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ANp1YACgGcBPZAIzlwBpEB3TGAcwAsoBKRAbwChEggE6YoIIUlwwSUIgCJ8hOfXJUa9Jqw6cA3HwC+fUJFgJE0vAWJxKAK0zRu-QYhFiJiNgQAmRG-cdEAF4QxAUrOT1DY2h4JFVqXEtCIgAPJwFXUXEkL1RfKFQYXDTOXQMjcFizTXYoZOJ03kys91yfIkLizqKS9LKoypM4xHxgesohVEg2TpFMDJdWnM8OrpKoeYGKmNMkIS0JqZm5zAXmpbcVvILenu7Ns7Ly6Kq9xASaElPz5xcrjwWRTER4LFpLJYAflG0lknySwJ+ZXBEMEAC5Vvl7hs7uskc9BrsRrUOEiLv9soCSA0kSjUdCSfVEaDOHSIRibtiuXieVtni8htUkGgsNgIHBvDhQUQxlBaAc6osKW0YTJ5OLJdhQcpRphxvQFRxaGzUS5UAAHc2YMC+eHfWWcFQURLfQ1cR0m02MZh1GV6riIADU3sORDd21ewzMko1mCIlBgUBI9BZ5MEROjDglOAAjPHE8nEBBxCIwEdphA2ErUTBgIgiBYwCBcCUE0mymmvcsPE2W3ovfpEJhcCRMJ2veKwDJEGBMKlyzNgkW2HA4KPsJMK7NOW2SB6uwfD6ji0JSwvK+UjwCkECrERZ-ON8cL56D9DzUUhKRnTQaQ-z1WxpHsBiAxtm2B5niu6OogLKsiB7KgVmmqQXc0H0P+T5bpepqGEseHKisYEofmSYplshJvCMlaruum4nG29D0RenbXogbbBKEAAMr6INCspYQxz5VrxGIcSEQSIDmvGCNCbqCZW8bCfBR4Ypgp5wF+jFhJQ+TsYmiAALSGcutE4MxbByAKfCTtOyBkA0EFLiKOCInIACCOoABzlLZUAoA5wLYAATM5GCuXecgAEI6gAzOUNkIHZDmgmFoqxlq8xEPZjk5vQOVBcFCXEXGUhqlx9B5VJ9BcTBOUsjoQA

Building Abstractions with Data 2.3.4

Note the error check in the �nal clause of choose_branch, which complains if the function

�nds something other than a zero or a one in the input data.

Sets of weighted elements

In our representation of trees, each non-leaf node contains a set of symbols, which we have

represented as a simple list. However, the tree-generating algorithm discussed above requires

that we also work with sets of leaves and trees, successively merging the two smallest items.

Since we will be required to repeatedly �nd the smallest item in a set, it is convenient to use

an ordered representation for this kind of set.

We will represent a set of leaves and trees as a list of elements, arranged in increasing order of

weight. The following adjoin_set function for constructing sets is similar to the one described

in exercise 2.61; however, items are compared by their weights, and the element being added

to the set is never already in it.

Ifunction adjoin_set(x, set) {

return is_null(set)

? list(x)

: weight(x) < weight(head(set))

? pair(x, set)

: pair(head(set), adjoin_set(x, tail(set)));

}

The following function takes a list of symbol-frequency pairs such as

list(list("A", 4), list("B", 2), list("C", 1), list("D", 1))

and constructs an initial ordered set of leaves, ready to be merged according to the Hu�man

algorithm:

Ifunction make_leaf_set(pairs) {

if (is_null(pairs)) {

return null;

} else {

const first_pair = head(pairs);

return adjoin_set(

make_leaf(head(first_pair), // symb

head(tail(first_pair))), // freq

make_leaf_set(tail(pairs)));

}

}

185 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ANp1YACgGcBPZAIzlwBpEB3TGAcwAsoBKRAbwChEggE6YoIIUlwwSUIgCJ8hOfXJUa9Jqw6cA3HwC+fUJFgJE0vAWJxKAK0zRu-QYhFiJiNgQAmRG-cdEAF4QxAUrOT1DY2h4JFVqXEtCIgAPJwFXUXEkL1RfKFQYXDTOXQMjcFizTXYoZOJ03kys91yfIkLizqKS9LKoypM4xHxgesohVEg2TpFMDJdWnM8OrpKoeYGKmNMkIS0JqZm5zAXmpbcVvILenu7Ns7Ly6Kq9xASaElPz5xcrjwWRTER4LFpLJYAflG0lknySwJ+ZXBEMEAC5Vvl7hs7uskc9BrsRrUOEiLv9soCSA0kSjUdCSfVEaDOHSIRibtiuXieVtni8htUkPlbHAYGBsCRRGkVKJFhS2uZqWAQLgSlKuGyoTCZKUtS4MYzSogADyMZh1IicjXI1F26EAByKQhlHzl+qWGKdMBd1rl9BFYolGtdeJt20MfAgCBkKDIDWwAEZgigMDhEXIAILKRAADnK0bAseQ8eB2AATCm0FgaXIAEI5gDM5T4gfFkulJYTiYD3lF7ZDXbL5foKrVAyAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ANp1YACgGcBPZAIzlwBpEB3TGAcwAsoBKRAbwChEggE6YoIIUlwwSUIgCJ8hOfXJUa9Jqw6cA3HwC+fUJFgJE0vAWJxKAK0zRu-QYhFiJiNgQAmRG-cdEAF4QxAUrOT1DY2h4JFVqXEtCIgAPJwFXUXEkL1RfKFQYXDTOXQMjcFizTXYoZOJ03kys91yfIkLizqKS9LKoypM4xHxgesohVEg2TpFMDJdWnM8OrpKoeYGKmNMkIS0JqZm5zAXmpbcVvILenu7Ns7Ly6Kq9xASaElPz5xcrjwWRTER4LFpLJYAflG0lknySwJ+ZXBEMEAC5Vvl7hs7uskc9BrsRrUOEiLv9soCSA0kSjUdCSfVEaDOHSIRibtiuXieVtni8htUkPlbHAYGBsCRRGkVKJFhS2uZqWAQLgSlKuGyoTCZKUtS4MYzSogADyMZh1IicjXI1F26EAByKQhlHzl+qWGKdMBd1rl9BFYolGtdeJt21ewzMaCwDUl0u9QhI8sEMGAiCIFhVaqIieTKYhAKQ2dweiW+kQmFwUvJqIgCBkiGAPpk2ETwUxvjz5Ttyw8gfF8dkHt7KAwOERnObSfqic49DtAHpFx8KJQR6PR5y8dPW3OyvRl02RABHDd2mMTqxDrnd7blip8S9xkM62Rj2OIuQAQWUiAALPO569s+X4AEJ-gATEBm6waBVjyAAwn+ACMMGwaO8EpHIAAiqHcAROhAA

Building Abstractions with Data 2.3.4

Exercise 2.67

De�ne an encoding tree and a sample message:

Iconst sample_tree =

make_code_tree(

make_leaf("A",4),

make_code_tree(

make_leaf("B",2),

make_code_tree(

make_leaf("D",1),

make_leaf("C",1))));

const sample_message =

list(0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0);

Use the decode function to decode the message, and give the result.

Exercise 2.68

The encode function takes as arguments a message and a tree and produces the list of bits

that gives the encoded message.

Ifunction encode(message, tree) {

return is_null(message)

? null

: append(encode_symbol(head(message), tree),

encode(tail(message), tree));

}

Write the function encode_symbol that returns the list of bits that encodes a given symbol

according to a given tree. You should design encode_symbol so that it signals an error if the

symbol is not in the tree at all. Test your function by encoding the result you obtained in

exercise 2.67 with the sample tree and seeing whether it is the same as the original sample

message.

Exercise 2.69

The following function takes as its argument a list of symbol-frequency pairs (where no symbol

appears in more than one pair) and generates a Hu�man encoding tree according to the

Hu�man algorithm.

Ifunction generate_huffman_tree(pairs) {

return successive_merge(make_leaf_set(pairs));

}

The function make_leaf_set that transforms the list of pairs into an ordered set of leaves

186 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ANp1YACgGcBPZAIzlwBpEB3TGAcwAsoBKRAbwChEggE6YoIIUlwwSUIgCJ8hOfXJUa9Jqw6cA3HwC+fUJFgJE0vAWJxKAK0zRu-QYhFiJiNgQAmRG-cdEAF4QxAUrOT1DY2h4JFVqXEtCIgAPJwFXUXEkL1RfKFQYXDTOXQMjcFizTXYoZOJ03kys91yfIkLizqKS9LKoypM4xHxgesohVEg2TpFMDJdWnM8OrpKoeYGKmNMkIS0JqZm5zAXmpbcVvILenu7Ns7Ly6Kq9xASaElPz5xcrjwWRTER4LFpLJYAflG0lknySwJ+ZXBEMEAC5Vvl7hs7uskc9BrsRrUOEiLv9soCSA0kSjUdCSfVEaDOHSIRibtiuXieVtni8htUkGgsNgIHBvDhQUQxlBaAc6osKW0YTJ5OLJdhQcpRphxvQFRxaGzUS5UAAHc2YMC+eHfWWcFQURLfQ1cR0m02MZh1GV6riIADU3sORDd20M4rAMg+qGQ5vwWvmwXBIpwGql8yIJrTNLkAEFlAAWD1e3MZpNnbNepa5xFyABCygATKWa4JyxLM1XPaa61Z5AARZQARjb7drGBw9YAwqP+XoozGSHGEzhkJgSCuWJhggBIA+HxDgqRqgAM9BHl-oF8Qt6vd+vj8QD9fN90QA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEFMDsGMHsBNwH0DOBPAtgI1gG1AGYCuMALgJaySimyhbigDuATuaaVPWqCqUYkikUAKGJlK1KHEQAKDOBQoAhgHNwAGhotw4AJSgA3iNCnQO-i2rkUSSEVy55iler0mznswH5Q9xx5engBcoMoADuFQ8LLSCMjo2HiyABbgyjEKSmr6WqQ6uYFBxZ5xcqTK5E5Zrrnaunp6ANwiAL5AA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ANp1YACgGcBPZAIzlwBpEB3TGAcwAsoBKRAbwChEggE6YoIIUlwwSUIgCJ8hOfXJUa9Jqw6cA3HwC+fUJFgJE0vAWJxKAK0zRu-QYhFiJiNgQAmRG-cdEAF4QxAUrOT1DY2h4JFVqXEtCIgAPJwFXUXEkL1RfKFQYXDTOXQMjcFizTXYoZOJ03kys91yfIkLizqKS9LKoypM4xHxgesohVEg2TpFMDJdWnM8OrpKoeYGKmNMkIS0JqZm5zAXmpbcVvILenu7Ns7Ly6Kq9xASaElPz5xcrjwWRTER4LFpLJYAflG0lknySwJ+ZXBEMEAC5Vvl7hs7uskc9BrsRrUOEiLv9soCSA0kSjUdCSfVEaDOHSIRibtiuXieVtni8htUkPlbHAYGBsCRRGkVKJFhS2uZqWAQLgSlKuGyoTCZKUtS4MYzSogADyMZh1IicjXI1F26EAByKQhlHzl+qWGKdMBd1rl9BFYolGtdeJt21ewzMaCwDUl0u9QhI8sEMGAiCIFhVaqIieTKYhAKQ2dweiW+kQmFwUvJqIgCBkiGAPpk2ETwUxvjz5Ttyw8gfF8dkHt7KAwOERnObSfqic49DtAHpFx8KJQR6PR5y8dPW3OyvRl02RABHDd2mMTqxDrnd7blipHkggCAQTAkEgwABuOGQmCELCYE2bwjFAcCIJQQEMAcUBQJgSCUGQHxiN48FQIK7yAWA-6oHB2BsCAwDAGgEqgrmzrJrWRYfC+b4ft+v7-oBRCXnGIZ3lEQA

Building Abstractions with Data 2.3.4

is given above. Write the function successive_merge using make_code_tree to successively

merge the smallest-weight elements of the set until there is only one element left, which is the

desired Hu�man tree. (This function is slightly tricky, but not really complicated. If you �nd

yourself designing a complex function, then you are almost certainly doing something wrong.

You can take signi�cant advantage of the fact that we are using an ordered set representation.)

Exercise 2.70

The following eight-symbol alphabet with associated relative frequencies was designed to

e�ciently encode the lyrics of 1950s rock songs. (Note that the “symbols” of an “alphabet”

need not be individual letters.)

A 2 NA 16

BOOM 1 SHA 3

GET 1 YIP 9

JOB 2 WAH 1

Use generate_huffman_tree (exercise 2.69) to generate a corresponding Hu�man tree, and

use encode (exercise 2.68) to encode the following message:

Get a job

Sha na na na na na na na na

Get a job

Sha na na na na na na na na

Wah yip yip yip yip yip yip yip yip yip

Sha boom

How many bits are required for the encoding? What is the smallest number of bits that would

be needed to encode this song if we used a �xed-length code for the eight-symbol alphabet?

Exercise 2.71

Suppose we have a Hu�man tree for an alphabet ofn symbols, and that the relative frequencies

of the symbols are 1, 2, 4, . . . , 2
n−1

. Sketch the tree for n=5; for n=10. In such a tree (for general

n) how may bits are required to encode the most frequent symbol? the least frequent symbol?

Exercise 2.72

Consider the encoding function that you designed in exercise 2.68. What is the order of growth

in the number of steps needed to encode a symbol? Be sure to include the number of steps

needed to search the symbol list at each node encountered. To answer this question in general

187 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.4

is di�cult. Consider the special case where the relative frequencies of the n symbols are as

described in exercise 2.71, and give the order of growth (as a function of n) of the number of

steps needed to encode the most frequent and least frequent symbols in the alphabet.

2.4 Multiple Representations for Abstract Data

We have introduced data abstraction, a methodology for structuring systems in such a way that

much of a program can be speci�ed independent of the choices involved in implementing the

data objects that the program manipulates. For example, we saw in section 2.1.1 how to separate

the task of designing a program that uses rational numbers from the task of implementing

rational numbers in terms of the computer language’s primitive mechanisms for constructing

compound data. The key idea was to erect an abstraction barrier—in this case, the selectors

and constructors for rational numbers (make_rat, numer, denom)—that isolates the way rational

numbers are used from their underlying representation in terms of list structure. A similar

abstraction barrier isolates the details of the functions that perform rational arithmetic add_rat,

sub_rat, mul_rat, and div_rat) from the “higher-level” functions that use rational numbers.

The resulting program has the structure shown in �gure 2.1.

These data-abstraction barriers are powerful tools for controlling complexity. By isolating

the underlying representations of data objects, we can divide the task of designing a large

program into smaller tasks that can be performed separately. But this kind of data abstraction

is not yet powerful enough, because it may not always make sense to speak of “the underlying

representation” for a data object.

For one thing, there might be more than one useful representation for a data object, and

we might like to design systems that can deal with multiple representations. To take a simple

example, complex numbers may be represented in two almost equivalent ways: in rectan-

gular form (real and imaginary parts) and in polar form (magnitude and angle). Sometimes

rectangular form is more appropriate and sometimes polar form is more appropriate. Indeed,

it is perfectly plausible to imagine a system in which complex numbers are represented in

both ways, and in which the functions for manipulating complex numbers work with either

representation.

More importantly, programming systems are often designed by many people working over

extended periods of time, subject to requirements that change over time. In such an environ-

ment, it is simply not possible for everyone to agree in advance on choices of data represen-

tation. So in addition to the data-abstraction barriers that isolate representation from use,

we need abstraction barriers that isolate di�erent design choices from each other and permit

di�erent choices to coexist in a single program. Furthermore, since large programs are often

created by combining pre-existing modules that were designed in isolation, we need conven-

188 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.4

tions that permit programmers to incorporate modules into larger systems additively, that is,

without having to redesign or reimplement these modules.

In this section, we will learn how to cope with data that may be represented in di�erent

ways by di�erent parts of a program. This requires constructing generic functions—functions

that can operate on data that may be represented in more than one way. Our main technique

for building generic functions will be to work in terms of data objects that have type tags, that

is, data objects that include explicit information about how they are to be processed. We will

also discuss data-directed programming, a powerful and convenient implementation strategy

for additively assembling systems with generic operations.

We begin with the simple complex-number example. We will see how type tags and data-

directed style enable us to design separate rectangular and polar representations for com-

plex numbers while maintaining the notion of an abstract “complex-number” data object.

We will accomplish this by de�ning arithmetic functions for complex numbers (add_complex,

sub_complex, mul_complex, and div_complex) in terms of generic selectors that access parts

of a complex number independent of how the number is represented. The resulting complex-

number system, as shown in �gure 2.19, contains two di�erent kinds of abstraction barriers.

The “horizontal” abstraction barriers play the same role as the ones in �gure 2.1. They isolate

“higher-level” operations from “lower-level” representations. In addition, there is a “vertical”

barrier that gives us the ability to separately design and install alternative representations.

add_complex

Programs that use complex numbers

Complex-arithmetic package

Rectangular
representation

Polar
representation

List structure and
primitive machine arithmetic

sub_complex

mul_complex

div_complex

Figure 2.19: Data-abstraction barriers in the complex-number system.

In section 2.5 we will show how to use type tags and data-directed style to develop a generic

arithmetic package. This provides functions (add, mul, and so on) that can be used to manipulate

all sorts of “numbers” and can be easily extended when a new kind of number is needed. In

189 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.4.1

section 2.5.3, we’ll show how to use generic arithmetic in a system that performs symbolic

algebra.

2.4.1 Representations for Complex Numbers

We will develop a system that performs arithmetic operations on complex numbers as a simple

but unrealistic example of a program that uses generic operations. We begin by discussing

two plausible representations for complex numbers as ordered pairs: rectangular form (real

part and imaginary part) and polar form (magnitude and angle).
39

Section 2.4.2 will show how

both representations can be made to coexist in a single system through the use of type tags

and generic operations.

Like rational numbers, complex numbers are naturally represented as ordered pairs. The set

of complex numbers can be thought of as a two-dimensional space with two orthogonal axes,

the “real” axis and the “imaginary” axis. (See �gure 2.20.) From this point of view, the complex

number z = x + iy (where i2 = −1) can be thought of as the point in the plane whose real

coordinate is x and whose imaginary coordinate is y. Addition of complex numbers reduces

in this representation to addition of coordinates:

Real-part(z1 + z2) = Real-part(z1) + Real-part(z2)

Imaginary-part(z1 + z2) = Imaginary-part(z1) + Imaginary-part(z2)

When multiplying complex numbers, it is more natural to think in terms of representing

a complex number in polar form, as a magnitude and an angle (r and A in �gure 2.20). The

product of two complex numbers is the vector obtained by stretching one complex number by

the length of the other and then rotating it through the angle of the other:

Magnitude(z1 · z2) = Magnitude(z1) ·Magnitude(z2)

Angle(z1 · z2) = Angle(z1) + Angle(z2)

Thus, there are two di�erent representations for complex numbers, which are appropriate for

di�erent operations. Yet, from the viewpoint of someone writing a program that uses complex

numbers, the principle of data abstraction suggests that all the operations for manipulating

complex numbers should be available regardless of which representation is used by the com-

39
In actual computational systems, rectangular form is preferable to polar form most of the time because of

roundo� errors in conversion between rectangular and polar form. This is why the complex-number example is

unrealistic. Nevertheless, it provides a clear illustration of the design of a system using generic operations and a

good introduction to the more substantial systems to be developed later in this chapter.

190 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.4.1

puter. For example, it is often useful to be able to �nd the magnitude of a complex number

that is speci�ed by rectangular coordinates. Similarly, it is often useful to be able to determine

the real part of a complex number that is speci�ed by polar coordinates.

Imaginary

Real

z = x + iy = re

A

y

x

r

iA

Figure 2.20: Complex numbers as points in the plane.

To design such a system, we can follow the same data-abstraction strategy we followed in de-

signing the rational-number package in section 2.1.1. Assume that the operations on complex

numbers are implemented in terms of four selectors: real_part, imag_part, magnitude, and

angle. Also assume that we have two functions for constructing complex numbers: make_from_real_imag

returns a complex number with speci�ed real and imaginary parts, and make_from_mag_ang

returns a complex number with speci�ed magnitude and angle. These functions have the

property that, for any complex number z, both

make_from_real_imag(real_part(z),imag_part(z));

and

make_from_mag_ang(magnitude(z), angle(z));

produce complex numbers that are equal to z.

Using these constructors and selectors, we can implement arithmetic on complex numbers

using the “abstract data” speci�ed by the constructors and selectors, just as we did for rational

numbers in section 2.1.1. As shown in the formulas above, we can add and subtract complex

numbers in terms of real and imaginary parts while multiplying and dividing complex numbers

in terms of magnitudes and angles:

function add_complex(z1, z2) {

return make_from_real_imag(

real_part(z1) + real_part(z2),

191 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.4.1

imag_part(z1) + imag_part(z2));

}

function sub_complex(z1, z2) {

return make_from_real_imag(

real_part(z1) - real_part(z2),

imag_part(z1) - imag_part(z2));

}

function mul_complex(z1, z2) {

return make_from_mag_ang(

magnitude(z1) * magnitude(z2),

angle(z1) + angle(z2));

}

function div_complex(z1, z2) {

return make_from_mag_ang(

magnitude(z1) / magnitude(z2),

angle(z1) - angle(z2));

}

To complete the complex-number package, we must choose a representation and we must

implement the constructors and selectors in terms of primitive numbers and primitive list

structure. There are two obvious ways to do this: We can represent a complex number in

“rectangular form” as a pair (real part, imaginary part) or in “polar form” as a pair (magnitude,

angle). Which shall we choose?

In order to make the di�erent choices concrete, imagine that there are two programmers,

Ben Bitdiddle and Alyssa P. Hacker, who are independently designing representations for the

complex-number system. Ben chooses to represent complex numbers in rectangular form. With

this choice, selecting the real and imaginary parts of a complex number is straightforward, as

is constructing a complex number with given real and imaginary parts. To �nd the magnitude

and the angle, or to construct a complex number with a given magnitude and angle, he uses

the trigonometric relations

x = r cosA r =
√
x2 + y2

y = r sinA A = arctan(y,x)

which relate the real and imaginary parts (x , y) to the magnitude and the angle (r ,A).40
Ben’s

representation is therefore given by the following selectors and constructors:

Ifunction real_part(z) {

return head(z);

}

function imag_part(z) {

40
The arctangent function referred to here, computed by JavaScript’s math_atan2 function, is de�ned so as to

take two arguments y and x and to return the angle whose tangent is y/x . The signs of the arguments determine

the quadrant of the angle.

192 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwCaoPoTgWwA4A2ApgB4AUAXgIwA0iFATAJSIDeAUIl4gE5FQgeSHMgDWRDMB64MfZAQwwRAczKduGzVzkK8yHlEpUWAal5F5GPQcrMa6rY6XJlV-YeqnEz19Y-MmAG52AF92UEhYBEQAZxAAIyxcQlIjOkYWDg0+ASFEEXFJaRxZCwUfNUcqnTcbT0QAWnNLP1smeyqnFVqPY0bvbtaMoNDw8Gh4YRAFbHxicmp05jYHc1zhMQkpGW7kMFVVzq4VMBgBVCIjFgAqfJdT88uMjqONPeViK8Qzd8-h4LCEQm0VQMAAbkk5qlFvRllluDlBBtCtsSrt9pVXtwTmcQBcvgB6O7KB54p52Q5HX5PPpNaltEaA8ZRJAxACOIH0lxImVWiLyJEQtxIALGkUmzV07kovOy-CRiAAFhZUDLRUCWQMXD0ZSs5etEFBkDACGrRhqJTjHrr4dp5XkRFBFRh2TZKZ12Zy+GQakMmF53VVPVyyD4dRR-YyxcCkPSI3qEfaNk6MMgjWAGKHBtKIzRfTn-ermZbNkUZDUKiQ6ABPWWJg16GA8MhVxC1ovi6IFLbFDDo1Q8OjIOt2hvG5s8IV3FPYGJkYd0Se3R3OmIwMDzwujdjYMAxKD5atJDBgEAlKiIAC8dxRvYrKjIDAAdABWOgNAAMr5Gu-3h+Pp4lAwV43j25ZlIoD7Pm+jRfi+Iw7ggf58HEBAHteaCYLMKTkDgR7YCeZ4YLQiCBq8ODTJCOFkHhAFEQwdBkVixz4XAhFAVu7Bhq0KHTFAQRAA

Building Abstractions with Data 2.4.2

return tail(z);

}

function magnitude(z) {

return math_sqrt(

square(real_part(z)) +

square(imag_part(z)));

}

function angle(z) {

return math_atan2(imag_part(z),real_part(z));

}

function make_from_real_imag(x, y) {

return pair(x, y);

}

function make_from_mag_ang(r, a) {

return pair(r * math_cos(a), r * math_sin(a));

}

Alyssa, in contrast, chooses to represent complex numbers in polar form. For her, selecting

the magnitude and angle is straightforward, but she has to use the trigonometric relations to

obtain the real and imaginary parts. Alyssa’s representation is:

Ifunction real_part(z) {

return magnitude(z) * math_cos(angle(z));

}

function imag_part(z) {

return magnitude(z) * math_sin(angle(z));

}

function magnitude(z) {

return head(z);

}

function angle(z) {

return tail(z);

}

function make_from_real_imag(x, y) {

return pair(math_sqrt(square(x) + square(y)),

math_atan2(y, x));

}

function make_from_mag_ang(r, a) {

return pair(r, a);

}

The discipline of data abstraction ensures that the same implementation of add_complex,

sub_complex, mul_complex, and div_complex will work with either Ben’s representation or

Alyssa’s representation.

193 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwCaoPoTgWwA4A2ApgB4AUAXgIwA0iFATAJSIDeAUIl4gE5FQgeSHMgDWRDMB64MfZAQwwRAczKduGzVzkK8yHlEpUWAal5F5GPQcrMa6rY6XJlV-YeqnEz19Y-MmAG52AF92UEhYBEQAZxAAIyxcQlIjOkYWDg0+ASFEEXFJaRxZCwUfNUcqnTcbT0QAWnNLP1smeyqnFVqPY0bvbtaMoNDw8Gh4YRAFbHxicmp05jYHc1zhMQkpGW7kMFVVzq4VMBgBVCIjFgAqfJdT88uMjqONPeViK8Qzd8-h4LCEQm0VQMAAbkk5qlFvRllluDlBBtCtsSrt9pVXtwTmcQBcvgB6O7KB54p52Q5HX5PPpNaltEaA8ZRJAxACOIH0lxImVWiLyJEQtxIALGkUmzV07kovOy-CRxNJ+IoNzuUAAFkkYmR6SrGWLgUgfD0ZSs5etFbjlaqRBqMDEYGAdfs-kx9UCWZbHqb4dp5Xl1RZUDLRR6JbrZQj-UgoMgYAQQ6Mw9ECltiqVLBUSHQAJ6Rv0WvQwHhkW2a9k2dmcvhkHnfWIcrlkPPtSlHMsYZCxsAMZt0Hnu5kS1NFHYuTsYnh0ZD5tYKoslqcofXsbBgGJQfI5pIYMAgEpURAAXjuKPTNQqDAAdABWOgNAAMt5Ga43W53e5KDGPp7TMgvKhkNed6NE+N4jKuCBvnwcQEJuJ5oJgswpOQODbtgu77hgtCIG2WI4NMkIoaW6FwJhX50HhWLYqR5EYAEwTsMarQwdMUBBEAA

Building Abstractions with Data 2.4.2

2.4.2 Tagged data

One way to view data abstraction is as an application of the “principle of least commitment.” In

implementing the complex-number system in section 2.4.1, we can use either Ben’s rectangular

representation or Alyssa’s polar representation. The abstraction barrier formed by the selectors

and constructors permits us to defer to the last possible moment the choice of a concrete

representation for our data objects and thus retain maximum �exibility in our system design.

The principle of least commitment can be carried to even further extremes. If we desire, we

can maintain the ambiguity of representation even after we have designed the selectors and

constructors, and elect to use both Ben’s representation and Alyssa’s representation. If both

representations are included in a single system, however, we will need some way to distinguish

data in polar form from data in rectangular form. Otherwise, if we were asked, for instance,

to �nd the magnitude of the pair (3, 4), we wouldn’t know whether to answer 5 (interpreting

the number in rectangular form) or 3 (interpreting the number in polar form). A straightfor-

ward way to accomplish this distinction is to include a type tag—the string "rectangular"

or "polar"—as part of each complex number. Then when we need to manipulate a complex

number we can use the tag to decide which selector to apply.

In order to manipulate tagged data, we will assume that we have functions type_tag and

contents that extract from a data object the tag and the actual contents (the polar or rectangular

coordinates, in the case of a complex number). We will also postulate a function attach_tag

that takes a tag and contents and produces a tagged data object. A straightforward way to

implement this is to use ordinary list structure:

Ifunction attach_tag(type_tag, contents) {

return pair(type_tag, contents);

}

function type_tag(datum) {

return is_pair(datum)

? head(datum)

: error(datum, "bad tagged datum -- type_tag");

}

function contents(datum) {

return is_pair(datum)

? tail(datum)

: error(datum, "bad tagged datum -- contents");

}

Using these functions, we can de�ne predicates is_rectangular and is_polar, which rec-

ognize rectangular and polar numbers, respectively:

function is_rectangular(z) {

return type_tag(z) === "rectangular";

194 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQylZEAWB9dBzACigE8AHAU12TwBpEIEpywoBnASkQG8AoRfxACdyUEIKSlkMQUTKV8dBi2Zt2Abh4BfHqEiwEiEhSqEAJqhABbTrwFCRYpDFbZJ0gudHW+d34gD8iJjkyKYeFt5+vgBciOSCgnAynlZ0AEQARqGG1HjkpogplogAtCWGciZp6lo64NDwSEpMLKzhXjY+-MKi4ojOrlLJEexdUQE5MAA27Vaj4wKx8YnDXulZBfh5BUWl5c0qrNUa2jxKrFCIwNgAjIgAvIhTzlAEaQCCaXQALDXnl5ZiNhgMIAI4gZgQIF3R5jVDoLAmN4g8jgyFA54XL5XW41HhGeTUAiA4FgiGQaHqIA

Building Abstractions with Data 2.4.2

}

function is_polar(z) {

return type_tag(z) === "polar";

}

With type tags, Ben and Alyssa can now modify their code so that their two di�erent repre-

sentations can coexist in the same system. Whenever Ben constructs a complex number, he

tags it as rectangular. Whenever Alyssa constructs a complex number, she tags it as polar. In

addition, Ben and Alyssa must make sure that the names of their functions do not con�ict.

One way to do this is for Ben to append the su�x rectangular to the name of each of his

representation functions and for Alyssa to append polar to the names of hers. Here is Ben’s

revised rectangular representation from section 2.4.1:

Ifunction real_part_rectangular(z) {

return head(z);

}

function imag_part_rectangular(z) {

return tail(z);

}

function magnitude_rectangular(z) {

return math_sqrt(square(real_part_rectangular(z))

+

square(imag_part_rectangular(z)));

}

function angle_rectangular(z) {

return math_atan(imag_part_rectangular(z),

real_part_rectangular(z));

}

function make_from_real_imag_rectangular(x, y) {

return attach_tag("rectangular",

pair(x, y));

}

function make_from_mag_ang_rectangular(r, a) {

return attach_tag("rectangular",

pair(r * math_cos(a), r * math_sin(a)));

}

and here is Alyssa’s revised polar representation:

Ifunction real_part_polar(z) {

return magnitude_polar(z) * math_cos(angle_polar(z));

}

function imag_part_polar(z) {

return magnitude_polar(z) * math_sin(angle_polar(z));

}

function magnitude_polar(z) {

return head(z);

}

195 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQylZEAWB9dBzACigE8AHAU12TwBpEIEpywoBnASkQG8AoRfxACdyUEIKSlkMQUTKV8dBi2Zt2Abh4BfHqEiwEiEhSqEAJqhABbTrwFCRYpDFbZJ0gudHW+d34gD8iJjkyKYeFt5+vgBciOSCgnAynlZ0AEQARqGG1HjkpogplogAtCWGciZp6lo64NDwSEpMLKzhXjY+-MKi4ojOrlLJEexdUQE5MAA27Vaj4wKx8YnDXulZBfh5BUWl5c0qrNUa2roNBqwAjiDIwgQAHp12PY6I94gAVG8ndXqN9sgpoNBFBsMJoMgwHgQFNbgQAF5PAQvPrBUIImqner6JyWajA0Hg9BQmFwxHcMYopDoaYYn5nHGIPF4MAwUSmShEyHQ2Eycm2ZEOPp4qA4K4gghXG53YSAglg8gQkm8jHzBaIADUYyiUtu5AIMGZ8q5yrJ7HN9Ox-25U05iuJPLNFOeQqQIpwqEhBqNkhBCqVjr57Bo2vVfllQN9hPt3NJQcxv3ObuQAGtKMBEpYFXLDfiTYGHnRiEjuq6UGgMDh8AQ0vm42kQ2Gw24ZPcixbagz-ni09gM3As0buf6HXGCII6MgS-ZekhUOgsCYa3XeQ3Q027C3x58magcAw2lO6IId+7sKwYGACFOO9oeEpWFBEBlmC4GNgwFZEABeXe9-uDviw4rnCACQ-DrhudgAMwAHQAAx0PBsEAOw1DwuZ4MaMamjIBytAQL5gG+cAfnM6hAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQylZEAWB9dBzACigE8AHAU12TwBpEIEpywoBnASkQG8AoRfxACdyUEIKSlkMQUTKV8dBi2Zt2Abh4BfHqEiwEiEhSqEAJqhABbTrwFCRYpDFbZJ0gudHW+d34gD8iJjkyKYeFt5+vgBciOSCgnAynlZ0AEQARqGG1HjkpogplogAtCWGciZp6lo64NDwSEpMLKzhXjY+-MKi4ojOrlLJEexdUQE5MAA27Vaj4wKx8YnDXulZBfh5BUWl5c0qrNUa2roNBqwAjiDIwgQAHp12PY6I94gAVG8ndXqN9sgpoNBFBXHAprcCAAvJ4CF59SzUMAwUSmSikcGQmGfRCIqA4BhtZBgPBTdGYmQwmqner6JyIvDA0EYiGU2HdBwIpEokBosGs6GcL54nCsGBgAjE0nkgVUn5nOm47momVY9n2XpIYKhQXy2n-KVk-lq7hjeFIdDTXW1BX-REAa0owESlmwwkB2BgDONMnudGI6vNKDQGBw+AIaRZtzSNDGCwWbhkIuwVxBBCuNzuj0QAGpEBnbuQCAH2LH4+W-MnUMTi3RHuxqb9zkgHU6XdhvVKfQRBHRkIHOUhUOgsCYI1HBDG4xXfIme32Gz8eEpWFAUFNiKxWMgXAxsGArIgALxKx3YZ1wV2dknd6cz8YAZgAdAAGOgvp8AdhqPC91CZ3YHK0kobluO7YHuB7WOoQA

Building Abstractions with Data 2.4.2

function angle_polar(z) {

return tail(z);

}

function make_from_real_imag_polar(x, y) {

return attach_tag("polar",

pair(math_sqrt(square(x) + square(y)),

math_atan(y, x)));

}

function make_from_mag_ang_polar(r, a) {

return attach_tag("polar",

pair(r, a));

}

Each generic selector is implemented as a function that checks the tag of its argument and

calls the appropriate function for handling data of that type. For example, to obtain the real

part of a complex number, real_part examines the tag to determine whether to use Ben’s

real_part_rectangular or Alyssa’s real_part_polar. In either case, we use contents to ex-

tract the bare, untagged datum and send this to the rectangular or polar function as required:

Ifunction real_part(z) {

return is_rectangular(z)

? real_part_rectangular(contents(z))

: is_polar(z)

? real_part_polar(contents(z))

: error(z, "Unknown type -- real_part");

}

function imag_part(z) {

return is_rectangular(z)

? imag_part_rectangular(contents(z))

: is_polar(z)

? imag_part_polar(contents(z))

: error(z, "Unknown type -- imag_part");

}

function magnitude(z) {

return is_rectangular(z)

? magnitude_rectangular(contents(z))

: is_polar(z)

? magnitude_polar(contents(z))

: error(z, "Unknown type -- magnitude");

}

function angle(z) {

return is_rectangular(z)

? angle_rectangular(contents(z))

: is_polar(z)

? angle_polar(contents(z))

: error(z, "Unknown type -- angle");

}

196 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQylZEAWB9dBzACigE8AHAU12TwBpEIEpywoBnASkQG8AoRfxACdyUEIKSlkMQUTKV8dBi2Zt2Abh4BfHqEiwEiEhSqEAJqhABbTrwFCRYpDFbZJ0gudHW+d34gD8iJjkyKYeFt5+vgBciOSCgnAynlZ0AEQARqGG1HjkpogplogAtCWGciZp6lo64NDwSEpMLKzhXjY+-MKi4ojOrlLJEexdUQE5MAA27Vaj4wKx8YnDXulZBfh5BUWl5c0qrNUa2roNBgPC0MhgeCBTyDIAXp12PY4VxvgEL4gAvADEGkruhbvdHmkTnU9I1+i5SHAHs9XgJ3n0jPJqD9OAC-kCEUjIbUzvokKwAI4gR7kAgADxR3QcfVpiAAVIhaVCSbDhMgpoNBFBsCCbnckdjuGM0UhgqFsVz6qT+pZqAKhSKweLfrZUUykOhpvLiYrYSq8GAYKJTJQNWLHhKdYzekgVVAcBTBQQKVThARefzJILheRrpr7S95gtEABqMZRb3UggwM1q4Ohu3I9g1U4mgyiqY2kOgjMOqV6xCunCoG5JlOB9VF0Xg5E0ONRvz+1O25vY7PQ84u5AAa0owESlmDfOwydV3fFtLoxAZ9mdKDQGBw32BjbDgjSrfb7bcMgXiCXfe5BhVI+wY7gE5TorTxZ7gjoyGX0rX6CwJgI2-TZt9zbQ87GPP02QrVAcAYNoPzoQRIMrbBWBgMACA-LMFRhAxO3rVxEXDT9yzNC0rUoAkiKQ6DsFgjDbgLAitSw40cKcOtHiFSjkUlN4SOoMiQGtJiqPZZDUPQ-MKMIzNsIHKDzUtITpOY3jdVXWUwheOSlSkkSeMdFcPgNGZtNY+Tr1HcdJ35Gc8H0ulF2I1dUB-TcsTSbjgNAhZwPE8lPQTX16RjRAgppc8Dx8w9kOrdDiDoekWJzNioJvO8H1VJ9uL9d9nI+VyNz-TyZO86K-HAt8UGS-slTwzjSz41dLh3EsXhAuxAnqoM53tA5Wl7DrFjhBz2tArqQgDTiHP6thBtApYEiSH50gAVTAIcwDgAB3fU5D2ewp3rY5zKVOy1Ua9SPhawDmKG-hAnO-DepkWa2gje7EFiAYcrGw9Ho4oMcre+bD0WlYVqBdbNp2vaKAOp7OJOlKLIEpTrUup1rpcF7sU+wJSPRwtbr6xhDlBhZvvhGS8fGhTBOE4GyYGj6FriJbnjWjatt2z5yAOwnyOR2rYSkzGjL6G6Xzu9tAj03GQdZqMqdGyNZZQBiVNJ5QWazT7+HB5ani5mHeYxA6pOFnglFYKAUCmYhWFYZAXAYbAwCsf40qs+9sEfW4HIASH4fXooAZgAOgABjoKOI4AdhqHhEc9PlHed124HduY1CAA

Building Abstractions with Data 2.4.2

To implement the complex-number arithmetic operations, we can use the same functions

add_complex, sub_complex, mul_complex, and div_complex from section 2.4.1, because the se-

lectors they call are generic, and so will work with either representation. For example, the

function add_complex is still

function add_complex(z1, z2) {

return make_from_real_imag(

real_part(z1) + real_part(z2),

imag_part(z1) + imag_part(z2));

}

Finally, we must choose whether to construct complex numbers using Ben’s representation

or Alyssa’s representation. One reasonable choice is to construct rectangular numbers when-

ever we have real and imaginary parts and to construct polar numbers whenever we have

magnitudes and angles:

Ifunction make_from_real_imag(x, y) {

return make_from_real_imag_rectangular(x, y);

}

function make_from_mag_ang(r, a) {

return make_from_mag_ang_polar(r, a);

}

add_complex sub_complex mul_complex div_complex

Programs that use complex numbers

Complex-arithmetic package

Rectangular
representation

Polar
representation

List structure and primitive machine arithmetic

real_part

imag_part

magnitude

angle

Figure 2.21: Structure of the generic complex-arithmetic system.

The resulting complex-number system has the structure shown in �gure 2.21. The system

has been decomposed into three relatively independent parts: the complex-number-arithmetic

operations, Alyssa’s polar implementation, and Ben’s rectangular implementation. The polar

and rectangular implementations could have been written by Ben and Alyssa working sep-

197 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQylZEAWB9dBzACigE8AHAU12TwBpEIEpywoBnASkQG8AoRfxACdyUEIKSlkMQUTKV8dBi2Zt2Abh4BfHqEiwEiEhSqEAJqhABbTrwFCRYpDFbZJ0gudHW+d34gD8iJjkyKYeFt5+vgBciOSCgnAynlZ0AEQARqGG1HjkpogplogAtCWGciZp6lo64NDwSEpMLKzhXjY+-MKi4ojOrlLJEexdUQE5MAA27Vaj4wKx8YnDXulZBfh5BUWl5c0qrNUa2roNBgPC0MhgeCBTyDIAXp12PY4VxvgEL4gAvADEGkruhbvdHmkTnU9I1+i5SHAHs9XgJ3n0jPJqD9OAC-kCEUjIbUzvokKwAI4gR7kAgADxR3QcfVpiAAVIhaVCSbDhMgpoNBFBsCCbnckdjuGM0UhgqFsVz6qT+pZqAKhSKweLfrZUUykOhpvLiYrYSq8GAYKJTJQNWLHhKdYzekgVVAcBTBQQKVThARefzJILheRrpr7S95gtEABqMZRb3UggwM1q4Ohu3I9g1U4mgyiqY2kOgjMOqV6xCunCoG5JlOB9VF0Xg5E0ONRvz+1O25vY7PQ84u5AAa0owESlmDfOwydV3fFtLoxAZ9mdKDQGBw32BjbDgjSrfb7bcMgXiCXfe5BhVI+wY7gE5TorTxZ7gjoyGX0rX6CwJgI2-TZt9zbQ87GPP02QrVAcAYNoPzoQRIMrbBWBgMACA-LMFRhAxO3rVxEXDT9yzNC0rUoAkiKQ6DsFgjDbgLAitSw40cKcOtHiFSjkUlN4SOoMiQGtJiqPZZDUPQ-MKMIzNsIHKDzUtITpOY3jdVXWUwheOSlSkkSeMdFcPgNGZtNY+Tr1HcdJ35Gc8H0ulF2I1dUB-TcsTSbjgNAhZwPE8lPQTX16RjRAgppc8Dx8w9kOrdDiDoekWJzNioJvO8H1VJ9uL9d9nI+VyNz-TyZO86K-HAt8UGS-slTwzjSz41dLh3EsXhAuxAnqoM53tA5Wl7DrFjhBz2tArqQgDTiHP6thBtApYEiSH50gAVTAIcwDgAB3fU5D2ewp3rY5zKVOy1Ua9SPhawDmKG-hAnO-DepkWa2gje7EFiAYcrGw9Ho4oMcre+bD0WlYVqBdbNp2vaKAOp7OJOlKLIEpTrUup1rpcF7sU+wJSPRwtbr6xhDlBhZvvhGS8fGhTBOE4GyYGj6FriJbnjWjatt2z5yAOwnyOR2rYSkzGjL6G6Xzu9tAj03GQdZqMqdGyNZZQBiVNJ5QWazT7+HB5ani5mHeYxA6pOFy9B3S6zOzsxyz3yvpLNvO3JunFNcdPJcdNNYcrPvbBH1uXLqrUrGXYDt2g5D+ycqqj8oR4JRWCgFApmIVhWGQFwGGwMArH+NLA8y+zRQIABIfh9eigBmAA6AAGOgm4bgB2GoeERz0+SznO87gAu5jUIA

Building Abstractions with Data 2.4.3

arately, and both of these can be used as underlying representations by a third programmer

implementing the complex-arithmetic functions in terms of the abstract constructor/selector

interface.

Since each data object is tagged with its type, the selectors operate on the data in a generic

manner. That is, each selector is de�ned to have a behavior that depends upon the particular

type of data it is applied to. Notice the general mechanism for interfacing the separate rep-

resentations: Within a given representation implementation (say, Alyssa’s polar package) a

complex number is an untyped pair (magnitude, angle). When a generic selector operates on

a number of polar type, it strips o� the tag and passes the contents on to Alyssa’s code. Con-

versely, when Alyssa constructs a number for general use, she tags it with a type so that it can

be appropriately recognized by the higher-level functions. This discipline of stripping o� and

attaching tags as data objects are passed from level to level can be an important organizational

strategy, as we shall see in section 2.5.

2.4.3 Data-Directed Programming and Additivity

The general strategy of checking the type of a datum and calling an appropriate function is

called dispatching on type. This is a powerful strategy for obtaining modularity in system design.

On the other hand, implementing the dispatch as in section 2.4.2 has two signi�cant weaknesses.

One weakness is that the generic interface functions (real_part, imag_part, magnitude, and

angle) must know about all the di�erent representations. For instance, suppose we wanted to

incorporate a new representation for complex numbers into our complex-number system. We

would need to identify this new representation with a type, and then add a clause to each of

the generic interface functions to check for the new type and apply the appropriate selector

for that representation.

Another weakness of the technique is that even though the individual representations can

be designed separately, we must guarantee that no two functions in the entire system have the

same name. This is why Ben and Alyssa had to change the names of their original functions

from section 2.4.1.

The issue underlying both of these weaknesses is that the technique for implementing

generic interfaces is not additive. The person implementing the generic selector functions

must modify those functions each time a new representation is installed, and the people in-

terfacing the individual representations must modify their code to avoid name con�icts. In

each of these cases, the changes that must be made to the code are straightforward, but they

must be made nonetheless, and this is a source of inconvenience and error. This is not much

of a problem for the complex-number system as it stands, but suppose there were not two

but hundreds of di�erent representations for complex numbers. And suppose that there were

198 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.4.3

many generic selectors to be maintained in the abstract-data interface. Suppose, in fact, that

no one programmer knew all the interface functions or all the representations. The problem is

real and must be addressed in such programs as large-scale data-base-management systems.

What we need is a means for modularizing the system design even further. This is provided

by the programming technique known as data-directed programming. To understand how data-

directed programming works, begin with the observation that whenever we deal with a set of

generic operations that are common to a set of di�erent types we are, in e�ect, dealing with a

two-dimensional table that contains the possible operations on one axis and the possible types

on the other axis. The entries in the table are the functions that implement each operation for

each type of argument presented. In the complex-number system developed in the previous

section, the correspondence between operation name, data type, and actual function was spread

out among the various conditional clauses in the generic interface functions. But the same

information could have been organized in a table, as shown in �gure 2.22.

Data-directed programming is the technique of designing programs to work with such a table

directly. Previously, we implemented the mechanism that interfaces the complex-arithmetic

code with the two representation packages as a set of functions that each perform an explicit

dispatch on type. Here we will implement the interface as a single function that looks up the

combination of the operation name and argument type in the table to �nd the correct function

to apply, and then applies it to the contents of the argument. If we do this, then to add a new

representation package to the system we need not change any existing functions; we need

only add new entries to the table.

real_part

imag_part

magnitude

angle

real_part_polar

imag_part_polar

magnitude_polar

angle_polar

real_part_rectangular

imag_part_rectangular

magnitude_rectangular

angle_rectangular

Types
Polar RectangularOperations

Figure 2.22: Table of operations for the complex-number system.

To implement this plan, assume that we have two functions, put and get, for manipulating

the operation-and-type table:

– put(op, type, item)

installs the item in the table, indexed by the op and the type.
– get(op, type)

199 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.4.3

looks up the op, type entry in the table and returns the item found there. If no item is

found, get returns a unique primitive value that is referred to by the name undefined.
41

For now, we can assume that put and get are included in our language. In chapter 3 (sec-

tion 3.3.3) we will see how to implement these and other operations for manipulating tables.

Here is how data-directed programming can be used in the complex-number system. Ben,

who developed the rectangular representation, implements his code just as he did originally.

He de�nes a collection of functions or a package, and interfaces these to the rest of the system

by adding entries to the table that tell the system how to operate on rectangular numbers. This

is accomplished by calling the following function:

Ifunction install_rectangular_package() {

// internal functions

function real_part(z) { return head(z); }

function imag_part(z) { return tail(z); }

function make_from_real_imag(x, y) { return pair(x, y); }

function magnitude(z) {

return math_sqrt(square(real_part(z)) +

square(imag_part(z)));

}

function angle(z) {

return math_atan(imag_part(z), real_part(z));

}

function make_from_mag_ang(r, a) {

return pair(r * math_cos(a), r * math_sin(a));

}

// interface to the rest of the system

function tag(x) {

return attach_tag("rectangular", x);

}

put("real_part", list("rectangular"), real_part);

put("imag_part", list("rectangular"), imag_part);

put("magnitude", list("rectangular"), magnitude);

put("angle", list("rectangular"), angle);

put("make_from_real_imag", "rectangular",

(x, y) => tag(make_from_real_imag(x, y)));

put("make_from_mag_ang", "rectangular",

(r, a) => tag(make_from_mag_ang(r, a)));

return "done";

}

install_rectangular_package();

41
The name undefined is predeclared in any JavaScript implementation and should not be used other than to

refer to that primitive value.

200 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEHsAcFMCcEMAuBLcA7A+o+AjANtADSiQCuio8aAJqAObSIBQIoAZrOALagDGAFvEiI4oAMygAFAGdovFOnEA6MSoCUTNqTTzUaStOnhekgNbQAnsVhzwsatLWgA3k1DvQNxKVj7k0jDRSPDxJG147Bw0PGJiAflBtamg2ZDRoajdY2IAuUGgAR1J4UPMrUH5oeGpJSuqw23tHNWjs7IS6mvDIxyy2mLz4Q2MzS2JsZFDuppaAbiYAX01tXUUueHMsXAJJJ1cYiLRpCjxjEq38aFAAXlA8f0RJACIAKmxLl6e1eZitHQV9KdwKZSJBRhYMABGYhlDAAJj2fVih2OoGkpBw7wINwMRhMsOhoAmoVOvHOWOgcyRMWQbCk6Mx2yu1xZiRoKTSGUR-RiXh8+iSHPS1B+bQW+Twshc1LaKIo01otyGePB8PG8EmMgxFKpPI8tKkCpurMFqWF3L1sT5vjZyTNGVFevF0ElV32lt5jH5RI1U0a1G+MuyS36IY8Yfcf1WfiOcEeBJhljVoAAbiVSJTpf05WjtUyccqRgmfZrSeSmbq2gatYzLsbbqbOQGs5bZIgtqWzngLgRCEGPe5IBrYJJ7sdVYSh8gR7C4cQ03gMy0+wOB8TR12e5TK8GJVL3Xqc0alcN8Um5yXQgydYGPdXjyb2fbmwePABIfptjtXvOXPsf1d+inEdgNVC8FyXFdANXddrwrKkAPcZ1XRbVcv3XBV53TSlHR5CNYnw-CowBUBqH8IdEAESQuAtbJrX0HgWVuJ4gRBSAnn7NoElY0FOOyPJGNZJ40lkWBEA46DQASES4z4to8jgTgRy4YgngAVTQUw0HAAB3fQoDgJA9FAABaEyfUuL5cPw+jSPIpABHmJYcwMhAAS3HF1k2CldnmHMGAoW5XKM9At2eHj2MDHMyECiAYDcvQwuE2MxKs5Z-mMpBsAELY6EkRALBgXLiEOEQ0EQRxUM8L0bVAgqiuwOgSvQMqKsDJZiOM+roFyyRqCQUgaKq2z-AwUD+u8Gi5I6KoagmwbWh5BTYCUvqBpU0AnhwaofToBhaHmngzKJQqesatKOpWEjSugcrpDWybaOq7wbVG8b1sW-oEnXQ7Pvk-IVrsB7BtU7baEa-bSPW0zzJuu6LvS6M0SKeAbEkAAPJ7bPR0AXlAdGnMRkiROwEIMHCbA0DoYJUbG+BeFMeAGF2KrWDSERfBKdgrr0aQkU6xQbHOIcxMkAAvPZnu9Tpxe+UAiJ5xRkHWOg6dFiWXClm11wl2Z5f5xWGI2HqOG4cmqm7ZWmYx4gLEl2zQPR225YVjK1iZtBkG8ZJZaqz0XqNxB+AwaQClF0PijRoXuxFx4JacABqOTPxRtGrdV2PZZ3fXfkNygqZ2DXX39711iDjAkCoSR07VuO1GsC3a6z6yDbdo3NlNrgMBViuqbCYh4CekvauHMJcdAMvg4ie7B+scfJ5DtJJEH29wyYJE2fKuA2Hpq5EHAIlKmq1FwDpIOrmkCxjmgLhW6RxqMaHjxbKy+ng4fp4Kaoam8FRp5iExi3GIMVnjR1rv-O4DxQFyEpj-P+9dqrC1RogVeg5yDPBrrHCBY5Hifxgd-GmsAvjEEwcg1BJB0FPBVp7b20BsFQLwfIAhv8iEIOoV7UgyRyEgKeN-Ag9DxyMNgYQ4h+c6AEG4ZQryJtOBdzAenCBQjmF-ygtkG2oA7Y3AAHy7WosbDAndzbnHTuou22ceHSIMbI7uTNe50EUV-KmIjVGxH7pQJw1wdEP0sYYnu383Er3IbZJ41B0B0MJkwEmJRuyOLgbAOmDMmbQF8kAA

Building Abstractions with Data 2.4.3

Notice that the internal functions here are the same functions from section 2.4.1 that Ben wrote

when he was working in isolation. No changes are necessary in order to interface them to the

rest of the system. Moreover, since these function declarations are internal to the installation

function, Ben needn’t worry about name con�icts with other functions outside the rectangular

package. To interface these to the rest of the system, Ben installs his real_part function under

the operation name real_part and the type list("rectangular"), and similarly for the other

selectors.
42

The interface also de�nes the constructors to be used by the external system.
43

These are identical to Ben’s internally de�ned constructors, except that they attach the tag.

Alyssa’s polar package is analogous:

Ifunction install_polar_package() {

// internal functions

function magnitude(z) { return head(z); }

function angle(z) { return tail(z); }

function make_from_mag_ang(r, a) { return pair(r, a); }

function real_part(z) {

return magnitude(z) * math_cos(angle(z));

}

function imag_part(z) {

return magnitude(z) * math_sin(angle(z));

}

function make_from_real_imag(x, y) {

return pair(math_sqrt(square(x) + square(y)),

math_atan(y, x));

}

// interface to the rest of the system

function tag(x) { return attach_tag("polar", x); }

put("real_part", list("polar"), real_part);

put("imag_part", list("polar"), imag_part);

put("magnitude", list("polar"), magnitude);

put("angle", list("polar"), angle);

put("make_from_real_imag", "polar",

(x, y) => tag(make_from_real_imag(x, y)));

put("make_from_mag_ang", "polar",

(r, a) => tag(make_from_mag_ang(r, a)));

return "done";

}

Even though Ben and Alyssa both still use their original functions de�ned with the same

names as each other’s (e.g., real_part), these de�nitions are now internal to di�erent functions

(see section 1.1.8), so there is no name con�ict.

42
We use the list list("rectangular") rather than the string "rectangular" to allow for the possibility of

operations with multiple arguments, not all of the same type.

43
The type the constructors are installed under needn’t be a list because a constructor is always used to make

an object of one particular type.

201 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEHsAcFMCcEMAuBLcA7A+o+AjANtADSiQCuio8aAJqAObSIBQIoAZrOALagDGAFvEiI4oAMygAFAGdovFOnEA6MSoCUTNqTTzUaStOnhekgNbQAnsVhzwsatLWgA3k1DvQNxKVj7k0jDRSPDxJG147Bw0PGJiAflBtamg2ZDRoajdY2IAuUGgAR1J4UPMrUH5oeGpJSuqw23tHNWjs7IS6mvDIxyy2mLz4Q2MzS2JsZFDuppaAbiYAX01tXUUueHMsXAJJJ1cYiLRpCjxjEq38aFAAXlA8f0RJACIAKmxLl6e1eZitHQV9KdwKZSJBRhYMABGYhlDAAJj2fVih2OoGkpBw7wINwMRhMsOhoAmoVOvHOWOgcyRMWQbCk6Mx2yu1xZiRoKTSGUR-RiXh8+iSHPS1B+bQW+Twshc1LaKIo01otyGePB8PG8EmMgxFKpPI8tKkCpurMFqWF3L1sT5vjZyTNGVFevF0ElV32lt5jH5RI1U0a1G+MuyS36IY8Yfcf1WfiOcEeBJhljVoAAbiVSJTpf05WjtUyccqRgmfZrSeSmbq2gatYzLsbbqbOQGs5bZIgtqWzngLgRCEGPe5IBrYJJ7sdVYSh8gR7C4cQ03gMy0+wOB8TR12e5TK8GJVL3Xqc0alcN8Um5yXQgydYGPdXjyb2fbmwePABIfptjtXvOXPsf1d+inEdgNVC8FyXFdANXddrwrKkAPcZ1XRbVcv3XBV53TSlHR5CNYnw-CowBUBqH8IdEAESQuAtbJrX0HgWVuJ4gRBSAnn7NoElY0FOOyPJGNZJ40lkWBEA46DQASES4z4to8jgTgRy4YgngAVTQUw0HAAB3fQoDgJA9FAABaEyfUuL5cPw+jSPIpABHmJYcwMhAAS3HF1k2CldnmHMGAoW5XKM9At2eHj2MDHMyECiAYDcvQwuE2MxKs5Z-mMpBsAELY6EkRALBgXLiEOEQ0EQRxUM8L0bVAgqiuwOgSvQMqKsDJZiOM+roFyyRqCQUgaKq2z-AwUD+u8Gi5I6KoagmwbWh5BTYCUvqBpU0AnhwaofToBhaHmngzKJQqesatKOpWEjSugcrpDWybaOq7wbVG8b1sW-oEnXQ7Pvk-IVrsB7BtU7baEa-bSPW0zzJuu6LvS6M0SKeAbEkAAPJ7bPR0AXlAdGnMRkiROwEIxvAPBUbG+BeFMeAGF2KrWDSERfBKdgrr0aQkU6tZ6bQZBvGSSQAC89me71OlF75QCIznFCoOgdjFlwJZtdcxdmWWeflhiNh6jhuAwdY6AwRWwmIeBxds0DYEtmW5YyxQbHOIcxOlqqPFsk2BaF6APbx9ZEH4DAInuxXlZ3bXfl10BkBN6n3ZV18vZqvW6F90hhZVwOkBD6Q0kkCP-bF29wx1p29c2Q2uAwF3u3j+mMeICwntTl79FAoP84Kd3pBRtHMdAABqZHijR1u1CgyTu7N7A0EkcpMbLpCmCRZnyrgNgaauRBwCJSpqtRcA6WDq5pAsY5oC4CukcajHrbTyhEGykP76eSAKdRp5iExrX8Jis8euidxLEDHI8D+X9YBfGsFUbsbtEArxIOQZ4jdTYIJ-ncB4zxP6U2gVPOOCcEFIMAU8H2gss7QEweAnBUCYGgHIX7EhKCnjF2odgyBeD6HF2YRAryBtOC12AWgzBnDv7EH7M3UArcbgAD5drUX1hgGudc4EYDQVIyevDnj8OUYI429MzZoDoKI3B4jJF20oE4a48j766JUQnc2lirZR1sk8ag6AqGEyYCTEo8CoHU1pvTf23wgA

Building Abstractions with Data 2.4.3

The complex-arithmetic selectors access the table by means of a general “operation” function

called apply_generic, which applies a generic operation to some arguments. The function

apply_generic looks in the table under the name of the operation and the types of the argu-

ments and applies the resulting function if one is present:
44

function apply_generic(op, args) {

const type_tags = map(type_tag, args);

const fun = get(op, type_tags);

return fun !== undefined

? apply(fun, map(contents, args))

: error(list(op, type_tags),

"No method for these types in apply_generic");

}

Using apply_generic, we can de�ne our generic selectors as follows:

Ifunction real_part(z) {

return apply_generic("real_part", list(z));

}

function imag_part(z) {

return apply_generic("imag_part", list(z));

}

function magnitude(z) {

return apply_generic("magnitude", list(z));

}

function angle(z) {

return apply_generic("angle", list(z));

}

Observe that these do not change at all if a new representation is added to the system.

We can also extract from the table the constructors to be used by the programs external to

the packages in making complex numbers from real and imaginary parts and from magnitudes

and angles. As in section 2.4.2, we construct rectangular numbers whenever we have real and

imaginary parts, and polar numbers whenever we have magnitudes and angles:

Ifunction make_from_real_imag(x, y) {

return get("make_from_real_imag", "rectangular")(x, y);

}

function make_from_mag_ang(r, a) {

return get("make_from_mag_ang", "polar")(r, a);

44
In apply_generic, op has as its value the �rst argument to apply_generic and args has as its value a list of

the remaining arguments.

The function apply_generic also uses the primitive function apply given in our JavaScript environment, which

takes two arguments, a function and a list. The function apply applies the function, using the elements in the

list as arguments. For example,

apply(sum_of_squares, list(1, 3))
returns 10.

202 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEEkDtQZQewK4CcDGBTANKAtnAzgC6gBmCkKBAlnJHqABYCGAbmqIyZQB5oAmokBNgBGaJKDjF2SAOZC0kAngB0AKBCgAFABV6bUuSo1QAG0qFQ50AT0TIJgJ6g0XdAAcjkLATjX6VvF9iRiRlAEp1MF19MgpqaEY3N0cAfUpIFLJeMUd0mRSAKxZGPBQkSg92ExM4AHc6BDofSPYkx3ZIJxlKVmgDOOMDa19GaucTNGwFJQkpGzYQuSnFUBazC0W8LBLLOb0nWrE2PDQ3EMYCBdl5RTxVfs9W5IdNA23ZPDDQAG9VUH-QEg0ARkAk2g40hksjkHHlCsVSuUPK8yO8ZJ8ANyqAC+91ij0SzxSMgUYkoKE0cDcaM+Pz+AJQNAsBAcbjQKQIjHRoAAvDhEpoWWyOVyaWEsQDQIzaEQhnySQRKdTrKz2Zz0eL6f8gSCkH0yKAAIQ8vnQ4jpPhayWgAD8T0cKK8-Lcmmll1uYoi1oBAC5nEgkHAkJp1oqqd5VSKNRgrd7vQAiAByvimNjg-GIQb8aBOKrZdHS9ohJMgZJQ8c1uI0VLEF3iIuEEywbgQREYkH4CpaxED2ClTA8YlAAGYtCcBtBh8op8OIg94uw8IEKQBrNAOLBAxlIXi036SnWgyx4FKCaqaLdB3deuMAu1mi28WPev1oACOCFGmjXG4YaEYvCaHoAEXmg27XmEN63nef4gZeO6fM+cZ+iUy7fuu3iMJQJigeBnyVnihgLtgjBrg2EyaF8+4MkyRA1CgozkWwfKhpo8YAFSco2aDsRWEoAvOxg1HAK4IC6P4pAAjFgEkAExUUhUq0aAeAIMIXETLyi5oRJ0nWFhOH0YxGloJB-HepQUiaKp6mMNxvImqAD6lrwCnQQCh56k5HZoOaLnmda2LjLm1HudKFjwfwfKoXAq7riksmYdh1lqSZZmKZKllaJFDmmj5fl8G57nWp50DOXwAW3kFaAmCFGVxqV+nJZFmrFaAuJVVaHUCfiC7pCcSCKrpMnxYloDMKMCCmXSt7hUQNkmVpMVxRCemcslRkmEx6W3llKW2fZJp5dkBWuTNxUnAQIobbFxl2U29XFWclDBqxw2gM9wZyVgE0mFNkExm1QNNYZt1bWlO1xtVtVsKF0FzYCYFXktS6xehEJjetOELfdpmtcVe05Ud3knY+RWSgAkLel3XdjqW4zGVPA7en2aKz33jZNpmA8zwNY-tEOakz-zQ3VvM0-zkU-Vz+Pud13ry+1VqCdAvDmGcBAoPQmjYOTJXAkefbE-GwmiW48aPZKdqm2Jlu+jguWgPG-ViAQFu87ali0K7duSq+AZBjrWDxgAqpAK6QHU0A1kgdbGAAtPH+ncXxXVWo1at4BrWtYriCMx3HGSLXyJFkSZlFYgjCpaQXnhMWxNvm5qCMtkQfK1-W5fO97g2pyr7AEJyWtRoKkbqlgbrTHu6cG15rNCmqopKYoU8Ef3C8j7wFxCHrjXmCkrNbyCuuPXawGAUfO+Pf7gbBpf2DB8IAH6TIJL8PfoCJ3mi8yKnuL95PW4mh7671ntAfeh9t4n2KnafmIDr7+lvsAqBj9n7qjfqAD+X9AFKD-oRCcKkPwhDQJoLgoDdTQC4KAdioAuC53wY8fqnJqgpC3JySAcgTAhAPowFAK4uQkL1hodIlw9SjBIL1JkytJHQCBIxM4g1NAAC8qKIwobBQCKiMRK0lP3SgJF8gKMVCon4aijz8y0TonqRFjCl3ZD2OA2BWH-i2vorkpCsAOFUY1VmXBPHiisf8fuBjICUBBNkZResDxgP5DYFIeA3yKISZ+IEoF5EhGMZBUAABqX21pknEM0G4wxGTImQxFtImxCQOEURMXDaJ6iSJxIuO2IpBieGKJUZuFxHTMmy0CRIqp-IyIOKce09sMgLzbCiR5GJrNxA0KafQFIjI8CaEYGETc1DYnLLwOkdZ5SlZWmESvJAwR0DDGzIjCwkgrl4AcIQSYlSCHqlITM7UMSLhD2Wa8+MbCJkIC4UgeMWAyEBUVq3NicitpGJBaYcwio-lgXYZwkIFZunpMGv0yFzt2mwqwKxJFFAAVAvRZYPFGTsWtjYiEsJCBshwsJf8jhgK0WbP5DIUJ4TTIBRxRMiYjKEVQuRSStl2wak8qtDiuxKRRnOMYsUuFRKUWsuBTzb0HjQBeN5AAPhfjrUi9jezytcQYzVXjDnSsNbK414yOFKuZaitVikpnsC+DyPVryZVyrtZMpA0zDmNXjLwGgaB4z0NUEw0YW1HWqp4XwgRFcGF9RlNGg+cAgXxv4SSSi51-gnNEZAcRKs7i6JkRyrl9KSF1LMV5c+kTtGK37vy6t3iYkWICU28t3rbVchSBM11GzTE+KwsGf1brG3PMeNC3pkS80NMNlyStESTGLIuMs1Z6yJVlPBVOvqFLOnvMarS7lc611xL2ZALdMhamHK7UMntjiTVpDNX4rVR65mjoNRexJioCmpLITkwhKSSEWvVbzJZ-b2GaF-GQ-puJjlgBEWIc5bAfBXKBDcvYxwHmXGwHu4wrzAPfFrQkQevCfnuPjG4DNaLQWdqldSpFmK3YEqFdR2jwL2UzqMVSxFxTemCsIGxGjpL2UCd47ypjJ6q1CcRaJsVFa6XZD42xFtcmROcbJS21T8ZH1OJnYq4OCm1WrFvOa91nr3H6efcUizlrpPWp9X2iZSqTMgpdeOodHr9U2d9YOyC-Sg0htLOGnEybjAAV4CsxxyQXDKL0ko+S87j1OeNYZs1eSeOlKUZJL42TEYseUfJcDBMD3GLy0BiTOX5Jr3LTZGL2A4tcAS1gJL5DF0jPSz0uzWWelGIS18JO2XOklbydVzplWk4TeMbV+hwTAWNea610A7WUsxL8y5jhmg8kyZXZVtdnLlPVrG8zFtg2gPnfa3VoZatmBLYmC13LbXktw1S11p9-ndtLuOxdsAe2TubLyVdqbHQb2A5uwQmzGX3Fvu1aFRqCoaVpafTD3+wdY1iYs-N7tKOxlbb9dMvNiPgTI4+-j-IrnjNabCAFnHQyRuZOJ588ExJSTlApMxmFGSNMqMh4w8rc6Ecs6JCWMsbEZu8-Sv-XHR3T11K1I1QkqQxcc+R3L2TbHhN8-pwQq75Mles9V+SNTEqpcEVUAjbAEJGRNce6eIQohxB8itNDnrZrJLKAAAxYAACzKAAKyakt8pTDgK25mYBFFh78Xrcx64A7kQYhSvFTj7b5rienfB5m6BVSJgCDiiAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEEkDtQZQewK4CcDGBTANKAtnAzgC6gBmCkKBAlnJHqABYCGAbmqIyZQB5oAmokBNgBGaJKDjF2SAOZC0kAngB0AKBCgAFABV6bUuSo1QAG0qFQ50AT0TIJgJ6g0XdAAcjkLATjX6VvF9iRiRlAEp1MF19MgpqaEY3N0cAfUpIFLJeMUd0mRSAKxZGPBQkSg92ExM4AHc6BDofSPYkx3ZIJxlKVmgDOOMDa19GaucTNGwFJQkpGzYQuSnFUBazC0W8LBLLOb0nWrE2PDQ3EMYCBdl5RTxVfs9W5IdNA23ZPDDQAG9VUH-QEg0ARkAk2g40hksjkHHlCsVSuUPK8yO8ZJ8ANyqAC+91ij0SzxSMgUYkoKE0cDcaM+Pz+AJQNAsBAcbjQKQIjHRoAAvDhEpoWWyOVyaWEsQDQIzaEQhnySQRKdTrKz2Zz0eL6f8gSCkH0yKAAIQ8vnQ4jpPhayWgAD8T0cKK8-Lcmmll1uYoi1oBAC5nEgkHAkJp1oqqd5VSKNRgrd7vQAiAByvimNjg-GIQb8aBOKrZdHS9ohJMgZJQ8c1uIe8UBaFGKTOSEVAC8vr8ATrQUXiaTyhT40D642CPGsKHNK3K3jDDXKNguQ2Qi221rO3ruyWy5p43OF8PR6ZzMup9XjPOZJBKCDshOVx3gV3CalN33t+fL9e0Afx5OsVX8TWjCQDIEy3nS966mCRIvuS25ASBX5jket5ThoVJiBc8QisIExYG4CBEEB-AKi0xCBtgUpMB4YigAAzFoJwDNAtHKCxtERKeCR4IEFIANZoA4WBAoySC8LS7YQV25gpII1SaMJQZiV6cYAnaZoWrwsben6aAAI4IKMmj8YJDB1rwmh6Iw5kKaJnxhMpKmqaZVnyWgIlKVpcZ+iUPFGQJ3iMJQJiue5dl-tOTH8vx2GgXeDJMkQNQoPWnI4WwfLjvGABUqUTFlFYSgCnGmHAcC8QgLrGSkACMWBVQATHF3rShYeAIMIuXpew3FwHxAk1QFQUhr1KWMGl9mFd6lBSJobUdWNEy8iaoDqaWvBNY5a7QKtfCTda2LjLmEmOVKCW1u5vLdb5DWDcFc2dRNnnWtNWg2fwJqmpA2TmmtG0ndqD7rjtvB7SpB1oCYR1PSpW3WIFwVvZq-2gLiYNWqjRUAcY6QnE2fkQrVoA3aAzCjAgaB-fFMqgPdC1dT5vX4wNcNDUlo3jUjcYvbN7WdUtn3fRplPeicBAiqzI0mDFmDQ8jZyUMG45VYT8vBsTpMmOT9kxsjuss8FbNSw9j1g4dbDHY5LVEG9l0M31EL1bdPPzRzoNczNNsfStX1oD9fCUwAkCpovi3dvN0zGQd6ypquaLH6tkxTOvR3rnJDbTHOalH-zg5D5uyyLwKhyFilYBrWtu96GNV+jVrFbw5hnAQKD0Jo2DC7WkE4PzoDxjUZUVfGBeSna-flW4w++t3Xs7rQYgjpPI+WHPTaL1PYiBsG2BYPGACqkC8ZAdTQOhSCYcYAC0F9w2lBW15KsMN3gTct+FVsSGyZ+eNLl3ztFnWaE1O-BUl1T7nwyAAvupVx533fvhIgfIwHf0gTjeed9ioXE5C3KMgpIzqiwG6aY4krSw1jkKNUopTqKCISeLG0ByE4N4BcIQG1YbSVjkwkE7cC52ksuZThLCC46QDEGTQAjt692EFZOGMgST8HEaAK+eYKEyDvv+GcxhCG3DEcw9u4FJLrnYYFYM4iHIqTtGnYKpihH+k3jorhO8pH8HVHI0ACilFaKUGoiKjw8D6RCGgTQXBWGA2gFwUAWVQBcHCsVHGnJqgpGEpyYCCATAhEXCgXiXJAkbQ0OkS4epRgkDoXcSUxVBxS2HGBb4ncux8NvBiFGdc6GWHPIuPGrYfi1PXJYhpTSyktL-uyMicBsCJLrFLXcMgglYAcG2bp0BY5cFmeKfpmMNHQHfFeBAN5OkWwfqE-kNgUh+Lxn4gyQJXJDiXChUAABqNekpzkBM0FM9px5OY52aRsjoCFqlPVhvOY5FwgKvLaVU1sQkJnvJQntauxSflDJSCMsZbT4LyW2B3Uhxj5IRKOfQFIjI8CaEYGEISeKgUErwOkElJsAS4itHk6hSBgjoGGNmWsFhJAcrwA4QgkxvmRXVEErFhzMGMGwcKgcblklyDSUgA8wS4VWngduCp7zvzIWlRQeCqSQgVihdcpsnzQCqp3OCpcmrCBqplbq+VBrWl7iXCas1WzPxWsVNq2VeqFVkv5BebZ2QXUETgsBCYHqbU6pSfav18EJjBs9UilF4z6xTIPF6u1+rk7ehmaAOZvIAB8Mi26MGism9VUzc1zLpf8V1pbhnkRSGi4C6akmZoVdm60GL2BfB5EW4VSbG3NumUgTFNaFm914DQL84VVBxNGFLNt0b0lnEydkwBWJYkygXQ2OA8qMlZJJIA-R-wmUFMgEUzipT1mRTdTswJeyJ31NbI0+FGCw0PvmbDXpL61n-GKoO0ZTaFzotHT2rp2KFbdtJa+wVjx1UQuFoCrkH571gUiZSwl+ASUfthffG9jw3mIZPQcrud7dlfAwxcKlNK42fpNW+wZ9bkWNoreeKtSHDmx0w6cxUzzLnBPuTTfxlzq2dujphkFkBNAmWCQx1QjKwD5LEKytgPgOVAi5XsY4fLLjYDgzWYVgmamw3FZKrk243B7qzVE1Z8KzUIctUha18YrMxsNZU51e0zVEac4eFzbn9V+t88a7zIb4zkcQv5z1gXfVYEiwm0NCEI2ues3F358awuJuY+W6Faad6xYPE9Djhbi2AbGWxizyy832USxFnLQ6QMtoK2l0cxWwOktKwOhrQHh3Qdq3tWG8Yp2lnjDElpVleBYewMkFwE5CbNkaiR5DZbWN5fY2vRzHTqpfDubWI1LZGriZOiFlsO2hOnYnI1WhPy5rTdm1webWBFshLIz1ir62LObehRC8718tuHbJWvS7zY-uOvyBC6743EWpPuxMR7oPntLYtithtvWmvTLXpF+blH-Wod2UdtedGcdCeJy9m7kUG7MDh3NxHoAXvLcOeV4D+R0VY5Q4Gh952wDY5e8dxyZOwdk6hziHxNZmeVemdV-Nx1YYKjfO9lNkzzytttcu31HHoe3sV31jrTU5fAgV6t9HrPmu90K2Efrs737YAhIyGb8OZJCFEOIPkVoJefemdVZQAAGLAAAWZQABWTUqh36adSQg1YkpJs08e7buPTuRBiH545BP9uHtJ5d6Hy7EeTAEHFEAA

Building Abstractions with Data 2.4.3

}

Exercise 2.73

Section 2.3.2 described a program that performs symbolic di�erentiation:

Ifunction deriv(exp, variable) {

return is_number(exp)

? 0

: is_variable(exp)

? (is_same_variable(exp, variable)) ? 1 : 0

: is_sum(exp)

? make_sum(deriv(addend(exp), variable),

deriv(augend(exp), variable))

: is_product(exp)

? make_sum(make_product(multiplier(exp),

deriv(multiplicand(exp),

variable)),

make_product(deriv(multiplier(exp),

variable),

multiplicand(exp)))

// more rules can be added here

: error(exp,

"unknown expression type -- deriv");

}

Ideriv(list("*", list("*", "x", "y"), list("+", "x", 4)), "x");

l i s t ("+ " , l i s t (" ∗ " , l i s t (" ∗ " , x , y) , l i s t ("+ " , 1 , 0)) ,
l i s t (" ∗ " , l i s t ("+ " , l i s t (" ∗ " , x , 0) , l i s t (" ∗ " , 1 , y)) ,

l i s t ("+ " , x , 4)))

We can regard this program as performing a dispatch on the type of the expression to be

di�erentiated. In this situation the “type tag” of the datum is the algebraic operator symbol

(such as +) and the operation being performed is deriv. We can transform this program into

data-directed style by rewriting the basic derivative function as

function deriv(exp, variable) {

return is_number(exp)

? 0

: is_variable(exp)

? (is_same_variable(exp, variable) ? 1 : 0)

: get("deriv",

operator(exp))(operands(exp), variable);

}

function operator(exp) {

return head(exp);

}

203 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfQG4EMBOMsBGANgKYAUAHgJSIDeAUIk4jiVCDkqmilHmAHNKVANz0AvvVCRYCZOhRYAtiUy58xchgCMAGkQYATDQbMWbDl3TY8hUmR00AZE8Zn38tbc0PjiFwbaiAC8oQaGYpLS0PBWPCBKwnRuTKzsnJ4ADlgwOEkBABYkWAAmSaHBiABEANRVkVLgMXJKWADWqigJZFh6iFh+psxplohEqFBktVX6vbPGDdGySK0daJk4cCUg0GRKfUqDKebpSOO8UwBUM4j7+oeiEo0ysf0lJSRgZSgmxyMZRVKZCgOSIZB+jyiTWW-RAAk+31+Zn+SEBZRBMDBGLBEMhz2acQ2Wx2k2oyWRFgy3GyuXyTkQaPKYSq10W0NeShARFgmXGJDyP3Jw0pqOK6NB4KoeKWHK5PPGECwX0lQtSIoZYuBEuxkqlbJecg+eAwZBIFEy+hsGlISOFp08YASBH5pvNVGOHkQAH5EAAGD0eABcnitdnIZsy7s9Hh9ZG4ihUXmt4fNlvUYal3sQQWD-uj7mD8e6Eaj+fcPtWnW6RpgJtKH2VJbT3ht+gDZbLNbrcIRrsjzeTUvb0cL6CJ212JeH+Yr7SriUr602E8mnO5MF5MBdTcQ047+67ezlG4VSrKO73+6vzFDmilukv1+Yi-HJLIh7X8q3eQvT7-f9vVtd3-J9PxPGBFUbN0h3-AB6WDbjgVgWC5EgUEQSDEGdN4PhKDVWEfAtEH5TYf1TQj9yqcA2jAOAAHckAjVgUBQV4oAAT0yEhEAAWh4xAuyqPF6EPc5JhZG4xKuG4qgoGT2KE-QpOmfRZJuAAWe9qjk0QgA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfQG4EMBOMsBGANgKYAUAHgJSIDeAUIk4jiVCDkqmilHmAHNKVANz0AvvVCRYCZOhRYAtiUy58xchgCMAGkQYATDQbMWbDl3TY8hUmR00AZE8Zn38tbc0PjiFwbaiAC8oQaGYpLS0PBWPCBKwnRuTKzsnJ4ADlgwOEkBABYkWAAmSaHBiABEANRVkVLgMXJKWADWqigJZFh6iFh+psxplohEqFBktVX6vbPGDdGySK0daJk4cCUg0GRKfUqDKebpSOO8UwBUM4j7+oeiEo0ysf0lJSRgZSgmxyMZRVKZCgOSIZB+jyiTWW-RAAk+31+Zn+SEBZRBMDBGLBEMhz2acQ2Wx2k2oyWRFgy3GyuXyTkQaPKYSq10W0NeShARFgmXGJDyP3Jw0pqOK6NB4KoeKWHK5PPGECwX0lQtSIoZYuBEuxkqlbJecg+eAwZBIFEy+hsGlISOFp08YASBH5pvNVGOHkQAH5EAAGD0eABcnitdnIZsy7s9Hh9ZG4ihUXmt4fNlvUYal3sQQWD-uj7mD8e6Eaj+fcPtWnW6RpgJtKH2VJbT3ht+gDZbLNbrcIRrsjzeTUvb0cL6CJ212JeH+Yr7SriUr602E8mnO5MF5MBdTcQ047+67ezlG4VSrKO73+6vzFDmilukv1+Yi-HJLIh7X8q3eQvT7-f9vVtd3-J9PxPGBFUbN0h3-AB6WDbjgVgWC5EgUEQSDEGdN4PhKDVWEfAtEH5TYf1TQj9yqcA2jAOAAHckAjVgUBQV4oAAT0yEhEAAWh4xAuyqPFD3OSYWRuUSrhuKoKGk9ihP0STpn0GSbgAFnvapZNEIA

Building Abstractions with Data 2.4.3

function operands(exp) {

return tail(exp);

}

a. Explain what was done above. Why can’t we assimilate the predicates is_number and

is_variable into the data-directed dispatch?

b. Write the functions for derivatives of sums and products, and the auxiliary code required

to install them in the table used by the program above.

c. Choose any additional di�erentiation rule that you like, such as the one for exponents

(exercise 2.56), and install it in this data-directed system.

d. In this simple algebraic manipulator the type of an expression is the algebraic operator

that binds it together. Suppose, however, we indexed the functions in the opposite way,

so that the dispatch line in deriv looked like

get(operator(exp), "deriv")(operands(exp), variable);

What corresponding changes to the derivative system are required?

Exercise 2.74

Insatiable Enterprises, Inc., is a highly decentralized conglomerate company consisting of a

large number of independent divisions located all over the world. The company’s computer

facilities have just been interconnected by means of a clever network-interfacing scheme that

makes the entire network appear to any user to be a single computer. Insatiable’s president,

in her �rst attempt to exploit the ability of the network to extract administrative information

from division �les, is dismayed to discover that, although all the division �les have been

implemented as data structures in JavaScript, the particular data structure used varies from

division to division. A meeting of division managers is hastily called to search for a strategy to

integrate the �les that will satisfy headquarters’ needs while preserving the existing autonomy

of the divisions.

Show how such a strategy can be implemented with data-directed programming. As an

example, suppose that each division’s personnel records consist of a single �le, which contains

a set of records keyed on employees’ names. The structure of the set varies from division

to division. Furthermore, each employee’s record is itself a set (structured di�erently from

division to division) that contains information keyed under identi�ers such as address and

salary. In particular:

a. Implement for headquarters a get_record function that retrieves a speci�ed employee’s

record from a speci�ed personnel �le. The function should be applicable to any division’s

�le. Explain how the individual divisions’ �les should be structured. In particular, what

type information must be supplied?

b. Implement for headquarters a get_salary function that returns the salary information

204 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.4.3

from a given employee’s record from any division’s personnel �le. How should the

record be structured in order to make this operation work?

c. Implement for headquarters a find_employee_record function. This should search all

the divisions’ �les for the record of a given employee and return the record. Assume

that this function takes as arguments an employee’s name and a list of all the divisions’

�les.

d. When Insatiable takes over a new company, what changes must be made in order to

incorporate the new personnel information into the central system?

Message passing

The key idea of data-directed programming is to handle generic operations in programs by

dealing explicitly with operation-and-type tables, such as the table in �gure 2.22. The style of

programming we used in section 2.4.2 organized the required dispatching on type by having

each operation take care of its own dispatching. In e�ect, this decomposes the operation-and-

type table into rows, with each generic operation function representing a row of the table.

An alternative implementation strategy is to decompose the table into columns and, in-

stead of using “intelligent operations” that dispatch on data types, to work with “intelligent

data objects” that dispatch on operation names. We can do this by arranging things so that

a data object, such as a rectangular number, is represented as a function that takes as in-

put the required operation name and performs the operation indicated. In such a discipline,

make_from_real_imag could be written as

Ifunction make_from_real_imag(x, y) {

function dispatch(op) {

return op === "real_part"

? x

: op === "imag_part"

? y

: op === "magnitude"

? math_sqrt(square(x) + square(y))

: op === "angle"

? math_atan(y, x)

: error(op,

"Unknown op -- make_from_real_imag");

}

return dispatch;

}

The corresponding apply_generic function, which applies a generic operation to an argument,

now simply feeds the operation’s name to the data object and lets the object do the work:
45

45
One limitation of this organization is it permits only generic functions of one argument.

205 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgSIAthgDWOAPrAscIRNwYANhJgiA5oQA0iAJ4kK1RH2jwkAExjIADhigQAFnjhX9lQ9Vr0kzxAF5-iABECso2WFCBbu7uAPxsUdHUAFyIPv6+QaoYahJhEQmJ1HE6BYWIKWkBgepgMHRmOJFliXEiUPYSaOF4aJi4hCQA1Cjo2Ph6RKXNFVZ+VRhgaoqNU82IrbYdtgt4OtrEq9OIOFgyWE5Wmodr0YEAqmCiYHAA7t6zALQfwmKS0rLyHBKFTqQJETiGHiGTwMRAWay2BycKHUXjgEyCETiKQyOTqCQLDRYbQYVyGYwCcyWGx2RzOMmJGHvOYZYJA0LYfI3OJYFg-doSCBwZB4UnXKgzFmZfF5Jo3dY0PltDrIGBgUWTeXlVKzdJBGp1EANOVanni9ySvWBQnLE1ahUYc3RFInM4XK72tb3R7PN46xBfH7Y-5yEIg7JgiHUFFUJlw6mI+zIhJo-imRAYKxWRQ6CRqHBgE4wCDujNYNQM2M4Oiw+xAsyi8tEC7g7ipjFIMN5PAAL0rccz2dz+cLWGLeDZwNl2kUligvaIrZ4FPTWRy3b7ZCiA6zObzBaLJcCa9ynMCM7nC6X7cpPzUtXq+E3BirNaQg73I8PE4Nj-PiFnZB5z7a8V0EG0n37asvAzXdhwPMcjwg-9AOAxdkzA98zDMQVZGzHACF7ABGbQewAJkrGhoNhLE-lxQFgTXPAnSrKdOWIoYqLY7pyKID0tRPDciM4wT2N40D0VvZAQAAI1woR8MInsSMQXit2haikFonEATDJiWK4jkeOEgNDNPHiKP4+VROMkhvhs4CKIktNMRAZQhQU5YlJUtSX1fGDtJDCR8UJZj7V-I0nxM1gIoaXtLIMiCOMQYYkvEjDJPTCwADd5MU4jSIo9SPE0oM6IBELFjCrVYqikgAHo7wfSL4r4xLFmWZLvjSpzk3qxrnBOWxTAkKAMBk5ZtCsEAoAzMAzEQfMoHIfqjFxRAHEzKATkQABmRAehwDs9oAOl2s7JkwjNkGQOAS3EPYqKFLAzGQSi40sCQwDcxQ8FwZ7Xs1Zo4nABpgDVHAzHFF1Rl+h7tDrDAG0Rht-rgF63sXJ04hRv6jvRwGnRSDAbruvB4cQMaYF+tGMfQtsru0saJvwSihTAICALu4FmeWPwAMvQJmF5nBmEjBIrsUOA4FEEArHJnBcxUh6JCKvz3HZznpJkkX+ZJ277sViQVKp36pYgHnxuWenChgYADu13W9VBnBwcLMxKMKOMXbdyGo2iLhjkUZAcGK5pNdm2mFoyfWyZVsjtFNnpZJFm21jtg6o6lH2IY9sP5W9+bXdz-2ykDnBg9D9WbjjJOo9bG4Y3cJum6utUQ+6FXlaNhPEGypQQBwT3qAjlAU6t0OY9Jw2lcTjBqbwc3LZZtPogz5OdYn7Oi99vPq8SEOoFG+eze55QRasz0qBsGBzlQhXZ8QG-znj7R+8UQfF0vq-3CTpfz4nouBuiRy6V3zoUUeWcp4GwfqrOeC9HaAOAc0deUCAg53dsPAAkIUQ+x8EHjxZlcHBP9DDPzwOQ1+fcB5D2-qQ6ISdEEr3piQqgoCQ7gLWHguu+MXpvxocgsuqwW4S0yoIeENIHB4CEMPfyNEpSBCljLOWdo1hxCUbLKwBkUhCAUe3E4XJPRxH0eEAyEoggYMhjqIat5Awi0CKXJucYJGJmTKPQaWBhoIGPizfmTMJ54FbKPJa-MPFeLAD4zqijpaaPFqPaas0MhhMpJE-Ax4OYGPFldWwY0HDHw0FAHQVhJBjTUNodm20wBQDevnOM5DCnFPyeUhAlTqnOWOg0kp2Q8BmFsCAGRtTSqfXIb0ugMjxQ43rD0vp4y1gulOOjaZYztCBBkkjSm2R8wLVGf0gM3xOn5PFsuMRSAKkFmqUs-p70hnIFPLfS5szgYbIXjsx5ZR5luleSstZC1SlbLhDMvZG0WnnOQEcm8q4OZjUUMof6Y1FhuWwKeCAohsis3zldLsYl9BUTfIgXGfZ2CIFbicxADkFxkFxTBJOhLiWiJclpX4OlQzsnDBoAg2g9CUrqfPc4HLdDgjpeSUltUKX7zkYygUXR5y9DGHjbiaEhhmOoLK-o5KQKCJJQyuaSxIKcIlfyLY8K8Dqr4mZDcq8hXUEZkyoKlUiQklkVS2E5DeQxU2LhEUpJtBusNZ0NUGpNUJFWmqbaWBgAYAgKHKAcBKZ1iopzOA9t2ih2QDoICOAhD0o6d04g+rnXvigLkjopSJxwsJIirA-5iCOISAkstrLpwCyAg26AFbFDYDBD6xtnJBH1uPDKM8F4W1sjbQijtVazUOT7TNH82RmrGmHfOUd8K1CVq7U1Q0DQZ3LuQku1tq711mogjuudwZ6J6VBCs8t47O10KoFoAVfgAB8GyNCBQvaypi-KJinuqLa+i9r-wrvbXe1Yf1HUvrfdIgDFVsgEiqsSDMQDS5xkCGYBAjRkzkHbtC2FR1D0TuRai-MgTOBtyhUoUIcAiM2BRWiwJ+cQ1VJOGAJQRgTnIGzbeUVz4C34qmbSrVx00o4trifBcRLhM8dg3ieDoUkOkm5aVV1jqpPcfTFinisi4y8ZIO6gUQovUdUgkG4V2rTX6t0-OrdeqDMqgDaJsz1qRWyYYsob9nKdMqd5TBqVqBuiqvwHm4YQXdhf2VVQZUBJjWPWIEG4NjVQ0nAjVGymsaU0JtmkmuNqb03bSzeZnN7KxOlRyZGkt3TAhWBo3etggqm79q0xEfd1XauTu7Qqv9DkUKCxqxOjd07S79tqr1kd-XO1mtqn+vdzbl0TY6zq62w3Z3-vPbpL9V6ggLf-OBn9JBfCvtLR+jbjF1CPt-St5dJ25M5EJMBnb97M6QcO9Bm7wV5OIcdZatDGHCwOLbDhyjMLcjteIwx1s5BR5CFzB5RSX1+kyR2hkBI73L3dKIidAADNoAALCdAArJDyBOBpKKESYgBISMcJw68tI2HeEvII6EEj4kZiYd5SZ99FnJxIfktwGTqA4IgA

Building Abstractions with Data 2.5

Ifunction apply_generic(op, arg) {

return head(arg)(op);

}

Note that the value returned by make_from_real_imag is a function—the internal dispatch

function. This is the function that is invoked when apply_generic requests an operation to

be performed.

This style of programming is called message passing. The name comes from the image that

a data object is an entity that receives the requested operation name as a “message.” We have

already seen an example of message passing in section 2.1.3, where we saw how pair, head,

and tail could be de�ned with no data objects but only functions. Here we see that message

passing is not a mathematical trick but a useful technique for organizing systems with generic

operations. In the remainder of this chapter we will continue to use data-directed programming,

rather than message passing, to discuss generic arithmetic operations. In chapter 3 we will

return to message passing, and we will see that it can be a powerful tool for structuring

simulation programs.

Exercise 2.75

Implement the constructor make_from_mag_ang in message-passing style. This function should

be analogous to the make_from_real_imag function given above.

Exercise 2.76

As a large system with generic operations evolves, new types of data objects or new operations

may be needed. For each of the three strategies—generic operations with explicit dispatch, data-

directed style, and message-passing-style—describe the changes that must be made to a system

in order to add new types or new operations. Which organization would be most appropriate

for a system in which new types must often be added? Which would be most appropriate for

a system in which new operations must often be added?

2.5 Systems with Generic Operations

In the previous section, we saw how to design systems in which data objects can be represented

in more than one way. The key idea is to link the code that speci�es the data operations to the

several representations by means of generic interface functions. Now we will see how to use

this same idea not only to de�ne operations that are generic over di�erent representations but

also to de�ne operations that are generic over di�erent kinds of arguments. We have already

206 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgSIAthgDWOAPrAscIRNwYANhJgiA5oQA0iAJ4kK1RH2jwkAExjIADhigQAFnjhX9lQ9Vr0kzxAF5-iABECso2WFCBbu7uAPxsUdHUAFyIPv6+QaoYahJhEQmJ1HE6BYWIKWkBgepgMHRmOJFliXEiUPYSaOF4aJi4hCQA1Cjo2Ph6RKXNFVZ+VRhgaoqNU82IrbYdtgt4OtrEq9OIOFgyWE5Wmodr0YEAqmCiYHAA7t6zALQfwmKS0rLyHBKFTqQJETiGHiGTwMRAWay2BycKHUXjgEyCETiKQyOTqCQLDRYbQYVyGYwCcyWGx2RzOMmJGHvOYZYJA0LYfI3OJYFg-doSCBwZB4UnXKgzFmZfF5Jo3dY0PltDrIGBgUWTeXlVKzdJBGp1EANOVanni9ySvWBQnLE1ahUYc3RFInM4XK72tb3R7PN46xBfH7Y-5yEIg7JgiHUFFUJlw6mI+zIhJo-imRAYKxWRQ6CRqHBgE4wCDujNYNQM2M4Oiw+xAsyi8tEC7g7ipjFIMN5PAAL0rccz2dz+cLWGLeDZwNl2kUligvaIrZ4FPTWRy3b7ZCiA6zObzBaLJcCa9ynMCM7nC6X7cpPzUtXq+E3BirNaQg73I8PE4Nj-PiFnZB5z7a8V0EG0n37asvAzXdhwPMcjwg-9AOAxdkzA98zDMQVZGzHACF7ABGbQewAJkrGhoNhLE-lxQFgTXPAnSrKdOWIoYqLY7pyKID0tRPDciM4wT2N40D0VvZAQAAI1woR8MInsSMQXit2haikFonEATDJiWK4jkeOEgNDNPHiKP4+VROMkhvhs4CKIktNMRAZQhQU5YlJUtSX1fGDtJDCR8UJZj7V-I0nxM1gIoaXtLIMiCOMQYYkvEjDJPTCwADd5MU4jSIo9SPE0oM6IBELFjCrVYqikgAHo7wfSL4r4xLFmWZLvjSpzk3qxrnBOWxTAkKAMBk5ZtCsEAoAzMAzEQfMoHIfqjFxRAHEzKATkQABmRAehwDs9oAOl2s7JkwjNkGQOAS3EPYqKFLAzGQSi40sCQwDcxQ8FwZ7Xs1Zo4nABpgDVHAzHFF1Rl+h7tDrDAG0Rht-rgF63sXJ04hRv6jvRwGnRSDAbruvB4cQMaYF+tGMfQtsru0saJvwSihTAICALu4FmeWPwAMvQJmF5nBmEjBIrsUOA4FEEArHJnBcxUh6JCKvz3HZznpJkkX+ZJ277sViQVKp36pYgHnxuWenChgYADu13W9VBnBwcLMxKMKOMXbdyGo2iLhjkUZAcGK5pNdm2mFoyfWyZVsjtFNnpZJFm21jtg6o6lH2IY9sP5W9+bXdz-2ykDnBg9D9WbjjJOo9bG4Y3cJum6utUQ+6FXlaNhPEGypQQBwT3qAjlAU6t0OY9Jw2lcTjBqbwc3LZZtPogz5OdYn7Oi99vPq8SEOoFG+eze55QRasz0qBsGBzlQhXZ8QG-znj7R+8UQfF0vq-3CTpfz4nouBuiRy6V3zoUUeWcp4GwfqrOeC9HaAOAc0deUCAg53dsPAAkIUQ+x8EHjxZlcHBP9DDPzwOQ1+fcB5D2-qQ6ISdEEr3piQqgoCQ7gLWHguu+MXpvxocgsuqwW4S0yoIeENIHB4CEMPfyNEpSBCljLOWdo1hxCUbLKwBkUhCAUe3E4XJPRxH0eEAyEoggYMhjqIat5Awi0CKXJucYJGJmTKPQaWBhoIGPizfmTMJ54FbKPJa-MPFeLAD4zqijpaaPFqPaas0MhhMpJE-Ax4OYGPFldWwY0HDHw0FAHQVhJBjTUNodm20wBQDevnOM5DCnFPyeUhAlTqnOWOg0kp2Q8BmFsCAGRtTSqfXIb0ugMjxQ43rD0vp4y1gulOOjaZYztCBBkkjSm2R8wLVGf0gM3xOn5PFsuMRSAKkFmqUs-p70hnIFPLfS5szgYbIXjsx5ZR5luleSstZC1SlbLhDMvZG0WnnOQEcm8q4OZjUUMof6Y1FhuWwKeCAohsis3zldLsYl9BUTfIgXGfZ2CIFbicxADkFxkFxTBJOhLiWiJclpX4OlQzsnDBoAg2g9CUrqfPc4HLdDgjpeSUltUKX7zkYygUXR5y9DGHjbiaEhhmOoLK-o5KQKCJJQyuaSxIKcIlfyLY8K8Dqr4mZDcq8hXUEZkyoKlUiQklkVS2E5DeQxU2LhEUpJtBusNZ0NUGpNUJFWmqbaWBgAYAgKHKAcBKZ1iopzOA9t2ih2QDoICOAhD0o6d04g+rnXvigLkjopSJxwsJIirA-5iCOISAkstrLpwCyAg26AFbFDYDBD6xtnJBH1uPDKM8F4W1sjbQijtVazUOT7TNH82RmrGmHfOUd8K1CVq7U1Q0DQZ3LuQku1tq711mogjuudwZ6J6VBCs8t47O10KoFoAVfgAB8GyNCBQvaypi-KJinuqLa+i9r-wrvbXe1Yf1HUvrfdIgDFVsgEiqsSDMQDS5xkCGYBAjRkzkHbtC2FR1D0TuRai-MgTOBtyhUoUIcAiM2BRWiwJ+cQ1VJOGAJQRgTnIGzbeUVz4C34qmbSrVx00o4trifBcRLhM8dg3ieDoUkOkm5aVV1jqpPcfTFinisi4y8ZIO6gUQovUdUgkG4V2rTX6t0-OrdeqDMqgDaJsz1qRWyYYsob9nKdMqd5TBqVqBuiqvwHm4YQXdhf2VVQZUBJjWPWIEG4NjVQ0nAjVGymsaU0JtmkmuNqb03bSzeZnN7KxOlRyZGkt3TAhWBo3etggqm79q0xEfd1XauTu7Qqv9DkUKCxqxOjd07S79tqr1kd-XO1mtqn+vdzbl0TY6zq62w3Z3-vPbpL9V6ggLf-OBn9JBfCvtLR+jbjF1CPt-St5dJ25M5EJMBnb97M6QcO9Bm7wV5OIcdZatDGHCwOLbDhyjMLcjteIwx1s5ByCjyELmDyikvr9JkjtDICR3uXu6URE6AAGbQAAWE6ABWSHkCcDSUUIkxACQkY4Xh15aRcO8JeUR0IZHxIzGw7ysz76rOTiQ-JbgcnUBwRAA

Building Abstractions with Data 2.5.1

seen several di�erent packages of arithmetic operations: the primitive arithmetic (+, -, *, /)

built into our language, the rational-number arithmetic (add_rat, sub_rat, mul_rat, div_rat)

of section 2.1.1, and the complex-number arithmetic that we implemented in section 2.4.3. We

will now use data-directed techniques to construct a package of arithmetic operations that

incorporates all the arithmetic packages we have already constructed.

Figure 2.23 shows the structure of the system we shall build. Notice the abstraction barriers.

From the perspective of someone using “numbers,” there is a single function add that operates

on whatever numbers are supplied. The function add is part of a generic interface that allows

the separate ordinary-arithmetic, rational-arithmetic, and complex-arithmetic packages to be

accessed uniformly by programs that use numbers. Any individual arithmetic package (such as

the complex package) may itself be accessed through generic functions (such as add_complex)

that combine packages designed for di�erent representations (such as rectangular and po-

lar). Moreover, the structure of the system is additive, so that one can design the individual

arithmetic packages separately and combine them to produce a generic arithmetic system.

add sub mul div

add_complex

mul_complex

sub_complex

div_complex

Programs that use numbers

Generic arithmetic package

Complex arithmetic

Rectangular Polar

sub_rat

div_rat

add_rat

mul_rat

Rational
arithmetic

Ordinary
arithmetic

List structure and primitive machine arithmetic

+ -- * /

Figure 2.23: Generic arithmetic system.

2.5.1 Generic Arithmetic Operations

The task of designing generic arithmetic operations is analogous to that of designing the

generic complex-number operations. We would like, for instance, to have a generic addition

function add that acts like ordinary primitive addition + on ordinary numbers, like add_rat on

rational numbers, and like add_complex on complex numbers. We can implement add, and the

other generic arithmetic operations, by following the same strategy we used in section 2.4.3 to

207 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.5.1

implement the generic selectors for complex numbers. We will attach a type tag to each kind

of number and cause the generic function to dispatch to an appropriate package according to

the data type of its arguments.

The generic arithmetic functions are de�ned as follows:

function add(x, y) {

return apply_generic("add", list(x, y));

}

function sub(x, y) {

return apply_generic("sub", list(x, y));

}

function mul(x, y) {

return apply_generic("mul", list(x, y));

}

function div(x, y) {

return apply_generic("div", list(x, y));

}

We begin by installing a package for handling ordinary numbers, that is, the primitive numbers

of our language. We will tag these with the string "javascript_number". The arithmetic oper-

ations in this package are the primitive arithmetic functions (so there is no need to de�ne extra

functions to handle the untagged numbers). Since these operations each take two arguments,

they are installed in the table keyed by the list list("javascript_number", "javascript_number"):

Ifunction install_javascript_number_package() {

function tag(x) {

return attach_tag("javascript_number", x);

}

put("add", list("javascript_number", "javascript_number"),

(x, y) => tag(x + y));

put("sub", list("javascript_number", "javascript_number"),

(x, y) => tag(x - y));

put("mul", list("javascript_number", "javascript_number"),

(x, y) => tag(x * y));

put("div", list("javascript_number", "javascript_number"),

(x, y) => tag(x / y));

put("make", "javascript_number",

x => tag(x));

return "done";

}

Users of the JavaScript-number package will create (tagged) ordinary numbers by means of

the function:

Ifunction make_javascript_number(n) {

return get("make", "javascript_number")(n);

208 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEEkDtQZQewK4CcDGBTANKAtnAzgC6gBmCkKBAlnJHqABYCGAbmqIyZQB5oAmokBNgBGaJKDjF2SAOZC0kAngB0AKBCgAFABV6bUuSo1QAG0qFQ50AT0TIJgJ6g0XdAAcjkLATjX6VvF9iRiRlAEp1MF19MgpqaEY3N0cAfUpIFLJeMUd0mRSAKxZGPBQkSg92ExM4AHc6BDofSPYkx3ZIJxlKVmgDOOMDa19GaucTNGwFJQkpGzYQuSnFUBazC0W8LBLLOb0nWrE2PDQ3EMYCBdl5RTxVfs9W5IdNA23ZPDDQAG9VUH-QEg0ARkAk2g40hksjkHHlCsVSuUPK8yO8ZJ8ANyqAC+91ij0SzxSMgUYkoKE0cDcaM+Pz+AJQNAsBAcbjQKQIjHRoAAvDhEpoWWyOVyaWEsQDQIzaEQhnySQRKdTrKz2Zz0eL6f8gSCkH0yKAAIQ8vnQ4jpPhayWgAD8T0cKK8-Lcmmll1uYoi1oBAC5nEgkHAkJp1oqqd5VSKNRgrd7vQAiAByvimNjg-GIQb8aBOKrZdHS9ohJMgZJQ8c1uIe8XYvF4mi4WAcX1+AJ1oKLxNJ5Qp8cYdfjWFDDabYUreMMNbwCGEI9AzbpbeBHcJqRLZc08enwkHpnMisb87HWKr+Jr2AQJjnC9b2uXes7657m4vJl3w8PzfH1eMvB615bLV2wfVdi27clNz-Zh333ADxw0KkxAueIRWECYsDcBAiEYSB+AVFpiEDbApSYDwxFAABmLQTgGaAKOUeiKIiH8EjwQIKQAazQBwsCBRkkF4WlbzvXVoHMFJBGqTQ+KDQSvTjAE7TNC1eFjb0-TQABHBBRk0LieIYNB+00PRjJkgTPjHNS4ztUz63MuTrPU9g2LgTjuO8RhKCvBzLJPCdaP5LjUImTRAMlaULBqFBRhCtg+WHeMACpOTQtAkorCUARY0w4DgDiEBdfSUgARiwYqACZwrjSKiG3VKJl5Fz2L07jSs87yQzc2KGrQY8nMoKRNHqxg0t5E1QGU0teGqhSRI7Ka+Cy71sXGXNhLm2rATQfj+D5EoWsqjqrxGtL+rmgFBq0BzxtNXC0HNabZoupdRMm+7HqWpzJVWtATHW7642A6BOU6hzNRe0BcQU6GAVh-4cvSE4kEVYqytAI7QGYUYED6xcaqZOqZ16pqDrc1qIXR0Gr2inrRomc64yu4bifp+KJsWmb8Yuk4CBFTraZMOKY0huazkoYNhzRjCvODTHsZMXGxxF0XIeprqYqF3qxwhuNfv+tgNoUrabv21z3IhCrjpZ4Rtd1i7mdNjmPpU57-gASAU3n+ZO1m0pjT3VYU8XgxDimUitrGcb6lWg9F9XToZ-rA-+fWAbj731YcrAFaV5a5vh61C8LnK-zwM4CBQehNGwN3Xo7YiTT5eManywr40B607Vbgq3E7yU-Ubib4yRsQCA7uPbUsWgx-760NIDIMa6weMAFVIA4yA6mgRCkGQ4wAFoD+sNnMqtQvgdAMuK6r-ytt3-eMhJvlsEYYLerCrEtoVJqH88OLNw93bpqLamEiB8j-ihD+I8Z4ozPjlC4nIq5RkFJGdUWA3TTCElaS+YchRqlFFKGg7olDfjPMYfBKDeAXCEM9S+4kw7UJBLXTutkjL1iYbQzuC9AzBk4dgFewh+wnxkCSfg-DQBHzzAQmQZ9TyTmMJg24mh+F0PvGJPAKRGE0JYS9O06tVHcP9LwlROjBHCPVGIq+OjJHHyUUoORAVHhI05NUeE2NEQVD5oIEQYgtGMBQBxLkaAwrcxIOQkGXIGx13miBAgSD6AoPjEUDxZQvESSEKIJAu4uD2yhlaMBm5+y8BgoQTcKSShpI8Bk3x2SV4VM8dUnxWSKxYCcgBXkAA+ERDZQAAGojx5MKVuGcpTFTJIRFU7xmSxC7gmakpE0zamtNWApDpPJunql6cfL8+dhmvjGeUyZiyaktPqcc9JzTZlhDaWsz8XwNk9K4KAJKgy9lYUgj0Q58zKknKuXU0APzGlLJaTc1ZcZ1mbKic8sAuyCkfPjK-LicyGlTNObM25cZnmPK2bkvJl94y8BoGgeMJ4gA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEEkDtQZQewK4CcDGBTANKAtnAzgC6gBmCkKBAlnJHqABYCGAbmqIyZQB5oAmokBNgBGaJKDjF2SAOZC0kAngB0AKBCgAFABV6bUuSo1QAG0qFQ50AT0TIJgJ6g0XdAAcjkLATjX6VvF9iRiRlAEp1MF19MgpqaEY3N0cAfUpIFLJeMUd0mRSAKxZGPBQkSg92ExM4AHc6BDofSPYkx3ZIJxlKVmgDOOMDa19GaucTNGwFJQkpGzYQuSnFUBazC0W8LBLLOb0nWrE2PDQ3EMYCBdl5RTxVfs9W5IdNA23ZPDDQAG9VUH-QEg0ARkAk2g40hksjkHHlCsVSuUPK8yO8ZJ8ANyqAC+91ij0SzxSMgUYkoKE0cDcaM+Pz+AJQNAsBAcbjQKQIjHRoAAvDhEpoWWyOVyaWEsQDQIzaEQhnySQRKdTrKz2Zz0eL6f8gSCkH0yKAAIQ8vnQ4jpPhayWgAD8T0cKK8-Lcmmll1uYoi1oBAC5nEgkHAkJp1oqqd5VSKNRgrd7vQAiAByvimNjg-GIQb8aBOKrZdHS9ohJMgZJQ8c1uIe8XYvF4mi4WAcX1+AJ1oKLxNJ5Qp8cYdfjWFDDabYUreMMNbwCGEI9AzbpbeBHcJqRLZc08enwkHpnMisb87HWKr+Jr2AQJjnC9b2uXes7657m4vJl3w8PzfH1eMvB615bLV2wfVdi27clNz-Zh333ADxw0KkxAueIRWECYsDcBAiEYSB+AVFpiEDbApSYDwxFAABmLQTgGaAKOUeiKIiH8EjwQIKQAazQBwsCBRkkF4WlbzvXVoHMFJBGqTQ+KDQSvTjAE7TNC1eFjb0-TQABHBBRk0LieIYNB+00PRjJkgTPjHNS4ztUz63MuTrPU9g2LgTjuO8RhKCvBzLJPCdaP5LjUImTRAMlaULBqFBRhCtg+WHeMACpOTQtAkorCUARY0w4DgDiEBdfSUgARiwYqACZwrjSKiG3VKJl5Fz2L07jSs87yQzc2KGrQY8nMoKRNHqxg0t5E1QGU0teGqhSRI7Ka+Cy71sXGXNhLm2rATQfj+D5EoWsqjqrxGtL+rmgFBq0BzxtNXC0HNabZoupdRMm+7HqWpzJVWtATHW7642A6BOU6hzNRe0BcQU6GAVh-4cvSE4kEVYqytAI7QGYUYED6xcaqZOqZ16pqDrc1qIXR0Gr2inrRomc64yu4bifp+KJsWmb8Yuk4CBFTraZMOKY0huazkoYNhzRjCvODTHsZMXGxxF0XIeprqYqF3qxwhuNfv+tgNoUrabv21z3IhCrjpZ4Rtd1i7mdNjmPpU57-gASAU3n+ZO1m0pjT3VYU8XgxDimUitrGcb6lWg9F9XToZ-rA-+fWAbj731YcrAFaV5a5vh61C8LnK-zwM4CBQehNGwN3Xo7YiTT5eManywr40B607Vbgq3E7yU-Ubib4yRsQCA7uPbUsWgx-760NIDIMa6weMAFVIA4yA6mgRCkGQ4wAFoD+sNnMqtQvgdAMuK6r-ytt3-eMhJvlsEYYLerCrEtoVJqH88OLNw93bpqLamEiB8j-ihD+I8Z4ozPjlC4nIq5RkFJGdUWA3TTCElaS+YchRqlFFKGg7olDfjPMYfBKDeAXCEM9S+4kw7UJBLXTutkjL1iYbQzuC9AzBk4dgFewh+wnxkCSfg-DQBHzzAQmQZ9TyTmMJg24mh+F0PvGJPAKRGE0JYS9O06tVHcP9LwlROjBHCPVGIq+OjJHHyUUoORAVHhI05NUeE2NEQVD5oIEQYgtGMBQBxLkaAwrcxIOQkGXIGx13miBAgSD6AoPjEUDxZQvESSEKIJAu4uD2yhlaMBm5+y8BgoQTcKSShpI8Bk3x2SV4VM8dUnxWSKxYCcgBXkAA+ERDZQAAGojx5MKVuGcpTFTJIRFU7xmSxC7gmakpE0zamtNWApDpPJunql6cfL8+dhmvjGeUyZiyaktPqcc9JzTZlhDaWsz8XwNk9K4KAJKgy9lYUgj0Q58zKknKuXU0APzGlLJaTc1ZcZ1mbKic8sAuyCkfPjK-LicyGlTNObM25cZnmPK2bkvJl94y8BoGgeM-kXGjCFqiv5MykD+MCcEz+Tjzxv3ZFSy5NLNCQDUW9BUL4WUoouU0mlFZOXjlUFtSAJUmpItZYKkFYhNAABYQGEwEBVaVLL3G-PZbUzQABWTUqhimcvRpAKqGIgA

Building Abstractions with Data 2.5.1

}

Now that the framework of the generic arithmetic system is in place, we can readily in-

clude new kinds of numbers. Here is a package that performs rational arithmetic. Notice that,

as a bene�t of additivity, we can use without modi�cation the rational-number code from

section 2.1.1 as the internal functions in the package:

Ifunction install_rational_package() {

// internal functions

function numer(x) {

return head(x);

}

function denom(x) {

return tail(x);

}

function make_rat(n, d) {

let g = gcd(n, d);

return pair(n / g, d / g);

}

function add_rat(x, y) {

return make_rat(numer(x) * denom(y) +

numer(y) * denom(x),

denom(x) * denom(y));

}

function sub_rat(x, y) {

return make_rat(numer(x) * denom(y) -

numer(y) * denom(x),

denom(x) * denom(y));

}

function mul_rat(x, y) {

return make_rat(numer(x) * numer(y),

denom(x) * denom(y));

}

function div_rat(x, y) {

return make_rat(numer(x) * denom(y),

denom(x) * numer(y));

}

// interface to rest of the system

function tag(x) {

return attach_tag("rational", x);

}

put("add", list("rational", "rational"),

(x, y) => tag(add_rat(x, y)));

put("sub", list("rational", "rational"),

(x, y) => tag(sub_rat(x, y)));

put("mul", list("rational", "rational"),

(x, y) => tag(mul_rat(x, y)));

209 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEEkDtQZQewK4CcDGBTANKAtnAzgC6gBmCkKBAlnJHqABYCGAbmqIyZQB5oAmokBNgBGaJKDjF2SAOZC0kAngB0AKBCgAFABV6bUuSo1QAG0qFQ50AT0TIJgJ6g0XdAAcjkLATjX6VvF9iRiRlAEp1MF19MgpqaEY3N0cAfUpIFLJeMUd0mRSAKxZGPBQkSg92ExM4AHc6BDofSPYkx3ZIJxlKVmgDOOMDa19GaucTNGwFJQkpGzYQuSnFUBazC0W8LBLLOb0nWrE2PDQ3EMYCBdl5RTxVfs9W5IdNA23ZPDDQAG9VUH-QEg0ARkAk2g40hksjkHHlCsVSuUPK8yO8ZJ8ANyqAC+91ij0SzxSMgUYkoKE0cDcaM+Pz+AJQNAsBAcbjQKQIjHRoAAvDhEpoWWyOVyaWEsQDQIzaEQhnySQRKdTrKz2Zz0eL6f8gSCkH0yKAAIQ8vnQ4jpPhayWgAD8T0cKK8-Lcmmll1uYoi1oBAC5nEgkHAkJp1oqqd5VSKNRgrd7vQAiAByvimNjg-GIQb8aBOKrZdHS9ohJMgZJQ8c1uIe8XYvF4mi4WAcX1+AJ1oKLxNJ5Qp8cYdfjWFDDabYUreMMNbwCGEI9AzbpbeBHcJqRLZc08enwkHpnMisb87HWKr+Jr2AQJjnC9b2uXes7657m4vJl3w8PzfH1eMvB615bLV2wfVdi27clNz-Zh333ADxw0KkxAueIRWECYsDcBAiEYSB+AVFpiEDbApSYDwxFAABmLQTgGaAKOUeiKIiH8EjwQIKQAazQBwsCBRkkF4WlbzvXVoHMFJBGqTQ+KDQSvTjAE7TNC1eFjb0-TQABHBBRk0LieIYNB+00PRjJkgTPjHNS4ztUz63MuTrPU9g2LgTjuO8RhKCvBzLJPCdaP5LjUImTRAMlaULBqFBRhCtg+WHeMACpOTQtAkorCUARY0w4DgDiEBdfSUgARiwYqACZwrjSKiG3VKJl5Fz2L07jSs87yQzc2KGrQY8nMoKRNHqxg0t5E1QGU0teGqhSRI7Ka+Cy71sXGXNhLm2rATQfj+D5EoWsqjqrxGtL+rmgFBq0BzxtNXC0HNabZoupdRMm+7HqWpzJVWtATHW7642A6BOU6hzNRe0BcQU6GAVh-4cvSE4kEVYqytAI7QGYUYED6xcaqZOqZ16pqDrc1qIXR0Gr2inrRomc64yu4bifp+KJsWmb8Yuk4CBFTraZMOKY0huazkoYNhzRjCvODTHsZMXGxxF0XIeprqYqF3qxwhuNfv+tgNoUrabv21z3IhCrjpZ4Rtd1i7mdNjmPpU57-gASAU3n+ZO1m0pjT3VYU8XgxDimUitrGcb6lWg9F9XToZ-rA-+fWAbj731YcrAFaV5a5vh61C8LnK-zwM4CBQehNGwN3Xo7YiTT5eManywr40B607Vbgq3E7yU-Ubib4yRsQCA7uPbUsWgx-760NIDIMa6weMAFVIA4yA6mgRCkGQ4wAFoD+sNnMqtQvgdAMuK6r-ytt3-eMhJvlsEYYLerCrEtoVJqH88OLNw93bpqLamEiB8j-ihD+I8Z4ozPjlC4nIq5RkFJGdUWA3TTCElaS+YchRqlFFKGg7olDfjPMYfBKDeAXCEM9S+4kw7UJBLXTutkjL1iYbQzuC9AzBk4dgFewh+wnxkCSfg-DQBHzzAQmQZ9TyTmMJg24mh+F0PvGJPAKRGE0JYS9O06tVHcP9LwlROjBHCPVGIq+OjJHHyUUoORAVHgyBQPWRgWBhBqLesIW6oAAAMU8OB+hcfWYQ2xQAAFJQCeP8ojGUowhZ708LFM4KAOJcjQGFbmoANDpEuHqUYJByG0CtDlQQUxgxcBbKsBSl87INnFDUuGpTilXwUHAbADTsmSkvurKp+cS6tNfsFJJmgnRc2+E070EwiAyCaiEsZWAZr5x6eo0AYdoBgBkEsnJoAZCNPPi0hRCQ6wpFGZ+Ou80HzDPZKM8pYgulJTaVvTpC4ADUc8Xr3ODAuJ52QXkNKwJDT5F1-kdMec88FX4BlHMCtuM5FwALdPrtct+tzEXfIhWC15XwD4grmpi35kLOlVKBS9fFClsVYvaTi+2UNYWPFfAig8o5kVXOgDc5lYz5CVK+E8wlYRY6T0lFSqpoA-k0s0NCw5kpS49C5Rctl203qcruTy6lALmxCuFf8UVfKBDqulT9VQVpcmKDEMEdAwxtoWEkNmUAeAHCEEmAyms6oulGxRQkAgSD6AoPjEk+Ioxdz9JlQCMBm5+y8BgoQTcgaaDBpXvGyAwbBVOSRTyAAfCIzQUaFWjkZv8CNW4ZwxsVAGx+ibQAVuSW+NNCkM3ZvdfC85Ba6XFtfGWuNla3xJp7RWbVAJG05qZa2o8hb1lYUgj0LtNag29urcm1Ng7-jDvdVBfN4721TvjDc3cc6E29vTeMr4WaR1oq5Seidl94y8BoGgeMGJ-g4hNTlVVPbFlXy8R2TQCoXxov3UuutYRP3LJfaoJGnJqjMvnVoxgaSMmfxNSbEqTV321s0OjJiX9CaAgqmhi9QHNCRwAKyalUFG6S6MkBVQxEAA

Building Abstractions with Data 2.5.1

put("div", list("rational", "rational"),

(x, y) => tag(div_rat(x, y)));

put("make", "rational",

(n, d) => tag(make_rat(n, d)));

return "done";

}

function make_rational(n, d) {

return (get("make", "rational"))(n, d);

}

We can install a similar package to handle complex numbers, using the tag "complex".

In creating the package, we extract from the table the operations make_from_real_imag and

make_from_mag_ang that were de�ned by the rectangular and polar packages. Additivity per-

mits us to use, as the internal operations, the same add_complex, sub_complex, mul_complex,

and div_complex functions from section 2.4.1.

Ifunction install_complex_package() {

// imported functions from rectangular and polar packages

function make_from_real_imag(x, y) {

return get("make_from_real_imag", "rectangular")(x, y);

}

function make_from_mag_ang(r, a) {

return get("make_from_mag_ang", "polar")(r, a);

}

// internal functions

function add_complex(z1, z2) {

return make_from_real_imag(real_part(z1) +

real_part(z2),

imag_part(z1) +

imag_part(z2));

}

function sub_complex(z1, z2) {

return make_from_real_imag(real_part(z1) -

real_part(z2),

imag_part(z1) -

imag_part(z2));

}

function mul_complex(z1, z2) {

return make_from_mag_ang(magnitude(z1) *

magnitude(z2),

angle(z1) +

angle(z2));

}

function div_complex(z1, z2) {

return make_from_mag_ang(magnitude(z1) /

magnitude(z2),

210 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEEkDtQZQewK4CcDGBTANKAtnAzgC6gBmCkKBAlnJHqABYCGAbmqIyZQB5oAmokBNgBGaJKDjF2SAOZC0kAngB0AKBCgAFABV6bUuSo1QAG0qFQ50AT0TIJgJ6g0XdAAcjkLATjX6VvF9iRiRlAEp1MF19MgpqaEY3N0cAfUpIFLJeMUd0mRSAKxZGPBQkSg92ExM4AHc6BDofSPYkx3ZIJxlKVmgDOOMDa19GaucTNGwFJQkpGzYQuSnFUBazC0W8LBLLOb0nWrE2PDQ3EMYCBdl5RTxVfs9W5IdNA23ZPDDQAG9VUH-QEg0ARkAk2g40hksjkHHlCsVSuUPK8yO8ZJ8ANyqAC+91ij0SzxSMgUYkoKE0cDcaM+Pz+AJQNAsBAcbjQKQIjHRoAAvDhEpoWWyOVyaWEsQDQIzaEQhnySQRKdTrKz2Zz0eL6f8gSCkH0yKAAIQ8vnQ4jpPhayWgAD8T0cKK8-Lcmmll1uYoi1oBAC5nEgkHAkJp1oqqd5VSKNRgrd7vQAiAByvimNjg-GIQb8aBOKrZdHS9ohJMgZJQ8c1uIe8XYvF4mi4WAcX1+AJ1oKLxNJ5Qp8cYdfjWFDDabYUreMMNbwCGEI9AzbpbeBHcJqRLZc08enwkHpnMisb87HWKr+Jr2AQJjnC9b2uXes7657m4vJl3w8PzfH1eMvB615bLV2wfVdi27clNz-Zh333ADvzPYwgVGFIziQRUAC9AKXXUwSJJ8IPjJCTBQkICBgwhNEw+DJ2MShsC5Ei0MorC7xwx9wN7OiGNQsih1gqiTwnAZoHomRIEoEFsmYxdWJXcEu1LZ941E8TJLQciMOPHEhIJSAZAmaTb0Be9cLXDjN0YPSJg05jxw0KkxAueIRWECYsDcBAiEs-gFRaYhA2wKUmA8MRQAAZi0E5hPC5QwtiiIfwSPBAgpABrNAHCwIFGSQXhaSM4y2PMFJBGqTRsqDPKvTjAE7TNC1eFjb0-TQABHBBRk0dLMoYNB+00PR+oq3LPjHJq4ztQb62Gqrxua9hkrgNKMu8RhKCvGbRsExL+XSlyDJY-5pQsGoUGQzlXLYPlh3jAAqC6JluisJQBHaajgVKEBdbqUgARiwH6ACZDutY6iG3B6roWlKuoyv7VvWkMlvOxhLq0mrKCkTQIdRiZeRNUB6tLXgQZq4DoCJvgXu9bFxlzAqarB4ycv4PkShhoGEavHG0c1GrJUxrQZvx01IGyc1idJ-nZIfSneGp-nabQEx6bmsmTOsNaNrQFm+el0BcRqw2AWN-4dvSE4mJ+-7QE50BmFGBA0Clo6mXBmdId5aGlthiEbc5RHTpR3mFYFrGebxk1RfFhqXetE4CBFQPkeIyGY316WzkoYNh2t9y1uDO2HZMJ2x3TjOK4Dq8g9T3HnfRuMlZVtgGbjJnhbZxblohQGuexj264b6XBfKnXKpFwmxbQCW+ClgBIGqE6T7mB8umMF4r-ms+DbffZSXv7cd53y83zeq-74RIbHTUN-+JvVdP0Al-PmasGL0vQ8bubTYNq0dr-PAZwCAoHoJobAcdyY4AnvGd6n03DxjVt6O0sCvqIOtH6QKUdQDxgtmIMiaCkGWFoHggh6D-SBmDNgLA8YACqkBUqQDqNABySAnLGAALTsM1pdZ6Vof6QIAUAkBgkmYsLYRkT2fJ6J7UhpoTUTMFRezEZ4faaBNwoPgfIt2oAPJED5Mo5ysicHELQrwnaFxOQgKjIKSM6osBummPlK0kDd5CjVKKKUNB3RKGotFNx1jeAXCECDSBxVd6BJBOAtBk0+r1gicEtBLUAxBk0PEqh2DhD9k1jIEk-A0mgE4XmdxMheGnhotABxtxUlBPATJGW0AwkF2qZE6q-M7TnzSa0mqSSKHNKENQzJ-B1S5NAPkwplSlClJ0lOdqIQ1FcBCRrLgoBbqgC4NtBCDSZSjGItlTkelLwhBIigVKXI1Egw0OkS4epRgkE2XcSUO0iKMU0j8QqHYprMQxL-R5mzLCiReYZd5D5z6YW+T-Ha0j2T+TgNgFIzyuIyAAm8lxTTPzih+a9P5KkJIICkphOp1pIH0RsCkPArUmLko6kCUeyEeK2VAAAalId6KlczNCIsBVRPWd8-5-MsvpNRBLW71P5KSi4lkOUAvpZhLKfViIyqHpis22LGB7RhXCgFAryrbAgRrXe4hVkkvoCkRkeBNCMDCFlFZYqTV4HSBapVuIrSXMUGIYI6BhjZmMhYSQ3q8AOEIJMPl5TskNj1WxCxjArHqk3HsgVhykC7gWQrH+ui43ypeTZQiOt9lyBMCECscq6WkR5Tozym5OU8WzfGg5Bak1Wv+dxUtCt03KS5KpPF6k+IURzRQBN9ai38jEri7IZa20Cusj2xUfa82JqHZO52raK3tvVQFeFmbEW7lnQOwtJ9rTIp5AAPjDVClIGqN3IURXBcdK6z0Xq1Xpbdtb817rmjq9gXxj2nrVdC9dj6kVIF1UqyB8ZeA0HUoJVQFtOTVA3f2utRyzgnLOXIrE5ttlwbcHAetxzTkkjkYS111zIC3MSg8rFoacVqSBZAz5YLlV3NDYu2jGtQUYohaqtdsKUgAY-ZalF+qmlAc-eCkN0VnmKsJdhDs1Gu3SSNRcE1ZqLVWSFU68Tjwq2kUMuNYlHbR3qZtcaslDqWMCT4Zp88v7z3roRaJZFIrUXZzAUpslFLFRsppQsplT9Zk0q-Pu0+JmJWQE0D1BZZbnWSmI+66NbAfDeqBL6vYxxA2XGwFZ4wsafPfGBQkAgliTWxvjNhwdWAU2MbbZJ0i2ayuFsbTVtCt6Z3adMdOzc9WG1YDawQFrL4DNqTqzhhrWA5NjuXTOxdw3B2NsXf11df6eP2a5Nurru533ot5Ce2N967Oboc+ipVba9s8YA2tkbSagsAn41+nbXJXPcc1QxbVInLUgY1mBiD8ZBIwZ2ShS7eHUOagw4Qf7jJsDJBcEDgjFywB0Ww2hPgTHhJ0A1czOd9aOj8C6zo6N+GcwbyyyJGzF6VtIq2yK-LoAFQDae5e4iW7qEvvnWEACqbie7SW89-Ir3dXSZkw+Wni3bNnZe0+6h622dvai6oF18O3U3JMCjzwFGVXMbrKa2FUOuCURtuhYGAvRWnbheT2lCqdPoV+l8RlqxH727vCWpiBurUsodwCXreubd2-d6fT3LvZe-NDduLXkOJi66t1gF3Rvqcm4Z2kBzTWMLW4KT733Fck+UWBtd9PGNpWW5T1wt3vv-fA0D5R6Kr5Q86711Hw3VP9P074+NoVKfVnF-ty3rPrvc-63Myn23HfH7mbL1iOenHQ1QWr+H2voBo8N41nH5vg35NW6+GAIfwWV-4uz5vze-evhF979LEfWlx9y5iwr65HqEu+GS0QP18wn7peDUHvxD3hVzUgVGmND34wQ5113DBUs0lAnQHA63-213D23QAOgMbXfUjzn0N2-VjX7F4GnxcFnwDwW23GzVgJcBgKgIIPgJqiwOQPuyRRD3wIj31zLwW1fDwKIK4EILD2IKwAQNoLu1PUvAwJoLr2vkm0gh6EYNYOYOoWoKHQ4P4O2zDSn2oLIIEKtBO1J32yvVEhYMAPYNIK2xQIezjzNyO3oJULF15wl2wQkK0LjFuxkN22MJ5xSD50-Q+zYi+1LB+0lG0mg0w2ImoJh3OQxCAA

Building Abstractions with Data 2.5.1

angle(z1) -

angle(z2));

}

// interface to rest of the system

function tag(z) {

return attach_tag("complex", z);

}

put("add", list("complex", "complex"),

(z1, z2) => tag(add_complex(z1, z2)));

put("sub", list("complex", "complex"),

(z1, z2) => tag(sub_complex(z1, z2)));

put("mul", list("complex", "complex"),

(z1, z2) => tag(mul_complex(z1, z2)));

put("div", list("complex", "complex"),

(z1, z2) => tag(div_complex(z1, z2)));

put("make_from_real_imag", "complex",

(x, y) => tag(make_from_real_imag(x, y)));

put("make_from_mag_ang", "complex",

(r, a) => tag(make_from_mag_ang(r, a)));

return "done";

}

Programs outside the complex-number package can construct complex numbers either from

real and imaginary parts or from magnitudes and angles. Notice how the underlying functions,

originally de�ned in the rectangular and polar packages, are exported to the complex package,

and exported from there to the outside world.

Ifunction make_complex_from_real_imag(x, y){

return get("make_from_real_imag", "complex")(x, y);

}

function make_complex_from_mag_ang(r, a){

return get("make_from_mag_ang", "complex")(r, a);

}

What we have here is a two-level tag system. A typical complex number, such as 3 + 4i in

rectangular form, would be represented as shown in �gure 2.24. The outer tag ("complex") is

used to direct the number to the complex package. Once within the complex package, the next

tag ("rectangular") is used to direct the number to the rectangular package. In a large and

complicated system there might be many levels, each interfaced with the next by means of

generic operations. As a data object is passed “downward,” the outer tag that is used to direct

it to the appropriate package is stripped o� (by applying contents) and the next level of tag

(if any) becomes visible to be used for further dispatching.

211 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEEkDtQZQewK4CcDGBTANKAtnAzgC6gBmCkKBAlnJHqABYCGAbmqIyZQB5oAmokBNgBGaJKDjF2SAOZC0kAngB0AKBCgAFABV6bUuSo1QAG0qFQ50AT0TIJgJ6g0XdAAcjkLATjX6VvF9iRiRlAEp1MF19MgpqaEY3N0cAfUpIFLJeMUd0mRSAKxZGPBQkSg92ExM4AHc6BDofSPYkx3ZIJxlKVmgDOOMDa19GaucTNGwFJQkpGzYQuSnFUBazC0W8LBLLOb0nWrE2PDQ3EMYCBdl5RTxVfs9W5IdNA23ZPDDQAG9VUH-QEg0ARkAk2g40hksjkHHlCsVSuUPK8yO8ZJ8ANyqAC+91ij0SzxSMgUYkoKE0cDcaM+Pz+AJQNAsBAcbjQKQIjHRoAAvDhEpoWWyOVyaWEsQDQIzaEQhnySQRKdTrKz2Zz0eL6f8gSCkH0yKAAIQ8vnQ4jpPhayWgAD8T0cKK8-Lcmmll1uYoi1oBAC5nEgkHAkJp1oqqd5VSKNRgrd7vQAiAByvimNjg-GIQb8aBOKrZdHS9ohJMgZJQ8c1uIe8XYvF4mi4WAcX1+AJ1oKLxNJ5Qp8cYdfjWFDDabYUreMMNbwCGEI9AzbpbeBHcJqRLZc08enwkHpnMisb87HWKr+Jr2AQJjnC9b2uXes7657m4vJl3w8PzfH1eMvB615bLV2wfVdi27clNz-Zh333ADvzPYwgVGFIziQRUAC9AKXXUwSJJ8IPjJCTBQkICBgwhNEw+DJ2MShsC5Ei0MorC7xwx9wN7OiGNQsih1gqiTwnAZoHomRIEoEFsmYxdWJXcEu1LZ941E8TJLQciMOPHEhIJSAZAmaTb0Be9cLXDjN0YPSJg05jxw0KkxAueIRWECYsDcBAiEs-gFRaYhA2wKUmA8MRQAAZi0E5hPC5QwtiiIfwSPBAgpABrNAHCwIFGSQXhaSM4y2PMFJBGqTRsqDPKvTjAE7TNC1eFjb0-TQABHBBRk0dLMoYNB+00PR+oq3LPjHJq4ztQb62Gqrxua9hkrgNKMu8RhKCvGbRsExL+XSlyDJY-5pQsGoUGQzlXLYPlh3jAAqC6JluisJQBHaajgVKEBdbqUgARiwH6ACZDutY6iG3B6roWlKuoyv7VvWkMlvOxhLq0mrKCkTQIdRiZeRNUB6tLXgQZq4DoCJvgXu9bFxlzAqarB4ycv4PkShhoGEavHG0c1GrJUxrQZvx01IGyc1idJ-nZIfSneGp-nabQEx6bmsmTOsNaNrQFm+el0BcRqw2AWN-4dvSE4mJ+-7QE50BmFGBA0Clo6mXBmdId5aGlthiEbc5RHTpR3mFYFrGebxk1RfFhqXetE4CBFQPkeIyGY316WzkoYNh2t9y1uDO2HZMJ2x3TjOK4Dq8g9T3HnfRuMlZVtgGbjJnhbZxblohQGuexj264b6XBfKnXKpFwmxbQCW+ClgBIGqE6T7mB8umMF4r-ms+DbffZSXv7cd53y83zeq-74RIbHTUN-+JvVdP0Al-PmasGL0vQ8bubTYNq0dr-PAZwCAoHoJobAcdyY4AnvGd6n03DxjVt6O0sCvqIOtH6QKUdQDxgtmIMiaCkGWFoHggh6D-SBmDNgLA8YACqkBUqQDqNABySAnLGAALTsM1pdZ6Vof6QIAUAkBgkmYsLYRkT2fJ6J7UhpoTUTMFRezEZ4faaBNwoPgfIt2oAPJED5Mo5ysicHELQrwnaFxOQgKjIKSM6osBummPlK0kDd5CjVKKKUNB3RKGotFNx1jeAXCECDSBxVd6BJBOAtBk0+r1gicEtBLUAxBk0PEqh2DhD9k1jIEk-A0mgE4XmdxMheGnhotABxtxUlBPATJGW0AwkF2qZE6q-M7TnzSa0mqSSKHNKENQzJ-B1S5NAPkwplSlClJ0lOdqIQ1FcBCRrLgoBbqgC4NtBCDSZSjGItlTkelLwhBIigVKXI1Egw0OkS4epRgkE2XcSUO0iKMU0j8QqHYprMQxL-R5mzLCiReYZd5D5z6YW+T-Ha0j2T+TgNgFIzyuIyAAm8lxTTPzih+a9P5KkJIICkphOp1pIH0RsCkPArUmLko6kCUeyEeK2VAAAalId6KlczNCIsBVRPWd8-5-MsvpNRBLW71P5KSi4lkOUAvpZhLKfViIyqHpis22LGB7RhXCgFAryrbAgRrXe4hVkkvoCkRkeBNCMDCFlFZYqTV4HSBapVuIrSXMUGIYI6BhjZmMhYSQ3q8AOEIJMPl5TskNj1WxCxjArHqk3HsgVhykC7gWQrH+ui43ypeTZQiOt9lyBMCECscq6WkR5Tozym5OU8WzfGg5Bak1Wv+dxUtCt03KS5KpPF6k+IURzRQBN9ai38jEri7IZa20Cusj2xUfa82JqHZO52raK3tvVQFeFmbEW7lnQOwtJ9rTIp5AAPjDVClIGqN3IURXBcdK6z0Xq1Xpbdtb817rmjq9gXxj2nrVdC9dj6kVIF1UqyB8ZeA0HUoJVQFtOTVA3f2utRyzgnLOXIrE5ttlwbcHAetxzTkkjkYS111zIC3MSg8rFoacVqSBZAz5YLlV3NDYu2jGtQUYohaqtdsKUgAY-ZalF+qmlAc-eCkN0VnmKsJdhDs1Gu3SSNRcE1ZqLVWSFU68Tjwq2kUMuNYlHbR3qZtcaslDqWMCT4Zp88v7z3roRaJZFIrUXZzAUpslFLFRsppQsplT9Zk0q-Pu0+JmJWQE0D1BZZbnWSmI+66NbAfDeqBL6vYxxA2XGwFZ4wsafPfGBQkAgliTWxvjNhwdWAU2MbbZJ0i2ayuFsbTVtCt6Z3adMdOzc9WG1YDawQFrL4DNqTqzhhrWA5NjuXTOxdw3B2NsXf11df6eP2a5Nurru533ot5Ce2N967Oboc+ipVba9s8YA2tkbSagsAn41+nbXJXPcc1QxbVInLUgY1mBiD8ZBIwZ2ShS7eHUOagw4Qf7jJsDJBcEDgjFywB0Ww2hPgTHhJ0A1czOd9aOj8C6zo6N+GcwbyyyJGzF6VtIq2yK-LoAFQDae5e4iW7qEvvnWEACqbie7SW89-Ir3dXSZkw+Wni3bNnZe0+6h622dvai6oF18O3U3JMCjzwFGVXMbrKa2FUOuCURtuhYGAvRWnbheT2lCqdPoV+l8RlqxH727vCWpiBurUsodwCXreubd2-d6fT3LvZe-NDduLXkOJi66t1gF3Rvqcm4Z2kBzTWMLW4KT733Fck+UWBtd9PGNpWW5T1wt3vv-fA0D5R6Kr5Q86711Hw3VP9P074+NoVKfVnF-ty3rPrvc-63Myn23HfH7mbL1iOenHQ1QWr+H2voBo8N41nH5vg35NW6+GAIfwWV-4uz5vze-evhF979LEfWlx9y5iwr65HqEu+GS0QP18wn7peDUHvxD3hVzUgVGmND34wQ5113DBUs0lAnQHA63-213D23QAOgMbXfUjzn0N2-VjX7F4GnxcFnwDwW23GzVgJcBgKgIIPgJqiwOQPuyRRD3wIj31zLwW1fDwKIK4EILD2IKwAQNoLu1PUvAwJoLr2vkm0gh6EYNYOYOoWoKHQ4P4O2zDSn2oLIIEKtBO1J32yvVEhYMAPYNIK2xQIezjzNyO3oJULF15wl2wQkK0LjFuxkN22MJ5xSD50-Q+zYi+1LB+0lG0j+zg2oJh3OXQy43ZB8LJwOwe3RSMkgWF30JCJKXEKYIrHZ20khRsyCP-XF0A11XCI1kiLsN4zSI0LgNuyg3bi9jPRSOW2iM0AABYsAwotEZQdESjkimDRd7DtUABWLAAABmUDaM1FUDQI-TcAxQBA0GS0vBmELA4GoIECEFEHEELBZyx0ZEqnSAuBzBaFfEGIxVGJzHGILASE8VEJmJEFCkLFx2WNylWMuDwCAA

Building Abstractions with Data 2.5.1

3 4"complex" "rectangular"

Figure 2.24: Representation of 3 + 4i in rectangular form.

In the above packages, we used add_rat, add_complex, and the other arithmetic functions

exactly as originally written. Once these de�nitions are internal to di�erent installation func-

tions, however, they no longer need names that are distinct from each other: we could simply

name them add, sub, mul, and div in both packages.

Exercise 2.77

Louis Reasoner tries to evaluate the expression magnitude(z)where z is the object shown in �g-

ure 2.24. To his surprise, instead of the answer 5 he gets an error message from apply_generic,

saying there is no method for the operation magnitude on the types ["complex", null]. He

shows this interaction to Alyssa P. Hacker, who says “The problem is that the complex-number

selectors were never de�ned for "complex" numbers, just for "polar" and "rectangular" num-

bers. All you have to do to make this work is add the following to the complex package:”

Iput("real_part", list("complex"), real_part);

put("imag_part", list("complex"), imag_part);

put("magnitude", list("complex"), magnitude);

put("angle", list("complex"), angle);

Describe in detail why this works. As an example, trace through all the functions called in eval-

uating the expression magnitude(z) where z is the object shown in �gure 2.24. In particular,

how many times is apply_generic invoked? What function is dispatched to in each case?

Exercise 2.78

The internal functions in the javascript_number package are essentially nothing more than

calls to the primitive functions +, -, etc. It was not possible to use the primitives of the language

directly because our type-tag system requires that each data object have a type attached to

it. In fact, however, all JavaScript implementations do have a type system, which they use

internally. Primitive predicates such as is_string and is_number determine whether data

objects have particular types. Modify the de�nitions of type_tag, contents, and attach_tag

from section 2.4.2 so that our generic system takes advantage of JavaScript’s internal type

system. That is to say, the system should work as before except that ordinary numbers should

be represented simply as JavaScript numbers rather than as pairs whose head is the string

"javascript_number".

212 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEEkDtQZQewK4CcDGBTANKAtnAzgC6gBmCkKBAlnJHqABYCGAbmqIyZQB5oAmokBNgBGaJKDjF2SAOZC0kAngB0AKBCgAFABV6bUuSo1QAG0qFQ50AT0TIJgJ6g0XdAAcjkLATjX6VvF9iRiRlAEp1MF19MgpqaEY3N0cAfUpIFLJeMUd0mRSAKxZGPBQkSg92ExM4AHc6BDofSPYkx3ZIJxlKVmgDOOMDa19GaucTNGwFJQkpGzYQuSnFUBazC0W8LBLLOb0nWrE2PDQ3EMYCBdl5RTxVfs9W5IdNA23ZPDDQAG9VUH-QEg0ARkAk2g40hksjkHHlCsVSuUPK8yO8ZJ8ANyqAC+91ij0SzxSMgUYkoKE0cDcaM+Pz+AJQNAsBAcbjQKQIjHRoAAvDhEpoWWyOVyaWEsQDQIzaEQhnySQRKdTrKz2Zz0eL6f8gSCkH0yKAAIQ8vnQ4jpPhayWgAD8T0cKK8-Lcmmll1uYoi1oBAC5nEgkHAkJp1oqqd5VSKNRgrd7vQAiAByvimNjg-GIQb8aBOKrZdHS9ohJMgZJQ8c1uIe8XYvF4mi4WAcX1+AJ1oKLxNJ5Qp8cYdfjWFDDabYUreMMNbwCGEI9AzbpbeBHcJqRLZc08enwkHpnMisb87HWKr+Jr2AQJjnC9b2uXes7657m4vJl3w8PzfH1eMvB615bLV2wfVdi27clNz-Zh333ADvzPYwgVGFIziQRUAC9AKXXUwSJJ8IPjJCTBQkICBgwhNEw+DJ2MShsC5Ei0MorC7xwx9wN7OiGNQsih1gqiTwnAZoHomRIEoEFsmYxdWJXcEu1LZ941E8TJLQciMOPHEhIJSAZAmaTb0Be9cLXDjN0YPSJg05jxw0KkxAueIRWECYsDcBAiEs-gFRaYhA2wKUmA8MRQAAZi0E5hPC5QwtiiIfwSPBAgpABrNAHCwIFGSQXhaSM4y2PMFJBGqTRsqDPKvTjAE7TNC1eFjb0-TQABHBBRk0dLMoYNB+00PR+oq3LPjHJq4ztQb62Gqrxua9hkrgNKMu8RhKCvGbRsExL+XSlyDJY-5pQsGoUGQzlXLYPlh3jAAqC6JluisJQBHaajgVKEBdbqUgARiwH6ACZDutY6iG3B6roWlKuoyv7VvWkMlvOxhLq0mrKCkTQIdRiZeRNUB6tLXgQZq4DoCJvgXu9bFxlzAqarB4ycv4PkShhoGEavHG0c1GrJUxrQZvx01IGyc1idJ-nZIfSneGp-nabQEx6bmsmTOsNaNrQFm+el0BcRqw2AWN-4dvSE4mJ+-7QE50BmFGBA0Clo6mXBmdId5aGlthiEbc5RHTpR3mFYFrGebxk1RfFhqXetE4CBFQPkeIyGY316WzkoYNh2t9y1uDO2HZMJ2x3TjOK4Dq8g9T3HnfRuMlZVtgGbjJnhbZxblohQGuexj264b6XBfKnXKpFwmxbQCW+ClgBIGqE6T7mB8umMF4r-ms+DbffZSXv7cd53y83zeq-74RIbHTUN-+JvVdP0Al-PmasGL0vQ8bubTYNq0dr-PAZwCAoHoJobAcdyY4AnvGd6n03DxjVt6O0sCvqIOtH6QKUdQDxgtmIMiaCkGWFoHggh6D-SBmDNgLA8YACqkBUqQDqNABySAnLGAALTsM1pdZ6Vof6QIAUAkBgkmYsLYRkT2fJ6J7UhpoTUTMFRezEZ4faaBNwoPgfIt2oAPJED5Mo5ysicHELQrwnaFxOQgKjIKSM6osBummPlK0kDd5CjVKKKUNB3RKGotFNx1jeAXCECDSBxVd6BJBOAtBk0+r1gicEtBLUAxBk0PEqh2DhD9k1jIEk-A0mgE4XmdxMheGnhotABxtxUlBPATJGW0AwkF2qZE6q-M7TnzSa0mqSSKHNKENQzJ-B1S5NAPkwplSlClJ0lOdqIQ1FcBCRrLgoBbqgC4NtBCDSZSjGItlTkelLwhBIigVKXI1Egw0OkS4epRgkE2XcSUO0iKMU0j8QqHYprMQxL-R5mzLCiReYZd5D5z6YW+T-Ha0j2T+TgNgFIzyuIyAAm8lxTTPzih+a9P5KkJIICkphOp1pIH0RsCkPArUmLko6kCUeyEeK2VAAAalId6KlczNCIsBVRPWd8-5-MsvpNRBLW71P5KSi4lkOUAvpZhLKfViIyqHpis22LGB7RhXCgFAryrbAgRrXe4hVkkvoCkRkeBNCMDCFlFZYqTV4HSBapVuIrSXMUGIYI6BhjZmMhYSQ3q8AOEIJMPl5TskNj1WxCxjArHqk3HsgVhykC7gWQrH+ui43ypeTZQiOt9lyBMCECscq6WkR5Tozym5OU8WzfGg5Bak1Wv+dxUtCt03KS5KpPF6k+IURzRQBN9ai38jEri7IZa20Cusj2xUfa82JqHZO52raK3tvVQFeFmbEW7lnQOwtJ9rTIp5AAPjDVClIGqN3IURXBcdK6z0Xq1Xpbdtb817rmjq9gXxj2nrVdC9dj6kVIF1UqyB8ZeA0HUoJVQFtOTVA3f2utRyzgnLOXIrE5ttlwbcHAetxzTkkjkYS111zIC3MSg8rFoacVqSBZAz5YLlV3NDYu2jGtQUYohaqtdsKUgAY-ZalF+qmlAc-eCkN0VnmKsJdhDs1Gu3SSNRcE1ZqLVWSFU68Tjwq2kUMuNYlHbR3qZtcaslDqWMCT4Zp88v7z3roRaJZFIrUXZzAUpslFLFRsppQsplT9Zk0q-Pu0+JmJWQE0D1BZZbnWSmI+66NbAfDeqBL6vYxxA2XGwFZ4wsafPfGBQkAgliTWxvjNhwdWAU2MbbZJ0i2ayuFsbTVtCt6Z3adMdOzc9WG1YDawQFrL4DNqTqzhhrWA5NjuXTOxdw3B2NsXf11df6eP2a5Nurru533ot5Ce2N967Oboc+ipVba9s8YA2tkbSagsAn41+nbXJXPcc1QxbVInLUgY1mBiD8ZBIwZ2ShS7eHUOagw4Qf7jJsDJBcEDgjFywB0Ww2hPgTHhJ0A1czOd9aOj8C6zo6N+GcwbyyyJGzF6VtIq2yK-LoAFQDae5e4iW7qEvvnWEACqbie7SW89-Ir3dXSZkw+Wni3bNnZe0+6h622dvai6oF18O3U3JMCjzwFGVXMbrKa2FUOuCURtuhYGAvRWnbheT2lCqdPoV+l8RlqxH727vCWpiBurUsodwCXreubd2-d6fT3LvZe-NDduLXkOJi66t1gF3Rvqcm4Z2kBzTWMLW4KT733Fck+UWBtd9PGNpWW5T1wt3vv-fA0D5R6Kr5Q86711Hw3VP9P074+NoVKfVnF-ty3rPrvc-63Myn23HfH7mbL1iOenHQ1QWr+H2voBo8N41nH5vg35NW6+GAIfwWV-4uz5vze-evhF979LEfWlx9y5iwr65HqEu+GS0QP18wn7peDUHvxD3hVzUgVGmND34wQ5113DBUs0lAnQHA63-213D23QAOgMbXfUjzn0N2-VjX7F4GnxcFnwDwW23GzVgJcBgKgIIPgJqiwOQPuyRRD3wIj31zLwW1fDwKIK4EILD2IKwAQNoLu1PUvAwJoLr2vkm0gh6EYNYOYOoWoKHQ4P4O2zDSn2oLIIEKtBO1J32yvVEhYMAPYNIK2xQIezjzNyO3oJULF15wl2wQkK0LjFuxkN22MJ5xSD50-Q+zYi+1LB+0lG0j+zg2oJh3OXQy43ZB8LJwOwe3RSMkgWF30JCJKXEKYIrHZ20khRsyCP-XF0A11XCI1kiLsN4zSI0LgNu0Emq0zWrQgIkMaxKJbVUDbV6xEMAMbV601GUJHSGzKLiMbRbyaJXWmywElBunKO2DU01FUCZnQi9jPRSOW2iM0DCiwAABZhiu8wUgA

Building Abstractions with Data 2.5.2

Exercise 2.79

De�ne a generic equality predicate is_equal that tests the equality of two numbers, and install

it in the generic arithmetic package. This operation should work for ordinary numbers, rational

numbers, and complex numbers.

Exercise 2.80

De�ne a generic predicate is_equal_to_zero that tests if its argument is zero, and install it

in the generic arithmetic package. This operation should work for ordinary numbers, rational

numbers, and complex numbers.

2.5.2 Combining Data of Di�erent Types

We have seen how to de�ne a uni�ed arithmetic system that encompasses ordinary numbers,

complex numbers, rational numbers, and any other type of number we might decide to invent,

but we have ignored an important issue. The operations we have de�ned so far treat the

di�erent data types as being completely independent. Thus, there are separate packages for

adding, say, two ordinary numbers, or two complex numbers. What we have not yet considered

is the fact that it is meaningful to de�ne operations that cross the type boundaries, such as

the addition of a complex number to an ordinary number. We have gone to great pains to

introduce barriers between parts of our programs so that they can be developed and understood

separately. We would like to introduce the cross-type operations in some carefully controlled

way, so that we can support them without seriously violating our module boundaries.

One way to handle cross-type operations is to design a di�erent function for each possi-

ble combination of types for which the operation is valid. For example, we could extend the

complex-number package so that it provides a function for adding complex numbers to ordi-

nary numbers and installs this in the table using the tag list("complex","javascript_number"):
46

I// to be included in the complex package

function add_complex_to_javascript_num(z, x) {

return make_complex_from_real_imag(real_part(z) + x,

imag_part(z));

}

put("add", list("complex", "javascript_number"),

(z, x) => add_complex_to_javascript_num(z, x));

This technique works, but it is cumbersome. With such a system, the cost of introducing

a new type is not just the construction of the package of functions for that type but also

46
We also have to supply an almost identical function to handle the types

list("javascript_number","complex").

213 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEEkDtQZQewK4CcDGBTANKAtnAzgC6gBmCkKBAlnJHqABYCGAbmqIyZQB5oAmokBNgBGaJKDjF2SAOZC0kAngB0AKBCgAFABV6bUuSo1QAG0qFQ50AT0TIJgJ6g0XdAAcjkLATjX6VvF9iRiRlAEp1MF19MgpqaEY3N0cAfUpIFLJeMUd0mRSAKxZGPBQkSg92ExM4AHc6BDofSPYkx3ZIJxlKVmgDOOMDa19GaucTNGwFJQkpGzYQuSnFUBazC0W8LBLLOb0nWrE2PDQ3EMYCBdl5RTxVfs9W5IdNA23ZPDDQAG9VUH-QEg0ARkAk2g40hksjkHHlCsVSuUPK8yO8ZJ8ANyqAC+91ij0SzxSMgUYkoKE0cDcaM+Pz+AJQNAsBAcbjQKQIjHRoAAvDhEpoWWyOVyaWEsQDQIzaEQhnySQRKdTrKz2Zz0eL6f8gSCkH0yKAAIQ8vnQ4jpPhayWgAD8T0cKK8-Lcmmll1uYoi1oBAC5nEgkHAkJp1oqqd5VSKNRgrd7vQAiAByvimNjg-GIQb8aBOKrZdHS9ohJMgZJQ8c1uIe8XYvF4mi4WAcX1+AJ1oKLxNJ5Qp8cYdfjWFDDabYUreMMNbwCGEI9AzbpbeBHcJqRLZc08enwkHpnMisb87HWKr+Jr2AQJjnC9b2uXes7657m4vJl3w8PzfH1eMvB615bLV2wfVdi27clNz-Zh333ADxw0KkxAueIRWECYsDcBAiEYSB+AVFpiEDbApSYDwxFAABmLQTgGaAKOUeiKIiH8EjwQIKQAazQBwsCBRkkF4WlbzvXVoHMFJBGqTQ+KDQSvTjAE7TNC1eFjb0-TQABHBBRk0LieIYNB+00PRjJkgTPjHNS4ztUz63MuTrPU9g2LgTjuO8RhKCvBzLJPCdaP5LjUImTRAMlaULBqFBRhCtg+WHeMACpOTQtAkorCUARY0w4DgDiEBdfSUgARiwYqACZwrjSKiG3VKJl5Fz2L07jSs87yQzc2KGrQY8nMoKRNHqxg0t5E1QGU0teGqhSRI7Ka+Cy71sXGXNhLm2rATQfj+D5EoWsqjqrxGtL+rmgFBq0BzxtNXC0HNabZoupdRMm+7HqWpzJVWtATHW7642A6BOU6hzNRe0BcQU6GAVh-4cvSE4kEVYqytAI7QGYUYED6xcaqZOqZ16pqDrc1qIXR0Gr2inrRomc64yu4bifp+KJsWmb8Yuk4CBFTraZMOKY0huazkoYNhzRjCvODTHsZMXGxxF0XIeprqYqF3qxwhuNfv+tgNoUrabv21z3IhCrjpZ4Rtd1i7mdNjmPpU57-gASAU3n+ZO1m0pjT3VYU8XgxDimUitrGcb6lWg9F9XToZ-rA-+fWAbj731YcrAFaV5a5vh61C8LnK-zwM4CBQehNGwN3Xo7YiTT5eManywr40B607Vbgq3E7yU-Ubib4yRsQCA7uPbUsWgx-760NIDIMa6weMAFVIA4yA6mgRCkGQ4wAFoD+sNnMqtQvgdAMuK6r-ytt3-eMhJvlsEYYLerCrEtoVJqH88OLNw93bpqLamEiB8j-ihD+I8Z4ozPjlC4nIq5RkFJGdUWA3TTCElaS+YchRqlFFKGg7olDfjPMYfBKDeAXCEM9S+4kw7UJBLXTutkjL1iYbQzuC9AzBk4dgFewh+wnxkCSfg-DQBHzzAQmQZ9TyTmMJg24mh+F0PvGJPAKRGE0JYS9O06tVHcP9LwlROjBHCPVGIq+OjJHHyUUoORAVHhI05NUeE2NEQVD5oIEQYgtGMBQBxLkaAwrcxIOQkGXIGx13miBAgSD6AoPjEUDxZQvESSEKIJAu4uD2yhlaMBm5+y8BgoQTcKSShpI8Bk3x2SV4VM8dUnxWSKxYCcgBXkAA+ERDZQAAGojx5MKVuGcpTFTJIRFU7xmSxC7gmakpE0zamtNWApDpPJunql6cfL8+dhmvjGeUyZiyaktPqcc9JzTZlhDaWsz8XwNk9K4KAJKgy9lYUgj0Q58zKknKuXU0APzGlLJaTc1ZcZ1mbKic8sAuyCkfPjK-LicyGlTNObM25cZnmPK2bkvJl94y8BoGgeM-kXGjCFqiv5MykD+MCcEz+Tjzxv3ZFSy5NLNCQDUW9BUL4WUoouU0mlFZOVkIUdAIEsUzgo00AAL1mpfUCXZSzPnjJKoW0rx5DlgvKsVgVKCv3yJquVCr1GPnAr2A1XJ-FwO1WU3V-kcqGsgJQEE2QTXc0VeCZVG5EVchdW6kldrFQOpxEy4wOEZChXlZ6s1SqnwQT7JAKNQa9z2v6vIwKeBtIhBCbksJl9nmvK4I6iJ09CAUpSHxTkybLwhDpUEkkoSNoaHSJcPUoxwniruJKHK6qbUhpbNtN6dkTUYnyb2stVqjUhEHT8YdHZ1byvHSXMtSL2SETgNgKtRkhbTo6d8BdD4w73JXVaJ1-rXUIHdTGo29cHyvxsCkbNMrs06SBNJXdA6TVfD6XPb0b7c2aGnd+3VeTV3io6Cmj1d7YnQEfYki4OFgOGtA2C-txrQ0-XPWullKRN3btQ5G6S2wYlHugGHcQryEMpEZHgTQjB0MvP5E+vA6QGOM1TqoK0rbFBiGCOgYY2ZtoWEkMJvADhCCTBw5B3FZHFXxICYkrZaqdo1rkCYEIOTwPwvGRh2d3zq2Rrrdk9DX7NVDIRSBzVhm1PGc06ZrA1nZ2WfGc6q92RbMUHs1psF7nA2uaKcmiYXn1MmZWZGhm7y3N4YIzu2K065lGdrQ5wc7T7ldJ6eu-DRF4t7sNXBQLfrgpxaI8mpLdmUtadjtaEj7AHlQpkDXWLuWytNaQKRzj5HAVEtLKSsNqhyVuOSxp+tZx6VNs1IjGUla3BwAcw2hlz1ePtsgJ2liPbsq4ZkAG69ITb3ddHcuidW3IORf20Oy+S7xQnYRrhkrrXrXEY6-V+duDZZ1cY2eydkH9MytvdZS+-m9seuoxcRJdGGPBYuzpn7+rUOYZiUDy9gbQcscSWxyAUPoNYbhjJwK2W4v9v3Rl2D72JbNdY5pV9OaP35oGYBj9X4atBxo0hrHBk8X51xDxsAbb+MBLYD4YTQJRN7GOJJy42B8ePDk29uNinkEqbm6lrAuTvsAmGX9rVabxkq987xczLnoubmc7a3Xm59eOcsAj43um+U7Y86mxKVuVnA+yEV873zXdgvO0VwnuXieGrma7zF3pIVZZa1uvLaQCv3K6-sqPhGnvlZXqH9pL3GOZa2QH6PbXPs63zgS3rJKyUzbcVbxbk2sTTYrW4xk2BkguCryE5bfPG9BkuBmCJdACPbW81V8QOF+BW9AONxtOZA4y+ZQ96PQfoWjjCZKS+vLisbsD1+xLK8RvhbCABbn0-jC5+T-kZ7pGl-3ugKv4-KQ2sh-m75gvB-efT1W+tnvh+Eh1lo1upvXA5XoyypVQX5wZBTr5z6b4Fba4AG-rgqTxxzQFAE3L-rwGXS27-YlSwEoGoE27WqYZVSw6nZZozg-6N4TD-6yqAHAGwbdY37z7tZG4YFfDHzYGoGIFVQs44EOzoEhqYGSJwFcEvRm4hoEEH5w6PCvikF-4AFYBIEgG0FJ634p5Nbu77Z8GvKsFxyqFyocGaFBznYwH9ICGCFxgGFIGajuwQaBRQRSHkEyGgByE0HI6z4n4pDEbaGUFfBgB6GqweG6EmEXRmF8EsEBFzRmGiGqCWHcaSgrYC6CbC6i5EBibzCgASZSbS7iE1hbIA4KQKYJJJIN5-67jLrnz259gDjBqbiFHkFzLVEuArLtKUGyHAE4pRLFK2EuD2HmFFbbjfJ1FcC1G-41FgqNFUENY9LbgdEUFjEJ4IoHKVHxj9GDFkH1EjFrJNEOEtGNY1yXhTFdEEFFZQR9FDH1ErxLFrEQobFyGtFNY2H9H7GF5lF0GQFcjLFFFh61YZY3HNYuEx4k6jizExa-F35nEnEDEfGSgF7Z5RI3756Z6PHL5mqErEqkqShhpDZCz9Et6MoXrBRYlE4vFNb3LCQr7Ah8q-H0FvHDH75hq4nsj4mPan7JoF4klmrX6KEgmArnFP5hoaDC6iDTwoCKzZD8CFgpH9Fj4BIT7hpf68BTEchwDuK-LsrYBypq6mpvTZYMkQEJZQGMFzoDKNg+HcF4Gzo-r+TDLFLHErHgmApspCrLLIGQmyrqmZbtFYk+BKnAo1JqmgBc7cZbQoBNRalgk5Y6n5ZRIAAsWATEX8hMAgwZeG9pIKYgmgAA7JqKoMUq6FgFyhiEAA

Building Abstractions with Data 2.5.2

the construction and installation of the functions that implement the cross-type operations.

This can easily be much more code than is needed to de�ne the operations on the type itself.

The method also undermines our ability to combine separate packages additively, or least to

limit the extent to which the implementors of the individual packages need to take account of

other packages. For instance, in the example above, it seems reasonable that handling mixed

operations on complex numbers and ordinary numbers should be the responsibility of the

complex-number package. Combining rational numbers and complex numbers, however, might

be done by the complex package, by the rational package, or by some third package that uses

operations extracted from these two packages. Formulating coherent policies on the division

of responsibility among packages can be an overwhelming task in designing systems with

many packages and many cross-type operations.

Coercion

In the general situation of completely unrelated operations acting on completely unrelated

types, implementing explicit cross-type operations, cumbersome though it may be, is the best

that one can hope for. Fortunately, we can usually do better by taking advantage of additional

structure that may be latent in our type system. Often the di�erent data types are not com-

pletely independent, and there may be ways by which objects of one type may be viewed as

being of another type. This process is called coercion. For example, if we are asked to arith-

metically combine an ordinary number with a complex number, we can view the ordinary

number as a complex number whose imaginary part is zero. This transforms the problem to

that of combining two complex numbers, which can be handled in the ordinary way by the

complex-arithmetic package.

In general, we can implement this idea by designing coercion functions that transform an

object of one type into an equivalent object of another type. Here is a typical coercion function,

which transforms a given ordinary number to a complex number with that real part and zero

imaginary part:

function javascript_number_to_complex(n) {

return make_complex_from_real_imag(contents(n), 0);

}

We install these coercion functions in a special coercion table, indexed under the names of the

two types:

Iput_coercion("javascript_number", "complex",

javascript_number_to_complex);

(We assume that there are put_coercion and get_coercion functions available for manipulat-

ing this table.) Generally some of the slots in the table will be empty, because it is not generally

214 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=DYUwLgBAxg9iBOUCWMB2B9YSDOkC8EqArsMANwBQFAZkalGCqtKAIbzqwLJqY5gAKAJQQA3hQiTocREz64IBYqUoBfKrXqM0EAA5EwnGT1QCwAT10gAjABoIFqwCZ7SMCAC2I8VIhJqEAI46MrAAgDm4EbcTGaWNvaOIE5CqWISvlJcsrxYCgS6rEjwAnmCSXYO8S5+7l62GZlNzS3SMbn8QpS+qhAgwNgg6S3w4ETwzNkm8mDdUurqNHQMTBCRhlOxFYnV3o0Qmis66+gVpfzobp57I2MTEAAWIKwAJue4l3Vd++q+h9rME5JJzvQxXLzDZqjMDjZhPV5mIphMqfa7fHr7f6rE7g0GoiE+KF3OHPN5gJGIpDIi7g1Lo+aY5YAtZRTa8K4lcHYG7NfyBYKhIJ1bk81oQaGwwgkcj7Hp9AZDQli2CoBRgGC6RSPUlCzzcuZiiX3EAARyIrDC2xZhjO6t0aQAZA6KABIMV9M0WuLOexA6pmDWpWXuiAAfmt+ID9tdrQAXBG2RgOZSwlzUgbMr8Gb4jYDWcY5MnEzNvuosToAFasABurGwUHgSF0hmIHgARghTjAjB5dKAAB4CVCi3MQDysADWIB7fZA-fQ1HgMA86FGFsu4-CAhV7lQYGwQ6E9gADKWKAB6c8QACSzAAyjBxlAQPYPDAFOXVY8a0NWAckP2IAvFK7YIBAMABOw4REB4IB7tgAB0F5XgIAAqTwHEyqxlH42AOBhaDAOYfT9s+zZMIkMD4TgEDYFR1DsAhQjIRA6FDJ+ECsLofbmJcGB0C8CBEUgqDhOgVa1vWjbNpxpAwAA7nhRB4eqLFcTxnGoMR4RINWcGYVoqyaA4VEWsA8qeHB+7gQEYAYVBMFWRALE4VB2D2HWfi2U8xHyQgQyDIU8CsO4nHwNBsHwUshk6OpRECJoHnhdykKSKOcW8SJ6ACUJ5giWJEl1g2TaCIlYXhPqFBllhsXcUR6CRKgCBIFAAgaklFWitIqqQEkpysBVWrjro3rTuS4QdZVvgqh+dBausbW6DsVj9Z1GajsZACEeAEDl1AiUBwaSOGGUJXQr5cduaC7vuk1Bi08YIEuJRlIty1jQN3INCGvgAEQAHJUbBdkwMB1AwPA+EgIMVRWHhImcXVvGNc1UC-WeHGvG8-b2OYI7EojPENXBqMCL9WO-fYr04xAeMYzVzDYEQbYCDTeOpelSPE01jatb9TNtpTEDU7j6ZVdFRzMB4JCs6LHMExl3Ok790vAELIu02L1UxcwLy6bLmvyzC9yKyjvNk3r1bq-wBt02oEvMmuwDoEFggAF748bzCmyT5u-U7LvsGA1u4AIHv0zrfiboH8Du57ko+zzLVk0g0euyHccR5LY4DagbhEIJYfxybXNm8nKu5-ngkZ0XWfMqwomgEXRsJ6Xvvlw34SgDX4f25e4FWMFAL9W2oD2PokAN8B6wsYuy7QA8XHuJDADMgSDNnK8IVvK-MZj2B0a1U7mPYoywPALwpUq4oEwK0oCGfEOX8x7rhntB0vEdviPZ6YTH-Y8I3iAIfiAc+z97ohnDMAx+F9uRf0yPGOsh8BD-wcBSGB4D7YcXHFOEeTcuozUgMAGAUB1zklHkMAgr1foACpyGgBoejDMHFiEwAnEQEax90CVC4SkVKmRCG0WZvQyhnED4kJQSAXilRyRUlKCQshrAKFixaHyAQAsRGKB2hAd+TUXhdVuF7HRqBBL7T0RmOU-QYbXxaIIjBWokESN4YkCkGilGgBUe6NR9idq7RMSAMxQEDHulHLooCFjmi9CsYqeBRIjGyLCBg+kYosxNFSRAdJHERKDFjpI6R9hnEQFrMAIgIBgmSEEW4ihDjxFHykdwlxcjiGkOdiIzxTQ1FVNAFovxpiP7lMyIMG0FJmmKIod9H6zRCjFFBHkhpegiglEKcU0pqQJmTLFAk+RLS8FlPaZmeU1jYkVLQAoHxYjkGFK2V0vZESOkBBAWAnpxi+l6OCW6ZoQz+pyJuQ0D5GymjTJKECuZNQVllPWQC901zhHuL2d8f5GTDkxIBV8rZGD7DguSa0dJGI8VSA4nrbAhQwBQAeAIAkX9RweGeb9Vh7DdC-WOb4cM9KOHMqkPGGlviIC-WyQgYOHKWV+FVAKoVnK+jwGehS+wv0ACqqAJyoAUswDUCAQqrAALSarQRQphPx9ijiJSSsl9tBFqqHnITRBAcEfQocISggj1hagtRq3gIiyZssZd8QRE8XWDzdRgD1fLRWx31ZjMA5IyWrVGqtewO4rJX0NQTEFfVxrxuuomuuqw00DQEC8EKMEuqjmCCCgtMIvDHKgTqctRbjmPSlRDfNhaPCyrbK8NB4RIjAVrTS7VsMPrhH1drbOCb4LNorcW2+2BA4zN7S-MU4YtnzvrZK6Vva20dvGt2iAvaID9rHfuYdDtVjYE9KMVmU6jH9ggDQiA-YsEMxFbgMyq5QHklEiQdggcoATgGiAYQ-D+4iWXqgC0BlJbYEZJHAOrtm6iBvkY4BHsyAZOg9nVOA0Y5xzEIhyUWyUNob+E+21C4lwrgDphrcbNvB4fuCCmjqHMkkcrjCQuHt+E5gJuOOy6Az25LPeaC9sGg61wgAAanFb4QT7AANUew7XbFzHI6dybhxmxUhqUhQeOgEKDcghp1Ex7U+zxnZwd7ga4jkdSNzxXNHTuD8PIDNHCCyGd6eM6dgAeVgR5xS3pzrx7AIkBA+aU1QXwwG9wIAYs+EyUMb4KAgvF7A5hcCeHQ8ycal7OOaYVpG1g0asv+3fZ3L98Ahb9jC74CeZMRNhqpjbYrDBSvAHYOjEz65XbYpq3ywz9XhaNbPh+6CrXyu+fk11jMPXNx5zYyAGuTXhtlfazncIs2C5lKmwYMmqn5sNdDotlrbXfO7e69tiuuDbNvvXFRoWh3P2jcpl-W2Ig8AAD5O0UsnNOK7lHNwvf2dN77ZHlzoHs6JO7Q2jvlchb4RznFXsfayzZ8jYOsMOfgE5-Zo5fovDQPN+2FBsnklIG+5rD3v2FF-f+h1J6dDE9fboGAo2f1-siIB6+kXQPgc-FBqz2cZtVwA+pujJIESEeU9nXb8HRdoLkRLjLqwUeg-B1uTHCPcMucWfDnzTHFc6DqzhjTsvBdzebu57TRhvON2F-syXzIJtGfKVptbQvzcBZ00F0w0uLP4skNg4Hv3TMbjzTRnLsuQUeb4yaAT56AOVYk7ROPAg6aw8mVHvTpgT73rt+FqQXPosFaGOqeLoxEveQCqluo+vmBZYTwh9K+XCt5t+kzx79hKt6+q+dw3C22-HY62ZoOZ3BC9aw+nfbo-+9jdcH1sAI+yam42335nA-VvrcEgv8mNuV+PZOzbrfyuKPB9u7K6fQtnth-e59o-13nZUYB4fwPqPVd3fP2nyQOvEc3+fyr9Hokv9scCZcd8dfp7YGdSdp9WcadvgskepX1YBewBxoD2cupgNewIZ3AwYGY8JbMb5ycRt2BNJgJp8FlqdIhsAPka8c5LtUc-tQ85ZjdZcFoLsfs6CT9NxIcSsKcxsXsMx7cldf87N-81cnNw9mDwBF8hC0cxJO439V9eD1ddcDV9gC8JgeccDqCsYZwBww5Kg3Y+EmCtNaDQd6C1dg9zNrARBxNnIoU7DDcw4UgP87CxRHdck3YrDE8pMXC3D3YUgqsCUn0BYdC5w9D7ADDnNuNpCzCQFOsjNPCdVvD7CLCjMnCkioVfC9CRBEiXCAVMiIiAj-cSMSAQjBwPDwjDCqUoiTDhDZCACl92NPC710j09WMNtHCjwWifofdPCbCuiQwfd-DKAXQBCdBLZSiwiIAIjxDjC2C-86itwGjhdPCrx+j3QliOjnDcjMgejsjbDtj3RBixYRi89JA1CYti8qIy9IAks7JK80sPBqCst1MqijEQoo0dMitEDZx+whYUNLMpAesKZJ8yZviBw7swS5wVtntyipi+Fr8sttDISyj9D-Ct8BYFtkSITlwfjoSWhJjpiES81gjkSCS0SttR9VZMScTwTZUsTfMYTUTv9kcSjSTYSCit9LZqSkCoS6SaSoSGT8T2T4Skc81xi2SmTAdztb8zDsSeTfj7BL85YiTFjoiOCGDNYpTKTpDX8+T5SL98SlDmS81b9VdADsUcc8cmowDfBxYIDnZkSUCANYCWNcFHSg8bt-saMlRRwWCZT1Sh09TcShA+DxYA83T+T5wrszSjSfSCY-SdSRC5Tgyv97YJ5ogchTBfpCopISoQgYIOwYdeUsStjfAczipmx8zQIOB1RSjvgKAThEwyZyzpIWwCyEBkzwSuggA

Building Abstractions with Data 2.5.2

possible to coerce an arbitrary data object of each type into all other types. For example, there

is no way to coerce an arbitrary complex number to an ordinary number, so there will be no

general complex_to_javascript_number function included in the table.

Once the coercion table has been set up, we can handle coercion in a uniform manner by

modifying the apply_generic function of section 2.4.3. When asked to apply an operation, we

�rst check whether the operation is de�ned for the arguments’ types, just as before. If so, we

dispatch to the function found in the operation-and-type table. Otherwise, we try coercion. For

simplicity, we consider only the case where there are two arguments.
47

We check the coercion

table to see if objects of the �rst type can be coerced to the second type. If so, we coerce the

�rst argument and try the operation again. If objects of the �rst type cannot in general be

coerced to the second type, we try the coercion the other way around to see if there is a way

to coerce the second argument to the type of the �rst argument. Finally, if there is no known

way to coerce either type to the other type, we give up. Here is the function:

Ifunction apply_generic(op, args) {

const type_tags = map(type_tag, args);

const fun = get(op, type_tags);

if (! is_undefined(fun)) {

return apply(fun, map(contents, args));

} else {

if (length(args) === 2) {

const type1 = head(type_tags);

const type2 = head(tail(type_tags));

const a1 = head(args);

const a2 = head(tail(args));

const t1_to_t2 = get_coercion(type1, type2);

const t2_to_t1 = get_coercion(type2, type1);

if (t1_to_t2 !== null) {

return apply_generic(op,list(t1_to_t2(a1),

a2));

} else if (t2_to_t1 !== null) {

return apply_generic(op, list(a1,

t2_to_t1(a2)));

} else {

return error(list(op, type_tags),

"No method for these types");

}

} else {

return error(list(op, type_tags),

"No method for these types");

}

}

}

47
See exercise 2.82 for generalizations.

215 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEHsAcFMCcEMAuBLcA7A+o+AjANtADSiQCuio8aAJqAObSIBQIoAZrOALagDGAFvEiI4oAMygAFAGdovFOnEA6MSoCUTNqTTzUaStOnhekgNbQAnsVhzwsatLWgA3k1DvQNxKVj7k0jDRSPDxJG147Bw0PGJiAflBtamg2ZDRoajdY2IAuUGgAR1J4UPMrUH5oeGpJSuqw23tHNWjs7IS6mvDIxyy2mLz4Q2MzS2JsZFDuppaAbiYAX01tXUUueHMsXAJJJ1cYiLRpCjxjEq38aFAAXlA8f0RJACIAKmxLl6e1eZitHQV9KdwKZSJBRhYMABGYhlDAAJj2fVih2OoGkpBw7wINwMRhMsOhoAmoVOvHOWOgcyRMWQbCk-gwSRSaQyMgxFJaLmpbS8Pn0TNS6WoPzaC3yeFkXP6B3QqOmtFuQzx4Ph43gkzZmO2lO+3OytPpAQFLK6jWonP20uyvN8iRozKFIqtYugEqulqtMRt+mJDQi9l1ntAS36IY8Yfcf1WfiOcEeBJhllVoAAbiVSJSpW0URR0VrLjilSME0T1SSzngLgQqf0DZIGcahZqOYig7JEFsNaTydrCHqg+5IOrYJJ7scVYSh8gR7C4cQ03gMy0+wOB77u5WW4HReLJR7pTnPGbC8N8Um56WNXmW07pXWG-bBaz5RbuQBIfrtzuha+9pgf1d+inEdgJVC8FyXFdANXX1f0uFpdQA9wXTdLNVy-X15XndNKVvUN+wjYMkSjAFQGofwh0QARJC4VseUYPlQB4a4WNAJ4gRBSAnn7NoEg40EeOyPJmNYp40lkWBEG46DQAScS40Eto8ieRsMggGAEFIgBaLTS0uJ5b0I70yIopABHmJZDygOAkD0KsrludZNgpXZ5kPBgKFuazNLslz2PAYFQS+NzZQoMhPPUmyAXs555Mk4KmBYMAAEl9AAZXAHxeCIJjwFREi9GkCp4BTK54HYZAAA81KCLgcFEcA6XgWA6FILhoDQRBpCUJKpAAFUqdgVlIscKH8IlBvQPALHySrsuEPRxnACbxqMdhmqUDRWAGq4CsUIRIGmjA0kZe1YGmtI6AwAArEqhl4WBkGESgQnAAB3IrSCKxBwF6g7psoNAZroZBSv0Pbwe0IllpKPBxWgdrOqKxqJrKlq2o65hWFGygWukYghlAA1EEqGa3rgK5ZCHTS0daxGuuWf49EoSBDosSQ-gJvG6PcYz-ohE6mXOixLpuu7pAep7Hk53G6EcCzGejShqBqSriAsHm+dZo6GHSR6TCeapqCeYhRskNXQA13UlghtEMXN9XNYY21+YwXW4GQA28xNu4Hgdy2qRt4bma4YJ-Y1tCtbZt2Oo9g3Q7wH2zYtq2Fdt8iU3Dp3vBd7WIXd-XngzpO-ZTwPEttpBsAELY6EkRALBgWviEOEQkZ5o8c-0UCG6b7A6Bb9A26663FdI3voFryRqCQNqO+MhlQJn7xaMUjoqhqZe58UvI4E4Ect64YgnhwapSzoBhaEP0AdKJRvJ-7hKg6ZxRW8x6Rp9n2i0M7xjF+HT+K9WjSgSL6Q+wD+i71gPvQBbVj6n1oP3S+ZEv4310m-JGT8x7M3EtgEIYs0wS0esIQIbV6qwAwEOXgph4AMF2D-W2-dzYdy9M7fQVd4A1yYU8W6hDJYkNquQn2lVtzISROFZ4RsS7jh4eLfhHZBFwB9rIvhxCFFkKUWoKC2Qs43AAHzn3NqAAA1AHURJByDPG9qbP2Kj7pqNIXVJRx9eH2Klo4oRWj+y6OuAYphlUb5mNvBIp4CdpGPDsUQ9xijYDKNcVEgRGjYleP6D4vxtCjEvCCeIyxTxi42JkfE+RHjnFsSKQ4mJXxtGxDSYYgJYBU45IiU5aAcS5EVKSSbfsATfF1JrB4YyeT0CtIVrg2GBC3GJKcRQqhNC6G6mwWsDYk9ynRKSZINA882H0EYM8FpbTVFrOmV8DZo9WAF09miV0cgfqwCGi-I47A7B8G4IdaAASYnSArsHRQNhzjU0eAAL2zoxV2FyDZ-MrAC8JkhgWj1tsgdYV0AWwpBbnaO4LYpIsoc1KSBSgXl1tkitAyBvDJFRZHbZYLY6F1CbQklZLWn4tRfCn57C0B0B2MCylXcWYYppZ7SRHKCAwrhWnNlaIijNWgMwn+xkAlZMqgrRZMZjjjPCNgDlwRmo4uobQmVHdbaQpxZJClzhf62k6Ki2YRFfgSsRbQk1BKXAWp9GWa1tqPBEuWRgDg3AMDGodXXMuLrjKgTLjawi3q6AMtIOS7l+5WG8vWCTDA0gCimvTcUGwDR-m4pZSYxSn4pU5qDU6ll5io0SqoJymVCb+zGRTfwDASAqD1mxSi4F1gqhQvzWKpEVaHlMR9X6rgGBsU1rCATFhAztmgTuVkptGAIgf3gFozwoBF1IGbdINIkg12VqRKwNIIhYBsE4VcH6qMjyohRiTSmFhjgI2IhK-xM7eZUsQNXZt3CNU1u1bE4gIjDJNOeMa6FzKnh-q1XgZqVSjx5skuYkJZaIO+xkdB1qsHknEFQ7i5DuTiWkrjUy9DETMMAfg0RxlBGIk1pFZBij2H4P0dwqBulmxR0Bp7cdJFyimNweqTEWpTCWm+s4GOwNSKs79MHIRkdEnx2Oprfxm5-7mNCY8FOygThemiYU-6idHLtMHvMYM6gwyDKLCYGM-BAmZmcLmQa+YKqiZHDwVC8A2HdVOfofuY9nU4BoBKPc6MXy7VDuoyRs1rqKgbw9YOpWrGYvGV9MCyNL7IsGbHUZuusBp2hrnQA-LOmMsRaVuBvt77G30uI-GpwW7U0rv3cKutsnPWRntR2qrP9Z3Jtq4yiljWd17uS-2mIiXSJia41JjJIbE0ft5aBJd6bM0lplSIkxkrs0yqtppgcS7W1oEkOUERh6j1gBPXAc92VobXpsLeuk960SPpEFwTLSs32Fd5RwrhGSniQC84J0AwGOsWPIzxtDZsAdA5wwh3tSHgm5Lw-FSDgPmPrpR4gWjeyBskZhTDjHxAovJBx4bVrBP0dwfXaxsn03FOzboMoqngHvEhr0xk+n-rGcybp9lpTV0VPHxZ101JJW136MMVznLynjPi4QreczlnRnufGSznz+rXLfKHbZysEQuBvMqhr+ZP9j0G7sCIWgEMiqjqPPIdTzVAa0BZyQRz+rwteoldL7j5wg26IW4txiHlcecYZzxoNqn7cwep1nED5Wpv89yyZ99sXg8ccnlx3LzPYcnPlyBi7bnT3Bbhtbj7pEjbLteQQSqsLCSAoRL1vrjFvc88q6awFkInDGKLTJa0kO+0In273q0WPa9d578Pjwo-6-tcm8zPMleDfV9r8QGfjfA+2hb+H6TbegWd5vhPyf8Py0z6H0f-U3X2-760ofyf0+ESHvjyHYIi-Dcr9AGvgPsXvdJ5J3W-fLwt+Mkf+sKg+QB0EY2++3e5+noY2D+8wb4c+igGcr+y+Heq+DeX+NWoehmsudcIBHeTgwA4BgEBBYBMBVokBTgN+FB0ocBVIiBiUMQAWp6N2l6y0D2FAd6g00gr2z6T+igTC9a-QfMX6nCP6-2+uhuPs6WA67GUikGUh1eyiSh7yVS3i6BH+DeHOdcFeqhNemhM+7WIS1iZGzw+hKhVeahKSbQ7+a+OhmoqB7ydhD+dOwQBOFhx8FhNhOihh2h6S+BL++hLhCu7G+SZhTwnhbE3hQ+IRkuTCKBwRfhoRMQISW+vufGXhVhlUouth7OARNE-OPOZcxh8mOBMuguHKlhS+ahsR8u8RnOieeBye7WSu6QVmSwuuThRusymuCy3qmw+h4m3O2+c2jsHoxkae6RlYEeWRNRORagse1mAxk8QxmezR8uEx2yUxTRlRTOcx0hixee1mrAEQcAvA8+oIgOkkiUBAFAZxsAFx6AGAOMtwQQIQLmtsvABAOqDxTxmAZsHcfxdkrxoA7xeAyqts4Ule5xeg9c98hIE8F4pKCMHc94AQ4JkgHkMJjxcJE8iJ98rh6+LysJzxoJoEZs+J4whJuGb2PhtBJJuJZJDwlau47oDa2ywJzJxwIGSwrm2JXJx2VJd8MAmBZezM2J+Jo4Dwx0dJxJxkVqo0spqJcenuQ6kphJ0pxwyp38WB2yVq64MpKJtEj+apSs2JxpWpHYxpKeCp8Wvohp2pNps+4pigAp4ApJmAKJI4xpjgxJ6JpCIQ9Yb2zQxJSajE4JeE4YbJYZHgh4P0kAOIVqvp5iIh2yhQxQoQwpGpMAkI9cUAnIAAZIWf+J6BmSUPCaKcQDmdAHCPmZAC0EAQkBaW9vWRoEhEJDsh2IKcqSOL6CmameGHIeGbaO6Z6b2ZID2aNKykOtSnrIKlAFzHLECaFCKQ-LQkVI5EIJWeuQPLLPLEiIeH8DiMHouWubXAeTSHSJIAAIRExGiPgmgczaCvhpk-Z5zPloDE7bkYJdRLnNCGQxlf51gEAcokz7rcw3CsRilBjxkIlJn2n3wXmDnZBwWikIX1AOlIX9wAVFqHjwCQgYU1DNTLlRmoWrnwBwhEX1zuokW4WwWrmICQhYDgBYBUW3BjlMlCkInUmikoXIiMVwgsVYCEUcWMA4n-E7kXj4n8VXlSBMXCWIBUU3msTgkp5vmgp5wxzzkmCLmUnMU-RsX7qd5n4MmUHwFFooSSh1hKWKWEUqVvHBB4DqX0Tvn8o6WSBnlmwEWmVmXSi2WGVMX7quEIGIFAW37GR7x2BWmeWQC8W7mOC+W95PAAByy07UJM4AVuzy96koE80gCUQYhEE24VQYkV0C0VZsZ5E8yFSVA4qV6VjA-AWVTydyuVl698BV-FhESwfJtsqyUy5CwlwRmyPKzePqaxYeGRGSv5H8myxAAADKPEwNCYKc8ANeoscgccoXVRtSUhQoZfoQsoeLwDiGJpNSMdNXXAACzEBiC6iHj6BbmbB7UxKSAADsCyRsk5xAmyswQAA

Building Abstractions with Data 2.5.2

This coercion scheme has many advantages over the method of de�ning explicit cross-type

operations, as outlined above. Although we still need to write coercion functions to relate the

types (possibly n2
functions for a system with n types), we need to write only one function for

each pair of types rather than a di�erent function for each collection of types and each generic

operation.
48

What we are counting on here is the fact that the appropriate transformation

between types depends only on the types themselves, not on the operation to be applied.

On the other hand, there may be applications for which our coercion scheme is not general

enough. Even when neither of the objects to be combined can be converted to the type of the

other it may still be possible to perform the operation by converting both objects to a third

type. In order to deal with such complexity and still preserve modularity in our programs, it is

usually necessary to build systems that take advantage of still further structure in the relations

among types, as we discuss next.

Hierarchies of types

The coercion scheme presented above relied on the existence of natural relations between

pairs of types. Often there is more “global” structure in how the di�erent types relate to each

other. For instance, suppose we are building a generic arithmetic system to handle integers,

rational numbers, real numbers, and complex numbers. In such a system, it is quite natural

to regard an integer as a special kind of rational number, which is in turn a special kind of

real number, which is in turn a special kind of complex number. What we actually have is a

so-called hierarchy of types, in which, for example, integers are a subtype of rational numbers

(i.e., any operation that can be applied to a rational number can automatically be applied to an

integer). Conversely, we say that rational numbers form a supertype of integers. The particular

hierarchy we have here is of a very simple kind, in which each type has at most one supertype

and at most one subtype. Such a structure, called a tower, is illustrated in �gure 2.25.

48
If we are clever, we can usually get by with fewer than n2

coercion functions. For instance, if we know how

to convert from type 1 to type 2 and from type 2 to type 3, then we can use this knowledge to convert from type

1 to type 3. This can greatly decrease the number of coercion functions we need to supply explicitly when we

add a new type to the system. If we are willing to build the required amount of sophistication into our system,

we can have it search the “graph” of relations among types and automatically generate those coercion functions

that can be inferred from the ones that are supplied explicitly.

216 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.5.2

complex

real

rational

integer

Figure 2.25: A tower of types.

If we have a tower structure, then we can greatly simplify the problem of adding a new

type to the hierarchy, for we need only specify how the new type is embedded in the next

supertype above it and how it is the supertype of the type below it. For example, if we want to

add an integer to a complex number, we need not explicitly de�ne a special coercion function

integer_to_complex. Instead, we de�ne how an integer can be transformed into a rational

number, how a rational number is transformed into a real number, and how a real number is

transformed into a complex number. We then allow the system to transform the integer into

a complex number through these steps and then add the two complex numbers.

We can redesign our apply_generic function in the following way: For each type, we need

to supply a raise function, which “raises” objects of that type one level in the tower. Then

when the system is required to operate on objects of di�erent types it can successively raise

the lower types until all the objects are at the same level in the tower. (Exercises 2.83 and

2.84 concern the details of implementing such a strategy.)

Another advantage of a tower is that we can easily implement the notion that every type

“inherits” all operations de�ned on a supertype. For instance, if we do not supply a special

function for �nding the real part of an integer, we should nevertheless expect that real_part

will be de�ned for integers by virtue of the fact that integers are a subtype of complex numbers.

In a tower, we can arrange for this to happen in a uniform way by modifying apply_generic.

If the required operation is not directly de�ned for the type of the object given, we raise the

object to its supertype and try again. We thus crawl up the tower, transforming our argument

as we go, until we either �nd a level at which the desired operation can be performed or hit

the top (in which case we give up).

Yet another advantage of a tower over a more general hierarchy is that it gives us a simple

way to “lower” a data object to the simplest representation. For example, if we add 2 + 3i to

4−3i , it would be nice to obtain the answer as the integer 6 rather than as the complex number

6 + 0i . Exercise 2.85 discusses a way to implement such a lowering operation. (The trick is

217 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.5.2

that we need a general way to distinguish those objects that can be lowered, such as 6 + 0i ,

from those that cannot, such as 6 + 2i .)

polygon

quadrilateral

kite

trapezoid

parallelogram

rectangle rhombus

square

triangle

isosceles
triangle

right
triangle

isosceles
right triangle

equilateral
triangle

Figure 2.26: Relations among types of geometric �gures.

Inadequacies of hierarchies

If the data types in our system can be naturally arranged in a tower, this greatly simpli�es the

problems of dealing with generic operations on di�erent types, as we have seen. Unfortunately,

this is usually not the case. Figure 2.26 illustrates a more complex arrangement of mixed types,

this one showing relations among di�erent types of geometric �gures. We see that, in general,

a type may have more than one subtype. Triangles and quadrilaterals, for instance, are both

subtypes of polygons. In addition, a type may have more than one supertype. For example, an

isosceles right triangle may be regarded either as an isosceles triangle or as a right triangle.

This multiple-supertypes issue is particularly thorny, since it means that there is no unique

way to “raise” a type in the hierarchy. Finding the “correct” supertype in which to apply an

operation to an object may involve considerable searching through the entire type network on

the part of a function such as apply_generic. Since there generally are multiple subtypes for

a type, there is a similar problem in coercing a value “down” the type hierarchy. Dealing with

large numbers of interrelated types while still preserving modularity in the design of large

218 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.5.2

systems is very di�cult, and is an area of much current research.
49

Exercise 2.81

Louis Reasoner has noticed that apply_generic may try to coerce the arguments to each

other’s type even if they already have the same type. Therefore, he reasons, we need to put

functions in the coercion table to “coerce” arguments of each type to their own type. For

example, in addition to the javascript_number_to_complex coercion shown above, he would

do:

function javascript_number_to_javascript_number(n) {

return n;

}

function complex_to_complex(n) {

return n;

}

put_coercion("javascript_number", "javascript_number",

javascript_number_to_javascript_number);

put_coercion("complex", "complex",

complex_to_complex);

a. With Louis’s coercion functions installed, what happens if apply_generic is called with

two arguments of type "javascript_number" or two arguments of type "complex" for

an operation that is not found in the table for those types? For example, assume that

we’ve de�ned a generic exponentiation operation:

function exp(x, y) {

return apply_generic("exp", list(x, y));

}

and have put a function for exponentiation in the JavaScript-number package but not

in any other package:

// following added to JavaScript-number package

put("exp", list("javascript_number", "javascript_number"),

(x, y) => tag(math_exp(x, y))); // using primitive math_exp

49
This statement, which also appears in the �rst edition of this book, is just as true now as it was when we

wrote it twelve years ago. Developing a useful, general framework for expressing the relations among di�erent

types of entities (what philosophers call “ontology”) seems intractably di�cult. The main di�erence between

the confusion that existed ten years ago and the confusion that exists now is that now a variety of inadequate

ontological theories have been embodied in a plethora of correspondingly inadequate programming languages.

For example, much of the complexity of object-oriented programming languages—and the subtle and confusing

di�erences among contemporary object-oriented languages—centers on the treatment of generic operations

on interrelated types. Our own discussion of computational objects in chapter 3 avoids these issues entirely.

Readers familiar with object-oriented programming will notice that we have much to say in chapter 3 about local

state, but we do not even mention “classes” or “inheritance.” In fact, we suspect that these problems cannot be

adequately addressed in terms of computer-language design alone, without also drawing on work in knowledge

representation and automated reasoning.

219 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.5.2

What happens if we call exp with two complex numbers as arguments?

b. Is Louis correct that something had to be done about coercion with arguments of the

same type, or does apply_generic work correctly as is?

c. Modify apply_generic so that it doesn’t try coercion if the two arguments have the

same type.

Exercise 2.82

Show how to generalize apply_generic to handle coercion in the general case of multiple

arguments. One strategy is to attempt to coerce all the arguments to the type of the �rst

argument, then to the type of the second argument, and so on. Give an example of a situation

where this strategy (and likewise the two-argument version given above) is not su�ciently

general. (Hint: Consider the case where there are some suitable mixed-type operations present

in the table that will not be tried.)

Exercise 2.83

Suppose you are designing a generic arithmetic system for dealing with the tower of types

shown in �gure 2.25: integer, rational, real, complex. For each type (except complex), design a

function that raises objects of that type one level in the tower. Show how to install a generic

raise operation that will work for each type (except complex).

Exercise 2.84

Using the raise operation of exercise 2.83, modify the apply_generic function so that it

coerces its arguments to have the same type by the method of successive raising, as discussed

in this section. You will need to devise a way to test which of two types is higher in the

tower. Do this in a manner that is “compatible” with the rest of the system and will not lead

to problems in adding new levels to the tower.

Exercise 2.85

This section mentioned a method for “simplifying” a data object by lowering it in the tower of

types as far as possible. Design a function drop that accomplishes this for the tower described

in exercise 2.83. The key is to decide, in some general way, whether an object can be lowered.

For example, the complex number 1.5+0i can be lowered as far as "real", the complex number

1 + 0i can be lowered as far as "integer", and the complex number 2 + 3i cannot be lowered

at all. Here is a plan for determining whether an object can be lowered: Begin by de�ning a

generic operation project that “pushes” an object down in the tower. For example, projecting

220 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.5.3

a complex number would involve throwing away the imaginary part. Then a number can be

dropped if, when we project it and raise the result back to the type we started with, we end

up with something equal to what we started with. Show how to implement this idea in detail,

by writing a drop function that drops an object as far as possible. You will need to design the

various projection operations
50

and install project as a generic operation in the system. You

will also need to make use of a generic equality predicate, such as described in exercise 2.79.

Finally, use drop to rewrite apply_generic from exercise 2.84 so that it “simpli�es” its answers.

Exercise 2.86

Suppose we want to handle complex numbers whose real parts, imaginary parts, magnitudes,

and angles can be either ordinary numbers, rational numbers, or other numbers we might

wish to add to the system. Describe and implement the changes to the system needed to

accommodate this. You will have to de�ne operations such as sine and cosine that are generic

over ordinary numbers and rational numbers.

2.5.3 Example: Symbolic Algebra

The manipulation of symbolic algebraic expressions is a complex process that illustrates many

of the hardest problems that occur in the design of large-scale systems. An algebraic expression,

in general, can be viewed as a hierarchical structure, a tree of operators applied to operands.

We can construct algebraic expressions by starting with a set of primitive objects, such as

constants and variables, and combining these by means of algebraic operators, such as addition

and multiplication. As in other languages, we form abstractions that enable us to refer to

compound objects in simple terms. Typical abstractions in symbolic algebra are ideas such as

linear combination, polynomial, rational function, or trigonometric function. We can regard

these as compound “types,” which are often useful for directing the processing of expressions.

For example, we could describe the expression

x2
sin(y2 + 1) + x cos 2y + cos(y3 − 2y2)

as a polynomial in x with coe�cients that are trigonometric functions of polynomials in y

whose coe�cients are integers.

We will not attempt to develop a complete algebraic-manipulation system here. Such sys-

tems are exceedingly complex programs, embodying deep algebraic knowledge and elegant

algorithms. What we will do is look at a simple but important part of algebraic manipulation:

50
A real number can be projected to an integer using the math_round primitive, which returns the closest

integer to its argument.

221 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.5.3

the arithmetic of polynomials. We will illustrate the kinds of decisions the designer of such

a system faces, and how to apply the ideas of abstract data and generic operations to help

organize this e�ort.

Arithmetic on polynomials

Our �rst task in designing a system for performing arithmetic on polynomials is to decide

just what a polynomial is. Polynomials are normally de�ned relative to certain variables (the

indeterminates of the polynomial). For simplicity, we will restrict ourselves to polynomials

having just one indeterminate (univariate polynomials).51
We will de�ne a polynomial to be a

sum of terms, each of which is either a coe�cient, a power of the indeterminate, or a product

of a coe�cient and a power of the indeterminate. A coe�cient is de�ned as an algebraic

expression that is not dependent upon the indeterminate of the polynomial. For example,

5x2 + 3x + 7

is a simple polynomial in x , and

(y2 + 1)x3 + (2y)x + 1

is a polynomial in x whose coe�cients are polynomials in y.

Already we are skirting some thorny issues. Is the �rst of these polynomials the same as the

polynomial 5y2 + 3y + 7, or not? A reasonable answer might be “yes, if we are considering a

polynomial purely as a mathematical function, but no, if we are considering a polynomial to

be a syntactic form.” The second polynomial is algebraically equivalent to a polynomial in y

whose coe�cients are polynomials in x . Should our system recognize this, or not? Furthermore,

there are other ways to represent a polynomial—for example, as a product of factors, or (for

a univariate polynomial) as the set of roots, or as a listing of the values of the polynomial at

a speci�ed set of points.
52

We can �nesse these questions by deciding that in our algebraic-

manipulation system a “polynomial” will be a particular syntactic form, not its underlying

mathematical meaning.

Now we must consider how to go about doing arithmetic on polynomials. In this simple

system, we will consider only addition and multiplication. Moreover, we will insist that two

51
On the other hand, we will allow polynomials whose coe�cients are themselves polynomials in other

variables. This will give us essentially the same representational power as a full multivariate system, although it

does lead to coercion problems, as discussed below.

52
For univariate polynomials, giving the value of a polynomial at a given set of points can be a particularly

good representation. This makes polynomial arithmetic extremely simple. To obtain, for example, the sum of two

polynomials represented in this way, we need only add the values of the polynomials at corresponding points. To

transform back to a more familiar representation, we can use the Lagrange interpolation formula, which shows

how to recover the coe�cients of a polynomial of degree n given the values of the polynomial at n + 1 points.

222 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.5.3

polynomials to be combined must have the same indeterminate.

We will approach the design of our system by following the familiar discipline of data

abstraction. We will represent polynomials using a data structure called a poly, which con-

sists of a variable and a collection of terms. We assume that we have selectors variable and

term_list that extract those parts from a poly and a constructor make_poly that assembles

a poly from a given variable and a term list. A variable will be just a symbol, so we can use

the is_same_variable function of section 2.3.2 to compare variables. The following functions

de�ne addition and multiplication of polys:

Ifunction add_poly(p1, p2) {

return is_same_variable(variable(p1), variable(p2))

? make_poly(variable(p1),

add_terms(term_list(p1),

term_list(p2)))

: error(list(p1, p2),

"Polys not in same var -- add_poly");

}

function mul_poly(p1, p2) {

return is_same_variable(variable(p1), variable(p2))

? make_poly(variable(p1),

mul_terms(term_list(p1),

term_list(p2)))

: error(list(p1, p2),

"Polys not in same var -- mul_poly");

}

To incorporate polynomials into our generic arithmetic system, we need to supply them

with type tags. We’ll use the tag "polynomial", and install appropriate operations on tagged

polynomials in the operation table. We’ll embed all our code in an installation function for the

polynomial package, similar to the ones in section 2.5.1:

Ifunction install_polynomial_package() {

// internal functions

// representation of poly

function make_poly(variable, term_list) {

return pair(variable, term_list);

}

function variable(p) { return head(p); }

function term_list(p) { return tail(p); }

〈f unctions is_same_variable and is_variable f rom section 2.3.2〉
// representation of terms and term lists

〈f unctions adjoin_term ... coeff f rom text below〉

function add_poly(p1, p2) { ... }

〈f unctions used by add_poly〉

function mul_poly(p1, p2) { ... }

223 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEEkDtQZQewK4CcDGBTANKAtnAzgC6gBmCkKBAlnJHqABYCGAbmqIyZQB5oAmokBNgBGaJKDjF2SAOZC0kAngB0AKBCgAFABV6bUuSo1QAG0qFQ50AT0TIJgJ6g0XdAAcjkLATjX6VvF9iRiRlAEp1MF19MgpqaEY3N0cAfUpIFLJeMUd0mRSAKxZGPBQkSg92ExM4AHc6BDofSPYkx3ZIJxlKVmgDOOMDa19GaucTNGwFJQkpGzYQuSnFUBazC0W8LBLLOb0nWrE2PDQ3EMYCBdl5RTxVfs9W5IdNA23ZPDDQAG9VUH-QEg0ARkAk2g40hksjkHHlCsVSuUPK8yO8ZJ8ANyqAC+91ij0SzxSMgUYkoKE0cDcaM+Pz+AJQNAsBAcbjQKQIjHRoAAvDhEpoWWyOVyaWEsQDQIzaEQhnySQRKdTrKz2Zz0eL6f8gSCkH0yKAAIQ8vnQ4jpPhayWgAD8T0cKK8-Lcmmll1uYoi1oBAC5nEgkHAkJp1oqqd5VSKNRgrd7vQAiAByvimNjg-GIQb8aBOKrZdHS9ohJMgZJQ8c1uIe8XYvF4mi4WAcX1+AJ1oKLxNJ5Qp8cYdfjWFDDabYUreMMNbwCGEI9AzbpbeBHcJqRLZc08enwkHpnMisb87HWKr+Jr2AQJjnC9b2uXes7657m4vJl3w8PzfH1eMvB615bLV2wfVdi27clNz-Zh333ADxw0KkxAueIRWECYsDcBAiEYSB+AVFpiEDbApSYDwxFAABmLQTgGaAKOUeiKIiH8EjwQIKQAazQBwsCBRkkF4WlbzvXVoHMFJBGqTQ+KDQSvTjAE7TNC1eFjb0-TQABHBBRk0LieIYNB+00PRjJkgTPjHNS4ztUz63MuTrPU9g2LgTjuO8RhKCvBzLJPCdaP5LjUImTRAMlaULBqFBRhCtg+WHeMACpOTQtAkorCUARY0w4DgDiEBdfSUgARiwYqACZwrjSKiG3VKJl5Fz2L07jSs87yQzc2KGrQY8nMoKRNHqxg0t5E1QGU0teGqhSRI7Ka+Cy71sXGXNhLm2rATQfj+D5EoWsqjqrxGtL+rmgFBq0BzxtNXC0HNabZoupdRMm+7HqWpzJVWtATHW7642A6BOU6hzNRe0BcQU6GAVh-4cvSE4kEVYqytAI7QGYUYED6xcaqZOqZ16pqDrc1qIXR0Gr2inrRomc64yu4bifp+KJsWmb8Yuk4CBFTraZMOKY0huazkoYNhzRjCvODTHsZMXGxxF0XIeprqYqF3qxwhuNfv+tgNoUrabv21z3IhCrjpZ4Rtd1i7mdNjmPpU57-gASAU3n+ZO1m0pjT3VYU8XgxDimUitrGcb6lWg9F9XToZ-rA-+fWAbj731YcrAFaV5a5vh61C8LnK-zwM4CBQehNGwN3Xo7YiTT5eManywr40B607Vbgq3E7yU-Ubib4yRsQCA7uPbUsWgx-760NIDIMa6weMAFVIA4yA6mgRCkGQ4wAFoD+sNnMqtQvgdAMuK6r-ytt3-eMhJvlsEYYLerCrEtoVJqH88OLNw93bpqLamEiB8j-ihD+I8Z4ozPjlC4nIq5RkFJGdUWA3TTCElaS+YchRqlFFKGg7olDfjPMYfBKDeAXCEM9S+4kw7UJBLXTutkjL1iYbQzuC9AzBk4dgFewh+wnxkCSfg-DQBHzzAQmQZ9TyTmMJg24mh+F0PvGJPAKRGE0JYS9O06tVHcP9LwlROjBHCPVGIq+OjJHHyUUoORAVHhI05NUeE2NEQVD5oIEQYgtGMBQBxLkaAwrcxIOQkGXIGx13miBAgSD6AoPjEUDxZQvESSEKIJAu4uD2yhlaMBm5+y8BgoQTcKSShpI8Bk3x2SV4VM8dUnxWSKxYCcgBXkAA+ERDZQAAGojx5MKVuGcpTFTJIRFU7xmSxC7gmakpE0zamtNWApDpPJunql6cfL8+dhmvjGeUyZiyaktPqcc9JzTZlhDaWsz8XwNk9K4KAJKgy9lYUgj0Q58zKknKuXU0APzGlLJaTc1ZcZ1mbKic8sAuyCkfPjK-LicyGlTNObM25cZnmPK2bkvJl94y8BoGgeM-kXGjCFqiv5MykD+MCcEz+Tjzxv3ZFSy5NLNCQDUW9BUL4WUoouU0mlFZOVkIURolI2Nyhs2iWE+hmjCDlEgDIaJ-lEYKsYFMSVIRKAyuYOjZgVU5XqMsJoqVuq0qaH1V8AAZDazu4lzV6qNXarGJVbpYwqmqiJ09CAUvcb89ltS0iaK0jpLWcAUgAC8xBwFCRtYZ4kw09UjTGwM3y2VCuWWCpy2LunYomgABnxSawlxLSU4lUOStxmaQV+KTdpFN0bY2MqZcYBt4aOSppbbk41b1QJdlLM+EeobG0RubemocsE8X+TbWJGU-q3BwEcFvbAuqhZnHpSSeNqgrQaHSJcPUoxwniruHusAQI3BAhOIoR+sxQBLscFaHKSL2SPpeE6-21gxDYBSKGGJ203ph0-ehb9SBf3-vziXH1IGQluBbIBjsdlNDwYxPkyUOVD0QdgvBn4iGHzq1Q-k8920r05mmHeyQYHsB0BwvwLDe5CB3Awz6-sBQ4DpA5D+wUP7vA-r-fuAD8qUjJvHWmuNjIHrEB4+BqyQd9H8dDHPf4fo8G8eowJwgeTC5bXmCJ7AHgIRYdDE1SSJh845XNEgQgXHwMyew1psJkpL7Iaw5pgg2nn0+uvXzLDeB7PuaEya9WbnIPny8+K01+nDO2ewMOULgmnP1wfOJMzAWws-Qi4FV9sXKQCTEBguAUmgtvWHLJArRDitQay48crwYsMlaQ+w+znmWORck8QaTDWkuxOgK5ryV4GueZqzWYpWjl0vDcOjNwRqjbJYlXgTV7JYNWp1TKqbYKVszbk6rO0OX32relZajbsdJ5xjG359LOGSo3OU2d60CWynbZ26LHhS9hxTYwlVU7934wAAUJt0C3kQQsi2phR3EFIsb76z6ZZG8YC7P7-MABl0bI9mwNIaSaDMsli8OVHY4evzdAOj-OP1wXej+rmZm2OYvGdgujwnc3nMmtR2TuGFPrRU8Nv3XT7q+RWZs1hzQBP2fel0xVJqgvfPccZ2L60zM6uChu6AbpSuCBVQAwpS+bGONP24wQdGiPwP+Z87FlHN2sCM7yTDNabBFf5fqyrgAPBIR3gpNdE+1ya3XnHhca+2HWc3Iv0Zm8u9bm3es7de6Bj73g7G-fcZy8L9XlvOf3Yz-8YproiudeV7dzPhfxe5665rgvReXrG5o9JHMMuTch-LxX+7Yekci7L-LzLMNwuSnh9AV842HSfYfRj73b1xJg+W2ty1W209bc13dvbLKB8fqn6FE7d3Ib98u49xU6+m9q0Uzhsvd23uS2u19xvGf-uA4EHAEH0AJ8Q9sTgS8y-Ydw13W17Lr-w9o5H7HsfUNHHIzH9fHG7BfbMaLXHenQgE-WsXgYPLffjYQCEf1S7DfTPaXXLAnK3b7DAi6JA+vFvevHAknTXarL-R4Qg39FAlINA1vQ3K3ADGnIAunUAhnJnfuS+PTSYNg8DUMeXNOHnSGCXKXCWIXWXSPb0HXePPXXLfA60ZPbjVPL4AZdXPA-fOMV8HPKTfPQrXQjXHWH7M7aglIWg+g+vRg7aCQkgnWQQ8Ld2FOHvSUfdRQMQYIdAYYawogKjeYUAPABwQgSYXvHpXDZnfDBIeJAJRJLZeMd9VdddXcVDbvAEYZYpb5eIuANdUYOZTI7It8S-SUFDabI1HFKJaHCbYoi-Rmf4fZS8DIibBInIlePIxIwogEKo4fB5KFFVfvA7IfZ7IZBFV9XIxorIxI4w-4Q7C1UDPzbo-uLZfbSo2DPjE3OwnBUtIlUsCtXEatDdMY-IulIJbdTUF9JfVo3SFY6jbBFnHlYEPlZFFog4to6YtmVYmjccUBfnIKN9Z43SeMLgQcd2O7YcYcSOHLWtdFYMAAFmVgUMY0VHRghMFTrWDCYnaNVmHELSwGRIWSDSyU0AAHYdYQFCZh8moliV1xj-jASMBgSg5QTYJwSl9IT-lNAABWOEjPYcJElklEqEzQTXSY0WLEnEvkvErNAkkqYtdY1QbQgYqqLEIAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEEkDtQZQewK4CcDGBTANKAtnAzgC6gBmCkKBAlnJHqABYCGAbmqIyZQB5oAmokBNgBGaJKDjF2SAOZC0kAngB0AKBCgAFABV6bUuSo1QAG0qFQ50AT0TIJgJ6g0XdAAcjkLATjX6VvF9iRiRlAEp1MF19MgpqaEY3N0cAfUpIFLJeMUd0mRSAKxZGPBQkSg92ExM4AHc6BDofSPYkx3ZIJxlKVmgDOOMDa19GaucTNGwFJQkpGzYQuSnFUBazC0W8LBLLOb0nWrE2PDQ3EMYCBdl5RTxVfs9W5IdNA23ZPDDQAG9VUH-QEg0ARkAk2g40hksjkHHlCsVSuUPK8yO8ZJ8ANyqAC+91ij0SzxSMgUYkoKE0cDcaM+Pz+AJQNAsBAcbjQKQIjHRoAAvDhEpoWWyOVyaWEsQDQIzaEQhnySQRKdTrKz2Zz0eL6f8gSCkH0yKAAIQ8vnQ4jpPhayWgAD8T0cKK8-Lcmmll1uYoi1oBAC5nEgkHAkJp1oqqd5VSKNRgrd7vQAiAByvimNjg-GIQb8aBOKrZdHS9ohJMgZJQ8c1uIe8XYvF4mi4WAcX1+AJ1oKLxNJ5Qp8cYdfjWFDDabYUreMMNbwCGEI9AzbpbeBHcJqRLZc08enwkHpnMisb87HWKr+Jr2AQJjnC9b2uXes7657m4vJl3w8PzfH1eMvB615bLV2wfVdi27clNz-Zh333ADxw0KkxAueIRWECYsDcBAiEYSB+AVFpiEDbApSYDwxFAABmLQTgGaAKOUeiKIiH8EjwQIKQAazQBwsCBRkkF4WlbzvXVoHMFJBGqTQ+KDQSvTjAE7TNC1eFjb0-TQABHBBRk0LieIYNB+00PRjJkgTPjHNS4ztUz63MuTrPU9g2LgTjuO8RhKCvBzLJPCdaP5LjUImTRAMlaULBqFBRhCtg+WHeMACpOTQtAkorCUARY0w4DgDiEBdfSUgARiwYqACZwrjSKiG3VKJl5Fz2L07jSs87yQzc2KGrQY8nMoKRNHqxg0t5E1QGU0teGqhSRI7Ka+Cy71sXGXNhLm2rATQfj+D5EoWsqjqrxGtL+rmgFBq0BzxtNXC0HNabZoupdRMm+7HqWpzJVWtATHW7642A6BOU6hzNRe0BcQU6GAVh-4cvSE4kEVYqytAI7QGYUYED6xcaqZOqZ16pqDrc1qIXR0Gr2inrRomc64yu4bifp+KJsWmb8Yuk4CBFTraZMOKY0huazkoYNhzRjCvODTHsZMXGxxF0XIeprqYqF3qxwhuNfv+tgNoUrabv21z3IhCrjpZ4Rtd1i7mdNjmPpU57-gASAU3n+ZO1m0pjT3VYU8XgxDimUitrGcb6lWg9F9XToZ-rA-+fWAbj731YcrAFaV5a5vh61C8LnK-zwM4CBQehNGwN3Xo7YiTT5eManywr40B607Vbgq3E7yU-Ubib4yRsQCA7uPbUsWgx-760NIDIMa6weMAFVIA4yA6mgRCkGQ4wAFoD+sNnMqtQvgdAMuK6r-ytt3-eMhJvlsEYYLerCrEtoVJqH88OLNw93bpqLamEiB8j-ihD+I8Z4ozPjlC4nIq5RkFJGdUWA3TTCElaS+YchRqlFFKGg7olDfjPMYfBKDeAXCEM9S+4kw7UJBLXTutkjL1iYbQzuC9AzBk4dgFewh+wnxkCSfg-DQBHzzAQmQZ9TyTmMJg24mh+F0PvGJPAKRGE0JYS9O06tVHcP9LwlROjBHCPVGIq+OjJHHyUUoORAVHhI05NUeE2NEQVD5oIEQYgtGMBQBxLkaAwrcxIOQkGXIGx13miBAgSD6AoPjEUDxZQvESSEKIJAu4uD2yhlaMBm5+y8BgoQTcKSShpI8Bk3x2SV4VM8dUnxWSKxYCcgBXkAA+ERDZQAAGojx5MKVuGcpTFTJIRFU7xmSxC7gmakpE0zamtNWApDpPJunql6cfL8+dhmvjGeUyZiyaktPqcc9JzTZlhDaWsz8XwNk9K4KAJKgy9lYUgj0Q58zKknKuXU0APzGlLJaTc1ZcZ1mbKic8sAuyCkfPjK-LicyGlTNObM25cZnmPK2bkvJl94y8BoGgeM-kXGjCFqiv5MykD+MCcEz+Tjzxv3ZFSy5NLNCQDUW9BUL4WUoouU0mlFZOVkIURolI2Nyhs2iWE+hmjCDlEgDIaJ-lEYKsYFMSVIRKAyuYOjZgVU5XqMsJoqVuq0qaH1V8AAZDazu4lzV6qNXarGJVbpYwqmqiJ09CAUvcb89ltS0iaK0jpLWcAUgAC8xBwFCRtYZ4kw09UjTGwM3y2VCuWWCpy2LunYomgABnxSawlxLSU4lUOStxmaQV+KTdpFN0bY2MqZcYBt4aOSppbbk41b1QJdlLM+EeobG0RubemocsE8X+TbWJGU-q3BwEcFvbAuqhZnHpSSeNqgrQaHSJcPUoxwniruHusAQI3BAhOIoR+sxQBLscFaHKSL2SPpeE6-21gxDYBSKGGJ203ph0-ehb9SBf3-vziXH1IGQluBbIBjsdlNDwYxPkyUOVD0QdgvBn4iGHzq1Q-k8920r05mmHeyQYHsB0BwvwLDe5CB3Awz6-sBQ4DpA5D+wUP7vA-r-fuAD8qUjJvHWmuNjIHrEB4+BqyQd9H8dDHPf4fo8G8eowJwgeTC5bXmCJ7AHgIRYdDE1SSJh845XNEgQgXHwMyew1psJkpL7Iaw5pgg2nn0+uvXzLDeB7PuaEya9WbnIPny8+K01+nDO2ewMOULgmnP1wfOJMzAWws-Qi4FV9sXKQCTEBguAUmgtvWHLJArRDitQay48crwYsMlaQ+w+znmWORck8QaTDWkuxOgK5ryV4GueZqzWYpWjl0vDcOjNwRqjbJYlXgTV7JYNWp1TKqbYKVszbk6rO0OX32relZajbsdJ5xjG359LOGSo3OU2d60CWynbZ26LHhS9hxTYwlVU7934wAAUJt0C3kQQsi2phR3EFIsb76z6ZZG8YC7P7-MABl0bI9mwNIaSaDMsli8OVHY4evzdAOj-OP1wXej+rmZm2OYvGdgujwnc3nMmtR2TuGFPrRU8Nv3XT7q+RWZs1hzQBP2fel0xVJqgvfPccZ2L60zM6uChu6AbpSuCBVQAwpS+bGONP24wQdGiPwP+Z87FlHN2sCM7yTDNabBFf5fqyrgAPBIR3gpNdE+1ya3XnHhca+2HWc3Iv0Zm8u9bm3es7de6Bj73g7G-fcZy8L9XlvOf3Yz-8YproiudeV7dzPhfxe5665rgvReXrG5o9JHMMuTch-LxX+7Yekci7L-LzLMNwuSnh9AV842HSfYfRj73b1xJg+W2ty1W209bc13dvbLKB8fqn6FE7d3Ib98u49xU6+m9q0Uzhsvd23uS2u19xvGf-uA4EHAEH0AJ8Q9sTgS8y-Ydw13W17Lr-w9o5H7HsfUNHHIzH9fHG7BfbMaLXHenQgE-WsXgYPLffjYQCEf1S7DfTPaXXLAnK3b7DAi6JA+vFvevHAknTXarL-R4Qg39FAlINA1vQ3K3ADGnIAunUAhnJnfuS+PTSYNg8DUMeXNOHnSGCXKXCWIXWXSPb0HXePPXXLfA60ZPbjVPL4AZdXPA-fOMV8HPKTfPQrXQjXHWH7M7aglIWg+g+vRg7aCQkgnWQQ8Ld2FOHvSUfdRQMQYIdAYYawogKjeYUAPABwQgSYXvHpXDZnfDBIeJAJRJLZeMd9VdddXcVDbvAEYZYpb5eIuANdUYOZTI7It8S-SUFDabI1HFKJaHCbYoi-Rmf4fZS8DIibBInIlePIxIwogEKo4fB5KFFVfvA7IfZ7IZBFV9XIxorIxI4w-4Q7C1UDPzbo-uLZfbSo2DPjE3OwnBUtIlUsCtXEatDdMY-IulIJbdTUF9JfVo3SFY6jbBFnHlYEPlZFFog4to6YtmVYmjccUBfnIKN9Z43SeMLgQcd2O7YcYcSOHLWtdFYMAAFmVgUMY0VHRghMFTrWDCYnaNVmHELSwGRIWSDSyU0AAHYdYQFCZh8moliV1xj-jASMBgSg5QTYJwSl9IT-lNAABWOEjPYcJElklEqEzQTXSY0WLEnEvkvErNAkkqYtdY1QbQgYqqLEIAA

Building Abstractions with Data 2.5.3

〈f unctions used by mul_poly〉

// interface to rest of the system

function tag(p) {

return attach_tag("polynomial", p);

}

put("add", list("polynomial", "polynomial"),

(p1, p2) => tag(add_poly(p1, p2)));

put("mul", list("polynomial", "polynomial"),

(p1, p2) => tag(mul_poly(p1, p2)));

put("make", "polynomial",

(variable, terms) =>

tag(make_poly(variable, terms)));

return "done";

}

Polynomial addition is performed termwise. Terms of the same order (i.e., with the same power

of the indeterminate) must be combined. This is done by forming a new term of the same order

whose coe�cient is the sum of the coe�cients of the addends. Terms in one addend for which

there are no terms of the same order in the other addend are simply accumulated into the sum

polynomial being constructed.

In order to manipulate term lists, we will assume that we have a constructorthe_empty_termlist

that returns an empty term list and a constructor adjoin_term that adjoins a new term to a

term list. We will also assume that we have a predicate is_empty_termlist that tells if a given

term list is empty, a selector first_term that extracts the highest-order term from a term list,

and a selector rest_terms that returns all but the highest-order term. To manipulate terms,

we will suppose that we have a constructor make_term that constructs a term with given or-

der and coe�cient, and selectors order and coeff that return, respectively, the order and the

coe�cient of the term. These operations allow us to consider both terms and term lists as data

abstractions, whose concrete representations we can worry about separately.

Here is the function that constructs the term list for the sum of two polynomials:
53

Ifunction add_terms(L1, L2) {

if (is_empty_termlist(L1)) {

return L2;

}

else if (is_empty_termlist(L2)) {

return L1;

}

else {

const t1 = first_term(L1);

53
This operation is very much like the ordered union_set operation we developed in exercise 2.62. In fact, if

we think of the terms of the polynomial as a set ordered according to the power of the indeterminate, then the

program that produces the term list for a sum is almost identical to union_set.

224 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEEkDtQZQewK4CcDGBTANKAtnAzgC6gBmCkKBAlnJHqABYCGAbmqIyZQB5oAmokBNgBGaJKDjF2SAOZC0kAngB0AKBCgAFABV6bUuSo1QAG0qFQ50AT0TIJgJ6g0XdAAcjkLATjX6VvF9iRiRlAEp1MF19MgpqaEY3N0cAfUpIFLJeMUd0mRSAKxZGPBQkSg92ExM4AHc6BDofSPYkx3ZIJxlKVmgDOOMDa19GaucTNGwFJQkpGzYQuSnFUBazC0W8LBLLOb0nWrE2PDQ3EMYCBdl5RTxVfs9W5IdNA23ZPDDQAG9VUH-QEg0ARkAk2g40hksjkHHlCsVSuUPK8yO8ZJ8ANyqAC+91ij0SzxSMgUYkoKE0cDcaM+Pz+AJQNAsBAcbjQKQIjHRoAAvDhEpoWWyOVyaWEsQDQIzaEQhnySQRKdTrKz2Zz0eL6f8gSCkH0yKAAIQ8vnQ4jpPhayWgAD8T0cKK8-Lcmmll1uYoi1oBAC5nEgkHAkJp1oqqd5VSKNRgrd7vQAiAByvimNjg-GIQb8aBOKrZdHS9ohJMgZJQ8c1uIe8XYvF4mi4WAcX1+AJ1oKLxNJ5Qp8cYdfjWFDDabYUreMMNbwCGEI9AzbpbeBHcJqRLZc08enwkHpnMisb87HWKr+Jr2AQJjnC9b2uXes7657m4vJl3w8PzfH1eMvB615bLV2wfVdi27clNz-Zh333ADxw0KkxAueIRWECYsDcBAiEYSB+AVFpiEDbApSYDwxFAABmLQTgGaAKOUeiKIiH8EjwQIKQAazQBwsCBRkkF4WlbzvXVoHMFJBGqTQ+KDQSvTjAE7TNC1eFjb0-TQABHBBRk0LieIYNB+00PRjJkgTPjHNS4ztUz63MuTrPU9g2LgTjuO8RhKCvBzLJPCdaP5LjUImTRAMlaULBqFBRhCtg+WHeMACpOTQtAkorCUARY0w4DgDiEBdfSUgARiwYqACZwrjSKiG3VKJl5Fz2L07jSs87yQzc2KGrQY8nMoKRNHqxg0t5E1QGU0teGqhSRI7Ka+Cy71sXGXNhLm2rATQfj+D5EoWsqjqrxGtL+rmgFBq0BzxtNXC0HNabZoupdRMm+7HqWpzJVWtATHW7642A6BOU6hzNRe0BcQU6GAVh-4cvSE4kEVYqytAI7QGYUYED6xcaqZOqZ16pqDrc1qIXR0Gr2inrRomc64yu4bifp+KJsWmb8Yuk4CBFTraZMOKY0huazkoYNhzRjCvODTHsZMXGxxF0XIeprqYqF3qxwhuNfv+tgNoUrabv21z3IhCrjpZ4Rtd1i7mdNjmPpU57-gASAU3n+ZO1m0pjT3VYU8XgxDimUitrGcb6lWg9F9XToZ-rA-+fWAbj731YcrAFaV5a5vh61C8LnK-zwM4CBQehNGwN3Xo7YiTT5eManywr40B607Vbgq3E7yU-Ubib4yRsQCA7uPbUsWgx-760NIDIMa6weMAFVIA4yA6mgRCkGQ4wAFoD+sNnMqtQvgdAMuK6r-ytt3-eMhJvlsEYYLerCrEtoVJqH88OLNw93bpqLamEiB8j-ihD+I8Z4ozPjlC4nIq5RkFJGdUWA3TTCElaS+YchRqlFFKGg7olDfjPMYfBKDeAXCEM9S+4kw7UJBLXTutkjL1iYbQzuC9AzBk4dgFewh+wnxkCSfg-DQBHzzAQmQZ9TyTmMJg24mh+F0PvGJPAKRGE0JYS9O06tVHcP9LwlROjBHCPVGIq+OjJHHyUUoORAVHhI05NUeE2NEQVD5oIEQYgtGMBQBxLkaAwrcxIOQkGXIGx13miBAgSD6AoPjEUDxZQvESSEKIJAu4uD2yhlaMBm5+y8BgoQTcKSShpI8Bk3x2SV4VM8dUnxWSKxYCcgBXkAA+ERDZQAAGojx5MKVuGcpTFTJIRFU7xmSxC7gmakpE0zamtNWApDpPJunql6cfL8+dhmvjGeUyZiyaktPqcc9JzTZlhDaWsz8XwNk9K4KAJKgy9lYUgj0Q58zKknKuXU0APzGlLJaTc1ZcZ1mbKic8sAuyCkfPjK-LicyGlTNObM25cZnmPK2bkvJl94y8BoGgeM-kXGjCFqiv5MykD+MCcEz+Tjzxv3ZFSy5NLNCQDUW9BUL4WUoouU0mlFZOVkIURolI2Nyhs2iWE+hmjCDlEgDIaJ-lEYKsYFMSVIRKAyuYOjZgVU5XqMsJoqVuq0qaH1V8AAZDazu4lzV6qNXarGJVbpYwqmqiJ09CAUvcb89ltS0iaK0jpLWcAUgAC8xBwFCRtYZ4kw09UjTGwM3y2VCuWWCpy2LunYomgABnxSawlxLSU4lUOStxmaQV+KTdpFN0bY2MqZcYBt4aOSppbbk41b1QJdlLM+EeobG0RubemocsE8X+TbWJGU-q3BwEcFvbAuqhZnHpSSeNqgrQaHSJcPUoxwniruHusAQI3BAhOIoR+sxQBLscFaHKSL2SPpeE6-21gxDYBSKGGJ203ph0-ehb9SBf3-vziXH1IGQluBbIBjsdlNDwYxPkyUOVD0QdgvBn4iGHzq1Q-k8920r05mmHeyQYHsB0BwvwLDe5CB3Awz6-sBQ4DpA5D+wUP7vA-r-fuAD8qUjJvHWmuNjIHrEB4+BqyQd9H8dDHPf4fo8G8eowJwgeTC5bXmCJ7AHgIRYdDE1SSJh845XNEgQgXHwMyew1psJkpL7Iaw5pgg2nn0+uvXzLDeB7PuaEya9WbnIPny8+K01+nDO2ewMOULgmnP1wfOJMzAWws-Qi4FV9sXKQCTEBguAUmgtvWHLJArRDitQay48crwYsMlaQ+w+znmWORck8QaTDWkuxOgK5ryV4GueZqzWYpWjl0vDcOjNwRqjbJYlXgTV7JYNWp1TKqbYKVszbk6rO0OX32relZajbsdJ5xjG359LOGSo3OU2d60CWynbZ26LHhS9hxTYwlVU7934wAAUJt0C3kQQsi2phR3EFIsb76z6ZZG8YC7P7-MABl0bI9mwNIaSaDMsli8OVHY4evzdAOj-OP1wXej+rmZm2OYvGdgujwnc3nMmtR2TuGFPrRU8Nv3XT7q+RWZs1hzQBP2fel0xVJqgvfPccZ2L60zM6uChu6AbpSuCBVQAwpS+bGONP24wQdGiPwP+Z87FlHN2sCM7yTDNabBFf5fqyrgAPBIR3gpNdE+1ya3XnHhca+2HWc3Iv0Zm8u9bm3es7de6Bj73g7G-fcZy8L9XlvOf3Yz-8YproiudeV7dzPhfxe5665rgvReXrG5o9JHMMuTch-LxX+7Yekci7L-LzLMNwuSnh9AV842HSfYfRj73b1xJg+W2ty1W209bc13dvbLKB8fqn6FE7d3Ib98u49xU6+m9q0Uzhsvd23uS2u19xvGf-uA4EHAEH0AJ8Q9sTgS8y-Ydw13W17Lr-w9o5H7HsfUNHHIzH9fHG7BfbMaLXHenQgE-WsXgYPLffjYQCEf1S7DfTPaXXLAnK3b7DAi6JA+vFvevHAknTXarL-R4Qg39FAlINA1vQ3K3ADGnIAunUAhnJnfuS+PTSYNg8DUMeXNOHnSGCXKXCWIXWXSPb0HXePPXXLfA60ZPbjVPL4AZdXPA-fOMV8HPKTfPQrXQjXHWH7M7aglIWg+g+vRg7aCQkgnWQQ8Ld2FOHvSUfdRQMQYIdAYYawogKjeYUAPABwQgSYXvHpXDZnfDBIeJAJRJLZeMd9VdddXcVDbvAEYZYpb5eIuANdUYOZTI7It8S-SUFDabI1HFKJaHCbYoi-Rmf4fZS8DIibBInIlePIxIwogEKo4fB5KFFVfvA7IfZ7IZBFV9XIxorIxI4w-4Q7C1UDPzbo-uLZfbSo2DPjE3OwnBUtIlUsCtXEatDdMY-IulIJbdTUF9JfVo3SFY6jbBFnHlYEPlZFFog4to6YtmVYmjccUBfnIKN9Z43SeMLgQcd2O7YcYcSOHLWtdFYMAAFmVgUMY0VHRghMFTrWDCYnaNVmHELSwGRIWSDSyU0AAHYdYQFCZh8moliV1xj-jASMBgSg5QTYJwSl9IT-lNAABWOEjPYcJElklEqEzQTXSY0WLEnEvkvErNAkkqYtdY1QbQgYqqLEIAA

Building Abstractions with Data 2.5.3

const t2 = first_term(L2);

return order(t1) > order(t2)

? adjoin_term(t1, add_terms(rest_terms(L1), L2))

: order(t1) < order(t2)

? adjoin_term(t2, add_terms(L1, rest_terms(L2)))

: adjoin_term(make_term(order(t1),

add(coeff(t1),

coeff(t2))),

add_terms(rest_terms(L1),

rest_terms(L2)));

}

}

The most important point to note here is that we used the generic addition function add to

add together the coe�cients of the terms being combined. This has powerful consequences,

as we will see below.

In order to multiply two term lists, we multiply each term of the �rst list by all the terms

of the other list, repeatedly using mul_term_by_all_terms, which multiplies a given term by

all terms in a given term list. The resulting term lists (one for each term of the �rst list) are

accumulated into a sum. Multiplying two terms forms a term whose order is the sum of the

orders of the factors and whose coe�cient is the product of the coe�cients of the factors:

Ifunction mul_terms(L1, L2) {

return is_empty_termlist(L1)

? the_empty_termlist

: add_terms(mul_term_by_all_terms(

first_term(L1), L2),

mul_terms(rest_terms(L1), L2));

}

function mul_term_by_all_terms(t1, L) {

if (is_empty_termlist(L)) {

return the_empty_termlist;

} else {

const t2 = first_term(L);

return adjoin_term(

make_term(order(t1) + order(t2),

mul(coeff(t1), coeff(t2))),

mul_term_by_all_terms(t1, rest_terms(L)));

}

}

This is really all there is to polynomial addition and multiplication. Notice that, since we

operate on terms using the generic functions add and mul, our polynomial package is auto-

matically able to handle any type of coe�cient that is known about by the generic arithmetic

package. If we include a coercion mechanism such as one of those discussed in section 2.5.2,

then we also are automatically able to handle operations on polynomials of di�erent coe�cient

225 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEEkDtQZQewK4CcDGBTANKAtnAzgC6gBmCkKBAlnJHqABYCGAbmqIyZQB5oAmokBNgBGaJKDjF2SAOZC0kAngB0AKBCgAFABV6bUuSo1QAG0qFQ50AT0TIJgJ6g0XdAAcjkLATjX6VvF9iRiRlAEp1MF19MgpqaEY3N0cAfUpIFLJeMUd0mRSAKxZGPBQkSg92ExM4AHc6BDofSPYkx3ZIJxlKVmgDOOMDa19GaucTNGwFJQkpGzYQuSnFUBazC0W8LBLLOb0nWrE2PDQ3EMYCBdl5RTxVfs9W5IdNA23ZPDDQAG9VUH-QEg0ARkAk2g40hksjkHHlCsVSuUPK8yO8ZJ8ANyqAC+91ij0SzxSMgUYkoKE0cDcaM+Pz+AJQNAsBAcbjQKQIjHRoAAvDhEpoWWyOVyaWEsQDQIzaEQhnySQRKdTrKz2Zz0eL6f8gSCkH0yKAAIQ8vnQ4jpPhayWgAD8T0cKK8-Lcmmll1uYoi1oBAC5nEgkHAkJp1oqqd5VSKNRgrd7vQAiAByvimNjg-GIQb8aBOKrZdHS9ohJMgZJQ8c1uIe8XYvF4mi4WAcX1+AJ1oKLxNJ5Qp8cYdfjWFDDabYUreMMNbwCGEI9AzbpbeBHcJqRLZc08enwkHpnMisb87HWKr+Jr2AQJjnC9b2uXes7657m4vJl3w8PzfH1eMvB615bLV2wfVdi27clNz-Zh333ADxw0KkxAueIRWECYsDcBAiEYSB+AVFpiEDbApSYDwxFAABmLQTgGaAKOUeiKIiH8EjwQIKQAazQBwsCBRkkF4WlbzvXVoHMFJBGqTQ+KDQSvTjAE7TNC1eFjb0-TQABHBBRk0LieIYNB+00PRjJkgTPjHNS4ztUz63MuTrPU9g2LgTjuO8RhKCvBzLJPCdaP5LjUImTRAMlaULBqFBRhCtg+WHeMACpOTQtAkorCUARY0w4DgDiEBdfSUgARiwYqACZwrjSKiG3VKJl5Fz2L07jSs87yQzc2KGrQY8nMoKRNHqxg0t5E1QGU0teGqhSRI7Ka+Cy71sXGXNhLm2rATQfj+D5EoWsqjqrxGtL+rmgFBq0BzxtNXC0HNabZoupdRMm+7HqWpzJVWtATHW7642A6BOU6hzNRe0BcQU6GAVh-4cvSE4kEVYqytAI7QGYUYED6xcaqZOqZ16pqDrc1qIXR0Gr2inrRomc64yu4bifp+KJsWmb8Yuk4CBFTraZMOKY0huazkoYNhzRjCvODTHsZMXGxxF0XIeprqYqF3qxwhuNfv+tgNoUrabv21z3IhCrjpZ4Rtd1i7mdNjmPpU57-gASAU3n+ZO1m0pjT3VYU8XgxDimUitrGcb6lWg9F9XToZ-rA-+fWAbj731YcrAFaV5a5vh61C8LnK-zwM4CBQehNGwN3Xo7YiTT5eManywr40B607Vbgq3E7yU-Ubib4yRsQCA7uPbUsWgx-760NIDIMa6weMAFVIA4yA6mgRCkGQ4wAFoD+sNnMqtQvgdAMuK6r-ytt3-eMhJvlsEYYLerCrEtoVJqH88OLNw93bpqLamEiB8j-ihD+I8Z4ozPjlC4nIq5RkFJGdUWA3TTCElaS+YchRqlFFKGg7olDfjPMYfBKDeAXCEM9S+4kw7UJBLXTutkjL1iYbQzuC9AzBk4dgFewh+wnxkCSfg-DQBHzzAQmQZ9TyTmMJg24mh+F0PvGJPAKRGE0JYS9O06tVHcP9LwlROjBHCPVGIq+OjJHHyUUoORAVHhI05NUeE2NEQVD5oIEQYgtGMBQBxLkaAwrcxIOQkGXIGx13miBAgSD6AoPjEUDxZQvESSEKIJAu4uD2yhlaMBm5+y8BgoQTcKSShpI8Bk3x2SV4VM8dUnxWSKxYCcgBXkAA+ERDZQAAGojx5MKVuGcpTFTJIRFU7xmSxC7gmakpE0zamtNWApDpPJunql6cfL8+dhmvjGeUyZiyaktPqcc9JzTZlhDaWsz8XwNk9K4KAJKgy9lYUgj0Q58zKknKuXU0APzGlLJaTc1ZcZ1mbKic8sAuyCkfPjK-LicyGlTNObM25cZnmPK2bkvJl94y8BoGgeM-kXGjCFqiv5MykD+MCcEz+Tjzxv3ZFSy5NLNCQDUW9BUL4WUoouU0mlFZOVkIURolI2Nyhs2iWE+hmjCDlEgDIaJ-lEYKsYFMSVIRKAyuYOjZgVU5XqMsJoqVuq0qaH1V8AAZDazu4lzV6qNXarGJVbpYwqmqiJ09CAUvcb89ltS0iaK0jpLWcAUgAC8xBwFCRtYZ4kw09UjTGwM3y2VCuWWCpy2LunYomgABnxSawlxLSU4lUOStxmaQV+KTdpFN0bY2MqZcYBt4aOSppbbk41b1QJdlLM+EeobG0RubemocsE8X+TbWJGU-q3BwEcFvbAuqhZnHpSSeNqgrQaHSJcPUoxwniruHusAQI3BAhOIoR+sxQBLscFaHKSL2SPpeE6-21gxDYBSKGGJ203ph0-ehb9SBf3-vziXH1IGQluBbIBjsdlNDwYxPkyUOVD0QdgvBn4iGHzq1Q-k8920r05mmHeyQYHsB0BwvwLDe5CB3Awz6-sBQ4DpA5D+wUP7vA-r-fuAD8qUjJvHWmuNjIHrEB4+BqyQd9H8dDHPf4fo8G8eowJwgeTC5bXmCJ7AHgIRYdDE1SSJh845XNEgQgXHwMyew1psJkpL7Iaw5pgg2nn0+uvXzLDeB7PuaEya9WbnIPny8+K01+nDO2ewMOULgmnP1wfOJMzAWws-Qi4FV9sXKQCTEBguAUmgtvWHLJArRDitQay48crwYsMlaQ+w+znmWORck8QaTDWkuxOgK5ryV4GueZqzWYpWjl0vDcOjNwRqjbJYlXgTV7JYNWp1TKqbYKVszbk6rO0OX32relZajbsdJ5xjG359LOGSo3OU2d60CWynbZ26LHhS9hxTYwlVU7934wAAUJt0C3kQQsi2phR3EFIsb76z6ZZG8YC7P7-MABl0bI9mwNIaSaDMsli8OVHY4evzdAOj-OP1wXej+rmZm2OYvGdgujwnc3nMmtR2TuGFPrRU8Nv3XT7q+RWZs1hzQBP2fel0xVJqgvfPccZ2L60zM6uChu6AbpSuCBVQAwpS+bGONP24wQdGiPwP+Z87FlHN2sCM7yTDNabBFf5fqyrgAPBIR3gpNdE+1ya3XnHhca+2HWc3Iv0Zm8u9bm3es7de6Bj73g7G-fcZy8L9XlvOf3Yz-8YproiudeV7dzPhfxe5665rgvReXrG5o9JHMMuTch-LxX+7Yekci7L-LzLMNwuSnh9AV842HSfYfRj73b1xJg+W2ty1W209bc13dvbLKB8fqn6FE7d3Ib98u49xU6+m9q0Uzhsvd23uS2u19xvGf-uA4EHAEH0AJ8Q9sTgS8y-Ydw13W17Lr-w9o5H7HsfUNHHIzH9fHG7BfbMaLXHenQgE-WsXgYPLffjYQCEf1S7DfTPaXXLAnK3b7DAi6JA+vFvevHAknTXarL-R4Qg39FAlINA1vQ3K3ADGnIAunUAhnJnfuS+PTSYNg8DUMeXNOHnSGCXKXCWIXWXSPb0HXePPXXLfA60ZPbjVPL4AZdXPA-fOMV8HPKTfPQrXQjXHWH7M7aglIWg+g+vRg7aCQkgnWQQ8Ld2FOHvSUfdRQMQYIdAYYawogKjeYUAPABwQgSYXvHpXDZnfDBIeJAJRJLZeMd9VdddXcVDbvAEYZYpb5eIuANdUYOZTI7It8S-SUFDabI1HFKJaHCbYoi-Rmf4fZS8DIibBInIlePIxIwogEKo4fB5KFFVfvA7IfZ7IZBFV9XIxorIxI4w-4Q7C1UDPzbo-uLZfbSo2DPjE3OwnBUtIlUsCtXEatDdMY-IulIJbdTUF9JfVo3SFY6jbBFnHlYEPlZFFog4to6YtmVYmjccUBfnIKN9Z43SeMLgQcd2O7YcYcSOHLWtdFYMAAFmVgUMY0VHRghMFTrWDCYnaNVmHELSwGRIWSDSyU0AAHYdYQFCZh8moliV1xj-jASMBgSg5QTYJwSl9IT-lNAABWOEjPYcJElklEqEzQTXSY0WLEnEvkvErNAkkqYtdY1QbQgYqqLEIAA

Building Abstractions with Data 2.5.3

types, such as [
3x2 + (2 + 3i)x + 7

]
·

[
x4 +

2

3

x2 + (5 + 3i)

]
Because we installed the polynomial addition and multiplication functions add_poly and

mul_poly in the generic arithmetic system as the add and mul operations for type polynomial,

our system is also automatically able to handle polynomial operations such as[
(y + 1)x2 + (y2 + 1)x + (y − 1)

]
·
[
(y − 2)x + (y3 + 7)

]
The reason is that when the system tries to combine coe�cients, it will dispatch through

add and mul. Since the coe�cients are themselves polynomials (in y), these will be combined

using add_poly and mul_poly. The result is a kind of “data-directed recursion” in which, for

example, a call to mul_poly will result in recursive calls to mul_poly in order to multiply the

coe�cients. If the coe�cients of the coe�cients were themselves polynomials (as might be

used to represent polynomials in three variables), the data direction would ensure that the

system would follow through another level of recursive calls, and so on through as many levels

as the structure of the data dictates.
54

Representing term lists

Finally, we must confront the job of implementing a good representation for term lists. A

term list is, in e�ect, a set of coe�cients keyed by the order of the term. Hence, any of the

methods for representing sets, as discussed in section 2.3.3, can be applied to this task. On

the other hand, our functions add_terms and mul_terms always access term lists sequentially

from highest to lowest order. Thus, we will use some kind of ordered list representation.

How should we structure the list that represents a term list? One consideration is the “density”

of the polynomials we intend to manipulate. A polynomial is said to be dense if it has nonzero

coe�cients in terms of most orders. If it has many zero terms it is said to be sparse. For example,

A : x5 + 2x4 + 3x2 − 2x − 5

is a dense polynomial, whereas

B : x100 + 2x2 + 1

54
To make this work completely smoothly, we should also add to our generic arithmetic system the ability to

coerce a “number” to a polynomial by regarding it as a polynomial of degree zero whose coe�cient is the number.

This is necessary if we are going to perform operations such as[
x2 + (y + 1)x + 5

]
+

[
x2 + 2x + 1

]
which requires adding the coe�cient y + 1 to the coe�cient 2.

226 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.5.3

is sparse.

The term lists of dense polynomials are most e�ciently represented as lists of the coe�cients.

For example,A above would be nicely represented as list(1, 2, 0, 3, -2, -5). The order of

a term in this representation is the length of the sublist beginning with that term’s coe�cient,

decremented by 1.
55

This would be a terrible representation for a sparse polynomial such as B:

There would be a giant list of zeros punctuated by a few lonely nonzero terms. A more reason-

able representation of the term list of a sparse polynomial is as a list of the nonzero terms, where

each term is a list containing the order of the term and the coe�cient for that order. In such a

scheme, polynomialB is e�ciently represented as list(list(100, 1), list(2, 2), list(0, 1)).

As most polynomial manipulations are performed on sparse polynomials, we will use this

method. We will assume that term lists are represented as lists of terms, arranged from highest-

order to lowest-order term. Once we have made this decision, implementing the selectors and

constructors for terms and term lists is straightforward:
56

Ifunction adjoin_term(term, term_list) {

return is_equal_to_zero(coeff(term))

? term_list

: pair(term, term_list);

}

const the_empty_termlist = null;

function first_term(term_list) {

return head(term_list);

}

function rest_terms(term_list) {

return tail(term_list);

}

function is_empty_termlist(term_list) {

return is_null(term_list);

}

function make_term(order, coeff) {

return list(order, coeff);

}

function order(term) {

return head(term);

}

function coeff(term) {

return head(tail(term));

}

55
In these polynomial examples, we assume that we have implemented the generic arithmetic system using

the type mechanism suggested in exercise 2.78. Thus, coe�cients that are ordinary numbers will be represented

as the numbers themselves rather than as pairs whose head is the string "javascript_number".

56
Although we are assuming that term lists are ordered, we have implemented adjoin_term to simply pair

the new term onto the existing term list. We can get away with this so long as we guarantee that the functions

(such as add_terms) that use adjoin_term always call it with a higher-order term than appears in the list. If we

did not want to make such a guarantee, we could have implemented adjoin_term to be similar to the adjoin_set
constructor for the ordered-list representation of sets (exercise 2.61).

227 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEEkDtQZQewK4CcDGBTANKAtnAzgC6gBmCkKBAlnJHqABYCGAbmqIyZQB5oAmokBNgBGaJKDjF2SAOZC0kAngB0AKBCgAFABV6bUuSo1QAG0qFQ50AT0TIJgJ6g0XdAAcjkLATjX6VvF9iRiRlAEp1MF19MgpqaEY3N0cAfUpIFLJeMUd0mRSAKxZGPBQkSg92ExM4AHc6BDofSPYkx3ZIJxlKVmgDOOMDa19GaucTNGwFJQkpGzYQuSnFUBazC0W8LBLLOb0nWrE2PDQ3EMYCBdl5RTxVfs9W5IdNA23ZPDDQAG9VUH-QEg0ARkAk2g40hksjkHHlCsVSuUPK8yO8ZJ8ANyqAC+91ij0SzxSMgUYkoKE0cDcaM+Pz+AJQNAsBAcbjQKQIjHRoAAvDhEpoWWyOVyaWEsQDQIzaEQhnySQRKdTrKz2Zz0eL6f8gSCkH0yKAAIQ8vnQ4jpPhayWgAD8T0cKK8-Lcmmll1uYoi1oBAC5nEgkHAkJp1oqqd5VSKNRgrd7vQAiAByvimNjg-GIQb8aBOKrZdHS9ohJMgZJQ8c1uIe8XYvF4mi4WAcX1+AJ1oKLxNJ5Qp8cYdfjWFDDabYUreMMNbwCGEI9AzbpbeBHcJqRLZc08enwkHpnMisb87HWKr+Jr2AQJjnC9b2uXes7657m4vJl3w8PzfH1eMvB615bLV2wfVdi27clNz-Zh333ADxw0KkxAueIRWECYsDcBAiEYSB+AVFpiEDbApSYDwxFAABmLQTgGaAKOUeiKIiH8EjwQIKQAazQBwsCBRkkF4WlbzvXVoHMFJBGqTQ+KDQSvTjAE7TNC1eFjb0-TQABHBBRk0LieIYNB+00PRjJkgTPjHNS4ztUz63MuTrPU9g2LgTjuO8RhKCvBzLJPCdaP5LjUImTRAMlaULBqFBRhCtg+WHeMACpOTQtAkorCUARY0w4DgDiEBdfSUgARiwYqACZwrjSKiG3VKJl5Fz2L07jSs87yQzc2KGrQY8nMoKRNHqxg0t5E1QGU0teGqhSRI7Ka+Cy71sXGXNhLm2rATQfj+D5EoWsqjqrxGtL+rmgFBq0BzxtNXC0HNabZoupdRMm+7HqWpzJVWtATHW7642A6BOU6hzNRe0BcQU6GAVh-4cvSE4kEVYqytAI7QGYUYED6xcaqZOqZ16pqDrc1qIXR0Gr2inrRomc64yu4bifp+KJsWmb8Yuk4CBFTraZMOKY0huazkoYNhzRjCvODTHsZMXGxxF0XIeprqYqF3qxwhuNfv+tgNoUrabv21z3IhCrjpZ4Rtd1i7mdNjmPpU57-gASAU3n+ZO1m0pjT3VYU8XgxDimUitrGcb6lWg9F9XToZ-rA-+fWAbj731YcrAFaV5a5vh61C8LnK-zwM4CBQehNGwN3Xo7YiTT5eManywr40B607Vbgq3E7yU-Ubib4yRsQCA7uPbUsWgx-760NIDIMa6weMAFVIA4yA6mgRCkGQ4wAFoD+sNnMqtQvgdAMuK6r-ytt3-eMhJvlsEYYLerCrEtoVJqH88OLNw93bpqLamEiB8j-ihD+I8Z4ozPjlC4nIq5RkFJGdUWA3TTCElaS+YchRqlFFKGg7olDfjPMYfBKDeAXCEM9S+4kw7UJBLXTutkjL1iYbQzuC9AzBk4dgFewh+wnxkCSfg-DQBHzzAQmQZ9TyTmMJg24mh+F0PvGJPAKRGE0JYS9O06tVHcP9LwlROjBHCPVGIq+OjJHHyUUoORAVHhI05NUeE2NEQVD5oIEQYgtGMBQBxLkaAwrcxIOQkGXIGx13miBAgSD6AoPjEUDxZQvESSEKIJAu4uD2yhlaMBm5+y8BgoQTcKSShpI8Bk3x2SV4VM8dUnxWSKxYCcgBXkAA+ERDZQAAGojx5MKVuGcpTFTJIRFU7xmSxC7gmakpE0zamtNWApDpPJunql6cfL8+dhmvjGeUyZiyaktPqcc9JzTZlhDaWsz8XwNk9K4KAJKgy9lYUgj0Q58zKknKuXU0APzGlLJaTc1ZcZ1mbKic8sAuyCkfPjK-LicyGlTNObM25cZnmPK2bkvJl94y8BoGgeM-kXGjCFqiv5MykD+MCcEz+Tjzxv3ZFSy5NLNCQDUW9BUL4WUoouU0mlFZOVkIURolI2Nyhs2iWE+hmjCDlEgDIaJ-lEYKsYFMSVIRKAyuYOjZgVU5XqMsJoqVuq0qaH1V8AAZDazu4lzV6qNXarGJVbpYwqmqiJ09CAUvcb89ltS0iaK0jpLWcAUgAC8xBwFCRtYZ4kw09UjTGwM3y2VCuWWCpy2LunYomgABnxSawlxLSU4lUOStxmaQV+KTdpFN0bY2MqZcYBt4aOSppbbk41b1QJdlLM+EeobG0RubemocsE8X+TbWJGU-q3BwEcFvbAuqhZnHpSSeNqgrQaHSJcPUoxwniruHusAQI3BAhOIoR+sxQBLscFaHKSL2SPpeE6-21gxDYBSKGGJ203ph0-ehb9SBf3-vziXH1IGQluBbIBjsdlNDwYxPkyUOVD0QdgvBn4iGHzq1Q-k8920r05mmHeyQYHsB0BwvwLDe5CB3Awz6-sBQ4DpA5D+wUP7vA-r-fuAD8qUjJvHWmuNjIHrEB4+BqyQd9H8dDHPf4fo8G8eowJwgeTC5bXmCJ7AHgIRYdDE1SSJh845XNEgQgXHwMyew1psJkpL7Iaw5pgg2nn0+uvXzLDeB7PuaEya9WbnIPny8+K01+nDO2ewMOULgmnP1wfOJMzAWws-Qi4FV9sXKQCTEBguAUmgtvWHLJArRDitQay48crwYsMlaQ+w+znmWORck8QaTDWkuxOgK5ryV4GueZqzWYpWjl0vDcOjNwRqjbJYlXgTV7JYNWp1TKqbYKVszbk6rO0OX32relZajbsdJ5xjG359LOGSo3OU2d60CWynbZ26LHhS9hxTYwlVU7934wAAUJt0C3kQQsi2phR3EFIsb76z6ZZG8YC7P7-MABl0bI9mwNIaSaDMsli8OVHY4evzdAOj-OP1wXej+rmZm2OYvGdgujwnc3nMmtR2TuGFPrRU8Nv3XT7q+RWZs1hzQBP2fel0xVJqgvfPccZ2L60zM6uChu6AbpSuCBVQAwpS+bGONP24wQdGiPwP+Z87FlHN2sCM7yTDNabBFf5fqyrgAPBIR3gpNdE+1ya3XnHhca+2HWc3Iv0Zm8u9bm3es7de6Bj73g7G-fcZy8L9XlvOf3Yz-8YproiudeV7dzPhfxe5665rgvReXrG5o9JHMMuTch-LxX+7Yekci7L-LzLMNwuSnh9AV842HSfYfRj73b1xJg+W2ty1W209bc13dvbLKB8fqn6FE7d3Ib98u49xU6+m9q0Uzhsvd23uS2u19xvGf-uA4EHAEH0AJ8Q9sTgS8y-Ydw13W17Lr-w9o5H7HsfUNHHIzH9fHG7BfbMaLXHenQgE-WsXgYPLffjYQCEf1S7DfTPaXXLAnK3b7DAi6JA+vFvevHAknTXarL-R4Qg39FAlINA1vQ3K3ADGnIAunUAhnJnfuS+PTSYNg8DUMeXNOHnSGCXKXCWIXWXSPb0HXePPXXLfA60ZPbjVPL4AZdXPA-fOMV8HPKTfPQrXQjXHWH7M7aglIWg+g+vRg7aCQkgnWQQ8Ld2FOHvSUfdRQMQYIdAYYawogKjeYUAPABwQgSYXvHpXDZnfDBIeJAJRJLZeMd9VdddXcVDbvAEYZYpb5eIuANdUYOZTI7It8S-SUFDabI1HFKJaHCbYoi-Rmf4fZS8DIibBInIlePIxIwogEKo4fB5KFFVfvA7IfZ7IZBFV9XIxorIxI4w-4Q7C1UDPzbo-uLZfbSo2DPjE3OwnBUtIlUsCtXEatDdMY-IulIJbdTUF9JfVo3SFY6jbBFnHlYEPlZFFog4to6YtmVYmjccUBfnIKN9Z43SeMLgQcd2O7YcYcSOHLWtdFYMAAFmVgUMY0VHRghMFTrWDCYnaNVmHELSwGRIWSDSyU0AAHYdYQFCZh8moliV1xj-jASMBgSg5QTYJwSl9IT-lNAABWOEjPYcJElklEqEzQTXSY0WLEnEvkvErNAkkqYtdY1QbQgYqqLEIAA

Building Abstractions with Data 2.5.3

where is_equal_to_zero is as de�ned in exercise 2.80. (See also exercise 2.87 below.)

Users of the polynomial package will create (tagged) polynomials by means of the function:

Ifunction make_polynomial(variable, terms) {

return get("make", "polynomial")(variable, terms);

}

Exercise 2.87

Install is_equal_to_zero for polynomials in the generic arithmetic package. This will allow

adjoin_term to work for polynomials with coe�cients that are themselves polynomials.

Exercise 2.88

Extend the polynomial system to include subtraction of polynomials. (Hint: You may �nd it

helpful to de�ne a generic negation operation.)

Exercise 2.89

Declare functions that implement the term-list representation described above as appropriate

for dense polynomials.

Exercise 2.90

Suppose we want to have a polynomial system that is e�cient for both sparse and dense

polynomials. One way to do this is to allow both kinds of term-list representations in our

system. The situation is analogous to the complex-number example of section 2.4, where we

allowed both rectangular and polar representations. To do this we must distinguish di�erent

types of term lists and make the operations on term lists generic. Redesign the polynomial

system to implement this generalization. This is a major e�ort, not a local change.

Exercise 2.91

A univariate polynomial can be divided by another one to produce a polynomial quotient and

a polynomial remainder. For example,

x5 − 1

x2 − 1

= x3 + x , remainder x − 1

Division can be performed via long division. That is, divide the highest-order term of the

dividend by the highest-order term of the divisor. The result is the �rst term of the quotient.

228 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEEkDtQZQewK4CcDGBTANKAtnAzgC6gBmCkKBAlnJHqABYCGAbmqIyZQB5oAmokBNgBGaJKDjF2SAOZC0kAngB0AKBCgAFABV6bUuSo1QAG0qFQ50AT0TIJgJ6g0XdAAcjkLATjX6VvF9iRiRlAEp1MF19MgpqaEY3N0cAfUpIFLJeMUd0mRSAKxZGPBQkSg92ExM4AHc6BDofSPYkx3ZIJxlKVmgDOOMDa19GaucTNGwFJQkpGzYQuSnFUBazC0W8LBLLOb0nWrE2PDQ3EMYCBdl5RTxVfs9W5IdNA23ZPDDQAG9VUH-QEg0ARkAk2g40hksjkHHlCsVSuUPK8yO8ZJ8ANyqAC+91ij0SzxSMgUYkoKE0cDcaM+Pz+AJQNAsBAcbjQKQIjHRoAAvDhEpoWWyOVyaWEsQDQIzaEQhnySQRKdTrKz2Zz0eL6f8gSCkH0yKAAIQ8vnQ4jpPhayWgAD8T0cKK8-Lcmmll1uYoi1oBAC5nEgkHAkJp1oqqd5VSKNRgrd7vQAiAByvimNjg-GIQb8aBOKrZdHS9ohJMgZJQ8c1uIe8XYvF4mi4WAcX1+AJ1oKLxNJ5Qp8cYdfjWFDDabYUreMMNbwCGEI9AzbpbeBHcJqRLZc08enwkHpnMisb87HWKr+Jr2AQJjnC9b2uXes7657m4vJl3w8PzfH1eMvB615bLV2wfVdi27clNz-Zh333ADxw0KkxAueIRWECYsDcBAiEYSB+AVFpiEDbApSYDwxFAABmLQTgGaAKOUeiKIiH8EjwQIKQAazQBwsCBRkkF4WlbzvXVoHMFJBGqTQ+KDQSvTjAE7TNC1eFjb0-TQABHBBRk0LieIYNB+00PRjJkgTPjHNS4ztUz63MuTrPU9g2LgTjuO8RhKCvBzLJPCdaP5LjUImTRAMlaULBqFBRhCtg+WHeMACpOTQtAkorCUARY0w4DgDiEBdfSUgARiwYqACZwrjSKiG3VKJl5Fz2L07jSs87yQzc2KGrQY8nMoKRNHqxg0t5E1QGU0teGqhSRI7Ka+Cy71sXGXNhLm2rATQfj+D5EoWsqjqrxGtL+rmgFBq0BzxtNXC0HNabZoupdRMm+7HqWpzJVWtATHW7642A6BOU6hzNRe0BcQU6GAVh-4cvSE4kEVYqytAI7QGYUYED6xcaqZOqZ16pqDrc1qIXR0Gr2inrRomc64yu4bifp+KJsWmb8Yuk4CBFTraZMOKY0huazkoYNhzRjCvODTHsZMXGxxF0XIeprqYqF3qxwhuNfv+tgNoUrabv21z3IhCrjpZ4Rtd1i7mdNjmPpU57-gASAU3n+ZO1m0pjT3VYU8XgxDimUitrGcb6lWg9F9XToZ-rA-+fWAbj731YcrAFaV5a5vh61C8LnK-zwM4CBQehNGwN3Xo7YiTT5eManywr40B607Vbgq3E7yU-Ubib4yRsQCA7uPbUsWgx-760NIDIMa6weMAFVIA4yA6mgRCkGQ4wAFoD+sNnMqtQvgdAMuK6r-ytt3-eMhJvlsEYYLerCrEtoVJqH88OLNw93bpqLamEiB8j-ihD+I8Z4ozPjlC4nIq5RkFJGdUWA3TTCElaS+YchRqlFFKGg7olDfjPMYfBKDeAXCEM9S+4kw7UJBLXTutkjL1iYbQzuC9AzBk4dgFewh+wnxkCSfg-DQBHzzAQmQZ9TyTmMJg24mh+F0PvGJPAKRGE0JYS9O06tVHcP9LwlROjBHCPVGIq+OjJHHyUUoORAVHhI05NUeE2NEQVD5oIEQYgtGMBQBxLkaAwrcxIOQkGXIGx13miBAgSD6AoPjEUDxZQvESSEKIJAu4uD2yhlaMBm5+y8BgoQTcKSShpI8Bk3x2SV4VM8dUnxWSKxYCcgBXkAA+ERDZQAAGojx5MKVuGcpTFTJIRFU7xmSxC7gmakpE0zamtNWApDpPJunql6cfL8+dhmvjGeUyZiyaktPqcc9JzTZlhDaWsz8XwNk9K4KAJKgy9lYUgj0Q58zKknKuXU0APzGlLJaTc1ZcZ1mbKic8sAuyCkfPjK-LicyGlTNObM25cZnmPK2bkvJl94y8BoGgeM-kXGjCFqiv5MykD+MCcEz+Tjzxv3ZFSy5NLNCQDUW9BUL4WUoouU0mlFZOVkIURolI2Nyhs2iWE+hmjCDlEgDIaJ-lEYKsYFMSVIRKAyuYOjZgVU5XqMsJoqVuq0qaH1V8AAZDazu4lzV6qNXarGJVbpYwqmqiJ09CAUvcb89ltS0iaK0jpLWcAUgAC8xBwFCRtYZ4kw09UjTGwM3y2VCuWWCpy2LunYomgABnxSawlxLSU4lUOStxmaQV+KTdpFN0bY2MqZcYBt4aOSppbbk41b1QJdlLM+EeobG0RubemocsE8X+TbWJGU-q3BwEcFvbAuqhZnHpSSeNqgrQaHSJcPUoxwniruHusAQI3BAhOIoR+sxQBLscFaHKSL2SPpeE6-21gxDYBSKGGJ203ph0-ehb9SBf3-vziXH1IGQluBbIBjsdlNDwYxPkyUOVD0QdgvBn4iGHzq1Q-k8920r05mmHeyQYHsB0BwvwLDe5CB3Awz6-sBQ4DpA5D+wUP7vA-r-fuAD8qUjJvHWmuNjIHrEB4+BqyQd9H8dDHPf4fo8G8eowJwgeTC5bXmCJ7AHgIRYdDE1SSJh845XNEgQgXHwMyew1psJkpL7Iaw5pgg2nn0+uvXzLDeB7PuaEya9WbnIPny8+K01+nDO2ewMOULgmnP1wfOJMzAWws-Qi4FV9sXKQCTEBguAUmgtvWHLJArRDitQay48crwYsMlaQ+w+znmWORck8QaTDWkuxOgK5ryV4GueZqzWYpWjl0vDcOjNwRqjbJYlXgTV7JYNWp1TKqbYKVszbk6rO0OX32relZajbsdJ5xjG359LOGSo3OU2d60CWynbZ26LHhS9hxTYwlVU7934wAAUJt0C3kQQsi2phR3EFIsb76z6ZZG8YC7P7-MABl0bI9mwNIaSaDMsli8OVHY4evzdAOj-OP1wXej+rmZm2OYvGdgujwnc3nMmtR2TuGFPrRU8Nv3XT7q+RWZs1hzQBP2fel0xVJqgvfPccZ2L60zM6uChu6AbpSuCBVQAwpS+bGONP24wQdGiPwP+Z87FlHN2sCM7yTDNabBFf5fqyrgAPBIR3gpNdE+1ya3XnHhca+2HWc3Iv0Zm8u9bm3es7de6Bj73g7G-fcZy8L9XlvOf3Yz-8YproiudeV7dzPhfxe5665rgvReXrG5o9JHMMuTch-LxX+7Yekci7L-LzLMNwuSnh9AV842HSfYfRj73b1xJg+W2ty1W209bc13dvbLKB8fqn6FE7d3Ib98u49xU6+m9q0Uzhsvd23uS2u19xvGf-uA4EHAEH0AJ8Q9sTgS8y-Ydw13W17Lr-w9o5H7HsfUNHHIzH9fHG7BfbMaLXHenQgE-WsXgYPLffjYQCEf1S7DfTPaXXLAnK3b7DAi6JA+vFvevHAknTXarL-R4Qg39FAlINA1vQ3K3ADGnIAunUAhnJnfuS+PTSYNg8DUMeXNOHnSGCXKXCWIXWXSPb0HXePPXXLfA60ZPbjVPL4AZdXPA-fOMV8HPKTfPQrXQjXHWH7M7aglIWg+g+vRg7aCQkgnWQQ8Ld2FOHvSUfdRQMQYIdAYYawogKjeYUAPABwQgSYXvHpXDZnfDBIeJAJRJLZeMd9VdddXcVDbvAEYZYpb5eIuANdUYOZTI7It8S-SUFDabI1HFKJaHCbYoi-Rmf4fZS8DIibBInIlePIxIwogEKo4fB5KFFVfvA7IfZ7IZBFV9XIxorIxI4w-4Q7C1UDPzbo-uLZfbSo2DPjE3OwnBUtIlUsCtXEatDdMY-IulIJbdTUF9JfVo3SFY6jbBFnHlYEPlZFFog4to6YtmVYmjccVQUBfnIKN9Z43SeMLgQcd2O7YcYcSOHLWtdFYMAAFmVgUMY0VHRkhMFTrWDCYnaNVmHELSwBRIWSDSyU0AAHYdYQFCZh8moliV1xiASgSMAQSg4wTYIISl8oT-lNAABWeEjPYcZE1k1E6EzQTXSY0WbE3E-k-ErNQkkqYtdY1QbQgYqqDEIAA

Building Abstractions with Data 2.5.3

Next, multiply the result by the divisor, subtract that from the dividend, and produce the rest

of the answer by recursively dividing the di�erence by the divisor. Stop when the order of the

divisor exceeds the order of the dividend and declare the dividend to be the remainder. Also,

if the dividend ever becomes zero, return zero as both quotient and remainder.

We can design a div_poly function on the model of add_poly and mul_poly. The function

checks to see if the two polys have the same variable. If so, div_poly strips o� the variable

and passes the problem to div_terms, which performs the division operation on term lists.

The function div_poly �nally reattaches the variable to the result supplied by div_terms. It is

convenient to design div_terms to compute both the quotient and the remainder of a division.

The function div_terms can take two term lists as arguments and return a list of the quotient

term list and the remainder term list.

Complete the following de�nition of div_terms by �lling in the missing expressions. Use

this to implement div_poly, which takes two polys as arguments and returns a list of the

quotient and remainder polys.

function div_terms(L1, L2) {

if (is_empty_termlist(L1)) {

return list(the_empty_termlist, the_empty_termlist);

} else {

const t1 = first_term(L1);

const t2 = first_term(L2);

if (order(t2) > order(t1)) {

return list(the_empty_termlist, L1);

} else {

const new_c = div(coeff(t1), coeff(t2));

const new_o = order(t1) - order(t2);

const rest_of_result =

〈compute rest o f result recursively〉;
〈f orm complete result〉

}

}

}

Hierarchies of types in symbolic algebra

Our polynomial system illustrates how objects of one type (polynomials) may in fact be com-

plex objects that have objects of many di�erent types as parts. This poses no real di�culty

in de�ning generic operations. We need only install appropriate generic operations for per-

forming the necessary manipulations of the parts of the compound types. In fact, we saw that

polynomials form a kind of “recursive data abstraction,” in that parts of a polynomial may

themselves be polynomials. Our generic operations and our data-directed programming style

can handle this complication without much trouble.

229 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.5.3

On the other hand, polynomial algebra is a system for which the data types cannot be

naturally arranged in a tower. For instance, it is possible to have polynomials in x whose

coe�cients are polynomials iny. It is also possible to have polynomials iny whose coe�cients

are polynomials in x . Neither of these types is “above” the other in any natural way, yet it is

often necessary to add together elements from each set. There are several ways to do this. One

possibility is to convert one polynomial to the type of the other by expanding and rearranging

terms so that both polynomials have the same principal variable. One can impose a towerlike

structure on this by ordering the variables and thus always converting any polynomial to a

“canonical form” with the highest-priority variable dominant and the lower-priority variables

buried in the coe�cients. This strategy works fairly well, except that the conversion may

expand a polynomial unnecessarily, making it hard to read and perhaps less e�cient to work

with. The tower strategy is certainly not natural for this domain or for any domain where the

user can invent new types dynamically using old types in various combining forms, such as

trigonometric functions, power series, and integrals.

It should not be surprising that controlling coercion is a serious problem in the design

of large-scale algebraic-manipulation systems. Much of the complexity of such systems is

concerned with relationships among diverse types. Indeed, it is fair to say that we do not yet

completely understand coercion. In fact, we do not yet completely understand the concept of a

data type. Nevertheless, what we know provides us with powerful structuring and modularity

principles to support the design of large systems.

Exercise 2.92

By imposing an ordering on variables, extend the polynomial package so that addition and

multiplication of polynomials works for polynomials in di�erent variables. (This is not easy!)

Extended exercise: Rational functions

We can extend our generic arithmetic system to include rational functions. These are “fractions”

whose numerator and denominator are polynomials, such as

x + 1

x3 − 1

The system should be able to add, subtract, multiply, and divide rational functions, and to

perform such computations as

x + 1

x3 − 1

+
x

x2 − 1

=
x3 + 2x2 + 3x + 1

x4 + x3 − x − 1

230 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.5.3

(Here the sum has been simpli�ed by removing common factors. Ordinary “cross multiplica-

tion” would have produced a fourth-degree polynomial over a �fth-degree polynomial.)

If we modify our rational-arithmetic package so that it uses generic operations, then it will

do what we want, except for the problem of reducing fractions to lowest terms.

Exercise 2.93

Modify the rational-arithmetic package to use generic operations, but change make_rat so

that it does not attempt to reduce fractions to lowest terms. Test your system by calling

make_rational on two polynomials to produce a rational function

const p1 = make_polynomial("x", list(list(2, 1),

list(0, 1)));

const p2 = make_polynomial("x", list(list(3, 1),

list(0, 1)));

const rf = make_rational(p2, p1);

Now add rf to itself, using add. You will observe that this addition function does not reduce

fractions to lowest terms.

We can reduce polynomial fractions to lowest terms using the same idea we used with inte-

gers: modifying make_rat to divide both the numerator and the denominator by their greatest

common divisor. The notion of “greatest common divisor” makes sense for polynomials. In fact,

we can compute the GCD of two polynomials using essentially the same Euclid’s Algorithm

that works for integers.
57

The integer version is

function gcd(a, b) {

return b === 0

? a

: gcd(b, remainder(a, b));

}

Using this, we could make the obvious modi�cation to de�ne a GCD operation that works on

term lists:

function gcd_terms(a, b) {

return is_empty_termlist(b)

? a

57
The fact that Euclid’s Algorithm works for polynomials is formalized in algebra by saying that polynomials

form a kind of algebraic domain called a Euclidean ring. A Euclidean ring is a domain that admits addition,

subtraction, and commutative multiplication, together with a way of assigning to each element x of the ring a

positive integer “measure”m(x) with the properties thatm(xy) ≥ m(x) for any nonzero x and y and that, given

any x and y, there exists a q such that y = qx + r and either r = 0 orm(r) < m(x). From an abstract point of view,

this is what is needed to prove that Euclid’s Algorithm works. For the domain of integers, the measurem of an

integer is the absolute value of the integer itself. For the domain of polynomials, the measure of a polynomial is

its degree.

231 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.5.3

: gcd_terms(b, remainder_terms(a, b));

}

where remainder_terms picks out the remainder component of the list returned by the term-

list division operation div_terms that was implemented in exercise 2.91.

Exercise 2.94

Using div_terms, implement the function remainder_terms and use this to de�ne gcd_terms

as above. Now write a function gcd_poly that computes the polynomial GCD of two polys.

(The function should signal an error if the two polys are not in the same variable.) Install

in the system a generic operation greatest_common_divisor that reduces to gcd_poly for

polynomials and to ordinary gcd for ordinary numbers. As a test, try

const p1 = make_polynomial("x", list(make_term(4, 1),

make_term(3, -1),

make_term(2, -2),

make_term(1, 2)));

const p2 = make_polynomial("x", list(make_term(3, 1),

make_term(1, -1)));

greatest_common_divisor(p1, p2);

and check your result by hand.

Exercise 2.95

De�ne P1, P2, and P3 to be the polynomials

P1 :x2 − 2x + 1

P2 :11x2 + 7

P3 :13x + 5

Now de�ne Q1 to be the product of P1 and P2 and Q2 to be the product of P1 and P3, and

use greatest_common_divisor (exercise 2.94) to compute the GCD of Q1 and Q2. Note that

the answer is not the same as P1. This example introduces noninteger operations into the

computation, causing di�culties with the GCD algorithm.
58

To understand what is happening,

try tracing gcd_terms while computing the GCD or try performing the division by hand.

We can solve the problem exhibited in exercise 2.95 if we use the following modi�cation

of the GCD algorithm (which really works only in the case of polynomials with integer coef-

�cients). Before performing any polynomial division in the GCD computation, we multiply

58
In JavaScript, division of integers can produce limited-precision decimal numbers, and thus we may fail to

get a valid divisor.

232 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.5.3

the dividend by an integer constant factor, chosen to guarantee that no fractions will arise

during the division process. Our answer will thus di�er from the actual GCD by an integer

constant factor, but this does not matter in the case of reducing rational functions to lowest

terms; the GCD will be used to divide both the numerator and denominator, so the integer

constant factor will cancel out.

More precisely, if P and Q are polynomials, let O1 be the order of P (i.e., the order of the

largest term of P) and letO2 be the order ofQ . Let c be the leading coe�cient ofQ . Then it can

be shown that, if we multiply P by the integerizing factor c1+O1−O2
, the resulting polynomial

can be divided by Q by using the div_terms algorithm without introducing any fractions. The

operation of multiplying the dividend by this constant and then dividing is sometimes called

the pseudodivision of P by Q . The remainder of the division is called the pseudoremainder.

Exercise 2.96

a. Implement the function pseudoremainder_terms, which is just like remainder_terms

except that it multiplies the dividend by the integerizing factor described above before

calling div_terms. Modify gcd_terms to use pseudoremainder_terms, and verify that

greatest_common_divisor now produces an answer with integer coe�cients on the

example in exercise 2.95.

b. The GCD now has integer coe�cients, but they are larger than those of P1. Modify

gcd_terms so that it removes common factors from the coe�cients of the answer by

dividing all the coe�cients by their (integer) greatest common divisor.

Thus, here is how to reduce a rational function to lowest terms:

– Compute the GCD of the numerator and denominator, using the version of gcd_terms

from exercise 2.96.

– When you obtain the GCD, multiply both numerator and denominator by the same

integerizing factor before dividing through by the GCD, so that division by the GCD

will not introduce any noninteger coe�cients. As the factor you can use the leading

coe�cient of the GCD raised to the power 1 + O1 − O2, where O2 is the order of the

GCD and O1 is the maximum of the orders of the numerator and denominator. This will

ensure that dividing the numerator and denominator by the GCD will not introduce any

fractions.

– The result of this operation will be a numerator and denominator with integer coe�-

cients. The coe�cients will normally be very large because of all of the integerizing

factors, so the last step is to remove the redundant factors by computing the (integer)

greatest common divisor of all the coe�cients of the numerator and the denominator

233 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.5.3

and dividing through by this factor.

Exercise 2.97

a. Implement this algorithm as a function reduce_terms that takes two term lists n and d

as arguments and returns a list nn, dd, which are n and d reduced to lowest terms via

the algorithm given above. Also write a function reduce_poly, analogous to add_poly,

that checks to see if the two polys have the same variable. If so, reduce_poly strips o�

the variable and passes the problem to reduce_terms, then reattaches the variable to the

two term lists supplied by reduce_terms.

b. De�ne a function analogous to reduce_terms that does what the original make_rat did

for integers:

function reduce_integers(n, d) {

const g = gcd(n, d);

return list(n / g, d / g);

}

and de�ne reduce as a generic operation that calls apply_generic to dispatch to either

reduce_poly (for polynomial arguments) or reduce_integers (for javascript_number

arguments). You can now easily make the rational-arithmetic package reduce fractions to

lowest terms by having make_rat call reduce before combining the given numerator and

denominator to form a rational number. The system now handles rational expressions in

either integers or polynomials. To test your program, try the example at the beginning

of this extended exercise:

const p1 = make_polynomial("x", list(make_term(1, 1),

make_term(0, 1)));

const p2 = make_polynomial("x", list(make_term(3, 1),

make_term(0, -1)));

const p3 = make_polynomial("x", list(make_term(1, 1)));

const p4 = make_polynomial("x", list(make_term(2, 1),

make_term(0, -1)));

const rf1 = make_rational(p1, p2);

const rf2 = make_rational(p3, p4);

add(rf1, rf2);

See if you get the correct answer, correctly reduced to lowest terms.

The GCD computation is at the heart of any system that does operations on rational functions.

The algorithm used above, although mathematically straightforward, is extremely slow. The

slowness is due partly to the large number of division operations and partly to the enormous

234 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.5.3

size of the intermediate coe�cients generated by the pseudodivisions. One of the active areas

in the development of algebraic-manipulation systems is the design of better algorithms for

computing polynomial GCDs.
59

59
One extremely e�cient and elegant method for computing polynomial GCDs was discovered by Richard

Zippel (1979). The method is a probabilistic algorithm, as is the fast test for primality that we discussed in chapter 1.

Zippel’s book (1993) describes this method, together with other ways to compute polynomial GCDs.

235 Generated 2020-08-18 16:40:02Z

Building Abstractions with Data 2.5.3

236 Generated 2020-08-18 16:40:02Z

Chapter 3

Modularity, Objects, and State

Mϵταβάλλoν − ναπαύϵται

(Even while it changes, it stands still.)

— Heraclitus

Plus ça change, plus c’est la même chose.

— Alphonse Karr

The preceding chapters introduced the basic elements from which programs are made. We

saw how primitive functions and primitive data are combined to construct compound entities,

and we learned that abstraction is vital in helping us to cope with the complexity of large

systems. But these tools are not su�cient for designing programs. E�ective program synthesis

also requires organizational principles that can guide us in formulating the overall design of

a program. In particular, we need strategies to help us structure large systems so that they

will be modular, that is, so that they can be divided “naturally” into coherent parts that can be

separately developed and maintained.

One powerful design strategy, which is particularly appropriate to the construction of pro-

grams for modeling physical systems, is to base the structure of our programs on the structure

of the system being modeled. For each object in the system, we construct a corresponding

computational object. For each system action, we de�ne a symbolic operation in our computa-

tional model. Our hope in using this strategy is that extending the model to accommodate new

objects or new actions will require no strategic changes to the program, only the addition of

the new symbolic analogs of those objects or actions. If we have been successful in our system

organization, then to add a new feature or debug an old one we will have to work on only a

localized part of the system.

237

Modularity, Objects, and State 3.1

To a large extent, then, the way we organize a large program is dictated by our perception

of the system to be modeled. In this chapter we will investigate two prominent organizational

strategies arising from two rather di�erent “world views” of the structure of systems. The

�rst organizational strategy concentrates on objects, viewing a large system as a collection of

distinct objects whose behaviors may change over time. An alternative organizational strategy

concentrates on the streams of information that �ow in the system, much as an electrical

engineer views a signal-processing system.

Both the object-based approach and the stream-processing approach raise signi�cant lin-

guistic issues in programming. With objects, we must be concerned with how a computational

object can change and yet maintain its identity. This will force us to abandon our old substitu-

tion model of computation (section 1.1.5) in favor of a more mechanistic but less theoretically

tractable environment model of computation. The di�culties of dealing with objects, change,

and identity are a fundamental consequence of the need to grapple with time in our com-

putational models. These di�culties become even greater when we allow the possibility of

concurrent execution of programs. The stream approach can be most fully exploited when

we decouple simulated time in our model from the order of the events that take place in the

computer during evaluation. We will accomplish this using a technique known as delayed
evaluation.

3.1 Assignment and Local State

We ordinarily view the world as populated by independent objects, each of which has a state

that changes over time. An object is said to “have state” if its behavior is in�uenced by its

history. A bank account, for example, has state in that the answer to the question “Can I

withdraw $100?” depends upon the history of deposit and withdrawal transactions. We can

characterize an object’s state by one or more state variables, which among them maintain

enough information about history to determine the object’s current behavior. In a simple

banking system, we could characterize the state of an account by a current balance rather than

by remembering the entire history of account transactions.

In a system composed of many objects, the objects are rarely completely independent. Each

may in�uence the states of others through interactions, which serve to couple the state vari-

ables of one object to those of other objects. Indeed, the view that a system is composed of

separate objects is most useful when the state variables of the system can be grouped into

closely coupled subsystems that are only loosely coupled to other subsystems.

This view of a system can be a powerful framework for organizing computational models

of the system. For such a model to be modular, it should be decomposed into computational

objects that model the actual objects in the system. Each computational object must have its

238 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.1.1

own local state variables describing the actual object’s state. Since the states of objects in the

system being modeled change over time, the state variables of the corresponding computational

objects must also change. If we choose to model the �ow of time in the system by the elapsed

time in the computer, then we must have a way to construct computational objects whose

behaviors change as our programs run. In particular, if we wish to model state variables by

ordinary symbolic names in the programming language, then the language must provide an

assignment operator to enable us to change the value associated with a name.

3.1.1 Local State Variables

To illustrate what we mean by having a computational object with time-varying state, let us

model the situation of withdrawing money from a bank account. We will do this using a func-

tion withdraw, which takes as argument an amount to be withdrawn. If there is enough money

in the account to accommodate the withdrawal, then withdraw should return the balance

remaining after the withdrawal. Otherwise, withdraw should return the message Insu�cient
funds. For example, if we begin with $100 in the account, we should obtain the following

sequence of responses using withdraw:

Iwithdraw(25);

75

Iwithdraw(25);

50

Iwithdraw(60);

" I n s u f f i c i e n t funds "

Iwithdraw(15);

35

Observe that the expression withdraw(25), evaluated twice, yields di�erent values. This

is a new kind of behavior for a function. Until now, all our functions could be viewed as

speci�cations for computing mathematical functions. A call to a function computed the value

of the function applied to the given arguments, and two calls to the same function with the

same arguments always produced the same result.
1

So far, all our names (declared as parameters or as constants using const or function) were

1
Actually, this is not quite true. One exception was the random-number generator in section 1.2.6. Another

exception involved the operation/type tables we introduced in section 2.4.3, where the values of two calls to get
with the same arguments depended on intervening calls to put. On the other hand, until we introduce assignment,

we have no way to create such functions ourselves.

239 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=DYUwLgBARghsMDsDGIIF4IEYAM2DcAUAQGYCuyYAlgPYIQDulYAFgCYBOM9AFDALbVyYAJQQA3gQhTKxCN1jxkqAHwZ+ghCPGSpuhYhTpocA6gC0EdUMK7d7cKXZ19Sm1IC+EEMADOqCbZS9mCOdABEAJIIPqTExJRIlCCaEGQIrD5hbhDuBLmMLBxc3ABMAKzCeEA
http://source-academy.github.io/playground#chap=4&prgrm=DYUwLgBARghsMDsDGIIF4IEYAM2DcAUAQGYCuyYAlgPYIQDulYAFgCYBOM9AFDALbVyYAJQQA3gQhTKxCN1jxkqAHwZ+ghCPGSpuhYhTpocA6gC0EdUMK7d7cKXZ19Sm1IC+EEMADOqCbZS9mCOdABEAJIIPqTExJRIlCCaEGQIrD5hbhDuBLmMLBxc3ABMAKzChAVsnDzllUA
http://source-academy.github.io/playground#chap=4&prgrm=DYUwLgBARghsMDsDGIIF4IEYAM2DcAUAQGYCuyYAlgPYIQDulYAFgCYBOM9AFDALbVyYAJQQA3gQhTKxCN1jxkqAHwZ+ghCPGSpuhYhTpocA6gC0EdUMK7d7cKXZ19Sm1IC+EEMADOqCbZS9mCOdABEAJIIPqTExJRIlCCaEGQIrD5hbhDuBLmMLBxc3ABMAKzChAVsnDzllQTVRTwAbNiVQA
http://source-academy.github.io/playground#chap=4&prgrm=DYUwLgBARghsMDsDGIIF4IEYAM2DcAUAQGYCuyYAlgPYIQDulYAFgCYBOM9AFDALbVyYAJQQA3gQhTKxCN1jxkqAHwZ+ghCPGSpuhYhTpocA6gC0EdUMK7d7cKXZ19Sm1IC+EEMADOqCbZS9mCOdABEAJIIPqTExJRIlCCaEGQIrD5hbhDuBLmMLBxc3ABMAKzChAVsnDzllQTVRTwAbNgNTbXcmBV4QA

Modularity, Objects, and State 3.1.1

immutable; once a function is applied or a declaration is evaluated, the declared name did not

change its value. To implement functions like withdraw, we introduce variable declarations
using the keyword let, in addition to constant declarations that use the keyword const. After

declaring a variable balance for the balance of money in the account, we can de�ne withdraw

as a function that accesses balance. The withdraw function checks to see if balance is at least

as large as the requested amount. If so, withdraw decrements balance by amount and returns

the new value of balance. Otherwise, withdraw returns the Insu�cient funds message. Here

are the declarations of balance and withdraw:

Ilet balance = 100;

function withdraw(amount) {

if (balance >= amount) {

balance = balance - amount;

return balance;

} else {

return "Insufficient funds";

}

}

Decrementing balance is accomplished by the statement

balance = balance - amount;

The syntax of such assignments is

name = new-value;

Here name is a symbol and new-value is any expression. The assignment changes name
so that its value is the result obtained by evaluating new-value. In the case at hand, we are

changing balance so that its new value will be the result of subtracting amount from the

previous value of balance.
2

The function withdraw also uses a sequential composition to cause two expressions to be

evaluated in the case where the if test is true: �rst decrementing balance and then returning

the value of balance. In general, executing the statement

2
Note that assignments look similar to and should not be confused with constant and variable declarations

of the form

const name = value;
and

let name = value;
in which a newly declared name is associated with a value. Also similar in looks but not in meaning are expressions

of the form

expression
1
=== expression

2

which evaluate to true if expression
1

evaluates to the same value as expression
2

and to false, otherwise.

240 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=DYUwLgBARghsMDsDGIIF4IEYAM2DcAUAQGYCuyYAlgPYIQDulYAFgCYBOM9AFDALbVyYAJQQA3gQhTKxCN1jxkqAHwZ+ghCPGSpuhYhTpocA6gC0EdUMK7d7cKXZ19Sm1IC+EEMADOqCbZS9mCOdABEAJIIPqTExJRIlCCaEGQIrD5hbhDuBLkEjCwcXNwATACswnhAA

Modularity, Objects, and State 3.1.1

stmt1 stmt2

causes the statements stmt1 and stmt2 to be evaluated in sequence.
3

Although withdraw works as desired, the variable balance presents a problem. As speci�ed

above, balance is a name de�ned in the program environment and is freely accessible to be

examined or modi�ed by any function. It would be much better if we could somehow make

balance internal to withdraw, so that withdraw would be the only function that could access

balance directly and any other function could access balance only indirectly (through calls to

withdraw). This would more accurately model the notion that balance is a local state variable

used by withdraw to keep track of the state of the account.

We can make balance internal to withdraw by rewriting the de�nition as follows:

Ifunction make_withdraw_100() {

let balance = 100;

return amount => {

if (balance >= amount) {

balance = balance - amount;

return balance;

} else {

return "Insufficient funds";

}

};

}

const new_withdraw = make_withdraw_100();

What we have done here is use let to establish an environment with a local variable

balance, bound to the initial value 100. Within this local environment, we use a lambda ex-

pression
4

to create a function that takes amount as an argument and behaves like our previ-

ous withdraw function. This function—returned as the result of evaluating the body of the

make_withdraw_100 function—behaves in precisely the same way as withdraw but whose vari-

able balance is not accessible by any other function.
5

Combining assignments with variable declarations is the general programming technique

we will use for constructing computational objects with local state. Unfortunately, using this

technique raises a serious problem: When we �rst introduced functions, we also introduced the

substitution model of evaluation (section 1.1.5) to provide an interpretation of what function

application means. We said that applying a function should be interpreted as evaluating the

3
We have already used sequential composition implicitly in our programs, because in JavaScript the body of

a function can be a sequence of statements, not just a single return statement, as discussed in section 1.1.8.

4
Blocks as bodies of lambda expressions were introduced in section 2.2.4.

5
In programming-language jargon, the variable balance is said to be encapsulated within the

make_withdraw_100 function. Encapsulation re�ects the general system-design principle known as the hiding
principle: One can make a system more modular and robust by protecting parts of the system from each other;

that is, by providing information access only to those parts of the system that have a “need to know.”

241 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9A7jKACwBMAnVXbARgAYaAKASkQG8AoRTxAG0ykQBGqbqkiZEAXkS0aAbg5dSfEKSSpkccPwkA+Vgq5cYwRPSEixiHVPWawUZu0POu50RHFS3lgLSJbWvIuLkpQKkjeHkHBAL6ImNwAzuJOwYah4YgARACSYIkgwMAwEDCY9oigYMSJWdEuMQaIMfKNEAiJ-GCYlPhEZBSSKBg4fSTklDJM8mzdvQTjFPQAbDSM8nN4CwO4K2uyQA

Modularity, Objects, and State 3.1.1

body of the function with the parameters replaced by their values. The trouble is that, as

soon as we introduce assignment into our language, substitution is no longer an adequate

model of function application. (We will see why this is so in section 3.1.3.) As a consequence,

we technically have at this point no way to understand why the make_withdraw_100 function

behaves as claimed above. In order to really understand a function such as make_withdraw_100,

we will need to develop a new model of function application. In section 3.2 we will introduce

such a model, together with an explanation of assignments and variable declarations. First,

however, we examine some variations on the theme established by make_withdraw_100.

As variables we shall consider not only names declared with let, but also parameters of func-

tions. The following function, make_withdraw, creates “withdrawal processors.” The parameter

balance in make_withdraw speci�es the initial amount of money in the account.

Ifunction make_withdraw(balance) {

return amount => {

if (balance >= amount) {

balance = balance - amount;

return balance;

} else {

return "Insufficient funds";

}

};

}

The function make_withdraw can be used as follows to create two objects W1 and W2:

Iconst W1 = make_withdraw(100);

const W2 = make_withdraw(100);

IW1(50);

50

IW2(70);

30

IW2(40);

" I n s u f f i c i e n t funds "

IW1(40);

10

Observe that W1 and W2 are completely independent objects, each with its own local state

variable balance. Withdrawals from one do not a�ect the other.

We can also create objects that handle deposits as well as withdrawals, and thus we can

242 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9A7jKACwBMAnVXACgCNUAbVSTASkQG8AoRbxUzKEKSSpkccFEQBeAHzsuPBTGCIa9RhEyJpkxCLFgorTgpM9aDJlMTn1mgLS7R4gNzzTCvgKHW1TV+8QAX0RMOgBnTWMAnk9BJAAiAEkwMJBgYBgIGEwDRFAwYjD4-3dAtyDXMo4IBDCJAHUARis0LDwCEnIqRoAGHuZXGpSGgCYWjBx8IjIKSl7+5yA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9A7jKACwBMAnVXACgCNUAbVSTASkQG8AoRbxUzKEKSSpkccFEQBeAHzsuPBTGCIa9RhEyJpkxCLFgorTgpM9aDJlMTn1mgLS7R4gNzzTCvgKHW1TV+8QAX0RMOgBnTWMAnk9BJAAiAEkwMJBgYBgIGEwDRFAwYjD4-3dAtyDXMogEMIkAdQBGKzQsPAIScioGgAZu5ldqlPqAJmaMHHwiMgpKHr7nIA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9A7jKACwBMAnVXACgCNUAbVSTASkQG8AoRbxUzKEKSSpkccFEQBeAHzsuPBTGCIa9RhEyJpkxCLFgorTgpM9aDJlMTn1mgLS7R4gNzzTCvgKHW1TV+8QAX0RMOgBnTWMAnk9BJAAiAEkwMJBgYBgIGEwDRFAwYjD4-3dAtyDXMogEMIkAdQBGKzQsPAIScioGgAZu5ldqlPqAJmaMHHwiMgpKHr7XRsoAVnmgA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9A7jKACwBMAnVXACgCNUAbVSTASkQG8AoRbxUzKEKSSpkccFEQBeAHzsuPBTGCIa9RhEyJpkxCLFgorTgpM9aDJlMTn1mgLS7R4gNzzTCvgKHW1TV+8QAX0RMOgBnTWMAnk9BJAAiAEkwMJBgYBgIGEwDRFAwYjD4-3dAtyDXMogEMIkAdQBGKzQsPAIScioGgAZu5ldqlPqAJmaMHHwiMgpKHr7XRsoAVnmOOuHKAHZ5oA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9A7jKACwBMAnVXACgCNUAbVSTASkQG8AoRbxUzKEKSSpkccFEQBeAHzsuPBTGCIa9RhEyJpkxCLFgorTgpM9aDJlMTn1mgLS7R4gNzzTCvgKHW1TV+8QAX0RMOgBnTWMAnk9BJAAiAEkwMJBgYBgIGEwDRFAwYjD4-3dAtyDXMogEMIkAdQBGKzQsPAIScioGgAZu5ldqlPqAJmaMHHwiMgpKHr7XRsoAVnmOOuHKAHZV9coAFnmgA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9A7jKACwBMAnVXACgCNUAbVSTASkQG8AoRbxUzKEKSSpkccFEQBeAHzsuPBTGCIa9RhEyJpkxCLFgorTgpM9aDJlMTn1mgLS7R4gNzzTCvgKHW1TV+8QAX0RMOgBnTWMAnk9BJAAiAEkwMJBgYBgIGEwDRFAwYjD4-3dAtyDXMogEMIkAdQBGKzQsPAIScioGgAZu5ldqlPqAJmaMHHwiMgpKHr7XRsoAVnmOOuHKAHZV9coAFh2G-fmgA

Modularity, Objects, and State 3.1.1

represent simple bank accounts. Here is a function that returns a “bank-account object” with

a speci�ed initial balance:

Ifunction make_account(balance) {

function withdraw(amount) {

if (balance >= amount) {

balance = balance - amount;

return balance;

} else {

return "Insufficient funds";

}

}

function deposit(amount) {

balance = balance + amount;

return balance;

}

function dispatch(m) {

return m === "withdraw"

? withdraw

: m === "deposit"

? deposit

: error(m, "Unknown request -- make_account");

}

return dispatch;

}

Each call to make_account sets up an environment with a local state variable balance. Within

this environment, make_account de�nes functions deposit and withdraw that access balance

and an additional function dispatch that takes a “message” as input and returns one of the

two local functions. The dispatch function itself is returned as the value that represents the

bank-account object. This is precisely the message-passing style of programming that we saw

in section 2.4.3, although here we are using it in conjunction with the ability to modify local

variables.

The function make_account can be used as follows:

Iconst acc = make_account(100);

I(acc("withdraw"))(50);

50

I(acc("withdraw"))(60);

" I n s u f f i c i e n t funds "

I(acc("deposit"))(40);

90

243 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9VEJzhQAUARqgDaqSYCUiA3gFCKuKiSwKIDuMUACwAmAJ1Q9iqZITBR6zNosQxgiMpWoRMiAHwBeRFJlzGLJefJUaiA5c3aAtIelEA3GfOKRmKCBFI7GndPRABfREwKAGdtBRC2b19-RAAiAEkwKJBgYBgIGExZdnAhKJTgz1CPMOqOaHgkIUwABzgo-kkXWXlqxUCtG0R+7QBqZ2MK80S-AI0g6qrFOq5GmCjm1CgIAWJkHpDp5OQbPQMUvkFRcRTezwB+Xn5hMR5b8wAuFBOzptb2qBu8SUD1+bX4b08n0wIhEcBEuwANKkAKpgdBgOA8JDeACOIEwUSgiAcTjQWFw+GMKVokxqXh8M0QQjWGy2AncVSYBEyRLwEEGZJwfOMxAAjAAGcU0phMST4YjnJ5XHjU2jEACsUtcQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9VEJzhQAUARqgDaqSYCUiA3gFCKuKiSwKIDuMUACwAmAJ1Q9iqZITBR6zNosQxgiMpWoRMiAHwBeRFJlzGLJefJUaiA5c3aAtIelEA3GfOKRmKCBFI7GndPRABfREwKAGdtBRC2b19-RAAiAEkwKJBgYBgIGExZdnAhKJTgz1CPMOqOaHgkIUwABzgo-kkXWXlqxUCtG0R+7QBqZ2MK80S-AI0g6qrFOq5GmCjm1CgIAWJkHpDp5OQbPQMUvkFRcRTezwB+Xn5hMR5b8wAuFBOzptb2qBu8SUD1+bX4b08n0wIhEcBEuwANKkAKpgdBgOA8JDeACOIEwUSgiAcTjQWFw+GMKVokxqXh8M0QQjWGy2AncVQImSJeAggzJOF5xmIAEYAAximlAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9VEJzhQAUARqgDaqSYCUiA3gFCKuKiSwKIDuMUACwAmAJ1Q9iqZITBR6zNosQxgiMpWoRMiAHwBeRFJlzGLJefJUaiA5c3aAtIelEA3GfOKRmKCBFI7GndPRABfREwKAGdtBRC2b19-RAAiAEkwKJBgYBgIGExZdnAhKJTgz1CPMOqOaHgkIUwABzgo-kkXWXlqxUCtG0R+7QBqZ2MK80S-AI0g6qrFOq5GmCjm1CgIAWJkHpDp5OQbPQMUvkFRcRTezwB+Xn5hMR5b8wAuFBOzptb2qBu8SUD1+bX4b08n0wIhEcBEuwANKkAKpgdBgOA8JDeACOIEwUSgiAcTjQWFw+GMKVokxqXh8M0QQjWGy2AncVQImSJeAggzJOF5xmIAEYAAximlMST4YjnJ5XHjU2jEACsktcQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9VEJzhQAUARqgDaqSYCUiA3gFCKuKiSwKIDuMUACwAmAJ1Q9iqZITBR6zNosQxgiMpWoRMiAHwBeRFJlzGLJefJUaiA5c3aAtIelEA3GfOKRmKCBFI7GndPRABfREwKAGdtBRC2b19-RAAiAEkwKJBgYBgIGExZdnAhKJTgz1CPMOqOaHgkIUwABzgo-kkXWXlqxUCtG0R+7QBqZ2MK80S-AI0g6qrFOq5GmCjm1CgIAWJkHpDp5OQbPQMUvkFRcRTezwB+Xn5hMR5b8wAuFBOzptb2qBu8SUD1+bX4b08n0wIhEcBEuwANKkAKpgdBgOA8JDeACOIEwUSgiAcTjQWFw+GMKVokxqXh8M0QQjWGy2AncVQImSJeAggzJOF5xmIAEYAAximlMST4YjnJ5XHjU2jEACskvcMogcouz2utBVADYNUA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9VEJzhQAUARqgDaqSYCUiA3gFCKuKiSwKIDuMUACwAmAJ1Q9iqZITBR6zNosQxgiMpWoRMiAHwBeRFJlzGLJefJUaiA5c3aAtIelEA3GfOKRmKCBFI7GndPRABfREwKAGdtBRC2b19-RAAiAEkwKJBgYBgIGExZdnAhKJTgz1CPMOqOaHgkIUwABzgo-kkXWXlqxUCtG0R+7QBqZ2MK80S-AI0g6qrFOq5GmCjm1CgIAWJkHpDp5OQbPQMUvkFRcRTezwB+Xn5hMR5b8wAuFBOzptb2qBu8SUD1+bX4b08n0wIhEcBEuwANKkAKpgdBgOA8JDeACOIEwUSgiAcTjQWFw+GMKVokxqXh8M0QQjWGy2AncVQImSJeAggzJOF5xmIAEYAAximlMST4YjnJ5XHjU2jEACskvcMogcouz2utBVADYNdLeXLQf9lcQACwaoA

Modularity, Objects, and State 3.1.1

I(acc("withdraw"))(60);

30

Each call to acc returns the locally de�ned deposit or withdraw function, which is then ap-

plied to the speci�ed amount. As was the case with make_withdraw, another call to make_account

Iconst acc2 = make_account(100);

will produce a completely separate account object, which maintains its own local balance.

Exercise 3.1

An accumulator is a function that is called repeatedly with a single numeric argument and

accumulates its arguments into a sum. Each time it is called, it returns the currently accumu-

lated sum. Write a function make_accumulator that generates accumulators, each maintaining

an independent sum. The input to make_accumulator should specify the initial value of the

sum; for example

Iconst a = make_accumulator(5);

Ia(10);

15

Ia(10);

25

Exercise 3.2

In software-testing applications, it is useful to be able to count the number of times a given

function is called during the course of a computation. Write a function make_monitored that

takes as input a function,f, that itself takes one input. The result returned by make_monitored is

a third function, say mf, that keeps track of the number of times it has been called by maintaining

an internal counter. If the input to mf is the string "how_many_calls", then mf returns the value

of the counter. If the input is the string "reset count", then mf resets the counter to zero. For

any other input, mf returns the result of calling f on that input and increments the counter.

For instance, we could make a monitored version of the sqrt function:

Iconst s = make_monitored(math_sqrt);

Is(100);

10

Is("how_many_calls");

244 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9VEJzhQAUARqgDaqSYCUiA3gFCKuKiSwKIDuMUACwAmAJ1Q9iqZITBR6zNosQxgiMpWoRMiAHwBeRFJlzGLJefJUaiA5c3aAtIelEA3GfOKRmKCBFI7GndPRABfREwKAGdtBRC2b19-RAAiAEkwKJBgYBgIGExZdnAhKJTgz1CPMOqOaHgkIUwABzgo-kkXWXlqxUCtG0R+7QBqZ2MK80S-AI0g6qrFOq5GmCjm1CgIAWJkHpDp5OQbPQMUvkFRcRTezwB+Xn5hMR5b8wAuFBOzptb2qBu8SUD1+bX4b08n0wIhEcBEuwANKkAKpgdBgOA8JDeACOIEwUSgiAcTjQWFw+GMKVokxqXh8M0QQjWGy2AncVQImSJeAggzJOF5xmIAEYAAximlMST4YjnJ5XHjU2jEACskvcMogcouz2utBVADYNdLeXLQf9lcQACwmrU6hUvK3GmlAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9VEJzhQAUARqgDaqSYCUiA3gFCKuKiSwKIDuMUACwAmAJ1Q9iqZITBR6zNosQxgiMpWoRMiAHwBeRFJlzGLJefJUaiA5c3aAtIelEA3GfOKRmKCBFI7GndPRABfREwKAGdtBRC2b19-RAAiAEkwKJBgYBgIGExZdnAhKJTgz1CPMOqOaHgkIUwABzgo-kkXWXlqxUCtG0R+7QBqZ2MK80S-AI0g6qrFOq5GmCjm1CgIAWJkHpDp5OQbPQMUvkFRcRTezwB+Xn5hMR5b8wAuFBOzptb2qBu8SUD1+bX4b08n0wIhEcBEuwANKkAKpgdBgOA8JDeACOIEwUSgiAcTjQWFw+GMKVokxqXh8M0QQjWGy2AncVQImSJeAgACZBmScLzjMQAIwABglNKAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEFsEMGsFMH1IGMkFdyoDaQC4HsAnUfUAI1lAHcCBLHHWAOzIE9QBnHVAEyZ3YBQSPI06hIoALwQYCZGgzZ8BABQBWAJQBuIA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEFsEMGsFMH1IGMkFdyoDaQC4HsAnUfUAI1lAHcCBLHHWAOzIE9QBnHVAEyZ3YBQSPI06hIoALwQYCZGgzZ8BABQBWAJQBuAZBUBGAAzagA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEFsEMGsFMH1IGMkFdyoDaQC4HsAnUfUAI1lAHcCBLHHWAOzIE9QBnHVAEyZ3YBQSPI06hIoALwQYCZGgzZ8BABQBWAJQBuAZBUBGAAzbdB41qA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEFsEMGsFMH1wHsB2BLALkgTrAJqAGYCuKAxhmqqFqAEaygDu2mGsK9AnqAM4bE8HDLwBQZVPz6gAvBBgJk6LLjwAKKBgAW8XgEdsGAJQBuIA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEFsEMGsFMH1wHsB2BLALkgTrAJqAGYCuKAxhmqqFqAEaygDu2mGsK9AnqAM4bE8HDLwBQZVPz6gAvBBgJk6LLjwAKKBgAW8XgEdsGAJQBuUbzUBGAAzXTQA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEFsEMGsFMH1wHsB2BLALkgTrAJqAGYCuKAxhmqqFqAEaygDu2mGsK9AnqAM4bE8HDLwBQZVPz6gAvBBgJk6LLjwAKKBgAW8XgEdsGAJQBuUbzUBGAAzXT5tQCItSJokgou8MpAA2v3kdTIA

Modularity, Objects, and State 3.1.2

1

Exercise 3.3

Modify the make_account function so that it creates password-protected accounts. That is,

make_account should take a string as an additional argument, as in

Iconst acc = make_account(100, "secret password");

The resulting account object should process a request only if it is accompanied by the password

with which the account was created, and should otherwise return a complaint:

I(acc("secret password", "withdraw"))(40);

60

I(acc("some other password", "deposit"))(40);

" I n c o r r e c t password "

Exercise 3.4

Modify the make_account function of exercise 3.3 by adding another local state variable so

that, if an account is accessed more than seven consecutive times with an incorrect password,

it invokes the function call_the_cops.

3.1.2 The Benefits of Introducing Assignment

As we shall see, introducing assignment into our programming language leads us into a thicket

of di�cult conceptual issues. Nevertheless, viewing systems as collections of objects with local

state is a powerful technique for maintaining a modular design. As a simple example, consider

the design of a function rand that, whenever it is called, returns an integer chosen at random.

It is not at all clear what is meant by “chosen at random.” What we presumably want is

for successive calls to rand to produce a sequence of numbers that has statistical properties

of uniform distribution. We will not discuss methods for generating suitable sequences here.

Rather, let us assume that we have a function rand_update that has the property that if we

start with a given number x1 and form

x2 = rand_update(x1);

x3 = rand_update(x2);

then the sequence of values x1,x2,x3, . . ., will have the desired statistical properties.
6

6
One common way to implement rand_update is to use the rule that x is updated to ax + b modulo m,

245 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEFsEMGsFMH1IGMkHsCuA7ALqAZlktgJaqajaqgBGsoA7gE7HbaznUCeoAztugBN22HgCg0mPqGRJQAXggwEMjDgAUARgAMWgDSgARD1hJGsXAAdIPHvVSMBBgJQBuIA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEFsEMGsFMH1IGMkHsCuA7ALqAZlktgJaqajaqgBGsoA7gE7HbaznUCeoAztugBN22HgCg0mPqGRJQAXggwEMjDgAUARgAMWgDSgARD1hJGsXAAdIPHvVSMBBgJQBuUWplqjJs5eu37R30DehYACwFGSHpnJzUAFi1XIA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEFsEMGsFMH1IGMkHsCuA7ALqAZlktgJaqajaqgBGsoA7gE7HbaznUCeoAztugBN22HgCg0mPqGRJQAXggwEMjDgAUARgAMWgDSgARD1hJGsXAAdIPHvVSMBBgJQBuUWplqjJs5eu37R30DehYACwFGSHpnJzUAFi1Xd08jVHA6VGww2EZQKxs7BwNgoQtUHhZYhKSXIA

Modularity, Objects, and State 3.1.2

We can implement rand as a function with a local state variable x that is initialized to some

�xed value random_init. Each call to rand computes rand_update of the current value of x,

returns this as the random number, and also stores this as the new value of x.

Ifunction make_rand() {

let x = random_init;

return () => {

x = rand_update(x);

return x;

};

}

const rand = make_rand();

Of course, we could generate the same sequence of random numbers without using assign-

ment by simply calling rand_update directly. However, this would mean that any part of our

program that used random numbers would have to explicitly remember the current value of

x to be passed as an argument to rand_update. To realize what an annoyance this would be,

consider using random numbers to implement a technique called Monte Carlo simulation.

The Monte Carlo method consists of choosing sample experiments at random from a large

set and then making deductions on the basis of the probabilities estimated from tabulating the

results of those experiments. For example, we can approximate π using the fact that 6/π 2
is

the probability that two integers chosen at random will have no factors in common; that is,

that their greatest common divisor will be 1.
7

To obtain the approximation to π , we perform

a large number of experiments. In each experiment we choose two integers at random and

perform a test to see if their GCD is 1. The fraction of times that the test is passed gives us our

estimate of 6/π 2
, and from this we obtain our approximation to π .

The heart of our program is a function monte_carlo, which takes as arguments the number

of times to try an experiment, together with the experiment, represented as a no-argument

function that will return either true or false each time it is run. The function monte_carlo runs

the experiment for the designated number of trials and returns a number telling the fraction

of the trials in which the experiment was found to be true.

Ifunction estimate_pi(trials) {

return math_sqrt(6 / monte_carlo(trials, cesaro_test));

where a, b, andm are appropriately chosen integers. Chapter 3 of Knuth 1981 includes an extensive discussion

of techniques for generating sequences of random numbers and establishing their statistical properties. Notice

that the rand_update function computes a mathematical function: Given the same input twice, it produces the

same output. Therefore, the number sequence produced by rand_update certainly is not “random,” if by “random”

we insist that each number in the sequence is unrelated to the preceding number. The relation between “real

randomness” and so-called pseudo-random sequences, which are produced by well-determined computations

and yet have suitable statistical properties, is a complex question involving di�cult issues in mathematics and

philosophy. Kolmogorov, Solomono�, and Chaitin have made great progress in clarifying these issues; a discussion

can be found in Chaitin 1975.

7
This theorem is due to E. Cesàro. See section 4.5.2 of Knuth 1981 for a discussion and a proof.

246 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEEFQNwUwJwJ6gM4EsC2AHANjUcBDAOwBMB9AV0xIIBc8AzCogY1tQHsjQWOsL6yUAVBEK6AEbwAUCFAM4fUAAZQAClStsFNLACUoWh1AAmZcoCsANmUAWAJzKAjAGYn6kdgJwA5nkxwGDB6smAKSiJQBNp4AB6gEkjoFNjsOAiaPqCotKAA7jkAFsI8XMi0xLkEADShwiQkmSW8ROWVCdXCpIaFMNwVANZNtL34MOgEmiQychwMoI1QqI1EWTkJSCN4Xr7+gegwAHSgAOp4OjAk2bm9cHh1DBxw2dja5YTsXKBc2AidxFcSMYiBxciwvBgukg6m12OVUCxoqAAhxMPB2DBkIdpC1yqB0KAALymczWOyOVxOADcoBxZSqRNATicyhcFicFhMtgsVLprVyEkZThMLm5vOkTFYn24hFIlGodBgaliBgA3tJQJqxrQKHBuGoRAAqUDxADUCQMAFJ8byAL58vGyoHoMiadbE4Wi6wAdgAHPZeZK2JxuBMBjAyE61GqNZrcLl4sSnXxXUQcrytXcdXr1AZCQA+UDqrUlxP4AHymj0ZV6DMlzVZ3XcWJ10C2u0O3JOxlhiNR2vSaSNZA4AgINT9gfD0fjye86deWcA6O1oA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEEFQNwUwJwJ6gM4EsC2AHANjUcBDAOwBMB9AV0xIIBc8AzCogY1tQHsjQWOsL6yUAVBEK6AEbwAUCFAM4fUAAZQAClStsFNLACUoWh1AAmZcoCsANmUAWAJzKAjAGYn6kdgJwA5nkxwGDB6smAKSiJQBNp4AB6gEkjoFNjsOAiaPqCotKAA7jkAFsI8XMi0xLkEADShwiQkmSW8ROWVCdXCpIaFMNwVANZNtL34MOgEmiQychwMoI1QqI1EWTkJSCN4Xr7+gegwAHSgAOp4OjAk2bm9cHh1DBxw2dja5YTsXKBc2AidxFcSMYiBxciwvBgukg6m12OVUCxoqAAhxMPB2DBkIdpC1yqB0KAALymczWOyOVxOADcoBxZSqRNATicyhcFicFhMtgsVLprVyEkZThMLm5vOkTFYn24hFIlGodBgaliBgA3tJQJqxrQKHBuGoRAAqUDxADUCQMAFJ8byAL58vGyoHoMiadbE4Wi6wAdgAHPZeZK2JxuBMBjAyE61GqNZrcLl4sSnXxXUQcrytXcdXr1AZCQA+UDqrUlxP4AHymj0ZV6DMlzVZ3XcWJ10C2u0O3JOxlhiNR2sS5jBr4+FgkA2dCQxkuNnOCwkLlSgAD8JQAXKBR+OJP9QNapx2g9LQJj2BN6GRMKg1LRAtFkNPMzBs6G6IUyMgAI5wWhqKygMB0C4C9ETgbAOBvO9sGQToWExbwODIQRaD0Ad7RLQcpRDHh4MUJDT2jItYwbZ8m03Mc1H7Tp+zzRdqWke1MOHUNgIjUDwMg1B706GBYjRfY+hQoiSyPbCcngTj70jcZJjTVZOlvLjoMvAhkGQS5H3rbJ5kk5S7gmN1ViJRdlE0rSnxfQwoOQFS1MuACrKU5BW3rW0T2gvBUB03j+KCIhf1Q4TzJnUic3EuBdJs-TZKaABaJlamCpLzMUqTMFU9SrnNJwB2CtyYA8oLktnbhwsi6SDLkrJ4qcTpiOShrUuU9K7JIXLzPQrVOpIyyyqamCVDQ6RpFPDBFUva8WXMUyqSAA

Modularity, Objects, and State 3.1.2

}

function cesaro_test() {

return gcd(rand(), rand()) === 1;

}

function monte_carlo(trials, experiment) {

function iter(trials_remaining, trials_passed) {

if (trials_remaining === 0) {

return trials_passed / trials;

} else if (experiment()) {

return iter(trials_remaining - 1,

trials_passed + 1);

} else {

return iter(trials_remaining - 1,

trials_passed);

}

}

return iter(trials, 0);

}

Now let us try the same computation using rand_update directly rather than rand, the way

we would be forced to proceed if we did not use assignment to model local state:

Ifunction estimate_pi(trials) {

return math_sqrt(6 / random_gcd_test(trials, random_init));

}

function random_gcd_test(trials, initial_x) {

function iter(trials_remaining, trials_passed, x) {

const x1 = rand_update(x);

const x2 = rand_update(x1);

if (trials_remaining === 0) {

return trials_passed / trials;

} else if (gcd(x1, x2) === 1) {

return iter(trials_remaining - 1,

trials_passed + 1, x2);

} else {

return iter(trials_remaining - 1,

trials_passed, x2);

}

}

return iter(trials, 0, initial_x);

}

While the program is still simple, it betrays some painful breaches of modularity. In our

�rst version of the program, using rand, we can express the Monte Carlo method directly as

a general monte_carlo function that takes as an argument an arbitrary experiment function.

247 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEEFQNwUwJwJ6gM4EsC2AHANjUcBDAOwBMB9AV0xIIBc8AzCogY1tQHsjQWOsL6yUAVBEK6AEbwAUCFAM4fUAAZQAClStsFNLACUoWh1AAmZcoCsANmUAWAJzKAjAGYn6kdgJwA5nkxwGDB6smAKSiJQBNp4AB6gEkjoFNjsOAiaPqCotKAA7jkAFsI8XMi0xLkEADShwiQkmSW8ROWVCdXCpIaFMNwVANZNtL34MOgEmiQychwMoI1QqI1EWTkJSCN4Xr7+gegwAHSgAOp4OjAk2bm9cHh1DBxw2dja5YTsXKBc2AidxFcSMYiBxciwvBgukg6m12OVUCxoqAAhxMPB2DBkIdpC1yqB0KAALymczWOyOVxOADcoBxZSqRNATicyhcFicFhMtgsVLprVyEkZThMLm5vOkTFYn24hFIlGodBgaliBgA3tJQJqxrQKHBuGoRAAqUDxADUCQMAFJ8byAL58vGyoHoMiadbE4Wi6wAdgAHPZeZK2JxuBMBjAyE61GqNZrcLl4sSnXxXUQcrytXcdXr1AZCQA+UDqrUlxP4AHymj0ZV6DMlzVZ3XcWJ10C2u0O3JOxlhiNR2sS5jBr4+FgkA2dCQxkuNnOCwkLlSgAD8JQAXKBR+OJP9QNapx2g9LQJj2BN6GRMKg1LRAtFkNPMzBs6G6IUyMgAI5wWhqKygMBkxdLcyEEX9b1Qe9OiA1Mcj0Ad7UHKUQ3LUgUxAsCbzvbBkE6N12GiMgVSLWNNSPFCcngLDIJwyNxkmNNVk6CD70vAhkGQS5OmI4t601XEE3cJMKyoKslRVVt6wEk0TEZJ1K0VZUnAHPjNVQeZqNYu4JjdVYiUXZRH1Up8X0MbDkDYjjLgAsyaOQSSS1tE8cLwdT1C3JTuJMPNF2UkjjJnZ8m2uKiWNo7SGKaABaJlOlIgKEs1MKLMwdjOKuc0nC8lTVKcmAXP8xLZ24Si4E08L6N0rIYqy2lEvq2zWNSqySGyhytXtRz4uKkKyuSzplDwtMCOwIiEOkaRTwwRVL2vFlzEMqkgA

Modularity, Objects, and State 3.1.2

In our second version of the program, with no local state for the random-number generator,

random_gcd_test must explicitly manipulate the random numbers x1 and x2 and recycle x2

through the iterative loop as the new input to rand_update. This explicit handling of the ran-

dom numbers intertwines the structure of accumulating test results with the fact that our

particular experiment uses two random numbers, whereas other Monte Carlo experiments

might use one random number or three. Even the top-level function estimate_pi has to be

concerned with supplying an initial random number. The fact that the random-number gen-

erator’s insides are leaking out into other parts of the program makes it di�cult for us to

isolate the Monte Carlo idea so that it can be applied to other tasks. In the �rst version of the

program, assignment encapsulates the state of the random-number generator within the rand

function, so that the details of random-number generation remain independent of the rest of

the program.

The general phenomenon illustrated by the Monte Carlo example is this: From the point

of view of one part of a complex process, the other parts appear to change with time. They

have hidden time-varying local state. If we wish to write computer programs whose struc-

ture re�ects this decomposition, we make computational objects (such as bank accounts and

random-number generators) whose behavior changes with time. We model state with local

state variables, and we model the changes of state with assignments to those variables.

It is tempting to conclude this discussion by saying that, by introducing assignment and the

technique of hiding state in local variables, we are able to structure systems in a more modular

fashion than if all state had to be manipulated explicitly, by passing additional parameters.

Unfortunately, as we shall see, the story is not so simple.

Exercise 3.5

Monte Carlo integration is a method of estimating de�nite integrals by means of Monte Carlo

simulation. Consider computing the area of a region of space described by a predicate P(x ,y)

that is true for points (x ,y) in the region and false for points not in the region. For example,

the region contained within a circle of radius 3 centered at (5, 7) is described by the predicate

that tests whether (x − 5)2 + (y − 7)2 ≤ 3
2
. To estimate the area of the region described by such

a predicate, begin by choosing a rectangle that contains the region. For example, a rectangle

with diagonally opposite corners at (2, 4) and (8, 10) contains the circle above. The desired

integral is the area of that portion of the rectangle that lies in the region. We can estimate the

integral by picking, at random, points (x ,y) that lie in the rectangle, and testing P(x ,y) for

each point to determine whether the point lies in the region. If we try this with many points,

then the fraction of points that fall in the region should give an estimate of the proportion of

the rectangle that lies in the region. Hence, multiplying this fraction by the area of the entire

rectangle should produce an estimate of the integral.

248 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.1.3

Implement Monte Carlo integration as a function estimate_integral that takes as argu-

ments a predicate P, upper and lower bounds x1, x2, y1, and y2 for the rectangle, and the

number of trials to perform in order to produce the estimate. Your function should use the

same monte_carlo function that was used above to estimate π . Use your estimate_integral

to produce an estimate of π by measuring the area of a unit circle.

You will �nd it useful to have a function that returns a number chosen at random from a

given range. The following random_in_range function implements this in terms of the random

function used in section 1.2.6, which returns a nonnegative number less than its input.

Ifunction random_in_range(low, high) {

const range = high - low;

return low + random(range);

}

Exercise 3.6

It is useful to be able to reset a random-number generator to produce a sequence starting from

a given value. Design a new rand function that is called with an argument that is either the

string "generate" or the string "reset" and behaves as follows: rand("generate") produces

a new random number; rand("reset")(new-value) resets the internal state variable to the

designated new-value. Thus, by resetting the state, one can generate repeatable sequences.

These are very handy to have when testing and debugging programs that use random numbers.

3.1.3 The Costs of Introducing Assignment

As we have seen, assignment enables us to model objects that have local state. However, this

advantage comes at a price. Our programming language can no longer be interpreted in terms

of the substitution model of function application that we introduced in section 1.1.5. Moreover,

no simple model with “nice” mathematical properties can be an adequate framework for dealing

with objects and assignment in programming languages.

So long as we do not use assignments, two evaluations of the same function with the same

arguments will produce the same result, so that functions can be viewed as computing math-

ematical functions. Programming without any use of assignments, as we did throughout the

�rst two chapters of this book, is accordingly known as functional programming.

To understand how assignment complicates matters, consider a simpli�ed version of the

make_withdraw function of section 3.1.1 that does not bother to check for an insu�cient

amount:

Ifunction make_simplified_withdraw(balance) {

249 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAJwIZgCZwLYAowCUiA3gFCIUoCmUIyS2qUAFgPrAA2ccyujLrNJhy4iAKkSEA3KQC+pUJFgIU6LNlYwwg9AHMquLgHcANImYxdzImUqIICAM5RVYfYgC85y80QBaRGMZO2QaOiRjRABqV3VcIX0CGXlSIXVNbQSDAA4ABnzcs2yARgKkoA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9AzjZABwBsZgZMATbAdxigAtKAnVGgCgCNVjVJMAlIgDeAKEQTEzTFBDMkqZHHBREAXgB8I8ZN16J3Xv3WJDfCJkQBaRIuVgoAbh37X02fNM9zmZ690Avs4BoqIQCLiqAOomaFh4BCRkFNR0jCxs7ABMAKwCjkA

Modularity, Objects, and State 3.1.3

return amount => {

balance = balance - amount;

return balance;

};

}

Iconst W = make_simplified_withdraw(25);

IW(20);

5

IW(10);

−5

Compare this function with the following make_decrementer function, which does not use

assignment:

Ifunction make_decrementer(balance) {

return amount => balance - amount;

}

The function make_decrementer returns a function that subtracts its input from a des-

ignated amount balance, but there is no accumulated e�ect over successive calls, as with

make_simplified_withdraw:

Iconst D = make_decrementer(25);

ID(20);

5

ID(10);

15

We can use the substitution model to explain how make_decrementer works. For instance,

let us analyze the evaluation of the expression

I(make_decrementer(25))(20);

We �rst simplify the operator of the combination by substituting 25 for balance in the body

of make-decrementer. This reduces the expression to

I(amount => 25 - amount)(20);

Now we apply the operator by substituting 20 for amount in the body of the lambda expres-

sion:

I25 - 20;

250 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9AzjZABwBsZgZMATbAdxigAtKAnVGgCgCNVjVJMAlIgDeAKEQTEzTFBDMkqZHHBREAXgB8I8ZN16J3Xv3WJDfCJkQBaRIuVgoAbh37X02fNM9zmZ690Avs4BohAIuKoA6iZoWHgEJGQU1HSMLGzsAEwArAKOQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9AzjZABwBsZgZMATbAdxigAtKAnVGgCgCNVjVJMAlIgDeAKEQTEzTFBDMkqZHHBREAXgB8I8ZN16J3Xv3WJDfCJkQBaRIuVgoAbh37X02fNM9zmZ690Avs4BohAIuKoA6iZoWHgEJGQU1HSMLGzsAEwArALOkVkADHlAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9AzjZABwBsZgZMATbAdxigAtKAnVGgCgCNVjVJMAlIgDeAKEQTEzTFBDMkqZHHBREAXgB8I8ZN16J3Xv3WJDfCJkQBaRIuVgoAbh37X02fNM9zmZ690Avs4BohAIuKoA6iZoWHgEJGQU1HSMLGzsAEwArALOkVkADHmiBQCMxY5AA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9AJpiAJ02UzCk0IAoAjVAG1UkwEpEBvAKER8WKhCEkqZHHBREAXgB8iOo2aIAtIhFjyAbk4BfIA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9AJpiAJ02UzCk0IAoAjVAG1UkwEpEBvAKER8WKhCEkqZHHBREAXgB8iOo2aIAtIhFjyAbk4BfThAQBnCQBEpKDDnxESZCtQBMAVhYagA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9AJpiAJ02UzCk0IAoAjVAG1UkwEpEBvAKER8WKhCEkqZHHBREAXgB8iOo2aIAtIhFjyAbk4BfThAQBnCQBEpKDDnxESZCtQBMAVhZbjVewAYXQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9AJpiAJ02UzCk0IAoAjVAG1UkwEpEBvAKER8WKhCEkqZHHBREAXgB8iOo2aIAtIhFjyAbk4BfThAQBnCQBEpKDDnxESZCtQBMAVhZbjVewAYXnNwEYvGkA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9AJpiAJ02UzCk0IAoAjVAG1UkwEpEBvAKER8WKhCEkqZHHBREAXgB8iOo2aIAtIhFjyAbk4BfTlTRY8BYqXKUqAJgCsLFpYAMLDUA
http://source-academy.github.io/playground#chap=4&prgrm=BQQwtg9grgdgLgAgLwD4ECYCsCC0DzTwCUw6ADEQNxA
http://source-academy.github.io/playground#chap=4&prgrm=EwVgBAtGwAwNxA

Modularity, Objects, and State 3.1.3

The �nal answer is 5.

Observe, however, what happens if we attempt a similar substitution analysis with make_simplified_withdraw:

I(make_simplified_withdraw(25))(20);

We �rst simplify the operator by substituting 25 for balance in the return expression of

make_simplified_withdraw. This reduces the statement to
8

(amount => {

balance = 25 - amount;

return 25;

})(20);

Now we apply the function by substituting 20 for amount in the body of the lambda expres-

sion:

balance = 25 - 20;

return 25;

If we adhered to the substitution model, we would have to say that the meaning of the

function application is to �rst set balance to 5 and then return 25 as the value of the expression.

This gets the wrong answer. In order to get the correct answer, we would have to somehow

distinguish the �rst occurrence of balance (before the e�ect of the assignment) from the second

occurrence of balance (after the e�ect of the assignment), and the substitution model cannot

do this.

The trouble here is that substitution is based ultimately on the notion that the symbols in our

language are essentially names for values. This worked well for constants. But a variable, whose

value can change with assignment, cannot simply be a name for a value. A variable somehow

refers to a place where a value can be stored, and the value stored at this place can change. In

section 3.2 we will see how environments play this role of “place” in our computational model.

Sameness and change

The issue surfacing here is more profound than the mere breakdown of a particular model of

computation. As soon as we introduce change into our computational models, many notions

that were previously straightforward become problematical. Consider the concept of two

things being “the same.”

Suppose we call make_decrementer twice with the same argument to create two functions:

Iconst D1 = make_decrementer(25);

8
We don’t substitute for the occurrence of balance in the assignment because the name in an assignment is

not evaluated. If we did substitute for it, we would get 25 = 25 - amount;, which makes no sense.

251 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9AzjZABwBsZgZMATbAdxigAtKAnVGgCgCNVjVJMAlIgDeAKEQTEzTFBDMkqZHHBREAXgB8I8ZN16J3Xv3WJDfCJkQBaRIuVgoAbh37X02fNM9zmZ690Avs4BouxoWHgEJGQU1HSMLGzsAEwArAICKQAMAo5AA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9AJpiAJ02UzCk0IAoAjVAG1UkwEpEBvAKER8WKhCEkqZHHBREAXgB8iOo2aIAtIhFjyAbk4BfThAQBnCQBEAjFJQYc+IiTIVqAJgCsLLXsMnHFtFjwFiUnJKKhc3IA

Modularity, Objects, and State 3.1.3

const D2 = make_decrementer(25);

Are D1 and D2 the same? An acceptable answer is yes, because D1 and D2 have the same

computational behavior—each is a function that subtracts its input from 25. In fact, D1 could

be substituted for D2 in any computation without changing the result.

Contrast this with making two calls to make_simplified_withdraw:

Iconst W1 = make_simplified_withdraw(25);

const W2 = make_simplified_withdraw(25);

Are W1 and W2 the same? Surely not, because calls to W1 and W2 have distinct e�ects, as shown

by the following sequence of interactions:

IW1(20);

5

IW1(20);

−15

IW2(20);

5

Even though W1 and W2 are “equal” in the sense that they are both created by evaluating the

same expression, make_simplified_withdraw(25), it is not true that W1 could be substituted

for W2 in any expression without changing the result of evaluating the expression.

A language that supports the concept that “equals can be substituted for equals” in an

expression without changing the value of the expression is said to be referentially transparent.
Referential transparency is violated when we include assignment in our computer language.

This makes it tricky to determine when we can simplify expressions by substituting equivalent

expressions. Consequently, reasoning about programs that use assignment becomes drastically

more di�cult.

Once we forgo referential transparency, the notion of what it means for computational

objects to be “the same” becomes di�cult to capture in a formal way. Indeed, the meaning of

“same” in the real world that our programs model is hardly clear in itself. In general, we can

determine that two apparently identical objects are indeed “the same one” only by modifying

one object and then observing whether the other object has changed in the same way. But how

can we tell if an object has “changed” other than by observing the “same” object twice and

seeing whether some property of the object di�ers from one observation to the next? Thus,

we cannot determine “change” without some a priori notion of “sameness,” and we cannot

determine sameness without observing the e�ects of change.

252 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9AzjZABwBsZgZMATbAdxigAtKAnVGgCgCNVjVJMAlIgDeAKEQTEzTFBDMkqZHHBREAXgB8I8ZN16J3Xv3WJDfCJkQBaRIuVgoAbh37X02fNM9zmZ690Avs4BohAIuKoA6gCMJmhYeAQkZBTUdIwsbOwATACsAs6h4VHZcRg4+ESk5FS09EysHHkFQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9AzjZABwBsZgZMATbAdxigAtKAnVGgCgCNVjVJMAlIgDeAKEQTEzTFBDMkqZHHBREAXgB8I8ZN16J3Xv3WJDfCJkQBaRIuVgoAbh37X02fNM9zmZ690Avs4BohAIuKoA6gCMJmhYeAQkZBTUdIwsbOwATACsAs6h4VHZcRg4+ESk5FS09EysHHkFojE5AAwFQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9AzjZABwBsZgZMATbAdxigAtKAnVGgCgCNVjVJMAlIgDeAKEQTEzTFBDMkqZHHBREAXgB8I8ZN16J3Xv3WJDfCJkQBaRIuVgoAbh37X02fNM9zmZ690Avs4BohAIuKoA6gCMJmhYeAQkZBTUdIwsbOwATACsAs6h4VHZcRg4+ESk5FS09EysHHkFojE5AAwtbdmdjkA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9AzjZABwBsZgZMATbAdxigAtKAnVGgCgCNVjVJMAlIgDeAKEQTEzTFBDMkqZHHBREAXgB8I8ZN16J3Xv3WJDfCJkQBaRIuVgoAbh37X02fNM9zmZ690Avs4BohAIuKoA6gCMJmhYeAQkZBTUdIwsbOwATACsAs6h4VHZcRg4+ESk5FS09EysHHkFojE5AAwtbdmdzpHZHQVAA

Modularity, Objects, and State 3.1.3

As an example of how this issue arises in programming, consider the situation where Peter

and Paul have a bank account with $100 in it. There is a substantial di�erence between modeling

this as

Iconst peter_acc = make_account(100);

const paul_acc = make_account(100);

and modeling it as

Iconst peter_acc = make_account(100);

const paul_acc = peter_acc;

In the �rst situation, the two bank accounts are distinct. Transactions made by Peter will

not a�ect Paul’s account, and vice versa. In the second situation, however, we have de�ned

paul_acc to be the same thing as peter_acc. In e�ect, Peter and Paul now have a joint bank

account, and if Peter makes a withdrawal from peter_acc Paul will observe less money in

paul_acc. These two similar but distinct situations can cause confusion in building computa-

tional models. With the shared account, in particular, it can be especially confusing that there

is one object (the bank account) that has two di�erent names (peter_acc and paul_acc); if

we are searching for all the places in our program where paul_acc can be changed, we must

remember to look also at things that change peter_acc.
9

With reference to the above remarks on “sameness” and “change,” observe that if Peter and

Paul could only examine their bank balances, and could not perform operations that changed

the balance, then the issue of whether the two accounts are distinct would be moot. In general,

so long as we never modify data objects, we can regard a compound data object to be precisely

the totality of its pieces. For example, a rational number is determined by giving its numerator

and its denominator. But this view is no longer valid in the presence of change, where a

compound data object has an “identity” that is something di�erent from the pieces of which it

is composed. A bank account is still “the same” bank account even if we change the balance by

making a withdrawal; conversely, we could have two di�erent bank accounts with the same

state information. This complication is a consequence, not of our programming language, but

of our perception of a bank account as an object. We do not, for example, ordinarily regard a

rational number as a changeable object with identity, such that we could change the numerator

and still have “the same” rational number.

9
The phenomenon of a single computational object being accessed by more than one name is known as

aliasing. The joint bank account situation illustrates a very simple example of an alias. In section 3.3 we will see

much more complex examples, such as “distinct” compound data structures that share parts. Bugs can occur in

our programs if we forget that a change to an object may also, as a “side e�ect,” change a “di�erent” object because

the two “di�erent” objects are actually a single object appearing under di�erent aliases. These so-called side-e�ect
bugs are so di�cult to locate and to analyze that some people have proposed that programming languages be

designed in such a way as to not allow side e�ects or aliasing (Lampson et al. 1981; Morris, Schmidt, and Wadler

1980).

253 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9VEJzhQAUARqgDaqSYCUiA3gFCKuKiSwKIDuMUACwAmAJ1Q9iqZITBR6zNosQxgiMpWoRMiAHwBeRFJlzGLJefJUaiA5c3aAtIelEA3GfOKRmKCBFI7GndPRABfREwKAGdtBRC2b19-RAAiAEkwKJBgYBgIGExZdnAhKJTgz1CPMOqOaHgkIUwABzgo-kkXWXlqxUCtG0R+7QBqZ2MK80S-AI0g6qrFOq5GmCjm1CgIAWJkHpDp5OQbPQMUvkFRcRTezwB+Xn5hMR5b8wAuFBOzptb2qBu8SUD1+bX4b08n0wIhEcBEuwANKkAKpgdBgOA8JDeACOIEwUSgiAcTjQWFw+GMKVokxqXh8M0QQjWGy2AncVQImSJzR80IpEEGZJweAIRGIAEYAAxSmlMLmExAbEAUAVCjAiyni6Wy9xMYi8qD80XEc5PK48am0SW6-WG434U0XZ7XWjWgBMtoNqBVAqd5peVuIAFZdUA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9VEJzhQAUARqgDaqSYCUiA3gFCKuKiSwKIDuMUACwAmAJ1Q9iqZITBR6zNosQxgiMpWoRMiAHwBeRFJlzGLJefJUaiA5c3aAtIelEA3GfOKRmKCBFI7GndPRABfREwKAGdtBRC2b19-RAAiAEkwKJBgYBgIGExZdnAhKJTgz1CPMOqOaHgkIUwABzgo-kkXWXlqxUCtG0R+7QBqZ2MK80S-AI0g6qrFOq5GmCjm1CgIAWJkHpDp5OQbPQMUvkFRcRTezwB+Xn5hMR5b8wAuFBOzptb2qBu8SUD1+bX4b08n0wIhEcBEuwANKkAKpgdBgOA8JDeACOIEwUSgiAcTjQWFw+GMKVokxqXh8M0QQjWGy2AncVQImSJzR80IpEEGZJweAIRGIAEYAAxSmlMLmExAbEAUAWDXlQfmi9zEDVa-DEc5PK48am0SWynV6kQCw0XZ7XWjmgBMlqYutQKttRsuLzNxAArJagA

Modularity, Objects, and State 3.1.3

Pitfalls of imperative programming

In contrast to functional programming, programming that makes extensive use of assignment is

known as imperative programming. In addition to raising complications about computational

models, programs written in imperative style are susceptible to bugs that cannot occur in

functional programs. For example, recall the iterative factorial program from section 1.2.1:

Ifunction factorial(n) {

function iter(product,counter) {

if (counter > n) {

return product;

} else {

return iter(counter*product,

counter+1);

}

}

return iter(1,1);

}

Instead of passing arguments in the internal iterative loop, we could adopt a more imperative

style by using explicit assignment to update the values of the variables product and counter:

Ifunction factorial(n) {

let product = 1;

let counter = 1;

function iter() {

if (counter > n) {

return product;

} else {

product = counter * product;

counter = counter + 1;

return iter();

}

}

return iter();

}

This does not change the results produced by the program, but it does introduce a subtle trap.

How do we decide the order of the assignments? As it happens, the program is correct as

written. But writing the assignments in the opposite order

counter = counter + 1;

product = counter * product;

would have produced a di�erent, incorrect result. In general, programming with assignment

forces us to carefully consider the relative orders of the assignments to make sure that each

statement is using the correct version of the variables that have been changed. This issue

254 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMAhtOAnGKA2AKMASkQG8AoRS0SWBRGKAUwzwAcM4ATEaAGgjjgmGYuUrj6wRHgFDmiAHyIipChPUZGUEBiTsuPKAG41EgL6JGOAM6NV6jVp1IGzGYLDCAVPu59TDoGBsp7MANQAjIQmDmamceKa2rr0wngRvFEmcWSo6Fi4eACs0UA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMAhtOAnGKA2AKMASkQG8AoRSnAUykQAcM4ATEaRAXkQEYBuCqrUQQ44KNQyce-SsnDR4SGOIx5i5WbJjBEeEWImIAfIiKkBmzRlogMSRizZQZlgL6JqOAM7Vzlyw6s7Fz6YCqIAFQMTEHOFv7ComGGIUnhANTS8f7WULZKKmoumq4WpbK5+YjKEkVkpWSo6Fi4eACshLxAA

Modularity, Objects, and State 3.1.0

simply does not arise in functional programs.
10

The complexity of imperative programs becomes even worse if we consider applications

in which several processes execute concurrently. We will return to this in section 3.4. First,

however, we will address the issue of providing a computational model for expressions that

involve assignment, and explore the uses of objects with local state in designing simulations.

Exercise 3.7

Consider the bank account objects created by make_account, with the password modi�cation

described in exercise 3.3. Suppose that our banking system requires the ability to make joint

accounts. De�ne a function make_joint that accomplishes this. The function make_joint

should take three arguments. The �rst is a password-protected account. The second argument

must match the password with which the account was de�ned in order for the make_joint

operation to proceed. The third argument is a new password. The function make_joint is to

create an additional access to the original account using the new password. For example, if

peter_acc is a bank account with password "open sesame", then

Iconst paul_acc = make_joint(peter_acc, "open sesame", "rosebud");

will allow one to make transactions on peter_acc using the name paul_acc and the password

"rosebud". You may wish to modify your solution to exercise 3.3 to accommodate this new

feature.

Exercise 3.8

When we de�ned the evaluation model in section 1.1.3, we said that the �rst step in evaluating

an expression is to evaluate its subexpressions. But we never speci�ed the order in which

the subexpressions should be evaluated (e.g., left to right or right to left). When we introduce

assignment, the order in which for example the operands of an operator combination are

evaluated can make a di�erence to the result. De�ne a simple function f such that evaluating

f(0) + f(1) will return 0 if the operands of + evaluated from left to right but will return 1 if

the operands are evaluated from right to left.

10
In view of this, it is ironic that introductory programming is most often taught in a highly imperative style.

This may be a vestige of a belief, common throughout the 1960s and 1970s, that programs that call functions

must inherently be less e�cient than programs that perform assignments. (Steele (1977) debunks this argument.)

Alternatively it may re�ect a view that step-by-step assignment is easier for beginners to visualize than function

call. Whatever the reason, it often saddles beginning programmers with “should I set this variable before or after

that one” concerns that can complicate programming and obscure the important ideas.

255 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEFsEMGsFMH0BWB7AlgOwC6k80AjWUAdwCdVNNZ0CBPUAZ0wFcATazBgKAGNl0moAA6RmAG3iQePUAF4IMBCgyYAFENhVSk6QBpQAImQaaDWA0jhYB-QdLIz+NgYCUAbiA

Modularity, Objects, and State 3.2

3.2 The Environment Model of Evaluation

When we introduced compound functions in chapter 1, we used the substitution model of

evaluation (section 1.1.5) to de�ne what is meant by applying a function to arguments:

– To apply a compound function to arguments, evaluate the body of the function with

each parameter replaced by the corresponding argument.

Once we admit assignment into our programming language, such a de�nition is no longer

adequate. In particular, section 3.1.3 argued that, in the presence of assignment, a variable can

no longer be considered to be merely a name for a value. Rather, a variable must somehow

designate a “place” in which values can be stored. In our new model of evaluation, these places

will be maintained in structures called environments.

An environment is a sequence of frames. Each frame is a table (possibly empty) of bindings,
which associate variable names with their corresponding values. (A single frame may contain at

most one binding for any variable.) Each frame also has a pointer to its enclosing environment,
unless, for the purposes of discussion, the frame is considered to be global. The value of a
variable with respect to an environment is the value given by the binding of the variable in

the �rst frame in the environment that contains a binding for that variable. If no frame in the

sequence speci�es a binding for the variable, then the variable is said to be unbound in the

environment.

A B

C D

I

II III
z:6
x:7

m:1
y:2

x:3
y:5

Figure 3.1: A simple environment structure.

Figure 3.1 shows a simple environment structure consisting of three frames, labeled I, II, and

III. In the diagram, A, B, C, and D are pointers to environments. C and D point to the same

environment. The variables z and x are bound in frame II, while y and x are bound in frame I.

The value of x in environment D is 3. The value of x with respect to environment B is also 3.

This is determined as follows: We examine the �rst frame in the sequence (frame III) and do

not �nd a binding for x, so we proceed to the enclosing environment D and �nd the binding in

256 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.2.1

frame I. On the other hand, the value of x in environment A is 7, because the �rst frame in the

sequence (frame II) contains a binding of x to 7. With respect to environment A, the binding

of x to 7 in frame II is said to shadow the binding of x to 3 in frame I.

The environment is crucial to the evaluation process, because it determines the context in

which an expression should be evaluated. Indeed, one could say that expressions in a pro-

gramming language do not, in themselves, have any meaning. Rather, an expression acquires

a meaning only with respect to some environment in which it is evaluated. Even the interpre-

tation of an expression as straightforward as display(1) depends on an understanding that

one is operating in a context in which the symbol display refers to the primitive function

that displays a value. Thus, in our model of evaluation we will always speak of evaluating an

expression with respect to some environment. To describe interactions with the interpreter, we

will suppose that there is a global environment, consisting of a single frame (with no enclosing

environment) that includes values for the symbols associated with the primitive functions. For

example, the idea that display is the name for the primitive display function is captured by

saying that the symbol display is bound in the global environment to the primitive display

function.

3.2.1 The Rules for Evaluation

The overall speci�cation of how the interpreter evaluates a function application remains the

same as when we �rst introduced it in section 1.1.4:

– To evaluate an application:

1. Evaluate the subexpressions of the application.
11

2. Apply the value of the function subexpression to the values of the argument subex-

pressions.

The environment model of evaluation replaces the substitution model in specifying what it

means to apply a compound function to arguments.

In the environment model of evaluation, a function is always a pair consisting of some

code and a pointer to an environment. Functions are created in one way only: by evaluating

a lambda expression. This produces a function whose code is obtained from the text of the

lambda expression and whose environment is the environment in which the lambda expression

was evaluated to produce the function. For example, consider the function declaration

11
Assignment introduces a subtlety into step 1 of the evaluation rule. As shown in exercise 3.8, the presence

of assignment allows us to write expressions that will produce di�erent values depending on the order in which

the subexpressions in a combination are evaluated. Thus, to be precise, we should specify an evaluation order

in step 1 (e.g., left to right or right to left). However, this order is considered to be an implementation detail in

some languages, such as Scheme. In Scheme, one should never write programs that depend on some particular

order. For instance, a sophisticated Scheme compiler might optimize a program by varying the order in which

subexpressions are evaluated.

257 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.2.1

Ifunction square(x) {

return x * x;

}

evaluated in the global environment. The function declaration syntax is equivalent to
12

an

underlying implicit lambda expression. It would have been equivalent to have used

Iconst square = x => x * x;

which evaluates x => x * x and binds square to the resulting value, all in the global environ-

ment.

Figure 3.2 shows the result of evaluating this declaration statement. In general, const,

function and let create declarations by adding bindings to frames. For declarations at the

toplevel of the program, outside of any block, we introduce a program environment, consist-

ing of a single frame—the program frame—directly inside the global environment. To reduce

clutter, after this �gure, we will not display the global environment (as it is always the same),

but we are reminded of its existence by the pointer from the program environment upward.

The function object is a pair whose code speci�es that the function has one parameter, namely

x, and a function body return x * x;. The environment part of the function is a pointer to

the program environment, since that is the environment in which the lambda expression was

evaluated to produce the function. A new binding, which associates the function object with

the symbol square, has been added to the program frame.

12
Footnote 52 in chapter 1 mentions subtle di�erences between the two in full JavaScript, which we will ignore

in this edition.

258 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3PLU1x4AjABYi7IA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBBCOBXAhgJwKYwLwwB7YD48YAqPAbgChKEUMAKARgBYBKcoA

Modularity, Objects, and State 3.2.1

other names

square:=

program
env

function square(x) {

 return x * x;

}

parameters: x
body: return x * x;

global
env pair:= ...

other names of
primitives

Figure 3.2: Environment structure produced by evaluating function square(x){ return x

* x; } in the program environment.

We consider function declarations as equivalent to constant declarations,
13

and assignment

is forbidden on constants. Our environment model therefore needs to distinguish symbols that

refer to constants from symbols that refer to variables. We shall indicate that a symbol is a

constant by writing an equal sign after the colon that follows the symbol. Observe the equal

signs after the colons in �gure 3.2.

Now that we have seen how functions are created, we can describe how functions are applied.

The environment model speci�es: To apply a function to arguments, create a new environment

containing a frame that binds the parameters to the values of the arguments. The enclosing

environment of this frame is the environment speci�ed by the function. Now, within this new

environment, evaluate the function body.

To show how this rule is followed, �gure 3.3 illustrates the environment structure created

by evaluating the expression square(5); in the program environment, where square is the

function generated in �gure 3.2. Applying the function results in the creation of a new envi-

ronment, labeled E1 in the �gure, that begins with a frame in which x, the formal parameter

for the function, is bound to the argument 5. Note that symbol x in environment E1 is followed

by a single colon symbol with no equal sign, which indicates that the parameter x is treated

as a variable.
14

The pointer leading upward from this frame shows that the frame’s enclosing

13
We mentioned in footnote 52 that the full JavaScript language allows assignment to names that are declared

with function declarations.

14
This example does not make use of the fact that the parameter x is a variable, but recall function

259 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.2.1

environment is the program environment. The program environment is chosen here, because

this is the environment that is indicated as part of the square function object. Within E1, we

evaluate the body of the function, return x * x;. Since the value of x in E1 is 5, the result is

5 * 5, or 25.

E1

return x * x
parameters: x
body: return x * x;

square(5)

program
env

other names

square:=

x:5

Figure 3.3: Environment created by evaluating square(5); in the program environment.

The environment model of function application can be summarized by two rules:

– A function object is applied to a set of arguments by constructing a frame, binding the

parameters of the function to the arguments of the call, and then evaluating the body of

the function in the context of the new environment constructed. The new frame has as

its enclosing environment the environment part of the function object being applied.

– A function is created by evaluating a lambda expression relative to a given environment.

The resulting function object is a pair consisting of the text of the lambda expression

and a pointer to the environment in which the function was created.

Finally, we specify the behavior of assignment, the operation that forced us to introduce

the environment model in the �rst place. Evaluating the statement name = value ; in some

environment locates the binding of the name in the environment. For this, one �nds the �rst

frame in the environment that contains a binding for the name. If the name is unbound in

the environment, then the assignment signals a “variable unde�ned” error. Otherwise, if the

binding in the frame is a constant binding—indicated in the frame with an equal sign after

colon that follows the name—the assignment signals an “assignment to constant” error. At last,

if the binding in the frame is a variable binding—indicated in the frame with a single colon

make_withdraw in section 3.1.1, which relied on its parameter being a variable.

260 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.2.2

after the name—that binding is changed to re�ect the new value of the variable.

These evaluation rules, though considerably more complex than the substitution model, are

still reasonably straightforward. Moreover, the evaluation model, though abstract, provides a

correct description of how the interpreter evaluates expressions. In chapter 4 we shall see how

this model can serve as a blueprint for implementing a working interpreter. The following

sections elaborate the details of the model by analyzing some illustrative programs.

3.2.2 Applying Simple Functions

When we introduced the substitution model in section 1.1.5 we showed how the application

f(5) evaluates to 136, given the following function declarations:

Ifunction square(x) {

return x * x;

}

function sum_of_squares(x, y) {

return square(x) + square(y);

}

function f(a) {

return sum_of_squares(a + 1, a * 2);

}

We can analyze the same example using the environment model. Figure 3.4 shows the three

function objects created by evaluating the de�nitions of f, square, and sum_of_squares in the

program environment. Each function object consists of some code, together with a pointer to

the program environment.

261 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3PNElgIUIALYB9OMDFpMuZIQA0iAJ4kK1GjjoMU6bPmKIA1Ltn5VnHn3DR4SYHgxrK1WvSTJREqTP3yMxogAjEoBrABMRJa8DgCsUUA

Modularity, Objects, and State 3.2.2

square:=

sum_of_squares:=

f:=
program
env

parameters: x
body: return x * x;

parameters: x, y
body: square(x) + square(y);

parameters: a
body: return sum_of_squares(a + 1, a + 2);

Figure 3.4: Function objects in the program frame.

In �gure 3.5 we see the environment structure created by evaluating the expression f(5).

The call to f creates a new environment E1 beginning with a frame in which a, the parameter

of f, is bound to the argument 5. In E1, we evaluate the body of f:

return sum_of_squares(a + 1, a * 2);

x * x

x:10
E4

x * x

x:6
E3

square(x)
+

square(y)

x:6

y:10
E2

sum_of_squares(

 a + 1, a * 2)

a:5
E1

f(5)

program
env

Figure 3.5: Environments created by evaluating f(5) using the functions in �gure 3.4.

262 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.2.2

To evaluate this combination, we �rst evaluate the subexpressions. The �rst subexpression,

sum_of_squares, has a value that is a function object. (Notice how this value is found: We �rst

look in the �rst frame of E1, which contains no binding for sum_of_squares. Then we proceed

to the enclosing environment, i.e. the program environment, and �nd the binding shown in

�gure 3.4.) The other two subexpressions are evaluated by applying the primitive operations

+ and * to evaluate the two combinations a + 1 and a * 2 to obtain 6 and 10, respectively.

Now we apply the function object sum_of_squares to the arguments 6 and 10. This re-

sults in a new environment E2 in which the parameters x and y are bound to the arguments.

Within E2 we evaluate the combination square(x) + square(y). This leads us to evaluate

square(x), where square is found in the program frame and x is 6. Once again, we set up a

new environment, E3, in which x is bound to 6, and within this we evaluate the body of square,

which is x * x. Also as part of applying sum_of_squares, we must evaluate the subexpression

square(y), where y is 10. This second call to square creates another environment, E4, in which

x, the parameter of square, is bound to 10. And within E4 we must evaluate x * x.

The important point to observe is that each call to square creates a new environment con-

taining a binding for x. We can see here how the di�erent frames serve to keep separate the

di�erent local variables all named x. Notice that each frame created by square points to the

program environment, since this is the environment indicated by the square function object.

After the subexpressions are evaluated, the results are returned. The values generated by the

two calls to square are added by sum_of_squares, and this result is returned by f. Since our

focus here is on the environment structures, we will not dwell on how these returned values

are passed from call to call; however, this is also an important aspect of the evaluation process,

and we will return to it in detail in chapter 5.

Exercise 3.9

In section 1.2.1 we used the substitution model to analyze two functions for computing facto-

rials, a recursive version

Ifunction factorial(n) {

return n === 1

? 1

: n * factorial(n - 1);

}

and an iterative version

Ifunction factorial(n) {

return fact_iter(1, 1, n);

}

function fact_iter(product, counter, max_count) {

263 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMAhtOAnGKA2AKMASkQG8AoRSxDAUyhAySQF5XEBGCq7qgfg649uALkRIAVMjRRM2fEgC0HQgG4yAXzJlU6LLjwBWVUA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMAhtOAnGKA2AKMASkQG8AoRSxDAUyhAyVWgH0YoaM8BGAGkT6IiAbjIBfMqEiwEyNFDYcuABwxwAJiGj8IccEv4BbFAA8Wu-cXJVqdBkgtgliAHyJjZx1Ao3fiAPyIqhpa3n6+AFxyrOyceF6ciABUQWqa2og+4dl+CRiIANQC-Fk5Ze6m5npOhKISkvKY2PgArLVAA

Modularity, Objects, and State 3.2.3

return counter > max_count

? product

: fact_iter(counter * product,

counter + 1,

max_count);

}

Show the environment structures created by evaluating factorial(6) using each version of

the factorial function.
15

3.2.3 Frames as the Repository of Local State

We can turn to the environment model to see how functions and assignment can be used to

represent objects with local state. As an example, consider the “withdrawal processor” from

section 3.1.1 created by calling the function

Ifunction make_withdraw(balance) {

return amount => {

if (balance >= amount) {

balance = balance - amount;

return balance;

} else {

return "insufficient funds";

}

};

}

Let us describe the evaluation of

Iconst W1 = make_withdraw(100);

followed by

IW1(50);

50

Figure 3.6 shows the result of declaring the make_withdraw function in the program envi-

ronment. This produces a function object that contains a pointer to the program environment.

So far, this is no di�erent from the examples we have already seen, except that the body of the

function is itself a lambda expression.

15
The environment model will not clarify our claim in section 1.2.1 that the interpreter can execute a function

such as fact_iter in a constant amount of space using tail recursion. We will discuss tail recursion when we

deal with the control structure of the interpreter in section 5.4.

264 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9A7jKACwBMAnVXACgCNUAbVSTASkQG8AoRbxUzKEKSSpkccFEQBeAHzsuPBTGCIa9RhEyJpkxCLFgorTgpM9aDJlMTn1mgLS7R4gNzzTCvgKHW1TV+8QAX0RMOgBnTWMAnk9BJAAiGDAwkGBgGAgYTANEUDBiMPj-d0C3INdAoA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9A7jKACwBMAnVXACgCNUAbVSTASkQG8AoRbxUzKEKSSpkccFEQBeAHzsuPBTGCIa9RhEyJpkxCLFgorTgpM9aDJlMTn1mgLS7R4gNzzTCvgKHW1TV+8QAX0RMOgBnTWMAnk9BJAAiGDAwkGBgGAgYTANEUDBiMPj-d0C3INdSiAQwiQB1AEYrNCw8AhJyKnqABi7mZyA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9A7jKACwBMAnVXACgCNUAbVSTASkQG8AoRbxUzKEKSSpkccFEQBeAHzsuPBTGCIa9RhEyJpkxCLFgorTgpM9aDJlMTn1mgLS7R4gNzzTCvgKHW1TV+8QAX0RMOgBnTWMAnk9BJAAiGDAwkGBgGAgYTANEUDBiMPj-d0C3INdSiAQwiQB1AEYrNCw8AhJyKnqABi7mVwbKAFZe5yA

Modularity, Objects, and State 3.2.3

program
env make_withdraw:=

parameters: balance
body: return amount => {
 if (balance >= amount) {
 balance = balance - amount;
 return balance;
 } else {
 return "insufficient funds";
 }
}

Figure 3.6: Result of de�ning make_withdraw in the program environment.

The interesting part of the computation happens when we apply the function make_withdraw

to an argument:

const W1 = make_withdraw(100);

We begin, as usual, by setting up an environment E1 in which the parameter balance is bound

to the argument 100. Within this environment, we evaluate the body of make_withdraw, namely

the lambda expression. This constructs a new function object, whose code is as speci�ed by

the lambda expression and whose environment is E1, the environment in which the lambda

expression was evaluated to produce the function. The resulting function object is the value

returned by the call to make_withdraw. This is bound to W1 in the program environment, since

the constant declaration itself is being evaluated in the program environment. Figure 3.7 shows

the resulting environment structure.

265 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.2.3

E1

make_withdraw:=

w1:=
program
env

balance: 100

parameters: balance
body: ...parameters: amount

body:
 if (balance >= amount) {
 balance = balance - amount;
 return balance;
 } else {
 return "insufficient funds";
 }

Figure 3.7: Result of evaluating const W1 = make_withdraw(100);.

Now we can analyze what happens when W1 is applied to an argument:

W1(50);

50

We begin by constructing a frame in which amount, the parameter of W1, is bound to the

argument 50. The crucial point to observe is that this frame has as its enclosing environment

not the program environment, but rather the environment E1, because this is the environment

that is speci�ed by the W1 function object. Within this new environment, we evaluate the body

of the function:

if (balance >= amount) {

balance = balance - amount;

return balance;

} else {

return "insufficient funds";

}

The resulting environment structure is shown in �gure 3.8. The expression being evaluated

references both amount and balance. The variable amount will be found in the �rst frame in the

266 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.2.3

environment, while balance will be found by following the enclosing-environment pointer to

E1.

E1

make_withdraw:= ...

w1:=
program
env

balance: 100

parameters: amount
body: ...

amount: 50

Here is the balance
that will be changed
by the set!

 if (balance >= amount) {

 balance = balance - amount;

 return balance;

 } else {

 return "insufficient funds";

 }

Figure 3.8: Environments created by applying the function object W1.

When the assignment is executed, the binding of balance in E1 is changed. At the completion

of the call to W1, balance is 50, and the frame that contains balance is still pointed to by the

function object W1. The frame that binds amount (in which we executed the code that changed

balance) is no longer relevant, since the function call that constructed it has terminated, and

there are no pointers to that frame from other parts of the environment. The next time W1 is

called, this will build a new frame that binds amount and whose enclosing environment is E1.

We see that E1 serves as the “place” that holds the local state variable for the function object

W1. Figure 3.9 shows the situation after the call to W1.

267 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.2.3

E1

make_withdraw:= ...

w1:=

program
env

balance: 50

parameters: amount
body: ...

Figure 3.9: Environments after the call to W1.

Observe what happens when we create a second “withdraw” object by making another call

to make_withdraw:

I

This produces the environment structure of �gure 3.10, which shows that W2 is a function

object, that is, a pair with some code and an environment. The environment E2 for W2 was

created by the call to make_withdraw. It contains a frame with its own local binding for balance.

On the other hand, W1 and W2 have the same code: the code speci�ed by the lambda expression

in the body of make_withdraw.
16

We see here why W1 and W2 behave as independent objects.

Calls to W1 reference the state variable balance stored in E1, whereas calls to W2 reference the

balance stored in E2. Thus, changes to the local state of one object do not a�ect the other

object.

16
Whether W1 and W2 share the same physical code stored in the computer, or whether they each keep a copy

of the code, is a detail of the implementation. For the interpreter we implement in chapter 4, the code is in fact

shared.

268 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9A7jKACwBMAnVXACgCNUAbVSTASkQG8AoRbxUzKEKSSpkccFEQBeAHzsuPBTGCIa9RhEyJpkxCLFgorTgpM9aDJlMTn1mgLS7R4gNzzTCvgKHW1TV+8QAX0RMOgBnTWMAnk9BJAAiGDAwkGBgGAgYTANEUDBiMPj-d0C3INdSiAQwiQB1AEYrNCw8AhJyKnqABi7mVwbKAFZe1yrkuoAmJowcfCIyCkpukY5aicoADhGgA

Modularity, Objects, and State 3.2.3

E1

w2:=

w1:=
program
env

balance: 50

parameters: amount
body: ...

E2 balance: 100

make_withdraw:= ...

Figure 3.10: Using const W2 = make_withdraw(100) to create a second object.

Exercise 3.10

In the make_withdraw function the local variable balance is created as a parameter of make_withdraw.

We could also create the local state variable separately, using what we might call an immedi-
ately invoked lambda expression as follows:

Ifunction make_withdraw(initial_amount) {

return (balance =>

amount => {

if (balance >= amount) {

balance = balance - amount;

return balance;

} else {

return "insufficient funds";

}

})(initial_amount);

}

The outer lambda expression is immediately invoked, after it is evaluated. Its only purpose it

to create a local variable balance, and initialize it to initial_amount. Use the environment

model to analyze this alternate version of make_withdraw, drawing �gures like the ones above

269 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9A7jKACwBMAnVXAChjAJlQBttVk5woBKRAbwChEBiUpighSSSgCNGqSJkQBeAHyJ+g9RoEs2YKIpV9NRzTGCIpMuYiULE29l0PHnG6Q1kR5ttx-kBaO1Z2AG41F3DhUXFEHzlQ8OMAX0RMBgBneScE50ixJAAiGjSQYGAYCBhMXURQMGI0-PjsjUSwlo5qWlhGZiDdDlDW3ggENL0AdQBGRRQMHHwiMgpKSYAGVYHeKcoADg3goA

Modularity, Objects, and State 3.2.4

to illustrate the interactions

Iconst W1 = make_withdraw(100);

W1(50);

const W2 = make_withdraw(100);

Show that the two versions of make_withdraw create objects with the same behavior. How do

the environment structures di�er for the two versions?

3.2.4 Internal Declarations

Section 3.2.2 describes the application of simple functions according to the environment model,

but fails to handle proper blocks that contain contains constant or variable declarations, as

the bodies of the functions new_withdraw and make_account of section 3.1.1, in the function

make_rand of section 3.1.2 and in both versions of the factorial function of section 3.1.3. The

declaration of local names within blocks is treated similarly to declarations of global names,

as for example the name square in section 3.2.1. We explained that the names declared in the

program are added to the program frame. More precisely, before the program gets evaluated,

we identify the names that are declared in the program at toplevel (outside of any block). These

names are all added to the program frame, and then the program gets evaluated with respect

to the program environment. Initially, before the program runs, these names refer to a special

value unassigned, and any attempt to access the value of a name that refers to unassigned
leads to an error. Constant and variable declarations can then be handled like assignments in

section 3.2.3.

In order to evaluate a block in a given environment, we extend the environment by a new

frame that contains all names declared locally (outside of nested blocks) in the block body.

These names intially refer to the value unassigned, when the evaluation of the body commences.

The evaluation of the local constant and variable declarations then re-assigns the names to

the left of the = sign, as if the declaration was an assignment.
17

Section 1.1.8 introduced the idea that functions can have internal de�nitions, thus leading

to a block structure as in the following function to compute square roots:

Ifunction sqrt(x) {

function good_enough(guess) {

return abs(square(guess) - x) < 0.001;

}

function improve(guess) {

return average(guess, x / guess);

}

17
Equipped with a deeper understanding of the scope of names, we can now explain why the program in

footnote 54 of chapter 1 goes wrong.

270 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9A7jKACwBMAnVXAChjAJlQBttVk5woBKRAbwChEBiUpighSSSgCNGqSJkQBeAHyJ+g9RoEs2YKIpV9NRzTGCIpMuYiULE29l0PHnG6Q1kR5ttx-kBaO1Z2AG41F3DhUXFEHzlQ8OMAX0RMBgBneScE50ixJAAiGjSQYGAYCBhMXURQMGI0-PjsjUSwlo5qWlhGZiDdDlDWiAQ0vQB1AEZFFAwcfCIyCkoJgAYVgd5JygBWddDhsFHEMYAmabQsPAIScipVvaA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwEYGcAUAPAlIgbwChFTEAnAUyhHKW0QD4BeRABkQH5EGAuRALTYA3EQC+RUJFgJE6AI4hkVHPmJkK1WvUQAqHqIlTo8JMgBulcsgDmlHABoAnmpJkqNOohyIA1IhdEAHpEACZDSXATWQVyKFVCN1JjGSQbODgAEwB9SjA4EBsAC0wbEEp0dFcNDQ9tFAxMBSUVMoqqwR58AB52ADo2NgBGUQ0JDRTTRBgAWwAHcjhLUvLK6prSOq8LK1t7NsqHHmDEA6rRsnGySZj5OOyYKCsV9tx1Dc1PNIycvILil5rJIfUjcM7AkH8WJQB5PciYWYLJb7VZVXAXUhXTZaLzQ2HPIYDdHiIhEaGYACs6KAA

Modularity, Objects, and State 3.2.4

function sqrt_iter(guess){

return good_enough(guess)

? guess

: sqrt_iter(improve(guess));

}

return sqrt_iter(1.0);

}

Now we can use the environment model to see why these internal de�nitions behave as

desired. Figure 3.11 shows the point in the evaluation of the expression sqrt(2) where the

internal function good_enough has been called for the �rst time with guess equal to 1.

program
env

sqrt:

E2

x:2

good_enough:
improve: ...
sqrt_iter: ...

guess: 1

guess: 1

call to sqrt_iter

E3

call to good_enough

E4

parameters: guess
body: return abs
< ...

parameters: x
body:
function

good_enough ...

function improve ...

function sqrt_iter ...

sqrt_iter(1);

E1

Figure 3.11: sqrt function with internal de�nitions.

271 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.2.4

Observe the structure of the environment. The name sqrt is a symbol in the program en-

vironment that is bound to a function object whose associated environment is the program

environment. When sqrt was called, a new environment E1 was formed, subordinate to the

program environment, in which the parameter x is bound to 2. The body of sqrt was then

evaluated in E1. That body in this case is a block with local function declarations and therefore

we extended E1 with a new frame for those declarations, resulting in the new environment E2.

The body of the block was then evaluated in E2. Since the �rst statement in the body is

function good_enough(guess) {

return abs(square(guess) - x) < 0.001;

}

evaluating this declaration created the function good_enough in the environment E2. To be

more precise, the value unassigned for the symbol good_enough in the �rst frame of E2 was

replaced by a function object whose associated environment is E2. Similarly, improve and

sqrt_iter were de�ned as functions in E2. For conciseness, �gure 3.11 shows only the function

object for good_enough.

After the local functions were de�ned, the expression sqrt_iter(1.0) was evaluated, still

in environment E2. So the function object bound to sqrt_iter in E2 was called with 1 as

an argument. This created an environment E3 in which guess, the parameter of sqrt_iter,

is bound to 1. The function sqrt_iter in turn called good_enough with the value of guess

(from E3) as the argument for good_enough. This set up another environment, E4, in which

guess (the parameter of good_enough) is bound to 1. Although sqrt_iter and good_enough

both have a parameter named guess, these are two distinct local variables located in di�erent

frames. Also, E3 and E4 both have E2 as their enclosing environment, because the sqrt_iter

and good_enough both have E2 as their environment part. One consequence of this is that the

symbol x that appears in the body of good_enough will reference the binding of x that appears

in E1, namely the value of x with which the original sqrt function was called.

The environment model thus explains the two key properties that make local function dec-

larations a useful technique for modularizing programs:

– The names of the local functions do not interfere with names external to the enclosing

function, because the local function names will be bound in the frame that the block

creates when it is evaluated, rather than being bound in the program environment.

– The local functions can access the arguments of the enclosing function, simply by using

parameter names as free variables. This is because the body of the local function is

evaluated in an environment that is subordinate to the evaluation environment for the

enclosing function.

272 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.2.0

Exercise 3.11

In section 3.2.3 we saw how the environment model described the behavior of functions with lo-

cal state. Now we have seen how internal de�nitions work. A typical message-passing function

contains both of these aspects. Consider the bank account function of section 3.1.1:

Ifunction make_account(balance) {

function withdraw(amount) {

if (balance >= amount) {

balance = balance - amount;

return balance;

} else {

return "Insufficient funds";

}

}

function deposit(amount) {

balance = balance + amount;

}

function dispatch(m) {

return m === "withdraw"

? withdraw

: m === "deposit"

? deposit

: "Unknown request: make_account";

}

return dispatch;

}

Show the environment structure generated by the sequence of interactions

Iconst acc = make_account(50);

(acc("deposit"))(40);

(acc("withdraw"))(60);

Where is the local state for acc kept? Suppose we de�ne another account

const acc2 = make_account(100);

How are the local states for the two accounts kept distinct? Which parts of the environment

structure are shared between acc and acc2?

273 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9VEJzhQAUARqgDaqSYCUiA3gFCKuKiSwKIDuMUACwAmAJ1Q9iqZITBR6zNosQxgiMpWoRMiAHwBeRFJlzGLJefJUaiA5c3aAtIelEA3GfOKRmKCBFI7GndPRABfREwKAGdtBRC2b19-RAAiAEkwKJBgYBgIGExZdnAhKJTgz1CPMOqOaHgkIUwABzgo-kkXWXlqxUCtG0R+7QBqZ2MK1irFOq5GmCjm1CgIAWJkHpDEvyRkGz0DFL5BUXEU3vjEAH5efmExHgv4gC4UfcOm1vaoc8vPG8+bX4T0urxSAFUwOgwHAeEhvABHECYKJQV5oLC4fDGcrVaYJHw7RBCBZLFYCdxVJgETJQQz4QYYnB4AhEYgAVgADLR3JJ8MQUoDvilaLRiAAWbm8lkC473M6i4gANilQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9VEJzhQAUARqgDaqSYCUiA3gFCKuKiSwKIDuMUACwAmAJ1Q9iqZITBR6zNosQxgiMpWoRMiAHwBeRFJlzGLJefJUaiA5c3aAtIelEA3GfOKRmKCBFI7GndPRABfREwKAGdtBRC2b19-RAAiAEkwKJBgYBgIGExZdnAhKJTgz1CPMOqOaHgkIUwABzgo-kkXWXlqxUCtG0R+7QBqZ2MK1irFOq5GmCjm1CgIAWJkHpDEvyRkGz0DFL5BUXEU3vjEAH5efmExHgv4gC4UfcOm1vaoc8vPG8+bX4T0urxSAFUwOgwHAeEhvABHECYKJQV5oLC4fDGcrVaYJHw7RBCBZLFYCdxVAiZKCGfCDDE4PAEIjEACsAAZaO5JPhiClAd8UrRaMQACxcnnM-nHe5nEXEABskqAA

Modularity, Objects, and State 3.3.1

3.3 Modeling with Mutable Data

Chapter 2 dealt with compound data as a means for constructing computational objects that

have several parts, in order to model real-world objects that have several aspects. In that

chapter we introduced the discipline of data abstraction, according to which data structures

are speci�ed in terms of constructors, which create data objects, and selectors, which access

the parts of compound data objects. But we now know that there is another aspect of data

that chapter 2 did not address. The desire to model systems composed of objects that have

changing state leads us to the need to modify compound data objects, as well as to construct

and select from them. In order to model compound objects with changing state, we will de-

sign data abstractions to include, in addition to selectors and constructors, operations called

mutators, which modify data objects. For instance, modeling a banking system requires us to

change account balances. Thus, a data structure for representing bank accounts might admit

an operation

set_balance(account, new-value)

that changes the balance of the designated account to the designated new value. Data objects

for which mutators are de�ned are known as mutable data objects.

Chapter 2 introduced pairs as a general-purpose “glue” for synthesizing compound data. We

begin this section by de�ning basic mutators for pairs, so that pairs can serve as building blocks

for constructing mutable data objects. These mutators greatly enhance the representational

power of pairs, enabling us to build data structures other than the sequences and trees that we

worked with in section 2.2. We also present some examples of simulations in which complex

systems are modeled as collections of objects with local state.

3.3.1 Mutable List Structure

The basic operations on pairs—pair, head, and tail—can be used to construct list structure

and to select parts from list structure, but they are incapable of modifying list structure. The

same is true of the list operations we have used so far, such as append and list, since these can

be de�ned in terms of pair, head, and tail. To modify list structures we need new operations.

274 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.3.1

"c" "d"

y

x

"e" "f"

"a" "b"

Figure 3.12: Lists list(list("a", "b"), "c", "d") and y: list("e", "f").

"c" "d"

y

x

"e" "f"

"a" "b"

Figure 3.13: E�ect of set_head(x, y) on the lists in �gure 3.12.

"c" "d"

y

x

"e" "f"

"a" "b"

z

Figure 3.14: E�ect of const z = pair(y, tail(x)); on the lists in �gure 3.12.

275 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.3.1

"c" "d"

y

x

"e" "f"

"a" "b"

Figure 3.15: E�ect of set_tail(x, y) on the lists in �gure 3.12.

The primitive mutators for pairs are set_head and set_tail. The function set_head takes

two arguments, the �rst of which must be a pair. It modi�es this pair, replacing the head pointer

by a pointer to the second argument of set_head.
18

As an example, suppose that x is bound to the list list(list("a", "b"), "c") and y to the

list list("e", "f") as illustrated in �gure 3.12. Evaluating the expression set_head(x, y)

modi�es the pair to which x is bound, replacing its head by the value of y. The result of

the operation is shown in �gure 3.13. The structure x has been modi�ed and would now be

printed as list(list("e", "f"), "c", "d"). The pairs representing the list list("a", "b"),

identi�ed by the pointer that was replaced, are now detached from the original structure.
19

Compare �gure 3.13 with �gure 3.14, which illustrates the result of executing

Iconst z = pair(y, tail(x));

with x and y bound to the original lists of �gure 3.12. The name z is now bound to a new pair

created by the pair operation; the list to which x is bound is unchanged.

The set_tail operation is similar to set_head. The only di�erence is that the tail pointer

of the pair, rather than the head pointer, is replaced. The e�ect of executing set_tail(x, y)

on the lists of �gure 3.12 is shown in �gure 3.15. Here the tail pointer of x has been replaced

by the pointer to list("e", "f"). Also, the list list("c", "d"), which used to be the tail

of x, is now detached from the structure.

The function pair builds new list structure by creating new pairs, while set_head and

set_tail modify existing pairs. Indeed, we could implement pair in terms of the two mutators,

together with a function get_new_pair, which returns a new pair that is not part of any existing

18
The functions set_head and set_tail return the value undefined. Like assignment, they should be used

only for their e�ect.

19
We see from this that mutation operations on lists can create “garbage” that is not part of any accessible

structure. We will see in section 5.3.2 that JavaScript memory-management systems include a garbage collector,
which identi�es and recycles the memory space used by unneeded pairs.

276 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAHjAvDANgS2gCnVgRAQ1wBoZcAjXAShN2CoG4AoUSWATyVQyk1wFNipAGYNm4aDABenAA740AJ0xsSUeSkxxKlekA

Modularity, Objects, and State 3.3.1

list structure. We obtain the new pair, set its head and tail pointers to the designated objects,

and return the new pair as the result of the pair.
20

Ifunction pair(x, y) {

const fresh = get_new_pair();

set_head(fresh, x);

set_tail(fresh, y);

return fresh;

}

Exercise 3.12

The following function for appending lists was introduced in section 2.2.1:

Ifunction append(x, y) {

return is_null(x)

? y

: pair(head(x), append(tail(x), y));

}

The function append forms a new list by successively pairing the elements of x onto y. The

function append_mutator is similar to append, but it is a mutator rather than a constructor. It

appends the lists by splicing them together, modifying the �nal pair of x so that its tail is

now y. (It is an error to call append_mutator with an empty x.)

Ifunction append_mutator(x, y) {

set_tail(last_pair(x), y);

return x;

}

Here last_pair is a function that returns the last pair in its argument:

Ifunction last_pair(x) {

return is_null(tail(x))

? x

: last_pair(tail(x));

}

Consider the interaction

Iconst x = list("a", "b");

Iconst y = list("c", "d");

Iconst z = append(x, y);

Iz;

20
The function get_new_pair is one of the operations that must be implemented as part of the memory man-

agement required by a JavaScript implementation. We will discuss this in section 5.3.1.

277 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEBUAsFNQIwPYINagA4CcFoQZ2rqAIboYCWAtmQC5kBusAZgK4B2AxrQq6AObTUA+q2gB3QWiJkMAOgBQIUAGUyHWACkidIkvbk01UABMEBUKwSHMCOmSOxczdpGKgWHLqwA0oADYCAclwFMHtGVVgaYkJGBF9fBFFcH1iMUGoYUFwiZFgERnTM6AAPIgo0f3k5d04ybj4BYTEJKQwACgBKUABvOVB+0AwBZgweSWk2tjCIox8p6HCRIw6AbjkAXzlegbc2Wvrx9uKfAE8u7Z2B9m5cQ0Yh3BcAXgahEXFDzrXLgfwhGCIRja9wIkB8xVWfR+WUa1CkvmBDzBoDO32hQ2oIx4IMeaP6mxCUP6n0+AEYfAAmDo+AAsqwAkDsNkA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwA6oKZgCYAoAeANIgJ4CUiA3gFCJ2IBOGUIDSMAzgPpggA2fAmVr1R9APykRY0QC5EqZDAa4AFhmR58ZYmkw5cUJYO3FyZANzUAvtWp6sePpyi4AjMQDMOxM46uAVmIAdmIATjJLIA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAGwIYGcoH0AOqYBOAFAB4CUiA3gFCJ2IECmUIBSM6WYIyyRU+PuTK16YgPyISosXQBcKDNjyF+g0mTIBuagF9qoSLASJUOHIzAATLAFsQAqHGIkANIgCeFGmPTMsAjB8aJi4+C5k7l46YkwsbFI6ukA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAGwIYGcoH0AOqYBOAFAB4CUiA3gFCJ2IECmUIBSM6WYIyyRU+PuTK16YgPyISosXQBcKDNjyF+g0mTIBuagF9q1NJlz5iyDlCIBGADQAmGwGYbAFhsBWTVqA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwA6oKZgCYAoAeANIgJ4CUiA3gFCJ2IBOGUIDSMAzgPpggA2fAmVr1R9APykRY0QC5EqZDAa4AFhmR58ZYmkw5cUJYO3FyZANzUAvtVCRYCRH2QcoXRcqFVpjZq3ZuXgFDYyFhGTpJfF85Z1d3TxUjGBMySxs7cGh4JD0sbC4AWxAjKDgVIlIKGlEOZi4UwRc3DyVKnWqrUSYWNkR8K1sIBDcBxABeZ04oXAAiZDniOYAjOcsgA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwA6oKZgCYAoAeANIgJ4CUiA3gFCJ2IBOGUIDSMAzgPpggA2fAmVr1R9APykRY0QC5EqZDAa4AFhmR58ZYmkw5cUJYO3FyZANzUAvtVCRYCRH2QcoXRcqFVpjZq3ZuXgFDYyFhGTpJfF85Z1d3TxUjGBMySxs7cGh4JD0sbC4AWxAjKDgVIlIKGlEOZi4UwRc3DyVKnWqrUSYWNkR8K1sIBDcBxABeZ04oXAAiZDniOYAjOYyRsDGSSem3eYglxDnsdYsgA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwA6oKZgCYAoAeANIgJ4CUiA3gFCJ2IBOGUIDSMAzgPpggA2fAmVr1R9APykRY0QC5EqZDAa4AFhmR58ZYmkw5cUJYO3FyZANzUAvtVCRYCRH2QcoXRcqFVpjZq3ZuXgFDYyFhGTpJfF85Z1d3TxUjGBMySxs7cGh4JD0sbC4AWxAjKDgVIlIKGlEOZi4UwRc3DyVKnWqrUSYWNkR8K1sIBDcBxABeZ04oXAAiZDniOYAjOYyRsDGSSem3eYglxDnsdatNsYAvXfyDKvILIA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwA6oKZgCYAoAeANIgJ4CUiA3gFCJ2IBOGUIDSMAzgPpggA2fAmVr1R9APykRY0QC5EqZDAa4AFhmR58ZYmkw5cUJYO3FyZANzUAvtVCRYCRH2QcoXRcqFVpjZq3ZuXgFDYyFhGTpJfF85Z1d3TxUjGBMySxs7cGh4JD0sbC4AWxAjKDgVIlIKGlEOZi4UwRc3DyVKnWqrUSYWNkR8K1sIBDcBxABeZ04oXAAiZDniOYAjOYyRsDGSSem3eYglxDnsdatNsYAvXfyDKvIrS4sgA

Modularity, Objects, and State 3.3.1

[" a " , [" b " , [" c " , [" d , nu l l]]]]

Itail(x);

〈response〉

Iconst w = append_mutator(x, y);

Iw;

[" a " , [" b " , [" c " , [" d " , nu l l]]]]

Itail(x);

〈response〉

What are the missing 〈response〉s? Draw box-and-pointer diagrams to explain your answer.

Exercise 3.13

Consider the following make_cycle function, which uses the last_pair function de�ned in

exercise 3.12:

Ifunction make_cycle(x) {

set_tail(last_pair(x), x);

return x;

}

Draw a box-and-pointer diagram that shows the structure z created by

Iconst z = make_cycle(list("a", "b", "c"));

What happens if we try to compute last_pair(z)?

Exercise 3.14

The following function is quite useful, although obscure:

Ifunction mystery(x) {

function loop(x, y) {

if (is_null(x)) {

return y;

} else {

const temp = tail(x);

set_tail(x, y);

return loop(temp, x);

}

278 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwA6oKZgCYAoAeANIgJ4CUiA3gFCJ2IBOGUIDSMAzgPpggA2fAmVr1R9APykRY0QC5EqZDAa4AFhmR58ZYmkw5cUJYO3FyZANzUAvtVCRYCRH2QcoXRcqFVpjZq3ZuXgFDYyFhGTpJfF85Z1d3TxUjGBMySxs7cGh4JD0sbC4AWxAjKDgVIlIKGlEOZi4UwRc3DyVKnWqrUSYWNkR8K1sIBDcBxABeZ04oXAAiZDniOYAjOYyRsDGSSem3eYglxDnsdatNsYAvXfyDKvIrS6smoQsgA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwA6oKZgCYAoAeANIgJ4CUiA3gFCJ2IBOGUIDSMAzgPpggA2fAmVr1R9APykRY0QC5EqZDAa4AFhmR58ZYmkw5cUJYO3FyZANzUAvtVCRYCRH2QcoXRcqFVpjZq3ZuXgFDYyFhGTpJfF85Z1d3TxUjGBMySxs7cGh4JD0sbC4AWxAjKDgVIlIKGlEOZi4UwRc3DyVKnWqrUSYWNkR8K1sIBDcBxABeZ04oXAAiZDniOYAjOYyRsDGSSem3eYglxDnsdatNsYAvXfyDKvIrS6smoXPRqEQAdxv0AuLS5DlSpmSxAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwA6oKZgCYAoAeANIgJ4CUiA3gFCJ2IBOGUIDSMAzgPpggA2fAmVr1R9APykRY0QC5EqZDAa4AFhmR58ZYmkw5cUJYO3FyZANzUAvtVCRYCRH2QcoXRcqFVpjZq3ZuXgFDYyFhGTpJfF85Z1d3TxUjGBMySxs7cGh4JD0sbC4AWxAjKDgVIlIKGlEOZi4UwRc3DyVKnWqrUSYWNkR8K1sIBDcBxABeZ04oXAAiZDniOYAjOYyRsDGSSem3eYglxDnsdatNsYAvXfyDKvIrS6smoXPRqEQAdxv0AuLS5DlSpmDKfCxAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwA6oKZgCYAoAeANIgJ4CUiA3gFCJ2IBOGUIDSMAzgPpggA2fAmVr1R9APykRY0QC5EqZDAa4AFhmR58ZYmkw5cUJYO3FyZANzUAvtVCRYCRH2QcoXRcqFVpjZq3ZuXgFDYyFhGTpJfF85Z1d3TxUjGBMySxs7cGh4JD0sbC4AWxAjKDgVIlIKGlEOZi4UwRc3DyVKnWqrUSYWNkR8K1sIBDcBxABeZ04oXAAiZDniOYAjOYyRsDGSSem3eYglxDnsdatNsYAvXfyDKvIrS6smoXPRqEQAdxv0AuLS5DlSpmDKfZ5hbQWIA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAGwIYGcoH0AOqYBOAFAB4CUiA3gFCJ2IECmUIBSM6WYIyyRU+PuTK16YgPyISosXQBcKDNjyF+g0mTIBuagF9qoSLASIAtqgDWjLBACeEZIw1UZidMywCYfNJlz5icgAaKW1XJhY2KR19aggETEQAL0QAXjNLazsHJ2QOKCIAIlRCkMKAI1LEQohCzS0gA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAGwIYGcoH0AOqYBOAFAB4CUiA3gFCJ2IECmUIBSM6WYIyyRU+PuTK16YgPyISosXQBcKDNjyF+g0mTIBuagF9qoSLASIAtqgDWjLBACeEZIw1UZidMywCYfNJlz5icgAaKW1XJhY2KR19CARMRAAvRABeM0trOwcnZA4oIgAiVAKQgoAjEsQCiALNLSA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAbjAvDANgS2gCgEQENsA0M2ARoccNgJQDcAUAGYCuYwUa4MAtgJ7QCmAJx6YAHlRgBvOjFkxmrdpxQgQABzFEeE6XL0w0DGJgwB9MExQoxVHTP0PB-KE0FgYPeg9kBfGPxQIfil7bzlQSFgofi41JBgoXDRrcS8wuSCoU0TkzQ9aUPSnFzdUVQ1o2KJUwr0fQvq9Ytd3FXU8iysC+roI6BgAd3jeAWFMOFogA

Modularity, Objects, and State 3.3.1

}

return loop(x, null);

}

The function loop uses the “temporary” name temp to hold the old value of the tail of x,

since the set_tail on the next line destroys the tail. Explain what mystery does in general.

Suppose v is de�ned by

Iconst v = list("a", "b", "c");

Draw the box-and-pointer diagram that represents the list to which v is bound. Suppose that

we now evaluate

Iconst w = mystery(v);

Draw box-and-pointer diagrams that show the structures v and w after evaluating this program.

What would be printed as the values of v and w?

Sharing and identity

We mentioned in section 3.1.3 the theoretical issues of “sameness” and “change” raised by the

introduction of assignment. These issues arise in practice when individual pairs are shared
among di�erent data objects. For example, consider the structure formed by

Iconst x = list("a", "b");

const z1 = pair(x, x);

As shown in �gure 3.16, z1 is a pair whose head and tail both point to the same pair x. This

sharing of x by the head and tail of z1 is a consequence of the straightforward way in which

pair is implemented. In general, using pair to construct lists will result in an interlinked

structure of pairs in which many individual pairs are shared by many di�erent structures.

z1

x "a" "b"

Figure 3.16: The list z1 formed by pair(x, x).

279 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAbjAvDANgS2gCgEQENsA0M2ARoccNgJQDcQA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAbjAvDANgS2gCgEQENsA0M2ARoccNgJQDcAUAGYCuYwUa4MAtgJ7QCmAJx6YAHlRgBvOjFkxmrdpxQgQABzFEeE6XL0w0DGJgwB9MExQoxVHTP0PB-KE0FgYPeg9kBfGPxQIfil7bzlQSFgofi41JBgoXDRrcS8wuSCoU0TkzQ9aUPSnFzdUVQ1o2KJUwr0fQvq9Ytd3FXU8iysC+ojoGAB3eN4BYUw4WiA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAHjAvDANgS2gCgEQENsA0M2ARtgJQDcAUKJLAF4CMSMADrmgE6ZxFxUgA

Modularity, Objects, and State 3.3.1

z2 "a" "b"

"a" "b"

Figure 3.17: The list z2 formed by pair(list("a", "b"), list("a", "b")).

In contrast to �gure 3.16, �gure 3.17 shows the structure created by

Iconst z2 = pair(list("a", "b"), list("a", "b"));

In this structure, the pairs in the two list("a", "b") lists are distinct, although they contain

the same strings.
21

When thought of as a list, z1 and z2 both represent “the same” list:

Ilist(list("a", "b"), "a", "b")

In general, sharing is completely undetectable if we operate on lists using only pair, head,

and tail. However, if we allow mutators on list structure, sharing becomes signi�cant. As

an example of the di�erence that sharing can make, consider the following function, which

modi�es the head of the structure to which it is applied:

Ifunction set_to_wow(x) {

set_head(head(x), "wow");

return x;

}

Even though z1 and z2 are “the same” structure, applying set_to_wow to them yields di�erent

results. With z1, altering the head also changes the tail, because in z1 the head and the tail

are the same pair. With z2, the head and tail are distinct, so set_to_wow modi�es only the

head:

Iz1;

[[" a " , [" b " , nu l l]] , [" a " , [" b " , nu l l]]]

Iset_to_wow(z1);

[["wow" , [" b " , nu l l]] , ["wow" , [" b " , nu l l]]]

21
The two pairs are distinct because each call to pair returns a new pair. The strings are “the same” in the

sense that they are primitive data (just like numbers) that are composed of the same characters in the same order.

Since JavaScript provides no way to mutate a string, any sharing that the designers of a JavaScript interpreter

might decide to implement for strings is undetectable. We consider primitive data such as numbers, booleans

and strings as identical, if and only if they are indistinguishable.

280 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAXgJhgXhgBwIYEsBOAKAGy2jwCINSAaGUgI1IEpqiTyqb6GGBuIA
http://source-academy.github.io/playground#chap=4&prgrm=DYSwzgLgFKlQRAQ3gGgATwEbwJTqahtjgNxA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwKZQPpThg7nXACgA8BKRAbwChFaV0MALVAQwBNDn2TSAaRAET5cA0gG4adAE7oQUpMQkBfIA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAHjAvDANgS2gCgEQENsA0M2ARtgJQDcAUKJLAF4CMSMADrmgE6ZxFxVqzSkA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwKZQPpThg7nXACgA8BKRAbwChFaV0MALVAQwBNDn2TSAaRAET5cA0gG4adAE7oQUpMQkBfKhATIoiYogC8iADYwNhASwH8BAI1ES1YDYgBeARl2IADixhSS-MhLRMbDwCQhdxIA

Modularity, Objects, and State 3.3.1

Iz2;

[[" a " , [" b " , nu l l]] , [" a " , [" b " , nu l l]]]

Iset_to_wow(z2);

[["wow" , [" b " , nu l l]] , [" a " , [" b " , nu l l]]]

One way to detect sharing in list structures is to use the primitive predicate ===, which we

introduced in sections 1.1.6 and 2.3.1 to test whether two numbers or two strings are equal.

When applied to two non-primitive values, x === y tests whether x and y are the same object

(that is, whether x and y are equal as pointers). Thus, with z1 and z2 as de�ned in �gure 3.16

and 3.17, head(z1) === tail(z1) is true and head(z2) === tail(z2) is false.

As will be seen in the following sections, we can exploit sharing to greatly extend the

repertoire of data structures that can be represented by pairs. On the other hand, sharing can

also be dangerous, since modi�cations made to structures will also a�ect other structures that

happen to share the modi�ed parts. The mutation operations set_head and set_tail should

be used with care; unless we have a good understanding of how our data objects are shared,

mutation can have unanticipated results.
22

Exercise 3.15

Draw box-and-pointer diagrams to explain the e�ect of set_to_wow on the structures z1 and

z2 above.

Exercise 3.16

Ben Bitdiddle decides to write a function to count the number of pairs in any list structure.

“It’s easy,” he reasons. “The number of pairs in any structure is the number in the head plus

the number in the tail plus one more to count the current pair.” So Ben writes the following

function

Ifunction count_pairs(x) {

return !is_pair(x)

? 0

: count_pairs(head(x)) +

22
The subtleties of dealing with sharing of mutable data objects re�ect the underlying issues of “sameness” and

“change” that were raised in section 3.1.3. We mentioned there that admitting change to our language requires

that a compound object must have an “identity” that is something di�erent from the pieces from which it is

composed. In JavaScript, we consider this “identity” to be the quality that is tested by ===, i.e., by equality of

pointers. Since in most JavaScript implementations a pointer is essentially a memory address, we are “solving

the problem” of de�ning the identity of objects by stipulating that a data object “itself” is the information stored

in some particular set of memory locations in the computer. This su�ces for simple JavaScript programs, but is

hardly a general way to resolve the issue of “sameness” in computational models.

281 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAXgJhgXhgBwIYEsBOAKAGy2jwCINSAaGUgI1IEpqiTyqb6GGBuAKEW5A
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwKZQPpThg7nXACgA8BKRAbwChFaV0MALVAQwBNDn2TSAaRAET5cA0gG4adAE7oQUpMQkBfKhATIoiAF4AmRAF5EABxYwphADYwNhASwH8BAI1H8rNuw8EvS4qmkxsPAJCXXEgA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBO4oH0AOBDGAnAZwAoAPASkQG8AoROxPAUyhDyQEIYCtc9Sza9IfQD8iAAyDhQgFzJUYDDnzEAFo2wATfhQDUiKdKEo0PFUSi4ANjsT6AjAG5qAXyA

Modularity, Objects, and State 3.3.1

count_pairs(tail(x)) + 1;

}

Show that this function is not correct. In particular, draw box-and-pointer diagrams represent-

ing list structures made up of exactly three pairs for which Ben’s function would return 3;

return 4; return 7; never return at all.

Exercise 3.17

Devise a correct version of the count_pairs function of exercise 3.16 that returns the number

of distinct pairs in any structure. (Hint: Traverse the structure, maintaining an auxiliary data

structure that is used to keep track of which pairs have already been counted.)

Exercise 3.18

Write a function that examines a list and determines whether it contains a cycle, that is, whether

a program that tried to �nd the end of the list by taking successive tails would go into an

in�nite loop. Exercise 3.13 constructed such lists.

Exercise 3.19

Redo exercise 3.18 using an algorithm that takes only a constant amount of space. (This

requires a very clever idea.)

Mutation is just assignment

When we introduced compound data, we observed in section 2.1.3 that pairs can be represented

purely in terms of functions:

Ifunction pair(x, y) {

function dispatch(m) {

return m === "head"

? x

: m === "tail"

? y

: error(m, "Undefined operation -- pair");

}

return dispatch;

}

function head(z) {

return z("head");

}

function tail(z) {

282 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABABwIYwE4AoAeAaRATwEpEBvAKEWsVElgUQBMYBnNKCACywFtTKNIYgwBTKCAxJeiALzzEAIi6jUTRVWFaA-IhyatQgFyIZ82UqjoANhsOHdhA-ZonRGDHGy8CigKpgTKLAMGCiTIhwyO6oDEgAtPEo6BiKxADczgC+zmISUsxsHNzpAJBaFDl00PBIKmpYAF4CueKSSI1YyqrqGZUU1XGIVjDWTS1Cee2InYojtn05FBAIrFB6csmYWACMBABMffVMuBlAA

Modularity, Objects, and State 3.3.1

return z("tail");

}

The same observation is true for mutable data. We can implement mutable data objects

as functions using assignment and local state. For instance, we can extend the above pair

implementation to handle set_head and set_tail in a manner analogous to the way we

implemented bank accounts using make_account in section 3.1.1:

Ifunction pair(x, y) {

function set_x(v) {

x = v;

}

function set_y(v) {

y = v;

}

return m =>

m === "head"

? x

: m === "tail"

? y

: m === "set_head"

? set_x

: m === "set_tail"

? set_y

: error(m, "undefined operation -- pair");

}

function head(z) {

return z("head");

}

function tail(z) {

return z("tail");

}

function set_head(z, new_value) {

(z("set_head"))(new_value);

return z;

}

function set_tail(z, new_value) {

(z("set_tail"))(new_value);

return z;

}

Assignment is all that is needed, theoretically, to account for the behavior of mutable data.

As soon as we admit assignment to our language, we raise all the issues, not only of assignment,

283 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABABwIYwE4AoAeAaRATwEpEBvAKEWsVElgUQGcBTKAfRywDdTKaBiHIgC8ibgG4qNAL7TqdaPCSsOhHn3mDCo8VIFyBGNiAxIAtqIB8WwdUsjHiAEQALFqgAmz23YD8Qr6CAFyIDk7OUOgANj528QGEQXah4WLOquzuXnHxCcxsnMnxqaIRmVEwscV5AZlJeY2hLBgYcNjmBM7gnizAMGAsnohwyC2oDEgAtFMo6BjOxFKGNBSKk4jZnlgAXppGJmaIO1huHt5LFHJr4EqMldG7+zTGUKZIJ5Exi8sUN-TKAocLa7AiDADu7G4qGiIBYz2ou1OmS2i2IWAhUJhcMuBzeRx2v3+dxUhQeoMQmOhsPh5C0SIyZO+xHRVOx8P0L0OHyJEAQTCgQl0aEwWAAjAQAEyXFHnXAEADMlxBOCWQA

Modularity, Objects, and State 3.3.2

but of mutable data in general.
23

Exercise 3.20

Draw environment diagrams to illustrate the evaluation of the sequence of expressions

Iconst x = pair(1, 2);

const z = pair(x, x);

set_head(tail(z), 17);

Ihead(x);

17

using the functional implementation of pairs given above. (Compare exercise 3.11.)

3.3.2 Representing �eues

The mutators set_head and set_tail enable us to use pairs to construct data structures that

cannot be built with pair, head, and tail alone. This section shows how to use pairs to repre-

sent a data structure called a queue. Section 3.3.3 will show how to represent data structures

called tables.

A queue is a sequence in which items are inserted at one end (called the rear of the queue) and

deleted from the other end (the front). Figure 3.18 shows an initially empty queue in which the

items a and b are inserted. Then a is removed, c and d are inserted, and b is removed. Because

items are always removed in the order in which they are inserted, a queue is sometimes called

a FIFO (�rst in, �rst out) bu�er.

Operation Resulting Queue

const q = make_queue();

insert_queue(q, "a"); a

insert_queue(q, "b"); a b

delete_queue(q); b

insert_queue(q, "c"); b c

insert_queue(q, "d"); b c d

delete_queue(q); c d

Figure 3.18: Queue operations.

In terms of data abstraction, we can regard a queue as de�ned by the following set of opera-

tions:

23
On the other hand, from the viewpoint of implementation, assignment requires us to modify the environment,

which is itself a mutable data structure. Thus, assignment and mutation are equipotent: Each can be implemented

in terms of the other.

284 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABABwIYwE4AoAeAaRATwEpEBvAKEWsVElgUQGcBTKAfRywDdTKaBiHIgC8ibgG4qNAL7TqdaPCSsOhHn3mDCo8VIFyBGNiAxIAtqIB8WwdUsjHiAEQALFqgAmz23YD8Qr6CAFyIDk7OUOgANj528QGEQXah4WLOquzuXnHxCcxsnMnxqaIRmVEwscV5AZlJeY2hLBgYcNjmBM7gnizAMGAsnohwyC2oDEgAtFMo6BjOxFKGNBSKk4jZnlgAXppGJmaIO1huHt5LFHJr4EqMldG7+zTGUKZIJ5Exi8sUN-TKAocLa7AiDADu7G4qGiIBYz2ou1OmS2i2IWAhUJhcMuBzeRx2v3+dxUhQeoMQmOhsPh5C0SIyZO+xHRVOx8P0L0OH1+EAQTCgQl0aEwWAAjAQAEyXPlgAXHYXzXAEHCXFHnLDkvYEMUAdiWQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABABwIYwE4AoAeAaRATwEpEBvAKEWsVElgUQGcBTKAfRywDdTKaBiHIgC8ibgG4qNAL7TqdaPCSsOhHn3mDCo8VIFyBGNiAxIAtqIB8WwdUsjHiAEQALFqgAmz23YD8Qr6CAFyIDk7OUOgANj528QGEQXah4WLOquzuXnHxCcxsnMnxqaIRmVEwscV5AZlJeY2hLBgYcNjmBM7gnizAMGAsnohwyC2oDEgAtFMo6BjOxFKGNBSKk4jZnlgAXppGJmaIO1huHt5LFHJr4EqMldG7+zTGUKZIJ5Exi8sUN-TKAocLa7AiDADu7G4qGiIBYz2ou1OmS2i2IWAhUJhcMuBzeRx2v3+dxUhQeoMQmOhsPh5C0SIyZO+xHRVOx8P0L0OH1+EAQTCgQl0aEwWAAjAQAEyXPlgAXHYXzXAEHCXFHnLDkvYEMUAdkuINVEiAA

Modularity, Objects, and State 3.3.2

– a constructor:

make_queue()

returns an empty queue (a queue containing no items).

– two selectors:

empty_queue(queue)
tests if the queue is empty.

front_queue(queue)
returns the object at the front of the queue, signaling an error if the queue is empty; it

does not modify the queue.

– two mutators:

insert_queue(queue, item)

inserts the item at the rear of the queue and returns the modi�ed queue as its value.

delete_queue(queue)
removes the item at the front of the queue and returns the modi�ed queue as its value,

signaling an error if the queue is empty before the deletion.

Because a queue is a sequence of items, we could certainly represent it as an ordinary list;

the front of the queue would be the head of the list, inserting an item in the queue would

amount to appending a new element at the end of the list, and deleting an item from the queue

would just be taking the tail of the list. However, this representation is ine�cient, because in

order to insert an item we must scan the list until we reach the end. Since the only method we

have for scanning a list is by successive tail operations, this scanning requires Θ(n) steps for

a list of n items. A simple modi�cation to the list representation overcomes this disadvantage

by allowing the queue operations to be implemented so that they require Θ(1) steps; that is,

so that the number of steps needed is independent of the length of the queue.

The di�culty with the list representation arises from the need to scan to �nd the end of the

list. The reason we need to scan is that, although the standard way of representing a list as

a chain of pairs readily provides us with a pointer to the beginning of the list, it gives us no

easily accessible pointer to the end. The modi�cation that avoids the drawback is to represent

the queue as a list, together with an additional pointer that indicates the �nal pair in the list.

That way, when we go to insert an item, we can consult the rear pointer and so avoid scanning

the list.

A queue is represented, then, as a pair of pointers, front_ptr and rear_ptr, which indicate,

respectively, the �rst and last pairs in an ordinary list. Since we would like the queue to be an

identi�able object, we can use pair to combine the two pointers. Thus, the queue itself will

be the pair of the two pointers. Figure 3.19 illustrates this representation.

285 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.3.2

"c"

front_ptr

q

"a" "b"

rear_ptr

Figure 3.19: Implementation of a queue as a list with front and rear pointers.

To de�ne the queue operations we use the following functions, which enable us to select

and to modify the front and rear pointers of a queue:

Ifunction front_ptr(queue) {

return head(queue);

}

function rear_ptr(queue) {

return tail(queue);

}

function set_front_ptr(queue, item) {

set_head(queue, item);

}

function set_rear_ptr(queue, item) {

set_tail(queue, item);

}

Now we can implement the actual queue operations. We will consider a queue to be empty

if its front pointer is the empty list:

Ifunction is_empty_queue(queue) {

return is_null(front_ptr(queue));

}

The make_queue constructor returns, as an initially empty queue, a pair whose head and

tail are both the empty list:

Ifunction make_queue() {

return pair(null, null);

}

To select the item at the front of the queue, we return the head of the pair indicated by the

front pointer:

Ifunction front_queue(queue) {

return is_empty_queue(queue)

? error(queue, "front_queue called with an empty queue")

: head(front_ptr(queue));

}

286 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMATgqB9ADlFAKARxAFMSBKRAbwChE7EVioQUkALYgQwBNCTyA3NQC+1UJFgIGXFNlx9SxCjXrTmrRFE4wANgsEix4aPCQBnJhlTo5+IooA0iGFGIBbZbXoXMHHvuInF3cyIVFxEykfDEZOWRw7fkDnVw8qLzporV0AoNTQw2oIBDMoRAJEAF5ELG18AEYnACYC6OswTATCJwAWFoEASDE0DttCUKA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMATgqB9ADlFAKARxAFMSBKRAbwChE7EVioQUkALYgQwBNCTyA3NQC+1UJFgIGXFNlx9SxCjXrTmrRFE4wANgsEix4aPCQBnJhlTo5+IooA0iGFGIBbZbXoXMHHvuInF3cyIVFxEykfDEZOWRw7fkDnVw8qLzporV0AoNTQwwjJJBgzDHccAE8MexIAz1VGdRKysBAdPWswTAT6gtFqCAQzKEQCRABeRCxtfDaOpwAmAtLytyqapMJQoA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMATgqB9ADlFAKARxAFMSBKRAbwChE7EVioQUkALYgQwBNCTyA3NQC+1UJFgIGXFNlx9SxCjXrTmrRFE4wANgsEix4aPCQBnJhlTo5+IooA0iGFGIBbZbXoXMHHvuInF3cyIVFxEykfDEZOWRw7fkDnVw8qLzporV0AoNTQwwjJJDdOAGtiDHsSPE9VRnUkLG18MBAdHSc2joLRaggEMyhEAkQAXkRSiqqk2qFrMEwEwlCgA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMATgqB9ADlFAKARxAFMSBKRAbwChE7EVioQUkALYgQwBNCTyA3NQC+1UJFgIGXFNlx9SxCjXrTmrRFE4wANgsEix4aPCQBnJhlTo5+IooA0iGFGIBbZbXoXMHHvuInF3cyIVFxEykfDEZOWRw7fkDnVw8qLzporV0AoNTQwwjJJBgzDHccAE8MexIAz1VGdRKysBAdPWswTAT6gvDjYuQ0bpqk+vTGphYW8rcqscV6jNVEAH5EYhQ0RMdEACIuzFriRAhODuJuRAB3FzZETiQKqErEE-2yFdUALkQ-XhHWx9MLUagQBBmKDvRAAXkQWG0+ERMHwAEYHAAmMhOADMBSBJ0IoSAA

Modularity, Objects, and State 3.3.2

To insert an item in a queue, we follow the method whose result is indicated in �gure 3.20.

We �rst create a new pair whose head is the item to be inserted and whose tail is the empty

list. If the queue was initially empty, we set the front and rear pointers of the queue to this

new pair. Otherwise, we modify the �nal pair in the queue to point to the new pair, and also

set the rear pointer to the new pair.

front_ptr

q

"a" "b"

rear_ptr

"c" "d"

Figure 3.20: Result of using insert_queue(q, "d") on the queue of �gure 3.19.

Ifunction insert_queue(queue, item) {

const new_pair = pair(item, null);

if (is_empty_queue(queue)) {

set_front_ptr(queue, new_pair);

set_rear_ptr(queue, new_pair);

} else {

set_tail(rear_ptr(queue), new_pair);

set_rear_ptr(queue, new_pair);

}

return queue;

}

To delete the item at the front of the queue, we merely modify the front pointer so that it

now points at the second item in the queue, which can be found by following the tail pointer

of the �rst item (see �gure 3.21):
24

24
If the �rst item is the �nal item in the queue, the front pointer will be the empty list after the deletion, which

will mark the queue as empty; we needn’t worry about updating the rear pointer, which will still point to the

deleted item, because is_empty_queue looks only at the front pointer.

287 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMATgqB9ADlFAKARxAFMSBKRAbwChE7EVioQUkALYgQwBNCTyA3NQC+1UJFgIGXFNlx9SxCjXrTmrRFE4wANgsEix4aPCQBnJhlTo5+IooA0iGFGIBbZbXoXMHHvuInF3cyIVFxEykfDEZOWRw7fkDnVw8qLzporV0AoNTQwwjJJBgzDHccAE8MexIAz1VGdRKysBAdPWswTAT6gvDjYsQ3TgBrYhqkvAb6JpYkLG18No6nFZ1+owlTRG5iHSYJ2uJ69NUYYEQ8UvK3KsnFPrPVemIUNETHRAAiPYPXB4kRAQTgdYjcRAAdxcbEQnCQFSglUQx2+BVUwkQ+wszxeiGiXR68mOTmynTQ3VsfXReLU8xRSSEGMKgx2MDAFhQmGOuRSIVxwIQZigiDAxEh2CWiAAvIhFjB8ME3Gt2hsmfQLlcbojqjzjmQZniCRSiZ8SGtxZKFTSjZZYvFiUkLRL5SgbYhMdjiALVFltHp7VT9c6rW71bbMIHeiTRZbXe7RI0mPTjmFqNQIEKRQQAIwy4ZjI5TArszncqa5pzfThogSqailt7lx6Vn4AI1r9b+h0BJ1zBW7AL1OdCQA

Modularity, Objects, and State 3.3.2

front_ptr

q

"a" "b"

rear_ptr

"c" "d"

Figure 3.21: Result of using delete_queue(q) on the queue of �gure 3.20.

Ifunction delete_queue(queue) {

if (is_empty_queue(queue)) {

error(queue, "delete_queue called with an empty queue");

} else {

set_front_ptr(queue, tail(front_ptr(queue)));

return queue;

}

}

Exercise 3.21

Ben Bitdiddle decides to test the queue implementation described above. He types in the

functions to the JavaScript interpreter and proceeds to try them out:

Iconst q1 = make_queue();

Iinsert_queue(q1, "a");

Iinsert_queue(q1, "b");

Idelete_queue(q1);

Idelete_queue(q1);

“It’s all wrong!” he complains. “The interpreter’s response shows that the last item is inserted

into the queue twice. And when I delete both items, the second b is still there, so the queue isn’t

empty, even though it’s supposed to be.” Eva Lu Ator suggests that Ben has misunderstood what

is happening. “It’s not that the items are going into the queue twice,” she explains. “It’s just that

the standard JavaScript printer doesn’t know how to make sense of the queue representation.

If you want to see the queue printed correctly, you’ll have to de�ne your own print function

for queues.” Explain what Eva Lu is talking about. In particular, show why Ben’s examples

produce the printed results that they do. De�ne a function print_queue that takes a queue as

288 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMATgqB9ADlFAKARxAFMSBKRAbwChE7EVioQUkALYgQwBNCTyA3NQC+1UJFgIGXFNlx9SxCjXrTmrRFE4wANgsEix4aPCQBnJhlTo5+IooA0iGFGIBbZbXoXMHHvuInF3cyIVFxEykfDEZOWRw7fkDnVw8qLzporV0AoNTQwwjJJBgzDHccAE8MexIAz1VGdRKysBAdPWswTAT6gvDjYsQ3TgBrYhqkvAb6JpYkLG18No6nFZ1+owlTZzALFExa4lyUkPTVCAQzKEQwYgB3bCXEAF5ERZh8YLc19o2hVQwYCIPClcpuKqTRR9c6qbyWLo9eRHNYPJ6fApw+GYWLxZFJVGPD4oTH0YSIYg6CywrFZbR6XG2eqE9EkgFYxDRRm9FG3NHE0l0USNJjzRBHMJbSJIbiUpgTI71GnOYGgsoVKDVRVHMgzLHEFBoRKORAAIllOnlUJIiAgnA6xG4iHuLjYiE4SA1lXFSVNgsQ5Mp1JUHOiiKZvOynTQ3QjSV1-pFzR9inZQsM1EuexuBAAjK9hmMFVMCjA9gbDlM805TZw-QJVNQy-tK9Dq2aAEb1xsWq3a3MFXuua3HPOhIA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9AjiTAgCgEpEBvAKERsQCdMoQ6kAHVGOosEAG14A0iHvxIBuSgF9KEBAGcoiXAEZEAXhQYc+QplJigA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMATgqB9ADlFAKARxAFMSBKRAbwChE7EVioQUkALYgQwBNCTyA3NQC+1UJFgIGXFNlx9SxCjXrTmrRFE4wANgsEix4aPCQBnJhlTo5+IooA0iGFGIBbZbXoXMHHvuInF3cyIVFxEykfDEZOWRw7fkDnVw8qLzporV0AoNTQwwjJJBgzDHccAE8MexIAz1VGdRKysBAdPWswTAT6gvDjYucwCxRMWuJclJD01QgEMyhEMGIAd2xtFEQAXkQsTbxgtyc2joLVGGBEQ7KKqGqJvtnVb0sunvkJk7WNmBRzl6ZSyxeKfJLfdb7P4AujCRDEHQWZ6ArLaPQg2z1CG-f5CQFAzAY3pfZY-KG4jKIUSNJgsJATMJGCSmRBuTgAa2INSSeAa9CadL2B1OOhO7R0-Wo8xGSwIAEYdqyOVzHgUYCNiGNuYpCHKnAAiTj60JAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMATgqB9ADlFAKARxAFMSBKRAbwChE7EVioQUkALYgQwBNCTyA3NQC+1UJFgIGXFNlx9SxCjXrTmrRFE4wANgsEix4aPCQBnJhlTo5+IooA0iGFGIBbZbXoXMHHvuInF3cyIVFxEykfDEZOWRw7fkDnVw8qLzporV0AoNTQwwjJJBgzDHccAE8MexIAz1VGdRKysBAdPWswTAT6gvDjYucwCxRMWuJclJD01QgEMyhEMGIAd2xtFEQAXkQsTbxgtyc2joLVGGBEQ7KKqGqJvtnVb0sunvkJk7WNmBRzl6ZSyxeKfJLfdb7P4AujCRDEHQWZ6ArLaPQg2z1CG-f5CQFAzAY3pfZY-KG4jKIUSNJgsJATMJGCSmRBuTgAa2INSSeAa9CadL2B1OOhO7R0-Wo8xGSwIAEYdqyOVzHgUYCNiGNuYpCHKnAAiTj6tUarWPeUGgBGxoEQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMATgqB9ADlFAKARxAFMSBKRAbwChE7EVioQUkALYgQwBNCTyA3NQC+1UJFgIGXFNlx9SxCjXrTmrRFE4wANgsEix4aPCQBnJhlTo5+IooA0iGFGIBbZbXoXMHHvuInF3cyIVFxEykfDEZOWRw7fkDnVw8qLzporV0AoNTQwwjJJBgzDHccAE8MexIAz1VGdRKysBAdPWswTAT6gvDjYucwCxRMWuJclJD01QgEMyhEMGIAd2xtFEQAXkQsTbxgtyc2joLVGGBEQ7KKqGqJvtnVb0sunvkJk7WNmBRzl6ZSyxeKfJLfdb7P4AujCRDEHQWZ6ArLaPQg2z1CG-f5CQFAzAY3pfZY-KG4jKIUSNJgsJATMJGCSmRBuTgAa2INSSeAa9CadL2B1OOhO7R0-Wo8xGSwIAEYdqyOVzHgUYCNiGNuYpCHKnAAiTj6tUarWPeUGgBGxqERRZ3ARTBVPImfLol2upXKbiq2rqrrdL01aESjkQ+odOidfuIiAgnA6xG4iFWLjYiE4SDulUQExtlLhCKRKnx0XemJJ2U6aG6FaSZAbePxAo0DILhkj0fNctCQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMATgqB9ADlFAKARxAFMSBKRAbwChE7EVioQUkALYgQwBNCTyA3NQC+1UJFgIGXFNlx9SxCjXrTmrRFE4wANgsEix4aPCQBnJhlTo5+IooA0iGFGIBbZbXoXMHHvuInF3cyIVFxEykfDEZOWRw7fkDnVw8qLzporV0AoNTQwwjJJBgzDHccAE8MexIAz1VGdRKysBAdPWswTAT6gvDjYucwCxRMWuJclJD01QgEMyhEMGIAd2xtFEQAXkQsTbxgtyc2joLVGGBEQ7KKqGqJvtnVb0sunvkJk7WNmBRzl6ZSyxeKfJLfdb7P4AujCRDEHQWZ6ArLaPQg2z1CG-f5CQFAzAY3pfZY-KG4jKIUSNJgsJATMJGCSmRBuTgAa2INSSeAa9CadL2B1OOhO7R0-Wo8xGSwIAEYdqyOVzHgUYCNiGNuYpCHKnAAiTj6tUarWPeUGgBGxqERRZ3ARTBVPImfLol2upXKbiq2rqrrdL01aESjkQ+odOidfuIiAgnA6xG4iFWLjYiE4SDulUQExtlLhCKRKnx0XemJJ2U6aG6FaSZAbePxAo0DILhkj0fNcoKndcMd1oSAA

Modularity, Objects, and State 3.3.3

input and prints the sequence of items in the queue.

Exercise 3.22

Instead of representing a queue as a pair of pointers, we can build a queue as a function with

local state. The local state will consist of pointers to the beginning and the end of an ordinary

list. Thus, the make_queue function will have the form

Ifunction make_queue() {

function front_ptr(...) {...}

function rear_ptr(...) {...}

〈de f initions o f internal f unctions〉
function dispatch(m) {...}

return dispatch;

}

Complete the de�nition of make_queue and provide implementations of the queue operations

using this representation.

Exercise 3.23

A deque (“double-ended queue”) is a sequence in which items can be inserted and deleted at

either the front or the rear. Operations on deques are the constructor make_deque, the predicate

is_empty_deque, selectors front_deque and rear_deque and mutators front_insert_deque,

front_delete_deque, rear_insert_deque, and rear_delete_deque. Show how to represent

deques using pairs, and give implementations of the operations.
25

All operations should be

accomplished in Θ(1) steps.

3.3.3 Representing Tables

When we studied various ways of representing sets in chapter 2, we mentioned in section 2.3.3

the task of maintaining a table of records indexed by identifying keys. In the implementation

of data-directed programming in section 2.4.3, we made extensive use of two-dimensional

tables, in which information is stored and retrieved using two keys. Here we see how to build

tables as mutable list structures.

We �rst consider a one-dimensional table, in which each value is stored under a single key.

We implement the table as a list of records, each of which is implemented as a pair consisting

of a key and the associated value. The records are glued together to form a list by pairs whose

heads point to successive records. These gluing pairs are called the backbone of the table. In

25
Be careful not to make the interpreter try to print a structure that contains cycles. (See exercise 3.13.)

289 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9AjiTAgCgEpEBvAKERsVElgToCcEpsAHKZogOn7Ll+vAL7Va9aPCTNMqZp258BFYWNqIAJAB0ANqjABzXZkQATTMBhgYjMAGdNWuMCebrUTMzCpdbyXb22swGxpia4jQB0uYw9hyoUBAAFkTIgmqRiLJQIN6x8YkpANyUIkA

Modularity, Objects, and State 3.3.3

order to have a place that we can change when we add a new record to the table, we build the

table as a headed list. A headed list has a special backbone pair at the beginning, which holds

a dummy “record”—in this case the arbitrarily chosen string "*table*". Figure 3.22 shows the

box-and-pointer diagram for the table

a: 1

b: 2

c: 3

"a" "b" "c"1 2 3

"*table*"

table

Figure 3.22: A table represented as a headed list.

To extract information from a table we use the lookup function, which takes a key as ar-

gument and returns the associated value (or false if there is no value stored under that key).

The function lookup is de�ned in terms of the assoc operation, which expects a key and a list

of records as arguments. Note that assoc never sees the dummy record. The function assoc

returns the record that has the given key as its head.
26

The function lookup then checks to see

that the resulting record returned by assoc is not false, and returns the value (the tail) of the

record.

Ifunction lookup(key, table) {

const record = assoc(key, tail(table));

return record === undefined

? undefined

: tail(record);

}

Ifunction assoc(key, records) {

return is_null(records)

? undefined

: equal(key, head(head(records)))

? head(records)

: assoc(key, tail(records));

}

To insert a value in a table under a speci�ed key, we �rst use assoc to see if there is already

26
Because assoc uses equal, it can recognize keys that are strings, numbers, or list structure.

290 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwM6rhAFAawKYCeANIgE54RykAmqAlIgN4BQibZeUIpSMqA+mBAAbYVnKUa9Vu1nsA-InDU8wGGDzUZc2QC5EeAI4hkY-MUQALPMmpZrt8RSq06b7TtmKHdiS+meOvpoGNjmJFDIMGJ+Um4A3MwAvsygkLAIiAC2yPj8kQBGwnhYDCyy5Fw8iMJ8UFgARABUhcVNDXSJKWnQ8LxgqHik9eGIAG6mIHgRyEV4ZR6UA1AcktSIALwo6Ji4hDPRWK3znR6V3Eix6xs3SmAqahpagQqIg1D5UWLHJAAOUaQsP8YIDRhNhFM6EQPC9YXDIodjm46DCgm9OJ9DlcSODIV1UuBeplhHA4DgQL89hYkUxFghUCsrpttqEqQdvrNigkzpwLqsXJtbspVOpNKi5IphY8xXD9AiYs4aKcUswlgzECstjk8sdSol1INho1kA0SABGAAMEVOJLJFONpo1nSAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwM6rhAFAawKYCeANIgE54RykAmqAlIgN4BQibZeUIpSMqA+mBAAbYVnKUa9Vu1nsA-InDU8wGGDzUZc2QC5EeAI4hkY-MUQALPMmpZrt8RSq06b7TtmKHdiS+meOvpoGNjmJFDIMGJ+Um4A3MwAvkA

Modularity, Objects, and State 3.3.3

a record in the table with this key. If not, we form a new record by pairing the key with the

value, and insert this at the head of the table’s list of records, after the dummy record. If there

already is a record with this key, we set the tail of this record to the designated new value.

The header of the table provides us with a �xed location to modify in order to insert the new

record.
27

Ifunction insert(key, value, table) {

const record = assoc(key, tail(table));

return record === undefined

? set_tail(table, pair(pair(key, value),

tail(table)))

: set_tail(record, value);

}

To construct a new table, we simply create a list containing the symbol *table*:

Ifunction make_table() {

return list("*table*");

}

Two-dimensional tables

In a two-dimensional table, each value is indexed by two keys. We can construct such a table

as a one-dimensional table in which each key identi�es a subtable. Figure 3.23 shows the

box-and-pointer diagram for the table

"math":

"+": 43

"-": 45

"*": 42

"letters":

"a": 97

"b": 98

which has two subtables. (The subtables don’t need a special header symbol, since the key that

identi�es the subtable serves this purpose.)

27
Thus, the �rst backbone pair is the object that represents the table “itself”; that is, a pointer to the table is

a pointer to this pair. This same backbone pair always starts the table. If we did not arrange things in this way,

insert would have to return a new value for the start of the table when it added a new record.

291 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwM6rhAFAawKYCeANIgE54RykAmqAlIgN4BQibZeUIpSMqA+mBAAbYVnKUa9Vu1nsA-InDU8wGGDzUZc2QC5EeAI4hkY-MUQALPMmpZrt8RSq06b7TtmKHdiS+meOvpoGNjmJFDIMGJ+Um4A3MwAvsygkLAIiOqoeKRQuIQkAG6mIHgRyABGwngMLLKUYKhQHJLUiAC8KOiYBRaR0ViR1bV0ibLkXDytLp0dXcqq6poenoo5UPwDYsM1JAAOUaRYhzDH4YglwmV0RKuBD49s20NVNW5093L6G1tRMc4aMVSrVEkkgA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9KqBGANpgBQCUiA3gFCJ2IBOmUIDShMAzlCQEQBUeIpn68yAbmoBfIA

Modularity, Objects, and State 3.3.3

"+" "-" "*"43 45 42

"*table*"

"a" "b"97 98

"letters"

"math"

table

Figure 3.23: A two-dimensional table.

When we look up an item, we use the �rst key to identify the correct subtable. Then we use

the second key to identify the record within the subtable.

Ifunction lookup(key_1, key_2, table) {

const subtable = assoc(key_1, tail(table));

if (subtable === undefined) {

return undefined;

} else {

const record = assoc(key_2, tail(subtable));

if (record === undefined) {

return undefined;

} else {

return tail(record);

}

}

}

To insert a new item under a pair of keys, we use assoc to see if there is a subtable stored

under the �rst key. If not, we build a new subtable containing the single record (key_2, value)

and insert it into the table under the �rst key. If a subtable already exists for the �rst key, we

insert the new record into this subtable, using the insertion method for one-dimensional tables

292 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwM6rhAFAawKYCeANIgE54RykAmqAlIgN4BQibZeUIpSMqA+mBAAbYVnKUa9Vu1nsA-InDU8wGGDzUZc2QC5EeAI4hkY-MUQALPMmpZrt8RSq06b7TtmKHdiS+meOvpoGNjmJFDIMGJ+Um4A3MwAvsygkLAIiAC2yPj8kQBGwnhYDCyylGCoUIjCmKb5yEV4iAC8tXxQWABEAFSFxb3ddImyadDwSHVwOCAADriE-ACMJOb8AExlHhUI1YioIAUDLe0hmIsEKxFRYnUQDScJO+wwwIhYh8dNxW2t7cpVOpNNtArJyFweEowCo1BpqKNPEkDMJUC1ymC2JV9rFqG0UOgLusNjdop8jk8Ri8dG8Pri-gCYUD4aDMXIIdwkIC4ZpEZjkXhUejqWCOVDImTcVS2YgUoE5ewFWxxhleFU8KQuutVohiSQAG6mEB4Vk6bE1L4nfHnMJLHUSu71YSNZrPQK08nfZoM6Gw4HUU1gtFQRpk+6PH54IgimWIOZRUhYYSdS7XOMJ1MkxCG4TGtzR2Oxh1Jp0u4puaVIlFopgx9jmjiSPFnQm2q5Z4uWyNutke+n-Rl+lm1nQASECwdDYi7zWj48LgXjMETS8TeuzRpNBYXhc7FO7z3nbAFQpHC8nxdxBs3lf5IqVso8KsmiGofHjUAgliwWUD4M4nLZD63TTLMczdHWciKKB8yQXoQEDog3TqGimoQTuiCKChGpQHBcj6BqpBUD+JDdAAqmAOBgHAADuSBwHMGrIKqiAALSsYgJzDHyj7-pCSBvqgH5fokKTPpk2GaqmOrrjmxo3K6Z5YnsFr7t6LahNJpJiJSPEejOvyIdy-p-uwF63FgJzbguq5Jim2okLZsk3nQ1kYWwxaUresrVsKgQNv2BKaeunkHjxsh9s4NA+sZw4Ypi5lkgZUZ4YuGZOUsWZyVuqUynuXrlj2OgnjW8VBpwU5OE2165ia4WKh4KRieAEyZDBCwObqmUKeWSmIA2yXWq2WmcRZukePpamGf8vrMiCfV8YBsW8o1vkLfWKmNi4Q3Bd1o1JVNJreRF7xVdtRlMjyAbrToYpcpd-r1cea1lYEd37TEUUBk9vENSkzANjU7TJtUPT9JGQxUpJXTdMg3SkQU8OIMsAAMERUu1PRwwjSNQCMQA

Modularity, Objects, and State 3.3.3

described above:

Ifunction insert(key_1, key_2, value, table) {

const subtable = assoc(key_1, tail(table));

if (subtable === undefined) {

set_tail(table,

pair(list(key_1, pair(key_2, value)),

tail(table)));

} else {

const record = assoc(key_2, tail(table));

if (record === undefined) {

set_tail(subtable,

pair(pair(key_2, value),

tail(subtable)));

} else {

set_tail(record, value);

}

}

}

Creating local tables

The lookup and insert operations de�ned above take the table as an argument. This enables

us to use programs that access more than one table. Another way to deal with multiple tables is

to have separate lookup and insert functions for each table. We can do this by representing a

table procedurally, as an object that maintains an internal table as part of its local state. When

sent an appropriate message, this “table object” supplies the function with which to operate on

the internal table. Here is a generator for two-dimensional tables represented in this fashion:

Ifunction make_table() {

const local_table = list("*table*");

function lookup(key_1, key_2) {

const subtable = assoc(key_1, tail(local_table));

if (subtable === undefined) {

return undefined;

} else {

const record = assoc(key_2, tail(subtable));

if (record === undefined) {

return undefined;

} else {

return tail(record);

}

}

}

function insert(key_1, key_2, value) {

const subtable = assoc(key_1, tail(local_table));

293 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwM6rhAFAawKYCeANIgE54RykAmqAlIgN4BQibZeUIpSMqA+mBAAbYVnKUa9Vu1nsA-InDU8wGGDzUZc2QC5EeAI4hkY-MUQALPMmpZrt8RSq06b7TtmKHdiS+meOvpoGNjmJFDIMGJ+Um4A3MwAvsygkLAIiOqoeKRQuIT8AIwk5vwATCQAbqYgeBHIAEbCeAwsspRgqFCIqCCNkc14iAC8KOiYBQTFDdFYgy0JHjDAiFh9A00toyNjyqrqmm0esjlQ-JFzC-UngbIADlGkWMJ8+WUliI8wz2WViDVhHU3ERbndPJcxNc3HRErIkgZhDkmGDEJ1uhxJNRRuNQlMKrMoVtWrDUSs1rFsbs9mAVGoNNRjuC2GcLlExBtrqDmeDvs8+fj-oDgdyeWLIet+tCloEEXgkcN2szWRLKdVaq04Z4UvDkkA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwM6rhAFAawKYCeANIgE54RykAmqAlIgN4BQibZeUIpSMqA+mBAAbYVnKUa9Vu1nsA-InDU8wGGDzUZc2QC5EeAI4hkY-MUQALPMmpZrt8RSq06b7TtmKHdiS+meOvpoGNjmJFDIMGJ+Um4A3MwAvsygkLAIiAC2yPj8kQBGwnhYDCyylGCoUIjCmKb5yEV4iAC8tXxQWABEAFSFxb3ddImyadDwSHVwOCAADriE-ACMJOb8AExlHhUI1YioIAUDLe0hmIsEKxFRYnUQDScJO+wwwIhYh8dNxW2t7cpVOpNNtArJyFweEowCo1BpqKNPEkDMJUC1ymC2JV9rFqG0UOgLusNjdop8jk8Ri8dG8Pri-gCYUD4aDMXIIdwkIC4ZpEZjkXhUejqWCOVDImTcVS2YgUoE5ewFWxxhleFU8KQuutVohiSQAG6mEB4Vk6bE1L4nfHnMJLHUSu71YSNZrPQK08nfZoM6Gw4HUU1gtFQRpk+6PH54IgimWIOZRUhYYSdS7XOMJ1MkxCG4TGtzR2Oxh1Jp0u4puaVIlFopgx9jmjiSPFnQm2q5Z4uWyNutke+n-Rl+lm1nQASECwdDYi7zWj48LgXjMETS8TeuzRpNBYXhc7FO7z3nbAFQpHC8nxdxBs3lf5IqVso8KsmiGofHjUAgliwWUD4M4nLZD63TTLMczdHWciKKB8yQXoQEDog3TqGimoQTuiCKChGpQHBcj6BqpBUD+JDdAAqmAOBgHAADuSBwHMGrIKqiAALSsYgJzDHyj7-pCSBvqgH5fokSRAA

Modularity, Objects, and State 3.3.3

if (subtable === undefined) {

set_tail(local_table,

pair(list(key_1, pair(key_2, value)),

tail(local_table)));

} else {

const record = assoc(key_2, tail(subtable));

if (record === undefined) {

set_tail(subtable,

pair(pair(key_2, value),

tail(subtable)));

} else {

set_tail(record, value);

}

}

}

function dispatch(m) {

return m === "lookup"

? lookup

: m === "insert"

? insert

: error(m, "Unknown operation -- table");

}

return dispatch;

}

Using make_table, we could implement the get and put operations used in section 2.4.3 for

data-directed programming, as follows:

Iconst operation_table = make_table();

const get = operation_table("lookup");

const put = operation_table("insert");

The function get takes as arguments two keys, and put takes as arguments two keys and

a value. Both operations access the same local table, which is encapsulated within the object

created by the call to make_table.

Exercise 3.24

In the table implementations above, the keys are tested for equality using equal (called by

assoc). This is not always the appropriate test. For instance, we might have a table with

numeric keys in which we don’t need an exact match to the number we’re looking up, but

only a number within some tolerance of it. Design a table constructor make_table that takes

as an argument a same_key function that will be used to test “equality” of keys. The function

make_table should return a dispatch function that can be used to access appropriate lookup

and insert functions for a local table.

294 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwM6rhAFAawKYCeANIgE54RykAmqAlIgN4BQibZeUIpSMqA+mBAAbYVnKUa9Vu1nsA-InDU8wGGDzUZc2QC5EeAI4hkY-MUQALPMmpZrt8RSq06b7TtmKHdiS+meOvpoGNjmJFDIMGJ+Um4A3MwAvsygkLAIiAC2yPj8kQBGwnhYDCyylGCoUIjCmKb5yEV4iAC8tXxQWABEAFSFxb3ddImyadDwSHVwOCAADriE-ACMJOb8AExlHhUI1YioIAUDLe0hmIsEKxFRYnUQDScJO+wwwIhYh8dNxW2t7cpVOpNNtArJyFweEowCo1BpqKNPEkDMJUC1ymC2JV9rFqG0UOgLusNjdop8jk8Ri8dG8Pri-gCYUD4aDMXIIdwkIC4ZpEZjkXhUejqWCOVDImTcVS2YgUoE5ewFWxxhleFU8KQuutVohiSQAG6mEB4Vk6bE1L4nfHnMJLHUSu71YSNZrPQK08nfZoM6Gw4HUU1gtFQRpk+6PH54IgimWIOZRUhYYSdS7XOMJ1MkxCG4TGtzR2Oxh1Jp0u4puaVIlFopgx9jmjiSPFnQm2q5Z4uWyNutke+n-Rl+lm1nQASECwdDYi7zWj48LgXjMETS8TeuzRpNBYXhc7FO7z3nbAFQpHC8nxdxBs3lf5IqVso8KsmiGofHjUAgliwWUD4M4nLZD63TTLMczdHWciKKB8yQXoQEDog3TqGimoQTuiCKChGpQHBcj6BqpBUD+JDdAAqmAOBgHAADuSBwHMGrIKqiAALSsYgJzDHyj7-pCSBvqgH5fokKQNgxTGqmWpzZLkeDSaUiQNgA5pw+ISaQzGTApIFwDM8zccwDZzCANTtBpWkIDp2FoVSzAmV03TIN0pEFC5iDLAADFSqmOc5rncUAA

Modularity, Objects, and State 3.3.3

Exercise 3.25

Generalizing one- and two-dimensional tables, show how to implement a table in which values

are stored under an arbitrary number of keys and di�erent values may be stored under di�erent

numbers of keys. The lookup and insert functions should take as input a list of keys used to

access the table.

Exercise 3.26

To search a table as implemented above, one needs to scan through the list of records. This

is basically the unordered list representation of section 2.3.3. For large tables, it may be more

e�cient to structure the table in a di�erent manner. Describe a table implementation where

the (key, value) records are organized using a binary tree, assuming that keys can be ordered

in some way (e.g., numerically or alphabetically). (Compare exercise 2.66 of chapter 2.)

Exercise 3.27

Memoization (also called tabulation) is a technique that enables a function to record, in a local

table, values that have previously been computed. This technique can make a vast di�erence

in the performance of a program. A memoized function maintains a table in which values of

previous calls are stored using as keys the arguments that produced the values. When the

memoized function is asked to compute a value, it �rst checks the table to see if the value

is already there and, if so, just returns that value. Otherwise, it computes the new value in

the ordinary way and stores this in the table. As an example of memoization, recall from

section 1.2.2 the exponential process for computing Fibonacci numbers:

Ifunction fib(n) {

return n === 0

? 0

: n === 1

? 1

: fib(n - 1) + fib(n - 2);

}

The memoized version of the same function is

Iconst memo_fib = memoize(n => n === 0

? 0

: n === 1

? 1

: memo_fib(n - 1) +

memo_fib(n - 2)

);

295 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMGAjAFGAlIg3gKESMQCcBTKEEpJAXnsQAZDjXiB+Jlt1gLkToMAjNx6tOIsT34oMSALSIhOANTI0mRIoBMWANz4Avvnyz0ANn1A
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9KqBGANpgBQCUiA3gFCJ2IBOmUIDShMAzlCQEQBUeIpn68yAbmoBfaqEiwEiVJ05wIJLAE8ANI0wQ4DACacKNenpZtEXbGBCFCJJgeOnaFz4gD8icEcxgGDBMIw8vegAuREwARxBUJy1dAAtMVCMSNIznfUMTMkLwiPpfbMyXfPcSz2jlVXVkxDwYJ0q3QskZOWh4djg4dBAABw1MHWaCYjNigzBuPVcjRABeJRU1MYmWpyFpiWKmKyR25ZXzvzAAoJCwmrpff0Dg0OKI6J3cpYPu8F7FYKcTAMHhNABuiRAmF0e0wMwscwWp1W6waWxhqFaJFhnUOzFYJzyxlWFyeN1e9x8iCBUFwmN2U2hiGGmIYJBZMDZ4MhcO0b0pAq8nxxRUp0RpdKxp10EMIUJ+sj+CiQyEwyDgMAAXqRgPD6IioJNhCi0Fg6cJyJILEcCYgAB6rAB8VH5dANzKYYPgIE4hE02AMyGGICgoWwTE4DkNrs8a0IAyGoztGOEBxKMGAiHZnu9vv9geDoaM4cwkcIhvOazJLyMevu7ojUZRwBIdrTlMBwJ4yb0ZagKemVspNusjfLQ68UhihCBLoFI6QwxzcB9foDcCDIbDY6gE88MgsUi61HdqvV2CC+BNao12pISBWzofFwADDHBTVfG+Pz-ENFn2sACM76-hEvjAaBP7RGecAXjA+D3ogAC0iCARQADUIGQV4MFwQhSAoQATGQWGCgc1C4ZeJAAKwSEAA

Modularity, Objects, and State 3.3.4

where the memoizer is de�ned as

Ifunction memoize(f) {

const table = make_table();

return x => {

const previously_computed_result

= lookup(x, table);

if (previously_computed_result === undefined) {

const result = f(x);

insert(x, result, table);

return result;

} else {

return previously_computed_result;

}

};

}

Draw an environment diagram to analyze the computation of memo_fib(3). Explain why

memo_fib computes the nth Fibonacci number in a number of steps proportional to n. Would

the scheme still work if we had simply de�ned memo_fib to be memoize(fib)?

3.3.4 A Simulator for Digital Circuits

Designing complex digital systems, such as computers, is an important engineering activity.

Digital systems are constructed by interconnecting simple elements. Although the behavior

of these individual elements is simple, networks of them can have very complex behavior.

Computer simulation of proposed circuit designs is an important tool used by digital systems

engineers. In this section we design a system for performing digital logic simulations. This

system typi�es a kind of program called an event-driven simulation, in which actions (“events”)

trigger further events that happen at a later time, which in turn trigger more events, and so so.

Our computational model of a circuit will be composed of objects that correspond to the

elementary components from which the circuit is constructed. There are wires, which carry

digital signals. A digital signal may at any moment have only one of two possible values, 0 and

1. There are also various types of digital function boxes, which connect wires carrying input

signals to other output wires. Such boxes produce output signals computed from their input

signals. The output signal is delayed by a time that depends on the type of the function box.

For example, an inverter is a primitive function box that inverts its input. If the input signal

to an inverter changes to 0, then one inverter-delay later the inverter will change its output

signal to 1. If the input signal to an inverter changes to 1, then one inverter-delay later the

inverter will change its output signal to 0. We draw an inverter symbolically as in �gure 3.24.

An and-gate, also shown in �gure 3.24, is a primitive function box with two inputs and one

output. It drives its output signal to a value that is the logical and of the inputs. That is, if both

296 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9KqBGANpgBQCUiA3gFCJ2IBOmUIDShMAzlCQEQBUeIpn68yAbmoBfaqEiwEiVJ05wIJLAE8ANI0wQ4DACacKNenpZtEXbGBCFCJJgeOnaFz4gD8icEcxgGDBMIw8vegAuREwARxBUJy1dAAtMVCMSNIznfUMTMkLwiPpfbMyXfPcSz2jlVXVkxDwYJ0q3QskZOWh4djg4dBAABw1MHWaCYjNigzBuPVcjRABeJRU1MYmWpyFpiWKmKyR25ZXzvzAAoJCwmrpff0Dg0OKI6J3cpYPu8F7FYKcTAMHhNABuiRAmF0e0wMwscwWp1W6waWxhqFaJFhnUOzFYJzyxlWFyeN1e9x8iCBUFwmN2U2hiGGmIYJBZMDZ4MhcO0b0pAq8nxxRUp0RpdKxp10EMIUJ+sj+CiQyEwyDgMAAXqRgPD6IioJNhCi0Fg6cJyJILEcCYgAB6rAB8VH5dANzKYYPgIE4hE02AMyGGICgoWwTE4DkNrs8a0IAyGoztGOEBxKMGAiHZnu9vv9geDoaM4cwkcIhvOazJLyMevu7ojUZRwBIdrTlMBwJ4yb0ZagKemVspNusjfLQ68UhihCBLoFI6QwxzcB9foDcCDIbDY6gE88MgsUi6QA

Modularity, Objects, and State 3.3.4

of its input signals become 1, then one and-gate-delay time later the and-gate will force its

output signal to be 1; otherwise the output will be 0. An or-gate is a similar two-input primitive

function box that drives its output signal to a value that is the logical or of the inputs. That

is, the output will become 1 if at least one of the input signals is 1; otherwise the output will

become 0.

Inverter And-gate Or-gate

Figure 3.24: Primitive functions in the digital logic simulator.

We can connect primitive functions together to construct more complex functions. To ac-

complish this we wire the outputs of some function boxes to the inputs of other function boxes.

For example, the half-adder circuit shown in �gure 3.25 consists of an or-gate, two and-gates,

and an inverter. It takes two input signals, A and B, and has two output signals, S and C. S will

become 1 whenever precisely one of A and B is 1, and C will become 1 whenever A and B are

both 1. We can see from the �gure that, because of the delays involved, the outputs may be

generated at di�erent times. Many of the di�culties in the design of digital circuits arise from

this fact.

D

E

A

B

S

C

Figure 3.25: A half-adder circuit.

We will now build a program for modeling the digital logic circuits we wish to study. The

program will construct computational objects modeling the wires, which will “hold” the signals.

Function boxes will be modeled by functions that enforce the correct relationships among the

signals.

One basic element of our simulation will be a function make_wire, which constructs wires.

For example, we can construct six wires as follows:

Iconst a = make_wire();

297 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBAhgGzQfQKYogCwApRJYEBnASkQG8AoRRxGYRQmczMEDY8aeGCrV6TMYgBO2KCAlIARABME2eQG4GTAL6JsactlqbxbfLkV9Sg4YUoaTjKTLnJ0WXAUJQUMNJYEUlHbGiFp0YSQBSAC2KADW2JgA7jBStkZiaNKI5DAA5mDomABu6CCGALyIAAz2TFlQiHhkYJiRLeSIVdwYdYztgjnSmNEAnpi5BeiEYNhJJWXYIiFiLGyThVilaOWIAIQV3XMLO0sZDmIbRdu7R-M32H0XktKySKgYOHhEzYJt-B1ghcdHoDOdni9nAplLN1CttCEwmIBggmhAINgAA5QTC-BD-KwISzLC541oooRdRCYnwSSwAGjRLQJUSoT2R4FsTyRTApiEUHBpUE80RJDicb0Q0S6h0Q8jywyuaHk8OeAH4cvlNidyqqLgAuKUyqryAw4pUqiEODVmkbjJV656G6WHE0oRSKXFRS1W61ojHYr3MimOiGG7ASCRwOnRRnyACqYDiYDgSSQcExEZQLUQAFpc4gUlJ5ECEWIJS4BeQhQQNGEIBRGigqbEEslUtguXQG0JGgAjFvxRJFzvBHvkRoQQdtkdd8eNRTT4cdueN3RL9tpMdrzpVVvLrdqIA

Modularity, Objects, and State 3.3.4

const b = make_wire();

const c = make_wire();

const d = make_wire();

const e = make_wire();

const s = make_wire();

We attach a function box to a set of wires by calling a function that constructs that kind of

box. The arguments to the constructor function are the wires to be attached to the box. For

example, given that we can construct and-gates, or-gates, and inverters, we can wire together

the half-adder shown in �gure 3.25:

Ior_gate(a, b, d);

" ok "

Iand_gate(a, b, c);

" ok "

Iinverter(c, e);

" ok "

Iand_gate(d, e, s);

" ok "

Better yet, we can explicitly name this operation by de�ning a function half_adder that

constructs this circuit, given the four external wires to be attached to the half-adder:

Ifunction half_adder(a, b, s, c) {

const d = make_wire();

const e = make_wire();

or_gate(a, b, d);

and_gate(a, b, c);

inverter(c, e);

and_gate(d, e, s);

return "ok";

}

The advantage of making this de�nition is that we can use half_adder itself as a building

block in creating more complex circuits. Figure 3.26, for example, shows a full-adder composed

of two half-adders and an or-gate.
28

We can construct a full-adder as follows:

Ifunction full_adder(a, b, c_in, sum, c_out) {

const s = make_wire();

28
A full-adder is a basic circuit element used in adding two binary numbers. Here A and B are the bits at

corresponding positions in the two numbers to be added, and Cin is the carry bit from the addition one place to

the right. The circuit generates SUM, which is the sum bit in the corresponding position, and Cout , which is the

carry bit to be propagated to the left.

298 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwKZQPoGcbLAQwBsAKAdxgCdUBKRAbwChFnEqoQKlyriAiNTDjxFe1ANwMAvgwahIsBIizpsuAiW6oANIjCpSGAG5EQNekxZsOXSqj7LBakdWJ6DxwqfFSZc6PCR8ABMgjHx-BDJbHXCFMAw-ONpGFlZ0a0RNPmDQ2IDRYjyEBPAIsG9pRIDEAFt8AGtUDFgapuVkVrAoYhbtRABHUy9zVKtORAAHfEoemFadQdQvCWlZUrilVA7ULua5uyxki2YxpAALVGDiQ5Xfder2zsxF02uj0fTxqGmSG58qxR1RoYF52d6WT5IKYzMAgQiEHSw+EVNbyarACgITATKAUYig8EnSGIC5XAm3AFIKj4CgYHF4gkjCHsL4-fFDGgU+6KBwJTG7enspZ9GBQVA1QmbTCkoJC0w6UXilGUqUYam0wWghViiVM5i874wEhaxCKiVctGKGBYDDinEATxBHLlZhSzIy1owSJIGKxdNxLuoyu5SBgYGUFGezpNZslEAQWCgun0dOmFEQAF5JmniGbEXDCN5UjBgIhcza7VBHaDA5LUrzfQKAya3KnKEXUixeer-QyOYiU9CKB3mJJEKhCMo9Z2DWye5qOdQBwYhyOZyp583+8mV2m19IPiykKCLWVag0mvg0GAgvhiJLTohCNbugAGFGos8QDhUXa9QrXreD7EjKAE7EBtyfhsvLfhQv6YP+V7gfgOi9JKvKgUhN4oYgaGQSqjw7FAWBgdhwFHrhbJYRBPhQQ8KiEV0JHUTh7SHNOs5GqRt46GxH4qsAlCJtgWxPNx+DkRkoGMcR4lBvhIZpMJMnMYBEnTo+hq-KJRGqch8n-IpOTNHAYRqbM8yIEUYAxGpkoqgARhOCDIDaTnAHAPB8dOh4eja3rXFs7EAD7BccnYRbh+yIAAPJs2x-vsxDSUFBmpAeLAqkCTStr0IkJd0vQxGUdYsPG4ZJv0mbnsCNZrsW4aoJGTrCvixVJBIkVpBR2V7K0+ViUVAz7uFKrGVApkqYFrmlcwJZljJfV2ClM20Bm61Ra0s2dmGEZRq1i01ithxLlZJWdZFY4TlObpdcw5WJkpSZZlp01-HdLDzcQTmEC5bmoB5PBUImQY+R9qqvWxWjheDnZDsQvW5fsA1ERZfTWUuMOw11kOpWl4NXZOqBgx942TTpTHEMDUD1ZdWOjuFGX3QmSZsdVU0sWuX0-X9GDuZ5Bx4yTqoc2p0Ow-DiMpnlMlo+1ASY9j9Z4xdo7jkTwtkyjlN8ariDSNID1JlAFxmch1W9Sx94SEbppgIYTVirSQQTvg9rVQATDbLNWTeGDIPgYoYC7hBu9VADM3sVYgnn+4HTQh2HWYAKwSGNwBO8Hrv2sQif2vLCCSlrVt54gADUiCwfBS09KbnPi0rLDWahdd2aeGy-cgMAQEQGCedcACMvEe5J4xYAPmYba+iAAGQz0oHuT1mr706kAD8iAr+DABcSgT+ty+IKFe9L4gA8MAAkJ2G9YIvB+b0fwUL6f5+Nxv59XxFu9NZieK3zovAACS9siAwCCEoJwhBRCr07N-OC-dx4AOAR4MBEDhBQODJaJAscA5ikKEPKyHsdBwBAFACYpD7KKVjtZEoWD7zC1tq2Dwphqqd27r3fuAhVDoPwYrRu-DOxcKEOoQoI9abMHwBnJqWdQ45xwfHGRbsdAwPBvQjMAA+EWkDiAkLIaQ5cRgTA0BGqkYy1l8HENpDQyka4zFlFEZYsIZRaHnXCo+XgcB6i8HbtUHu8JbThDOMQSk7FbqmlLOWL0BZgkhhOsLdxQQECoG8YzdWN1V7JUuLKEJQZrar0fH4wgASIBBNejkkalRFK9SyJKQg6A0HqEMZ4Ymy89Z1KTNY2J1VvR6wIioGojphFEFcCmZhrpV5fSGUUsZiAACEG0mFGO2vWSBTSWFZkWc0vWXUClECKZcEphRnE5O2SwQm6TYYJKSSkrqTN9ajSMhACAqAcROLiC4uIMTyia2OV0rM8M5AF3iCc1ecg8npQeVgxAQRrRTCgIc3UYTfLjBqKffgDFIG8BUdfBpvcxnYtSLvVF99eC8imVigRN9+mDMgQS2BtQ0V2LiBSgRiAN7hGea8zpWC6Vf3HPAvENQAEAFUwD1DAHAUg2CJhNUDtUAAtPKzIthRB6zuY+GFWA4UlNuLbfAFsLwYBqVHR6DkDXAmNQwW2EBzVNEtbbcBWZqm2DybbFpNU7Uuu8LbLAtqjVeokPIvBOEHI6CCOIIAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwKZQPoGcbLAQwBsAKAdxgCdUBKRAbwChFnEqoQKlyriAiNTDjxFe1ANwMAvgwahIsBIizpsuAiW6oANIjCpSGAG5EQNekxZsOXSqj7LBakdWJ6DxwqfFSZc6PCR8ABMgjHx-BDJbHXCFMAw-ONpGFlZ0a0RNPmDQ2IDRYjyEBPAIsG9pRIDEAFt8AGtUDFgapuVkVrAoYhbtRABHUy9zVKtORAAHfEoemFadQdQvCWlZUrilVA7ULua5uyxki2YxpAALVGDiQ5Xfder2zsxF02uj0fTxqGmSG58qxR1RoYF52d6WT5IKYzMAgQiEHSw+EVNbyarACgITATKAUYig8EnSGIC5XAm3AFIKj4CgYHF4gkjCHsL4-fFDGgU+6KBwJTG7enspZ9GBQVA1QmbTCkoJC0w6UXilGUqUYam0wWghViiVM5i874wEhaxCKiVctGKGBYDDinEATxBHLlZhSzIy1owSJIGKxdNxLuoyu5SBgYGUFGezpNZslEAQWCgun0dOmFEQAF5JmniGbEXDCN5UjBgIhcza7VBHaDA5LUrzfQKAya3KnKEXUixeer-QyOYiU9CKB3mJJEKhCMo9Z2DWye5qOdQBwYhyOZyp583+8mV2m19IPiykKCLWVag0mvg0GAgvhiJLTohCNbugAGFGos8QDhUXa9QrXreD7EjKAE7EBtyfhsvLfhQv6YP+V7gfgOi9JKvKgUhN4oYgaGQSqjw7FAWBgdhwFHrhbJYRBPhQQ8KiEV0JHUTh7SHNOs5GqRt46GxH4qsAlCJtgWxPNx+DkRkoGMcR4lBvhIZpMJMnMYBEnTo+hq-KJRGqch8n-IpOTNHAYRqbM8yIEUYAxGpkoqgARhOCDIDaTnAHAPB8dOh4eja3rXFs7EAD7BccnYRbh+yIAAPJs2x-vsxDSUFBmpAeLAqkCTStr0IkJd0vQxGUdYsPG4ZJv0mbnsCNZrsW4aoJGTrCvixVJBIkVpBR2V7K0+ViUVAz7uFKrGVApkqYFrmlcwJZljJfV2ClM20Bm61Ra0s2dmGEZRq1i01ithxLlZJWdZFY4TlObpdcw5WJkpSZZlp01-HdLDzcQTmEC5bmoB5PBUImQY+R9qqvWxWjheDnZDsQvW5fsA1ERZfTWUuMOw11kOpWl4NXZOqBgx942TTpTHEMDUD1ZdWOjuFGX3QmSZsdVU0sWuX0-X9GDuZ5Bx4yTqoc2p0Ow-DiMpnlMlo+1ASY9j9Z4xdo7jkTwtkyjlN8ariDSNID1JlAFxmch1W9Sx94SEbppgIYTVirSQQTvg9rVQATDbLNWTeGDIPgYoYC7hBu9VADM3sVYgnn+4HTQh2HWYAKwSGNwBO8Hrv2sQif2vLCCSlrVt54gADUiCwfBS09KbnPi0rLDWahdd2aeGy-cgMAQEQYQ3tcACMvEe5J4xYAPmYbRPABk09KB7k9ZgP9OpAA-Igy-gwAXEoE-rVmr6IKFu+LxvK+duvWAL-viCH8fV+n5vSvr6+58RTvTWYniV86LwACS9siAwCCEoJwhBRBvxYB-OCnlB6-wAR4YBoDhDgODJaQIfsA5ikKEPKyHsdBwBAFACYRD7JGT9tZEo6D7zC1tq2Dwphqqd27r3fA-cBCqBQTgxWjdeERQ4UIdQhQR602YPgDOTUs6hxzmw0IWCE7Zx0JAu6NCMwAD4RZgOIIQ4hRDlxGBMDQEaqRjLWRwTEChZQqHnXCqYsowiLG5CsZSNcj5eBwHqLwdu1Qe7wltOEM4xBKTsVuqaUs5YvQFiCSGE6ws3FBAQKgLxjN1Y3RXslS4spglBmtivR8vjCD+IgIE162SRqVEUr1LIkpCDoGQeoAxnhiYHz1rUpMlDgnVW9HrAiKgaiOkEUQVwKYGGuhXl9QZhTRmIAAIQbXoYY7a9YwGNMYVmBZTS9ZdXyUQQplximFGcTE0R+tUnE1Cds4kvAEl6GSV1Jm+tRpGQgBAVAOIwhHOoXIbaHSYnVXhnIAu8RslbMyuAXJ6UnnoMQEEa0UwoAHN1Bc904wain34AxMBvBlEsEvis0ZOLmA7zRTfXgvJJnYr4ZfPpAywGEqgbUdFdi4iUr4Ygde4RXnvN+eg+lqRoFfwRr-AAqmAeoYA4CkCQHACYTVA7VAALQKsyLYUQesHmPlhVgeFxTbi23wBbC8GBqlR0eg5Q1wITUMFthAC1TQrW2xAVmKpthcm22aTVe1rrvC2ywHa413qJCyLjtgnCDkdAQHEEAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwKZQPoGcbLAQwBsAKAdxgCdUBKRAbwChFnEqoQKlyriAiNTDjxFe1ANwMAvgwahIsBIizpsuAiW6oANIjCpSGAG5EQNekxZsOXSqj7LBakdWJ6DxwqfFSZc6PCR8ABMgjHx-BDJbHXCFMAw-ONpGFlZ0a0RNPmDQ2IDRYjyEBPAIsG9pRIDEAFt8AGtUDFgapuVkVrAoYhbtRABHUy9zVKtORAAHfEoemFadQdQvCWlZUrilVA7ULua5uyxki2YxpAALVGDiQ5Xfder2zsxF02uj0fTxqGmSG58qxR1RoYF52d6WT5IKYzMAgQiEHSw+EVNbyarACgITATKAUYig8EnSGIC5XAm3AFIKj4CgYHF4gkjCHsL4-fFDGgU+6KBwJTG7enspZ9GBQVA1QmbTCkoJC0w6UXilGUqUYam0wWghViiVM5i874wEhaxCKiVctGKGBYDDinEATxBHLlZhSzIy1owSJIGKxdNxLuoyu5SBgYGUFGezpNZslEAQWCgun0dOmFEQAF5JmniGbEXDCN5UjBgIhcza7VBHaDA5LUrzfQKAya3KnKEXUixeer-QyOYiU9CKB3mJJEKhCMo9Z2DWye5qOdQBwYhyOZyp583+8mV2m19IPiykKCLWVag0mvg0GAgvhiJLTohCNbugAGFGos8QDhUXa9QrXreD7EjKAE7EBtyfhsvLfhQv6YP+V7gfgOi9JKvKgUhN4oYgaGQSqjw7FAWBgdhwFHrhbJYRBPhQQ8KiEV0JHUTh7SHNOs5GqRt46GxH4qsAlCJtgWxPNx+DkRkoGMcR4lBvhIZpMJMnMYBEnTo+hq-KJRGqch8n-IpOTNHAYRqbM8yIEUYAxGpkoqgARhOCDIDaTnAHAPB8dOh4eja3rXFs7EAD7BccnYRbh+yIAAPJs2x-vsxDSUFBmpAeLAqkCTStr0IkJd0vQxGUdYsPG4ZJv0mbnsCNZrsW4aoJGTrCvixVJBIkVpBR2V7K0+ViUVAz7uFKrGVApkqYFrmlcwJZljJfV2ClM20Bm61Ra0s2dmGEZRq1i01ithxLlZJWdZFY4TlObpdcw5WJkpSZZlp01-HdLDzcQTmEC5bmoB5PBUImQY+R9qqvWxWjheDnZDsQvW5fsA1ERZfTWUuMOw11kOpWl4NXZOqBgx942TTpTHEMDUD1ZdWOjuFGX3QmSZsdVU0sWuX0-X9GDuZ5Bx4yTqoc2p0Ow-DiMpnlMlo+1ASY9j9Z4xdo7jkTwtkyjlN8ariDSNID1JlAFxmch1W9Sx94SEbppgIYTVirSQQTvg9rVQATDbLNWTeGDIPgYoYC7hBu9VADM3sVYgnn+4HTQh2HWYAKwSGNwBO8Hrv2sQif2vLCCSlrVt54gADUiCwfBS09KbnPi0rLDWahdd2aeGxhg7kZNbmYATCAUA6HAA-9zT04qp3jsYGGo-3sLtuth4pjVb9yAwBARBenA3QCKowgkDPA-4xF+AZ01Wehznk-d872c6PT2NzxmAB8ItOCQw9QKPy5GCYNAjakYy1le7fztl3TAh8aZ60fLwOA9ReAKUtEgVe69N5gG3m8DSxIsCZg2q+B+LAAD8iAACMBDmAAC4lC4KzGQ7GxD8HYyoU1TEeIsA6F4AASXtkQGAQQlDv1EO3aoG94S2nCGcYglJ2K3VNKWcsXoCxSJDCdYWMCggIFQAgxm6sboP2SpcWU0igzWwfo+URhBxEQEka9YxI1KiKV6lkSUhB0ACP3r-TwxMsyvj1q4pM1kShIJwVmb0esCIqBqI6IQ6hXApiXq6B+X0YmbwSYgAAhBtRef9tr1nfp45eoT4l-z1l1cxRBLGXGsYUMoQSyjvUuro4msiynEl4BovQ2iupM31qNIyEAICoBxGEWplJlHlE1qMlR1V4ZyALvEYxpTMrgFMelPpSDEBBGtFMKA1TdQtPdOMGoNDED8AYoI8hnZiEpMsQky5qQqHHPWlmXgvIbm8HuVc1UUS97qE+Q82oJzeBALKB8xuqRiHhEGcMwJlJ-mdmYXBTyCMOEAFUwD1HQaQJAcAJhNUDtUAAtISzItghGM3Co+LZWAdnWNuLbfAFsLwYGcVHR6DkmXAlZQwW2EBOVNG5bbfhWYnG2FMbbbxNUBViu8LbEJUqWUyokNfJ2xAIA6E5EAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwKZQPoGcbLAQwBsAKAdxgCdUBKRAbwChFnEqoQKlyriAiNTDjxFe1ANwMAvgwahIsBIizpsuAiW6oANIjCpSGAG5EQNekxZsOXSqj7LBakdWJ6DxwqfFSZc6PCR8ABMgjHx-BDJbHXCFMAw-ONpGFlZ0a0RNPmDQ2IDRYjyEBPAIsG9pRIDEAFt8AGtUDFgapuVkVrAoYhbtRABHUy9zVKtORAAHfEoemFadQdQvCWlZUrilVA7ULua5uyxki2YxpAALVGDiQ5Xfder2zsxF02uj0fTxqGmSG58qxR1RoYF52d6WT5IKYzMAgQiEHSw+EVNbyarACgITATKAUYig8EnSGIC5XAm3AFIKj4CgYHF4gkjCHsL4-fFDGgU+6KBwJTG7enspZ9GBQVA1QmbTCkoJC0w6UXilGUqUYam0wWghViiVM5i874wEhaxCKiVctGKGBYDDinEATxBHLlZhSzIy1owSJIGKxdNxLuoyu5SBgYGUFGezpNZslEAQWCgun0dOmFEQAF5JmniGbEXDCN5UjBgIhcza7VBHaDA5LUrzfQKAya3KnKEXUixeer-QyOYiU9CKB3mJJEKhCMo9Z2DWye5qOdQBwYhyOZyp583+8mV2m19IPiykKCLWVag0mvg0GAgvhiJLTohCNbugAGFGos8QDhUXa9QrXreD7EjKAE7EBtyfhsvLfhQv6YP+V7gfgOi9JKvKgUhN4oYgaGQSqjw7FAWBgdhwFHrhbJYRBPhQQ8KiEV0JHUTh7SHNOs5GqRt46GxH4qsAlCJtgWxPNx+DkRkoGMcR4lBvhIZpMJMnMYBEnTo+hq-KJRGqch8n-IpOTNHAYRqbM8yIEUYAxGpkoqgARhOCDIDaTnAHAPB8dOh4eja3rXFs7EAD7BccnYRbh+yIAAPJs2x-vsxDSUFBmpAeLAqkCTStr0IkJd0vQxGUdYsPG4ZJv0mbnsCNZrsW4aoJGTrCvixVJBIkVpBR2V7K0+ViUVAz7uFKrGVApkqYFrmlcwJZljJfV2ClM20Bm61Ra0s2dmGEZRq1i01ithxLlZJWdZFY4TlObpdcw5WJkpSZZlp01-HdLDzcQTmEC5bmoB5PBUImQY+R9qqvWxWjheDnZDsQvW5fsA1ERZfTWUuMOw11kOpWl4NXZOqBgx942TTpTHEMDUD1ZdWOjuFGX3QmSZsdVU0sWuX0-X9GDuZ5Bx4yTqoc2p0Ow-DiMpnlMlo+1ASY9j9Z4xdo7jkTwtkyjlN8ariDSNID1JlAFxmch1W9Sx94SEbppgIYTVirSQQTvg9rVQATDbLNWTeGDIPgYoYC7hBu9VADM3sVYgnn+4HTQh2HWYAKwSGNwBO8Hrv2sQif2vLCCSlrVt54gADUiCwfBS09KbnPi0rLDWahdd2aeGy-cgMAQEQYQ3tcACMvEe5J4xYAPmYbRPABk09KB7k9ZgP9OpAA-Igy-gwAXEoE-rVmr6IKFu+LxvK+duvWAL-viCH8fV+n5vSvr6+58RTvTWYniV86LwACS9siAwCCEoJwhBRBvxYB-OCnlB6-wAR4YBoDhDgODJaQIfsA5ikKEPKyHsdBwBAFACYRD7JGT9tZEo6D7zC1tq2Dwphqqd27r3fA-cBCqBQTgxWjdeERQ4UIdQhQR602YPgDOTUs6hxzmw0IWCE7Zx0JAu6NCMwAD4RZgOIIQ4hRDlxGBMDQEaqRjLWRwTEChZQqHnXCqYsowiLG5CsZSNcj5eBwHqLwdu1Qe7wltOEM4xBKTsVuqaUs5YvQFiCSGE6ws3FBAQKgLxjN1Y3RXslS4spglBmtivR8vjCD+IgIE162SRqVEUr1LIkpCDoGQeoAxnhiYHz1rUpMlDgnVW9HrAiKgaiOkEUQVwKYGGuhXl9QZhTRmIAAIQbXoYY7a9YwGNMYVmBZTS9ZdXyUQQplximFGcTE0R+tUnE1Cds4kvAEl6GSV1Jm+tRpGQgBAVAOIwhHOoXIbaHSYnVXhnIAu8RslbMyuAXJ6UnnoMQEEa0UwoAHN1Bc904wain34AxMBvBlEsEvis0ZOLmA7zRTfXgvJJnYr4ZfPpAywGEqgbUdFdi4iUr4Ygde4RXnvN+eg+lqRoFfwRr-AAqmAeoYA4CkCQHACYTVA7VAALQKsyLYUQesHmPlhVgeFxTbi23wBbC8GBqlR0eg5Q1wITUMFthAC1TQrW2xAVmKpthcm22aTVe1rrvC2ywHa413qJCyLjtgoIOg+g3CAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBAhgGzQfQKYogCwApRJYEBnASkQG8AoRRxGYRQmczMEDY8aeGCrV6TMYgBO2KCAlIARABME2eQG4GTAL6JsactlqbxbfLkV9Sg4YUoaTjKTLnJ0WXAUJQUMNJYEUlHbGiFp0YSQBSAC2KADW2JgA7jBStkZiaNKI5DAA5mDomABu6CCGALyIAAz2TFlQiHhkYJiRLeSIVdwYdYztgjnSmNEAnpi5BeiEYNhJJWXYIiFiLGyThVilaOWIAIQV3XMLO0sZDmIbRdu7R-M32H0XktKySKgYOHhEzYJt-B1ghcdHoDOdni9nAplLN1CttCEwmIBggmhAINgAA5QTC-BD-KwISzLC541oooRdRCYnwSSwAGjRLQJUSoT2R4FsTyRTApiEUHBpUE80RJDicb0Q0S6h0Q8jywyuaHk8OeAH4cvlNidyqqLgAuKUyqryAw4pUqiEODVmkbjJV656G6WHE0oRSKXFRS1W61ojHYr3MimOiGG7ASCRwOnRRnyACqYDiYDgSSQcExEZQLUQAFpc4gUlJ5ECEWIJS4BeQhQQNBEAYMFeatdMi2dREwK0g24R5YqW8rgmE6HzbUrCG3GbN7osxY5Xi4e6b+1NBzNjg8h3QRw3Ue7PWSJ6lsIyySyWnPIZKl-ug4IS4QzxSt3zYglMLBookDHkv2AoF4MBfoyACO5TlJeXbUrSgHAYgYHYBBdbbqO2C-tg-4fkB2CEFQ4JXi4ZjurhW47oSSA-n+OIIeUJH4VB3i+CRyGvvEiQ0ThkELkgNKpDMPBoFOAkvruSDAFGmHYnSHFcVCiBERYMksaJLwoBImBSYQMn0dxiCMX4SnhGRURDDi4kIDimkcYyMBQNgor4baClaeBJ7MHZorKeRpmYFIakaVA0muTZHmXra+kuYhbm2fZIneRwODRNi4wcZFEE6XJCU9H45mSYFaVLHFJkwEIEbUa5BUhbF+EQBQjTThptJUrxdIxbGiDZaWjBrOwnD2clmCpTJl6XMMuWWfl1kdccLVdeItp+epVnBdN8yzdyuj6IYHYmOFPh+ItAVBVFlBTjNtJzaNOKHctUVnWtF3ciEUEcV5JlvokKAKmAigoOkO0EUgaAcAB1SkXyECyFImGfjhX0Yb9smSs58M-Sg4MqbakORhhOKw4+32-YysNhcMKOEygxPYRj3mUbj5AEwj6MZZKEWo4jyHGTmY5oVRDPs5TQx5HhAN7UxAuMj+bJGVzgzAKk5DmrzuOM2jSOEeYuHK-+-MU0EnN8lIisTNrUC60z6tIBFdM66riNFTmt5QHAuIU7Bblkqeev4XyABGegIMLmD+8A0Y4VLI2drpWUCVrwvUAAPgnobiLDiAADxC1RWFfoQzkR3NPL9CpH1cMcsMm+h-7u6eUSR4wtVCI0IFUqXqWXUwJUGBI5VRVptcXuyUdyaXFc2wBsOgYXIR8k7LvjwzEf4asrBx9n+P52hwjGnp1PLw4XdlYNFXj8ffeb-Hp1MoIHeMCCW37yYjeKy8L9VNbW+3+IPX+2ggecCHMOhAjZQCCI-Z4Ys-BS3pCnZ4LVCClwamPU2Ndr4IFOrA30el9px2EF-MQ98wQA19HPSufNgHYEVvgssDgi6hBCM-RoUsqQLztujJ4P8A5gCDoAtIBdwE8yrmbNhMDfTwMQeXbCZCVaTzQWADBWDRqXw2qCbaepSGsIjk9MIjC9JmFdkzVubEDFoy5HQXRJVihlQjJgRQegUCjCpAAJg0LolAP1MB5GzIkOxaAHFUgAMyuLqogaMnjvG2PsY4qoABWDQs9gB2XUr4hxhAUmjAHjffCpCBZpKiYgAA1MgKGuMc44SgPogWCjFFME9noz6es3o5j-nkGAHxMDRlwgARklk4y2OQuk72qIgAAZCMnITihkpw1NUFOhpyCDNdDURAScBk7y6XQAAkOIG0kylnDNWeQPZsoNk1I1Bs7ZJhwyRk6UcuMABJMA2wYCKE1KuEsmDrlRjpAsh5Tz0AvLeZsEsTTBhhK8XZR8PSmhOMZHAEAUBMQIsvHyMJT5RL-T1LohqDwqQtLaUUTpTYJgDihdUmpFKxDEvHCgPpX8UCJJsekwg4KInpMZJghw6QKgAD4fLjnhYihF90dSFSemIW8h4UDQrRVEc8N8niSqiI+WFoT1LovInNKC8g4BxDhPWby+L2nuIsL8iZ-SFnrNGeMo56zpmIFOWGNZ+yVkJ2dSczBuyhmuomXas5NROWIC+bc1V8hHnPNeRaSgnzdA3J+dCsN-zgaRoHCCoys8PEQrhtC2lcKEVItAT7FSJq7z4gpJii42KNyLDxXAVpxqfqEGpaS6V5LKXtubauFV+t1GMuSVEx8ma2VRI5e2xg3K+VjlJYKgtIrNzTwlR6UtYAoWng8Rquuiql1StVSWjdg9nq6R1Xq0FqJLHWNamAWdoT83IqLfFJ5R8SoForQ4KtM5Ti1vrUUFMAFO2bHYFe5F9K+2RL8aMQDVie5MpHYgQN4gJ38unbeqAc7ZwLtqdu5Vz7hXMEfT3TAOHQFPG1bq-VKEVJGp-XAACItD1yU6Ps+1jqnQ5D9b6GZMaIzfNwn8iNQL0BpoNSZfA6BgC4g9BGR8jJfaS0ZBAS8ujXlVFLj2OaujKhSmMWpp4rLIWC1k-yOaJas3ScQIZhTHD8NJMIBARkSxFVDshYoezkstVHrI5zNxRj3w6fMSE32PnEh+d0YxrTvnjxck2f5puyAgvJEi8EUTaBxP7ikwZuTyA7BAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBAhgGzQfQKYogCwApRJYEBnASkQG8AoRRxGYRQmczMEDY8aeGCrV6TMYgBO2KCAlIARABME2eQG4GTAL6JsactlqbxbfLkV9Sg4YUoaTjKTLnJ0WXAUJQUMNJYEUlHbGiFp0YSQBSAC2KADW2JgA7jBStkZiaNKI5DAA5mDomABu6CCGALyIAAz2TFlQiHhkYJiRLeSIVdwYdYztgjnSmNEAnpi5BeiEYNhJJWXYIiFiLGyThVilaOWIAIQV3XMLO0sZDmIbRdu7R-M32H0XktKySKgYOHhEzYJt-B1ghcdHoDOdni9nAplLN1CttCEwmIBggmhAINgAA5QTC-BD-KwISzLC541oooRdRCYnwSSwAGjRLQJUSoT2R4FsTyRTApiEUHBpUE80RJDicb0Q0S6h0Q8jywyuaHk8OeAH4cvlNidyqqLgAuKUyqryAw4pUqiEODVmkbjJV656G6WHE0oRSKXFRS1W61ojHYr3MimOiGG7ASCRwOnRRnyACqYDiYDgSSQcExEZQLUQAFpc4gUlJ5ECEWIJS4BeQhQQNBEAYMFeatdMi2dREwK0g24R5YqW8rgmE6HzbUrCG3GbN7osxY5Xi4e6b+1NBzNjg8h3QRw3Ue7PWSJ6lsIyySyWnPIZKl-ug4IS4QzxSt3zYglMLBookDHkv2AoF4MBfoyACO5TlJeXbUrSgHAYgYHYBBdbbqO2C-tg-4fkB2CEFQ4JXi4ZjurhW47oSSA-n+OIIeUJH4VB3i+CRyGvvEiQ0ThkELkgNKpDMPBoFOAkvruSDAFGmHYnSHFcVCiBERYMksaJLwoBImBSYQMn0dxiCMX4SnhGRURDDi4kIDimkcYyMBQNgor4baClaeBJ7MHZorKeRpmYFIakaVA0muTZHmXra+kuYhbm2fZIneRwODRNi4wcZFEE6XJCU9H45mSYFaVLHFJkwEIEbUa5BUhbF+EQBQjTThptJUrxdIxbGiDZaWjBrOwnD2clmCpTJl6XMMuWWfl1kdccLVdeItp+epVnBdN8yzdyuj6IYHYmOFPh+ItAVBVFlBTjNtJzaNOKHctUVnWtF3ciEUEcV5JlvokKAKmAigoOkO0EUgaAcAB1SkXyECyFImGfjhX0Yb9smSs58M-Sg4MqbakORhhOKw4+32-YysNhcMKOEygxPYRj3mUbj5AEwj6MZZKEWo4jyHGTmY5oVRDPs5TQx5HhAN7UxAuMj+bJGVzgzAKk5DmrzuOM2jSOEeYuHK-+-MU0EnN8lIisTNrUC60z6tIBFdM66riNFTmt5QHAuIU7Bblkqeev4XyABGegIMLmD+8A0Y4VLI2drpWUCVrwvUAAPgnobiLDiAADxC1RWFfoQzkR3NPL9CpH1cMcsMm+h-7u6eUSR4wtVCI0IFUqXqWXUwJUGBI5VRVptcXuyUdyaXFc2wBsOgYXIR8k7LvjwzEf4asrBx9n+P52hwjGnp1PLw4XdlYNFXj8ffeb-Hp1MoIHeMCCW37yYjeKy8L9VNbW+3+IPX+2ggecCHMOhAjZQCCI-Z4Ys-BS3pCnZ4LVCClwamPU2Ndr4IFOrA30el9px2EF-MQ98wQA19HPSufNgHYEVvgssDgi6hBCM-RoUsqQLztujJ4P8A5gCDoAtIBdwE8yrmbNhMDfTwMQeXbCZCVaTzQWADBWDRqXw2qCbaepSGsIjk9MIjC9JmFdkzVubEDFoy5HQXRJVihlQjJgRQegUCjCpAAJg0LolAP1MB5GzIkOxaAHFUgAMyuLqogaMnjvG2PsY4qoABWDQs9gB2XUr4hxhAUmjAHjffCpCBZpKiYgAA1MgKGuMc44SgPogWCjFFME9noz6es3o5j-nkGAHxMDRlwgARklk4y2OQuk72qIgAAZCMnITihkpw1NUFOhpyCDNdDURAScBk7y6XQAAkOIG0kylnDNWeQPZsoNk1I1Bs7ZJhwyRk6UcuMABJMA2wYCKE1KuEsmDrlRjpAsh5Tz0AvLeZsEsTTBhhK8XZR8PSmhOMZHAEAUBMQIsvHyMJT5RL-T1LohqDwqQtLaUUTpTYJgDihdUmpFKxDEvHCgPpX8UCJJsekwg4KInpMZJghw6QKgAD4fLjnhYihF90dSFSemIW8h4UDQrRVEc8N8niSqiI+WFoT1LovInNKC8g4BxDhPWby+L2nuIsL8iZ-SFnrNGeMo56zpmIFOWGNZ+yVkJ2dSczBuyhmuomXas5NROWIC+bc1V8hHnPNeRaSgnzdA3J+dCsN-zgaRoHCCoys8PEQrhtC2lcKEVItAT7FSJq7z4gpJii42KNyLDxXAVpxqfqEGpaS6V5LKXtubauFV+t1GMuSVEx8ma2VRI5e2xg3K+VjlJYKgtIrNzTwlR6UtYAoWng8Rquuiql1StVSWjdg9nq6R1Xq0FqJLHWNamAWdoT83IqLfFJ5R8SoForQ4KtM5Ti1vrUUFMAFO2bHYFe5F9K+2RL8aMQDVie5MpHYgQN4gJ38unbeqAc7ZwLtqdu5Vz7hXMEfT3TAOHQFPG1bq-VKEVJGp-XAACItD1yU6Ps+1jqnQ5D9b6GZMaIzfNwn8iNQL0BpoNSZfA6BgC4g9BGR8jJfaS0ZBAS8ujXlVFLj2OaujKhSmMWpp4rLIWC1k-yOaJas3ScQIZhTHD8NJMIBARkSxFVDshYoezkstVHrI6esSAkJN2LpAZ+ThGwCSxAO1CAHS70A10YxrT74dMMJCRARZsXEjxbELoiAeyUvJGPGYsQom0Dif3FJizQW5PIC6XNArRXJP+fK+QUL8m+m6fUqZpLTXAuCvc3JY95HzEhJQOIFT2ncvBF0b7Ib2X4sZaC4wYbcXRvBKbjkULTB5upcW5s-ry3wuCqMQttIwRQCfGK3V8zgWSohbCxF4jQA

Modularity, Objects, and State 3.3.4

const c1 = make_wire();

const c2 = make_wire();

half_adder(b, c_in, s, c1);

half_adder(a, s, sum, c2);

or_gate(c1, c2, c_out);

return "ok";

}

Having de�ned full_adder as a function, we can now use it as a building block for creating

still more complex circuits. (For example, see exercise 3.30.)

half-
adder

half-
adder

A

B

C

SUM

Cor

in

out

Figure 3.26: A full-adder circuit.

In essence, our simulator provides us with the tools to construct a language of circuits. If we

adopt the general perspective on languages with which we approached the study of JavaScript

in section 1.1, we can say that the primitive function boxes form the primitive elements of the

language, that wiring boxes together provides a means of combination, and that specifying

wiring patterns as functions serves as a means of abstraction.

Primitive function boxes

The primitive function boxes implement the “forces” by which a change in the signal on one

wire in�uences the signals on other wires. To build function boxes, we use the following

operations on wires:

– get_signal(wire)
returns the current value of the signal on the wire.

– set_signal(wire, new-value):

changes the value of the signal on the wire to the new value.

– add_action(wire, function-of-no-arguments):

asserts that the designated function should be run whenever the signal on the wire

changes value. Such functions are the vehicles by which changes in the signal value on

the wire are communicated to other wires.

299 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.3.4

In addition, we will make use of a function after_delay that takes a time delay and a function

to be run and executes the given function after the given delay.

Using these functions, we can de�ne the primitive digital logic functions. To connect an

input to an output through an inverter, we use add_action to associate with the input wire a

function that will be run whenever the signal on the input wire changes value. The function

computes the logical_not of the input signal, and then, after one inverter_delay, sets the

output signal to be this new value:

Ifunction inverter(input, output) {

function invert_input() {

const new_value = logical_not(get_signal(input));

after_delay(inverter_delay,

() => set_signal(output, new_value));

}

add_action(input, invert_input);

return "ok";

}

function logical_not(s) {

return s === 0

? 1

: s === 1

? 0

: error(s, "Invalid signal");

}

An and-gate is a little more complex. The action function must be run if either of the inputs

to the gate changes. It computes the logical_and (using a function analogous to logical_not)

of the values of the signals on the input wires and sets up a change to the new value to occur

on the output wire after one and_gate_delay.

Ifunction and_gate(a1, a2, output) {

function and_action_function() {

const new_value = logical_and(get_signal(a1),

get_signal(a2));

after_delay(and_gate_delay,

() => set_signal(output, new_value));

}

add_action(a1, and_action_function);

add_action(a2, and_action_function);

return "ok";

}

300 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwKZQPoGcbLAQwBsAKAdxgCdUBKRAbwChFnEqoQKlyriAiNTDjxFe1ANwMAvgwahIsBIizpsuAiW6oANIjCpSGAG5EQNekxZsOXSqj7LBakdWJ6DxwqfFSZc6PCR8ABMgjHx-BDJbHXCFMAw-ONpGFlZ0a0RNPmDQ2IDRYjyEBPAIsG9pRIDEAFt8AGtUDFgapuVkVrAoYhbtRABHUy9zVKtORAAHfEoemFadQdQvCWlZUrilVA7ULua5uyxki2YxpAALVGDiQ5Xfder2zsxF02uj0fTxqGmSG58qxR1RoYF52d6WT5IKYzMAgQiEHSw+EVNbyarACgITATKAUYig8EnSGIC5XAm3AFIKj4CgYHF4gkjCHsL4-fFDGgU+6KBwJTG7enspZ9GBQVA1QmbTCkoJC0w6UXilGUqUYam0wWghViiVM5i874wEhaxCKiVctGKGBYDDinEATxBHLlZhSzIy1owSJIGKxdNxLuoyu5SBgYGUFGezpNZslEAQWCgun0dOmFEQAF5JmniGbEXDCN5UjBgIhcza7VBHaDA5LUrzfQKAya3KnKEXUixeer-QyOYiU9CKB3mJJEKhCMo9Z2DWye5qOdQBwYhyOZyp583+8mV2m19IPiykKCLWVag0mvg0GAgvhiJLTohCNbugAGFGos8QDhUXa9QrXreD7EjKAE7EBtyfhsvLfhQv6YP+V7gfgOi9JKvKgUhN4oYgaGQSqjw7FAWBgdhwFHrhbJYRBPhQQ8KiEV0JHUTh7SHNOs5GqRt46GxH4qsAlCJtgWxPNx+DkRkoGMcR4lBvhIZpMJMnMYBEnTo+hq-KJRGqch8n-IpOTNHAYRqbM8yIEUYAxGpkoqgARhOCDIDaTnAHAPB8dOh4eja3rXFs7EAD7BccnYRbh+yIAAPJs2x-vsxDSUFBmpAeLAqkCTStr0IkJd0vQxGUdYsPG4ZJv0mbnsCNZrsW4aoJGTrCvixVJBIkVpBR2V7K0+ViUVAz7uFKrGVApkqYFrmlcwJZljJfV2ClM20Bm61Ra0s2dmGEZRq1i01ithxLlZJWdZFY4TlObpdcw5WJkpSZZlp01-HdLDzcQTmEC5bmoB5PBUImQY+R9qqvWxWjheDnZDsQvW5fsA1ERZfTWUuMOw11kOpWl4NXZOqBgx942TTpTHEMDUD1ZdWOjuFGX3QmSZsdVU0sWuX0-X9GDuZ5Bx4yTqoc2p0Ow-DiMpnlMlo+1ASY9j9Z4xdo7jkTwtkyjlN8ariDSNID1JlAFxmch1W9Sx94SEbppgIYTVirSQQTvg9rVQATDbLNWTeGDIPgYoYC7hBu9VADM3sVYgnn+4HTQh2HWYAKwSGNwBO8Hrv2sQif2vLCCSlrVt54gADUiCwfBS09KbnPi0rLDWahdd2aeGwQEQhC2uEZzEJS7G3aapbll6Bb9yGJ3C4+vBBAgqC8HrhM3fTZagQPQbW6vj6d-CPcQH3r0byNlSKb1WSSoQ6BKE43ceKY1WvnrV9JtZJSWuG1XenrBEqDUjpCHUK4FM99XSry+oAogRgTDEwAIQbVbKA7a9Zb7QM8MTLMiCYF6y6jvLu+8+5vw3jglgy9iZD1wcSWe89F6ryZvrUaRkIAQFQDiMIZR35lAnuUTWHCB7VXhnIAu8RiGrzkFvdKjCP6ICCNaKYUAD4I22o+GomYNr8AYrfXgq9IoAH4b7CDvjAnREUABctQ1FZl4LySBhBtGN2YPo3k-9VCGJMZFcxqj1pWOMtZexDjHFnRYWwohIZ3FdXMU1TEeIag6F4AAVTAPUMAcBSBIDgBMJqgdqgAFocmZFsKIJe4VHyyKwPIg+txbb4AtheDAF8o6PQcrU4EDSGC2wgC0pobTbZBC6fU2wW9bYYJqt0wZ3hbZYH6W0lUYYHaRiarmMAEwQBQB0HAVZKyabTlmfbR2GAwxbPvMLW2WD0HVV+sgGAu8vRwG6AIVxQDDmrPxhFfAGcmpZ1DjnOZjtPl5x0OErqxyMwAD4Ra32IBsqAWzlxoK8CNVIviuHPLWXbeZmBUVrhnnAeotDVgqkudcqBKTuiDxKcSKZ3jECvncfogAjO48xVKNqMuxvo2l2NIlwU8tcOJABJe2RAYB9NsUU2ivyFl4ggDoTkQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwKZQPoGcbLAQwBsAKAdxgCdUBKRAbwChFnEqoQKlyriAiNTDjxFe1ANwMAvgwahIsBIizpsuAiW6oANIjCpSGAG5EQNekxZsOXSqj7LBakdWJ6DxwqfFSZc6PCR8ABMgjHx-BDJbHXCFMAw-ONpGFlZ0a0RNPmDQ2IDRYjyEBPAIsG9pRIDEAFt8AGtUDFgapuVkVrAoYhbtRABHUy9zVKtORAAHfEoemFadQdQvCWlZUrilVA7ULua5uyxki2YxpAALVGDiQ5Xfder2zsxF02uj0fTxqGmSG58qxR1RoYF52d6WT5IKYzMAgQiEHSw+EVNbyarACgITATKAUYig8EnSGIC5XAm3AFIKj4CgYHF4gkjCHsL4-fFDGgU+6KBwJTG7enspZ9GBQVA1QmbTCkoJC0w6UXilGUqUYam0wWghViiVM5i874wEhaxCKiVctGKGBYDDinEATxBHLlZhSzIy1owSJIGKxdNxLuoyu5SBgYGUFGezpNZslEAQWCgun0dOmFEQAF5JmniGbEXDCN5UjBgIhcza7VBHaDA5LUrzfQKAya3KnKEXUixeer-QyOYiU9CKB3mJJEKhCMo9Z2DWye5qOdQBwYhyOZyp583+8mV2m19IPiykKCLWVag0mvg0GAgvhiJLTohCNbugAGFGos8QDhUXa9QrXreD7EjKAE7EBtyfhsvLfhQv6YP+V7gfgOi9JKvKgUhN4oYgaGQSqjw7FAWBgdhwFHrhbJYRBPhQQ8KiEV0JHUTh7SHNOs5GqRt46GxH4qsAlCJtgWxPNx+DkRkoGMcR4lBvhIZpMJMnMYBEnTo+hq-KJRGqch8n-IpOTNHAYRqbM8yIEUYAxGpkoqgARhOCDIDaTnAHAPB8dOh4eja3rXFs7EAD7BccnYRbh+yIAAPJs2x-vsxDSUFBmpAeLAqkCTStr0IkJd0vQxGUdYsPG4ZJv0mbnsCNZrsW4aoJGTrCvixVJBIkVpBR2V7K0+ViUVAz7uFKrGVApkqYFrmlcwJZljJfV2ClM20Bm61Ra0s2dmGEZRq1i01ithxLlZJWdZFY4TlObpdcw5WJkpSZZlp01-HdLDzcQTmEC5bmoB5PBUImQY+R9qqvWxWjheDnZDsQvW5fsA1ERZfTWUuMOw11kOpWl4NXZOqBgx942TTpTHEMDUD1ZdWOjuFGX3QmSZsdVU0sWuX0-X9GDuZ5Bx4yTqoc2p0Ow-DiMpnlMlo+1ASY9j9Z4xdo7jkTwtkyjlN8ariDSNID1JlAFxmch1W9Sx94SEbppgIYTVirSQQTvg9rVQATDbLNWTeGDIPgYoYC7hBu9VADM3sVYgnn+4HTQh2HWYAKwSGNwBO8Hrv2sQif2vLCCSlrVt54gADUiCwfBS09KbnPi0rLDWahdd2aeGy-cgMAQEQYQ3tcACMvEe5J4xYAPmYbRPABk09KB7k9ZgP9OpAA-Igy-gwAXEoE-rVmr6IKFu+LxvK+duvWAL-viCH8fV+n5vSvr6+58RTvTWYniV86LwACS9siAwCCEoJwhBRBvxYB-OCnlB6-wAR4YBoDhDgODJaJAPd4S2nCGcYglJ2K3VNKWcsXoCx4JDCdYWj5eBBAQKgXgetCY3RXslS4sp8FBmtivR8mDCDYIgLg16HCRqVEUr1LIkpCDoGQeoIwJhiYHz1lIpM1kSjoKwNVb0esCIqBqI6IQ6hXApg8MMQhxZiEGN7iY4mABCDarZrHbXrGAuRngFE7lcaYPWXUeFED4ZcARhQyhqLKO9S66tmGw2obQvQDCV5M31qNIyEAICoBxGEYJlJyHlE1pkih1V4ZyALvEDh3jMrgC4elJJ6DEBBGtFMKAgTdRmPdOMGop9+AMTAbwSBa8ZFWPkb0qBtQOm8kseAoZfTeR6NUCgyZwz2k314MZayPTG59PCKk9JqjKTzNSNAr+CNf4AFUwD1DAHAUgSA4ATCaoHaoABaB5mRbCiEYeFR8dSsANIEbcW2+ALYXgwBIqOj0HKAuBCChgtsIAQqaFC22ICsziNsFw227iUU8G8LbDRyKgVQrGn7AOYpChDysh7HQcAQBQAmNS+yRk-Y7JDPeYWtsHHyOqp3buvd8D9wELMwx+AB6K3WaK1I-LxmFBHrTZg+AM5NSzqHHOvLQjEoTtnHQezUgsozAAPhFmA4gVKaXUuXJ4mgI1UgrLKKSmIjK8noLXNauIUq7W5AdedD5xJeBwHqHE1YKq44kpwg5HQEBxBAA

Modularity, Objects, and State 3.3.4

Exercise 3.28

De�ne an or-gate as a primitive function box. Your or_gate constructor should be similar to

and_gate.

Exercise 3.29

Another way to construct an or-gate is as a compound digital logic device, built from and-gates

and inverters. De�ne a function or_gate that accomplishes this. What is the delay time of the

or-gate in terms of and_gate_delay and inverter_delay?

Exercise 3.30

Figure 3.27 shows a ripple-carry adder formed by stringing together n full-adders. This is the

simplest form of parallel adder for adding two n-bit binary numbers. The inputs A1,A2,A3, . . . ,

An and B1, B2, B3, . . . , Bn are the two binary numbers to be added (each Ak and Bk is a 0 or a 1).

The circuit generates S1, S2, S3, . . . , Sn, the n bits of the sum, andC , the carry from the addition.

Write a function ripple_carry_adder that generates this circuit. The function should take

as arguments three lists of n wires each—the Ak , the Bk , and the Sk—and also another wire

C . The major drawback of the ripple-carry adder is the need to wait for the carry signals to

propagate. What is the delay needed to obtain the complete output from an n-bit ripple-carry

adder, expressed in terms of the delays for and-gates, or-gates, and inverters?

A B C A B C

S
C

SC

FA FA

A B C

S

FA

A B C

S

FA

1 1 1 2 2 2 3 3 3 = 0n n n

1 2 3 n-1 n

Figure 3.27: A ripple-carry adder for n-bit numbers.

301 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.3.4

Representing wires

A wire in our simulation will be a computational object with two local state variables: a

signal_value (initially taken to be 0) and a collection of action_function to be run when the

signal changes value. We implement the wire, using message-passing style, as a collection of

local functions together with a dispatch function that selects the appropriate local operation,

just as we did with the simple bank-account object in section 3.1.1:

Ifunction make_wire() {

let signal_value = 0;

let action_functions = null;

function set_my_signal(new_value) {

if (signal_value !== new_value) {

signal_value = new_value;

return call_each(action_functions);

} else {

return "done";

}

}

function accept_action_function(fun) {

action_functions = pair(fun, action_functions);

fun();

}

function dispatch(m) {

return m === "get_signal"

? signal_value

: m === "set_signal"

? set_my_signal

: m === "add_action"

? accept_action_function

: error(m, "Unknown operation -- wire");

}

return dispatch;

}

The local function set_my_signal tests whether the new signal value changes the signal on

the wire. If so, it runs each of the action functions, using the following function call_each,

which calls each of the items in a list of no-argument functions:

Ifunction call_each(functions) {

if (is_null(functions)) {

return "done";

} else {

(head(functions))();

return call_each(tail(functions));

}

}

302 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBAhgGzQfQKYogCwApRJYEBnASkQG8AoRRxGYRQmczMEDY8aeGCrV6TMYgBO2KCAlIARABME2eQG4GTAL6JsactlqbxbfLkV9Sg4YUoaTjKTLnJ0WXAUJQUMNJYEUlHbGiFp0YSQBSAC2KADW2JgA7jBStkZiaNKI5DAA5mDomABu6CCGALyIAAz2TFlQiHhkYJiRLeSIVdwYdYztgjnSmNEAnpi5BeiEYNhJJWXYIiFiLGyThVilaOWIAIQV3XMLO0sZDmIbRdu7R-M32H0XktKySKgYOHhEzYJt-B1ghcdHoDOdni9nAplLN1CttCEwmIBggmhAINgAA5QTC-BD-KwISzLC541oooRdRCYnwSSwAGjRLQJUSoT2R4FsTyRTApiEUHBpUE80RJDicb0Q0S6h0Q8jywyuaHk8OeAH4cvlNidyqqLgAuKUyqryAw4pUqiEODVmkbjJV656G6WHE0oRSKXFRS1W61ojHYr3MimOiGG7ASCRwOnRRnyACqYDiYDgSSQcExEZQLUQAFpc4gUlJ5ECEWIJS4BeQhQQNGE6BAKI0UFTYglkqlsFyG03EAAjVvxRJFrvBRtCRoQQftkfd8fkRqKafDztz3uVKVDjtpMe9zpVNsrndqIA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBAhgGzQfQKYogCwApRJYEBnASkQG8AoRRxGYRQmczMEDY8aeGCrV6TMYgBO2KCAlIARABME2eQG4GTAL6JsactlqbxbfLkV9Sg4YUoaTjKTLnJ0WXAUJQUMNJYEUlHbGiFp0WkA

Modularity, Objects, and State 3.3.4

The local function accept_action_function adds the given function to the list of functions

to be run, and then runs the new function once. (See exercise 3.31.)

With the local dispatch function set up as speci�ed, we can provide the following functions

to access the local operations on wires:
29

Ifunction get_signal(wire) {

return wire("get_signal");

}

function set_signal(wire, new_value) {

return wire("set_signal")(new_value);

}

function add_action(wire, action_function) {

return wire("add_action")(action_function);

}

Wires, which have time-varying signals and may be incrementally attached to devices, are

typical of mutable objects. We have modeled them as functions with local state variables

that are modi�ed by assignment. When a new wire is created, a new set of state variables is

allocated (by the let statements in make_wire) and a new dispatch function is constructed

and returned, capturing the environment with the new state variables.

The wires are shared among the various devices that have been connected to them. Thus,

a change made by an interaction with one device will a�ect all the other devices attached to

the wire. The wire communicates the change to its neighbors by calling the action functions

provided to it when the connections were established.

The agenda

The only thing needed to complete the simulator is after_delay. The idea here is that we

maintain a data structure, called an agenda, that contains a schedule of things to do. The

following operations are de�ned for agendas:

– make_agenda():

returns a new empty agenda.

29
These functions are simply syntactic sugar that allow us to use ordinary functional syntax to access the local

functions of objects. It is striking that we can interchange the role of “functions” and “data” in such a simple

way. For example, if we write wire('get_signal') we think of wire as a function that is called with the message

"get_signal" as input. Alternatively, writing get_signal(wire) encourages us to think of wire as a data object

that is the input to a function get_signal. The truth of the matter is that, in a language in which we can deal

with functions as objects, there is no fundamental di�erence between “ functions ” and “data,” and we can choose

our syntactic sugar to allow us to program in whatever style we choose.

303 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwKZQPoGcbLAQwBsAKAdxgCdUBKRAbwChFnEqoQKlyriAiNTDjxFe1ANwMAvgwahIsBIizpsuAiW6oANIjCpSGAG5EQNekxZsOXSqj7LBakdWJ6DxwqfFSZc6PCR8ABMgjHx-BDJbHXCFMAw-ONpGFlZ0a0RNPmDQ2IDRYjyEBPAIsG9JIA

Modularity, Objects, and State 3.3.4

– is_empty_agenda(agenda)
is true if the speci�ed agenda is empty.

– first_agenda_item(fagenda)
returns the �rst item on the agenda.

– remove_first_agenda_item(agenda)
modi�es the agenda by removing the �rst item.

– add_to_agenda(time, action, agenda)
modi�es the agenda by adding the given action function to be run at the speci�ed time.

– current_time(agenda)
returns the current simulation time.

The particular agenda that we use is denoted by the_agenda. The function after_delay

adds new elements to the_agenda:

Ifunction after_delay(delay, action) {

add_to_agenda(delay + current_time(the_agenda),

action, the_agenda);

}

The simulation is driven by the function propagate, which operates on the_agenda, execut-

ing each function on the agenda in sequence. In general, as the simulation runs, new items

will be added to the agenda, and propagate will continue the simulation as long as there are

items on the agenda:

Ifunction propagate() {

if (is_empty_agenda(the_agenda)) {

return "done";

} else {

const first_item = first_agenda_item(the_agenda);

first_item();

remove_first_agenda_item(the_agenda);

return propagate();

}

}

A sample simulation

The following function, which places a “probe” on a wire, shows the simulator in action. The

probe tells the wire that, whenever its signal changes value, it should print the new signal

value, together with the current time and a name that identi�es the wire. We use the primitive

function stringify to turn any value (here a number) into a string. The operator + in JavaScript

is overloaded; it can be applied to two numbers or to two strings, and in the latter case it returns

the result of concatenating the two strings.

304 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9WycDOmA5vmFABR6YA0iAjiJkwJSIDeAUIj4gE6YoIPkgAOqGHyox8dRs0wsA3JwC+nTqEiwEiIqUzlcMzBQJsuvfoOFIAFplQATM8rUat0eEn1ko2eSZXDm5eASERRCgJABtXFXVPHSQ0LACmIItQnnDbRHFJCjAQGJi6YtK3RPAvXWA+BH9RKClAxRCrXMiHZwo2qs0a5OtUPmxm1oz2yzCbSOiYOP6Ewe1vPUFsesbxlr6puhgoTGQsqyJ-Hpc2w+PTlaT1i+wBUd3JhVuTs95nhaWDogjt8HkN1jACNgTs0AJ7pBT7BQ-HJzJAQ7AVOLbIwTRGsAaPXQwMBEPj+Np42hAu7IxAQBAEKCIMCYADu4wkfEQAF58pyKMDkOUSjE3FYYMBEALIdCoHCKf1aedNtimnsbsy2RzJGKrL9Nq8xriNSz2QU+LqeKpEJgYkQOnqeH9YhRDe9KSxylrzZa9c83cbAabtRaVFZ1J1UQwpqC1rpUjhUMRDE5UBRaV0kDEIZQAAwDVa1JAQYQCIzUChJlOoDNRq6V5NgVMFwk+TYlvhl-wVqtN1B0ai05713upgcmFtg3S+QxQAgN6u1iJIf4LvuTuNt-wz8jz0f9jbEcwOp2bVf7uj6cwrQvDYCSRnYHeUfdLvL1597xvNjdF6yPz812bE9rGXKIXUA18CSnJBnCcXA4GwfdpFkRBUCLOhXxA1tEAAI1tBAj2wfDgDgAQzBIY8ZkdTMgUhTEKKPNgAB9mOyR1HWoRAAB5Dz8Yx8AoD9KJYX0I14HCEwxLVqCfEg-BQql0OSJVeHpEkmXoHkUAwHAKV9cUSUwMl4SCehMKLAzZjAqTZOfRS5DE9icLghC5IMXdGKo9jxUlRj+IrYSmLYblQqiCcQI4oEjJMiln1M0wgvMT00MssMOOtW17WoqK6QZJkBEZbTVyvKzHQlKV8JiQjIRIsjTEKqBRMi3LT27CDKJoHzWr1c0KCk4M7Pk2cHNSlSup6yaeBKkTRPS1rMrtTAWta1yoEQwDGrKvVxMdXbEH29SiqvbTIO-Gt5qBPyqpq4jMFI8jStUtr3L8L9qwmnq+oGmSTFekbqAs8bup6p7LsW7KQbQpx4PW-7PNK8H3COpkoAcJDzu0qTkLcFHooAN2M44xicW1UBhbSACYVDx1Am2wYhUGObBSZicntIAZhp-LEDIhmmZwVn2d5ABWFQXOAYmWbJmEKCFmEge8Wk1sQ5D5cQABqOlS1nATTDRxNzs9KHVowqJ0dfBIgA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9VBzTMAE1QAoBKRAbwChF7EAnTKERpAGxgGcpSAGcgG4aAXxo1QkWAkQQ2zMFGyxkmUvkIlKtBkxZskAC0yoiGgsVTCxEqdHhJuLbPMaLlq9ZqsAaRF46dAzOyiZmFlqo-oEi4pLgDrLOeGpK3JFWQXrMrOwBqDAcmdpxdokyTi4paVAZPiT+KdzZIS5QhcUN0YjNNvH2lYjAMIy82DWEfN2t9LmGiOHmk+kl1v3l0o764yt1a7P6eUgdRaR79ZbaG4PbwIwIygAOUIykAI4gmF+H8-lLHy+PzKt1kzFQjGwLzen2+mF+Bnyp2KsOBtlBVWU90eUNegLh-hgUEwyEOoWwANRmEJxNJIIq23J4Mh0PxXxpJLJ7U6bOpiCJnPpW1kPGwJJeAE9sFTeQjjvzuNgwCAOMVsUpcTCgfCbgzZERMBwWDgZVTDjBgIhSKLxVApabteRDnpMO44FqCYgAEQGo3E6XauSoVWYIiIADuRKMiFQSFtEsQVK9Nj0okQhuc1GCeno5PVzzxVJiPPzmtlTpEOYYfyQVMrDHE4gxKAwOC8E0wqSmpC8-jNWZyiKQT0Kb17icdZQSwqqXY1XnOcoWAJaU+bewDcMXA+rQ4KZ1X6L1SGYyDgADccCMxsputgBcgDjv6BAELxE4gALy9Tu1TdfUhr12X9uxmFMGF9Y1-3Ud5wPoC0rRtZBJWgj4nWfHNyQuNZ-GYYC532MD63oNMM0wahG2nJIkCQlDuifXRd3lUVlVVc4QNWIijxnYYHg1B04SXfJaLtVCzWzHMAH50zdD12W9UsqSDEMw0jKBo1jdNkLtCc4WTCS9AALkWUxzFLVkzV1HigNvK5UHvWkGIkhDrUVeNcDsg5nQYV0HjeL0AEE7IVLTJUQABacLhlGcY7wfZNiMQUiOEzRiq1fMB3xsjs8C-aKbxy2oDkSvRyTcDwVBgNQcJ-AjKuq7KUgrAymIWRTtXYuqZUaztmtTWwMvfdScG6PK0CwDyogoERBqgfkwEvRhiUhX1UATb8ACYZrfObYyIbA8FQf1VvWxAAGZtsyub3QOo6cBOvKAFYRGbJ4HhHQ7iQoDCXJEqV6OGyasm8uY9x9BBMC9RLktSlqXx2-LxgfPLsrixzAZmEqGGyh9prh-Qz0vbBUbshySR7EwgdKfGa0QN64A+u68f60QgA

Modularity, Objects, and State 3.3.4

Ifunction probe(name, wire) {

add_action(wire,

() => display(name + " " +

stringify(current_time(the_agenda)) +

", new value = " +

stringify(get_signal(wire))));

}

We begin by initializing the agenda and specifying delays for the primitive function boxes:

Iconst the_agenda = make_agenda();

const inverter_delay = 2;

const and_gate_delay = 3;

const or_gate_delay = 5;

Now we de�ne four wires, placing probes on two of them:

Iconst input_1 = make_wire();

const input_2 = make_wire();

const sum = make_wire();

const carry = make_wire();

probe("sum", sum);

" sum 0 , new value = 0 "

Iprobe("carry", carry);

" carry 0 , new value = 0 "

Next we connect the wires in a half-adder circuit (as in �gure 3.25), set the signal on input_1

to 1, and run the simulation:

Ihalf_adder(input_1, input_2, sum, carry);

" ok "

Iset_signal(input_1, 1);

" done "

Ipropagate();

" sum 8 , new value = 1 "
" done "

The sum signal changes to 1 at time 8. We are now eight time units from the beginning of

the simulation. At this point, we can set the signal on input_2 to 1 and allow the values to

propagate:

Iset_signal(input_2, 1);

305 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9VBzTMAE1QAoBKRAbwChF7EAnTKERpAGxgGcpSAGcgG4aAXxo1QkWAkQQ2zMFGyxkmUvkIlKtBkxZskAC0yoiGgsVTCxEqdHhJuLbPMaLlq9ZqsAaRF46dAzOyiZmFlqo-oEi4pLgDrLOeGpK3JFWQXrMrOwBqDAcmdpxdokyTi4paVAZPiT+KdzZIS5QhcUN0YjNNvH2lYjAMIy82DWEfN2t9LmGiOHmk+kl1v3l0o764yt1a7P6eUgdRaR79ZbaGxAIvAEmuFeoiAC8KBg43RQit2D3MDAADdMIwoKDsERMBxUABPN6IABMvzuUEQqGI2DwqHBkOhcIRAGYUf80XBGFicTgoTD4e8AKwiQbbAjKbgwPBgVDFADuo0wh3m+T5zFIACJWRMOVyOGKNgktslqtLuaQRZh-GBMDzsEDuSABdRgnMDML+eLQlLOdy5aQtTq9RwDfLmbIzERcEkwGr+f5UF7sK6wILTUh1eL3Z7Krb-ZVAxVHBsg4gAA6MOAAI3UXLU-nVh0jsccPuY-mNegrDAobwAfIgiDwU7S7ag1IgANSIMVdjvlyv9gd6XiMQF4GDAWGkNweFQwNSkKCPGaUTt9wfritizXaxCOg0I7urjfHyvD0fjyeS9nW3n88j3-pAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9VBzTMAE1QAoBKRAbwChF7EAnTKERpAGxgGcpSAGcgG4aAXxo1QkWAkQQ2zMFGyxkmUvkIlKtBkxZskAC0yoiGgsVTCxEqdHhJuLbPMaLlq9ZqsAaRF46dAzOyiZmFlqo-oEi4pLgDrLOeGpK3JFWQXrMrOwBqDAcmdpxdokyTi4paVAZPiT+KdzZIS5QhcUN0YjNNvH2lYjAMIy82DWEfN2t9LmGiOHmk+kl1v3l0o764yt1a7P6eUgdRaR79ZbaGxAIvAEmuFeoiAC8KBg43RQit2D3MDAADdMIwoKDsERMBxUABPN6IABMvzuUEQqGI2DwqHBkOhcIRAGYUf80XBGFicTgoTD4e8AKxCIA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBAhgGzQfQKYogCwApRJYEBnASkQG8AoRRxGYRQmczMEDY8aeGCrV6TMYgBO2KCAlIARABME2eQG4GTAL6JsactlqbxbfLkV9Sg4YUoaTjKTLnJ0WXAUJQUMNJYEUlHbGiFp0YSQBSAC2KADW2JgA7jBStkZiaNKI5DAA5mDomABu6CCGALyIAAz2TFlQiHhkYJiRLeSIVdwYdYztgjnSmNEAnpi5BeiEYNhJJWXYIiFiLGyThVilaOWIAIQV3XMLO0sZDmIbRdu7R-M32H0XktKySKgYOHhEzYJt-B1ghcdHoDOdni9nAplLN1CttCEwmIBggmhAINgAA5QTC-BD-KwISzLC541oooRdRCYnwSSwAGjRLQJUSoT2R4FsTyRTApiEUHBpUE80RJDicb0Q0S6h0Q8jywyuaHk8OeAH4cvlNidyqqLgAuKUyqryAw4pUqiEODVmkbjJV656G6WHE0oRSKXFRS1W61ojHYr3MimOiGG7ASCRwOnRRnyACqYDiYDgSSQcExEZQLUQAFpc4gUlJ5ECEWIJS4BeQhQQNBEAYNYglcQqwIoUOlREwK0g0BwoIRqsEwnQ+RBZFIwDjYNFsIQUK322LHK8XGZ3fPFyhh3RRw3Ubbx5HsFPMDO5wuT+3Gefl0MceuLJe2ygbzBZzu94SkAY8rOp+Qm5Xtu4KQpK3i+EBL6fnytq-v+UCAc+15DHkVCgbaEF+Mhr6oWy4S7nywCpOQ5rYH+J4Djhd49ogj6EPBlFIVuQR1oR+5IFIpETORCHMcBNGrkgWEMbxTFQUuO4QBQjRQGYLbAVSTaJDhXJ0NJQiNDAYDFBGUARpgih6CgoxUgATBoGmkU0baYHk2aJEZaAmVSADMlkyYg0Z2Q5hnGaZVQAKwaHyCrmlq0xFmcXYrlChapHO8qKhFyowRx94TClhBRYysz3IsglxVFhCmslUypTMxwPGl35NB6QaCNlCWMmSLItIVkrFfI7qemSJbzlEbWCDufKYlGABGc6FLOjJRXePUNUSOWIKG4jpBUAB8-KCs5owzCgs6IAA1HKp1HatvomKREjaXkLB7Uek7Tu+c5ySpLHUCdF2XWI8i5XMiAPFS8jHStP3g9dt33YQYWZeVTVSEErEEVZWlgJiIA4gAjEp8SJMVwSo8w6OY5gZm482BMeZpOQgC6Up48kCVqUTqCRgFDOU8zwR0GNcCTSV5B039tOimoQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBAhgGzQfQKYogCwApRJYEBnASkQG8AoRRxGYRQmczMEDY8aeGCrV6TMYgBO2KCAlIARABME2eQG4GTAL6JsactlqbxbfLkV9Sg4YUoaTjKTLnJ0WXAUJQUMNJYEUlHbGiFp0YSQBSAC2KADW2JgA7jBStkZiaNKI5DAA5mDomABu6CCGALyIAAz2TFlQiHhkYJiRLeSIVdwYdYztgjnSmNEAnpi5BeiEYNhJJWXYIiFiLGyThVilaOWIAIQV3XMLO0sZDmIbRdu7R-M32H0XktKySKgYOHhEzYJt-B1ghcdHoDOdni9nAplLN1CttCEwmIBggmhAINgAA5QTC-BD-KwISzLC541oooRdRCYnwSSwAGjRLQJUSoT2R4FsTyRTApiEUHBpUE80RJDicb0Q0S6h0Q8jywyuaHk8OeAH4cvlNidyqqLgAuKUyqryAw4pUqiEODVmkbjJV656G6WHE0oRSKXFRS1W61ojHYr3MimOiGG7ASCRwOnRRnyACqYDiYDgSSQcExEZQLUQAFpc4gUlJ5ECEWIJS4BeQhQQNBEAYNYglcQqwIoUOlREwK0g0BwoIRqsEwnQ+RBZFIwDjYNFsIQUK322LHK8XGZ3fPFyhh3RRw3Ubbx5HsFPMDO5wuT+3Gefl0MceuLJe2ygbzBZzu94SkAY8rOp+Qm5Xtu4KQpK3i+EBL6fnytq-v+UCAc+15DHkVCgbaEF+Mhr6oWy4S7nywCpOQ5rYH+J4Djhd49ogj6EPBlFIVuQR1oR+5IFIpETORCHMcBNGrkgWEMbxTFQUuO4QBQjRQGYLbAVSTaJDhXJ0NJQiNDAYDFBGUARpgih6CgoxUgATBoGmkU0baYHk2aJEZaAmVSADMlkyYg0Z2Q5hnGaZVQAKwaHyCrmlq0xFmcXYrlChapHO8qKhFyowRx94TClhBRYysz3IsglxVFhCmslUypTMxwPGl35NB6QaCNlCWMmSLItIVkrFfI7qemSJbzlEbWCDufKYlGABGc6FLOjJRXePUNUSOWIKG4jpBUAB8-KCs5owzCgs6IAA1HKp1HatvomKREjaXkLB7Uek7Tu+c5ySpLHUCdF2XWI8i5XMiAPFS8jHStP3g9dt33YQYWZeVTVSEErEEVZWlgJiIA4gAjEp8SJMVwSo8w6OY5gZm482BMeZpOQgC6Up48kCVqUTqCRgFDOU8zwR0GNcCTSV5B039tOihofMC-IbMSKMIvS6MdhAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBAhgGzQfQKYogCwApRJYEBnASkQG8AoRRxGYRQmczMEDY8aeGCrV6TMYgBO2KCAlIARABME2eQG4GTAL6JsactlqbxbfLkV9Sg4YUoaTjKTLnJ0WXAUJQUMNJYEUlHbGiFp0YSQBSAC2KADW2JgA7jBStkZiaNKI5DAA5mDomABu6CCGALyIAAz2TFlQiHhkYJiRLeSIVdwYdYztgjnSmNEAnpi5BeiEYNhJJWXYIiFiLGyThVilaOWIAIQV3XMLO0sZDmIbRdu7R-M32H0XktKySKgYOHhEzYJt-B1ghcdHoDOdni9nAplLN1CttCEwmIBggmhAINgAA5QTC-BD-KwISzLC541oooRdRCYnwSSwAGjRLQJUSoT2R4FsTyRTApiEUHBpUE80RJDicb0Q0S6h0Q8jywyuaHk8OeAH4cvlNidyqqLgAuKUyqryAw4pUqiEODVmkbjJV656G6WHE0oRSKXFRS1W61ojHYr3MimOiGG7ASCRwOnRRnyACqYDiYDgSSQcExEZQLUQAFpc4gUlJ5ECEWIJS4BeQhQQNBEAYMFeatdMi2dREwK0g24R5YqW8rgmE6HzbUrCG3GbN7osxY5Xi4e6b+1NBzNjg8h3QRw3Ue7PWSJ6lsIyySyWnPIZKl-ug4IS4QzxSt3zYglMLBookDHkv2AoF4MBfoyACO5TlJeXbUrSgHAYgYHYBBdbbqO2C-tg-4fkB2CEFQ4JXi4ZjurhW47oSSA-n+OIIeUJH4VB3i+CRyGvvEiQ0ThkELkgNKpDMPBoFOAkvruSDAFGmHYnSHFcVCiBERYMksaJLwoBImBSYQMn0dxiCMX4SnhGRURDDi4kIDimkcYyMBQNgor4baClaeBJ7MHZorKeRpmYFIakaVA0muTZHmXra+kuYhbm2fZIneRwODRNi4wcZFEE6XJCU9H45mSYFaVLHFJkwEIEbUa5BUhbF+EQBQjTThptJUrxdIxbGiDZaWjBrOwnD2clmCpTJl6XMMuWWfl1kdccLVdeItp+epVnBdN8yzdyuj6IYHYmOFPh+ItAVBVFlBTjNtJzaNOKHctUVnWtF3ciEUEcV5JlvokKAKmAigoOkO0EUgaAcAB1SkXyECyFImGfjhX0Yb9smSs58M-Sg4MqbakORhhOKw4+32-YysNhcMKOEygxPYRj3mUbj5AEwj6MZZKEWo4jyHGTmY5oVRDPs5TQx5HhAN7UxAuMj+bJGVzgzAKk5DmrzuOM2jSOEeYuHK-+-MU0EnN8lIisTNrUC60z6tIBFdM66riNFTmt5QHAuIU7Bblkqeev4XyABGegIMLmD+8A0Y4VLI2drpWUCVrwvUAAPgnobiLDiAADxC1RWFfoQzkR3NPL9CpH1cMcsMm+h-7u6eUSR4wtVCI0IFUqXqWXUwJUGBI5VRVptcXuyUdyaXFc2wBsOgYXIR8k7LvjwzEf4asrBx9n+P52hwjGnp1PLw4XdlYNFXj8ffeb-Hp1MoIHeMCCW37yYjeKy8L9VNbW+3+IPX+2ggecCHMOhAjZQCCI-Z4Ys-BS3pCnZ4LVCClwamPU2Ndr4IFOrA30el9px2EF-MQ98wQA19HPSufNgHYEVvgssDgi6hBCM-RoUsqQLztujJ4P8A5gCDoAtIBdwE8yrmbNhMDfTwMQeXbCZCVaTzQWADBWDRqXw2qCbaepSGsIjk9MIjC9JmFdkzVubEDFoy5HQXRJVihlQjJgRQegUCjCpAAJg0LolAP1MB5GzIkOxaAHFUgAMyuLqogaMnjvG2PsY4qoABWDQs9gB2XUr4hxhAUmjAHjffCpCBZpKiYgAA1MgKGuMc44SgPogWCjFFME9noz6es3o5j-nkGAHxMDRlwgARklk4y2OQuk72qIgAAZCMnITihkpw1NUFOhpyCDNdDURAScBk7y6XQAAkOIG0kylnDNWeQPZsoNk1I1Bs7ZJhwyRk6UcuMABJMA2wYCKE1KuEsmDrlRjpAsh5Tz0AvLeZsEsTTBhhK8XZR8PSmhOMZHAEAUBMQIsvHyMJT5RL-T1LohqDwqQtLaUUTpTYJgDihdUmpFKxDEvHCgPpX8UCJJsekwg4KInpMZJghw6QKgAD4fLjnhYihF90dSFSemIW8h4UDQrRVEc8N8niSqiI+WFoT1LovInNKC8g4BxDhPWby+L2nuIsL8iZ-SFnrNGeMo56zpmIFOWGNZ+yVkJ2dSczBuyhmuomXas5NROWIC+bc1V8hHnPNeRaSgnzdA3J+dCsN-zgaRoHCCoys8PEQrhtC2lcKEVItAT7FSJq7z4gpJii42KNyLDxXAVpxqfqEGpaS6V5LKXtubauFV+t1GMuSVEx8ma2VRI5e2xg3K+VjlJYKgtIrNzTwlR6UtYAoWng8Rquuiql1StVSWjdg9nq6R1Xq0FqJLHWNamAWdoT83IqLfFJ5R8SoForQ4KtM5Ti1vrUUFMAFO2bHYFe5F9K+2RL8aMQDVie5MpHYgQN4gJ38unbeqAc7ZwLtqdu5Vz7hXMEfT3TAOHQFPG1bq-VKEVJGp-XAACItD1yU6Ps+1jqnQ5D9b6GZMaIzfNwn8iNQL0BpoNSZfA6BgC4g9BGR8jJfaS0ZBAS8ujXlVFLj2OaujKhSmMWpp4rLIWC1k-yOaJas3ScQIZhTHD8NJMIBARkSxFVDshYoezkstVHrI6eniUZ-YzBQHBNsl4lUtCPFIUdijENVkxOBvzX5ClygSwU+DWDFYSBKq04AEHsbQzxthLwlS9bUCKcl308h7qIFxSaeLJWrSpfSywCD-7WzHiCD2nRISiOYEWVp98OnzEdaAziPZPXEh9d0eQEALoRvJGPGY3RqBIzROm31ugmIfM4VNJNsrORJvBDW3AXz8gFsSFGNt47oxgiibQOJ-cUnOvQs66qib7Vzt2CAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBAhgGzQfQKYogCwApRJYEBnASkQG8AoRRxGYRQmczMEDY8aeGCrV6TMYgBO2KCAlIARABME2eQG4GTAL6JsactlqbxbfLkV9Sg4YUoaTjKTLnJ0WXAUJQUMNJYEUlHbGiFp0YSQBSAC2KADW2JgA7jBStkZiaNKI5DAA5mDomABu6CCGALyIAAz2TFlQiHhkYJiRLeSIVdwYdYztgjnSmNEAnpi5BeiEYNhJJWXYIiFiLGyThVilaOWIAIQV3XMLO0sZDmIbRdu7R-M32H0XktKySKgYOHhEzYJt-B1ghcdHoDOdni9nAplLN1CttCEwmIBggmhAINgAA5QTC-BD-KwISzLC541oooRdRCYnwSSwAGjRLQJUSoT2R4FsTyRTApiEUHBpUE80RJDicb0Q0S6h0Q8jywyuaHk8OeAH4cvlNidyqqLgAuKUyqryAw4pUqiEODVmkbjJV656G6WHE0oRSKXFRS1W61ojHYr3MimOiGG7ASCRwOnRRnyACqYDiYDgSSQcExEZQLUQAFpc4gUlJ5ECEWIJS4BeQhQQNBEAYMFeatdMi2dREwK0g24R5YqW8rgmE6HzbUrCG3GbN7osxY5Xi4e6b+1NBzNjg8h3QRw3Ue7PWSJ6lsIyySyWnPIZKl-ug4IS4QzxSt3zYglMLBookDHkv2AoF4MBfoyACO5TlJeXbUrSgHAYgYHYBBdbbqO2C-tg-4fkB2CEFQ4JXi4ZjurhW47oSSA-n+OIIeUJH4VB3i+CRyGvvEiQ0ThkELkgNKpDMPBoFOAkvruSDAFGmHYnSHFcVCiBERYMksaJLwoBImBSYQMn0dxiCMX4SnhGRURDDi4kIDimkcYyMBQNgor4baClaeBJ7MHZorKeRpmYFIakaVA0muTZHmXra+kuYhbm2fZIneRwODRNi4wcZFEE6XJCU9H45mSYFaVLHFJkwEIEbUa5BUhbF+EQBQjTThptJUrxdIxbGiDZaWjBrOwnD2clmCpTJl6XMMuWWfl1kdccLVdeItp+epVnBdN8yzdyuj6IYHYmOFPh+ItAVBVFlBTjNtJzaNOKHctUVnWtF3ciEUEcV5JlvokKAKmAigoOkO0EUgaAcAB1SkXyECyFImGfjhX0Yb9smSs58M-Sg4MqbakORhhOKw4+32-YysNhcMKOEygxPYRj3mUbj5AEwj6MZZKEWo4jyHGTmY5oVRDPs5TQx5HhAN7UxAuMj+bJGVzgzAKk5DmrzuOM2jSOEeYuHK-+-MU0EnN8lIisTNrUC60z6tIBFdM66riNFTmt5QHAuIU7Bblkqeev4XyABGegIMLmD+8A0Y4VLI2drpWUCVrwvUAAPgnobiLDiAADxC1RWFfoQzkR3NPL9CpH1cMcsMm+h-7u6eUSR4wtVCI0IFUqXqWXUwJUGBI5VRVptcXuyUdyaXFc2wBsOgYXIR8k7LvjwzEf4asrBx9n+P52hwjGnp1PLw4XdlYNFXj8ffeb-Hp1MoIHeMCCW37yYjeKy8L9VNbW+3+IPX+2ggecCHMOhAjZQCCI-Z4Ys-BS3pCnZ4LVCClwamPU2Ndr4IFOrA30el9px2EF-MQ98wQA19HPSufNgHYEVvgssDgi6hBCM-RoUsqQLztujJ4P8A5gCDoAtIBdwE8yrmbNhMDfTwMQeXbCZCVaTzQWADBWDRqXw2qCbaepSGsIjk9MIjC9JmFdkzVubEDFoy5HQXRJVihlQjJgRQegUCjCpAAJg0LolAP1MB5GzIkOxaAHFUgAMyuLqogaMnjvG2PsY4qoABWDQs9gB2XUr4hxhAUmjAHjffCpCBZpKiYgAA1MgKGuMc44SgPogWCjFFME9noz6es3o5j-nkGAHxMDRlwgARklk4y2OQuk72qIgAAZCMnITihkpw1NUFOhpyCDNdDURAScBk7y6XQAAkOIG0kylnDNWeQPZsoNk1I1Bs7ZJhwyRk6UcuMABJMA2wYCKE1KuEsmDrlRjpAsh5Tz0AvLeZsEsTTBhhK8XZR8PSmhOMZHAEAUBMQIsvHyMJT5RL-T1LohqDwqQtLaUUTpTYJgDihdUmpFKxDEvHCgPpX8UCJJsekwg4KInpMZJghw6QKgAD4fLjnhYihF90dSFSemIW8h4UDQrRVEc8N8niSqiI+WFoT1LovInNKC8g4BxDhPWby+L2nuIsL8iZ-SFnrNGeMo56zpmIFOWGNZ+yVkJ2dSczBuyhmuomXas5NROWIC+bc1V8hHnPNeRaSgnzdA3J+dCsN-zgaRoHCCoys8PEQrhtC2lcKEVItAT7FSJq7z4gpJii42KNyLDxXAVpxqfqEGpaS6V5LKXtubauFV+t1GMuSVEx8ma2VRI5e2xg3K+VjlJYKgtIrNzTwlR6UtYAoWng8Rquuiql1StVSWjdg9nq6R1Xq0FqJLHWNamAWdoT83IqLfFJ5R8SoForQ4KtM5Ti1vrUUFMAFO2bHYFe5F9K+2RL8aMQDVie5MpHYgQN4gJ38unbeqAc7ZwLtqdu5Vz7hXMEfT3TAOHQFPG1bq-VKEVJGp-XAACItD1yU6Ps+1jqnQ5D9b6GZMaIzfNwn8iNQL0BpoNSZfA6BgC4g9BGR8jJfaS0ZBAS8ujXlVFLj2OaujKhSmMWpp4rLIWC1k-yOaJas3ScQIZhTHD8NJMIBARkSxFVDshYoezkstVHrI6eniUZ-YzBQHBNsl4lUtCPFIUdijENVkxOBvzX5ClygSwU+DWDFYSBKq04AEHsbQzxthLwlS9bUCKcl308h7qIFxSaeLJWrSpfSywCD-7WzHiCD2nRISiOYEWVp98OnzEdaAziPZPXEh9d0eQEALoRvJGPGY3RqBIzROm31ugmIfM4VNJNsrORJvBDW3AXz8gFsSFGNt47oxgiibQOJ-cUnOvQs66qib7VzvBCnV2+7jIul2CAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBAhgGzQfQKYogCwApRJYEBnASkQG8AoRRxGYRQmczMEDY8aeGCrV6TMYgBO2KCAlIARABME2eQG4GTAL6JsactlqbxbfLkV9Sg4YUoaTjKTLnJ0WXAUJQUMNJYEUlHbGiFp0YSQBSAC2KADW2JgA7jBStkZiaNKI5DAA5mDomABu6CCGALyIAAz2TFlQiHhkYJiRLeSIVdwYdYztgjnSmNEAnpi5BeiEYNhJJWXYIiFiLGyThVilaOWIAIQV3XMLO0sZDmIbRdu7R-M32H0XktKySKgYOHhEzYJt-B1ghcdHoDOdni9nAplLN1CttCEwmIBggmhAINgAA5QTC-BD-KwISzLC541oooRdRCYnwSSwAGjRLQJUSoT2R4FsTyRTApiEUHBpUE80RJDicb0Q0S6h0Q8jywyuaHk8OeAH4cvlNidyqqLgAuKUyqryAw4pUqiEODVmkbjJV656G6WHE0oRSKXFRS1W61ojHYr3MimOiGG7ASCRwOnRRnyACqYDiYDgSSQcExEZQLUQAFpc4gUlJ5ECEWIJS4BeQhQQNBEAYMFeatdMi2dREwK0g24R5YqW8rgmE6HzbUrCG3GbN7osxY5Xi4e6b+1NBzNjg8h3QRw3Ue7PWSJ6lsIyySyWnPIZKl-ug4IS4QzxSt3zYglMLBookDHkv2AoF4MBfoyACO5TlJeXbUrSgHAYgYHYBBdbbqO2C-tg-4fkB2CEFQ4JXi4ZjurhW47oSSA-n+OIIeUJH4VB3i+CRyGvvEiQ0ThkELkgNKpDMPBoFOAkvruSDAFGmHYnSHFcVCiBERYMksaJLwoBImBSYQMn0dxiCMX4SnhGRURDDi4kIDimkcYyMBQNgor4baClaeBJ7MHZorKeRpmYFIakaVA0muTZHmXra+kuYhbm2fZIneRwODRNi4wcZFEE6XJCU9H45mSYFaVLHFJkwEIEbUa5BUhbF+EQBQjTThptJUrxdIxbGiDZaWjBrOwnD2clmCpTJl6XMMuWWfl1kdccLVdeItp+epVnBdN8yzdyuj6IYHYmOFPh+ItAVBVFlBTjNtJzaNOKHctUVnWtF3ciEUEcV5JlvokKAKmAigoOkO0EUgaAcAB1SkXyECyFImGfjhX0Yb9smSs58M-Sg4MqbakORhhOKw4+32-YysNhcMKOEygxPYRj3mUbj5AEwj6MZZKEWo4jyHGTmY5oVRDPs5TQx5HhAN7UxAuMj+bJGVzgzAKk5DmrzuOM2jSOEeYuHK-+-MU0EnN8lIisTNrUC60z6tIBFdM66riNFTmt5QHAuIU7Bblkqeev4XyABGegIMLmD+8A0Y4VLI2drpWUCVrwvUAAPgnobiLDiAADxC1RWFfoQzkR3NPL9CpH1cMcsMm+h-7u6eUSR4wtVCI0IFUqXqWXUwJUGBI5VRVptcXuyUdyaXFc2wBsOgYXIR8k7LvjwzEf4asrBx9n+P52hwjGnp1PLw4XdlYNFXj8ffeb-Hp1MoIHeMCCW37yYjeKy8L9VNbW+3+IPX+2ggecCHMOhAjZQCCI-Z4Ys-BS3pCnZ4LVCClwamPU2Ndr4IFOrA30el9px2EF-MQ98wQA19HPSufNgHYEVvgssDgi6hBCM-RoUsqQLztujJ4P8A5gCDoAtIBdwE8yrmbNhMDfTwMQeXbCZCVaTzQWADBWDRqXw2qCbaepSGsIjk9MIjC9JmFdkzVubEDFoy5HQXRJVihlQjJgRQegUCjCpAAJg0LolAP1MB5GzIkOxaAHFUgAMyuLqogaMnjvG2PsY4qoABWDQs9gB2XUr4hxhAUmjAHjffCpCBZpKiYgAA1MgKGuMc44SgPogWCjFFME9noz6es3o5j-nkGAHxMDRlwgARklk4y2OQuk72qIgAAZCMnITihkpw1NUFOhpyCDNdDURAScBk7y6XQAAkOIG0kylnDNWeQPZsoNk1I1Bs7ZJhwyRk6UcuMABJMA2wYCKE1KuEsmDrlRjpAsh5Tz0AvLeZsEsTTBhhK8XZR8PSmhOMZHAEAUBMQIsvHyMJT5RL-T1LohqDwqQtLaUUTpTYJgDihdUmpFKxDEvHCgPpX8UCJJsekwg4KInpMZJghw6QKgAD4fLjnhYihF90dSFSemIW8h4UDQrRVEc8N8niSqiI+WFoT1LovInNKC8g4BxDhPWby+L2nuIsL8iZ-SFnrNGeMo56zpmIFOWGNZ+yVkJ2dSczBuyhmuomXas5NROWIC+bc1V8hHnPNeRaSgnzdA3J+dCsN-zgaRoHCCoys8PEQrhtC2lcKEVItAT7FSJq7z4gpJii42KNyLDxXAVpxqfqEGpaS6V5LKXtubauFV+t1GMuSVEx8ma2VRI5e2xg3K+VjlJYKgtIrNzTwlR6UtYAoWng8Rquuiql1StVSWjdg9nq6R1Xq0FqJLHWNamAWdoT83IqLfFJ5R8SoForQ4KtM5Ti1vrUUFMAFO2bHYFe5F9K+2RL8aMQDVie5MpHYgQN4gJ38unbeqAc7ZwLtqdu5Vz7hXMEfT3TAOHQFPG1bq-VKEVJGp-XAACItD1yU6Ps+1jqnQ5D9b6GZMaIzfNwn8iNQL0BpoNSZfA6BgC4g9BGR8jJfaS0ZBAS8ujXlVFLj2OaujKhSmMWpp4rLIWC1k-yOaJas3ScQIZhTHD8NJMIBARkSxFVDshYoezkstVHrI6eniUZ-YzBQHBNsl4lUtCPFIUdijENVkxOBvzX5ClygSwU+DWDFYSBKq04AEHsbQzxthLwlS9bUCKcl308h7qIFxSaeLJWrSpfSywCD-7WzHiCD2nRISiOYEWVp98OnzEdaAziPZPXEh9d0eQEALoRvJGPGY3RqBIzROm31ugmIfM4VNJNsrORJvBDW3AXz8gFsSFGNt47oxgiibQOJ-cUnOvQs66qib7VzvBCnV2+7jIunBD5L46Q7EKraQBj1BK-UoApUB65MBxCmDcc6VNJQeh-tn12B8LIryUgVKaEgMHjiOJpoIZtIhepbTjSOpVbBTEye3Qgj2i4L1XLaNlqiKQ0Q4BWLaArHEAtCMeTYYpkJLcqin1SvLCQxtx787mn9uyKOcIgTmiDvqSVwdy60tDknipTbmzRoyEB0jbZVMLkT7aYRhM5lByr8YuSqksxcDHXgrCjdecQGToaUO7dIEtwNd3J09Qajh8dcocY3euVcBgbAGPbL4Gx7oK38FXIfINPJTW1PJpQ4dnLLnJjfq8-svz-CSvEoDRt4V8BgfewAEEKbME6LjvMBYxfGx521An2gTfgN0U3pWeQqTd4NwBKpQ9GBYxKTDPLEss6lPxv3n8dPxS6VD33EXFVZ9oXn3fdNKl9s0lM5eIvuOc9-QqQ0i29dAZyhhKoFRD8YcNxCf3tqffs8t75yfo-X9H986-qz9niR++v757v5D56hQQ75fTeJmIEJGTgF75qBAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBAhgGzQfQKYogCwApRJYEBnASkQG8AoRRxGYRQmczMEDY8aeGCrV6TMYgBO2KCAlIARABME2eQG4GTAL6JsactlqbxbfLkV9Sg4YUoaTjKTLnJ0WXAUJQUMNJYEUlHbGiFp0YSQBSAC2KADW2JgA7jBStkZiaNKI5DAA5mDomABu6CCGALyIAAz2TFlQiHhkYJiRLeSIVdwYdYztgjnSmNEAnpi5BeiEYNhJJWXYIiFiLGyThVilaOWIAIQV3XMLO0sZDmIbRdu7R-M32H0XktKySKgYOHhEzYJt-B1ghcdHoDOdni9nAplLN1CttCEwmIBggmhAINgAA5QTC-BD-KwISzLC541oooRdRCYnwSSwAGjRLQJUSoT2R4FsTyRTApiEUHBpUE80RJDicb0Q0S6h0Q8jywyuaHk8OeAH4cvlNidyqqLgAuKUyqryAw4pUqiEODVmkbjJV656G6WHE0oRSKXFRS1W61ojHYr3MimOiGG7ASCRwOnRRnyACqYDiYDgSSQcExEZQLUQAFpc4gUlJ5ECEWIJS4BeQhQQNBEAYMFeatdMi2dREwK0g24R5YqW8rgmE6HzbUrCG3GbN7osxY5Xi4e6b+1NBzNjg8h3QRw3Ue7PWSJ6lsIyySyWnPIZKl-ug4IS4QzxSt3zYglMLBookDHkv2AoF4MBfoyACO5TlJeXbUrSgHAYgYHYBBdbbqO2C-tg-4fkB2CEFQ4JXi4ZjurhW47oSSA-n+OIIeUJH4VB3i+CRyGvvEiQ0ThkELkgNKpDMPBoFOAkvruSDAFGmHYnSHFcVCiBERYMksaJLwoBImBSYQMn0dxiCMX4SnhGRURDDi4kIDimkcYyMBQNgor4baClaeBJ7MHZorKeRpmYFIakaVA0muTZHmXra+kuYhbm2fZIneRwODRNi4wcZFEE6XJCU9H45mSYFaVLHFJkwEIEbUa5BUhbF+EQBQjTThptJUrxdIxbGiDZaWjBrOwnD2clmCpTJl6XMMuWWfl1kdccLVdeItp+epVnBdN8yzdyuj6IYHYmOFPh+ItAVBVFlBTjNtJzaNOKHctUVnWtF3ciEUEcV5JlvokKAKmAigoOkO0EUgaAcAB1SkXyECyFImGfjhX0Yb9smSs58M-Sg4MqbakORhhOKw4+32-YysNhcMKOEygxPYRj3mUbj5AEwj6MZZKEWo4jyHGTmY5oVRDPs5TQx5HhAN7UxAuMj+bJGVzgzAKk5DmrzuOM2jSOEeYuHK-+-MU0EnN8lIisTNrUC60z6tIBFdM66riNFTmt5QHAuIU7Bblkqeev4XyABGegIMLmD+8A0Y4VLI2drpWUCVrwvUAAPgnobiLDiAADxC1RWFfoQzkR3NPL9CpH1cMcsMm+h-7u6eUSR4wtVCI0IFUqXqWXUwJUGBI5VRVptcXuyUdyaXFc2wBsOgYXIR8k7LvjwzEf4asrBx9n+P52hwjGnp1PLw4XdlYNFXj8ffeb-Hp1MoIHeMCCW37yYjeKy8L9VNbW+3+IPX+2ggecCHMOhAjZQCCI-Z4Ys-BS3pCnZ4LVCClwamPU2Ndr4IFOrA30el9px2EF-MQ98wQA19HPSufNgHYEVvgssDgi6hBCM-RoUsqQLztujJ4P8A5gCDoAtIBdwE8yrmbNhMDfTwMQeXbCZCVaTzQWADBWDRqXw2qCbaepSGsIjk9MIjC9JmFdkzVubEDFoy5HQXRJVihlQjJgRQegUCjCpAAJg0LolAP1MB5GzIkOxaAHFUgAMyuLqogaMnjvG2PsY4qoABWDQs9gB2XUr4hxhAUmjAHjffCpCBZpKiYgAA1MgKGuMc44SgPogWCjFFME9noz6es3o5j-nkGAHxMDRlwgARklk4y2OQuk72qIgAAZCMnITihkpw1NUFOhpyCDNdDURAScBk7y6XQAAkOIG0kylnDNWeQPZsoNk1I1Bs7ZJhwyRk6UcuMABJMA2wYCKE1KuEsmDrlRjpAsh5Tz0AvLeZsEsTTBhhK8XZR8PSmhOMZHAEAUBMQIsvHyMJT5RL-T1LohqDwqQtLaUUTpTYJgDihdUmpFKxDEvHCgPpX8UCJJsekwg4KInpMZJghw6QKgAD4fLjnhYihF90dSFSemIW8h4UDQrRVEc8N8niSqiI+WFoT1LovInNKC8g4BxDhPWby+L2nuIsL8iZ-SFnrNGeMo56zpmIFOWGNZ+yVkJ2dSczBuyhmuomXas5NROWIC+bc1V8hHnPNeRaSgnzdA3J+dCsN-zgaRoHCCoys8PEQrhtC2lcKEVItAT7FSJq7z4gpJii42KNyLDxXAVpxqfqEGpaS6V5LKXtubauFV+t1GMuSVEx8ma2VRI5e2xg3K+VjlJYKgtIrNzTwlR6UtYAoWng8Rquuiql1StVSWjdg9nq6R1Xq0FqJLHWNamAWdoT83IqLfFJ5R8SoForQ4KtM5Ti1vrUUFMAFO2bHYFe5F9K+2RL8aMQDVie5MpHYgQN4gJ38unbeqAc7ZwLtqdu5Vz7hXMEfT3TAOHQFPG1bq-VKEVJGp-XAACItD1yU6Ps+1jqnQ5D9b6GZMaIzfNwn8iNQL0BpoNSZfA6BgC4g9BGR8jJfaS0ZBAS8ujXlVFLj2OaujKhSmMWpp4rLIWC1k-yOaJas3ScQIZhTHD8NJMIBARkSxFVDshYoezkstVHrI6eniUZ-YzBQHBNsl4lUtCPFIUdijENVkxOBvzX5ClygSwU+DWDFYSBKq04AEHsbQzxthLwlS9bUCKcl308h7qIFxSaeLJWrSpfSywCD-7WzHiCD2nRISiOYEWVp98OnzEdaAziPZPXEh9d0eQEALoRvJGPGY3RqBIzROm31ugmIfM4VNJNsrORJvBDW3AXz8gFsSFGNt47oxgiibQOJ-cUnOvQs66qib7VzvBCnV2+7jIunBD5L46Q7EKraQBj1BK-UoApUB65MBxCmDcc6VNJQeh-tn12B8LIryUgVKaEgMHjiOJpoIZtIhepbTjSOpVbBTEye3Qgj2i4L1XLaNlqiKQ0Q4BWLaArHEAtCMeTYYpkJLcqin1SvLCQxtx787mn9uyKOcIgTmiDvqSVwdy60tDknipTbmzRoyEB0jbZVMLkT7aYRhM5lByr8YuSqksxcDHXgrCjdecQGToaUO7dIEtwNd3J09Qajh8dcocY3euVcBgbAGPbL4Gx7oK38FXIfINPJTW1PJpQ4dnLLnJjfq8-svz-CSvEoDRt4V8BgfewAEEKbME6LjvMBYxfGx521An2gTfgN0U3pWeQqTd4NwBKpQ9GBYxKTDPLEss6lPxv3n8dPxS6VD33EXFVZ9oXn3fdNKl9s0lM5eIvuOc9-QqQ0i29dAZyhhKoFRD8YcNxCf3tqffs8t75yfo-X9H986-qz9niR++v757v5D56hQQ75fTeJmIEJGTgF74aDvYAaPZfZ2BAA

Modularity, Objects, and State 3.3.4

" done "

Ipropagate();

" carry 11 , new value = 1 "
"sum 16 , new value = 0 "
" done "

The carry changes to 1 at time 11 and the sum changes to 0 at time 16.

Exercise 3.31

The internal function accept_action_function de�ned in make_wire speci�es that when a

new action function is added to a wire, the function is immediately run. Explain why this initial-

ization is necessary. In particular, trace through the half-adder example in the paragraphs above

and say how the system’s response would di�er if we had de�ned accept_action_function

as

function accept_action_function(fun) {

action_functions = pair(fun, action_functions);

}

Implementing the agenda

Finally, we give details of the agenda data structure, which holds the functions that are sched-

uled for future execution.

The agenda is made up of time segments. Each time segment is a pair consisting of a number

(the time) and a queue (see exercise 3.32) that holds the functions that are scheduled to be run

during that time segment.

Ifunction make_time_segment(time, queue) {

return pair(time, queue);

}

function segment_time(s) {

return head(s);

}

function segment_queue(s) {

return tail(s);

}

We will operate on the time-segment queues using the queue operations described in sec-

tion 3.3.2.

306 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBAhgGzQfQKYogCwApRJYEBnASkQG8AoRRxGYRQmczMEDY8aeGCrV6TMYgBO2KCAlIARABME2eQG4GTAL6JsactlqbxbfLkV9Sg4YUoaTjKTLnJ0WXAUJQUMNJYEUlHbGiFp0YSQBSAC2KADW2JgA7jBStkZiaNKI5DAA5mDomABu6CCGALyIAAz2TFlQiHhkYJiRLeSIVdwYdYztgjnSmNEAnpi5BeiEYNhJJWXYIiFiLGyThVilaOWIAIQV3XMLO0sZDmIbRdu7R-M32H0XktKySKgYOHhEzYJt-B1ghcdHoDOdni9nAplLN1CttCEwmIBggmhAINgAA5QTC-BD-KwISzLC541oooRdRCYnwSSwAGjRLQJUSoT2R4FsTyRTApiEUHBpUE80RJDicb0Q0S6h0Q8jywyuaHk8OeAH4cvlNidyqqLgAuKUyqryAw4pUqiEODVmkbjJV656G6WHE0oRSKXFRS1W61ojHYr3MimOiGG7ASCRwOnRRnyACqYDiYDgSSQcExEZQLUQAFpc4gUlJ5ECEWIJS4BeQhQQNBEAYMFeatdMi2dREwK0g24R5YqW8rgmE6HzbUrCG3GbN7osxY5Xi4e6b+1NBzNjg8h3QRw3Ue7PWSJ6lsIyySyWnPIZKl-ug4IS4QzxSt3zYglMLBookDHkv2AoF4MBfoyACO5TlJeXbUrSgHAYgYHYBBdbbqO2C-tg-4fkB2CEFQ4JXi4ZjurhW47oSSA-n+OIIeUJH4VB3i+CRyGvvEiQ0ThkELkgNKpDMPBoFOAkvruSDAFGmHYnSHFcVCiBERYMksaJLwoBImBSYQMn0dxiCMX4SnhGRURDDi4kIDimkcYyMBQNgor4baClaeBJ7MHZorKeRpmYFIakaVA0muTZHmXra+kuYhbm2fZIneRwODRNi4wcZFEE6XJCU9H45mSYFaVLHFJkwEIEbUa5BUhbF+EQBQjTThptJUrxdIxbGiDZaWjBrOwnD2clmCpTJl6XMMuWWfl1kdccLVdeItp+epVnBdN8yzdyuj6IYHYmOFPh+ItAVBVFlBTjNtJzaNOKHctUVnWtF3ciEUEcV5JlvokKAKmAigoOkO0EUgaAcAB1SkXyECyFImGfjhX0Yb9smSs58M-Sg4MqbakORhhOKw4+32-YysNhcMKOEygxPYRj3mUbj5AEwj6MZZKEWo4jyHGTmY5oVRDPs5TQx5HhAN7UxAuMj+bJGVzgzAKk5DmrzuOM2jSOEeYuHK-+-MU0EnN8lIisTNrUC60z6tIBFdM66riNFTmt5QHAuIU7Bblkqeev4XyABGegIMLmD+8A0Y4VLI2drpWUCVrwvUAAPgnobiLDiAADxC1RWFfoQzkR3NPL9CpH1cMcsMm+h-7u6eUSR4wtVCI0IFUqXqWXUwJUGBI5VRVptcXuyUdyaXFc2wBsOgYXIR8k7LvjwzEf4asrBx9n+P52hwjGnp1PLw4XdlYNFXj8ffeb-Hp1MoIHeMCCW37yYjeKy8L9VNbW+3+IPX+2ggecCHMOhAjZQCCI-Z4Ys-BS3pCnZ4LVCClwamPU2Ndr4IFOrA30el9px2EF-MQ98wQA19HPSufNgHYEVvgssDgi6hBCM-RoUsqQLztujJ4P8A5gCDoAtIBdwE8yrmbNhMDfTwMQeXbCZCVaTzQWADBWDRqXw2qCbaepSGsIjk9MIjC9JmFdkzVubEDFoy5HQXRJVihlQjJgRQegUCjCpAAJg0LolAP1MB5GzIkOxaAHFUgAMyuLqogaMnjvG2PsY4qoABWDQs9gB2XUr4hxhAUmjAHjffCpCBZpKiYgAA1MgKGuMc44SgPogWCjFFME9noz6es3o5j-nkGAHxMDRlwgARklk4y2OQuk72qIgAAZCMnITihkpw1NUFOhpyCDNdDURAScBk7y6XQAAkOIG0kylnDNWeQPZsoNk1I1Bs7ZJhwyRk6UcuMABJMA2wYCKE1KuEsmDrlRjpAsh5Tz0AvLeZsEsTTBhhK8XZR8PSmhOMZHAEAUBMQIsvHyMJT5RL-T1LohqDwqQtLaUUTpTYJgDihdUmpFKxDEvHCgPpX8UCJJsekwg4KInpMZJghw6QKgAD4fLjnhYihF90dSFSemIW8h4UDQrRVEc8N8niSqiI+WFoT1LovInNKC8g4BxDhPWby+L2nuIsL8iZ-SFnrNGeMo56zpmIFOWGNZ+yVkJ2dSczBuyhmuomXas5NROWIC+bc1V8hHnPNeRaSgnzdA3J+dCsN-zgaRoHCCoys8PEQrhtC2lcKEVItAT7FSJq7z4gpJii42KNyLDxXAVpxqfqEGpaS6V5LKXtubauFV+t1GMuSVEx8ma2VRI5e2xg3K+VjlJYKgtIrNzTwlR6UtYAoWng8Rquuiql1StVSWjdg9nq6R1Xq0FqJLHWNamAWdoT83IqLfFJ5R8SoForQ4KtM5Ti1vrUUFMAFO2bHYFe5F9K+2RL8aMQDVie5MpHYgQN4gJ38unbeqAc7ZwLtqdu5Vz7hXMEfT3TAOHQFPG1bq-VKEVJGp-XAACItD1yU6Ps+1jqnQ5D9b6GZMaIzfNwn8iNQL0BpoNSZfA6BgC4g9BGR8jJfaS0ZBAS8ujXlVFLj2OaujKhSmMWpp4rLIWC1k-yOaJas3ScQIZhTHD8NJMIBARkSxFVDshYoezkstVHrI6eniUZ-YzBQHBNsl4lUtCPFIUdijENVkxOBvzX5ClygSwU+DWDFYSBKq04AEHsbQzxthLwlS9bUCKcl308h7qIFxSaeLJWrSpfSywCD-7WzHiCD2nRISiOYEWVp98OnzEdaAziPZPXEh9d0eQEALoRvJGPGY3RqBIzROm31ugmIfM4VNJNsrORJvBDW3AXz8gFsSFGNt47oxgiibQOJ-cUnOvQs66qib7VzvBCnV2+7jIunBD5L46Q7EKraQBj1BK-UoApUB65MBxCmDcc6VNJQeh-tn12B8LIryUgVKaEgMHjiOJpoIZtIhepbTjSOpVbBTEye3Qgj2i4L1XLaNlqiKQ0Q4BWLaArHEAtCMeTYYpkJLcqin1SvLCQxtx787mn9uyKOcIgTmiDvqSVwdy60tDknipTbmzRoyEB0jbZVMLkT7aYRhM5lByr8YuSqksxcDHXgrCjdecQGToaUO7dIEtwNd3J09Qajh8dcocY3euVcBgbAGPbL4Gx7oK38FXIfINPJTW1PJpQ4dnLLnJjfq8-svz-CSvEoDRt4V8BgfewAEEKbME6LjvMBYxfGx521An2gTfgN0U3pWeQqTd4NwBKpQ9GBYxKTDPLEss6lPxv3n8dPxS6VD33EXFVZ9oXn3fdNKl9s0lM5eIvuOc9-QqQ0i29dAZyhhKoFRD8YcNxCf3tqffs8t75yfo-X9H986-qz9niR++v757v5D56hQQ75fTeJmIEJGTgF74aDvYAaPZfZ7ZRi76QF2BAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9WycDOmA5vmFABR6YA0iAjiJkwJSIDeAUIj4gE6YoIPkgAOqGHyox8dRs0wsA3JwC+nTqEiwEiIqUzlcMzBQJsuvfoOFIAFplQATM8rUat0eEn1ko2eSZXDm5eASERRCgJABtXFVUgA

Modularity, Objects, and State 3.3.4

The agenda itself is a one-dimensional table of time segments. It di�ers from the tables

described in section 3.3.3 in that the segments will be sorted in order of increasing time. In

addition, we store the current time (i.e., the time of the last action that was processed) at the

head of the agenda. A newly constructed agenda has no time segments and has a current time

of 0:
30

Ifunction make_agenda() {

return list(0);

}

function current_time(agenda) {

return head(agenda);

}

function set_current_time(agenda, time) {

set_head(agenda, time);

}

function segments(agenda) {

return tail(agenda);

}

function set_segments(agenda, segs) {

set_tail(agenda, segs);

}

function first_segment(agenda) {

return head(segments(agenda));

}

function rest_segments(agenda) {

return tail(segments(agenda));

}

An agenda is empty if it has no time segments:

Ifunction is_empty_agenda(agenda) {

return is_null(segments(agenda));

}

To add an action to an agenda, we �rst check if the agenda is empty. If so, we create a time

segment for the action and install this in the agenda. Otherwise, we scan the agenda, examining

the time of each segment. If we �nd a segment for our appointed time, we add the action to the

associated queue. If we reach a time later than the one to which we are appointed, we insert a

new time segment into the agenda just before it. If we reach the end of the agenda, we must

30
The agenda is a headed list, like the tables in section 3.3.3, but since the list is headed by the time, we do not

need an additional dummy header (such as the *table* symbol used with tables).

307 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9VBzTMAE1QAoBKRAbwChF7EAnTKERpAGxgGcpSAGcgG4aAXxo1QkWAkQQ2zMFGyxkmUvkIlKtBkxZskAC0yoiGgsVTCxEqdHhJuLbPMaLlq9ZqsAaRF46dAzOyiZmFlqo-oEi4pLgDrLOeGpK3JFWQXrMrOwBqDAcmdpxdokyTi4paVAZPiT+KdzZIS5QhcUN0YjNNvH2lYjAMIy82DWEfN2t9LmGiOHmk+kl1v3l0o764yt1a7P6eUgdRaR79Zba-UA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9VBzTMAE1QAoBKRAbwChF7EAnTKERpAGxgGcpSAGcgG4aAXxo1QkWAkQQ2zMFGyxkmUvkIlKtBkxZskAC0yoiGgsVTCxEqdHhJuLbPMaLlq9ZqsAaRF46dAzOyiZmFlqo-oEi4pLgDrLOeGpK3JFWQXrMrOwBqDAcmdpxdokyTi4paVAZPiT+KdzZIS5QhcUN0YjNNvH2lYjAMIy82DWEfN2t9LmGiOHmk+kl1v3l0o764yt1a7P6eUgdRaR79ZbaG4PbPNiYyAAOUACeuFdkM9TBcwb59zAIA4xQuB36QA

Modularity, Objects, and State 3.3.4

create a new time segment at the end.

Ifunction add_to_agenda(time, action, agenda) {

function belongs_before(segs) {

return is_null(segs) ||

time < segment_time(head(segs));

}

function make_new_time_segment(time, action) {

const q = make_queue();

insert_queue(q, action);

return make_time_segment(time, q);

}

function add_to_segments(segs) {

if (segment_time(head(segs)) === time) {

insert_queue(segment_queue(head(segs)), action);

} else {

const rest = tail(segs);

if (belongs_before(rest)) {

set_tail(segs,

pair(make_new_time_segment(time, action),

tail(segs)));

} else {

add_to_segments(rest);

}

}

}

const segs = segments(agenda);

if (belongs_before(segs)) {

set_segments(agenda,

pair(make_new_time_segment(time, action),

segs));

} else {

add_to_segments(segs);

}

}

The function that removes the �rst item from the agenda deletes the item at the front of the

queue in the �rst time segment. If this deletion makes the time segment empty, we remove it

from the list of segments:
31

Ifunction remove_first_agenda_item(agenda) {

const q = segment_queue(first_segment(agenda));

delete_queue(q);

if (is_empty_queue(q)) {

set_segments(agenda, rest_segments(agenda));

31
Observe that the if expression in this function has no alternative expression. Such a “one-armed if statement”

is used to decide whether to do something, rather than to select between two expressions. An if expression

returns an unspeci�ed value if the predicate is false and there is no alternative.

308 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9WycDOmA5vmFABR6YA0iAjiJkwJSIDeAUIj4gE6YoIPkgAOqGHyox8dRs0wsA3JwC+nTqEiwEiIqUzlcMzBQJsuvfoOFIAFplQATM8rUat0eEn1ko2eSZXDm5eASERRCgJABtXFXVPHSQ0LACmIItQnnDbRHFJCjAQGJi6YtK3RPAvXWA+BH9RKClAxRCrXMiHZwo2qs0a5OtUPmxm1oz2yzCbSOiYOP6Ewe1vPUFsesbxlr6puhgoTGQsqyJ-Hpc2w+PTlaT1i+wBUd3JhVuTs95nhaWDogjt8HkN1jACNgTs0AJ7pBT7BQ-HJzJAQ7AVOLbIwTRGsAaPXQwMBEPj+Np42hAu7IxAQBAEKCIMCYADu4wkfEQAF58pyKMDkOUSjE3FYYMBEALIdCoHCKf1aedNtimnsbsy2RzJGKrL9Nq8xriNSz2QU+LqeKpEJgYkQOnqeH9YhRDe9KSxylrzZa9c83cbAabtRaVFZ1J1UQwpqC1rpUjhUMRDE5UBRaV0kDEIZQAAwDVa1JAQYQCIzUChJlOoDNRq6V5NgVMFwk+TYlvhl-wVqtN1B0ai05713upgcmFtg3S+QxQAgN6u1iJIf4LvuTuNt-wz8jz0f9jbEcwOp2bVf7uj6cwrQvDYCSRnYHeUfdLvL1597xvNjdF6yPz812bE9rGXKIXUA18CSnJBnCcXA4GwfdpFkRBUCLOhXxA1tEAAI1tBAj2wfDgDgAQzBIY8ZkdTMgUhTEKKPNgAB9mOyR1HWoRAAB5Dz8Yx8AoD9KJYX0I14HCEwxLVqCfEg-BQql0OSJVeHpEkmXoHkUAwHAKV9cUSUwMl4SCehMKLAzZjAqTZOfRS5DE9icLghC5IMXdGKo9jxUlRj+IrYSmLYblQqiCcQI4oEjJMiln1M0wgvMT00MssMOOtW17WoqK6QZJkBEZbTVyvKzHQlKV8JiQjIRIsjTEKqBRMi3LT27CDKJoHzWr1c0KCk4M7Pk2cHNSlSup6yaeBKkTRPS1rMrtTAWta1yoEQwDGrKvVxMdXbEH29SiqvbTIO-Gt5qBPyqpq4jMFI8jStUtr3L8L9qwmnq+oGmSTFekbqAs8bup6p7LsW7KQbQpx4PW-7PNK8G1CAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9VBzTMAE1QAoBKRAbwChF7EAnTKERpAGxgGcpSAGcgG4aAXxo1QkWAkQQ2zMFGyxkmUvkIlKtBkxZskAC0yoiGgsVTCxEqdHhJuLbPMaLlq9ZqsAaRF46dAzOyiZmFlqo-oEi4pLgDrLOeGpK3JFWQXrMrOwBqDAcmdpxdokyTi4paVAZPiT+KdzZIS5QhcUN0YjNNvH2lYjAMIy82DWEfN2t9LmGiOHmk+kl1v3l0o764yt1a7P6eUgdRaR79ZbaG4PbwIwIygAOUIykAI4gmF+H8-lLHy+PzKt1kzFQjGwLzen2+mF+Bnyp2KsOBtlBVWU90eUNegLh-hgUEwyEOoWwANRmEJxNJIIq23J4Mh0PxXxpJLJ7U6bOpiCJnPpW1kPGwJJeAE9sFTeQjjvzuNgwCAOMVsUpcTCgfCbgzZERMBwWDgZVTDjBgIhSKLxVApabteRDnpMO44FqCYgAEQGo3E6XauSoVWYIiIADuRKMiFQSFtEsQVK9Nj0okQhuc1GCeno5PVzzxVJiPPzmtlTpEOYYfyQVMrDHE4gxKAwOC8E0wqSmpC8-jNWZyiKQT0Kb17icdZQSwqqXY1XnOcoWAJaU+bewDcMXA+rQ4KZ1X6L1SGYyDgADccCMxsputgBcgDjv6BAELxE4gALy9Tu1TdfUhr12X9uxmFMGF9Y1-3Ud5wPoC0rRtZBJWgj4nWfHNyQuNZ-GYYC532MD63oNMM0wahGyAA

Modularity, Objects, and State 3.3.5

} else {}

}

The �rst agenda item is found at the head of the queue in the �rst time segment. Whenever

we extract an item, we also update the current time:
32

Ifunction first_agenda_item(agenda) {

if (is_empty_agenda(agenda)) {

error("Agenda is empty -- first_agenda_item");

} else {

const first_seg = first_segment(agenda);

set_current_time(agenda, segment_time(first_seg));

return front_queue(segment_queue(first_seg));

}

}

Exercise 3.32

The functions to be run during each time segment of the agenda are kept in a queue. Thus, the

functions for each segment are called in the order in which they were added to the agenda (�rst

in, �rst out). Explain why this order must be used. In particular, trace the behavior of an and-

gate whose inputs change from 0,1 to 1,0 in the same segment and say how the behavior would

di�er if we stored a segment’s functions in an ordinary list, adding and removing functions

only at the front (last in, �rst out).

3.3.5 Propagation of Constraints

Computer programs are traditionally organized as one-directional computations, which per-

form operations on prespeci�ed arguments to produce desired outputs. On the other hand,

we often model systems in terms of relations among quantities. For example, a mathematical

model of a mechanical structure might include the information that the de�ection d of a metal

rod is related to the force F on the rod, the length L of the rod, the cross-sectional area A, and

the elastic modulus E via the equation

dAE = FL

Such an equation is not one-directional. Given any four of the quantities, we can use it to

compute the �fth. Yet translating the equation into a traditional computer language would

force us to choose one of the quantities to be computed in terms of the other four. Thus, a

32
In this way, the current time will always be the time of the action most recently processed. Storing this

time at the head of the agenda ensures that it will still be available even if the associated time segment has been

deleted.

309 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9VBzTMAE1QAoBKRAbwChF7EAnTKERpAGxgGcpSAGcgG4aAXxo1QkWAkQQ2zMFGyxkmUvkIlKtBkxZskAC0yoiGgsVTCxEqdHhJuLbPMaLlq9ZqsAaRF46dAzOyiZmFlqo-oEi4pLgDrLOeGpK3JFWQXrMrOwBqDAcmdpxdokyTi4paVAZPiT+KdzZIS5QhcUN0YjNNvH2lYjAMIy82DWEfN2t9LmGiOHmk+kl1v3l0o764yt1a7P6eUgdRaR79ZbaG4PbPNiYyAAOUACeuFdkM9TBcwb59zAIA4xQuBxuFW2aCwKhgagmmFSU1IXn8AEcQJhMYd5vknoVGCi4Zh0ZjsWUEltkojarC1Occf9jKZlhtKUkqkilNgMVj1C0fjkmQUzi0yrdZMBGAhlC9CbzsYKGLjmREFZgIVSkMxUIxsHLSOrGccRcUjeLIdTlFKZfqoPKySTEDAoI9DqFsEtDY7-C63Ratb0XDq9Qb1b7Xch3e1Ot6+RH-bYJUh7o8Xu91XHFbplcLAcDijbuWHHeRNRzhtLuZmjUq-ibU883jzHVmNb89IgAPyITDuOAO+OIABEReU6rkqBBmCIiAA7i6jIhUEg029EOrh+QO3oAFyLFmkMd2wfY8tDEZjZTdbB+5AHOvO4CIUiN9MfKLgx96PvSwnDgBBT5nW4Xsm1eRAAFpIOGUZxhvO8txEPRRF7DhnG-BgIAQXhYKvBE8EQABePDdhpZEZmQzt6A9NwPDpbxPiacjuS8I84OUFIyyo6iVUrW1Mz2Fs+XY-CuJsFCxCAA

Modularity, Objects, and State 3.3.5

function for computing the area A could not be used to compute the de�ection d , even though

the computations of A and d arise from the same equation.
33

In this section, we sketch the design of a language that enables us to work in terms of

relations themselves. The primitive elements of the language are primitive constraints, which

state that certain relations hold between quantities. For example, adder(a, b, c) speci�es

that the quantities a, b, and c must be related by the equation a +b = c , multiplier(x, y, z)

expresses the constraint xy = z, and constant(3.14, x) says that the value of x must be 3.14.

Our language provides a means of combining primitive constraints in order to express more

complex relations. We combine constraints by constructing constraint networks, in which con-

straints are joined by connectors. A connector is an object that “holds” a value that may par-

ticipate in one or more constraints. For example, we know that the relationship between

Fahrenheit and Celsius temperatures is

9C = 5(F − 32)

Such a constraint can be thought of as a network consisting of primitive adder, multiplier,

and constant constraints (�gure 3.28). In the �gure, we see on the left a multiplier box with

three terminals, labeledm1,m2, and p. These connect the multiplier to the rest of the network

as follows: Them1 terminal is linked to a connectorC , which will hold the Celsius temperature.

Them2 terminal is linked to a connectorw , which is also linked to a constant box that holds 9.

The p terminal, which the multiplier box constrains to be the product of m1 and m2, is linked

to the p terminal of another multiplier box, whosem2 is connected to a constant 5 and whose

m1 is connected to one of the terms in a sum.

m1

m2
p* p

m1

m2
*

u
v

3259

a1

a2
s+ F

C

w x y

Figure 3.28: The relation 9C = 5(F − 32) expressed as a constraint network.

Computation by such a network proceeds as follows: When a connector is given a value (by

33
Constraint propagation �rst appeared in the incredibly forward-looking SKETCHPAD system of Ivan Suther-

land (1963). A beautiful constraint-propagation system based on the Smalltalk language was developed by Alan

Borning (1977) at Xerox Palo Alto Research Center. Sussman, Stallman, and Steele applied constraint propagation

to electrical circuit analysis (Sussman and Stallman 1975; Sussman and Steele 1980). TK!Solver (Konopasek and

Jayaraman 1984) is an extensive modeling environment based on constraints.

310 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.3.5

the user or by a constraint box to which it is linked), it awakens all of its associated constraints

(except for the constraint that just awakened it) to inform them that it has a value. Each

awakened constraint box then polls its connectors to see if there is enough information to

determine a value for a connector. If so, the box sets that connector, which then awakens

all of its associated constraints, and so on. For instance, in conversion between Celsius and

Fahrenheit, w , x , and y are immediately set by the constant boxes to 9, 5, and 32, respectively.

The connectors awaken the multipliers and the adder, which determine that there is not enough

information to proceed. If the user (or some other part of the network) sets C to a value (say

25), the leftmost multiplier will be awakened, and it will set u to 25 · 9 = 225. Then u awakens

the second multiplier, which sets v to 45, and v awakens the adder, which sets F to 77.

Using the constraint system

To use the constraint system to carry out the temperature computation outlined above, we

�rst create two connectors, C and F, by calling the constructor make_connector, and link C and

F in an appropriate network:

Iconst C = make_connector();

const F = make_connector();

celsius_fahrenheit_converter(C, F);

" ok "

The function that creates the network is de�ned as follows:

Ifunction celsius_fahrenheit_converter(c, f) {

const u = make_connector();

const v = make_connector();

const w = make_connector();

const x = make_connector();

const y = make_connector();

multiplier(c, w, u);

multiplier(v, x, u);

adder(v, y, f);

constant(9, w);

constant(5, x);

constant(32, y);

return "ok";

}

This function creates the internal connectors u, v, w, x, and y, and links them as shown

in �gure 3.28 using the primitive constraint constructors adder, multiplier, and constant.

Just as with the digital-circuit simulator of section 3.3.4, expressing these combinations of

primitive elements in terms of functions automatically provides our language with a means

of abstraction for compound objects.

311 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMOAnA+gUwIYQBZYAeEmADlABSbFmwIA0y4jANjAM5QCUiA3gFCIhTSHSQs4cUhRhRMAW3Y8Bw1YhjBEM9ujAgWLGXMVdlgtRdSYoIVEgBEAEwSZ7AbnMWAvokwt2mOqaFHg4jkYKSogAvLG+NOTwYGYWlta24pLSUNgwhrKRph6piD5+AXyeJSIhYREmXMXVQlY2dogSUhQ5efVKjVWqXlXDqq0ZHVkUbJwDw6CiSepgKKjy6NgARnAgUOgAbtgsIJgUEAicqLlg3JVj6e3nYJfXlPYAkuh42PuYGwdHE72Ob8fgLaBLGArNDrLY7PZgOAA46nJ4vKG3FTCcaPC5QK4YigfdASTjoeQAT2RQJB4LEiG+OkOKLOCDAmGgaBS2IeSCe7M5qCJjOprhBYPAEIQiAA5tZRaywAKoFy7jy2ny2RyVUL7MyaR5hhLFtKAnt9aitYLGOyAO6ixhQ1bybA3bktXmIfnatBEs2i4EUO0O5bO13cQ2gulLVZy82Ay1Kn2oRitK6C92IHGapOComx6yBtO4HXi6PS73QRXKtA2zD2tH416Z7Neq06omVqCB4ONgluyPlpAugDWfy7vszLGsiAtMWQRwCTSE06goZh4fnwEXmGXHRnfde7HnegMe6HiH9lIVduZjDNclQmdUGi0AEIRRaKPJMKY1c052iRBbyOPcSidDcbnnB9MFQMDUlbVYsFwAhqBIcgKBglNBmaXDqggtYNm2XYHRwvDyNUQ8MSUeChDKfxAlfCg5zfOIQJYZ9Ulg1BfRmSgLTrW1mS4Rh7AAYQQJtHBgKUwGBWjSl8Bj-2qVt7BgGVESsRx3DI0oRiqC8Cz2a8v2LDMVJfYJzJ1GI4gIl03Us1IHM3IDtwYhT7g1ZA0GQ-AiHQygbNrPSKPIhyiPhXQkQEsLwtwqibhovT6IqLFmjUjStMwHSFNGYQCqEC8uyDet0CeJsMU4oQmI4XR9EMH95E2WCyobST+ygeh4oS1IkqgfoarUAbjyA0hciFXtOteRhRoGEo0sCDK1CKtQmM-BNv1-YaX2hQi4RIr9ppuLqFtSJbnLovS1OcdldKGQzJXpH8KCsABHE5ZiuoItA+r611iID7E2lFgR+7yJlcqDWPcnd8qUiomP+zBODs4GLXBlaSlbC0EfKRjrMwT7UcBuJ7H9THdvVCYrypPHUsRwm-uJgH0cQexjKx3qs09YzyXphN8eU5HWdJ9n7C7bm8NbLthfSnnuN9FHOFEgBVMAR0RW0kCkWDsHpABaQ221zHV5NSgzIfaH9B2epZ5H0WBSDYNr5AARkYeQACZGFIHjHBAaBMwvf24BIdgdGDL9hqYkJsCZLaPZ4AAyFPZXlL9k-ZgAGLgwoAHwLrRQZOb9vdT9O4wVH2eCBxA8+poRKa2sPA+gRgc69395eZ+PE5ZbO04ZBOa4rpvL0z1uA6D7rEB55pq6z92eAAKgz+NB4rxh+AASF3iwf3O7wmd+-uFTb2fK5Hgey+TieW63ne+rUJfp7gdvbgAeg3muV+fl+wgj69zPqXU4l9g6IGHmA8uf5sapEfnfT288D7kTfiyCB39f5Z23nvCiwDGYEx+mtNaoceIRx0PzGOP0qHv0-t3Y+ahaGD2QQQkozC76+0QGw1IYcKG6HKjHPcpD7bSleirTEelRYkzRvXYk3xfj-CphDYQfDUZR0EVtRhQxT7SLZnIz4pITKCzBhPNRkd0AcNONowqp94EWCVkKCR6tNbayQBIxAxtuFOxgC7GAsELaLStsIUqHsGF7lCVwnhQhSqYPCVUVstt+DzFEUgbAjhHBtWwMg7AXD2AgHkCHVJiBzEaPtNQ+xoDR5fmydfGBuS4E80QacfJ8hGDoLLrUxAABqbBW0GnxMWro4I9SV5QPTjA1pjS8LNIoLk9pU8WRTM8X0lktTBkXWGSXap-SK7jJvgqKZD9FmdOQR0lpBSeAm3OXM7e3Ce6EOUpUkhT0TRIFKZYtANzhpWMwgUjZFhfnZIBUwr5JzTjzPuTYoQHzo5aOEa82S9y3pi2+pUvR4sDFfB+H8bAAYzHkPUQI8p8LHlIyJjIsmwNDFwDJKZBM0tcIfN+dCxSRDKmqEcSiylLitZwB1rzSlniTbpMyagQJF1gkxPbHM1hDzKIyshdE02yo-ltKhXuRJu5knGiRY2cMzEExzXbKqFaF5xGoskSULlziOYaz5QKjxXj9U3AlddBVZtqzJhBbMicKZZxGo1Qkz0SSUlvK9OUGAIBKHYDwFYMAoRZAVQQL8VAj4ziMGAJmRsiAQDzlHOOE1QpGE5v2Pm7AY5k1m0nBEvEiBbTlsrX6igJa62EEbYW6txba3PDXBSDtVaazdqqI7FgztXZCggIwW0jAQCMNHeO-xQp9iMEILOxhoq2orsQBSTNrbe0GoAJzTv3ZwA1ABWVdp6cg3AoAAZi4RSRhak4Ajl0sMHNYkB3NoGDmgAYt+otLaPAkH8FGmNcbMAJswEmp4qb01iUYH+xoQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMOAnA+gUwIYQBZYAeEmADlABSbFmwIA0y4jANjAM5QCUiA3gFCIhTSHSQs4cUhRhRMAW3Y8Bw1YhjBEM9ujAgWLGXMVdlgtRdSYoIVEgBEAEwSZ7AbnMWAvokwt2mOqaFHg4jkYKSogAvLG+NOTwYGYWlta24pLSUNgwhrKRph6piD5+AXyeJSIhYREmXMXVQlY2dogSUhQ5efVKjVWqXlXDqq0ZHVkUbJwDw6CiSepgKKjy6NgARnAgUOgAbtgsIJgUEAicqLlg3JVj6e3nYJfXlPYAkuh42PuYGwdHE72Ob8fgLaBLGArNDrLY7PZgOAA46nJ4vKG3FTCcaPC5QK4YigfdASTjoeQAT2RQJB4LEiG+OkOKLOCDAmGgaBS2IeSCe7M5qCJjOprhBYPAEIQiAA5tZRaywAKoFy7jy2ny2RyVUL7MyaR5hhLFtKAnt9aitYLGOyAO6ixhQ1bybA3bktXmIfnatBEs2i4EUO0O5bO13cQ2gulLVZy82Ay1Kn2oRitK6C92IHGapOComx6yBtO4HXi6PS73QRXKtA2zD2tH416Z7Neq06omVqCB4ONgluyPlpAugDWfy7vszLGsiAtMWQRwCTSE06goZh4fnwEXmGXHRnfde7HnegMe6HiH9lIVduZjDNclQmdUGi0AEIRRaKPJMKY1c052iRBbyOPcSidDcbnnB9MFQMDUlbVYsFwAhqBIcgKBglNBmaXDqggtYNm2XYHRwvDyNUQ8MSUeChDKfxAlfCg5zfOIQJYZ9Ulg1BfRmSgLTrW1mS4Rh7AAYQQJtHBgKUwGBWjSl8Bj-2qVt7BgGVESsRx3DI0oRiqC8Cz2a8v2LDMVJfYJzJ1GI4gIl03Us1IHM3IDtwYhT7g1ZA0GQ-AiHQygbNrPSKPIhyiPhXQkQEsLwtwqibhovT6IqLFmjUjStMwHSFNGYQCqEC8uyDet0CeJsMU4oQmI4XR9EMH95E2WCyobST+ygeh4oS1IkqgfoarUAbjyA0hciFXtOteRhRoGEo0sCDK1CKtQmM-BNv1-YaX2hQi4RIr9ppuLqFtSJbnLovS1OcdldKGQzJXpH8KCsABHE5ZiuoItA+r611iID7E2lFgR+7yJlcqDWPcnd8qUiomP+zBODs4GLXBlaSlbC0EfKRjrMwT7UcBuJ7H9THdvVCYrypPHUsRwm-uJgH0cQexjKx3qs09YzyXphN8eU5HWdJ9n7C7bm8NbLthfSnnuN9FHOFEgBVMAR0RW0kCkWDsHpABaQ221zHV5NSgzIfaH9B2epZ5H0WBSDYNr5AARkYeQACZGFIHjHBAaBMwvf24BIdgdGDL9hqYkJsCZLaPZ4AAyFPZXlL9k-ZgAGLgwoAHwLrRQZOb9vdT9O4wVH2eCBxA8+poRKa2sPA+gRgc69395eZ+PE5ZbO04ZBOa4rpvL0z1uA6D7rEB55pq6z92eAAKgz+NB4rxh+AASF3iwf3O7wmd+-uFTb2fK5Hgey+TieW63ne+rUJfp7gdvbgAeg3muV+fl+wgj69zPqXU4l9g6IGHmA8uf5sapEfnfT288D7kTfiyCB39f5Z23nvCiwDGYEx+mtNaoceIRx0PzGOP0qHv0-t3Y+ahaGD2QQQkozC76+0QGw1IYcKG6HKjHPcpD7bSleirTEelRYkzRvXYk3xfj-CphDYQfDUZR0EVtRhQxT7SLZnIz4pITKCzBhPNRkd0AcNONowqp94EWCVkKCR6tNbayQBIxAxtuFOxgC7GAsELaLStsIUqHsGF7lCVwnhQhSqYPCVUVstt+DzFEUgbAjhHBtWwMg7AXD2AgHkCHVJiBzEaPtNQ+xoDR5fmydfGBuS4E80QacfJ8hGDoLLrUxAABqbBW0GnxMWro4I9SV5QPTjA1pjS8LNIoLk9pU8WRTM8X0lktTBkXWGSXap-SK7jJvgqKZD9FmdOQR0lpBSeAm3OXM7e3Ce6EOUpUkhT0TRIFKZYtANzhpWMwgUjZFhfnZIBUwr5JzTjzPuTYoQHzo5aOEa82S9y3pi2+pUvR4sDFfB+H8bAAYzHkPUQI8p8LHlIyJjIsmwNDFwDJKZBM0tcIfN+dCxSRDKmqEcSiylLitZwB1rzSlniTbpMyagQJF1gkxPbHM1hDzKIyshdE02yo-ltKhXuRJu5knGiRY2cMzEExzXbKqFaF5xGoskSULlziOYaz5QKjxXj9U3AlddBVZtqzJhBbMicKZZxGo1Qkz0SSUlvK9OUGAIBKHYDwFYMAoRZAVQQL8VAj4ziMGAJmRsiAQDzlHOOE1QpGE5v2Pm7AY5k1m0nBEvEiBbTlsrX6igJa62EEbYW6txba3PDXBSDtVaazdqqI7FgztXZCggIwW0jAQCMNHeO-xQp9iMEILOxhoq2orsQBSTNrbe0GoAJzTv3ZwA1ABWVdp6cg3AoAAZi4RSRhak4Ajl0kaHNYkB3NoGDmgAYt+otLaPAkH8FGmNcbMAJswEmp4qb01iUYH+xoQA

Modularity, Objects, and State 3.3.5

To watch the network in action, we can place probes on the connectors C and F, using a

probe function similar to the one we used to monitor wires in section 3.3.4. Placing a probe

on a connector will cause a message to be printed whenever the connector is given a value:

Iprobe("Celsius temp", C);

probe("Fahrenheit temp", F);

Next we set the value of C to 25. (The third argument to set_value tells C that this directive

comes from the user.)

Iset_value(C, 25, "user");

" Probe : C e l s i u s temp = 25 "
" Probe : Fahrenhe i t temp = 77 "
" done "

The probe on C awakens and reports the value. C also propagates its value through the

network as described above. This sets F to 77, which is reported by the probe on F.

Now we can try to set F to a new value, say 212:

Iset_value(F, 212, "user");

" Er ro r ! Con t rad i c t i on : (7 7 , 212) "

The connector complains that it has sensed a contradiction: Its value is 77, and someone is

trying to set it to 212. If we really want to reuse the network with new values, we can tell C to

forget its old value:

Iforget_value(C, "user");

" Probe : C e l s i u s temp = ? "
" Probe : Fahrenhe i t temp = ? "
" done "

C �nds that the "user", who set its value originally, is now retracting that value, so C agrees

to lose its value, as shown by the probe, and informs the rest of the network of this fact. This

information eventually propagates to F, which now �nds that it has no reason for continuing

to believe that its own value is 77. Thus, F also gives up its value, as shown by the probe.

Now that F has no value, we are free to set it to 212:

Iset_value(F, 212, "user");

" Probe : Fahrenhe i t temp = 212 "
" Probe : C e l s i u s temp = 100 "
" done "

This new value, when propagated through the network, forces C to have a value of 100,

and this is registered by the probe on C. Notice that the very same network is being used to

312 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=FAMwrgdgxgLglgewgAgBYEMDOB9AbugGzAFMAKKJCY2BAJwEpkBvYZN5W4mMWlCiKjVqkARBhz4ixEfQDcwAL7BQkWIhQBzLnkIlylajDqMW7Dlx58DQ0ZJIz5SldHhJkmbXbL9BR2gBpkKgB3HSlAuAgQOgBbdAgYE1Z2Tm5eZB9DOlEPGDD7elIQ-OIIqNj4xMdlcBd1ZGjaLTyvfQEsgPMYWnQhJLNUywzrP1FG5plSVJ6+6uc1N0zYNt86QOL+TG70SMTmZLZB9KXRkRPJjaQtnt25RXnXFAAHWgQAIzIIdBjS4fa+-ZmWoLZ60XbYF7vMhefpmdgAEzgmCeBHQAE9RAAFV4fABcyBEyAA1EFvsRiQTkABeSkk66RDRwEAYmF3MxKIGqR7ISFQYiYHDFVqwuE8sEJCE4sjNEorDr0NnsDnsYHc3n8nDjTy6MgiuEvcGQj6iAD8DgOyGVbFV9R+U2IAEcSFs9QMLOlOE7+TBqVSaSIAJLYDC4YjYdAlEQW0Vwk1ihB8gXYIU60j0aMx9j4z3On1+-1BggILbYGJoyMZzPsOPqpNalqp9NVzP44i0V7CHPe-yV5uZkQAVQgAGsIAhgigu1tkABaGfxj7m9kWk5yoSBH6Kw7ulA-ao2tyNbDEXqoY8ADz5TxgpGIl+I1-UgVqgQISL2phVXPqRYQT1IcAwMQMSYK67BMsgAGCmABAEABQEgQqgJ9kcKAiPCSDSPImYKMgxAEB4yAQaQqAnvC8HAaBvo0neV6PGBoqocgv7-jAOxwYBlEKthMa4fhhGfs2tQkWRFGIVuVZMSxpBsXAHEIaBEnLspKQ7sxCB-qQb4uvu35uJEjQxOGbwIGADZSG01w7AkepMZs2y7KIQYhmGEZeOaTgHigBmxMZpl5GOsr2TcNnIduaRWBAVmOYG2BFiWZaRncShecgcTDmGJzZHqBBcMgXjUg0hAeDxbC5T6Pm0HECSFSAxXEKVzF5cF1kwJghUQDBBCNaluSluWrQhJIgS5EBDBhXCxEAITiLKm4MXCBU0kNhCNZmlXVXm7hcGNa0xkxR4nlAZ60Q+N6jW2PZ9td10bX5ZklFdN3PTGLW7KBe1sHxBHksRBVTX6QTEMEkgLWYbYdlp76kF46zA6DgQiAAwkg2yIiCS68XhP0TZmTEiHAGhjpw8IiJ9loWlaDR6Sg9b9bK0y9H4C3EYzQjUUR5RVZUYPgVzm21fV5NuhFDR0Mep4XnR9rbOuvYvbd-P3QFCCPfLCvNm9CQfb230Cer4VDATRN0MQpPk1TVOpaulwJCFH69sRSLJl1pA-DEHzCLbDkJE9GvPVrbUKrzbCB+1NJPDsXvA9g-A+zAgRh0pSrY-rOGOyAkGza0824zGd3oCZD2DTHcf28nX2p+SglwlTItGxhVBk5TFqpXaU4O+tmf2l6075gS2c6jIeeMWpG2VMgAM0nVP0W1XRHdx3HMiO5IddEMXhz-xv2L46ubL31q8j3CTF9Ylm+6-PrN796y-1sPNd42pdPnzqW849fvd5oDZwjA-Bvr2OCMd+ac+wQ2yB3RGQ5RzjhQH+Ns6BuRzj+KsWgmNRSWwtExPc9w24wXgCiOAbY3YAEYNwACZAiQnhGAWAepUq1kFDHYUx9iIkSwHNEhjAABk3DkAyhzlwjmAAGJsmYAA+4is4cJzuQnhfCBGphiHIkRSFH4xkPqmahtCE7IGERuYgFdLRX27oPCyMQhG8LQDIpRci16aIsto2AgQAHNkUeYoRAAqfh2pzFyJcQASACaKTcICd7SIkFo14NC6HICsWYvQFi1EAIcYkyhyBXFVncXoJxewAD0PjzKJK4S4-2ZhQmX23gvCJspcnyOsZEvxyTrqpLIBYwJz1slkDqcgApXS3b+OAMEm6FScLz3UV9FunI6huEYdgOmLCJliyaL4nJ0SdEGKMQspRZC0qGPJtsvxmzyZzJTBZCSVsaZ7J7rmFmu8v7L2cugUM4YkrHzMKc5hjYwnVJubffusV4p5FflIf+105mHL0EYvW1cAHgM7DfLYUCRxjgnOYB5yCYj4LgIQts6Da5TPYKudpeyJLEvSaMolIxSC5OOVgtSOCUpXPQPCeExD0C7PQOkzAYAYj0KuZ80IiyM41NaBy+pCSyBcuaX2VppAeUxECP08VFJlX+NJT84ikrSAqviTYiyCqZXNjlVypVqyyCGtnIU2U4q6VjKqVq-VehpVxL4dqw19jzU6t2f0y1841X0DtVjKpSzMHTJBPGRMmo6D9IWpCi1vKg2injd6pNcIU2mo1b2QVsoLmtyue3RFnd873P3gCp5Ly3JDzXjm4UmrS3-J-oWYswKBrVveewCFMavXQvGXC9sECi3IpgWipeyCWVsrQdCwlodqUcrTauTNlLZ3-HOomrN9d0iMoePUeylQYY6kTiMYwE025kA7gteFfykUEmgaiycRbZzzj3QkfFVNVxZU6Mu7aRTvDHs6LDDdqlRbbutvxOAYBNToFQJwCApFAKxyQKGWgY1yDPj1PZZAYBCrpUyv+tMjVMO4Bw+gDKiHV3ZUI1cH0wQSNkc-QRlc1HkDnjo3hijwgyXMbRGx8jqDGPlOxbi4QUBAjBECGACSWKCAELfMQ3AgRzwSYkhO+TgQ0Toao1FNiCRSAAE4xNce0-ugArIpozWx90AGZ0logkvjBAw5m5KEw0jXjDG7iYYAGLufw558DkH5nQdg-BvI-BkOoaRoELzdwjRkGRgF9qCEngiECEjWLUpRBeeC8QODxBALIGS6l5AMXZBAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABACwIYGcD6A3VAbEAUwAoIExDo4AnASkQG8AoRVxawqEapMsCqtWIAiNFlwFCw2gG4mAXyZNQkWAkQBzTjnxFS5SlBr1mbdp268DgkRKLS5i5eGjwk6bXZJ8BR6gBpECgB3HUlAmDBgGgBbVDAoExY2Di4eRB9DGhEPKDD7WmIQ-MIIqNj4xMclFVd1aOotPK99fiyA8yhqVEEks1TLDOs-EQam6WJU7t7q51U3IbboVt8aQOK+dC7USMTGZNYB9MybYROoCY2ELe7d2QUalzUkAAdqOAAjEjBUGNLF1Z0fZmWrPRBvXaYN6fEhePpmNgAExg6BeeFQAE8RAAFd5fABciGEiAA1EFfoRSUTEABealkm6RDQwYBYuH3MyKEFPBbQiCEdBYYoteEI8HUSHQr7EJolFbtWgcthctig3nvfmCzBjTy6EiihEQhJQvEkYQAfgcB0QKtYavUf0mhAAjkQtgb+hZ0hxXQKoLSaXThABJTBobCETCoErCa1ihHm8VwTVCwihEVx+NsQk+t3+wNB0N4OBbTAxDExzNZtiJvkCrA65p64i0KvVxCEwjUd5CXN+-xt9vx4QAVTAAGswHBgkg+1tEABaBdJr5WznW87ywSBP5Kw5epB-ar2pANTCEHrIc8AD35LygxEIt8I97cgRUgTwKL2plVPPUxZwC8xAwFAhAxOgHpsCyiAgUKIB4HgIFgRBirAkORxIMIiIIFIchZvIiCEHgHiIDBxDIBeiLIeBkEBnST53s8UFiphiCAcBUA7EhoG0Yq+HxoRxGkb+7YqBRVE0ahe7VmxHHEFxMA8ShkEyeu6kpAe7FwEBxBfu6x7-kgkQNDEUYfHAIBNpIrQ3DsCQGmxmzbLsIihuGkbRl4VpOCeZHlNQZmoBZVmYFOcrObcDnofuaRWGAdmuSGmDFqW5Yxvcih+XE46Ruc2QGngnCIF4tKIMA+AeAJrBFf6JkVAkZUVSRhDVexxWRfZUDoGVYAIXgbV+bkZYVi0IQSIEuRgUCokIuRACEYhyruLEIqVdLjfgbVZvVgWVGVU1dtt8ZsWeF4QFejEvg+h0BIOQ4PdBAVBSF1lEAOj2fVmnW7JBx2sEJLVkcAsGlfNgZBGmEirWYXY9np37EF46xQ-gtCBMIADCCDbMidRgGuglEUDs1ZmxwgwBoU4cIiwj-Ta1q2uVRnlTQsrpS0Uw9H4q3kVzgj0f5pmVDDT3C41dLNVV92xYMZ2XjeTFOts24y191a7S9ll5OFyNq+r8Y-Qkf1toDIlq+TlPU4QtP00zTN+ZuVwJFFP5tuRKJhf1xB-DEXxCM7LkJB9BtfUb3WKqLrDhz1dIvDsAdppgfBB1AgQx2pyrE+bBHuyDFEYMthBoaT8aa+Z2tyoHruZwD2eUqXANtuTOEUHTjPWtlJBzm7O35z3guiIX3lR50gya-t4OS5VrWm-XwOwQPBZEiPMWyVpXh2-PfMunmg-DavjcImxw0c3qW-CZSO++vOy-CI20hr2TWmNiNJQX0D1973f5yP0fnpxQBIYD+Ochxw2yD3DGY5JzTiQEBLsqAwRLiAYIQmYp7bWjYkeB42UEKwDRDALsPsACMO4ABMgRoSIhANAA0fk6xamFM2Xm+cC7iGbDEYh9AABk3DNC6hspw+gy8AAMrZqwAB8JGwSWi0GIZCeF8NlHIhRgsxGjwPs2KhNC06IBETuYuICr751kRwrhiBeEoGHhwhRGiBF6G0dAQI+tqzKLMfQAAVPwt6JB5Ho0QEwAAkIEsUu4jELzYXKRxexLGmMEVwuxPifYUICaHMwbibLRPoAAem8ctLhzi0lsDCXPS+ES4kOPeNQ2hFi+EVN8bYp+8ZNHxOcSEx6GTKlwGqXsXJnSGnoyCZ9EpBF55HwwdyeY6gGENjZvY-UTS7RzKSdEgxtdWaNHmSQtZ9NX4qJ2W2GZYUk4ijag7Fmjoe4sMXrvP0g93KoAjFGDKizDQanrMc9MzDwlfzuXfIsJY8hn0kH-NWRy9nfNKSTNW4Dey3K2FAicU4ZzmBvv6ZBMQ8EwAIV2NBCIJlsE3Jwg5ZgiUpJGYS4YxBVmIApbLdI2Csos1QIiRERDUCkMQKgFJ6AQAxDoSzI5TCbLXMiS0DliirHsJstykuasWl6F5TEQI-TiASqpKq2VJKiZlPIvUtV5jYnWJskquVD0FUkG5SqrZprFx5PFQU2lhioWkT1cavQsralSrlKaxJcoOXWqSba5cmqFHavQWM02HdJn4yTCmbUyy5SrQhSavl4aEQpo9ZyulGbE3ivJc6rMQqTmQo0naC53d4W9zLv3Kt9ywyPM8i8-+bBi1fJFT82taL62pSBaNPUoKHrgrzaWnV0KHqwqdGixFMCUUD2QSytl1A8VloZqSqlAanUyU3FardbVNxKvTVg2eTKpnxS2JUJGep07DGMGvLuU68yrUnZAok0DkWzjrcg5ylQ8VM03PlDoOaLVbj8IEZGe7MFaUZXMWN-ISIwBAA2VAyAOBgEoqBZOCAIzUGmqQd8BpnKIBAGVHKeVb1CG3dcf02BSOoFylhpYIwqMJX9MEOjDHAMtn3dRxA14OPkaYwVHjrHEAYgE4xwE3HrSYrwPgr8RCICBGCIEEAMlZPycIUIbAgRryqZkouohOmxMEZExehIxAACcymWPmYfAAVl07ZriFmADMKSMQyXJnAcc7dFBEcxhJrj9wiMADEgsUek-B9AiHkOocIOhwgmG+A4bw5jQIoX7hSjNJjYSsXEAoReMIQImMsumhEKFlDaGMP+kK8VxAmW5AgfS4gMhjmiRIdxbIIAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABACwIYGcD6A3VAbEAUwAoIExDo4AnASkQG8AoRVxawqEapMsCqtWIAiNFlwFCw2gG4mAXyZNQkWAkQBzTjnxFS5SlBr1mbdp268DgkRKLS5i5eGjwk6bXZJ8BR6gBpECgB3HUlAmDBgGgBbVDAoExY2Di4eRB9DGhEPKDD7WmIQ-MIIqNj4xMclFVd1aOotPK99fiyA8yhqVEEks1TLDOs-EQam6WJU7t7q51U3IbboVt8aQOK+dC7USMTGZNYB9MybYROoCY2ELe7d2QUalzUkAAdqOAAjEjBUGNLF1Z0fZmWrPRBvXaYN6fEhePpmNgAExg6BeeFQAE8RAAFd5fABciGEiAA1EFfoRSUTEABealkm6RDQwYBYuH3MyKEFPBbQiCEdBYYoteEI8HUSHQr7EJolFbtWgcthctig3nvfmCzBjTy6EiihEQhJQvEkYQAfgcB0QKtYavUf0mhAAjkQtgb+hZ0hxXQKoLSaXThABJTBobCETCoErCa1ihHm8VwTVCwihEVx+NsQk+t3+wNB0N4OBbTAxDExzNZtiJvkCrA65p64i0KvVxCEwjUd5CXN+-xt9vx4QAVTAAGswHBgkg+1tEABaBdJr5WznW87ywSBP5Kw5epB-ar2pANTCEHrIc8AD35LygxEIt8I97cgRUgTwKL2plVPPUxZwC8xAwFAhAxOgHpsCyiAgUKIB4HgIFgRBirAkORxIMIiIIFIchZvIiCEHgHiIDBxDIBeiLIeBkEBnST53s8UFiphiCAcBUA7EhoG0Yq+HxoRxGkb+7YqBRVE0ahe7VmxHHEFxMA8ShkEyeu6kpAe7FwEBxBfu6x7-kgkQNDEUYfHAIBNpIrQ3DsCQGmxmzbLsIihuGkbRl4VpOCeZHlNQZmoBZVmYFOcrObcDnofuaRWGAdmuSGmDFqW5Yxvcih+XE46Ruc2QGngnCIF4tKIMA+AeAJrBFf6JkVAkZUVSRhDVexxWRfZUDoGVYAIXgbV+bkZYVi0IQSIEuRgUCokIuRACEYhyruLEIqVdLjfgbVZvVgWVGVU1dtt8ZsWeF4QFejEvg+h0BIOQ4PdBAVBSF1lEAOj2fVmnW7JBx2sEJLVkcAsGlfNgZBGmEirWYXY9np37EF46xQ-gtCBMIADCCDbMidRgGuglEUDs1ZmxwgwBoU4cIiwj-Ta1q2uVRnlTQsrpS0Uw9H4q3kVzgj0f5pmVDDT3C41dLNVV92xYMZ2XjeTFOts24y191a7S9ll5OFyNq+r8Y-Qkf1toDIlq+TlPU4QtP00zTN+ZuVwJFFP5tuRKJhf1xB-DEXxCM7LkJB9BtfUb3WKqLrDhz1dIvDsAdppgfBB1AgQx2pyrE+bBHuyDFEYMthBoaT8aa+Z2tyoHruZwD2eUqXANtuTOEUHTjPWtlJBzm7O35z3guiIX3lR50gya-t4OS5VrWm-XwOwQPBZEiPMWyVpXh2-PfMunmg-DavjcImxw0c3qW-CZSO++vOy-CI20hr2TWmNiNJQX0D1973f5yP0fnpxQBIYD+Ochxw2yD3DGY5JzTiQEBLsqAwRLiAYIQmYp7bWjYkeB42UEKwDRDALsPsACMO4ABMgRoSIhANAA0fk6xamFM2Xm+cC7iGbDEYh9AABk3DNC6hspw+gy8AAMrZqwAB8JGwSWi0GIZCeF8NlHIhRgsxGjwPs2KhNC06IBETuYuICr751kRwrhiBeEoGHhwhRGiBF6G0dAQI+tqzKLMfQAAVPwt6JB5Ho0QEwAAkIEsUu4jELzYXKRxexLGmMEVwuxPifYUICaHMwbibLRPoAAem8ctLhzi0lsDCXPS+ES4kOPeNQ2hFi+EVN8bYp+8ZNHxOcSEx6GTKlwGqXsXJnSGnoyCZ9EpBF55HwwdyeY6gGENjZvY-UTS7RzKSdEgxtdWaNHmSQtZ9NX4qJ2W2GZYUk4ijag7Fmjoe4sMXrvP0g93KoAjFGDKizDQanrMc9MzDwlfzuXfIsJY8hn0kH-NWRy9nfNKSTNW4Dey3K2FAicU4ZzmBvv6ZBMQ8EwAIV2NBCIJlsE3Jwg5ZgiUpJGYS4YxBVmIApbLdI2Csos1QIiRERDUCkMQKgFJ6AQAxDoSzI5TCbLXMiS0DliirHsJstykuasWl6F5TEQI-TiASqpKq2VJKiZlPIvUtV5jYnWJskquVD0FUkG5SqrZprFx5PFQU2lhioWkT1cavQsralSrlKaxJcoOXWqSba5cmqFHavQWM02HdJn4yTCmbUyy5SrQhSavl4aEQpo9ZyulGbE3ivJc6rMQqTmQo0naC53d4W9zLv3Kt9ywyPM8i8-+bBi1fJFT82taL62pSBaNPUoKHrgrzaWnV0KHqwqdGixFMCUUD2QSytl1A8VloZqSqlAanUyU3FardbVNxKvTVg2eTKpnxS2JUJGep07DGMGvLuU68yrUnZAok0DkWzjrcg5ylQ8VM03PlDoOaLVbj8IEZGe7MFaUZXMWN-ISIwBAA2VAyAOBgEoqBZOCAIzUGmqQd8BpnKIBAGVHKeVb1CG3dcf02BSOoFylhpYIwqMJX9MEOjDHAMtn3dRxA14OPkaYwVHjrHEAYgE4xwE3HrSYrwPgr8RCICBGCIEEAMlZPycIUIbAgRryqZkouohOmxMEZExehIxAACcymWPmYfAAVl07ZriFmADMKSMQyXJnAcc7dFBEcxhJrj9wiMADEgsUek-B9AiHkOocIOhwgmG+A4bw5jQIoX7hSjNJjYSsXEAoReMIQImMsumhEKFlDaGMP+kK8VxAmW5AgfS4gMhjmiRIdxfcEDoXAhkOISk4QnXl2yCAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABACwIYGcD6A3VAbEAUwAoIExDo4AnASkQG8AoRVxawqEapMsCqtWIAiNFlwFCw2gG4mAXyZNQkWAkQBzTjnxFS5SlBr1mbdp268DgkRKLS5i5eGjwk6bXZJ8BR6gBpECgB3HUlAmDBgGgBbVDAoExY2Di4eRB9DGhEPKDD7WmIQ-MIIqNj4xMclFVd1aOotPK99fiyA8yhqVEEks1TLDOs-EQam6WJU7t7q51U3IbboVt8aQOK+dC7USMTGZNYB9MybYROoCY2ELe7d2QUalzUkAAdqOAAjEjBUGNLF1Z0fZmWrPRBvXaYN6fEhePpmNgAExg6BeeFQAE8RAAFd5fABciGEiAA1EFfoRSUTEABealkm6RDQwYBYuH3MyKEFPBbQiCEdBYYoteEI8HUSHQr7EJolFbtWgcthctig3nvfmCzBjTy6EiihEQhJQvEkYQAfgcB0QKtYavUf0mhAAjkQtgb+hZ0hxXQKoLSaXThABJTBobCETCoErCa1ihHm8VwTVCwihEVx+NsQk+t3+wNB0N4OBbTAxDExzNZtiJvkCrA65p64i0KvVxCEwjUd5CXN+-xt9vx4QAVTAAGswHBgkg+1tEABaBdJr5WznW87ywSBP5Kw5epB-ar2pANTCEHrIc8AD35LygxEIt8I97cgRUgTwKL2plVPPUxZwC8xAwFAhAxOgHpsCyiAgUKIB4HgIFgRBirAkORxIMIiIIFIchZvIiCEHgHiIDBxDIBeiLIeBkEBnST53s8UFiphiCAcBUA7EhoG0Yq+HxoRxGkb+7YqBRVE0ahe7VmxHHEFxMA8ShkEyeu6kpAe7FwEBxBfu6x7-kgkQNDEUYfHAIBNpIrQ3DsCQGmxmzbLsIihuGkbRl4VpOCeZHlNQZmoBZVmYFOcrObcDnofuaRWGAdmuSGmDFqW5Yxvcih+XE46Ruc2QGngnCIF4tKIMA+AeAJrBFf6JkVAkZUVSRhDVexxWRfZUDoGVYAIXgbV+bkZYVi0IQSIEuRgUCokIuRACEYhyruLEIqVdLjfgbVZvVgWVGVU1dtt8ZsWeF4QFejEvg+h0BIOQ4PdBAVBSF1lEAOj2fVmnW7JBx2sEJLVkcAsGlfNgZBGmEirWYXY9np37EF46xQ-gtCBMIADCCDbMidRgGuglEUDs1ZmxwgwBoU4cIiwj-Ta1q2uVRnlTQsrpS0Uw9H4q3kVzgj0f5pmVDDT3C41dLNVV92xYMZ2XjeTFOts24y191a7S9ll5OFyNq+r8Y-Qkf1toDIlq+TlPU4QtP00zTN+ZuVwJFFP5tuRKJhf1xB-DEXxCM7LkJB9BtfUb3WKqLrDhz1dIvDsAdppgfBB1AgQx2pyrE+bBHuyDFEYMthBoaT8aa+Z2tyoHruZwD2eUqXANtuTOEUHTjPWtlJBzm7O35z3guiIX3lR50gya-t4OS5VrWm-XwOwQPBZEiPMWyVpXh2-PfMunmg-DavjcImxw0c3qW-CZSO++vOy-CI20hr2TWmNiNJQX0D1973f5yP0fnpxQBIYD+Ochxw2yD3DGY5JzTiQEBLsqAwRLiAYIQmYp7bWjYkeB42UEKwDRDALsPsACMO4ABMgRoSIhANAA0fk6xamFM2Xm+cC7iGbDEYh9AABk3DNC6hspw+gy8AAMrZqwAB8JGwSWi0GIZCeF8NlHIhRgsxGjwPs2KhNC06IBETuYuICr751kRwrhiBeEoGHhwhRGiBF6G0dAQI+tqzKLMfQAAVPwt6JB5Ho0QEwAAkIEsUu4jELzYXKRxexLGmMEVwuxPifYUICaHMwbibLRPoAAem8ctLhzi0lsDCXPS+ES4kOPeNQ2hFi+EVN8bYp+8ZNHxOcSEx6GTKlwGqXsXJnSGnoyCZ9EpBF55HwwdyeY6gGENjZvY-UTS7RzKSdEgxtdWaNHmSQtZ9NX4qJ2W2GZYUk4ijag7Fmjoe4sMXrvP0g93KoAjFGDKizDQanrMc9MzDwlfzuXfIsJY8hn0kH-NWRy9nfNKSTNW4Dey3K2FAicU4ZzmBvv6ZBMQ8EwAIV2NBCIJlsE3Jwg5ZgiUpJGYS4YxBVmIApbLdI2Csos1QIiRERDUCkMQKgFJ6AQAxDoSzI5TCbLXMiS0DliirHsJstykuasWl6F5TEQI-TiASqpKq2VJKiZlPIvUtV5jYnWJskquVD0FUkG5SqrZprFx5PFQU2lhioWkT1cavQsralSrlKaxJcoOXWqSba5cmqFHavQWM02HdJn4yTCmbUyy5SrQhSavl4aEQpo9ZyulGbE3ivJc6rMQqTmQo0naC53d4W9zLv3Kt9ywyPM8i8-+bBi1fJFT82taL62pSBaNPUoKHrgrzaWnV0KHqwqdGixFMCUUD2QSytl1A8VloZqSqlAanUyU3FardbVNxKvTVg2eTKpnxS2JUJGep07DGMGvLuU68yrUnZAok0DkWzjrcg5ylQ8VM03PlDoOaLVbj8IEZGe7MFaUZXMWN-ISIwBAA2VAyAOBgEoqBZOCAIzUGmqQd8BpnKIBAGVHKeVb1CG3dcf02BSOoFylhpYIwqMJX9MEOjDHAMtn3dRxA14OPkaYwVHjrHEAYgE4xwE3HrSYrwPgr8RCICBGCIEEAMlZPycIUIbAgRryqZkouohOmxMEZExehIxAACcymWPmYfAAVl07ZriFmADMKSMQyXJnAcc7dFBEcxhJrj9wiMADEgsUek-B9AiHkOocIOhwgmG+A4bw5jQIoX7hSjNJjYSsXEAoReMIQImMsumhEKFlDaGMP+kK8VxAmW5AgfS4gMhjmiRIdxfcTNJAWvCE68u2QQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABACwIYGcD6A3VAbEAUwAoIExDo4AnASkQG8AoRVxawqEapMsCqtWIAiNFlwFCw2gG4mAXyZNQkWAkQBzTjnxFS5SlBr1mbdp268DgkRKLS5i5eGjwk6bXZJ8BR6gBpECgB3HUlAmDBgGgBbVDAoExY2Di4eRB9DGhEPKDD7WmIQ-MIIqNj4xMclFVd1aOotPK99fiyA8yhqVEEks1TLDOs-EQam6WJU7t7q51U3IbboVt8aQOK+dC7USMTGZNYB9MybYROoCY2ELe7d2QUalzUkAAdqOAAjEjBUGNLF1Z0fZmWrPRBvXaYN6fEhePpmNgAExg6BeeFQAE8RAAFd5fABciGEiAA1EFfoRSUTEABealkm6RDQwYBYuH3MyKEFPBbQiCEdBYYoteEI8HUSHQr7EJolFbtWgcthctig3nvfmCzBjTy6EiihEQhJQvEkYQAfgcB0QKtYavUf0mhAAjkQtgb+hZ0hxXQKoLSaXThABJTBobCETCoErCa1ihHm8VwTVCwihEVx+NsQk+t3+wNB0N4OBbTAxDExzNZtiJvkCrA65p64i0KvVxCEwjUd5CXN+-xt9vx4QAVTAAGswHBgkg+1tEABaBdJr5WznW87ywSBP5Kw5epB-ar2pANTCEHrIc8AD35LygxEIt8I97cgRUgTwKL2plVPPUxZwC8xAwFAhAxOgHpsCyiAgUKIB4HgIFgRBirAkORxIMIiIIFIchZvIiCEHgHiIDBxDIBeiLIeBkEBnST53s8UFiphiCAcBUA7EhoG0Yq+HxoRxGkb+7YqBRVE0ahe7VmxHHEFxMA8ShkEyeu6kpAe7FwEBxBfu6x7-kgkQNDEUYfHAIBNpIrQ3DsCQGmxmzbLsIihuGkbRl4VpOCeZHlNQZmoBZVmYFOcrObcDnofuaRWGAdmuSGmDFqW5Yxvcih+XE46Ruc2QGngnCIF4tKIMA+AeAJrBFf6JkVAkZUVSRhDVexxWRfZUDoGVYAIXgbV+bkZYVi0IQSIEuRgUCokIuRACEYhyruLEIqVdLjfgbVZvVgWVGVU1dtt8ZsWeF4QFejEvg+h0BIOQ4PdBAVBSF1lEAOj2fVmnW7JBx2sEJLVkcAsGlfNgZBGmEirWYXY9np37EF46xQ-gtCBMIADCCDbMidRgGuglEUDs1ZmxwgwBoU4cIiwj-Ta1q2uVRnlTQsrpS0Uw9H4q3kVzgj0f5pmVDDT3C41dLNVV92xYMZ2XjeTFOts24y191a7S9ll5OFyNq+r8Y-Qkf1toDIlq+TlPU4QtP00zTN+ZuVwJFFP5tuRKJhf1xB-DEXxCM7LkJB9BtfUb3WKqLrDhz1dIvDsAdppgfBB1AgQx2pyrE+bBHuyDFEYMthBoaT8aa+Z2tyoHruZwD2eUqXANtuTOEUHTjPWtlJBzm7O35z3guiIX3lR50gya-t4OS5VrWm-XwOwQPBZEiPMWyVpXh2-PfMunmg-DavjcImxw0c3qW-CZSO++vOy-CI20hr2TWmNiNJQX0D1973f5yP0fnpxQBIYD+Ochxw2yD3DGY5JzTiQEBLsqAwRLiAYIQmYp7bWjYkeB42UEKwDRDALsPsACMO4ABMgRoSIhANAA0fk6xamFM2Xm+cC7iGbDEYh9AABk3DNC6hspw+gy8AAMrZqwAB8JGwSWi0GIZCeF8NlHIhRgsxGjwPs2KhNC06IBETuYuICr751kRwrhiBeEoGHhwhRGiBF6G0dAQI+tqzKLMfQAAVPwt6JB5Ho0QEwAAkIEsUu4jELzYXKRxexLGmMEVwuxPifYUICaHMwbibLRPoAAem8ctLhzi0lsDCXPS+ES4kOPeNQ2hFi+EVN8bYp+8ZNHxOcSEx6GTKlwGqXsXJnSGnoyCZ9EpBF55HwwdyeY6gGENjZvY-UTS7RzKSdEgxtdWaNHmSQtZ9NX4qJ2W2GZYUk4ijag7Fmjoe4sMXrvP0g93KoAjFGDKizDQanrMc9MzDwlfzuXfIsJY8hn0kH-NWRy9nfNKSTNW4Dey3K2FAicU4ZzmBvv6ZBMQ8EwAIV2NBCIJlsE3Jwg5ZgiUpJGYS4YxBVmIApbLdI2Csos1QIiRERDUCkMQKgFJ6AQAxDoSzI5TCbLXMiS0DliirHsJstykuasWl6F5TEQI-TiASqpKq2VJKiZlPIvUtV5jYnWJskquVD0FUkG5SqrZprFx5PFQU2lhioWkT1cavQsralSrlKaxJcoOXWqSba5cmqFHavQWM02HdJn4yTCmbUyy5SrQhSavl4aEQpo9ZyulGbE3ivJc6rMQqTmQo0naC53d4W9zLv3Kt9ywyPM8i8-+bBi1fJFT82taL62pSBaNPUoKHrgrzaWnV0KHqwqdGixFMCUUD2QSytl1A8VloZqSqlAanUyU3FardbVNxKvTVg2eTKpnxS2JUJGep07DGMGvLuU68yrUnZAok0DkWzjrcg5ylQ8VM03PlDoOaLVbj8IEZGe7MFaUZXMWN-ISIwBAA2VAyAOBgEoqBZOCAIzUGmqQd8BpnKIBAGVHKeVb1CG3dcf02BSOoFylhpYIwqMJX9MEOjDHAMtn3dRxA14OPkaYwVHjrHEAYgE4xwE3HrSYrwPgr8RCICBGCIEEAMlZPycIUIbAgRryqZkouohOmxMEZExehIxAACcymWPmYfAAVl07ZriFmADMKSMQyXJnAcc7dFBEcxhJrj9wiMADEgsUek-B9AiHkOocIOhwgmG+A4bw5jQIoX7hSjNJjYSsXEAoReMIQImMsumhEKFlDaGMP+kK8VxAmW5AgfS4gMhjmiRIdxfcTNJAWvCE68u+4IHQuBDIcQlJ-WPCDZkEAA

Modularity, Objects, and State 3.3.5

compute C given F and to compute F given C. This nondirectionality of computation is the

distinguishing feature of constraint-based systems.

Implementing the constraint system

The constraint system is implemented via procedural objects with local state, in a manner very

similar to the digital-circuit simulator of section 3.3.4. Although the primitive objects of the

constraint system are somewhat more complex, the overall system is simpler, since there is no

concern about agendas and logic delays.

The basic operations on connectors are the following:

– has_value(connector)
tells whether the connector has a value.

– get_value(connector)
returns the connector’s current value.

– set_value(connector, new-value, informant)
indicates that the informant is requesting the connector to set its value to the new value.

– forget_value(connector, retractor)
tells the connector that the retractor is requesting it to forget its value.

– connect(connector, new-constraint)
tells the connector to participate in the new constraint.

The connectors communicate with the constraints by means of the functions inform_about_value,

which tells the given constraint that the connector has a value, and forget_value, which tells

the constraint that the connector has lost its value.

Adder constructs an adder constraint among summand connectors a1 and a2 and a sum

connector. An adder is implemented as a function with local state (the function me below):

Ifunction adder(a1, a2, sum) {

function process_new_value() {

if (has_value(a1) && has_value(a2)) {

set_value(sum, get_value(a1) + get_value(a2), me);

} else if (has_value(a1) && has_value(sum)) {

set_value(a2, get_value(sum) - get_value(a1), me);

} else if (has_value(a2) && has_value(sum)) {

set_value(a1, get_value(sum) - get_value(a2), me);

} else {

}

}

function process_forget_value() {

forget_value(sum, me);

forget_value(a1, me);

313 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABACwIYGcD6A3VAbEAUwAoIExDo4AnASkQG8AoRVxawqEapMsCqtWIAiNFlwFCw2gG4mAXyZNQkWAkQBzTjnxFS5SlBr1mbdp268DgkRKLS5i5eGjwk6bXZJ8BR6gBpECgB3HUlAmDBgGgBbVDAoExY2Di4eRB9DGhEPKDD7WmIQ-MIIqNj4xMclFVd1aOotPK99fiyA8yhqVEEks1TLDOs-EQam6WJU7t7q51U3IbboVt8aQOK+dC7USMTGZNYB9MybYROoCY2ELe7d2QU5uqRUABMXwiFUAEZA1AAmQLoEAxPpsWpqJAAB2ocAghHQWGKLVBZlYMGAiGIYhKxG+9AAZPiUBgcf9aCjUWZcjigTFAk1SV96ABqTSeXQkMmBGKEe6U1jyRCEPAeRDozHYlp4xCE4niDnEWnk-b81HUqUAtnNBVKxAAWi1jNo3N5clVguFovFWJJGoJRMlOuBytMqrY6oV33p7Mkiud+sNdpNfP5FpFhBVoYOiEUZnBC2hsPhWDGPr0FLjNAZLVpwbN-NT2t9XsQPJDlMLpM1ZfzlMTcIRmCRCvLMej8fUPMmhAAjkQthm2NaOH34VBEABeKeIYQASUwaGwhEwqBK0kjbsQ9eTTcIoWRtdRYatGO7o62k+nc8weDgW0wMQAnmvB3WYQ2U1m0yRW2ZjxHXU3D4YSEEd+ygQJhAAVTAABrMA4GCJAwLHfUDVed5qAcaM-2jWM2HOXEflLU1o0I-48zI4Y-TpEjWyOJAeUcIA

Modularity, Objects, and State 3.3.5

forget_value(a2, me);

process_new_value();

}

function me(request) {

if (request === "I_have_a_value") {

process_new_value();

} else if (request === "I_lost_my_value") {

process_forget_value();

} else {

error(request, "Unknown request -- adder");

}

}

connect(a1, me);

connect(a2, me);

connect(sum, me);

return me;

}

Adder connects the new adder to the designated connectors and returns it as its value. The

function me, which represents the adder, acts as a dispatch to the local functions. The following

“syntax interfaces” (see footnote 29 in section 3.3.4) are used in conjunction with the dispatch:

Ifunction inform_about_value(constraint) {

return constraint("I_have_a_value");

}

function inform_about_no_value(constraint) {

return constraint("I_lost_my_value");

}

The adder’s local function process_new_value is called when the adder is informed that

one of its connectors has a value. The adder �rst checks to see if both a1 and a2 have values.

If so, it tells sum to set its value to the sum of the two addends. The informant argument to

set_value is me, which is the adder object itself. If a1 and a2 do not both have values, then the

adder checks to see if perhaps a1 and sum have values. If so, it sets a2 to the di�erence of these

two. Finally, if a2 and sum have values, this gives the adder enough information to set a1. If

the adder is told that one of its connectors has lost a value, it requests that all of its connectors

now lose their values. (Only those values that were set by this adder are actually lost.) Then

it runs process_new_value. The reason for this last step is that one or more connectors may

still have a value (that is, a connector may have had a value that was not originally set by the

adder), and these values may need to be propagated back through the adder.

A multiplier is very similar to an adder. It will set its product to 0 if either of the factors is

0, even if the other factor is not known.

Ifunction multiplier(m1, m2, product) {

314 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDMw4CcC2B9AhgIzhCmwDdcAbEAUwAoIEBnKdXFKASkQG8AoRAYnTUoIdEgZhmrdrQBEASWwALXKWp4ylGnI4BuXgF9evUJFgJkqDDgJESYOFqp1J0tmE49+g4aPGIbiweUPJKFHDM2JgAns46+kZAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABACwIYGcD6A3VAbEAUwAoIExDo4AnASkQG8AoRVxawqEapMsCqtWIAiNFlwFCw2gG4mAXyZNQkWAkQBzTjnxFS5SlBr1mbdp268DgkRKLS5i5eGjwk6bXZJ8BR6gBpECgB3HUlAmDBgGgBbVDAoExY2Di4eRB9DGhEPKDD7WmIQ-MIIqNj4xMclFVd1aOotPK99fiyA8yhqVEEks1TLDOs-EQam6WJU7t7q51U3IbboVt8aQOK+dC7USMTGZNYB9MybYROoCY2ELe7d2QU5uqQYkDxYAAc8GEIhGIBGQIxABMgXe1DgABMQNA+mxamokGC4BBCOgsMUWrCzKwYMBEMRiGISsR-vQAGRkzSeXQkUmIAC8jMQAAZaAdsYgAD6c-FElrA8mUprEgUMpmsrEcti5YlIqHQQLMwGEe5SxDyRCEPAeRC43kYEV-QUoA38oG0SVqmUtOXQqCBdlqp1U5o0klGxAAKhdIvNDoAkP6OTEVXI1RqtTq9YTTW7bTDEBSTeI3aTLVLramQYhHc6pcKbeD5XsAPQ+-lGh15vMh1VSiPawi6vExlOSYjxvZJvlZi37auZ9v-APV1gFuNFu30Mvjod+phB0e1sP1zWN-v19mKMzwhZIlFozBjant9OsY+u9ud5V1jkXw03ld3mizvTAx+51j71HowihTFPuq7K7uoIaTIQACORBbGezb4hwUGolAYr0ogwgAJKYGg2CEJgqAlNIG7Ot+h4Ym6t7Yg2UYtgh0HIYyqEYZgeBwFsmAxAAngRsFmCRWD3gBn7qmuOqmHmPzgkItFIYEwgAKpgAA1mAcDBEg0lbIgAC0WmIC8bwwJ83zUA4Qnbmw5msOc7ofmY1nvnpobstZ16ORRRzPIQjhAA

Modularity, Objects, and State 3.3.5

function process_new_value() {

if ((has_value(m1) && get_value(m1) === 0)

|| (has_value(m2) && get_value(m2) === 0)) {

set_value(product, 0, me);

} else if (has_value(m1) && has_value(m2)) {

set_value(product,

get_value(m1) * get_value(m2),

me);

} else if (has_value(product) && has_value(m1)) {

set_value(m2,

get_value(product) / get_value(m1),

me);

} else if (has_value(product) && has_value(m2)) {

set_value(m1,

get_value(product) / get_value(m2),

me);

} else {

}

}

function process_forget_value() {

forget_value(product, me);

forget_value(m1, me);

forget_value(m2, me);

process_new_value();

}

function me(request) {

if (request === "I_have_a_value") {

process_new_value();

} else if (request === "I_lost_my_value") {

process_forget_value();

} else {

error(request, "Unknown request -- multiplier");

}

}

connect(m1, me);

connect(m2, me);

connect(product, me);

return me;

}

A constant constructor simply sets the value of the designated connector. Any "I_have_a_value"

or "I_lost_my_value" message sent to the constant box will produce an error.

Ifunction constant(value, connector) {

function me(request) {

error(request, "Unknown request -- constant");

}

connect(connector, me);

315 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABACwIYGcD6A3VAbEAUwAoIExDo4AnASkQG8AoRVxawqEapMsCqtWIAiNFlwFCw2gG4mAXyZNQkWAkQBzTjnxFS5SlBr1mbdp268DgkRKLS5i5eGjwk6bXZJ8BR6gBpECgB3HUlAmDBgGgBbVDAoExY2Di4eRB9DGhEPKDD7WmIQ-MIIqNj4xMclFVd1aOotPK99fiyA8yhqVEEks1TLDOs-EQam6WJU7t7q51U3IbboVt8aQOK+dC7USMTGZNYB9MybYROoCY2ELe7d2QU5uqswLcriL0Dz432zWrUkGIkDgARyIWz6ZjYhGo1GyILBUECwgAqmAANZgODBJDwwhbRAAWgJi1eCQcB0QijM5xW7UCgPuZlyJVpgkCH0QDLk-Qs6UBjiAA

Modularity, Objects, and State 3.3.5

set_value(connector, value, me);

return me;

}

Finally, a probe prints a message about the setting or unsetting of the designated connector:

Ifunction probe(name, connector) {

function print_probe(value) {

display("Probe: " + name + " = " + stringify(value));

}

function process_new_value() {

print_probe(get_value(connector));

}

function process_forget_value() {

print_probe("?");

}

function me(request) {

return request === "I_have_a_value"

? process_new_value()

: request === "I_lost_my_value"

? process_forget_value()

: error(request,

"Unknown request -- probe");

}

connect(connector, me);

return me;

}

Representing connectors

A connector is represented as a procedural object with local state variables value, the current

value of the connector; informant, the object that set the connector’s value; and constraints,

a list of the constraints in which the connector participates.

Ifunction make_connector() {

let value = false;

let informant = false;

let constraints = null;

function set_my_value(newval, setter) {

if (!has_value(me)) {

value = newval;

informant = setter;

return for_each_except(setter,

inform_about_value,

constraints);

} else if (value !== newval) {

error(list(value, newval), "Contradiction");

316 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=FAMwrgdgxgLglgewgAgBYEMDOB9AbugGzAFMAKKJCY2BAJwEpkBvYZN5W4mMWlCiKjVqkARBhz4ixEfQDcwAL7BQkWIhQBzLnkIlylajDqMW7Dlx58DQ0ZJIz5SldHhJkmbXbL9BR2gBpkKgB3HSlAuAgQOgBbdAgYE1Z2Tm5eZB9DOlEPGDD7elIQ-OIIqNj4xMdlcBd1ZGjaLTyvfQEsgPMYWnQhJLNUywzrP1FG5plSVJ6+6uc1N0zYNt86QOL+TG70SMTmZLZB9KXRkRPJjaQtnt25RXnXFAAHWgQAIzIIdBjS4fa+-ZmWoLZ60XbYF7vMhefpmdgAEzgmCeBHQAE9RAAFV4fABcyBEyAA1EFvsRiQTkABeSkk66RDRwEAYmF3MxKIGqR7ISFQYiYHDFVqwuE8sEJCE4sjNEorDr0NnsDnsYHc3n8nDjTy6MgiuEvcGQj6iAD8DgOyGVbFV9R+U2IAEcSFs9QMLOlOE7+TBqVSaSIAJLYDC4YjYdAlEQW0Vwk1ihB8gXYIU60j0aMx9j4z3On1+-1BggILbYGJoyMZzPsOPqpNalqp9NVzP44i0V7CHPe-yV5uZkQAVQgAGsIAhgigu1tkABaGfxj7m9kWk5yoSBH6Kw7ulA-RxAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMOAnA+gUwIYQBZYAeEmADlABSbFmwIA0y4jANjAM5QCUiA3gFCIhTSHSQs4cUhRhRMAW3Y8Bw1YhjBEM9ujAgWLGXMVdlgtRdSYoIVEgBEAEwSZ7AbnMWAvokwt2mOqaFHg4jkYKSogAvLG+NOTwYGYWlta24pLSUNgwhrKRph6piD5+AXyeJSIhYREmXMXVQlY2dogSUhQ5efVKjVWqXlXDqq0ZHVkUbJwDw6CiSepgKKjy6NgARnAgUOgAbtgsIJgUEAicqLlg3JVj6e3nYJfXlPYAkuh42PuYGwdHE72Ob8fgLaBLGArNDrLY7PZgOAA46nJ4vKG3FTCcaPC5QK4YigfdASTjoeQAT2RQJB4LEiG+OkOKLOCDAmGgaBS2IeSCe7M5qCJjOprhBYPAEIQiAA5tZRaywAKoFy7jy2ny2RyVUL7MyaR5hhLFtKAnt9aitYLGOyAO6ixhQ1bybA3bktXmIfnatBEs2i4EUO0O5bO13cQ2gulLVZy82Ay1Kn2oRitK6C92IHGapOComx6yBtO4HXi6PS73QRXKtA2zD2tH416Z7Neq06omVqCB4ONgluyPlpAugDWfy7vszLGsiAtMWQRwCTSE06goZh4fnwEXmGXHRnfde7HnegMe6HiH9lIVduZjDNclQmdUGi0AEIRRaKPJMKY1c052iRBbyOPcSidDcbnnB9MFQMDUlbVYsFwAhqBIcgKBglNBmaXDqggtYNm2XYHRwvDyNUQ8MSUeChDKfxAlfCg5zfOIQJYZ9Ulg1BfRmSgLTrW1mS4Rh7AAYQQJtHBgKUwGBWjSl8Bj-2qVt7BgGVESsRx3DI0oRiqC8Cz2a8v2LDMVJfYJzJ1GI4gIl03Us1IHM3IDtwYhT7g1ZA0GQ-AiHQygbNrPSKPIhyiPhXQkQEsLwtwqibhovT6IqLFmjUjStMwHSFNGYQCqEC8uyDet0CeJsMU4oQmI4XR9EMH95E2WCyobST+ygeh4oS1IkqgfoarUAbjyA0hciFXtOteRhRoGEo0sCDK1CKtQmM-BNv1-YaX2hQi4RIr9ppuLqFtSJbnLovS1OcdldKGQzJXpH8KCsABHE5ZiuoItA+r611iID7E2lFgR+7yJlcqDWPcnd8qUiomP+zBODs4GLXBlaSlbC0EfKRjrMwT7UcBuJ7H9THdvVCYrypPHUsRwm-uJgH0cQexjKx3qs09YzyXphN8eU5HWdJ9n7C7bm8NbLthfSnnuN9FHOFEgBVMAR0RW0kCkWDsHpABaQ221zHV5NSgzIfaH9DSAA

Modularity, Objects, and State 3.3.5

} else {

return "ignored";

}

}

function forget_my_value(retractor) {

if (retractor === informant) {

informant = false;

return for_each_except(retractor,

inform_about_no_value,

constraints);

} else {

return "ignored";

}

}

function connect(new_contraint) {

if (is_null(member(new_contraint,

constraints))) {

constraints = pair(new_contraint, constraints);

} else {

}

if (has_value(me)) {

inform_about_value(new_contraint);

} else {

}

return "done";

}

function me(request) {

if (request === "has_value") {

return informant !== false;

} else if (request === "value") {

return value;

} else if (request === "set_value") {

return set_my_value;

} else if (request === "forget") {

return forget_my_value;

} else if (request === "connect") {

return connect;

} else {

error(request, "Unknown operation -- connector");

}

}

return me;

}

The connector’s local function set_my_value is called when there is a request to set the

connector’s value. If the connector does not currently have a value, it will set its value and

317 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.3.5

remember as informant the constraint that requested the value to be set.
34

Then the connector

will notify all of its participating constraints except the constraint that requested the value to

be set. This is accomplished using the following iterator, which applies a designated function

to all items in a list except a given one:

Ifunction for_each_except(exception, fun, list) {

function loop(items) {

if (is_null(items)) {

return "done";

} else if (head(items) === exception) {

return loop(tail(items));

} else {

fun(head(items));

return loop(tail(items));

}

}

return loop(list);

}

If a connector is asked to forget its value, it runs the local function forget_my_value, which

�rst checks to make sure that the request is coming from the same object that set the value

originally. If so, the connector informs its associated constraints about the loss of the value.

The local function connect adds the designated new constraint to the list of constraints if it

is not already in that list. Then, if the connector has a value, it informs the new constraint of

this fact.

The connector’s function me serves as a dispatch to the other internal functions and also

represents the connector as an object. The following functions provide a syntax interface for

the dispatch:

Ifunction has_value(connector) {

return connector("has_value");

}

function get_value(connector) {

return connector("value");

}

function set_value(connector, new_value, informant) {

return connector("set_value")(new_value, informant);

}

function forget_value(connector, retractor) {

return connector("forget")(retractor);

}

34
The setter might not be a constraint. In our temperature example, we used user as the setter.

318 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMOAnA+gUwIYQBZYAeEmADlABSbFmwIA0y4jANjAM5QCUiA3gFCIhTSHSQs4cUhRhRMAW3Y8Bw1YhjBEM9ujAgWLGXMVdlgtRdSYoIVEgBEAEwSZ7AbnMWAvokwt2mOqaFHg4jkYKSogAvLG+NOTwYGYWlta24pLSUNgwhrKRph6piD5+AXyeJSIhYREmXMXVQlY2dogSUhQ5efVKjVWqXlXDqq0ZHVkUbJwDXkA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABACwIYGcD6A3VAbEAUwAoIExDo4AnASkQG8AoRVxawqEapMsCqtWIAiNFlwFCw2gG4mAXyZNQkWAkQBzTjnxFS5SlBr1mbdp268DgkRKLS5i5eGjwk6bXZJ8BR6gBpECgB3HUlAmDBgGgBbVDAoExY2Di4eRB9DGhEPKDD7WmIQ-MIIqNj4xMclFVd1aOotPK99fiyA8yhqVEEks1TLDOs-EQam6WJU7t7q51U3IbboVt8aQOK+dC7USMTGZNYB9MybYROoCY2ELe7d2QUgA

Modularity, Objects, and State 3.3.5

function connect(connector, new_constraint) {

return connector("connect")(new_constraint);

}

Exercise 3.33

Using primitive multiplier, adder, and constant constraints, de�ne a function averager that

takes three connectors a, b, and c as inputs and establishes the constraint that the value of c

is the average of the values of a and b.

Exercise 3.34

Louis Reasoner wants to build a squarer, a constraint device with two terminals such that the

value of connector b on the second terminal will always be the square of the value a on the

�rst terminal. He proposes the following simple device made from a multiplier:

function squarer(a, b) {

return multiplier(a, a, b);

}

There is a serious �aw in this idea. Explain.

Exercise 3.35

Ben Bitdiddle tells Louis that one way to avoid the trouble in exercise 3.34 is to de�ne a squarer

as a new primitive constraint. Fill in the missing portions in Ben’s outline for a function to

implement such a constraint:

Ifunction squarer(a, b) {

function process_new_value() {

if (has_value(b)) {

if (get_value(b) < 0) {

error(get_value(b),

"Square less than 0 -- squarer");

} else {

〈alternative1〉

} else {

〈alternative2〉

}

}

}

function process_forget_value() {

〈body1〉

319 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmWAUGANIgEYCUiA3gFCL2KiSwKIAOWcEOyyA+mBwB3PgDcMAGxA58lWgwWIYwRPgAWGfuKkyKcuosPLVAcxxQxk6fgqIAPIgAM+w64Z5OBMxe3WKRAzcghgAiAGV0bBxECR5kRCgNJEdEAFpUlEjcLBDyAG5AoIBfRBwJZGj5YMUAEgAdCQwwE1jESSg8MAxYURwARjqsJpacGsK3ErKK6nHq+sbm1vbO7phegCZB4dix6sQi2foDhWOGJmh4JA4uOL5gOCxvSx1ZGbd57ejSOAATAE8BkNFqNCqd6OcWEgALYyXDoHhQFyuD7Asi-P6bIEjXYMMGIFEjRC4ZBQGr4uDAMk1H44CCNIaQrbAnH0XBQEBYaE4ApFIA

Modularity, Objects, and State 3.3.0

}

function me(request) {

〈body2〉

}

〈rest o f declaration〉
return me;

}

Exercise 3.36

Suppose we evaluate the following sequence of expressions in the program environment:

const a = make_connector();

const b = make_connector();

set_value(a, 10, "user");

At some time during evaluation of the set_value, the following expression from the connec-

tor’s local function is evaluated:

for_each_except(setter, inform_about_value, constraints);

Draw an environment diagram showing the environment in which the above expression is

evaluated.

Exercise 3.37

The celsius_fahrenheit_converter function is cumbersome when compared with a more

expression-oriented style of de�nition, such as

function celsius_fahrenheit_converter(x) {

return cplus(cmul(cdiv(cv(9), cv(5)), x), cv(32));

}

Here cplus, cmul, etc. are the “constraint” versions of the arithmetic operations. For example,

cplus takes two connectors as arguments and returns a connector that is related to these by

an adder constraint:

function cplus(x, y) {

const z = make_connector();

adder(x, y, z);

return z;

}

De�ne analogous functions cminus, cmul, cdiv, and cv (constant value) that enable us to de�ne

compound constraints as in the converter example above.
35

35
The expression-oriented format is convenient because it avoids the need to name the intermediate expressions

320 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.4

3.4 Concurrency: Time Is of the Essence

We’ve seen the power of computational objects with local state as tools for modeling. Yet, as

section 3.1.3 warned, this power extracts a price: the loss of referential transparency, giving rise

to a thicket of questions about sameness and change, and the need to abandon the substitution

model of evaluation in favor of the more intricate environment model.

The central issue lurking beneath the complexity of state, sameness, and change is that by

introducing assignment we are forced to admit time into our computational models. Before

we introduced assignment, all our programs were timeless, in the sense that any expression

that has a value always has the same value. In contrast, recall the example of modeling with-

drawals from a bank account and returning the resulting balance, introduced at the beginning

of section 3.1.1:

Iwithdraw(25);

75

Iwithdraw(25);

50

Here successive evaluations of the same expression yield di�erent values. This behavior

arises from the fact that the execution of assignment statements (in this case, assignments to

the variable balance) delineates moments in time when values change. The result of evaluating

an expression depends not only on the expression itself, but also on whether the evaluation

occurs before or after these moments. Building models in terms of computational objects with

local state forces us to confront time as an essential concept in programming.

We can go further in structuring computational models to match our perception of the phys-

ical world. Objects in the world do not change one at a time in sequence. Rather we perceive

them as acting concurrently—all at once. So it is often natural to model systems as collections of

computational threads that execute concurrently. Just as we can make our programs modular

by organizing models in terms of objects with separate local state, it is often appropriate to

divide computational models into parts that evolve separately and concurrently. Even if the

programs are to be executed on a sequential computer, the practice of writing programs as

if they were to be executed concurrently forces the programmer to avoid inessential timing

constraints and thus makes programs more modular.

In addition to making programs more modular, concurrent computation can provide a speed

advantage over sequential computation. Sequential computers execute only one operation at

a time, so the amount of time it takes to perform a task is proportional to the total number of

in a computation. Our original formulation of the constraint language is cumbersome in the same way that many

languages are cumbersome when dealing with operations on compound data. For example, if we wanted to

compute the product (a + b) · (c + d), where the variables represent vectors, we could work in “imperative style,”

using functions that set the values of designated vector arguments but do not themselves return vectors as values:

v_sum("a", "b", temp1);
v_sum("c", "d", temp2);
v_prod(temp1, temp2, answer);
Alternatively, we could deal with expressions, using functions that return vectors as values, and thus avoid

explicitly mentioning temp1 and temp2:

const answer = v_prod(v_sum("a", "b"), v_sum("c", "d"));
Since JavaScript allows us to return compound objects as values of functions, we can transform our imperative-

style constraint language into an expression-oriented style as shown in this exercise. In languages that are

impoverished in handling compound objects, such as Algol, Basic, and Pascal (unless one explicitly uses Pascal

pointer variables), one is usually stuck with the imperative style when manipulating compound objects. Given the

advantage of the expression-oriented format, one might ask if there is any reason to have implemented the system

in imperative style, as we did in this section. One reason is that the non-expression-oriented constraint language

provides a handle on constraint objects (e.g., the value of the adder function) as well as on connector objects. This

is useful if we wish to extend the system with new operations that communicate with constraints directly rather

than only indirectly via operations on connectors. Although it is easy to implement the expression-oriented style

in terms of the imperative implementation, it is very di�cult to do the converse.

321 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=DYUwLgBARghsMDsDGIIF4IEYAM2DcAUAQGYCuyYAlgPYIQDulYAFgCYBOM9AFDALbVyYAJQQA3gQhTKxCN1jxkqAHwZ+ghCPGSpuhYhTpocA6gC0EdUMK7d7cKXZ19Sm1IC+EEMADOqCbZS9mCOdABEAJIIPqTExJRIlCCaEGQIrD5hbhDuBLmMLBxc3ABMAKzCeEA
http://source-academy.github.io/playground#chap=4&prgrm=DYUwLgBARghsMDsDGIIF4IEYAM2DcAUAQGYCuyYAlgPYIQDulYAFgCYBOM9AFDALbVyYAJQQA3gQhTKxCN1jxkqAHwZ+ghCPGSpuhYhTpocA6gC0EdUMK7d7cKXZ19Sm1IC+EEMADOqCbZS9mCOdABEAJIIPqTExJRIlCCaEGQIrD5hbhDuBLmMLBxc3ABMAKzChAVsnDzllUA

Modularity, Objects, and State 3.4.1

operations performed.
36

However, if it is possible to decompose a problem into pieces that are relatively indepen-

dent and need to communicate only rarely, it may be possible to allocate pieces to separate

computing processors, producing a speed advantage proportional to the number of processors

available.

Unfortunately, the complexities introduced by assignment become even more problematic

in the presence of concurrency. The fact of concurrent execution, either because the world

operates in parallel or because our computers do, entails additional complexity in our under-

standing of time.

3.4.1 The Nature of Time in Concurrent Systems

On the surface, time seems straightforward. It is an ordering imposed on events.
37

For any

events A and B, either A occurs before B, A and B are simultaneous, or A occurs after B. For

instance, returning to the bank account example, suppose that Peter withdraws $10 and Paul

withdraws $25 from a joint account that initially contains $100, leaving $65 in the account.

Depending on the order of the two withdrawals, the sequence of balances in the account is

either $100→ $90→ $65 or $100→ $75→ $65. In a computer implementation of the banking

system, this changing sequence of balances could be modeled by successive assignments to a

variable balance.

In complex situations, however, such a view can be problematic. Suppose that Peter and Paul,

and other people besides, are accessing the same bank account through a network of banking

machines distributed all over the world. The actual sequence of balances in the account will

depend critically on the detailed timing of the accesses and the details of the communication

among the machines.

This indeterminacy in the order of events can pose serious problems in the design of con-

current systems. For instance, suppose that the withdrawals made by Peter and Paul are im-

plemented as two separate threads sharing a common variable balance, each thread speci�ed

by the function given in section 3.1.1:

Ifunction withdraw(amount) {

if (balance >= amount) {

balance = balance - amount;

return balance;

36
Most real processors actually execute a few operations at a time, following a strategy called pipelining.

Although this technique greatly improves the e�ective utilization of the hardware, it is used only to speed up the

execution of a sequential instruction stream, while retaining the behavior of the sequential program.

37
To quote some gra�ti seen on a Cambridge building wall: “Time is a device that was invented to keep

everything from happening at once.”

322 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=DYUwLgBARghsMDsDGIIF4IEYAM2DcAUAGYCuyYAlgPYIQDuFYAFgCYBOMdAFDALZVkwASggBvAhEkQKRCF1jxkqAHwY+AhMLESpuhYhTpocA6gC0EdYMK7dbcCTa19Sm1IC+EEMADOqcbZS9mCOtABEAJIIPiRERBRIFCCaEKQILD5hbpLuBLkEDMzsnFwATACsQngQAPQ1EAJgAA4kYABcEADs5UA

Modularity, Objects, and State 3.4.1

} else {

return "Insufficient funds";

}

}

If the two threads operate independently, then Peter might test the balance and attempt to

withdraw a legitimate amount. However, Paul might withdraw some funds in between the time

that Peter checks the balance and the time Peter completes the withdrawal, thus invalidating

Peter’s test.

Things can be worse still. Consider the expression

balance = balance - amount;

executed as part of each withdrawal process. This consists of three steps: (1) accessing the value

of the balance variable; (2) computing the new balance; (3) setting balance to this new value.

If Peter and Paul’s withdrawals execute this statement concurrently, then the two withdrawals

might interleave the order in which they access balance and set it to the new value.

The timing diagram in �gure 3.29 depicts an order of events where balance starts at 100,

Peter withdraws 10, Paul withdraws 25, and yet the �nal value of balance is 75. As shown in

the diagram, the reason for this anomaly is that Paul’s assignment of 75 to balance is made

under the assumption that the value of balance to be decremented is 100. That assumption,

however, became invalid when Peter changed balance to 90. This is a catastrophic failure for

the banking system, because the total amount of money in the system is not conserved. Before

the transactions, the total amount of money was $100. Afterwards, Peter has $10, Paul has $25,

and the bank has $75.
38

The general phenomenon illustrated here is that several threads may share a common state

variable. What makes this complicated is that more than one thread may be trying to manipu-

late the shared state at the same time. For the bank account example, during each transaction,

each customer should be able to act as if the other customers did not exist. When a customer

changes the balance in a way that depends on the balance, he must be able to assume that, just

before the moment of change, the balance is still what he thought it was.

38
An even worse failure for this system could occur if the two assignments attempt to change the balance

simultaneously, in which case the actual data appearing in memory might end up being a random combination

of the information being written by the two threads. Most computers have interlocks on the primitive memory-

write operations, which protect against such simultaneous access. Even this seemingly simple kind of protection,

however, raises implementation challenges in the design of multiprocessing computers, where elaborate cache-
coherence protocols are required to ensure that the various processors will maintain a consistent view of memory

contents, despite the fact that data may be replicated (“cached”) among the di�erent processors to increase the

speed of memory access.

323 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.4.1

Correct behavior of concurrent programs

The above example typi�es the subtle bugs that can creep into concurrent programs. The root

of this complexity lies in the assignments to variables that are shared among the di�erent

threads. We already know that we must be careful in writing programs that use assignment,

because the results of a computation depend on the order in which the assignments occur.
39

With concurrent threads we must be especially careful about assignments, because we may

not be able to control the order of the assignments made by the di�erent threads. If several

such changes might be made concurrently (as with two depositors accessing a joint account)

we need some way to ensure that our system behaves correctly. For example, in the case of

withdrawals from a joint bank account, we must ensure that money is conserved. To make

concurrent programs behave correctly, we may have to place some restrictions on concurrent

execution.

39
The factorial program in section 3.1.3 illustrates this for a single sequential thread.

324 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.4.1

Peter

Access balance: $100

new value: 100 – 10 = 90

update balance to $90

time

Bank Paul

$100

$90

$75

Access balance: $100

new value: 100 – 25 = 75

update balance to $75

Figure 3.29: Timing diagram showing how interleaving the order of events in two banking

withdrawals can lead to an incorrect �nal balance.

One possible restriction on concurrency would stipulate that no two operations that change

any shared state variables can occur at the same time. This is an extremely stringent require-

ment. For distributed banking, it would require the system designer to ensure that only one

transaction could proceed at a time. This would be both ine�cient and overly conservative.

Figure 3.30 shows Peter and Paul sharing a bank account, where Paul has a private account as

well. The diagram illustrates two withdrawals from the shared account (one by Peter and one

by Paul) and a deposit to Paul’s private account.
40

The two withdrawals from the shared account must not be concurrent (since both access and

update the same account), and Paul’s deposit and withdrawal must not be concurrent (since

both access and update the amount in Paul’s wallet). But there should be no problem permitting

40
The columns show the contents of Peter’s wallet, the joint account (in Bank1), Paul’s wallet, and Paul’s

private account (in Bank2), before and after each withdrawal (W) and deposit (D). Peter withdraws $10 from

Bank1; Paul deposits $5 in Bank2, then withdraws $25 from Bank1.

325 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.4.1

Paul’s deposit to his private account to proceed concurrently with Peter’s withdrawal from

the shared account.

$100$7 $5 $300

$0 $305

$305$25$65$17

$17 $90

W

W

D

time

Peter Bank1 Paul Bank2

Figure 3.30: Concurrent deposits and withdrawals from a joint account in Bank1 and a private

account in Bank2.

A less stringent restriction on concurrency would ensure that a concurrent system produces

the same result as if the threads had run sequentially in some order. There are two important

aspects to this requirement. First, it does not require the threads to actually run sequentially,

but only to produce results that are the same as if they had run sequentially. For the example

in �gure 3.30, the designer of the bank account system can safely allow Paul’s deposit and

Peter’s withdrawal to happen concurrently, because the net result will be the same as if the two

operations had happened sequentially. Second, there may be more than one possible “correct”

result produced by a concurrent program, because we require only that the result be the same

as for some sequential order. For example, suppose that Peter and Paul’s joint account starts

out with $100, and Peter deposits $40 while Paul concurrently withdraws half the money in

the account. Then sequential execution could result in the account balance being either $70

or $90 (see exercise 3.38).
41

41
A more formal way to express this idea is to say that concurrent programs are inherently nondeterministic.

326 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.4.2

There are still weaker requirements for correct execution of concurrent programs. A program

for simulating di�usion (say, the �ow of heat in an object) might consist of a large number of

threads, each one representing a small volume of space, that update their values concurrently.

Each thread repeatedly changes its value to the average of its own value and its neighbors’

values. This algorithm converges to the right answer independent of the order in which the

operations are done; there is no need for any restrictions on concurrent use of the shared

values.

Exercise 3.38

Suppose that Peter, Paul, and Mary share a joint bank account that initially contains $100.

Concurrently, Peter deposits $10, Paul withdraws $20, and Mary withdraws half the money in

the account, by executing the following commands:

Peter: balance = balance + 10

Paul: balance = balance - 20

Mary: balance = balance - (balance/2)

a. List all the di�erent possible values for balance after these three transactions have been

completed, assuming that the banking system forces the three threads to run sequentially

in some order.

b. What are some other values that could be produced if the system allows the threads to

be interleaved? Draw timing diagrams like the one in �gure 3.29 to explain how these

values can occur.

3.4.2 Mechanisms for Controlling Concurrency

We’ve seen that the di�culty in dealing with concurrent threads is rooted in the need to

consider the interleaving of the order of events in the di�erent threads. For example, suppose

we have two threads, one with three ordered events (a,b, c) and one with three ordered events

(x ,y, z). If the two threads run concurrently, with no constraints on how their execution is

interleaved, then there are 20 di�erent possible orderings for the events that are consistent

with the individual orderings for the two threads:

(a,b, c,x ,y, z) (a,x ,b,y, c, z) (x ,a,b, c,y, z) (x ,a,y, z,b, c)

(a,b,x , c,y, z) (a,x ,b,y, z, c) (x ,a,b,y, c, z) (x ,y,a,b, c, z)

(a,b,x ,y, c, z) (a,x ,y,b, c, z) (x ,a,b,y, z, c) (x ,y,a,b, z, c)

(a,b,x ,y, z, c) (a,x ,y,b, z, c) (x ,a,y,b, c, z) (x ,y,a, z,b, c)

(a,x ,b, c,y, z) (a,x ,y, z,b, c) (x ,a,y,b, z, c) (x ,y, z,a,b, c)

That is, they are described not by single-valued functions, but by functions whose results are sets of possible

values. In section 4.3 we will study a language for expressing nondeterministic computations.

327 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.4.2

As programmers designing this system, we would have to consider the e�ects of each of these

20 orderings and check that each behavior is acceptable. Such an approach rapidly becomes

unwieldy as the numbers of threads and events increase.

A more practical approach to the design of concurrent systems is to devise general mecha-

nisms that allow us to constrain the interleaving of concurrent threads so that we can be sure

that the program behavior is correct. Many mechanisms have been developed for this purpose.

In this section, we describe one of them, the serializer.

Serializing access to shared state

Serialization implements the following idea: Threads will execute concurrently, but there

will be certain collections of functions that cannot be executed concurrently. More precisely,

serialization creates distinguished sets of functions such that only one execution of a function

in each serialized set is permitted to happen at a time. If some function in the set is being

executed, then a thread that attempts to execute any function in the set will be forced to wait

until the �rst execution has �nished.

We can use serialization to control access to shared variables. For example, if we want to

update a shared variable based on the previous value of that variable, we put the access to

the previous value of the variable and the assignment of the new value to the variable in the

same function. We then ensure that no other function that assigns to the variable can run

concurrently with this function by serializing all of these functions with the same serializer.

This guarantees that the value of the variable cannot be changed between an access and the

corresponding assignment.

Serializers in JavaScript

To make the above mechanism more concrete, suppose that we have extended JavaScript to

include a function called concurrent_execute:

concurrent_execute(f1, f2, . . ., fk)

Each f must be a function of one argument. The function concurrent_execute creates a

separate thread for each f, which applies f to the argument undefined. These threads all run

concurrently.
42

As an example of how this is used, consider

Ilet x = 10;

42
The function concurrent_execute is not part of the JavaScript standard, but the examples in this section

can be implemented in ECMAScript 2018.

328 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4variant=concurrent&&prgrm=DYUwLgBAHhC8EEYAMBuAUGgxgewHaYFcAnIkXMAfRChELBAAoK4A+CAb2ji4CpoUIAXwA0aCOImSpk5rDacY8GAGpEAwRACUKIA

Modularity, Objects, and State 3.4.2

concurrent_execute(_ => { x = x * x; },

_ => { x = x + 1; });

This creates two concurrent threads—T1, which sets x to x times x, andT2, which increments

x. After execution is complete, x will be left with one of �ve possible values, depending on the

interleaving of the events of T1 and T2:

101: T1 sets x to 100 and then T2 increments x to 101.

121: T2 increments x to 11 and then T1 sets x to x times x.

110: T2 changes x from 10 to 11 between the two times that T1

accesses the value of x during the evaluation of x * x.

11: T2 accesses x, then T1 sets x to 100, then T2 sets x.

100: T1 accesses x (twice), then T2 sets x to 11, then T1 sets x.

We can constrain the concurrency by using serialized functions, which are created by serial-
izers. Serializers are constructed by make_serializer, whose implementation is given below.

A serializer takes a function as argument and returns a serialized function that behaves like

the original function. All calls to a given serializer return serialized functions in the same set.

Thus, in contrast to the example above, executing

Ilet x = 10;

const s = make_serializer();

concurrent_execute(s(_ => { x = x * x; }),

s(_ => { x = x + 1; }));

can produce only two possible values for x, 101 or 121. The other possibilities are eliminated,

because the execution of T1 and T2 cannot be interleaved.

Here is a version of the make_account function from section 3.1.1, where the deposits and

withdrawals have been serialized:

Ifunction make_account(balance) {

function withdraw(amount) {

if (balance > amount) {

balance = balance - amount;

return balance;

} else {

return "Insufficient funds";

}

}

function deposit(amount) {

balance = balance + amount;

return balance;

}

329 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4variant=concurrent&&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ZIqYAeAFAJSIDeAUIrYhAgM5T2YA2biAvImzM8WCo2jTKQDcNOqEiwEiKAAsceAiWTlqdbYgBOmKCF1Jk3LjwBEqCAEcQMfRak6XtAPyJiCzM2yowACbYolDEEOxspM6uMYgeSir4RMRWtvaO5AD0mXoGugCe0bEuAFwKuiCYiFHFOmWm5pb6bJiook61Lh4QLai6YRE1ndplmLq6cP3IADSIFgCqYOhgcADuSPp2PiwAtDsoSYQWEtEAvtH6hsYKyriHkucy0PBIPa394Rya0SHYyqgBAYcWZCERiB5UJ5yEwYHCiXQwYQwABeYzIlGiDDAzAOam4KFhdzUZEk2kuRiQAAduAA+RBFGJ9ADmtIxw20qmSqTsDkwx1J7NoWJxADdhPjKcRmSdBbROSQLM1Wu0ZbLydcxWwBbVThCWixCPiAIwABkkVGFLEY+LQWGCY0RfFR-ROFoQECM+jAUGwREwHoIXkYxGwrIoiENPENACoI+JEKdSNMGezg6GuHTw5GI4gANSII3xxPVcRAA
http://source-academy.github.io/playground#chap=4variant=concurrent&&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ZIqYAeAFAJSIDeAUIrYhAgM5T2YA2biAvImzM8WCo2jTKQDcNOqEiwEiKAAsceAiWTlqdbYgBOmKCF1Jk3LjwBEqCAEcQMfRak6XtAPyJiCzM2yowACbYolDEEOxspM6uMYgeSir4RMRWtvaO5AD0mXoGugCe0bEuAFwKuiCYiFHFOmWm5pb6bJiook61Lh4QLai6YRE1ndplmLq6cP3IADSIFgCqYOhgcADuSPp2PiwAtDsoSYQWEtEAvtH6hsYKyriHkucy0PBIPa394Rya0SHYyqgBAYcWZCERiB5UJ5yEwYHCiXQwYQwABeYzIlGiDDAzAOam4KFhdzUZEk2kuRiQAAduAA+RBFGJ9ADmtIxw20qmSqTsDkwx1J7NoWJxADdhPjKcRmSdBbROSQLM1Wu0ZbLydcxWwBbVThCoS8CVg-BAGOBQgAjYT+cLfbT6+SrGBKAK6VCrKXIOBm22uGDATyWtjWqp01Ce71s2qB4P46OQKr7MNesBQbWxdVIOPhNPaU6IdiiSPFDNzACS2JAwGAMAgMEwKcQMgCjAsObo51z0XtSACmEpcEYTo9yagPpcWaqPAniAA1Igk2a27QSxO0x26MKWJSJgRoPi0Eb4Yi+Kj+qraN3EAF+JTUFAIIpiBoizoSw1zHNHc7XasLPTOh425wLuoRfooLpukMxT1GYli9v2g5QB0wyATumDQMQ8EDk6UG1DBjRzBOyHsh4E4MtB+bjJMT7TORnQLEsKzrLkWw4nsho4NYpopvyZwXAYFJXjed4PhCVCbig+TGtxLA8AenEmiOxAAIwAAyqSc4kIBARj6Cm2BEOhSTENgrIUEJjCUkG+RPlJXFKRYRGkLMFgACrKYgTlLrKdDIHZilmikYEQb+pDEAArBp3k+RZVmoDZfnSQ5Tkue5nlWvGvExTEiX2YFFhYYhxwqep57ZbQpy0dlplcHS5nXpZ1m2Ul+UpXMrkAEzpUGmVleVcr+TJQVOuBP7FZFfX9Q1cUJYNyUZeExypV1Xl0TFuUBSmKSFU6xVqVFa2CuusoSEAA

Modularity, Objects, and State 3.4.2

const protect = make_serializer();

function dispatch(m) {

return m === "withdraw"

? protect(withdraw)

: m === "deposit"

? protect(deposit)

: m === "balance"

? balance

: error(m,

"Unknown request -- make_account");

}

return dispatch;

}

With this implementation, two threads cannot be withdrawing from or depositing into a

single account concurrently. This eliminates the source of the error illustrated in �gure 3.29,

where Peter changes the account balance between the times when Paul accesses the balance to

compute the new value and when Paul actually performs the assignment. On the other hand,

each account has its own serializer, so that deposits and withdrawals for di�erent accounts

can proceed concurrently.

Exercise 3.39

Which of the �ve possibilities in the concurrent execution shown above remain if we instead

serialize execution as follows:

Ilet x = 10;

const s = make_serializer();

concurrent_execute(_ => { x = s(_ => x * x)

(undefined); },

s(_ => { x = x + 1; }));

Exercise 3.40

Give all possible values of x that can result from executing

Ilet x = 10;

concurrent_execute(_ => { x = x * x; },

_ => { x = x * x * x; });

Which of these possibilities remain if we instead use serialized functions:

Ilet x = 10;

330 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4variant=concurrent&&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ZIqYAeAFAJSIDeAUIrYhAgM5T2YA2biAvImzM8WCo2jTKQDcNOqEiwEiKAAsceAiWTlqdbYgBOmKCF1Jk3LjwBEqCAEcQMfRak6XtAPyJiCzM2yowACbYolDEEOxspM6uMYgeSir4RMRWtvaO5AD0mXoGugCe0bEuAFwKuiCYiFHFOmWm5pb6bJiook61Lh4QLai6YRE1ndplmLq6cP3IADSIFgCqYOhgcADuSPp2PiwAtDsoSYQWEtEAvtH6hsYKyriHkucy0PBIPa394Rya0SHYyqgBAYcWZCERiB5UJ5yEwYHCiXQwYQwABeYzIlGiDDAzAOam4KFhdzUZEk2kuRiQAAduAA+RBFGJ9ADmtIxw20qmSqTsDkwx1J7NoWJxADdhPjKcRmSdBbROSQLM1Wu0ZbLydcxWwBbVThCWixCPiAIwABkkVGFLEY+LQWGCY0RfFR-ROFoQECM+jAUGwREwHoIXlo2FZFEQhp4jGIIa4dMNACpw0NZbLiOAAphgDAwJgAhJEKdZgzhlHEDG6WGI+HEABqRBG8QxU7VariIA
http://source-academy.github.io/playground#chap=4variant=concurrent&&prgrm=DYUwLgBAHhC8EEYAMBuAUGgxgewHaYFcAnIkXMAfRChELBAAoK4A+CAb2ji4CpoUIAXwA0ENBAmSp0qc1htOMeDD4r+QiAEoUQA
http://source-academy.github.io/playground#chap=4variant=concurrent&&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ZIqYAeAFAJSIDeAUIrYhAgM5T2YA2biAvImzM8WCo2jTKQDcNOqEiwEiKAAsceAiWTlqdbYgBOmKCF1Jk3LjwBEqCAEcQMfRak6XtAPyJiCzM2yowACbYolDEEOxspM6uMYgeSir4RMRWtvaO5AD0mXoGugCe0bEuAFwKuiCYiFHFOmWm5pb6bJiook61Lh4QLai6YRE1ndplmLq6cP3IADSIFgCqYOhgcADuSPp2PiwAtDsoSYQWEtEAvtH6hsYKyriHkucy0PBIPa394Rya0SHYyqgBAYcWZCERiB5UJ5yEwYHCiXQwYQwABeYzIlGiDDAzAOam4KFhdzUZEk2kuRiQAAduAA+RBFGJ9ADmtIxw20qmSqTsDkwx1J7NoWJxADdhPjKcRmSdBbROSQLM1Wu0ZbLydcxWwBbVThCWixCPiAIwABkkVGFLEY+LQWGCY0RfFR-ROFoQECM+jAUGwREwHoIXkYxGwrIoiENPENACoI+IdKdSNMGezg6GuHTw5GI4hYzG44hE9VxEA

Modularity, Objects, and State 3.4.2

const s = make_serializer();

concurrent_execute(s(_ => { x = x * x; }),

s(_ => { x = x * x * x; }));

Exercise 3.41

Ben Bitdiddle worries that it would be better to implement the bank account as follows (where

the commented line has been changed):

Ifunction make_account(balance) {

function withdraw(amount) {

if (balance > amount) {

balance = balance - amount;

return balance;

} else {

return "Insufficient funds";

}

}

function deposit(amount) {

balance = balance + amount;

return balance;

}

const protect = make_serializer();

function dispatch(m) {

return m === "withdraw"

? protect(withdraw)

: m === "deposit"

? protect(deposit)

: m === "balance"

? protect(_ => balance)(undefined) // serialized

: error(m,

"Unknown request -- make_account");

}

return dispatch;

}

because allowing unserialized access to the bank balance can result in anomalous behavior.

Do you agree? Is there any scenario that demonstrates Ben’s concern?

Exercise 3.42

Ben Bitdiddle suggests that it’s a waste of time to create a new serialized function in response

to every withdraw and deposit message. He says that make_account could be changed so that

the calls to protect are done outside the dispatch function. That is, an account would return

331 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4variant=concurrent&&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ZIqYAeAFAJSIDeAUIrYhAgM5T2YA2biAvImzM8WCo2jTKQDcNOqEiwEiKAAsceAiWTlqdbYgBOmKCF1Jk3LjwBEqCAEcQMfRak6XtAPyJiCzM2yowACbYolDEEOxspM6uMYgeSir4RMRWtvaO5AD0mXoGugCe0bEuAFwKuiCYiFHFOmWm5pb6bJiook61Lh4QLai6YRE1ndplmLq6cP3IADSIFgCqYOhgcADuSPp2PiwAtDsoSYQWEtEAvtH6hsYKyriHkucy0PBIPa394Rya0SHYyqgBAYcWZCERiB5UJ5yEwYHCiXQwYQwABeYzIlGiDDAzAOam4KFhdzUZEk2kuRiQAAduAA+RBFGJ9ADmtIxw20qmSqTsDkwx1J7NoWJxADdhPjKcRmSdBbROSQLM1Wu0ZbLydcxWwBbVThCoS8CVg-BAGOBQgAjYT+cLfbT6+SrGBKAK6VCrKXIOBm22uGDATyWtjWqp01Ce71s2qB4P46OQKr7MNesBQbWxdVIOPhNPaU6IdiiSPFDNzACS2JAwGAMAgMEwKcQMgCjAsObo51z0XtSACmEpcEYTo9yagPpcWaqPAniAA1Igk2a27QSxO0x26MKWJSJgRoPi0Eb4Yi+Kj+qraN3EAF+JTUFAIIpiBoizoSw1zHNHc7XasOrUPNucC7qEX6KC6bpDMU9RmJYvb9oOUB-p0AE7pg0DEHBA5OpBtTQY0cwTkhwwoUBaGhNgrITqQxDgL21ZgJgARZDkR5IqiAQMlB+bjJMT7TJxnQLEsKzrLkWw4nsho4NYpopvyZwXAYFJXjed4PhCVCbig+TGrJLA8Ae0kmiOxAAIwAAzmScmkIBARj6Cm2BEGhSTEBRXB0hQKmMJSQb5E+OkySZFiEaQswWAAKqZiChUusp0MggXGWaKSgeBv7UQArFZcXxd5vmoP5iW6cFoXhVFMVWvG8l5TExVBSlFiYQhxxmZZ561bQpz8bV7meflfkBSVjVlXMEUAEyVUG1UdZ1cpJXpqVOmBP6tdls1zdePmDfVyUpiko2RZNsUCXlu2LU1fZYYh1EWTlp2CuusoSEAA

Modularity, Objects, and State 3.4.2

the same serialized function (which was created at the same time as the account) each time it

is asked for a withdrawal function.

Ifunction make_account(balance) {

function withdraw(amount) {

if (balance > amount) {

balance = balance - amount;

return balance;

} else {

return "Insufficient funds";

}

}

function deposit(amount) {

balance = balance + amount;

return balance;

}

const protect = make_serializer();

const protect_withdraw = protect(withdraw);

const protect_deposit = protect(deposit);

function dispatch(m) {

return m === "withdraw"

? protect_withdraw

: m === "deposit"

? protect_deposit

: m === "balance"

? balance

: error(m,

"Unknown request -- make_account");

}

return dispatch;

}

Is this a safe change to make? In particular, is there any di�erence in what concurrency is

allowed by these two versions of make_account ?

Complexity of using multiple shared resources

Serializers provide a powerful abstraction that helps isolate the complexities of concurrent

programs so that they can be dealt with carefully and (hopefully) correctly. However, while

using serializers is relatively straightforward when there is only a single shared resource (such

as a single bank account), concurrent programming can be treacherously di�cult when there

are multiple shared resources.

To illustrate one of the di�culties that can arise, suppose we wish to swap the balances

in two bank accounts. We access each account to �nd the balance, compute the di�erence

between the balances, withdraw this di�erence from one account, and deposit it in the other

332 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4variant=concurrent&&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ZIqYAeAFAJSIDeAUIrYhAgM5T2YA2biAvImzM8WCo2jTKQDcNOqEiwEiKAAsceAiWTlqdbYgBOmKCF1Jk3LjwBEqCAEcQMfRak6XtAPyJiCzM2yowACbYolDEEOxspM6uMYgeSir4RMRWtvaO5AD0mXoGugCe0bEuAFwKuiCYiFHFOmWm5pb6bJiook61Lh4QLai6YRE1ndplmLq6cP3IADSIFgCqYOhgcADuSPp2PiwAtDsoSYQWEtEAvtH6hsYKyriHkucy0PBIPa394Rya0SHYyqgBAYcWZCERiB5UJ5yEwYHCiXQwYQwABeYzIlGiDDAzAOam4KFhdzUZEk2kuRiQAAduAA+RBFGJ9ADmtIxw20qmSqTsDkwx1J7NoWJxADdhPjKcRmSdBbROSQLM1Wu0ZbLydcxWwBbVThCoS8CVg-BAGOBQgAjYT+cLfbT6+SrGBKAK6VCrKXIOBm22uGDATyWtjWqp01Ce71s2qB4P46OQKr7MNesBQbWxdVIOPhNPaU6IdiiSPFDNzACS2JAwGAMAgMEwKcQMgCjAsObo51z0XtSACmEpcEYTo9yagPpcWaqPAniAA1Igk2a27QSxO0x26MKWJSJgRoPi0Eb4Yi+Kj+qqhUwtzvMNBsI7na7VhLr9BiPfFC63ef6JfENu4LuUDYL2-aDiwPD-oBxAgQOTrft2iABPwlKoFAECKMQGhFjoJYNOYczvp+qwdLUHiQTeQGEY+DKlCgZiWDBYEkZ0ZEvkBjFOjRrj1PRcwTsxwweBOXExKM4yTJh0wicUCxLCs6y5FsOJ7IaODWKaKb8mcFwGBSiHIah6EQlQm4oPkxoaeBqkWSOxAAIwAAwOScJkIBARj6Cm2BEDeSTENgrIUPpjCUkG+SYeZ6m2RY-GkLMFgACp2YgsVLrKdDIJFJrRVRbrHMQACszlpelwWhag4WZTZZopLF8VJSlVrxlppUxFVUU1RYHFQPljnFdJ7KnFJrUBVwdJBUhIVhRF1UprVTXhMc9UAEyNUGzXfq1GVZZZKS5cRpCFf1W0uJN5WVTt0V1XMCWralA2Cu12Wdd1vVOZtrXrrKEhAA

Modularity, Objects, and State 3.4.2

account. We could implement this as follows:
43

Ifunction exchange(accounts) {

const account1 = head(accounts);

const account2 = tail(accounts);

const difference = account1("balance") - account2("balance");

account1("withdraw")(difference);

account2("deposit")(difference);

}

This function works well when only a single thread is trying to do the exchange. Suppose,

however, that Peter and Paul both have access to accounts a1, a2, and a3, and that Peter ex-

changes a1 and a2 while Paul concurrently exchanges a1 and a3. Even with account deposits

and withdrawals serialized for individual accounts (as in the make_account function shown

above in this section), exchange can still produce incorrect results. For example, Peter might

compute the di�erence in the balances for a1 and a2, but then Paul might change the balance

in a1 before Peter is able to complete the exchange.
44

For correct behavior, we must arrange

for the exchange function to lock out any other concurrent accesses to the accounts during

the entire time of the exchange.

One way we can accomplish this is by using both accounts’ serializers to serialize the entire

exchange function. To do this, we will arrange for access to an account’s serializer. Note that we

are deliberately breaking the modularity of the bank-account object by exposing the serializer.

The following version of make_account is identical to the original version given in section 3.1.1,

except that a serializer is provided to protect the balance variable, and the serializer is exported

via message passing:

Ifunction make_account_and_serializer(balance) {

function withdraw(amount) {

if (balance > amount) {

balance = balance - amount;

} else {

"Insufficient funds";

}

}

function deposit(amount) {

balance = balance + amount;

return balance;

}

const balance_serializer = make_serializer();

return m => m === "withdraw"

43
We have simpli�ed exchange by exploiting the fact that our deposit message accepts negative amounts.

(This is a serious bug in our banking system!)

44
If the account balances start out as $10, $20, and $30, then after any number of concurrent exchanges, the

balances should still be $10, $20, and $30 in some order. Serializing the deposits to individual accounts is not

su�cient to guarantee this. See exercise 3.43.

333 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4variant=concurrent&&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ZIqYAeAFAJSIDeAUIrYhAgM5T2YA2biAvImzM8WCo2jTKQDcNOqEiwEiKAAsceAiWTlqdbYgBOmKCF1Jk3LjwBEqCAEcQMfRak6XtAPyJiCzM2yowACbYolDEEOxspM6uMYgeSir4RMRWtvaO5AD0mXoGugCe0bEuAFwKuiCYiFHFOmWm5pb6bJiook61Lh4QLai6YRE1ndplmLq6cP3IADSIFgCqYOhgcADuSPp2PiwAtDsoSYQWEtEAvtH6hsYKyriHkucy0PBIPa394Rya0SHYyqgBAYcWZCERiB5UJ5yEwYHCiXQwYQwABeYzIlGiDDAzAOam4KFhdzUZEk2kuRiQAAduAA+RBFGJ9ADmtIxw20qmSqTsDkwx1J7NoWJxADdhPjKcRmSdBbROSQLM1Wu0ZbLydcxWwBbVThCoS8CVg-BAGOBQgAjYT+cLfbT6+SrGBKAK6VCrKXIOBm22uGDATyWtjWqp01Ce71s2qB4P46OQKr7MNesBQbWxdVIOPhNPaU6IdiiSPFDNzACS2JAwGAMAgMEwKcQMgCjAsObo51z0XtSACmEpcEYTo9yagPpcWaqPAniAA1Igk2a27QSxO0x26MKWJSJgRoPi0Eb4Yi+Kj+qraN3EAF+JTUFAIIpiBoizoSw1zHNHc7XasLPTOh425wLuoRfooLpukMxT1GYli9v2g5QB0wyATumDQMQ8EDk6UG1DBjRzBOyHsh4E4MtB+bjJMT7TORnQLEsKzrLkWw4nsho4NYpopvyZwXAYFJXjed4Pnq4DPPIRAPv4TKYFKJojowY70EwLBcSOACM+L-IC6lmkp4gAJCYqp84KWaABM+JQKgMBsPJ3FQAZxnaJuQlVmM9bhPiekphpKREeQibmSmFkBVa8a8dovlQP5FhgRBv6kJhfrAJ58bnmZjlhRYWGIccKUefoGUQlQbmoFpPAHpxIWhBpAAM9UnOVVlVYSMXEBZjXNaZqAAMz7u1tXEH13WSGVCAQEYxVQNgRDoUkxDYKyFBCYwlJBvkUpxYFswWAACgYYyINOFUnZgwCTHymWyi417rZtUo5btcyHQQugnRF3moFZ5oXVdUW3TEUmKDJcm3g422zD9pA3UDdD3RtqBbRV4VBpFpB7W9x2nVpqDAO9gPwzoiOPT9aPBscWNHR9p1WfjhNw0Dpy0fDy1cHSq2k8j20UxjWOoCAnC4+dl0ZEu8PcyjfV8+EVOvYLwtfVU-WiwDTPwyDYPEBD-QVdDfWwxLQNS7zFgvQdiufej314wTYxE8TCM3mTMvm8r8uW0L1sxqrDMOxrsrrrKEhAA
http://source-academy.github.io/playground#chap=4variant=concurrent&&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ZIqYAeAFAJSIDeAUIrYhAgM5T2YA2biAvImzM8WCo2jTKQDcNOqEiwEiKAAsceAiWTlqdbYgBOmKCF1Jk3LjwBEqCAEcQMfRak6XtAPyJiCzM2yowACbYolDEEOxspM6uMYgeSir4RMRWtvaO5AD0mXoGugCe0bEuAFwKuiCYiFHFOmWm5pb6bJiook61Lh4QLai6YRE1ndplmLq6cP3IADSIFgCqYOhgcADuSPp2PiwAtDsoSYQWEtEAvtH6hsYKyriHkucy0PBIPa394Rya0SHYyqgBAYcWZCERiB5UJ5yEwYHCiXQwYQwABeYzIlGiDDAzAOam4KFhdzUZEk2kuRiQAAduAA+RBFGJ9ADmtIxw20qmSqTsDkwx1J7NoWJxADdhPjKcRmSdBbROSQLM1Wu0ZbLydcxWwBbVThCoS8CVg-BAGOAoH5AsExoi+Kj+gAjYT+cLfbT6+SrGBKAK6VCrKXIOBm12uGDATyOtjOqp01CB4Ns2qR6P45OQKr7ONBsBQbU6U6IdiiRPFCwASWxIGAwBgEBgmBziBkAUYFjz2nOHei7qQAUwlLgjC9AezUBDLjT4VTTvTiAA1Igs2b23R1UhJ5g8526MKWBurQikXb8WgjfCbSi0araGuUKyGuY5p7vb7Vh1BR5n4ofX6GcV6mYlh9gOQ5QO+7IeMBg5en+sQAY0cwbuBwweBusExPBj4WOeR5jMhnSoTO4QHhedroa4ozjJMxAzPSsp0AsSwrOsuRbDieyGjg1imjm-JUKcQA

Modularity, Objects, and State 3.4.2

? withdraw

: m === "deposit"

? deposit

: m === "balance"

? balance

: m === "serializer"

? balance_serializer

: error(m,

"Unknown request -- make_account");

}

We can use this to do serialized deposits and withdrawals. However, unlike our earlier

serialized account, it is now the responsibility of each user of bank-account objects to explicitly

manage the serialization, for example as follows:
45

Ifunction deposit(account, amount) {

const s = account("serializer");

const d = account("deposit");

s(d(amount));

}

Exporting the serializer in this way gives us enough �exibility to implement a serialized

exchange program. We simply serialize the original exchange function with the serializers for

both accounts:

Ifunction serialized_exchange(accounts) {

const account1 = head(accounts);

const account2 = tail(accounts);

const serializer1 = account1("serializer");

const serializer2 = account2("serializer");

serializer1(serializer2(exchange))(accounts);

}

Exercise 3.43

Suppose that the balances in three accounts start out as $10, $20, and $30, and that multiple

threads run, exchanging the balances in the accounts. Argue that if the threads are run se-

quentially, after any number of concurrent exchanges, the account balances should be $10,

$20, and $30 in some order. Draw a timing diagram like the one in �gure 3.29 to show how

this condition can be violated if the exchanges are implemented using the �rst version of

the account-exchange program in this section. On the other hand, argue that even with this

exchange program, the sum of the balances in the accounts will be preserved. Draw a tim-

ing diagram to show how even this condition would be violated if we did not serialize the

45
Exercise 3.45 investigates why deposits and withdrawals are no longer automatically serialized by the

account.

334 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4variant=concurrent&&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ZIqYAeAFAJSIDeAUIrYhAgM5T2YA2biAvImzM8WCo2jTKQDcNOqEiwEiKAAsceAiWTlqdbYgBOmKCF1Jk3LjwBEqCAEcQMfRak6XtAPyJiCzM2yowACbYolDEEOxspM6uMYgeSir4RMRWtvaO5AD0mXoGugCe0bEuAFwKuiCYiFHFOmWm5pb6bJiook61Lh4QLai6YRE1ndplmLq6cP3IADSIFgCqYOhgcADuSPp2PiwAtDsoSYQWEtEAvtH6hsYKyriHkucy0PBIPa394Rya0SHYyqgBAYcWZCERiB5UJ5yEwYHCiXQwYQwABeYzIlGiDDAzAOam4KFhdzUZEk2kuRiQAAduAA+RBFGJ9ADmtIxw20qmSqTsDkwx1J7NoWJxADdhPjKcRmSdBbROSQLM1Wu0ZbLydcxWwBbVThCoS8CVg-BAGOAoH5AsExoi+Kj+gAjYT+cLfbT6+SrGBKAK6VCrKXIOBm12uGDATyOtjOqp01CB4Ns2qR6P45OQKr7ONBsBQbU6U6IdiiRPFCwASWxIGAwBgEBgmBziBkAUYFjz2nOHei7qQAUwlLgjC9AezUBDLjT4VTTvTiAA1Igs2b23R1UhJ5g8526MKWBurQikXb8WgjfCbSi0araGuUKyGuY5p7vb7Vh1BR5n4ofX6GcV6mYlh9gOQ5QO+7IeMBg5en+sQAY0cwbuBwweBusExPBj4WOeR5jMhnSoTO4QHhedroa4ozjJMxAzPSsp0AsSwrOsuRbDieyGjg1imjm-JUI84DPPIUGgVKJqjrMS45uO9BMCwjD4txo4pDhtp4desnYiwASKeJZopCJXp8dojDEICUljic5xULuKD5MaPEsDwp5cXpOYWkEqmXv0ACMAAMfknFQhmhMg9lKWaswAEwBUFAT8JSUb5DR4VuaEFhIaQEhAA
http://source-academy.github.io/playground#chap=4variant=concurrent&&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ZIqYAeAFAJSIDeAUIrYhAgM5T2YA2biAvImzM8WCo2jTKQDcNOqEiwEiKAAsceAiWTlqdbYgBOmKCF1Jk3LjwBEqCAEcQMfRak6XtAPyJiCzM2yowACbYolDEEOxspM6uMYgeSir4RMRWtvaO5AD0mXoGugCe0bEuAFwKuiCYiFHFOmWm5pb6bJiook61Lh4QLai6YRE1ndplmLq6cP3IADSIFgCqYOhgcADuSPp2PiwAtDsoSYQWEtEAvtH6hsYKyriHkucy0PBIPa394Rya0SHYyqgBAYcWZCERiB5UJ5yEwYHCiXQwYQwABeYzIlGiDDAzAOam4KFhdzUZEk2kuRiQAAduAA+RBFGJ9ADmtIxw20qmSqTsDkwx1J7NoWJxADdhPjKcRmSdBbROSQLM1Wu0ZbLydcxWwBbVThCoS8CVg-BAGOAoH5AsExoi+Kj+gAjYT+cLfbT6+SrGBKAK6VCrKXIOBm12uGDATyOtjOqp01CB4Ns2qR6P45OQKr7ONBsBQbU6U6IdiiRPFCwASWxIGAwBgEBgmBziBkAUYFjz2nOHei7qQAUwlLgjC9AezUBDLjT4VTTvTiAA1Igs2b23R1UhJ5g8526MKWBurQikXb8WgjfCbSi0araGuUKyGuY5p7vb7Vh1BR5n4ofX6GcV6mYlh9gOQ5QO+7IeMBg5en+sQAY0cwbuBwweBusExPBj4WOeR5jMhnSoTO4QHhedroa4ozjJMxAzPSsp0AsSwrOsuRbDieyGjg1imjm-JUI84DPPIp5cSao7EBu45NoJ0KIF+P7+kuOZSdoYYRkRMaLvGyklrEG7TlGs6ZtpubkTeBgUogG4rrQBZFlUWi1Le5aVtWtb1o2zatjZiDbrZ3YyQaUGgSOCaOROGkGSmC5KaZMS3tZZyYkwLCUhMBDQCehI4baV55j2iABPwlKoFAECKDRKmrhZ1wPpY8mvhYdG1B4aVwBloQNX6Qz-neCEWMFXr4bErXpZg0DEINY5mXQmGWEhM3aIRhnhIts2FlRUzTGtOiMcsawbJgbG7PsInGjxYHXr5Fw1b2xWleVeqBfIRDlf4TKYFKYlmowUm7ou305gAjPi-yAtxo6-eIACQyXYiwENmgATPiUCoDAbBfRdUOw9o-1FdWYwNlOPCI8DKRIeQmaA1ASMUxpfHaGTUBAykXVvqQk1hsARPpldzN0wN-bQZdXOE-ofNPbIBo5ZeQSvYo72fczv26f9zMgzwYNY5DEi4zuKUAxdKM8GjGM6z9etwzist2prRujqz2HWrhuiMwb8OILbYwmw7yMpN7btXYHrOB3TCtK6QnMqyc5xUOr9tnczFpBIHxBAwADBnJzq77Sc0ynJGu8QSNZznhuoAAzFlRrJ-4qcu7l-SV2XkjxwgEBGBL5pEONSTENgrIUIVxVRvkUpO5TswWAACgYYxWZFqAg-amDAJMfJXfROhFYwlJj1KgtT3Mc8ELoi8rVUqAo6v68ZD52-e-LhBvWAH3ECVDgT7M19Rw-9G733qgcey96aX2ONPU+C99LL0XMAM+7tt4uEAQfa+YDowQJPvPc+MCUaoHgXhLeSDTjbSQYPLgdJh4oOARPdB6ZMGz1QCATgMCV5rw3ogpB2hqEgMrnQ8IDCZ5MJYUvaut8OFEK4U-bAEc36fU-v0ZeP9K5-x2rUHhtCLDH0Ycwi+KZYH4IQZIpBGiq78M3pA4RejZxVzgUY-+7I-KCgkEAA

Modularity, Objects, and State 3.4.2

transactions on individual accounts.

Exercise 3.44

Consider the problem of transferring an amount from one account to another. Ben Bitdiddle

claims that this can be accomplished with the following function, even if there are multiple peo-

ple concurrently transferring money among multiple accounts, using any account mechanism

that serializes deposit and withdrawal transactions, for example, the version of make_account

in the text above.

Ifunction transfer(from_account, to_account, amount) {

from_account("withdraw")(amount);

to_account("deposit")(amount);

}

Louis Reasoner claims that there is a problem here, and that we need to use a more sophisticated

method, such as the one required for dealing with the exchange problem. Is Louis right? If not,

what is the essential di�erence between the transfer problem and the exchange problem? (You

should assume that the balance in from_account is at least amount.)

Exercise 3.45

Louis Reasoner thinks our bank-account system is unnecessarily complex and error-prone now

that deposits and withdrawals aren’t automatically serialized. He suggests that make_account_and_serializer

should have exported the serializer (for use by such functions as serialized_exchange) in

addition to (rather than instead of) using it to serialize accounts and deposits as make_account

did. He proposes to rede�ne accounts as follows:

Ifunction make_account_and_serializer(balance) {

function withdraw(amount) {

if (balance > amount) {

balance = balance - amount;

} else {

"Insufficient funds";

}

}

function deposit(amount) {

balance = balance + amount;

return balance;

}

const balance_serializer = make_serializer();

return m => m === "withdraw"

? balance_serializer(withdraw)

: m === "deposit"

? balance_serializer(deposit)

335 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4variant=concurrent&&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ZIqYAeAFAJSIDeAUIrYhAgM5T2YA2biAvImzM8WCo2jTKQDcNOqEiwEiKAAsceAiWTlqdbYgBOmKCF1Jk3LjwBEqCAEcQMfRak6XtAPyJiCzM2yowACbYolDEEOxspM6uMYgeSir4RMRWtvaO5AD0mXoGugCe0bEuAFwKuiCYiFHFOmWm5pb6bJiook61Lh4QLai6YRE1ndplmLq6cP3IADSIFgCqYOhgcADuSPp2PiwAtDsoSYQWEtEAvtH6hsYKyriHkucy0PBIPa394Rya0SHYyqgBAYcWZCERiB5UJ5yEwYHCiXQwYQwABeYzIlGiDDAzAOam4KFhdzUZEk2kuRiQAAduAA+RBFGJ9ADmtIxw20qmSqTsDkwx1J7NoWJxADdhPjKcRmSdBbROSQLM1Wu0ZbLydcxWwBbVThCoS8CVg-BAGOAoH5AsExoi+Kj+gAjYT+cLfbT6+SrGBKAK6VCrKXIOBm12uGDATyOtjOqp01CB4Ns2qR6P45OQKr7ONBsBQbU6U6IdiiRPFCwASWxIGAwBgEBgmBziBkAUYFjz2nOHei7qQAUwlLgjC9AezUBDLjT4VTTvTiAA1Igs2b23R1UhJ5g8526MKWBurQikXb8WgjfCbSi0araGuUKyGuY5p7vb7Vh1BR5n4ofX6GcV6mYlh9gOQ5QO+7IeMBg5en+sQAY0cwbuBwweBusExPBj4WOeR5jMhnSoTO4QHhedroa4ozjJMxAzPSsp0AsSwrOsuRbDieyGjg1imjm-JUI84DPPIp5cSao7EBu45NoJ0KIF+P7+kuOZSdoYYRkRMaLvGyklrEG7TlGs6ZtpubkTeBgUogG4rrQBZFlUWi1Le5aVtWtb1o2zatjZiDbrZ3YyQaUGgSOCaOROGkGSmC5KaZMS3tZZyYkwLCUhMBDQCehI4baV55j2iABPwlKoFAECKDRKmrhZ1wPpY8mvhYdG1B4aVwBloQNX6Qz-neCEWMFXr4bErXpZg0DEINY5mXQmGWEhM3aIRhnhIts2FlRUzTGtOiMcsawbJgbG7PsInGjxYHXr5Fw1b2xWleVeqBfIUC+tiwBosAEzIOdo6zFAcC-WasyxVJX1wD93HiRYXVvqQoXKXmANAzmKRTccCNjhCVC7ouACMWVGlDZrEAALAADOTJy46gABMhOiRdxB45TJw4wgEBGPoObYEQ41JMQ2CshQhXFVG+RSnjKRIaQswWAACgYYxWZFqAE-amDAJMfJXfROhFYwlLi1KtPSxpxxy4rBC6CrK1VHTVma9rfF6zEr3+IwH39GrIO07MACsVM+XrBtG6gEtq2bdsW3MVvK-pauLsA1su67Lih8bdNR9GMcK0rNsJ-TqDJ3huuu6c22u0LXB0iLGfh5L2fprn8uoCAnAJ3jqdp9o9cR6bFgy5bbcd6rtPdz3tB943g-m7Lscj7bKZqxPk-T1ns-R-PCuL4Xq89+vUubzn2+t+3S+zivZdp+vA9Dwv5979f9F+YKEhAA
http://source-academy.github.io/playground#chap=4variant=concurrent&&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ZIqYAeAFAJSIDeAUIrYhAgM5T2YA2biAvImzM8WCo2jTKQDcNOqEiwEiKAAsceAiWTlqdbYgBOmKCF1Jk3LjwBEqCAEcQMfRak6XtAPyJiCzM2yowACbYolDEEOxspM6uMYgeSir4RMRWtvaO5AD0mXoGugCe0bEuAFwKuiCYiFHFOmWm5pb6bJiook61Lh4QLai6YRE1ndplmLq6cP3IADSIFgCqYOhgcADuSPp2PiwAtDsoSYQWEtEAvtH6hsYKyriHkucy0PBIPa394Rya0SHYyqgBAYcWZCERiB5UJ5yEwYHCiXQwYQwABeYzIlGiDDAzAOam4KFhdzUZEk2kuRiQAAduAA+RBFGJ9ADmtIxw20qmSqTsDkwx1J7NoWJxADdhPjKcRmSdBbROSQLM1Wu0ZbLydcxWwBbVThCoS9EAFMJS4IwYKFrAxwFBZqhkHBrd9tJaHWBQhYjSazVBjlL7Y69eBnvI0Fg-BArW6-IFgmNEXxUf0AEbCfzhJ3SIPQxCrc2KAK6VCrP2uqAZlwwYCeFNsNNVOl20vl2I1uv41uQKr7RvW7U6U6IdiiNm1CwASWxIGAwBgEBgmDdiBkAUYFj72nOG+i+vkntN5pLjpHLg74Xbqc7iAA1Ige2713R1UhT5g+5u6MKWC-YwikYn8aGcJxn+aKqrQT4oKyDTmHMuZKAWRYdIKHjfvC8YomicH5oWqxDOy9RmJYe7ekh7IoRe4Q-uhibEMR5p4cMBGNHML6kcM5G1p2DLFExMEWGhIG6GxnQcXWVGCdxsSjOMkzEDM9KynQCxLCs6y5FsOJ7ASYYuta-JUOcVCfig+ThpGLA8IBZmltGQQCQmaIAMwAAzOScdGhMgpm6W6swAIyuRIACQVABPwlK1vkcneRGpYpKxpASEAA

Modularity, Objects, and State 3.4.2

: m === "balance"

? balance

: m === "serializer"

? balance_serializer

: error(m,

"Unknown request -- make_account");

}

Then deposits are handled as with the original make_account:

Ifunction deposit(account, amount) {

account("deposit")(amount);

}

Explain what is wrong with Louis’s reasoning. In particular, consider what happens when

serialized_exchange is called.

Implementing serializers

We implement serializers in terms of a more primitive synchronization mechanism called a

mutex. A mutex is an object that supports two operations—the mutex can be acquired, and

the mutex can be released. Once a mutex has been acquired, no other acquire operations on

that mutex may proceed until the mutex is released.
46

In our implementation, each serializer

has an associated mutex. Given a function p, the serializer returns a function that acquires

the mutex, runs p, and then releases the mutex. This ensures that only one of the functions

produced by the serializer can be running at once, which is precisely the serialization property

that we need to guarantee.

Ifunction make_serializer() {

const mutex = make_mutex();

return p =>

arg => {

mutex("acquire");

const val = p(arg);

mutex("release");

return val;

};

}

46
The term “mutex” is an abbreviation formutual exclusion. The general problem of arranging a mechanism that

permits concurrent threads to safely share resources is called the mutual exclusion problem. Our mutex is a simple

variant of the semaphore mechanism (see exercise 3.47), which was introduced in the “THE” Multiprogramming

System developed at the Technological University of Eindhoven and named for the university’s initials in Dutch

(Dijkstra 1968a). The acquire and release operations were originally called P and V, from the Dutch words passeren
(to pass) and vrijgeven (to release), in reference to the semaphores used on railroad systems. Dijkstra’s classic

exposition (1968b) was one of the �rst to clearly present the issues of concurrency control, and showed how to

use semaphores to handle a variety of concurrency problems.

336 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4variant=concurrent&&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ZIqYAeAFAJSIDeAUIrYhAgM5T2YA2biAvImzM8WCo2jTKQDcNOqEiwEiKAAsceAiWTlqdbYgBOmKCF1Jk3LjwBEqCAEcQMfRak6XtAPyJiCzM2yowACbYolDEEOxspM6uMYgeSir4RMRWtvaO5AD0mXoGugCe0bEuAFwKuiCYiFHFOmWm5pb6bJiook61Lh4QLai6YRE1ndplmLq6cP3IADSIFgCqYOhgcADuSPp2PiwAtDsoSYQWEtEAvtH6hsYKyriHkucy0PBIPa394Rya0SHYyqgBAYcWZCERiB5UJ5yEwYHCiXQwYQwABeYzIlGiDDAzAOam4KFhdzUZEk2kuRiQAAduAA+RBFGJ9ADmtIxw20qmSqTsDkwx1J7NoWJxADdhPjKcRmSdBbROSQLM1Wu0ZbLydcxWwBbVThCoS8CVg-BAGOAoH5AsExoi+Kj+gAjYT+cLfbT6+SrGBKAK6VCrKXIOBm12uGDATyOtjOqp01CB4Ns2qR6P45OQKr7ONBsBQbU6U6IdiiRPFCwASWxIGAwBgEBgmBziBkAUYFjz2nOHei7qQAUwlLgjC9AezUBDLjT4VTTvTiAA1Igs2b23R1UhJ5g8526MKWBurQikXb8WgjfCbSi0araGuUKyGuY5p7vb7Vh1BR59+ej2jn4ofX6QzsvUZiWH2A5DlA77sp+M7hAeF52sQ4GDl6QHDCBjRzBu0HDLBUbpgyxSYY+FjfraYy4Z0+HRghP66ERsSjOMkzEDM9KynQCxLCs6y5FsOJ7IaODWKaOb8lQjzgM88goZBUomqOsxLjm46LopZopHJXrHCOwYQlQu4oPkxpiSwPCniJGk5haQTkZe-QAMwAAzOSc2mhMgJmiUpiAAIyuRIACQVABPwlJRvkbHedZoQWDhpASEAA
http://source-academy.github.io/playground#chap=4variant=concurrent&&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ZIqYAeAFAJSIDeAUIrYhAgM5T2YA2biAvImzM8WCo2jTKQDcNOqEiwEiKAAsceAiWTlqdbYgBOmKCF1Jk3LjwBEqCAEcQMfRak6XtAPyJiCzM2yowACbYolDEEOxspM6uMYgeSir4RMRWtvaO5AD0mXoGugCe0bEuAFwKuiCYiFHFOmWm5pb6bJiook61Lh4QLai6YRE1ndplmLq6cP3IADSIFgCqYOhgcADuSPp2PiwAtDsoSYQWEtEAvtH6hsYKyriHkucy0PBIPa394Rya0SHYyqgBAYcWZCERiB5UJ5yEwYHCiXQwYQwABeYzIlGiDDAzAOam4KFhdzUZEk2kuRiQAAduAA+RBFGJ9ADmtIxw20qmSqTsDkwx1J7NoWJxADdhPjKcRmSdBbROSQLM1Wu0ZbLydcxWwBbVTg8gA

Modularity, Objects, and State 3.4.2

The mutex is a mutable object (here we’ll use a one-element list, which we’ll refer to as a

cell) that can hold the value true or false. When the value is false, the mutex is available to be

acquired. When the value is true, the mutex is unavailable, and any thread that attempts to

acquire the mutex must wait.

Our mutex constructor make_mutex begins by initializing the cell contents to false. To acquire

the mutex, we test the cell. If the mutex is available, we set the cell contents to true and proceed.

Otherwise, we wait in a loop, attempting to acquire over and over again, until we �nd that the

mutex is available.
47

To release the mutex, we set the cell contents to false.

Ifunction make_mutex() {

const cell = list(false);

function the_mutex(m) {

return m === "acquire"

? (test_and_set(cell)

? the_mutex("acquire") // retry

: true)

: m === "release"

? clear(cell)

: error(m, "Unknown request -- mutex");

}

return the_mutex;

}

function clear(cell) {

set_head(cell, false);

}

The function test_and_set tests the cell and returns the result of the test. In addition, if

the test was false, test_and_set sets the cell contents to true before returning false. We can

express this behavior as the following function:

Ifunction test_and_set(cell) {

if (head(cell)) {

return true;

} else {

set_head(cell, true);

return false;

}

}

However, this implementation of test_and_set does not su�ce as it stands. There is a crucial

subtlety here, which is the essential place where concurrency control enters the system: The

test_and_set operation must be performed atomically. That is, we must guarantee that, once

a thread has tested the cell and found it to be false, the cell contents will actually be set to true

47
In most time-shared operating systems, threads that are blocked by a mutex do not waste time “busy-waiting”

as above. Instead, the system schedules another thread to run while the �rst is waiting, and the blocked thread is

awakened when the mutex becomes available.

337 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4variant=concurrent&&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ZIqYAeAFAJSIDeAUIrYhAgM5T2YA2biAvImzM8WCo2jTKQDcNOqEiwEiKAAsceAiWTlqdbYgBOmKCF1Jk3LjwBEqCAEcQMfRak6XtAPyJiCzM2yowACbYolDEEOxspM6uMYgeSir4RMRWtvaO5AD0mXoGugCe0bEuAFwKuiCYiFHFOmWm5pb6bJiook61Lh4QLai6YRE1ndplmLq6cP3IADSIFgCqYOhgcADuSPp2PiwAtDsoSYQWEtEAvtH6hsYKyriHkucy0PBIPa394Rya0SHYyqgBAYcWZCERiB5AA
http://source-academy.github.io/playground#chap=4variant=concurrent&&prgrm=GYVwdgxgLglg9mABFApgZygfQIZgCaZopQAUEKANhQJSIDeAUIs4jMIiQBYrZ5mU1ajFiMQAnYiDFIoYkCgDcTFgF9ElIvWWjERLN178qAGmRyU1JTuYSoUpMGwUiV1QxVA

Modularity, Objects, and State 3.4.2

before any other thread can test the cell. If we do not make this guarantee, then the mutex can

fail in a way similar to the bank-account failure in �gure 3.29. (See exercise 3.46.)

The actual implementation of test_and_set depends on the details of how our system runs

concurrent threads. For example, we might be executing concurrent threads on a sequential

processor using a time-slicing mechanism that cycles through the threads, permitting each

thread to run for a short time before interrupting it and moving on to the next thread. In

that case, test_and_set can work by disabling time slicing during the testing and setting.

Alternatively, multiprocessing computers provide instructions that support atomic operations

directly in hardware.
48

Exercise 3.46

Suppose that we implement test_and_set using an ordinary function as shown in the text,

without attempting to make the operation atomic. Draw a timing diagram like the one in

�gure 3.29 to demonstrate how the mutex implementation can fail by allowing two threads to

acquire the mutex at the same time.

Exercise 3.47

A semaphore (of size n) is a generalization of a mutex. Like a mutex, a semaphore supports

acquire and release operations, but it is more general in that up to n threads can acquire it

concurrently. Additional threads that attempt to acquire the semaphore must wait for release

operations. Give implementations of semaphores

a. in terms of mutexes

b. in terms of atomic test_and_set operations.

48
There are many variants of such instructions—including test-and-set, test-and-clear, swap, compare-and-

exchange, load-reserve, and store-conditional—whose design must be carefully matched to the machine’s proces-

sor–memory interface. One issue that arises here is to determine what happens if two threads attempt to acquire

the same resource at exactly the same time by using such an instruction. This requires some mechanism for

making a decision about which thread gets control. Such a mechanism is called an arbiter. Arbiters usually boil

down to some sort of hardware device. Unfortunately, it is possible to prove that one cannot physically construct

a fair arbiter that works 100% of the time unless one allows the arbiter an arbitrarily long time to make its decision.

The fundamental phenomenon here was originally observed by the fourteenth-century French philosopher Jean

Buridan in his commentary on Aristotle’s De caelo. Buridan argued that a perfectly rational dog placed between

two equally attractive sources of food will starve to death, because it is incapable of deciding which to go to �rst.

338 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.4.2

Deadlock

Now that we have seen how to implement serializers, we can see that account exchanging

still has a problem, even with the serialized_exchange function above. Imagine that Peter

attempts to exchange a1 with a2 while Paul concurrently attempts to exchange a2 with a1.

Suppose that Peter’s thread reaches the point where it has entered a serialized function pro-

tecting a1 and, just after that, Paul’s thread enters a serialized function protecting a2. Now

Peter cannot proceed (to enter a serialized function protecting a2) until Paul exits the serialized

function protecting a2. Similarly, Paul cannot proceed until Peter exits the serialized function

protecting a1. Each thread is stalled forever, waiting for the other. This situation is called a

deadlock. Deadlock is always a danger in systems that provide concurrent access to multiple

shared resources.

One way to avoid the deadlock in this situation is to give each account a unique identi�cation

number and rewrite serialized_exchange so that a thread will always attempt to enter a func-

tion protecting the lowest-numbered account �rst. Although this method works well for the ex-

change problem, there are other situations that require more sophisticated deadlock-avoidance

techniques, or where deadlock cannot be avoided at all. (See exercises 3.48 and 3.49.)
49

Exercise 3.48

Explain in detail why the deadlock-avoidance method described above, (i.e., the accounts are

numbered, and each thread attempts to acquire the smaller-numbered account �rst) avoids

deadlock in the exchange problem. Rewrite serialized_exchange to incorporate this idea.

(You will also need to modify make_account so that each account is created with a number,

which can be accessed by sending an appropriate message.)

49
The general technique for avoiding deadlock by numbering the shared resources and acquiring them in

order is due to Havender (1968). Situations where deadlock cannot be avoided require deadlock-recovery methods,

which entail having threads “back out” of the deadlocked state and try again. Deadlock-recovery mechanisms

are widely used in database management systems, a topic that is treated in detail in Gray and Reuter 1993.

339 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.4.2

Exercise 3.49

Give a scenario where the deadlock-avoidance mechanism described above does not work.

(Hint: In the exchange problem, each thread knows in advance which accounts it will need to

get access to. Consider a situation where a thread must get access to some shared resources

before it can know which additional shared resources it will require.)

Concurrency, time, and communication

We’ve seen how programming concurrent systems requires controlling the ordering of events

when di�erent threads access shared state, and we’ve seen how to achieve this control through

judicious use of serializers. But the problems of concurrency lie deeper than this, because, from

a fundamental point of view, it’s not always clear what is meant by “shared state.”

Mechanisms such as test_and_set require threads to examine a global shared �ag at arbi-

trary times. This is problematic and ine�cient to implement in modern high-speed processors,

where due to optimization techniques such as pipelining and cached memory, the contents of

memory may not be in a consistent state at every instant. In contemporary multiprocessing sys-

tems, therefore, the serializer paradigm is being supplanted by new approaches to concurrency

control.
50

The problematic aspects of shared state also arise in large, distributed systems. For instance,

imagine a distributed banking system where individual branch banks maintain local values

for bank balances and periodically compare these with values maintained by other branches.

In such a system the value of “the account balance” would be undetermined, except right after

synchronization. If Peter deposits money in an account he holds jointly with Paul, when should

we say that the account balance has changed—when the balance in the local branch changes, or

not until after the synchronization? And if Paul accesses the account from a di�erent branch,

what are the reasonable constraints to place on the banking system such that the behavior

is “correct”? The only thing that might matter for correctness is the behavior observed by

Peter and Paul individually and the “state” of the account immediately after synchronization.

Questions about the “real” account balance or the order of events between synchronizations

50
One such alternative to serialization is called barrier synchronization. The programmer permits concurrent

threads to execute as they please, but establishes certain synchronization points (“barriers”) through which no

thread can proceed until all the threads have reached the barrier. Modern processors provide machine instruc-

tions that permit programmers to establish synchronization points at places where consistency is required. The

PowerPC
TM

, for example, includes for this purpose two instructions called SYNC and EIEIO (Enforced In-order

Execution of Input/Output).

340 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.5

may be irrelevant or meaningless.
51

The basic phenomenon here is that synchronizing di�erent threads, establishing shared

state, or imposing an order on events requires communication among the threads. In essence,

any notion of time in concurrency control must be intimately tied to communication.
52

It

is intriguing that a similar connection between time and communication also arises in the

Theory of Relativity, where the speed of light (the fastest signal that can be used to synchronize

events) is a fundamental constant relating time and space. The complexities we encounter in

dealing with time and state in our computational models may in fact mirror a fundamental

complexity of the physical universe.

3.5 Streams

We’ve gained a good understanding of assignment as a tool in modeling, as well as an appreci-

ation of the complex problems that assignment raises. It is time to ask whether we could have

gone about things in a di�erent way, so as to avoid some of these problems. In this section,

we explore an alternative approach to modeling state, based on data structures called streams.
As we shall see, streams can mitigate some of the complexity of modeling state.

Let’s step back and review where this complexity comes from. In an attempt to model

real-world phenomena, we made some apparently reasonable decisions: We modeled real-

world objects with local state by computational objects with local variables. We identi�ed

time variation in the real world with time variation in the computer. We implemented the

time variation of the states of the model objects in the computer with assignments to the local

variables of the model objects.

Is there another approach? Can we avoid identifying time in the computer with time in the

modeled world? Must we make the model change with time in order to model phenomena in

a changing world? Think about the issue in terms of mathematical functions. We can describe

the time-varying behavior of a quantity x as a function of time x(t). If we concentrate on x

instant by instant, we think of it as a changing quantity. Yet if we concentrate on the entire

time history of values, we do not emphasize change—the function itself does not change.
53

If time is measured in discrete steps, then we can model a time function as a (possibly in�-

51
This may seem like a strange point of view, but there are systems that work this way. International charges to

credit-card accounts, for example, are normally cleared on a per-country basis, and the charges made in di�erent

countries are periodically reconciled. Thus the account balance may be di�erent in di�erent countries.

52
For distributed systems, this perspective was pursued by Lamport (1978), who showed how to use communi-

cation to establish “global clocks” that can be used to establish orderings on events in distributed systems.

53
Physicists sometimes adopt this view by introducing the “world lines” of particles as a device for reasoning

about motion. We’ve also already mentioned (section 2.2.3) that this is the natural way to think about signal-

processing systems. We will explore applications of streams to signal processing in section 3.5.3.

341 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.5.1

nite) sequence. In this section, we will see how to model change in terms of sequences that

represent the time histories of the systems being modeled. To accomplish this, we introduce

new data structures called streams. From an abstract point of view, a stream is simply a se-

quence. However, we will �nd that the straightforward implementation of streams as lists (as

in section 2.2.1) doesn’t fully reveal the power of stream processing. As an alternative, we

introduce the technique of delayed evaluation, which enables us to represent very large (even

in�nite) sequences as streams.

Stream processing lets us model systems that have state without ever using assignment

or mutable data. This has important implications, both theoretical and practical, because we

can build models that avoid the drawbacks inherent in introducing assignment. On the other

hand, the stream framework raises di�culties of its own, and the question of which modeling

technique leads to more modular and more easily maintained systems remains open.

3.5.1 Streams Are Delayed Lists

As we saw in section 2.2.3, sequences can serve as standard interfaces for combining pro-

gram modules. We formulated powerful abstractions for manipulating sequences, such as map,

filter, and accumulate, that capture a wide variety of operations in a manner that is both

succinct and elegant.

Unfortunately, if we represent sequences as lists, this elegance is bought at the price of severe

ine�ciency with respect to both the time and space required by our computations. When we

represent manipulations on sequences as transformations of lists, our programs must construct

and copy data structures (which may be huge) at every step of a process.

To see why this is true, let us compare two programs for computing the sum of all the prime

numbers in an interval. The �rst program is written in standard iterative style:
54

Ifunction sum_primes(a, b) {

function iter(count, accum) {

return count > b

? accum

: is_prime(count)

? iter(count + 1, count + accum)

: iter(count + 1, accum);

}

return iter(a, 0);

}

The second program performs the same computation using the sequence operations of

section 2.2.3:

54
Assume that we have a predicate is_prime (e.g., as in section 1.2.6) that tests for primality.

342 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgQoAthgA2onMigB9ACYwAbjGRwseMCQrUaOOg0TAYYWXMXLV6gDSIATEU48+0eEkPHTSlWrDWokmfKeqpqU2rT0SGiYuHh+Uh7mWCQAfIhgodqZiAD8aRlZ1ABciIEwspKx-gle1hr5BdS5cQFmXvUNiMVuJqVeVojN1aqIANSIAIz23LzgzoKl5ch4GNYARiFhuhGIq4gApIgYiAC8p4gADA4z-C6IytIADlgwQvgaZPnh+kinx8JiEnivQsGiuTgEkRAQkez1eSxWOw21HBtxgfjUEDg4Cg1gwEAgUKRWS+SEx2MQqVW7Q6uTxBKE1IaxXuTxe+DJYCgREZNLu6LwHKgowm1kFwrphJ5TL5OAxWM5wvGuPxhM42h4mz0SDRsuW1nOUx45GQUJhbKWAHZrOMABx2dhAA

Modularity, Objects, and State 3.5.1

Ifunction sum_primes(a, b) {

return accumulate((x, y) => x + y,

0,

filter(is_prime,

enumerate_interval(a, b)));

}

In carrying out the computation, the �rst program needs to store only the sum being accumu-

lated. In contrast, the �lter in the second program cannot do any testing until enumerate_interval

has constructed a complete list of the numbers in the interval. The �lter generates another

list, which in turn is passed to accumulate before being collapsed to form a sum. Such large

intermediate storage is not needed by the �rst program, which we can think of as enumerating

the interval incrementally, adding each prime to the sum as it is generated.

The ine�ciency in using lists becomes painfully apparent if we use the sequence paradigm to

compute the second prime in the interval from 10,000 to 1,000,000 by evaluating the expression

head(tail(filter(is_prime,

enumerate_interval(10000, 1000000))));

This expression does �nd the second prime, but the computational overhead is outrageous.

We construct a list of almost a million integers, �lter this list by testing each element for

primality, and then ignore almost all of the result. In a more traditional programming style,

we would interleave the enumeration and the �ltering, and stop when we reached the second

prime.

Streams are a clever idea that allows one to use sequence manipulations without incurring

the costs of manipulating sequences as lists. With streams we can achieve the best of both

worlds: We can formulate programs elegantly as sequence manipulations, while attaining the

e�ciency of incremental computation. The basic idea is to arrange to construct a stream only

partially, and to pass the partial construction to the program that consumes the stream. If

the consumer attempts to access a part of the stream that has not yet been constructed, the

stream will automatically construct just enough more of itself to produce the required part,

thus preserving the illusion that the entire stream exists. In other words, although we will write

programs as if we were processing complete sequences, we design our stream implementation

to automatically and transparently interleave the construction of the stream with its use.

In their most basic form, streams are similar to lists. The empty stream is null, a non-empty

stream is a pair, and the head of the pair is a data item. However, the tail of a pair that

represents a non-empty stream is not a stream, but a function of no arguments that returns
a stream. The stream returned by the function, we call the tail of the stream. If we have a

data item x and a stream s, we can construct a stream whose head is x and whose tail is s by

evaluating pair(x, () => s).

343 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgQoAthgA2onMigB9ACYwAbjGRwseMCQrUaOOg0TAYYWXMXLV6gDSIATEU48+0eEkPHTSlWrDWokmfKeqpqU2rT0SGiYuHh+Uh7mWCQAfIhgodqZiAD8aRlZ1ABciIEwspKx-gle1hr5BdS5cQFmXvUNiMVuJqVeVojN1aqIANSIAIz23LzgzoKl5ch4GNYARiFhuhGIq4gApIgYiAC8p4gADA4z-C6IytIADlgwQvgaZPnh+kinx8JiEnivQsGiuTgESBwYBArywGD80iMfiwCjEeFEcAA7tYABYwADmOI21C+SAxmMQqTxhPamVy0PEtO0xQeGBganJliZHUQUJhODhCKRAtRonRWNGE1xBKJU0cswhKBhj2eryWKx2xKopMOEAgMJAonh+EI1gAniRjqkmGMzVyeQ6LvbHR1DKJkXh7k8XjhrNyXQU+bDjYiwMjRcs1kRo1dyMhld61XgAOzWcYADjs7CAA

Modularity, Objects, and State 3.5.1

In order to access the data item of a non-empty stream, we just use head as with lists. In

order to access the tail of a stream s, we need to apply tail(s), i.e. evaluate tail(s)(). For

convenience, we therefore de�ne

Ifunction stream_tail(stream) {

return tail(stream)();

}

The tail of a stream is “wrapped” in a function. It is a delayed expression, a “promise” to

evaluate an expression at some future time. Correspondingly, stream_tail forces the tail to

ful�ll its promise. It selects the tail of the pair and evaluates the delayed expression found

there to obtain the next pair of the stream.

We can make and use streams, in just the same way as we can make and use lists, to represent

aggregate data arranged in a sequence. In particular, we can build stream analogs of the list

operations from chapter 2, such as list_ref, map, and for_each:
55

Ifunction stream_ref(s, n) {

return n === 0

? head(s)

: stream_ref(stream_tail(s), n - 1);

}

function stream_map(f, s) {

return is_null(s)

? null

: pair(f(head(s)),

() => stream_map(f, stream_tail(s)));

}

function stream_for_each(fun, s) {

if (is_null(s)) {

return true;

} else {

fun(head(s));

return stream_for_each(fun, stream_tail(s));

}

}

The function stream_for_each is useful for viewing streams:

Ifunction display_stream(s) {

return stream_for_each(display, s);

}

The function that represents the tail of a stream is evaluated when it is accessed, using

55
This should bother you. The fact that we are de�ning such similar functions for streams and lists indicates

that we are missing some underlying abstraction. Unfortunately, in order to exploit this abstraction, we will need

to exert �ner control over the process of evaluation than we can at present. We will discuss this point further at

the end of section 3.5.4. In section 4.2, we’ll develop a framework that uni�es lists and streams.

344 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZygJwKYEMC2B9KLGAGwApVNcBKRAbwChEnFMoQ0lCTz1scrSVANz0AvvXoU+BImQAORNKQAsAGkSDEAXgB8iBTCUBWdZt2IwIYsSq2hQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZygJwKYEMC2B9KLGAGwApVNcBKRAbwChEnFMoQ0lCTz1scrSVANz0AvvVCRYCFL1x5MwcgBpEYGg2YsMbDmsQBeI4gAMjLRcQB+RAAtsAE3JVzl5gC5ZlfIp7eCRGTIVKpIALSIAIzCYhLg0PBIFHx4OFgADqTAqsF0rtq6SDDIeGAgxEEublo2ZRX5bp7pRGhZpPZYTsEhDdUWgoYAfF4paZnZI-JclVQx4pIJMsnywHBoeNgQtlngORr5MMCIpMWl5TN51azsnGggGCJaoogYxMgYl26S7Y7OMVc6G6TfCrdabbaSHJyfDTP6PZjicT0CAIVCIHAATzwyxwhkQzRgrQALKoBgZhgTWgBWUk0clqc6zEQOYrpYhYDF+FK+THY6GqaIxFFgNG8nF4ABMePFY1IAA8hogFQBqKKqMXQmLi0EbLBbUgs5BsjnqrHiiXCIA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZygJwKYEMC2B9KLGAGwApVNcBKRAbwChEnFMoQ0lCTz1scrSVANz0AvvQgJUiHFgAeeACYxkAB2JYAnogC8iAJwjQkWAkTK1GzXgp9yNBs0THo8JBfVabvXHhhQMNB4AGkQwB0YnZhhgRFIVPDAQYjJUKgio5lFEDGJkDEQYuKQdUsQABgzMqI8rUgByetCAIgA6dubhSMzs3Py6buqmWq1SAAtsRR50kSGnEetbX39Ankp8LlSoKlCkAFpEAEYuofEnM+YF73W-AKDkUNkFBa7xCSkoGUWfHF1EVSIQQALKFBLoAHz-QGkACsoJoOkhSRSM3oVyWOFIOG+62EQA

Modularity, Objects, and State 3.5.1

stream_tail. This design choice is reminiscent of our discussion of rational numbers in sec-

tion 2.1.2, where we saw that we can choose to implement rational numbers so that the re-

duction of numerator and denominator to lowest terms is performed either at construction

time or at selection time. The two rational-number implementations produce the same data

abstraction, but the choice has an e�ect on e�ciency. There is a similar relationship between

streams and ordinary lists. As a data abstraction, streams are the same as lists. The di�erence

is the time at which the elements are evaluated. With ordinary lists, both the head and the

tail are evaluated at construction time. With streams, the tail is evaluated at selection time.

Streams in action

To see how this data structure behaves, let us analyze the “outrageous” prime computation we

saw above, reformulated in terms of streams:

Ihead(stream_tail(stream_filter(

is_prime,

stream_enumerate_interval(10000,

1000000))));

We will see that it does indeed work e�ciently.

We begin by calling stream_enumerate_interval with the arguments 10,000 and 1,000,000.

The function stream_enumerate_interval is the stream analog of enumerate_interval (sec-

tion 2.2.3):

Ifunction stream_enumerate_interval(low, high) {

return low > high

? null

: pair(low,

() => stream_enumerate_interval(low + 1,

high));

}

and thus the result returned by stream_enumerate_interval, formed by the pair, is
56

Ipair(10000, () => stream_enumerate_interval(10001, 1000000));

That is, stream_enumerate_interval returns a stream represented as a pair whose head is

10,000 and whose tail is a promise to enumerate more of the interval if so requested. This

stream is now �ltered for primes, using the stream analog of the filter function (section 2.2.3):

Ifunction stream_filter(pred, s) {

return is_null(s)

56
The numbers shown here do not really appear in the delayed expression. What actually appears is the original

expression, in an environment in which the variables are bound to the appropriate numbers. For example, low + 1
with low bound to 10,000 actually appears where 10001 is shown.

345 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgQoAthgA2onMigB9ACYwAbjGRwseMCQrUaOOg0TAYYWXMXLV6gDSIATEU48+0eEkPHTSlWrDWokmfKeqpqU2rT0SGiYuHh+Uh7mWCQAfIhgodqZiAD8aRlZ1ABciIEwspKx-gle1hr5BdS5cQFmXvUNiMVuJqVeVojN1aqIANSIAIz23LzgzoKl5ch4GNYARiFhuhGIq4gApIgYiAC8p4gADA4z-C6IytIADlgwQvgaZPnh+kinx8JiEnivQsGiuTgEkSguAwQmkODAIFeWAwfmkRj8WAUYjwojgAHdrAALGAAc0JG2oXyQuLxiFSxLJ7UyuQR4iZ2mKDwwMDUNMs7I6iDwJGOqSk0Nh8MROGRqPRMqxohx+NGE2sAsFmq1DQZ5PsiGmhJwGFkeHFxthUG5SvNMOkhlEGLwGsF9yeLxw-O1BVtkoRSJRODRYAxirw43OkfO6u9sbjEyjUaIyfsQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgQoAthgA2onMigB9ACYwAbjGRwseMCQrUaOOg0TAYYWXMXLV6gDSIATEU48+0eEkPHTSlWrDWokmfKeqpqU2rT0SGiYuHh+Uh7mWCQAfIhgodqZiAD8aRlZ1ABciIEwspKx-gle1hr5BdS5cQFmXvUNiMVuJqVeVojN1aqIANSIAIz23LzgzoKl5ch4GNYARiFhuhGIq4gApIgYiAC8p4gADA4z-C6IytIADlgwQvgaZPnh+kinx8JiEnivQsGiuTgEkSguAwQmkODAIFeWAwfmkRj8WAUYjwojgAHdrAALGAAc0JG2oXyQuLxiFSxLJ7UyuQR4iZ2mKDwwMDUNMs7I6iDwJGOqSk0Nh8MROGRqPRMqxohx+NGE2sAsFmq1DQZ5PsiGm5HFOBhcIRSJRODRYAxirw43OjvO1gdTsd9iAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgQoAthgA2onMigB9ACYwAbjGRwseMCQrUaOOg0TAYYWXMXLV6gDSIATEU48+0eEkPHTSlWrDWokmfKeqpqU2rT0SGiYuHh+Uh7mWCQAfIhgodqZiAD8aRlZ1ABciIEwspKx-gle1hr5BdS5cQFmXvUNiMVuJqVeVojN1aqIANSIAIz23LzgzoKl5ch4GNYARiFhuhGIq4gApIgYiAC8p4gADA4z-C6IytIADlgwQvgaZPnh+kinx8JiEnivQsGiuTgEkSguAwQmkODAIFeWAwfmkRj8WAUYjwojgAHdrAALGAAc0JG2oXyQuLxiFSxLJ7UyuQR4iZ2mKDwwMDUNMs7I6iDwJGOqSk0Nh8MROGRqPRMqxohx+NGE2sAsFmq1DQZ5PsiGmXJ5eHG5zN52swpOYqhOBhcIRSJRODRYAxipN5vG1lN5rNRHsQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZygJwKYEMC2B9KLGAGwApVNcBKRAbwChEnFMoQ0lCTz1scrSVANz0AvvQgJUiHFgAeeACYxkAB2JYAnogC8iAJwjQkWAkTK1GzXgp9yNBs0THo8JBfVabvXHhhQMNB4AGkQwB0YnZhhgRFIVPDAQYjJUKgio5lFEDGJkDEQYuKQdUsQABgzMqI8rUgByetCAIgA6dubhSMzs3Py6buqmWq1SAAtsRR50kSGnEetbX39Ankp8LlSoKlCkAFpEAEYuofEnM+YF73W-AKDkUNkFBa7xF1MkJfxgEjvSVUwilCyCqTFY7CQCSSKXsg2qAH4wsliHDMgAuRAAjBTCZYKYgqiohGYohBXH4nZEuZOQS6AB8KB831+qyxQMQVOpXK5XwIRFS6UJ3MQGN5P2IfzZwU5wuqvM29le9AkUigMkWTN0JJgQQArKFaToGapSaQAGwGmhG7VBADslvpSJSgpEkjA0hw1nFd2x1z4ukGYpZQTkjtDAFJEAAmXRlcqPDXrLpXL6kT14b2BX1fYRAA

Modularity, Objects, and State 3.5.1

? null

: pred(head(s))

? pair(head(s),

() => stream_filter(pred,

stream_tail(s)))

: stream_filter(pred,

stream_tail(s));

}

The function stream_filter tests the head of the stream (which is 10,000). Since this is not

prime, stream_filter examines the tail of its input stream. The call to stream_tail forces

evaluation of the delayed stream_enumerate_interval, which now returns

Ipair(10001, () => stream_enumerate_interval(10002, 1000000));

The function stream_filter now looks at the head of this stream, 10,001, sees that this is

not prime either, forces another stream_tail, and so on, until stream_enumerate_interval

yields the prime 10,007, whereupon stream_filter, according to its de�nition, returns

pair(head(stream),

stream_filter(pred, stream_tail(stream)));

which in this case is

Ipair(10007,

() => stream_filter(is_prime,

pair(10008,

() => stream_enumerate_interval(10009,

1000000))

)

);

This result is now passed to stream_tail in our original expression. This forces the delayed

stream_filter, which in turn keeps forcing the delayed stream_enumerate_interval until it

�nds the next prime, which is 10,009. Finally, the result passed to head in our original expression

is

Ipair(10009,

() => stream_filter(is_prime,

pair(10010,

() => stream_enumerate_interval(10011,

1000000))

)

);

The function head returns 10,009, and the computation is complete. Only as many integers

were tested for primality as were necessary to �nd the second prime, and the interval was

enumerated only as far as was necessary to feed the prime �lter.

346 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgQoAthgA2onMigB9ACYwAbjGRwseMCQrUaOOg0TAYYWXMXLV6gDSIATEU48+0eEkPHTSlWrDWokmfKeqpqU2rT0SGiYuHh+Uh7mWCQAfIhgodqZiAD8aRlZ1ABciIEwspKx-gle1hr5BdS5cQFmXvUNiMVuJqVeVojN1aqIANSIAIz23LzgzoKl5ch4GNYARiFhuhGIq4gApIgYiAC8p4gADA4z-C6IytIADlgwQvgaZPnh+kinx8JiEnivQsGiuTgEkSguAwQmkODAIFeWAwfmkRj8WAUYjwojgAHdrAALGAAc0JG2oXyQuLxiFSxLJ7UyuQR4iZ2mKDwwMDUNMs7I6iDwJGOqSk0Nh8MROGRqPRMqxohx+NGE2sAsFmq1DQZ5PsiGmXJ5eHG5zN42swpOYqhOBhcIRSJRODRYAxipNZvONmspq9ZqI9iAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgQoAthgA2onMigB9ACYwAbjGRwseMCQrUaOOg0TAYYWXMXLV6gDSIATEU48+0eEkPHTSlWrDWokmfKeqpqU2rT0SGiYuHh+Uh7mWCQAfIhgodqZiAD8aRlZ1ABciIEwspKx-gle1hr5BdS5cQFmXvUNiMVuJqVeVojN1aqIANSIAIz23LzgzoKl5ch4GNYARiFhuhGIq4gApIgYiAC8p4gADA4z-C6IytIADlgwQvgaZPnh+kinx8JiEnivQsGiuTgEkSguAwQmkODAIFeWAwfmkRj8WAUYjwojgAHdrAALGAAc0JG2oXyQuLxiFSxLJ7UyuQR4iZ2mKDwwMDUNMs7I6iDwJGOqSk0Nh8MROGRqPRMqxohx+NGE2sAsFmq1DQZ5PsiGmXJ5eHG5zNAHZ+ZlhScxVCcDDpIZRBi8Pcni8cFbtYgjWpTWaABzen3aG2ilD2x1SpEonBosAYxUms3nACc6tDWez2gDqfORCI5AAkFki9p7EA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgQoAthgA2onMigB9ACYwAbjGRwseMCQrUaOOg0TAYYWXMXLV6gDSIATEU48+0eEkPHTSlWrDWokmfKeqpqU2rT0SGiYuHh+Uh7mWCQAfIhgodqZiAD8aRlZ1ABciIEwspKx-gle1hr5BdS5cQFmXvUNiMVuJqVeVojN1aqIANSIAIz23LzgzoKl5ch4GNYARiFhuhGIq4gApIgYiAC8p4gADA4z-C6IytIADlgwQvgaZPnh+kinx8JiEnivQsGiuTgEkSguAwQmkODAIFeWAwfmkRj8WAUYjwojgAHdrAALGAAc0JG2oXyQuLxiFSxLJ7UyuQR4iZ2mKDwwMDUNMs7I6iDwJGOqSk0Nh8MROGRqPRMqxohx+NGE2sAsFmq1DQZ5PsiGmXJ5eHG5zNAE5+ZlhScxVCcDDpIZRBi8Pcni8cFbtYgjWpTedTd6fdobaKUPbHVKkSicGiwBjFSazeNxuqQxnM9oA2azUQiBrtAWi+wgA

Modularity, Objects, and State 3.5.1

In general, we can think of delayed evaluation as “demand-driven” programming, whereby

each stage in the stream process is activated only enough to satisfy the next stage. What we

have done is to decouple the actual order of events in the computation from the apparent

structure of our functions. We write functions as if the streams existed “all at once” when, in

reality, the computation is performed incrementally, as in traditional programming styles.

An optimization

When we construct stream pairs, we delay the evaluation of their tail expressions by wrapping

these expressions in a function. We force their evaluation when needed, by applying the

function.

This implementation su�ces for streams to work as advertised, but there is an important

optimization that we shall consider where needed. In many applications, we end up forcing the

same delayed object many times. This can lead to serious ine�ciency in recursive programs

involving streams. (See exercise 3.57.) The solution is to build delayed objects so that the �rst

time they are forced, they store the value that is computed. Subsequent forcings will simply

return the stored value without repeating the computation. In other words, we implement

the construction of stream pairs as a memoized function similar to the one described in exer-

cise 3.27. One way to accomplish this is to use the following function, which takes as argument

a function (of no arguments) and returns a memoized version of the function. The �rst time the

memoized function is run, it saves the computed result. On subsequent evaluations, it simply

returns the result.

Ifunction memo(fun) {

let already_run = false;

let result = undefined;

return () => {

if (!already_run) {

result = fun();

already_run = true;

return result;

} else {

return result;

}

};

}

We can make use of memo whenever we construct a stream pair. For example, instead of

Ifunction stream_map(f, s) {

return is_null(s)

? null

: pair(f(head(s)),

347 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwKbLgClGAlIgbwEhFTEAoMxAG1SkQENqAnVBgEwE8B9Z8RALyJgTAM6oA3JTK16rUSGr0h4dqmAwwqdlKqsoIZkkz4BAPkLSq1m1RjBEmAIRNWHHnzyXbP34nmKysLgJrp+4WSubFy8-EJQfJJWEX76hkgBSmEpNgC+iKjU4t45qXTp-qgKWcmlpLnkJD65Ug3kONDwSKIAjiAMrNwALCYlpBAIonJVgYKIQ4gAVPMSTaTJ7DCiAA7UDJyYAETIgTC7MBAMsAiIl8zMMNqIcCBQh7jZlQZGldVQreQJmApih0HBuL1+oMFkI0BhMJCBqhhh9yJsdnsDnDwYjoSYPogAPSExCiAAWcAA7qJEMdTrsAHQMw5ora7faYbEQvpI4b4iREknsOBVRBgOD0clU2knJRnahMw5AA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZygJwKYEMC2B9HLABwApgAaFASkQG8AoRJxTKENJGZPMEAGz4lkVRszHMA-Il4DR4sQC5ERLDDRkSAC2wATIVSrk58k0xI0AvAD4U6bPkKkKtzLjxRVg4QYDc9AL709BAIqIg4AJ54qK44iBbKquoALJTm8TYqaiQArGmWNjJ8vkEhYGGR0XZuAEzxxjH2BMQkOlxEfFgRlJWNuFR+9H34mMAkvdX4NZQAjANDk3ij41HDeNOIc34A9NuIUNrSIDgARhhoiDmIXCiacADuSFD3MBAY9LuIZxBYIMgY+0OyFwAJ0GE6EQwOg+ezgJwAVhhoNdkIhgHA0G8dPsXm8gA

Modularity, Objects, and State 3.5.1

() => stream_map(f, stream_tail(s)));

}

we can de�ne an optimized function stream_map as follows:
57

Ifunction stream_map_optimized(f, s) {

return is_null(s)

? null

: pair(f(head(s)),

memo(() => stream_map_optimized(

f, stream_tail(s))));

}

Exercise 3.50

De�ne a function stream_combine that takes a binary function and two streams as arguments

and returns a stream whose elements are the results of applying the function pairwise to the

corresponding elements of the argument streams.

function stream_combine(f, s1, s2) {

...

}

Exercise 3.51

Note that our primitive function display returns its argument after displaying it. What does

the interpreter print in response to evaluating each expression in the following sequence?
58

Ilet x = stream_map(

display, stream_enumerate_interval(0, 10));

stream_ref(x, 5);

stream_ref(x, 7);

What does the evaluator print if stream_map_optimized is used instead of stream_map?

57
There are many possible implementations of streams other than the one described in this section. Delayed

evaluation, which is the key to making streams practical, was inherent in Algol 60’s call-by-name parameter-

passing method. The use of this mechanism to implement streams was �rst described by Landin (1965). Delayed

evaluation for streams was introduced into Lisp by Friedman and Wise (1976). In their implementation, cons
always delays evaluating its arguments, so that lists automatically behave as streams. The memoizing optimization

is also known as call-by-need. The Algol community would refer to our original delayed objects as call-by-name
thunks and to the optimized versions as call-by-need thunks.

58
Exercises such as 3.51 and 3.52 are valuable for testing our understanding of how delayed evaluation works.

On the other hand, intermixing delayed evaluation with printing—and, even worse, with assignment—is extremely

confusing, and instructors of courses on computer languages have traditionally tormented their students with

examination questions such as the ones in this section. Needless to say, writing programs that depend on such

subtleties is odious programming style. Part of the power of stream processing is that it lets us ignore the order

in which events actually happen in our programs. Unfortunately, this is precisely what we cannot a�ord to do in

the presence of assignment, which forces us to be concerned with time and change.

348 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwKbLgClGAlIgbwEhFTEAoMxAG1SkQENqAnVBgEwE8B9Z8RALyJgTAM6oA3JTK16rUSGr0h4dqmAwwqdlKqsoIZkkz4BAPkLSq1m1RjBEmAIRNWHHnzyXbP34nmKysLgJrp+4WSubFy8-EJQfJJWEX76hkgBSmEpNgC+iKjU4t45qXTp-qgKWcmlpLnkJD65Ug040PBIoglsyNzIDAAO3HCDsMgwAF7a2AA0iKL4BMlpRogwotxgitSYi7U2APyI29TUB9YAXIiDDDDM2JgAFtF7uLizF+FoGJiOphZum4+gNhqNxlMZl86r5gPMgb1uFA7rtFvh3q1yOQIAhuigeAiGMhBDc7g8ACzzEyCCy3e6YACsVIBJx2GKxOLAeOQBJ6RO4ACZBMlCSChph2BtBtQGJx5jzuKLcFJyKLeOpMAq1QL5gBGZWqvl9VjATW84GCvUGgD01sQUBerOQACNUMxEAz1qIFk84AB3JBQP0wCCoci2xCuiAMEDFB2oBZEhNqGWcbThu1wZ0AK1Q0C9wjgzFD7HtwdDHNx9C1Ru4AGZhVQ1aCRmMYBNpuwJVLU-Lzb0DYaLSazYra3WrVI1SOaxaJ4h9VII-Gna73Z6Nj7-UgENROIgEBWI1GY3HHZl6HAHMAixBNABzDP2x0p2XaA85vP0Tc-OCQ9hAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZygJwKYEMC2B9DMEHDNLKDPGMCtANywBsAKRuAdwBpEALGAcx4BKRAG8AUIimJMUEGiRt2iAHy8BPSdO3SA-IiKNGWndoBciAA5YYaVh04nTzqcxEBeNaky4CREmQUVDSkDCxKiADUiACM3E4uiUnJLnyCQkIA3IjiAL7ijBhQiAAeiO4o6Nj4OFiWzAnOACYwyJaMWACe3N7VfsSk5JTUtGHMAAzcMeMZmeK9vpjAzCXcAKxZ81WLGMuriADsWUA

Modularity, Objects, and State 3.5.2

Ilet x = stream_map_optimized(

display, stream_enumerate_interval(0, 10));

stream_ref(x, 5);

stream_ref(x, 7);

Exercise 3.52

Consider the program

Ilet sum = 0;

function accum(x) {

sum = x + sum;

return sum;

}

const seq = stream_map(

accum,

stream_enumerate_interval(1, 20));

const y = stream_filter(is_even, seq);

const z = stream_filter(x => x % 5 === 0, seq);

stream_ref(y, 7);

display_stream(z);

What is the value of sum after each of the above statements is evaluated? What is the printed re-

sponse to evaluating the stream_ref and display_stream expressions? Would these responses

di�er if we had applied the function memo on every tail of every constructed stream pair, as

suggested in the optimization above? Explain.

3.5.2 Infinite Streams

We have seen how to support the illusion of manipulating streams as complete entities even

though, in actuality, we compute only as much of the stream as we need to access. We can

exploit this technique to represent sequences e�ciently as streams, even if the sequences are

very long. What is more striking, we can use streams to represent sequences that are in�nitely

long. For instance, consider the following de�nition of the stream of positive integers:

Ifunction integers_starting_from(n) {

return pair(n,

() => integers_starting_from(n + 1)

);

}

349 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwKbLgClGAlIgbwEhFTEAoMxAG1SkQENqAnVBgEwE8B9Z8RALyJgTAM6oA3JTK16rUSGr0h4dqmAwwqdlKqsoIZkkz4BAPkLSq1m1RjBEmAIRNWHHnzyXbP34nmKysLgJrp+4WSubFy8-EJQfJJWEX76hkgBSmEpNgC+iKjU4t45qXTp-qgKWcmlpLnkJD65Ug040PBIoglsyNzIDAAO3HCDsMgwAF7a2AA0iKL4BMlpRogwotxgitSYi7U2APyI29TUB9YAXIiDDDDM2JgAFtF7uLizF+FoGJiOphZum4+gNhqNxlMZl86r5gPMgb1uFA7rtFvh3q1yO1YAgFgBHEAMViYAAeSxW5TWJMQACpECTMdjOgsBmcqlBuOwYAA3DZwB5eZZ6SlIDRgdicnl8gXzABMuEZ4A6uLFEq5vNE-MwYHmUHZko1-PJ1lWXQJRNQmD13QN0vwFjA0LIx0dEWu6pgalEVv1Hs1zHmeCdVGO1o5fv5wbI11Vtv92t1vql-sQAGpEABGBXkNpKnFID1ezAMeYAI2NZFNiFLiAApIxBAIhAAGRWQfPrTaDZgwNDaiukKtIJtCUSs2g2iMC7O59vMhEMPqobZoZgMPXcTR65jcpiYahwADu8yeMAA5k8B5UDGsD4fEBZTxfgy6dsHrrd7vuj58Yf9BICPSLtwy4gKu66oJuYDbruux3mmmbzFGf4oYgT6XgqFANLI9KCAsQEgkMIxjL2kLsJgUZcqIgzUAwnDwgRIErqga4bluLGwZgzbzBmzYYuQC59KwwCkvMACs2aCbw6iiYgADsCpAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgQoAthgA2onMigB9ACYwAbjGRwseMCQrUaOOg0TAYYWXMXLV6gDSIATEU48+0eEkPHTSlWrDWokmfKeqpqU2rT0SGiYuHh+Uh7mWCQAfIhgodqZiAD8aRlZ1ABciIEwspKx-gle1hr5BdS5cQFmXvUNiMVuJqVeVojN1aqIANSIAIz23LzgzoKl5ch4GNYARiFhuhGIq4gApIgYiAC8p4gADA4z-C6IytIADlgwQvgaZPnh+kinx8JiEnivQsGiuTgEkSguAwQmkODAIFeWAwfmkRj8WAUYjwojgAHdrAALGAAc0JG2oXyQuLxiFSxLJ7UyuQR4iZ2mKDwwMDUNMs7I6iDwJGOqSk0Nh8MROGRqPRMqxohx+NGE2sAsFmq1DQZ5PsiGm4Nu9xwCnh6gpVCpaX2thOZ0u0wgCCkiBEBFMyAeogwAE8TogAJycI3zZTev3ScU4GF4ZCWgyzCElcM+31RqEx2EwDFxqC1BPaGDAIX3VlKqREQvULiIHCiZA4O4l9T2v7natZeRetN4ADkfesACIAHRjodTBq1+uNj5a7sR314Qkx2R5quceepyPRmFo3O72FQbkVqBEWqIAC0E0nBR42nv1AXaYzEv3Mrj1ndnsXUx4EigFBEQDR1rjmJAMAgCBEUIBNkGAv4mDGeChE3Sktn0FCrnIZ0wFdRtUADQ9pBEB48A1LJIOgoR1W1ahiKlJEURwNEwAxRU8HGawbA7KZcNdf0-mIwxRFzE0zR8FAcFQKYcJdQCAC8iMzPcRNzJhRTYW0AFY2wuawCNk4jcGAPBfWsAB2WTnx3FShDwBT7CAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDMUCmBzNAnAzgfVygENtYwN9hs4BbACjAEpEBvAKES8WzShGxIADsRjZGAGk7cZs7vRYBeAHzJUmHASKlylanUaIA1IgCMTaXKtMA3OwC+7dhARFE+2vgBMABkSK1dCw8QhIyFD0aBl9bdjQAN2IAG1DeYgYPbx8JRABWH1sgA

Modularity, Objects, and State 3.5.2

Iconst integers = integers_starting_from(1);

This makes sense because integers will be a pair whose head is 1 and whose tail is a

promise to produce the integers beginning with 2. This is an in�nitely long stream, but in any

given time we can examine only a �nite portion of it. Thus, our programs will never know

that the entire in�nite stream is not there.

Using integers we can de�ne other in�nite streams, such as the stream of integers that are

not divisible by 7:

Iconst no_sevens =

stream_filter(x => ! is_divisible(x, 7),

integers);

Then we can �nd integers not divisible by 7 simply by accessing elements of this stream:

Istream_ref(no_sevens, 100);

117

In analogy with integers, we can de�ne the in�nite stream of Fibonacci numbers:

Ifunction fibgen(a, b) {

return pair(a, () => fibgen(b, a + b));

}

const fibs = fibgen(0, 1);

The function fibs is a pair whose head is 0 and whose tail is a promise to evaluate

fibgen(1, 1). When we evaluate this delayed fibgen(1, 1), it will produce a pair whose

head is 1 and whose tail is a promise to evaluate fibgen(1, 2), and so on.

For a look at a more exciting in�nite stream, we can generalize the no_sevens example

to construct the in�nite stream of prime numbers, using a method known as the sieve of
Eratosthenes.59

We start with the integers beginning with 2, which is the �rst prime. To get

the rest of the primes, we start by �ltering the multiples of 2 from the rest of the integers. This

leaves a stream beginning with 3, which is the next prime. Now we �lter the multiples of 3

from the rest of this stream. This leaves a stream beginning with 5, which is the next prime,

and so on. In other words, we construct the primes by a sieving process, described as follows:

To sieve a stream S, form a stream whose �rst element is the �rst element of S and the rest

of which is obtained by �ltering all multiples of the �rst element of S out of the rest of S and

sieving the result. This process is readily described in terms of stream operations:

59
Eratosthenes, a third-century b.c . Alexandrian Greek philosopher, is famous for giving the �rst accurate

estimate of the circumference of the Earth, which he computed by observing shadows cast at noon on the day

of the summer solstice. Eratosthenes’s sieve method, although ancient, has formed the basis for special-purpose

hardware “sieves” that, until the 1970s, were the most powerful tools in existence for locating large primes. Since

then, however, these methods have been superseded by outgrowths of the probabilistic techniques discussed in

section 1.2.6.

350 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDMUCmBzNAnAzgfVygENtYwN9hs4BbACjAEpEBvAKES8WzShGxIADsRjZGAGk7cZs7vRYBeAHzJUmHASKlylanUaIA1IgCMTaXKtMA3OwC+7CAiJr0WPIkVuNeQiTIUPRoGczt2NAA3YgAbf15iBhR3TQlEAFYABlsgA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDMUCmBzNAnAzgfVygENtYwN9hs4BbACjAEpEBvAKES8WzShGxIADsRjZGAGk7cZs7vRYBeAHzJUmHASKlylanUaIA1IgCMTaXKtMA3OwC+7CAiJr0WPIkVuNeQiTIUPRoGcztQSFgEZAIAExgANxhcGAAjABs0egAPCUQATxYOGV5+QURsxABSAq9FbwAGO0dnMFcwOEI0BLQ2r0tEIl5iWioYdPRxSpVEAEIY-HiklIys3MQAdiYpK13uFHdNW3Z2buJ0-2GGDq6etryAJgBmWyA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDMUCmBzNAnAzgfVygENtYwN9hs4BbACjAEpEBvAKES8WzShGxIADsRjZGAGk7cZs7vRYBeAHzJUmHASKlylanUaIA1IgCMTaXKtMA3OwC+7CAiJr0WPIkVuNeQiTIUPRoGcztQSFgEZAIAExgANxhcGAAjABs0egAPCUQATxYOGV5+QURsxABSAq9FbwAGO0dnMFcwOEI0BLQ2r0tEIl5iWioYdPRxSpVEAEIY-HiklIys3MQAdiYpK13uFHdNW3YhtBH8XmBGTtxu3tw80waG2yA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMGAjA5gUzACgIYA0iqAlIgN4BQiNiATplCHUgA54x35E5kC8APmRosuVETyIA1MRIkA3JQC+lShAQBnKMNQbEfHaJwAGIgEYFqzADc8AGwD6WhngC2OFLqIBWYwqA

Modularity, Objects, and State 3.5.2

Ifunction sieve(stream) {

return pair(head(stream),

() => sieve(stream_filter(

x => !is_divisible(x,

head(stream)),

stream_tail(stream))

)

);

}

const primes = sieve(integers_starting_from(2));

Now to �nd a particular prime we need only ask for it:

Istream_ref(primes, 50);

233

It is interesting to contemplate the signal-processing system set up by sieve, shown in the

“Henderson diagram” in �gure 3.31.
60

The input stream feeds into an “unpairer” that separates

the �rst element of the stream from the rest of the stream. The �rst element is used to construct

a divisibility �lter, through which the rest is passed, and the output of the �lter is fed to another

sieve box. Then the original �rst element is paired onto the output of the internal sieve to

form the output stream. Thus, not only is the stream in�nite, but the signal processor is also

in�nite, because the sieve contains a sieve within it.

filter:
not
divisible?

sieve

sieve

head

tail
pair

Figure 3.31: The prime sieve viewed as a signal-processing system.

60
We have named these �gures after Peter Henderson, who was the �rst person to show us diagrams of this

sort as a way of thinking about stream processing. Each solid line represents a stream of values being transmitted.

The dashed line from the head to the pair and the filter indicates that this is a single value rather than a stream.

351 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfQCYwG6pgIwBsBTACgA8AaRATwEpEBvAKETcQCdioQOlzEAUlqIAvOMQAGANzMAvs1CRYCZGCjEA5sQ7oUUAIYdYYTWmAc4AW1JgGLdp268kABwMwOtyq0d--pAyiAHxqGtq6aPpGJmYW1raIANSIAIx0vv5ZdLIKStDwSCgwxNhk+lwGVvaZTjx8iO6epAAWxAYYpBXt1T5Z-YiBYqHFpeVQlVbmMIQaXrUDi1kCIYgAhKiYOHhEZFQLS4eLbR1dEz10dH1HN2zdVWiGM2eTlwe3-hm3OfLMEAj6RocGBWYgoMSIUZlUgwdRaHR6QzGWFxSw2ABMl1kzFKBkIUXOVVIrmBoJQ1AArJIckA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfQCYwG6pgIwBsBTACgA8AaRATwEpEBvAKETcQCdioQOlzEAUlqIAvOMQAGANzMAvs1CRYCZGCjEA5sQ7oUUAIYdYYTWmAc4AW1JgGLdp268kABwMwOtyq0d--pAyiAHxqGtq6aPpGJmYW1raIANSIAIx0vv5ZdLIKStDwSCgwxNhk+lwGVvaZTjx8iO6epAAWxAYYpBXt1T5Z-YiBYqHFpeVQlVbmMIQaXrUDi1kCIYgAhKiYOHhEZFQLS4eLbR1dEz10dH1HN2zdVWiGM2eTlwe3-hm3OfLMEAj6RocGBWYgoMSIUZlUgwdRaHR6QzGWFxSw2ABMl1k9ymXGApFcwNBKGoAFZJDkgA

Modularity, Objects, and State 3.5.2

Defining streams implicitly

The integers and fibs streams above were de�ned by specifying “generating” functions that

explicitly compute the stream elements one by one. An alternative way to specify streams is to

take advantage of delayed evaluation to de�ne streams implicitly. For example, the following

expression de�nes the stream ones to be an in�nite stream of ones:

Iconst ones = pair(1, () => ones);

This works much like the de�nition of a recursive function: ones is a pair whose head is 1

and whose tail is a promise to evaluate ones. Evaluating the tail gives us again a 1 and a

promise to evaluate ones, and so on.

We can do more interesting things by manipulating streams with operations such as add_streams,

which produces the elementwise sum of two given streams:
61

Ifunction add_streams(s1, s2) {

return stream_combine((x1, x2) => x1 + x2, s1, s2);

}

Now we can de�ne the integers as follows:

Iconst integers = pair(1, () => add_streams(ones, integers));

This de�nes integers to be a stream whose �rst element is 1 and the rest of which is the

sum of ones and integers. Thus, the second element of integers is 1 plus the �rst element

of integers, or 2; the third element of integers is 1 plus the second element of integers, or

3; and so on. This de�nition works because, at any point, enough of the integers stream has

been generated so that we can feed it back into the de�nition to produce the next integer.

We can de�ne the Fibonacci numbers in the same style:

Iconst fibs = pair(0,

() => pair(1,

() => add_streams(

stream_tail(fibs),

fibs))

);

This de�nition says that fibs is a stream beginning with 0 and 1, such that the rest of the

stream can be generated by adding fibs to itself shifted by one place:

1 1 2 3 5 8 13 21 . . . = stream_tail(fibs)

0 1 1 2 3 5 8 13 . . . = fibs

0 1 1 2 3 5 8 13 21 34 . . . = fibs

61
This uses the function stream_combine from exercise 3.50.

352 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBOCmEYF4YAcCGBLATgCgEYAaGPAShQD44xEyBuAKEfgDcMAbAfWh3gwC2eBBBIBWAAwMgA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwKbLgClGAlIgbwEhFTEAoMxAG1SkQENqAnVBgEwE8B9Z8RALyJgTAM6oA3JTK16rUSGr0h4dqmAwwqdlKqsoIZkkz4BAPkLSq1m1RjBEmAIRNWHHnzyXbP34nmKysLgJrp+4WSubFy8-EJQfJJWEX76hkgBSmEpNgC+iKjU4t45qXTp-qgKWcmlpLnkJD65Ug040PBIoglsyNwQcMgARpqo2AA0iKIAjJOiAEz4BMlpRogwotxgitSYM-gAZAfrm9vUuwu4tWQA-Ihn1NekAFwnWzt70-gAPt9vD3tFk9EHdUMxmHBmJgHpMAETgVAADwADqhoNpGMwAOYgNBgegAWgJUx6DD6A2Go1hVx8r2RDBgUOAmAAFtFPrhxmyOIDcJyKKU0BhMCZBBZum5yYMRloJiTJdwoAyLl9xsC6hqJb1FcreXzcK1yO1YAhGOx2NwtWTRJ85osSqRVl1SVLKbLMIjZohEfbzN7pogANTe+ZzL2XQ3kAZgbqIBBVQSIemMzBe0V++OiA1RhCxqAAdzgokTyahoccpgsBaL2ejeZZrATQg4FqtyBtmcm1azUlQADcmJaXZgoA3UFVJgBWAAMBqAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwKbLgClGAlIgbwEhFTEAoMxAG1SkQENqAnVBgEwE8B9Z8RALyJgTAM6oA3JTK16rUSGr0h4dqmAwwqdlKqsoIZkkz4BAPkLSq1m1RjBEmAIRNWHHnzyXbP34nmKysLgJrp+4WSubFy8-EJQfJJWEX76hkgBSmEpNgC+iKjU4t45qXTp-qgKWcmlpLnkJD65Ug040PBIoglsyNwQcMgARpqo2AA0iKIAjJOiAEz4BMlpRogwotxgitSYM-gAZAfrm9vUuwu4tWQA-Ihn1NekAFwnWzt70-gAPt9vD3tFk9EHdUMxmHBmJgHpMAETgVAADwADqhoNpGMwAOYgNBgegAWgJUx6DD6A2Go1hVx8r2RDBgUOAmAAFtFPrhxmyOIDcJyKKU0BhMCZBBZum5yYMRloJiTJdwoAyLl9xsC6hqJb1FcreXzcK1yO1YAhGOx2NwtWTRJ85osSqRVl1SVLKbLMIjZohEfbzN7pogANTe+ZzL2XQ0DMDdRAIKqCRD0xmYL2iv1x0QG8hRmOaKCoLFg0QJpNQ1OmCwcC1W5A2jOTPMFot8qTkVAANyYlpdmEbheYokmAFYAAwGoA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwKbLgClGAlIgbwEhFTEAoMxAG1SkQENqAnVBgEwE8B9Z8RALyJgTAM6oA3JTK16rUSGr0h4dqmAwwqdlKqsoIZkkz4BAPkLSq1m1RjBEmAIRNWHHnzyXbP34nmKysLgJrp+4WSubFy8-EJQfJJWEX76hkgBSmEpNgC+iKjU4t45qXTp-qgKWcmlpLnkJD65Ug040PBIoglsyNwQcMgARpqo2AA0iKIAjJOiAEz4BMlpRogwotxgitSYM-gAZAfrm9vUuwu4tWQA-Ihn1NekAFwnWzt70-gAPt9vD3tFk9EHdUMxmHBmJgHpMAETgVAADwADqhoNpGMwAOYgNBgegAWgJUx6DD6A2Go1hVx8r2RDBgUOAmAAFtFPrhxmyOIDcJyKKU0BhMCZBBZum5yYMRloJiTJdwoAyLl9xsC6hqJb1FcreXzcK1yO1YAhGOx2NwtWTRJ85osSqRVl1SVLKbLMIjZohEfbzN7pogANTe+ZzL2XQ0DMDdYQwIaiQSIemMzAABjVGscpgsyahs3VmdIor9HAtVuQNoLhZ85Z1MF2GnjnKr1ZsjdEfJb1gN5HIqAAbkxLS7sHHRJN5qmDUA

Modularity, Objects, and State 3.5.2

The function scale_stream is also useful in formulating such stream de�nitions. This mul-

tiplies each item in a stream by a given constant:

Ifunction scale_stream(stream, factor) {

return stream_map(x => x * factor,

stream);

}

For example,

Iconst double = pair(1, () => scale_stream(double, 2));

produces the stream of powers of 2: 1, 2, 4, 8, 16, 32,

An alternate de�nition of the stream of primes can be given by starting with the integers

and �ltering them by testing for primality. We will need the �rst prime, 2, to get started:

Iconst primes = pair(2,

() => stream_filter(

is_prime,

integers_starting_from(3))

);

This de�nition is not so straightforward as it appears, because we will test whether a number

n is prime by checking whether n is divisible by a prime (not by just any integer) less than or

equal to

√
n:

Ifunction is_prime(n) {

function iter(ps) {

return square(head(ps)) > n

? true

: is_divisible(n, head(ps))

? false

: iter(stream_tail(ps));

}

return iter(primes);

}

This is a recursive de�nition, since primes is de�ned in terms of the is_prime predicate,

which itself uses the primes stream. The reason this function works is that, at any point,

enough of the primes stream has been generated to test the primality of the numbers we need

to check next. That is, for every n we test for primality, either n is not prime (in which case

there is a prime already generated that divides it) or n is prime (in which case there is a prime

already generated—i.e., a prime less than n—that is greater than

√
n).

62

62
This last point is very subtle and relies on the fact that pn+1 ≤ p2

n . (Here,pk denotes the kth prime.) Estimates

such as these are very di�cult to establish. The ancient proof by Euclid that there are an in�nite number of

primes shows that pn+1 ≤ p1p2 · · · pn + 1, and no substantially better result was proved until 1851, when the

Russian mathematician P. L. Chebyshev established that pn+1 ≤ 2pn for all n. This result, originally conjectured

353 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwgQwDYFMD6yoBOWaAtgBT5GkA0iwa0cBAlIgN4BQi3iRUIBJJWIkcJNAAcyAD0QBeAHyJZAKjoMoTalx669+nsNLMA3BwC+HDhAT5EUAO5xk8xBLQwCZAEy0yrRXsnZFNrWygUGGksFzkUdGw8QhEyR2daAGZQrAA3TCSqcmQomNoAVgAGUyA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwgQwDYFMD6yoBOWaAtgBT5GkA0iwa0cBAlIgN4BQi3iRUIBJJWIkcJNAAcyAD0QBeAHyJZAKjoMoTalx669+nsNLMA3BwC+HCAnyIAJnBAAjbPMQS0MAmQCMtMqyKKOjYeIQiZA7O2LQATMymHBxYAG6YYVTkUS5YtACsAAymQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgSIYyAPoATGADdhMAEYAbfAQA0iAJ4kK1GjjoM2iAKTrEAXnOIADJx59o8JDDBQcAcxxZRyKNlhhXIsBYcAC2eGCalNS09EgADhgwWOHKUdrp6XgkpgB8Qs5uHl4+WH4BQaHhiADUiACMRGkZGUQ2vOD2gsIicVgwIfgRZE12Ao4uyXHIkc06ekhomLh4ABY4GGJ4U0QkeWBNs9QA-IhQWCA4B4eIAFxCohLSyHKKKYhrG1vTjdfNJ8AYeTIS6-DJ3GATPDeXAYEIiHwweRfHacbQ8bQxfQQjxbPoDaZtcgQBDeRC9fo4ZBmMmJZIAJlSoNmWTMeWh6zhwERkKuTN+3XJA1UvL5hycLncnhE3l8TnKwTCAGYdiLfq1yOQcJJAdKzhzcRTkKoAKyWVpAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgSIYyAPoATGADdhMAEYAbfAQA0iAJ4kK1GjjoM2iAKTrEAXnOIADJx59o8JDDBQcAcxxZRyKNlhhXIsBYcAC2eGCalNS09EgADhgwWOHKUdrp6XgkpgB8Qs5uHl4+WH4BQaHhiADUiACMRGkZGUQ2vOD2gsIicVgwIfgRZE12Ao4uyXHIkc06ekhomLh4ABY4GGJ4U0QkeWBNs9QA-IhQWCA4B4eIAFxCohLSyHKKKYhrG1vTjdfNJ8AYeTIS6-DJ3GATPDeXAYEIiHwweRfHacbQ8bQxfQQjxbPoDaZtCAIbyIXr9HDIMykxLJABMqVBsyyZjy0PWcOAiMhV0Zv26ZIGqh5vMOThc7k8Im8vic5WCYQAzDthb9WuRyPy8fg6pZdZYlewgA

Modularity, Objects, and State 3.5.2

Exercise 3.53

Without running the program, describe the elements of the stream de�ned by

Iconst s = pair(1, () => add_streams(s, s));

Exercise 3.54

De�ne a function mul_streams, analogous to add_streams, that produces the elementwise

product of its two input streams. Use this together with the stream of integers to complete

the following de�nition of the stream whose nth element (counting from 0) is n + 1 factorial:

const factorials = pair(1, () => mul_streams(〈??〉, 〈??〉));

Exercise 3.55

De�ne a function partial_sums that takes as argument a stream S and returns the stream

whose elements are S0, S0 + S1, S0 + S1 + S2, For example, partial_sums(integers) should

be the stream 1, 3, 6, 10, 15,

Exercise 3.56

A famous problem, �rst raised by R. Hamming, is to enumerate, in ascending order with no

repetitions, all positive integers with no prime factors other than 2, 3, or 5. One obvious way

to do this is to simply test each integer in turn to see whether it has any factors other than 2,

3, and 5. But this is very ine�cient, since, as the integers get larger, fewer and fewer of them

�t the requirement. As an alternative, let us call the required stream of numbers S and notice

the following facts about it.

– S begins with 1.

– The elements of scale_stream(S, 2) are also elements of S.

– The same is true for scale_stream(S, 3) and scale_stream(5, S).

– These are all the elements of S.

Now all we have to do is combine elements from these sources. For this we de�ne a func-

tion merge that combines two ordered streams into one ordered result stream, eliminating

repetitions:

Ifunction merge(s1, s2) {

if (is_null(s1)) {

return s2;

in 1845, is known as Bertrand’s hypothesis. A proof can be found in section 22.3 of Hardy and Wright 1960.

354 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwKbLgClGAlIgbwEhFTEAoMxAG1SkQENqAnVBgEwE8B9Z8RALyJgTAM6oA3JTK16rUSGr0h4dqmAwwqdlKqsoIZkkz4BAPkLSq1m1RjBEmAIRNWHHnzyXbP34nmKysLgJrp+4WSubFy8-EJQfJJWEX76hkgBSmEpNgC+iKjU4t45qXTp-qgKWcmlpLnkJD65Ug040PBIoglsyNwQcMgARpqo2AA0iKIAjJOiAEz4BMlpRogwotxgitSYM-gAZAfrm9vUuwu4tWQA-Ihn1NekAFwnWzt70-gAPt9vD3tFk9EHdUMxmHBmJgHpMAETgVAADwADqhoNpGMwAOYgNBgegAWgJUx6DD6A2Go1hVx8r2RDBgUOAmAAFtFPrhxmyOIDcJyKKU0BhMCZBBZum5yYMRloJiTJdwoAyLl9xsC6hqJb1FcreXzcK1yO1YAhGOx2NwtWTRJ85osSqRVl1SVLKbLMIjZohEfbzN7pogANTe+ZzL2XQ0DMDdKaCRD0xmYL2iv0cC1W5A20RzPlScioABuTEtLr2kwArAAGA1AA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDMUCmBzNAnAzgfVygENtYwN9hs4BbACjAEpEBvAKES8WzShGxIADsRjZGAGk7cZs7vRYBeAHzJUmHASKlylanUaIA1IgCMTaXKtMA3OwC+7UJFgJEuCMQA2aQlF7EDEQBtBKIwMTQcNgsHDK8-ILu-miB+LTEQvQAHogqiLkAVOGRUNFSVpVWwam0tg5O4NDwSLQ4WPS4pmG4AEyxlsjAiPQwBGAgXl6d5gOVCQJIfXYy9ohoXrhoQyNj+BNTnf1zVgtJXSvcaxtbbIMyEAhE7qYAFqkAJnmI78QfM-VKo8wM8+r8voofp8joDTnxFi9wYgADzuXrg+5VRAAfkQIjEM3BFSxJIUeVUbWwHRqaRIMGmXSYPWOmKqAC5EZ9EKowZ9WVjcfjxLy-sSSaSlBT2mgZj0UrTRAzjhZxbIOULCZ8xarKmT8pTqfLaPg6QzzHKQibFTCmLCuI5HOxgc8hHBcDBYAA3XwodBYPDfX0aPB+HQoPQ0BjmOzOqCIWiTWBCHwEODAE2vXjbSEeby+GkMV3ur0+9T+3BhADMtgAkE6nnGE14kyn8GmqDBvd9cz4-CF6EWPZ3S37NGEAKz1WOIKCZtBoAjEMAfDve3DfA0ypsthdt9OzrNhbcwZO79vAYf1NCe7x92r0A-zxfL1cLicABlsQA

Modularity, Objects, and State 3.5.2

} else if (is_null(s2)) {

return s1;

} else {

const s1head = head(s1);

const s2head = head(s2);

return s1head < s2head

? pair(s1head,

() => merge(stream_tail(s1), s2))

: s1head > s2head

? pair(s2head,

() => merge(s1, stream_tail(s2)))

: pair(s1head,

() => merge(stream_tail(s1), stream_tail(s2)));

}

}

Then the required stream may be constructed with merge, as follows:

const S = pair(1, () => merge(〈??〉, 〈??〉));

Fill in the missing expressions in the places marked 〈??〉 above.

Exercise 3.57

How many additions are performed when we compute thenth Fibonacci number using the def-

inition of fibs based on the add_streams function, implemented using pair(..., () => ...)

as described in the beginning of section 3.5.1? Show that the number of additions is ex-

ponentially greater than if we had implemented add_streams using the optimization using

pair(..., memo(() => ...)) described in the last part of section 3.5.1.
63

Exercise 3.58

Give an interpretation of the stream computed by the function

function expand(num, den, radix) {

return pair(quotient(num * radix, den),

expand((num * radix) % den, den, radix));

}

where quotient computes integer division, in which the fractional part (remainder) is dis-

carded. What are the successive elements produced by expand(1, 7, 10)? What is produced

by expand(3, 8, 10)?

63
This exercise shows how call-by-need is closely related to ordinary memoization as described in exercise 3.27.

In that exercise, we used assignment to explicitly construct a local table. Our call-by-need stream optimization

e�ectively constructs such a table automatically, storing values in the previously forced parts of the stream.

355 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.5.2

Exercise 3.59

In section 2.5.3 we saw how to implement a polynomial arithmetic system representing

polynomials as lists of terms. In a similar way, we can work with power series, such as

ex = 1 + x +
x2

2

+
x3

3 · 2
+

x4

4 · 3 · 2
+ · · · ,

cosx = 1 −
x2

2

+
x4

4 · 3 · 2
− · · · ,

sinx = x −
x3

3 · 2
+

x5

5 · 4 · 3 · 2
− · · · ,

represented as in�nite streams. We will represent the series a0 +a1x +a2x
2 +a3x

3 + · · · as the

stream whose elements are the coe�cients a0,a1,a2,a3,

a. The integral of the series a0 + a1x + a2x
2 + a3x

3 + · · · is the series

c + a0x +
1

2

a1x
2 +

1

3

a2x
3 +

1

4

a3x
4 + · · ·

where c is any constant. De�ne a function integrate_series that takes as input a

stream a0,a1,a2, . . . representing a power series and returns the stream a0,
1

2
a1,

1

3
a2, . . .

of coe�cients of the non-constant terms of the integral of the series. (Since the result has

no constant term, it doesn’t represent a power series; when we use integrate-series,

we will pair with the appropriate constant.)

b. The function x 7→ ex is its own derivative. This implies that ex and the integral of ex

are the same series, except for the constant term, which is e0 = 1. Accordingly, we can

generate the series for ex as

const exp_series =

pair(1, () => integrate_series(exp_series));

Show how to generate the series for sine and cosine, starting from the facts that the

derivative of sine is cosine and the derivative of cosine is the negative of sine:

const cosine_series = pair(1, 〈??〉);

const sine_series = pair(0, 〈??〉);

Exercise 3.60

With power series represented as streams of coe�cients as in exercise 3.59, adding series is im-

plemented by add-streams. Complete the de�nition of the following function for multiplying

series:

356 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.5.3

function mul_series(s1, s2) {

pair(〈??〉, add_streams(〈??〉, 〈??〉));

}

You can test your function by verifying that sin2x + cos2x = 1, using the series from exer-

cise 3.59.

Exercise 3.61

Let S be a power series (exercise 3.59) whose constant term is 1. Suppose we want to �nd the

power series 1/S , that is, the series X such that S ·X = 1. Write S = 1+ SR where SR is the part

of S after the constant term. Then we can solve for X as follows:

S · X = 1

(1 + SR) · X = 1

X + SR · X = 1

X = 1 − SR · X

In other words, X is the power series whose constant term is 1 and whose higher-order terms

are given by the negative of SR times X . Use this idea to write a function invert_unit_series

that computes 1/S for a power series S with constant term 1. You will need to use mul_series

from exercise 3.60.

Exercise 3.62

Use the results of exercises 3.60 and 3.61 to de�ne a function div_series that divides

two power series. The function div_series should work for any two series, provided that

the denominator series begins with a nonzero constant term. (If the denominator has a zero

constant term, then div_series should signal an error.) Show how to use div_series together

with the result of exercise 3.59 to generate the power series for tangent.

3.5.3 Exploiting the Stream Paradigm

Streams with delayed evaluation can be a powerful modeling tool, providing many of the

bene�ts of local state and assignment. Moreover, they avoid some of the theoretical tangles

that accompany the introduction of assignment into a programming language.

The stream approach can be illuminating because it allows us to build systems with di�erent

module boundaries than systems organized around assignment to state variables. For example,

we can think of an entire time series (or signal) as a focus of interest, rather than the values of

357 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.5.3

the state variables at individual moments. This makes it convenient to combine and compare

components of state from di�erent moments.

Formulating iterations as stream processes

In section 1.2.1, we introduced iterative processes, which proceed by updating state variables.

We know now that we can represent state as a “timeless” stream of values rather than as a set

of variables to be updated. Let’s adopt this perspective in revisiting the square-root function

from section 1.1.7. Recall that the idea is to generate a sequence of better and better guesses

for the square root of x by applying over and over again the function that improves guesses:

Ifunction sqrt_improve(guess, x) {

return average(guess, x / guess);

}

In our original sqrt function, we made these guesses be the successive values of a state

variable. Instead we can generate the in�nite stream of guesses, starting with an initial guess

of 1:
64

Ifunction sqrt_stream(x) {

const guesses =

pair(1.0,

() => stream_map(guess => sqrt_improve(guess, x),

guesses));

return guesses;

}

Idisplay_stream(sqrt_stream(2));

1
1 . 5
1 .4166666666666665
1 .4142156862745097
1 .4142135623746899
. . .

We can generate more and more terms of the stream to get better and better guesses. If we

like, we can write a function that keeps generating terms until the answer is good enough.

(See exercise 3.64.)

Another iteration that we can treat in the same way is to generate an approximation to π ,

based upon the alternating series that we saw in section 1.3.1:

π

4

= 1 −
1

3

+
1

5

−
1

7

+ · · ·

64
We can’t use let to bind the local variable guesses, because the value of guesses depends on guesses itself.

Exercise 3.63 addresses why we want a local variable here.

358 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwG4FMBOyDm6AUAHgDQCeAlIgN4BQi9im6UImSRiA1IhYgPSIATAG4aAXxqhIsBIgDOAR0xQA+jAC2AB0xwM+HCHRy5xRIUq0GjZqyRosuAgaMmz-RM+PlREmouVqWjp6AIwAdIKmgt5AA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwG4FMBOyDm6AUAHgDQCeAlIgN4BQi9im6UImSRiA1IhYgPSIATAG4aAXxqhIsBIgDOAR0xQA+jAC2AB0xwM+HCHRy5xRIUq0GjZqyRosuAgaMmz-RM+PlREiAjlQiOrIhCoAJjBymgA2yKSIALyIAJyiUtDwSBFRsaQqAUzI6vhyFnQM6TJZkTFx+VCF6mpQWCVQpmBlVlYwwIj4kSpgINHRbeRd3fRiiOjRcuiIvf1ICWuIAAyTU1bZtaT4AOSHpgBEAHSXp97lUzNzC9S3O-R7ufgAFujIYeM3L7sarl6o1mq0Ct8mlBkDAxgFyB1EABaRAARn+OwkVixDDedQhRTBmBKpmCoTxFB8knAGVkimUIMhRG2iD8YACHkMxiMiWeVk0MOJqPOG2IfJe+EoCQAfPIGpCVMFNPouXJErL6aoNNpdE5VaZzGKAcaTZ4FqUMfQmCw2JyXEYqTQKYyiiUlKoCcVBBNhEA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAtgQwB4H0AmBLCAHANggTxgF4YBOAbgCgAzAVzGCg3Bkx3wJWgCcBTBHAAUEAJQwA3lRgyY9Rs1bs8hblH6CUGKHx4ioAGhhhxU2eZgYaMIVhRg6uXPtGnpFmQF8YfXBD6W1kJgJMSkAAxuHh7KnEIA5PFGAEQAdOnJotTRMN6+-pLuOTKxhEIAFgJoLllFxaVcvAJwWjp6TZpQCBjO0KJGIQC0MACMtTmedZPmDWoaLdq6IkaIqA21k-JMLCEIAG66CADmfEJIBgRRsvxQdDwhZzAA1DCXMAD0MABM1JsM26wIABHHhQLRwbA8EAHIRHOh8CAQIxIK4yG53XYHHjHU5whFImBID4wPGIja0f6KELA0FzZpnVEwUCQWCk-wQEh1czYbp6EapcIGLk5ITiYgAPhgHRaiGwsPhiJIkppYIwEKhMLZyP6wuKeosbIRrmy1z4t3uJIV7N+VFm0pEILB9q+xqAA

Modularity, Objects, and State 3.5.3

We �rst generate the stream of summands of the series (the reciprocals of the odd integers,

with alternating signs). Then we take the stream of sums of more and more terms (using the

partial_sums function of exercise 3.55) and scale the result by 4:

Ifunction pi_summands(n) {

return pair(1.0 / n,

() => stream_map(x => -x,

pi_summands(n + 2))

);

}

const pi_stream =

scale_stream(partial_sums(pi_summands(1)), 4);

Idisplay_stream(pi_stream);

4
2 .666666666666667
3 .466666666666667
2 .8952380952380956
3 .3396825396825403
2 .9760461760461765
3 .2837384837384844
3 .017071817071818
. . .

This gives us a stream of better and better approximations to π , although the approximations

converge rather slowly. Eight terms of the sequence bound the value of π between 3.284 and

3.017.

So far, our use of the stream of states approach is not much di�erent from updating state

variables. But streams give us an opportunity to do some interesting tricks. For example, we

can transform a stream with a sequence accelerator that converts a sequence of approximations

to a new sequence that converges to the same value as the original, only faster.

One such accelerator, due to the eighteenth-century Swiss mathematician Leonhard Euler,

works well with sequences that are partial sums of alternating series (series of terms with

alternating signs). In Euler’s technique, if Sn is the nth term of the original sum sequence, then

the accelerated sequence has terms

Sn+1 −
(Sn+1 − Sn)

2

Sn−1 − 2Sn + Sn+1

Thus, if the original sequence is represented as a stream of values, the transformed sequence

is given by

Ifunction euler_transform(s) {

359 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAtgQwB4H0AmBLCAHANggTxgF4YBOAbgCgAzAVzGCg3Bkx3wJWgCcBTBHAAUEAJQwA3lRgyY9Rs1bs8hblH6CUGKHx4ioAGhhhxU2eZgYaMIVhRg6uXPtGnpFmQF8YfXBD6W1kJgJMSkAAxuHh7KnEIA5PFGAEQAdOnJotTRMN6+-pLuOTKxhEIAFgJoLllFxaVcvAJwWjp6TZpQCBjO0KJGIQC0MACMtTmedZPmDWoaLdq6IkaIqA21k-JMLCEQwAi4fHPN+vNGNAhMIDxRsvxQdDy76s0oiNhCSCQAfDBfAFRyS5Qa4GOrFYodOAbWgMbasOB8OAgITyUwASHMdUOsAOGjQXB4DBIQL8fGyshxMH4EEcsFIDDQfBoGDAfDQFJk90eISE4mIvzMEIhVhsAEI8VVCQxbsK5TS6ST5HzOXKIZKEASUESQqR1HRyeC1dFuU9qXxabgoKrjbI8mTCraIaaQgqrTanZNMRNqJs4YpnvMUKA4AAjVl8VFGCAjaMAJll5oeZrsDicIjGMAAZFnLBB7I5egmjTIAPzGQslmAALjzBfTMfEAB8m3W00XRFXy7oeNdgoWUgw+EhsHwmOyYAgeABzOiIsCwQbDKHBkBhiOZKu17DdPQ0CpVDP9SqakQJ-owKvRRHIoR8n4wFch8NsqOPl6dbq9MZgp1-nIrl0PRnq4ri+rCCg7JOaBoMcggQBm8aJi675Bs+EZ3kgsZ-AmD5YTAADUOHRthEAJuBWwBjAO48MwBzcHOCFiI6dx8MmIQ7hgegntUYi-ra94CtBsFQkxH4tEBvT9Fe-7RDRdG4AxcBMaBFH+lB2AYEpiBgGgCEmCxXJsTy1G7kIIypOEMAAPTGEYMkeIJvwru8nwPoMSD8bJcqadpCC6fphEwOeDnmDCVCgJAsC+VCJJ1HsBxHFCQjyRg9G0spKVaRlOl6eZrhGAALLUVCzMlMXiVkQA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAtgQwB4H0AmBLCAHANggTxgF4YBOAbgCgAzAVzGCg3Bkx3wJWgCcBTBHAAUEAJQwA3lRgyY9Rs1bs8hblH6CUGKHx4ioAGhhhxU2eZgYaMIVhRg6uXPtGnpFmQF8YfXBD6W1kJgJMSkAAxuHh7KnEIA5PFGAEQAdOnJotTRMN6+-pLuOTKxhEIAFgJoLllFxaVcvAJwWjp6TZpQCBjO0KJGIQC0MACMtTmedZPmDWoaLdq6IkaIqA21k-JMLCEQwAi4fHPN+vNGNAhMIDxRsvxQdDy76s0oiNhCSCQAfDBfAFRyS5Qa4GOrFYodOAbWgMbasOB8OAgITyUwASHMdUOsAOGjQXB4DBIQL8fGyshxMH4EEcsFIDDQfBoGDAfDQFJk90eISE4mIvzMEIhVhsAEI8VVCQxbsK5TS6ST5HzOXKIZKEASUESQqR1HRyeC1dFuU9qXxabgoKrjbI8mTCraIaaQgqrTanZNMRNqJs4YpnvMUKA4AAjVl8VFGCAjaMAJll5oeZrsDicIjGMAAZFnLBB7I5egmjTIAPzGQslmAALjzBfTMfEAB8m3W00XRFXy7oeNdgoWUgw+EhsHwmOyYAgeABzOiIsCwQbDKHBkBhiOZKu17DdPQ0CpVDP9SqakQJ-owKvRRHIoR8n4wFch8NsqOPl6dbq9MZgp1-nIrl0PRnq4ri+rCCg7JOaBoMcggQBm8aJi675Bs+EZ3kgsZ-AmD5YTAADUOHRthEAJuBWwBjAO48MwBzcHOCFiI6dx8MmIQ7hgegntUYi-ra94CtBsFQkxH4tEBvT9Fe-7RDRdG4AxcBMaBFH+lB2AYEpiBgGgCEmCxXJsTy1G7kIIypOEMAAPTGEYMkeIJvwru8nwPoMSD8bJcqadpCC6fphEwOeDnmDCVCgJAsC+VCJJ1HsBxHFCQjyRg9G0spKVaRlOl6eZrhGAALLUszJTF4lZEAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgSIAtjiFw8fEqQCQ1RJWoAbHFEQZFuDABMAngH0s4RAF5Ewdchyc5y1bmQhFq0+C05gMMDi3Xqtekh4JMYAfGQKcpFRcjDAiHgAhOqaugbgUhHRWdH2js5m4EG+2SVyyTja+oZIplCGVpmlJf4MNDgOTsVNUVyIOIqW4d1NLUi5nY3DVDyyWVycPBAIyKpCGAR6WjDIAA6KGDomiACcnHzQ8Ehbu-v6K5pCeMgZcucCV9t7B3r3FUJ6MCgOCwTygABpEGAXtFYvFtnowI5FKCiNCen0BjhELC8DVjKYAAxo7LXL46PAAcgpEIARAA6Bk0ohdOS9fqDChNUm3PAACwqWhRzMmUW531+GH+gOBoIeeigGBgyJWRAhSAAtIgAIzCuaZHhyMV3Op-AFAkHICFrDZG4U8N6XFAQdQ4H4myWyv4Q8zQOBYYmjFDu-5rHaEExhJisH1QP1gkVTCVCO28cAXQRJvRLIQAI08+GAEOQWqLACYAyoAtjkAikU8dYgAGSN6u1xTK8sJgD8kKRCYAXK3Ee36yQAD5jod15CdrI94FYP24pG08A4Ag7HDQbxqLAAcxAIjAqnVmsz2bzXiZA8QO0VIOAfIFo7B-O0T3LqvkUxEYjwQQjIM5QvfMJCLYN5UVZUdXjKY4JKTMFSVD9UVRBZU34R1tC0N0HmQesywrOhWnPOBc1AwgSzYctAIILVEAAamoosqJnFMHUEO8sFgdQfkPfDniGPxK1aO8YBBN9BWeWCpgA0I1C0HCkwEiCkOVVUE3g7IuJ4xQ+KEATUPQjikB2GB9LWMAtHwqEhKoQMxJBLU6QJRAAHpIQhTTojksJM1DcN5PVAgZK07ozIsjArJsxjEE-bzIhTcgljAFZb3MpMjkyZBnWUXC-jwHSYF4hwDMKjLD0s6y8B1L8ABZhRMvpHGBeUsCi5BgD9R5BM5agUrS5BXNMTNcEfS1ECJLoBtUYsjlG9wnghHVpuWWbS3miCxqWuLdWE4jTPvPAEqoGdEDPdBsHwM6zwbDynlcpi8HVGjWDmpi2NCkpf3EXzmuULA2o6rqsB61SoKeVCkqNfKPRwFrAbqYHuvK2Hk2ZIA

Modularity, Objects, and State 3.5.3

const s0 = stream_ref(s, 0);

const s1 = stream_ref(s, 1);

const s2 = stream_ref(s, 2);

return pair(

s2 - square(s2 - s1) / (s0 + (-2) * s1 + s2),

memo(() => euler_transform(stream_tail(s))));

}

Note that we make use of the memoization optimization of section 3.5.1, because in the

following we will rely on repeated evaluation of the resulting stream.

We can demonstrate Euler acceleration with our sequence of approximations to π :

Idisplay_stream(euler_transform(pi_stream));

3 .166666666666667
3 .1333333333333337
3 .1452380952380956
3 .13968253968254
3 .1427128427128435
3 .1408813408813416
3 .142071817071818
3 .1412548236077655
. . .

Even better, we can accelerate the accelerated sequence, and recursively accelerate that, and

so on. Namely, we create a stream of streams (a structure we’ll call a tableau) in which each

stream is the transform of the preceding one:

Ifunction make_tableau(transform, s) {

return pair(s, () => make_tableau(transform, transform(s)));

}

The tableau has the form

s00 s01 s02 s03 s04 . . .

s10 s11 s12 s13 . . .

s20 s21 s22 . . .

. . .

Finally, we form a sequence by taking the �rst term in each row of the tableau:

Ifunction accelerated_sequence(transform, s) {

return stream_map(head, make_tableau(transform, s));

}

We can demonstrate this kind of “super-acceleration” of the π sequence:

Idisplay_stream(accelerated_sequence(euler_transform,

pi_stream));

360 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgSIAtjiFw8fEqQCQ1RJWoAbHFEQZFuDABMAngH0s4RAF5Ewdchyc5y1bmQhFq0+C05gMMDi3Xqtekh4JMYAfGQKcpFRcjDAiHgAhOqaugbgUhHRWdH2js5m4EG+2SVyyTja+oZIplCGVpmlJf4MNDgOTsVNUVyIOIqW4d1NLUi5nY3DVDyyWVycPHzQ8Eg4jjhYenUYYMjAcFhCeMgZchAIyKrIAAwmKHUVQgbuxwA0iNdEXee7VwCMd0umieuGAb0Qfy+mR+lxQACZAQ8MCCXsh3nCoXJRogAA4YGBYPCTaLIBEAWhQ6Gw+FJiApyEhiAA9PEbogANTxMkYlgoAGc0lEV7EqIiMR4IImMJrZSbba7faHY5Ip5QfGKY5ELVQngw1RCDAEPRaGDIHGKDA6O4ATk4SwESBNZot+iBj01Q2o9pWiCd5stejdyL0MCgG2V7zAp2isXipr0YEcGsuWs9PT6AxwiFjeBqxlMnzT2T9LrwAHIy+8AEQAOjrVcx0V6-UGFCaJcteAAFhUtMqtV0sh3XSqQ2HCUHVer+5G6RDGz1Mjw5MPA6PQ+G0cJDcbTf6dDreOBloJkBB1Dg18DlcD3uZoAdo1RsZO9AacYQpWxefeoAdhVMJIqoe3qnqO5xCAARp4+DAO8DLwTybZ+CoATZsgCZJscjIAGQ4ehmGKMmGIigA-IgiZESKABcBGUcmjIAD6MXRWGCmRfRYFgBy5km1bgDgBA4jg0DeGoWAAOYgCIYCqGS9LgXAUEwQ2NG4vihJgj22jYUK2l9oKQryFMYriJKoT3MCegQdBXgSPBo5qjADFCiKgHua+TnEdqIHHg6ahaFoV6PMg2GIU+bR0K0r42TBEoEH87wEDyFkJRybBwvBiXwr5-A+niWCwOogbSaFJxFtieIEt2vaagBUzmWE2hBZOZWOdOJz1e5UwFUViglUIZXagsR55YIOIwANBpgFooVRhVqGtFVhJ-DWtwsmA7xudEjWWY8b4YB+TAWWSBBdd1TQTVNOyzbm6UYkQ22RIe5B6rik2TncmRnhewXIngvUwMVDiDQDH3SdNt2QkZAAsUKrpOeAyhsWxYDsewHEcV2TgOQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9KqBGANpqiABRQBOqYAzsHJcgDSK0CUiA3gFCL+JKmKCEpIADqhiUytVmU4BeAHwoMOPERLkqNeoxaJddBk1nsLAbh4BfIA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9KqBGANpqiABRQBOqYAzsHJcgDSK0CUiA3gFCL+JKmKCEpIADqhiUytVmU4BeAHwoMOPERLkqNeoxaJddBk1nsLAbh4BfHqEiwEbAI4hUQsgA9OvAYOFRJC9EACpEL2s7B2h4JGRMZDgyB18ASH8+AWIoRFRCIVQAEwBPbEpwREVEYHzaTGt-HIDaEEJc6vAizGAYMEwixoEhETFEBSrVP38Z2ZmYYHGAQnzC0vLwXyy5nZ2hVvaqmvAFId3z-1WSdYqkaqoQBu2Li5GglraoM5fZm0RMQj1bjPH57QJjfafb6ggR2DI7GxRezgWLOTBtTCUXDUEwGczA-wQBC0XK0AAMRxJhWQ5R6slYZPY3yJdFJAEZKVQSDShMB6Yg2UzniySWwAEyc6m0vlyRBioX+N5jSTSMggna0CUAWlc7k8msQOtogsQAHpxuTEABqcZa+VhNgcm2a9jMdVzBJJMgTFT-DFY4z6MxU7m4KSEcwWIV2EW5NBebBFGC0cSEVAlI4ATmsMScSCTKbTZRDqGQ+Om-FzcUQBdT6ewJZpMCgmNkUFYYC2OwW42T2DAbQjJIsBLmfwBQJ7ZDuimqjNH51rRbIAHIV6wAEQAOh3G4VY-+gMwC92S-TZAAFtc21Z3TMz8WuaXsM3W42wzAh1BXYgkDrBdCsLPHY-gPg2T5Ni2MiyvGibJnWJTRsijjVrQED5DgjZttSrC1NAjBdsM4JIO+aDiN4kwRA6eFQIwbownMjZIVWzjvkSyD4H0mApKwxq8faFYBKMSB9gOhBDiaABkkmIKJg6yPKd4APy-oOd4AFyybQ-bycanAAD76VpOniQp7DKf8lCUIw06Dpu4CYF44iYNAAx5JQADmIAJGAuRakaEHYOxnH9HuGmICqMh8lexSyIKzAxUUZk-neHqJMkPqqGxcAcVxPFsIFeCfnFrqpQxDHvkVQ7ylGSIsUgxRFOB1K0HF-GEfwSokYFwV5d4bKsF49q+l4ToRGKvEDeKzEonmEUeLA+QNt5rUcCeXXzaqiXmPRMKZXkRRNY2q2FeGO1leVcySJQi2EMtyCrbVtjIaiEgwPdaBgEUrWdutxGbTIbJbhS5pgKwF0zPtpGoORIS+lqXi7ZdPziO9rTIJ933TtacoWBDAhITwsYRWjEFHM8aEYc13JkNdt33a1qMfTQWOCj+AAsQr1XkEAQACmKoC2R2YG4mCQNxgamIYa2CRt0PkYlrBoFgYZaKQFA4kG0u3nYPBgVhqC8-z1BCw2IuPOLZDosQAaa1LSPI6CTNMUyQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9KqBGANpqiABRQBOqYAzsHJcgDSK0CUiA3gFCL+JKmKCEpIADqhiUytVmU4BeAHwoMOPERLkqNeoxaJddBk1nsLAbh4BfHqEiwEiVBAiZi1KJgAm2WpgAjiCYkJgU1CYGrBzcfAJCImJsVCTI2GjiZAAWJD6saFi4BMSkEXqmhhzs1nYO0PBItMGoQmQAHpy8AoLCokjtiABUiO219uANzsiYyHBkDl0AkD3x-MRQLoRCqD4AntiU4IiKiMCohAHWPRu9tCCEm6fgPpjAMGC+1wl9yQonqm6PWBIOBMGAiDIAEILjt9odwF01qCUaChPdHiczuAFN9UfierC8gcjkhTlQQniCQTEv07g8oFTqcCbIgPAE4szqbTkuiGUyufw7CsUTZxvUnEhMA9MJRcJF9GZYkD+BAELRNrQAAxYjU7dJCYCyVhamrItV0TUARl1qVQBrexsQVrNPQtGrYACZbfrDo65IhPa6fkkJFIZMjUbRvQBaNgtNrRxBx2guxAAekh2sQAGpITGg8M2Da89H2MxIyiZnMyP8VGyZXLjIrkLI7ek8DBCOYLGa7O7Nmh2tgfDBaOJCKg9liAJzWCWNRCj8eTg56tLmTkCBfOZcTqf+dvYGDeGQa1hgJEo8GQsfYMAPbsaixbkGs9mYRA3shkxSnU2vqie6rmQADkoGsAARAAdLBkHBm+bKXJ+KpAWO+57DkeRtlYlYgsBB7rvax6nm2vqdk+UDlogSBxi6ApCsidg9ARa5HiespOkOI7oaufYTI4i60BAFw4ERrbiaw5zQIwV4hnS4kZKgWSDPWgwjNJUCMBWgqguJ-E7k0R5qsg+AfOEwAxFaMSFqhPJIHeD6EE+aYAGSuV+tD3o+shBnhiAAPw0Y+-kAFyed5zmyGmAA+MURU5T5+SiQWypQjA-o+UHgJg7TiJg0C+C4lAAOYgDMYCbDGKbGXApnmfBYWIJI0gLFhuzReWuQdWW1H+aC1bzHWqiKSZZmfAsMRHhRnU6bp816dNUhJb2BmTJKLg+H44m0NFNlyfw9kpL6Y3mbW7TWaMhZqSWV1Wft4rrYukiULAFz+OVu3KsiR0tTI3U+OYc1csNm3be2X1LV2QP9QtoIvW9hAfcgX29o9gnOOIMDI2gYA+Ltl6Ab94ZkFa0E6pmYCsLDIKg4pmQdACybtMDcMEljOM0PjP65oGFg0z0-E8AOzXY+JWLIsJomHvqZAIzA733Cjcti+VuPcy61EACxmqxMsbq47ieKg3jbUEIRhGQ0qePKFTRALbM9Bz+k1EAA

Modularity, Objects, and State 3.5.3

4
3 .166666666666667
3 .142105263157895
3 .141599357319005
3 .1415927140337785
3 .1415926539752927
3 .1415926535911765
3 .141592653589778
. . .

The result is impressive. Taking eight terms of the sequence yields the correct value of π to

14 decimal places. If we had used only the original π sequence, we would need to compute on

the order of 10
13

terms (i.e., expanding the series far enough so that the individual terms are

less then 10
−13

) to get that much accuracy!

We could have implemented these acceleration techniques without using streams. But the

stream formulation is particularly elegant and convenient because the entire sequence of states

is available to us as a data structure that can be manipulated with a uniform set of operations.

Exercise 3.63

Louis Reasoner asks why the sqrt_stream function was not written in the following more

straightforward way, without the local variable guesses:

function sqrt_stream(x) {

return pair(1.0,

() => stream_map(guess =>

sqrt_improve(guess, x),

sqrt_stream(x))

);

}

Alyssa P. Hacker replies that this version of the function is considerably less e�cient if the

memoization optimization in section 3.5.1 is used. Is Alyssa’s answer correct? Do the two

versions di�er in e�ciency without using the optimization provided by memo?

Exercise 3.64

Write a function stream_limit that takes as arguments a stream and a number (the tolerance).

It should examine the stream until it �nds two successive elements that di�er in absolute value

by less than the tolerance, and return the second of the two elements. Using this, we could

compute square roots up to a given tolerance by

function sqrt(x, tolerance) {

return stream_limit(sqrt_stream(x), tolerance);

361 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.5.3

}

Exercise 3.65

Use the series

ln 2 = 1 −
1

2

+
1

3

−
1

4

+ · · ·

to compute three sequences of approximations to the natural logarithm of 2, in the same way

we did above for π . How rapidly do these sequences converge?

Infinite streams of pairs

In section 2.2.3, we saw how the sequence paradigm handles traditional nested loops as pro-

cesses de�ned on sequences of pairs. If we generalize this technique to in�nite streams, then

we can write programs that are not easily represented as loops, because the “looping” must

range over an in�nite set.

For example, suppose we want to generalize the prime_sum_pairs function of section 2.2.3 to

produce the stream of pairs of all integers (i, j) with i ≤ j such that i + j is prime. If int_pairs

is the sequence of all pairs of integers (i, j) with i ≤ j, then our required stream is simply
65

Istream_filter(pair => is_prime(head(pair) + head(tail(pair))),

int_pairs);

Our problem, then, is to produce the stream int_pairs. More generally, suppose we have

two streams S = (Si) and T = (Tj), and imagine the in�nite rectangular array

(S0,T0) (S0,T1) (S0,T2) . . .

(S1,T0) (S1,T1) (S1,T2) . . .

(S2,T0) (S2,T1) (S2,T2) . . .

. . .

We wish to generate a stream that contains all the pairs in the array that lie on or above the

diagonal, i.e., the pairs

(S0,T0) (S0,T1) (S0,T2) . . .

(S1,T1) (S1,T2) . . .

(S2,T2) . . .

. . .

(If we take both S and T to be the stream of integers, then this will be our desired stream

int_pairs.)

65
As in section 2.2.3, we represent a pair of integers as a list rather than a pair.

362 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgSIYyAPoATGADdhMAEYAbfAQA0iAJ4kK1GjjoM2iAKTrEAXnOIADJx59o8JDDBQcAcxxZRyKNlhhXIsBYcAC2eGCalNS09EgADhgwWOHKUdrp6XgkpgB8Qs5uHl4+WH4BQaHhiADUiACMRGkZGUQ2vOD2gsIicVgwIfgRZE12Ao4uyXHIkc06ekhomLh4ABY4GGJ4U0QkeWBNs9QA-IhQWCA4B4eIAFxCohLSyHKKKYhrG1vTjdfNJ8AYeTIS6-DJ3GATPDeXAYEIiHwweRfHacbQ8bQxfQQjxbPoDaZtCAIbyIXr9HDIMykxLJABMqVBsyyZjy0PWcOAiMhV0Zv26ZIGqh5vMOThc7k8Im8vic5WCYQAzDthb9Wu1+A58hNFBhJPhkHVVMhaTNorpYvcRGAQPIkQafn8ULThXcEklVutNvahSLmbktR4dXqofSUGd2fDEnaGg7QWrbB0xtSksgoaooKaqJj4jS8PJhFAPZ9pqoPpsM0Qfb7snkxYH1sG2bCRCEMHFCCzEPnvEWvZW2JWVSLh9om3CEUiKwyRyK3Z4oeHmxOof2hzPfmPI4i8BWUdxyESwCS6xLKaYA6epSUyoF5XgGpxDyTWwRxMI4vIMGoqQBOTijTUJGQD8vyvGEwmmYZtAAwQgJAtQwIjbFkm8VQhi0ZoYGARA8G6a1bQXHYoOaLhEBwIEcCEbCqnMc9LEzQ44M-NQ8AAclY1QACIADpeM4tVZlI8jgWI64mK-XtCIE35xIQzdkIXcCtztDM0MQABaeppIydFqF0qhZMQ5sFOQVQXzfYDmPjA9iSgLUehpM9k3nE8ilUVzPDVTdOXkSE507fk8XwMsthpEhahC5c5x2QdeTFByU1aIA

Modularity, Objects, and State 3.5.3

Call the general stream of pairs pairs(S, T), and consider it to be composed of three parts:

the pair (S0,T0), the rest of the pairs in the �rst row, and the remaining pairs:
66

(S0,T0) (S0,T1) (S0,T2) . . .

(S1,T1) (S1,T2) . . .

(S2,T2) . . .

. . .

Observe that the third piece in this decomposition (pairs that are not in the �rst row) is

(recursively) the pairs formed from stream_tail(S) and stream_tail(T). Also note that the

second piece (the rest of the �rst row) is

stream_map(x => list(head(s), x),

stream_tail(t));

Thus we can form our stream of pairs as follows:

function pairs(s, t) {

return pair(list(head(s), head(t)),

() => combine_in_some_way(

stream_map(x => list(head(s), x),

stream_tail(t)),

pairs(stream_tail(s), stream_tail(t)))

);

}

In order to complete the function, we must choose some way to combine the two inner

streams. One idea is to use the stream analog of the append function from section 2.2.1:

Ifunction stream_append(s1, s2) {

return is_null(s1)

? s2

: pair(head(s1),

() => stream_append(stream_tail(s1), s2)

);

}

This is unsuitable for in�nite streams, however, because it takes all the elements from the

�rst stream before incorporating the second stream. In particular, if we try to generate all pairs

of positive integers using

Ipairs(integers, integers);

our stream of results will �rst try to run through all pairs with the �rst integer equal to 1, and

hence will never produce pairs with any other value of the �rst integer.

66
See exercise 3.68 for some insight into why we chose this decomposition.

363 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZygJwKYEMC2B9LAB0IzABMAKZARgBoUAmASkQG8AoRLxTKENJDGR4wIADZiq1Jp25yA-I1lyuALkSEsMNBQAW2SjSb1lKs4gosAvAD4U6bPiIlyVB7jxQtko-WTNTc24mAG52AF92dggEVEQEDGREKw0tHToLazsE5FDo2KhEKAB3OCSUzW0KBnpLZLsSsryYsDjnUjIMMmT7TA921xz6Rtyw1D78TGAKAc6yemoABkXQoA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZygJwKYEMC2B9LAB0IzABMAKZARgBoUAmASkQG8AoRLxTKENJDGR4wIADZiq1Jp25yA-I1lyuALkSEsMNBQAW2SjSb1lKs4gosAvAD4U6bPiIlyVB7jxQtko-WTNTc24mAG52AF92UEhYBA0tNGQqeigWDjlefiRNbQoxISg9AypjRH0sSlTSwKDuS0Rbe0wPZ1JKGtrO1Gb8HCIKAA8Gu3zUIoqS+gHjDs65oO7HT28KKtpZ+ZUcxLce5ZgfUsWPLwPVpguNs1CI9ggEVEQ+gbwyIUIxLABPBsQATjC0Wg8CQb2QH2+eGOOBKbFMQNioPeny+UPc+BgUAwOlQ9DAaVmMGAFiEInEPiqcKC4UQGDEyAwiCJFiQVjZiAADAT5mCIV8KAByAX0ABEADoJSKbtTafTGek5ryUeNDFUwjzkZDoXhMdjdktThTSkgALSIaTq8yROTW7hKrXonVYnH0Z6vTVfG6RBEgplgLEAc2xwlQWDQsDAAbwwDQcBh+Kp3EyAniuTA602dWsdhg-owQcSaLDEajMbjFCQAGpzTJM4gvXcHlA-YHg79c63C6Hw7nS7GYRb2Nskh388H6KOC8gbux7ajoRRhxRJ+OW2PEhcQkA

Modularity, Objects, and State 3.5.3

To handle in�nite streams, we need to devise an order of combination that ensures that

every element will eventually be reached if we let our program run long enough. An elegant

way to accomplish this is with the following interleave function:
67

Ifunction interleave(s1, s2) {

return is_null(s1)

? s2

: pair(head(s1),

() => interleave(s2, stream_tail(s1))

);

}

Since interleave takes elements alternately from the two streams, every element of the

second stream will eventually �nd its way into the interleaved stream, even if the �rst stream

is in�nite.

We can thus generate the required stream of pairs as

Ifunction pairs(s, t) {

return pair(list(head(s), head(t)),

() => interleave(stream_map(x => list(head(s), x),

stream_tail(t)),

pairs(stream_tail(s),

stream_tail(t))));

}

Exercise 3.66

Examine the stream pairs(integers, integers). Can you make any general comments about

the order in which the pairs are placed into the stream? For example, approximately how many

pairs precede the pair (1,100)? the pair (99,100)? the pair (100,100)? (If you can make precise

mathematical statements here, all the better. But feel free to give more qualitative answers if

you �nd yourself getting bogged down.)

Exercise 3.67

Modify the pairs function so that pairs(integers, integers) will produce the stream of all
pairs of integers (i, j) (without the condition i ≤ j). Hint: You will need to mix in an additional

stream.

67
The precise statement of the required property on the order of combination is as follows: There should be a

function f of two arguments such that the pair corresponding to element i of the �rst stream and element j of

the second stream will appear as element number f (i, j) of the output stream. The trick of using interleave to

accomplish this was shown to us by David Turner, who employed it in the language KRC (Turner 1981).

364 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBAtgQwB4H0AmBLCAHANggTxgF4YBOAbgCgAzAVzGCg3Bkx3wJWgCcBTBHAAUEAJQwA3lRgyY9Rs1bs8hblH6CUGKHx4ioAGhhhxU2eZgYaMIVhRg6uXPtGnpFmQF8YfXBD6W1kJgJMSkAAxuHh7KnEIA5PFGAEQAdOnJotTRMN6+-pLuOTKxhEIAFgJoLllFxaVcvAJwWjp6TZpQCBjO0KJGIQC0MACMtTmedZPmDWoaLdq6IkaIqA21k-JMLCEYYG24AgBufCIjRhAATFGy-FB0PLsQ9o69Y3XmAPwwVx+yAFwwbDdPSVBDVCBjIx-YpCcTEAB8ln2ukOCBOIkuF3UzRQXR6Z1cMOiGyoVFAkFg4D4EBIQJBQnONnhSOpYmoFOgMCgAHcQLTSMCMHoscySEjefzapzYHsDsc+Gg6XLUQqhGyjJL2VRZh1hCqeGiTmgskA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDMUCmAnANmghgNzQAoBnARgBpESAmASkQG8AoRNxDNKEDJGEgPpgQWLKTJ1W7aQH5qNKdLYAuRAAdcMDEQAWeACbi6VRUrOIiDALwA+ZKkw4CxWlRJROuALYComseR0kubmdADczAC+zBAI7oheuAAeAvr8ali4AJ6IVogAnBGgkLAIiGkkGdkC7p5epAws0sXQ8EgVVVk1Hng+MOja7lRgjabSMMAW-EIiAVBBTGPskYhoWCRoyJNESFZ7iAAMoyHSHZlZRADkl1QARAB0j7fhS2wraxuLJ+xn2boGpHmL2+bF+XVqvQE-UwgLqvn8gOMiCQAFpEBIIiFotJsT90udunDoYMqIkUmCXtEWqU+A4AOaYQTuXAYWBgOkCYAYOD1EZfdicbi8dSabRgCivE6WXJ2FDoBkYJl+VkoDlcnk7RAAanRwRB7EpMTiUHs8sZuVNaAVSpZbLV3PqGOY1LaIq0JFIVHm-LYgp4SA0WiIWH4UH+uEMJCRegjRCBJn10mltkt2DwhFhkMSaiISRliBD7nDkaRSWMksTlZOEO88JgYnjFarJ0Disztb89YaCebvaUNZ8nYbQSCEWizDBhN6RFbHrlVsZVHn1tHQA

Modularity, Objects, and State 3.5.3

Exercise 3.68

Louis Reasoner thinks that building a stream of pairs from three parts is unnecessarily com-

plicated. Instead of separating the pair (S0,T0) from the rest of the pairs in the �rst row, he

proposes to work with the whole �rst row, as follows:

function pairs(s, t) {

return interleave(stream_map(x => list(head(s), x),

t),

pair(stream_tail(s), stream_tail(t)));

}

Does this work? Consider what happens if we evaluate pairs(integers, integers) using

Louis’s de�nition of pairs.

Exercise 3.69

Write a function triples that takes three in�nite streams, S ,T , andU , and produces the stream

of triples (Si ,Tj ,Uk) such that i ≤ j ≤ k . Use triples to generate the stream of all Pythagorean

triples of positive integers, i.e., the triples (i, j,k) such that i ≤ j and i2 + j2 = k2
.

Exercise 3.70

It would be nice to be able to generate streams in which the pairs appear in some useful

order, rather than in the order that results from an ad hoc interleaving process. We can use a

technique similar to the merge function of exercise 3.56, if we de�ne a way to say that one pair of

integers is “less than” another. One way to do this is to de�ne a “weighting function”W (i, j) and

stipulate that (i1, j1) is less than (i2, j2) ifW (i1, j1) <W (i2, j2). Write a function merge_weighted

that is like merge, except that merge_weighted takes an additional argument weight, which is

a function that computes the weight of a pair, and is used to determine the order in which

elements should appear in the resulting merged stream.
68

Using this, generalize pairs to a

function weighted_pairs that takes two streams, together with a function that computes a

weighting function, and generates the stream of pairs, ordered according to weight. Use your

function to generate

a. the stream of all pairs of positive integers (i, j) with i ≤ j ordered according to the sum

i + j

b. the stream of all pairs of positive integers (i, j)with i ≤ j, where neither i nor j is divisible

by 2, 3, or 5, and the pairs are ordered according to the sum 2i + 3j + 5ij.

68
We will require that the weighting function be such that the weight of a pair increases as we move out along

a row or down along a column of the array of pairs.

365 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.5.3

Exercise 3.71

Numbers that can be expressed as the sum of two cubes in more than one way are sometimes

called Ramanujan numbers, in honor of the mathematician Srinivasa Ramanujan.
69

Ordered

streams of pairs provide an elegant solution to the problem of computing these numbers. To

�nd a number that can be written as the sum of two cubes in two di�erent ways, we need

only generate the stream of pairs of integers (i, j) weighted according to the sum i3 + j3 (see

exercise 3.70), then search the stream for two consecutive pairs with the same weight. Write

a function to generate the Ramanujan numbers. The �rst such number is 1,729. What are the

next �ve?

Exercise 3.72

In a similar way to exercise 3.71 generate a stream of all numbers that can be written as the

sum of two squares in three di�erent ways (showing how they can be so written).

Streams as signals

We began our discussion of streams by describing them as computational analogs of the “sig-

nals” in signal-processing systems. In fact, we can use streams to model signal-processing

systems in a very direct way, representing the values of a signal at successive time intervals

as consecutive elements of a stream. For instance, we can implement an integrator or summer
that, for an input stream x = (xi), an initial valueC , and a small increment dt , accumulates the

sum

Si = C +
i∑

j=1

xj dt

and returns the stream of values S = (Si). The following integral function is reminiscent of

the “implicit style” de�nition of the stream of integers (section 3.5.2):

Ifunction integral(integrand, initial_value, dt) {

const integ = pair(

initial_value,

() => add_streams(

scale_stream(integrand, dt),

integ)

);

69
To quote from G. H. Hardy’s obituary of Ramanujan (Hardy 1921): “It was Mr. Littlewood (I believe) who

remarked that “every positive integer was one of his friends.” I remember once going to see him when he was

lying ill at Putney. I had ridden in taxi-cab No. 1729, and remarked that the number seemed to me a rather dull

one, and that I hoped it was not an unfavorable omen. “No,” he replied, “it is a very interesting number; it is the

smallest number expressible as the sum of two cubes in two di�erent ways.”” The trick of using weighted pairs

to generate the Ramanujan numbers was shown to us by Charles Leiserson.

366 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwKbLgClGAlIgbwEhFTEAoMxAG1SkQENqAnVBgEwE8B9Z8RALyJgTAM6oA3JTK16rUSGr0h4dqmAwwqdlKqsoIZkkz4BAPkLSq1m1RjBEmAIRNWHHnzyXbP34nmKysLgJrp+4WSubFy8-EJQfJJWEX76hkgBSmEpNgC+iKjU4t45qXTp-qgKWcmlpLnkJD65Ug040PBIoglsyNwQcMgARpqo2AA0iKIAjJOiAEz4BMlpRogwotxgitSYM-gAZAfrm9vUuwu4tWQA-Ihn1NekAFwnWzt70-gAPt9vD3tFk9EHdUMxmHBmJgHpMAETgVAADwADqhoNpGMwAOYgNBgegAWgJUx6DD6A2Go1hVx8r2RDBgUOAmAAFtFPrhxmyOIDcJyKKU0BhMCZBBZum5yYMRloJiTJdwoAyLl9xsC6hqJb1FcreXzcK1yO1YAhGOx2NwtWTRJ85osSqRVl1SVLKbLMIjZohEfbzN7pogANTe+ZzL2XQ3GzpTCBMVCWl17F2TETQSFLFblNZWvrIBjIj1i72IABUwgYaeYao11hzBvIbXAHVNmigqCxzCYmFb7c7YHYk00MFgTG4ADcmCBUJN2FAM1QBmBuut8e3BIh6YzMOrwkOR9Rx5PpwKa45TBYOBaczadzXRLHaAnJd3Vx2GP2Z3Pq6efD2sTSNXrPQsyQP9DSNJsTSQbZhjBTZugYZhYDALFuGACFkEwKBP3nMgnQ3BkoWw29rFFP0YKGOCE0Q5DUPQwYsKDRBZxwkiyHrBpF2XWd1wABgAOl46YJCIcguPoahRkQ9cKKohCkM0OiMMwXicJE2wxIQZdJK0RDuD-TtqHXAyux0tgq0QVTmLnKQAHpbMQClkRAWiVzbN8jPo5BLMQKA4EQABmRA4AcZlEVMb1yHsxwoDZNzeyYE5ECxD0IoEgBWb0AD1Q0YftfLZVhgEhVAooc2LUEqap6A2e5zMs-jMrLAKcvXAAWRqrhzXh1EwMy9JM6hJjzWLeDgVRMCChzZz5CQgA

Modularity, Objects, and State 3.5.3

return integ;

}

add

pair

initial_value

integral
scale: dt

input

Figure 3.32: The integral function viewed as a signal-processing system.

Figure 3.32 is a picture of a signal-processing system that corresponds to the integral

function. The input stream is scaled by dt and passed through an adder, whose output is

passed back through the same adder. The self-reference in the de�nition of integ is re�ected

in the �gure by the feedback loop that connects the output of the adder to one of the inputs.

Exercise 3.73

vi

R
C

i

+ --v

scale: R

integral

addscale:
C

v
v = v + 1 i dt + R iC

Z
0

0
0

t

1

Figure 3.33: An RC circuit and the associated signal-�ow diagram.

367 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.5.3

We can model electrical circuits using streams to represent the values of currents or voltages

at a sequence of times. For instance, suppose we have an RC circuit consisting of a resistor of

resistance R and a capacitor of capacitance C in series. The voltage response v of the circuit

to an injected current i is determined by the formula in �gure 3.33, whose structure is shown

by the accompanying signal-�ow diagram.

Write a function RC that models this circuit. RC should take as inputs the values of R, C , and

dt and should return a function that takes as inputs a stream representing the current i and

an initial value for the capacitor voltage v0 and produces as output the stream of voltages v .

For example, you should be able to use RC to model an RC circuit with R = 5 ohms, C = 1

farad, and a 0.5-second time step by evaluating const RC1 = RC(5, 1, 0.5). This de�nes RC1

as a function that takes a stream representing the time sequence of currents and an initial

capacitor voltage and produces the output stream of voltages.

Exercise 3.74

Alyssa P. Hacker is designing a system to process signals coming from physical sensors. One

important feature she wishes to produce is a signal that describes the zero crossings of the

input signal. That is, the resulting signal should be +1 whenever the input signal changes from

negative to positive, −1 whenever the input signal changes from positive to negative, and 0

otherwise. (Assume that the sign of a 0 input is positive.) For example, a typical input signal

with its associated zero-crossing signal would be

... 1 2 1.5 1 0.5 -0.1 -2 -3 -2 -0.5 0.2 3 4 ...

... 0 0 0 0 0 -1 0 0 0 0 1 0 0 ...

In Alyssa’s system, the signal from the sensor is represented as a stream sense_data and the

stream zero_crossings is the corresponding stream of zero crossings. Alyssa �rst writes a

function sign_change_detector that takes two values as arguments and compares the signs of

the values to produce an appropriate 0, 1, or −1. She then constructs her zero-crossing stream

as follows:

function make_zero_crossings(input_stream, last_value) {

return pair(sign_change_detector(head(input_stream),

last_value),

() => make_zero_crossings(

stream_tail(input_stream),

head(input_stream)));

}

const zero_crossings = make_zero_crossings(sense_data, 0);

Alyssa’s boss, Eva Lu Ator, walks by and suggests that this program is approximately equivalent

to the following one, which uses the function combine_streams from exercise 3.50:

368 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.5.4

const zero_crossing = combine_streams(sign_change_detector,

sense_data,

expression);

Complete the program by supplying the indicated expression.

Exercise 3.75

Unfortunately, Alyssa’s zero-crossing detector in exercise 3.74 proves to be insu�cient, be-

cause the noisy signal from the sensor leads to spurious zero crossings. Lem E. Tweakit, a

hardware specialist, suggests that Alyssa smooth the signal to �lter out the noise before ex-

tracting the zero crossings. Alyssa takes his advice and decides to extract the zero crossings

from the signal constructed by averaging each value of the sense data with the previous value.

She explains the problem to her assistant, Louis Reasoner, who attempts to implement the idea,

altering Alyssa’s program as follows:

function make_zero_crossings(input_stream, last_value) {

const avpt = (head(input_stream) + last_value) / 2;

return pair(sign_change_detector(avpt, last_value),

() => make_zero_crossings(

stream_tail(input_stream),

avpt);

);

}

This does not correctly implement Alyssa’s plan. Find the bug that Louis has installed and �x

it without changing the structure of the program. (Hint: You will need to increase the number

of arguments to make_zero_crossings.)

Exercise 3.76

Eva Lu Ator has a criticism of Louis’s approach in exercise 3.75. The program he wrote is not

modular, because it intermixes the operation of smoothing with the zero-crossing extraction.

For example, the extractor should not have to be changed if Alyssa �nds a better way to

condition her input signal. Help Louis by writing a function smooth that takes a stream as

input and produces a stream in which each element is the average of two successive input

stream elements. Then use smooth as a component to implement the zero-crossing detector in

a more modular style.

369 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.5.4

3.5.4 Streams and Delayed Evaluation

The integral function at the end of the preceding section shows how we can use streams to

model signal-processing systems that contain feedback loops. The feedback loop for the adder

shown in �gure 3.32 is modeled by the fact that integral’s internal stream integ is de�ned

in terms of itself:

const integ = pair(initial_value,

() => add_streams(

scale_stream(integrand, dt),

integ)

);

The interpreter’s ability to deal with such an implicit de�nition depends on the delay result-

ing from wrapping the call of add_streams into a lambda expression. Without this delay, the

interpreter could not construct integ before evaluating both arguments to pair, which would

require that integ already be de�ned. In general, such a delay is crucial for using streams

to model signal-processing systems that contain loops. Without a delay, our models would

have to be formulated so that the inputs to any signal-processing component would be fully

evaluated before the output could be produced. This would outlaw loops.

Unfortunately, stream models of systems with loops may require uses of a delay beyond the

stream programming pattern seen so far. For instance, �gure 3.34 shows a signal-processing

system for solving the di�erential equation dy/dt = f (y) where f is a given function. The

�gure shows a mapping component, which applies f to its input signal, linked in a feedback

loop to an integrator in a manner very similar to that of the analog computer circuits that are

actually used to solve such equations.

y

dy y
integralmap: f

0

Figure 3.34: An “analog computer circuit” that solves the equation

Assuming we are given an initial value y0 for y, we could try to model this system using the

function

function solve(f, y0, dt) {

const y = integral(dy, y0, dt);

370 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.5.4

const dy = stream_map(f, y);

return y;

}

This function does not work, because in the �rst line of solve the call to integral requires

that the input dy be de�ned, which does not happen until the second line of solve.

On the other hand, the intent of our de�nition does make sense, because we can, in principle,

begin to generate the y stream without knowing dy. Indeed, integral and many other stream

operations can generate part of the answer given only partial information about the arguments.

For integral, the �rst element of the output stream is the speci�ed initial_value. Thus, we

can generate the �rst element of the output stream without evaluating the integrand dy. Once

we know the �rst element of y, the stream_map in the second line of solve can begin working

to generate the �rst element of dy, which will produce the next element of y, and so on.

To take advantage of this idea, we will rede�ne integral to expect the integrand stream to

be a delayed argument. The function integral will force the integrand to be evaluated only

when it is required to generate more than the �rst element of the output stream:

Ifunction integral(delayed_integrand, initial_value, dt) {

const integ =

pair(initial_value,

() => {

const integrand = delayed_integrand();

return add_streams(scale_stream(integrand, dt),

integ);

});

return integ;

}

Now we can implement our solve function by delaying the evaluation of dy in the de�nition

of y:

Ifunction solve(f, y0, dt) {

const y = integral(() => dy, y0, dt);

const dy = stream_map(f, y);

return y;

}

In general, every caller of integral must now delay the integrand argument. We can demon-

strate that the solve function works by approximating e ≈ 2.718 by computing the value at

y = 1 of the solution to the di�erential equation dy/dt = y with initial condition y(0) = 1:
70

Istream_ref(solve(y => y, 1, 0.001), 1000);

70
This calculations necessitates the use of the memoization optimization from section 3.5.1 in the functions

stream_combine and integral.

371 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwKbLgClGAlIgbwEhFTEAoMxAG1SkQENqAnVBgEwE8B9Z8RALyJgTAM6oA3JTK16rUSGr0h4dqmAwwqdlKqsoIZkkz4BAPkLSq1m1RjBEmAIRNWHHnzyXbP34nmKysLgJrp+4WSubFy8-EJQfJJWEX76hkgBSmEpNgC+iKjU4t45qXTp-qgKWcmlpLnkJD65Ug040PBIoglsyNwQcMgARpqo2AA0iKIAjJOiAEz4BMlpRogwotxgitSYM-gAZAfrm9vUuwu4tWQA-Ihn1NekAFwnWzt70-gAPt9vD3tFk9EHdUMxmHBmJgHpMAETgVAADwADqhoNpGMwAOYgNBgegAWgJUx6DD6A2Go1hVx8r2RDBgUOAmAAFtFPrhxmyOIDcJyKKU0BhMCZBBZum5yYMRloJiTJdwoAyLl9xsC6hqJb1FcreXzcK1yO1YAhGOx2NwtWTRJ85osSqRVl1SVLKbLMIjZohEfbzN7pogANTe+ZzL2XQ3GzpTCBMVCWl17F2TETQSFLFblNZWvrIBjIj1i72IABUwgYaeYao11hzBvIbXAHVNmigqCxzCYmDU1AYnG03Fb7c7YHYk00MFgTG4ADcmCBUJN2FAM1QBmBuut8e3BMD6YzMBOp9RZ-PF+qqKK-csNevN0OOwxR4JED2+wOHyP2KEL7YnWaLRzG1RFjWgE0lQ9t0fUclxXSZfxrMgH3rUpchQsh-wfQ0jSbE0kG2YYwU2boGGYWAwCxbhgAhZBMCgWDVwwrMkH3KF6IQy9TAsAihiIhNSPIyjqMGOig1fejxJpHJ6waO96GXF8AAYADpFOmCQiHIOSaFGUiXx4viSLIzQhJozBFIYjTbC0hBN2oXTmEHKDO2oF9Py7K8LHsrRSMmCzJKkAB6QLEApZEQEErc20fVzhOQRBFMQKA4EQABmRA4AcZlEVMb1yGCxwoDZKLhyYE5ECxD1cpUgBWb0AD1Q0YZ8irBdRIVQfKQtaypqnoDZ7jYZgEuUuqy1SxqXwAFlGq4c14dRMG8oanOilzJjzIreDgVRMHSkLlz5CQgA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwKbLgClGAlIgbwEhFTEAoMxAG1SkQENqAnVBgEwE8B9Z8RALyJgTAM6oA3JTK16rUSGr0h4dqmAwwqdlKqsoIZkkz4BAPkLSq1m1RjBEmAIRNWHHnzyXbP34nmKysLgJrp+4WSubFy8-EJQfJJWEX76hkgBSmEpNgC+iKjU4t45qXTp-qgKWcmlpLnkJD65Ug0A9G2IYHBQqIhQABZ9IMVwDoN9aBgwAF4MsAiIcAAOsMiz8-BgRCTkONBbiKIJbMjcEHDIAEaaqNgANEcAjI+iAEz4BMlpRogwotwwIpqJhRE98AAyCF-AFA6gg964WpkAD8XWByNIAC4YYDgaDwYgAD5E3FwhEfTGINGoZjMODMTDkx4AInAqAAHstUNBtIxmABzEBoMD0AC0YqOJwYZwu11uLKRPhxywYMEZwEwQw4BNw9217FBHz1FFKUywJkEFmOblllxuWgeUtt3CgaoR4PuVLqpRtp1d7qNuGDuFae3AB0WHHY3D9MtEBNeHxKpB+SDjdvljswHJeiA5yfM+aeiAA1Pm3q884iw-sFumIExULHpchQa3HiJoAzPt9yr8M9xkAxljmrfnEAAqYQMbvML0+6wZ0Pkdqdbq9fpDRAjPpjLeTdBwDb1parGDrOb1nYUOuHTS9AXMJiYNTUBicbTcB+oJ8MMDsI8mgwLATDcAAbkwICoI87BQL2VAXGAxx-KKv6CFSqrqpgwGgdQEFQTB3pUOamCWkWXyLkhKE-n+AGCIgb4fl+tHPgBoTET4aaMOwMYZgmoiNrQLa2jhaF0YBjHwY8nGLj4tErj6uTBtklQGL8tG1hGp6iHA1DgXcwCPJwAAMsHwSmiDUfQnAMaxL6OKYFhcMZZlSYpZDWYxtlCIOw6jkZiCcB5qb9kgnBhuQ5CDqwmq6fpdw+RYnCPHmJkAHQmSZnqIE8WUmaGQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwKbLgClGAlIgbwEhFTEAoMxAG1SkQENqAnVBgEwE8B9Z8RALyJgTAM6oA3JTK16rUSGr0h4dqmAwwqdlKqsoIZkkz4BAPkLSq1m1RjBEmAIRNWHHnzyXbP34nmKysLgJrp+4WSubFy8-EJQfJJWEX76hkgBSmEpNgC+iKjU4t45qXTp-qgKWcmlpLnkJD65Ug0A9G2IYHBQqIhQABZ9IMVwDoN9aBgwAF4MsAiIcAAOsMiz8-BgRCTkONBbiKIJbMjcEHDIAEaaqNgANEcAjI+iAEz4BMlpRogwotwwIpqJhRE98AAyCF-AFA6gg964WpkAD8XWByNIAC4YYDgaDwYgAD5E3FwhEfTGINGoZjMODMTDkx4AInAqAAHstUNBtIxmABzEBoMD0AC0YqOJwYZwu11uLKRPhxywYMEZwEwQw4BNw9217FBHz1FFKUywJkEFmOblllxuWgeUtt3CgaoR4PuVLqpRtp1d7qNuGDuFae3AB0WHHY3D9MtEBNeHxKpB+SDjdvljswHJeiA5yfM+aeiAA1Pm3q884iw-sFumIExULHpchQa3HiJoAzPt9yr8M9xkAxljmrfnEAAqYQMbvML0+6wZ0Pkdqdbq9fpDRAjPpjLeTdBwDb1parGDrOb1nYUOuHTS9AXMJiYNTUBicbTcB+oJ8MMDsI8mgwLATDcAAbkwICoI87BQL2VAXGAxx-KKv6CFSqrqpgwGgdQEFQTB3pUOamCWkWXyLkhKE-n+AGCIgb4fl+tHPgBoTET4aaMOwMYZgmoiNrQLa2jhaF0YBjHwY8nGLj4tErj6uTBtklQGL8tG1hGp6iHA1DgXcwCPJwAAMsHwSmiDUfQnAMaxL6OKYFhcMZZlSYpZDWYxtlCIOw6jkZiCcB5qb9kgnBhoOrCarp+l3D5FicI8eYmQAdCZJmeogTwZSZoZAA

Modularity, Objects, and State 3.5.4

2 .716923932235896

Exercise 3.77

The integral function used above was analogous to the “implicit” de�nition of the in�nite

stream of integers in section 3.5.2. Alternatively, we can give a de�nition of integral that is

more like integers-starting-from (also in section 3.5.2):

Ifunction integral(integrand, initial_value, dt) {

return pair(initial_value,

is_null(integrand) ? null

: integral(stream_tail(integrand),

dt * head(integrand) + initial_value,

dt));

}

When used in systems with loops, this function has the same problem as does our original ver-

sion of integral. Modify the function so that it expects the integrand as a delayed argument

and hence can be used in the solve function shown above.

Exercise 3.78

y00

y

scale: b

integral

scale: a

add

dyddy
integral

dy

Figure 3.35: Signal-�ow diagram for the solution to a second-order linear di�erential equation.

372 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDMUCmBzATgQwDYAUK62OYAJgDTJgyz4D6AbviGteVAJSIDeAUIiGIsaKCCxIADjhhYitenmat2g4RpgBnBmBB5CxTLgo8A-Ij0H1G24gBcNErkJaoonAFsGUWYdTGZORclDZ24eGciABUiAAWaDjkCs5BPADUNHQwjCx4bKERRXacXFwA3PwAvkA

Modularity, Objects, and State 3.5.4

Consider the problem of designing a signal-processing system to study the homogeneous

second-order linear di�erential equation

d2y

dt2
− a

dy

dt
− by = 0

The output stream, modeling y, is generated by a network that contains a loop. This is because

the value of d2y/dt2
depends upon the values of y and dy/dt and both of these are determined

by integrating d2y/dt2
. The diagram we would like to encode is shown in �gure 3.35. Write

a function solve_2nd that takes as arguments the constants a, b, and dt and the initial values

y0 and dy0 for y and dy/dt and generates the stream of successive values of y.

Exercise 3.79

Generalize the solve_2nd function of exercise 3.78 so that it can be used to solve general

second-order di�erential equations d2y/dt2 = f (dy/dt , y).

Exercise 3.80

A series RLC circuit consists of a resistor, a capacitor, and an inductor connected in series, as

shown in �gure 3.36. If R, L, and C are the resistance, inductance, and capacitance, then the

relations between voltage (v) and current (i) for the three components are described by the

equations

vR = iRR

vL = L
diL
dt

iC = C
dvC
dt

and the circuit connections dictate the relations

iR = iL = −iC

vC = vL +vR

Combining these equations shows that the state of the circuit (summarized by vC , the voltage

across the capacitor, and iL, the current in the inductor) is described by the pair of di�erential

equations

dvC
dt

= −
iL
C

diL
dt

=
1

L
vC −

R

L
iL

373 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.5.4

The signal-�ow diagram representing this system of di�erential equations is shown in �g-

ure 3.37.

+ --v

R
i

L v

+

--

i

C
i

v

+

--

C

C

R L

L

R

Figure 3.36: A series RLC circuit.

di

v

i

v

dv

i

scale: 1/L

integral

scale:-1/C

integral

scale:-R/L

add

C0

C

L

L0

L

C

Figure 3.37: A signal-�ow diagram for the solution to a series RLC circuit.

Write a function RLC that takes as arguments the parameters R, L, and C of the circuit and

the time increment dt . In a manner similar to that of the RC function of exercise 3.73, RLC

should produce a function that takes the initial values of the state variables, vC0
and iL0

, and

374 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.5.5

produces a pair (using pair) of the streams of states vC and iL. Using RLC, generate the pair of

streams that models the behavior of a series RLC circuit with R = 1 ohm, C = 0.2 farad, L = 1

henry, dt = 0.1 second, and initial values iL0
= 0 amps and vC0

= 10 volts.

Normal-order evaluation

The examples in this section illustrate how delayed evaluation provides great programming

�exibility, but the same examples also show how this can make our programs more complex.

Our new integral function, for instance, gives us the power to model systems with loops, but

we must now remember that integral should be called with a delayed integrand, and every

function that uses integral must be aware of this. In e�ect, we have created two classes of

functions: ordinary functions and functions that take delayed arguments. In general, creating

separate classes of functions forces us to create separate classes of higher-order functions as

well.
71

One way to avoid the need for two di�erent classes of functions is to make all functions

take delayed arguments. We could adopt a model of evaluation in which all arguments to

functions are automatically delayed and arguments are forced only when they are actually

needed (for example, when they are required by a primitive operation). This would transform

our language to use normal-order evaluation, which we �rst described when we introduced

the substitution model for evaluation in section 1.1.5. Converting to normal-order evaluation

provides a uniform and elegant way to simplify the use of delayed evaluation, and this would

be a natural strategy to adopt if we were concerned only with stream processing. In section 4.2,

after we have studied the evaluator, we will see how to transform our language in just this

way. Unfortunately, including delays in function calls wreaks havoc with our ability to design

programs that depend on the order of events, such as programs that use assignment, mutate

data, or perform input or output. Even a single delay in the tail of a pair can cause great

confusion, as illustrated by exercise 3.51 and 3.52. As far as anyone knows, mutability and

delayed evaluation do not mix well in programming languages, and devising ways to deal with

both of these at once is an active area of research.

71
This is a small re�ection, in JavaScript, of the di�culties that conventional strongly typed languages such

as Pascal have in coping with higher-order functions. In such languages, the programmer must specify the data

types of the arguments and the result of each function: number, logical value, sequence, and so on. Consequently,

we could not express an abstraction such as “map a given function fun over all the elements in a sequence” by a

single higher-order function such as stream_map. Rather, we would need a di�erent mapping function for each

di�erent combination of argument and result data types that might be speci�ed for a fun. Maintaining a practical

notion of “data type” in the presence of higher-order functions raises many di�cult issues. One way of dealing

with this problem is illustrated by the language ML (Gordon, Milner, and Wadsworth 1979), whose “polymorphic

data types” include templates for higher-order transformations between data types. Moreover, data types for

most functions in ML are never explicitly declared by the programmer. Instead, ML includes a type-inferencing
mechanism that uses information in the environment to deduce the data types for newly de�ned functions.

375 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.5.5

3.5.5 Modularity of Functional Programs and Modularity of Objects

As we saw in section 3.1.2, one of the major bene�ts of introducing assignment is that we can

increase the modularity of our systems by encapsulating, or “hiding,” parts of the state of a large

system within local variables. Stream models can provide an equivalent modularity without

the use of assignment. As an illustration, we can reimplement the Monte Carlo estimation of

π , which we examined in section 3.1.2, from a stream-processing point of view.

The key modularity issue was that we wished to hide the internal state of a random-number

generator from programs that used random numbers. We began with a function rand_update,

whose successive values furnished our supply of random numbers, and used this to produce a

random-number generator:

Ifunction make_rand() {

let x = random_init;

return () => {

x = rand_update(x);

return x;

};

}

const rand = make_rand();

In the stream formulation there is no random-number generator per se, just a stream of

random numbers produced by successive calls to rand_update:

Iconst random_numbers =

pair(random_init,

() => stream_map(rand_update, random_numbers));

We use this to construct the stream of outcomes of the Cesàro experiment performed on

consecutive pairs in the random_numbers stream:

Ifunction map_successive_pairs(f, s) {

return pair(f(head(s), head(stream_tail(s))),

() => map_successive_pairs(

f,

stream_tail(stream_tail(s))));

}

const cesaro_stream =

map_successive_pairs((r1, r2) => gcd(r1, r2) === 1,

random_numbers);

The cesaro_stream is now fed to a monte_carlo function, which produces a stream of es-

timates of probabilities. The results are then converted into a stream of estimates of π . This

version of the program doesn’t need a parameter telling how many trials to perform. Better

estimates of π (from performing more experiments) are obtained by looking farther into the

376 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEEFQNwUwJwJ6gM4EsC2AHANjUcBDAOwBMB9AV0xIIBc8AzCogY1tQHsjQWOsL6yUAVBEK6AEbwAUCFAM4fUAAZQAClStsFNLACUoWh1AAmZcoCsANmUAWAJzKAjAGYn6kdgJwA5nkxwGDB6smAKSiJQBNp4AB6gEkjoFNjsOAiaPqCotKAA7jkAFsI8XMi0xLkEADShwiQkmSW8ROWVCdXCpIaFMNwVANZNtL34MOgEmiQychwMoI1QqI1EWTkJSCN4Xr7+gegwAHSgAOp4OjAk2bm9cHh1DBxw2dja5YTsXKBc2AidxFcSMYiBxciwvBgukg6m12OVUCxoqAAhxMPB2DBkIdpC1yqB0KAALymczWOyOVxOADcoBxZSqRNATicyhcFicFhMtgsVLprVyEkZThMLm5vOkTFYn24hFIlGodBgaliBgA3tJQJqxrQKHBuGoRAAqUDxADUCQMAFJ8byAL58vGyoHoMiadbE4Wi6wAdgAHPZeZK2JxuBMBjAyE61GqNZrcLl4sSnXxXUQcrytXcdXr1AZCQA+UDqrUlxP4AHymj0ZV6DMlzVZ3XcWJ10C2u0O3JOxlhiNR2vSaSNZA4AgINT9gfD0fjye86deWcA6O1oA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEEFQNwUwJwJ6gM4EsC2AHANjUcBDAOwBMB9AV0xIIBc8AzCogY1tQHsjQWOsL6yUAVBEK6AEbwAUCFAM4fUAAZQAClStsFNLACUoWh1AAmZcoCsANmUAWAJzKAjAGYn6kdgJwA5nkxwGDB6smAKSiJQBNp4AB6gEkjoFNjsOAiaPqCotKAA7jkAFsI8XMi0xLkEADShwiQkmSW8ROWVCdXCpIaFMNwVANZNtL34MOgEmiQychwMoI1QqI1EWTkJSCN4Xr7+gegwAHSgAOp4OjAk2bm9cHh1DBxw2dja5YTsXKBc2AidxFcSMYiBxciwvBgukg6m12OVUCxoqAAhxMPB2DBkIdpC1yqB0KAALymczWOyOVxOADcoBxZSqRNATicyhcFicFhMtgsVLprVyEkZThMLm5vOkTFYn24hFIlGodBgaliBgA3tJQJqxrQKHBuGoRAAqUDxADUCQMAFJ8byAL58vGyoHoMiadbE4Wi6wAdgAHPZebjck6+GQxJJ4EJCRqtZhJnA1CGXW7aLUtenNWoDISAHwoWh3AguiaYRMA+U0eidJNh8RSODIPR6cUwKLYMjvGBFsukUPh+vIToWZtAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEEFQNwUwJwJ6gM4EsC2AHANjUcBDAOwBMB9AV0xIIBc8AzCogY1tQHsjQWOsL6yUAVBEK6AEbwAUCFAM4fUAAZQAClStsFNLACUoWh1AAmZcoCsANmUAWAJzKAjAGYn6kdgJwA5nkxwGDB6smAKSiJQBNp4AB6gEkjoFNjsOAiaPqCotKAA7jkAFsI8XMi0xLkEADShwiQkmSW8ROWVCdXCpIaFMNwVANZNtL34MOgEmiQychwMoI1QqI1EWTkJSCN4Xr7+gegwAHSgAOp4OjAk2bm9cHh1DBxw2dja5YTsXKBc2AidxFcSMYiBxciwvBgukg6m12OVUCxoqAAhxMPB2DBkIdpC1yqB0KAALymczWOyOVxOADcoBxZSqRNATicyhcFicFhMtgsVLprVyEkZThMLm5vOkTFYn24hFIlGodBgaliBgA3tJQJqxrQKHBuGoRAAqUDxADUCQMAFJ8byAL58vGyoHoMiadbE4Wi6wAdgAHPZebjck6+GQxJJ4EJCRqtZhJnA1CGXW7aLUtenNWoDISAHwoWh3AguiaYRMA+U0eidJNh8RSODIPR6XmSticbg+FgkA2dCRqmOau46vUJImE4mqAD8JQAXKBO92JP9QNa+3aJcw218S2RkBQWCxMboYGQ46gG2oGJ1G6B1emh7ruGeEww1L0CN3G5135+CzAi2QFSoNgaiNk2nQZgOGbQZm2Z5jue4HkeqCwKe8bIGoUEwdhGZXrSOEERm7z-i6QEgcRAFkaBTZNuuQY8Ji3gcLuf5FkSUEIfuh7IMeaHnhh6hwE41YmHB85domwn4KJY4emmhEKYOAKhuG9aNuKMBRNgLGFugajcUxOkkZ0ZjNkAA

Modularity, Objects, and State 3.5.5

pi stream:

Ifunction monte_carlo(experiment_stream, passed, failed) {

function next(passed, failed) {

return pair(passed / (passed + failed),

() => monte_carlo(stream_tail(experiment_stream),

passed, failed));

}

return head(experiment_stream)

? next(passed + 1, failed)

: next(passed, failed + 1);

}

const pi = stream_map(p => math_sqrt(6 / p),

monte_carlo(cesaro_stream, 0, 0));

There is considerable modularity in this approach, because we still can formulate a general

monte_carlo function that can deal with arbitrary experiments. Yet there is no assignment or

local state.

Exercise 3.81

Exercise 3.6 discussed generalizing the random-number generator to allow one to reset the

random-number sequence so as to produce repeatable sequences of “random” numbers. Pro-

duce a stream formulation of this same generator that operates on an input stream of requests

to generate a new random number or to reset the sequence to a speci�ed value and that

produces the desired stream of random numbers. Don’t use assignment in your solution.

Exercise 3.82

Redo exercise 3.5 on Monte Carlo integration in terms of streams. The stream version of

estimate_integral will not have an argument telling how many trials to perform. Instead, it

will produce a stream of estimates based on successively more trials.

A functional-programming view of time

Let us now return to the issues of objects and state that were raised at the beginning of this

chapter and examine them in a new light. We introduced assignment and mutable objects to

provide a mechanism for modular construction of programs that model systems with state. We

constructed computational objects with local state variables and used assignment to modify

these variables. We modeled the temporal behavior of the objects in the world by the temporal

behavior of the corresponding computational objects.

377 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEEFQNwUwJwJ6gM4EsC2AHANjUcBDAOwBMB9AV0xIIBc8AzCogY1tQHsjQWOsL6yUAVBEK6AEbwAUCFAM4fUAAZQAClStsFNLACUoWh1AAmZcoCsANmUAWAJzKAjAGYn6kdgJwA5nkxwGDB6smAKSiJQBNp4AB6gEkjoFNjsOAiaPqCotKAA7jkAFsI8XMi0xLkEADShwiQkmSW8ROWVCdXCpIaFMNwVANZNtL34MOgEmiQychwMoI1QqI1EWTkJSCN4Xr7+gegwAHSgAOp4OjAk2bm9cHh1DBxw2dja5YTsXKBc2AidxFcSMYiBxciwvBgukg6m12OVUCxoqAAhxMPB2DBkIdpC1yqB0KAALymczWOyOVxOADcoBxZSqRNATicyhcFicFhMtgsVLprVyEkZThMLm5vOkTFYn24hFIlGodBgaliBgA3tJQJqxrQKHBuGoRAAqUDxADUCQMAFJ8byAL58vGyoHoMiadbE4Wi6wAdgAHPZebjck6+GQxJJ4EJCRqtZhJnA1CGXW7aLUtenNWoDISAHwoWh3AguiaYRMA+U0eidJNh8RSODIPR6XmSticbg+FgkA2dCRqmOau46vUJImE4mqAD8JQAXKBO92JP9QNa+3aJcw218S2RkBQWCxMboYGQ46gG2oGJ1G6B1emh7ruGeEww1L0CN3G5135+CzAi2QFSoNgaiNk2nQZgOGbQZm2Z5jue4HkeqCwKe8bIGoUEwdhGZXrSOEERm7z-i6QEgcRAFkaBTZNuuQY8Ji3gcLuf5FkSUEIfuh7IMeaHnhh6hwE41YmHB85domwn4KJY4emmhEKYOAKhuG9aNi2m7SviXD0GQiJwNgHBqDAsRovsfS0CxhboJ0cY8ZcnQMJMuAkGq0FQa2WlECZtBqHZyAOfIzmXP22EPiOz5+QQ9lXGAUUxaA5pOcBIXyYpGZZkS8E6Se+mGaBrGkc5xmmfAQREJZFHoHoaXpXV0H+YFyUubRUH2veMDDtwP4lWZ5WVYVISEdO3mxL5jVXOaUnNSFWHQXOo3jdFAUkI5wWTUyzbSPaDq5JgqCMlVZAln5WX4nQhS7gAjnAvlWKAYCYDVc31egOV6d4+XcUxVkkZ0yj-a10hHXcr77Z0LLKM2QA

Modularity, Objects, and State 3.5.5

Now we have seen that streams provide an alternative way to model objects with local

state. We can model a changing quantity, such as the local state of some object, using a stream

that represents the time history of successive states. In essence, we represent time explicitly,

using streams, so that we decouple time in our simulated world from the sequence of events

that take place during evaluation. Indeed, because of the presence of delayed evaluation there

may be little relation between simulated time in the model and the order of events during the

evaluation.

In order to contrast these two approaches to modeling, let us reconsider the implementation

of a “withdrawal processor” that monitors the balance in a bank account. In section 3.1.3 we

implemented a simpli�ed version of such a processor:

function make_simplified_withdraw(balance) {

return amount => {

balance = balance - amount;

return balance;

};

}

Calls to make_simplified_withdraw produce computational objects, each with a local state

variable balance that is decremented by successive calls to the object. The object takes an

amount as an argument and returns the new balance. We can imagine the user of a bank

account typing a sequence of inputs to such an object and observing the sequence of returned

values shown on a display screen.

Alternatively, we can model a withdrawal processor as a function that takes as input a

balance and a stream of amounts to withdraw and produces the stream of successive balances

in the account:

Ifunction stream_withdraw(balance, amount_stream) {

return pair(balance,

() => stream_withdraw(

balance - head(amount_stream),

stream_tail(amount_stream)));

}

The function stream_withdraw implements a well-de�ned mathematical function whose

output is fully determined by its input. Suppose, however, that the input amount_stream is

the stream of successive values typed by the user and that the resulting stream of balances is

displayed. Then, from the perspective of the user who is typing values and watching results,

the stream process has the same behavior as the object created by make_simplified_withdraw.

However, with the stream version, there is no assignment, no local state variable, and conse-

quently none of the theoretical di�culties that we encountered in section 3.1.3. Yet the system

has state!

378 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZygJwKYEMC2B9AdxigAsATNLAgCgCMsAbLSDAGkVznCj1U1wCUiAN6Ix4gFDjEmKCDRIADlhho6jZhDZTpuvdSEBeAHwp02fEVIUq1HXoePx9Ji0QBaRCWxlqnbrzmgqz2TmHSfBZ4UCoMfjhcYDyRggICANySAL4SEhAIqIg4AJ54-knIiIaIDDCo0XCB-DjUtajUAKwADOwAjF09iAAsXWnpeQVQRaVYEPkBKThVZs2ExOSUNABMA+wlZQncyBkAkBIYAG6MTRbU+7PzSTe47ADMGUA

Modularity, Objects, and State 3.5.5

This is really remarkable. Even though stream_withdraw implements a well-de�ned mathe-

matical function whose behavior does not change, the user’s perception here is one of inter-

acting with a system that has a changing state. One way to resolve this paradox is to realize

that it is the user’s temporal existence that imposes state on the system. If the user could step

back from the interaction and think in terms of streams of balances rather than individual

transactions, the system would appear stateless.
72

From the point of view of one part of a complex process, the other parts appear to change

with time. They have hidden time-varying local state. If we wish to write programs that model

this kind of natural decomposition in our world (as we see it from our viewpoint as a part

of that world) with structures in our computer, we make computational objects that are not

functional—they must change with time. We model state with local state variables, and we

model the changes of state with assignments to those variables. By doing this we make the

time of execution of a computation model time in the world that we are part of, and thus we

get “objects” in our computer.

Modeling with objects is powerful and intuitive, largely because this matches the perception

of interacting with a world of which we are part. However, as we’ve seen repeatedly throughout

this chapter, these models raise thorny problems of constraining the order of events and of

synchronizing multiple processes. The possibility of avoiding these problems has stimulated

the development of functional programming languages, which do not include any provision

for assignment or mutable data. In such a language, all functions implement well-de�ned

mathematical functions of their arguments, whose behavior does not change. The functional

approach is extremely attractive for dealing with concurrent systems.
73

On the other hand, if we look closely, we can see time-related problems creeping into func-

tional models as well. One particularly troublesome area arises when we wish to design in-

teractive systems, especially ones that model interactions between independent entities. For

instance, consider once more the implementation a banking system that permits joint bank

accounts. In a conventional system using assignment and objects, we would model the fact

that Peter and Paul share an account by having both Peter and Paul send their transaction

requests to the same bank-account object, as we saw in section 3.1.3. From the stream point of

view, where there are no “objects” per se, we have already indicated that a bank account can be

modeled as a process that operates on a stream of transaction requests to produce a stream of

responses. Accordingly, we could model the fact that Peter and Paul have a joint bank account

by merging Peter’s stream of transaction requests with Paul’s stream of requests and feeding

72
Similarly in physics, when we observe a moving particle, we say that the position (state) of the particle is

changing. However, from the perspective of the particle’s world line in space-time there is no change involved.

73
John Backus, the inventor of Fortran, gave high visibility to functional programming when he was awarded

the ACM Turing award in 1978. His acceptance speech (Backus 1978) strongly advocated the functional approach.

A good overview of functional programming is given in Henderson 1980 and in Darlington, Henderson, and

Turner 1982.

379 Generated 2020-08-18 16:40:02Z

Modularity, Objects, and State 3.5.5

the result to the bank-account stream process, as shown in �gure 3.38.

merge bank
accountPaul's requests

Peter's requests

Figure 3.38: A joint bank account, modeled by merging two streams of transaction requests.

The trouble with this formulation is in the notion of merge. It will not do to merge the

two streams by simply taking alternately one request from Peter and one request from Paul.

Suppose Paul accesses the account only very rarely. We could hardly force Peter to wait for

Paul to access the account before he could issue a second transaction. However such a merge

is implemented, it must interleave the two transaction streams in some way that is constrained

by “real time” as perceived by Peter and Paul, in the sense that, if Peter and Paul meet, they

can agree that certain transactions were processed before the meeting, and other transactions

were processed after the meeting.
74

This is precisely the same constraint that we had to deal with in section 3.4.1, where we

found the need to introduce explicit synchronization to ensure a “correct” order of events

in concurrent processing of objects with state. Thus, in an attempt to support the functional

style, the need to merge inputs from di�erent agents reintroduces the same problems that the

functional style was meant to eliminate.

We began this chapter with the goal of building computational models whose structure

matches our perception of the real world we are trying to model. We can model the world as a

collection of separate, time-bound, interacting objects with state, or we can model the world as

a single, timeless, stateless unity. Each view has powerful advantages, but neither view alone

is completely satisfactory. A grand uni�cation has yet to emerge.
75

74
Observe that, for any two streams, there is in general more than one acceptable order of interleaving. Thus,

technically, “merge” is a relation rather than a function—the answer is not a deterministic function of the inputs.

We already mentioned (footnote 41) that nondeterminism is essential when dealing with concurrency. The merge

relation illustrates the same essential nondeterminism, from the functional perspective. In section 4.3, we will

look at nondeterminism from yet another point of view.

75
The object model approximates the world by dividing it into separate pieces. The functional model does not

modularize along object boundaries. The object model is useful when the unshared state of the “objects” is much

larger than the state that they share. An example of a place where the object viewpoint fails is quantum mechanics,

where thinking of things as individual particles leads to paradoxes and confusions. Unifying the object view with

the functional view may have little to do with programming, but rather with fundamental epistemological issues.

380 Generated 2020-08-18 16:40:02Z

Chapter 4

Metalinguistic Abstraction

. . . It’s in words that the magic is—Abracadabra, Open Sesame, and the

rest—but the magic words in one story aren’t magical in the next. The

real magic is to understand which words work, and when, and for what;

the trick is to learn the trick.

. . . And those words are made from the letters of our alphabet: a couple-

dozen squiggles we can draw with the pen. This is the key! And the

treasure, too, if we can only get our hands on it! It’s as if—as if the key

to the treasure is the treasure!

— John Barth, Chimera

In our study of program design, we have seen that expert programmers control the complex-

ity of their designs with the same general techniques used by designers of all complex systems.

They combine primitive elements to form compound objects, they abstract compound objects

to form higher-level building blocks, and they preserve modularity by adopting appropriate

large-scale views of system structure. In illustrating these techniques, we have used JavaScript

as a language for describing processes and for constructing computational data objects and pro-

cesses to model complex phenomena in the real world. However, as we confront increasingly

complex problems, we will �nd that JavaScript, or indeed any �xed programming language,

is not su�cient for our needs. We must constantly turn to new languages in order to express

our ideas more e�ectively. Establishing new languages is a powerful strategy for controlling

complexity in engineering design; we can often enhance our ability to deal with a complex

problem by adopting a new language that enables us to describe (and hence to think about) the

problem in a di�erent way, using primitives, means of combination, and means of abstraction

that are particularly well suited to the problem at hand.
1

1
The same idea is pervasive throughout all of engineering. For example, electrical engineers use many di�erent

languages for describing circuits. Two of these are the language of electrical networks and the language of

381

Programming is endowed with a multitude of languages. There are physical languages, such

as the machine languages for particular computers. These languages are concerned with the

representation of data and control in terms of individual bits of storage and primitive machine

instructions. The machine-language programmer is concerned with using the given hardware

to erect systems and utilities for the e�cient implementation of resource-limited computa-

tions. High-level languages, erected on a machine-language substrate, hide concerns about the

representation of data as collections of bits and the representation of programs as sequences

of primitive instructions. These languages have means of combination and abstraction, such

as function de�nition, that are appropriate to the larger-scale organization of systems.

Metalinguistic abstraction—establishing new languages—plays an important role in all branches

of engineering design. It is particularly important to computer programming, because in pro-

gramming not only can we formulate new languages but we can also implement these lan-

guages by constructing evaluators. An evaluator (or interpreter) for a programming language

is a function that, when applied to a statement or expression of the language, performs the

actions required to evaluate that statements or expression.

It is no exaggeration to regard this as the most fundamental idea in programming:

The evaluator, which determines the meaning of statements and expressions in a

programming language, is just another program.

To appreciate this point is to change our images of ourselves as programmers. We come to see

ourselves as designers of languages, rather than only users of languages designed by others.

In fact, we can regard almost any program as the evaluator for some language. For instance,

the polynomial manipulation system of section 2.5.3 embodies the rules of polynomial arith-

metic and implements them in terms of operations on list-structured data. If we augment

this system with functions to read and print polynomial expressions, we have the core of a

special-purpose language for dealing with problems in symbolic mathematics. The digital-

logic simulator of section 3.3.4 and the constraint propagator of section 3.3.5 are legitimate

languages in their own right, each with its own primitives, means of combination, and means of

abstraction. Seen from this perspective, the technology for coping with large-scale computer

systems merges with the technology for building new computer languages, and computer

electrical systems. The network language emphasizes the physical modeling of devices in terms of discrete

electrical elements. The primitive objects of the network language are primitive electrical components such

as resistors, capacitors, inductors, and transistors, which are characterized in terms of physical variables called

voltage and current. When describing circuits in the network language, the engineer is concerned with the physical

characteristics of a design. In contrast, the primitive objects of the system language are signal-processing modules

such as �lters and ampli�ers. Only the functional behavior of the modules is relevant, and signals are manipulated

without concern for their physical realization as voltages and currents. The system language is erected on the

network language, in the sense that the elements of signal-processing systems are constructed from electrical

networks. Here, however, the concerns are with the large-scale organization of electrical devices to solve a given

application problem; the physical feasibility of the parts is assumed. This layered collection of languages is

another example of the strati�ed design technique illustrated by the picture language of section 2.2.4.

382 Generated 2020-08-18 16:40:02Z

science itself becomes no more (and no less) than the discipline of constructing appropriate

descriptive languages.

We now embark on a tour of the technology by which languages are established in terms of

other languages. In this chapter we shall use JavaScript as a base, implementing evaluators as

JavaScript functions. JavaScript is particularly well suited to this task, because of its ability to

represent and manipulate symbolic expressions. We will take the �rst step in understanding

how languages are implemented by building an evaluator for JavaScript itself. The language

implemented by our evaluator will be a subset of JavaScript. Although the evaluator described

in this chapter is written for a particular subset of JavaScript, it contains the essential structure

of an evaluator for any language designed for writing programs for a sequential machine. (In

fact, most language processors contain, deep within them, a little evaluator.) The evaluator

has been simpli�ed for the purposes of illustration and discussion, and some features have

been left out that would be important to include in a production-quality JavaScript system.

Nevertheless, this simple evaluator is adequate to execute most of the programs in this book.
2

An important advantage of making the evaluator accessible as a JavaScript program is that

we can implement alternative evaluation rules by describing these as modi�cations to the

evaluator program. One place where we can use this power to good e�ect is to gain extra

control over the ways in which computational models embody the notion of time, which was

so central to the discussion in chapter 3. There, we mitigated some of the complexities of state

and assignment by using streams to decouple the representation of time in the world from

time in the computer. Our stream programs, however, were sometimes cumbersome, because

they were constrained by the applicative-order evaluation of JavaScript. In section 4.2, we’ll

change the underlying language to provide for a more elegant approach, by modifying the

evaluator to provide for normal-order evaluation.

Section 4.3 implements a more ambitious linguistic change, whereby statements and expres-

sions have many values, rather than just a single value. In this language of nondeterministic
computing, it is natural to express processes that generate all possible values for statements

and expressions and then search for those values that satisfy certain constraints. In terms of

models of computation and time, this is like having time branch into a set of “possible futures”

and then searching for appropriate time lines. With our nondeterministic evaluator, keeping

track of multiple values and performing searches are handled automatically by the underlying

mechanism of the language.

In section 4.4 we implement a logic-programming language in which knowledge is expressed

in terms of relations, rather than in terms of computations with inputs and outputs. Even

2
The most important features that our evaluator leaves out are mechanisms for handling errors and supporting

debugging. For a more extensive discussion of evaluators, see Friedman, Wand, and Haynes 1992, which gives an

exposition of programming languages that proceeds via a sequence of evaluators written in the Scheme dialect

of Lisp.

383 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.1

though this makes the language drastically di�erent from JavaScript, or indeed from any

conventional language, we will see that the logic-programming evaluator shares the essential

structure of the JavaScript evaluator.

4.1 The Metacircular Evaluator

Our evaluator for JavaScript will be implemented as a JavaScript program. It may seem circular

to think about evaluating JavaScript programs using an evaluator that is itself implemented

in JavaScript. However, evaluation is a process, so it is appropriate to describe the evaluation

process using JavaScript, which, after all, is our tool for describing processes.
3

An evaluator

that is written in the same language that it evaluates is said to be metacircular.

The metacircular evaluator is essentially a JavaScript formulation of the environment model

of evaluation described in section 3.2. Recall that the model speci�es the evaluation of function

application in two basic steps:

1. To evaluate a function application, evaluate the subexpressions and then apply the value

of the function subexpression to the values of the argument subexpressions.

2. To apply a compound function to a set of arguments, evaluate the body of the function

in a new environment. To construct this environment, extend the environment part of

the function object by a frame in which the parameters of the function are bound to the

arguments to which the function is applied.

These two rules describe the essence of the evaluation process, a basic cycle in which state-

ments and expressions to be evaluated in environments are reduced to functions to be applied

to arguments, which in turn are reduced to new expressions statements and expressions to be

evaluated in new environments, and so on, until we get down to symbols, whose values are

looked up in the environment, and to operators and primitive functions, which are applied

directly (see �gure 4.1).
4

This evaluation cycle will be embodied by the interplay between the

3
Even so, there will remain important aspects of the evaluation process that are not elucidated by our evaluator.

The most important of these are the detailed mechanisms by which functions call other functions and return

values to their callers. We will address these issues in chapter 5, where we take a closer look at the evaluation

process by implementing the evaluator as a simple register machine.

4
If we grant ourselves the ability to apply primitives, then what remains for us to implement in the evaluator?

The job of the evaluator is not to specify the primitives of the language, but rather to provide the connective

tissue—the means of combination and the means of abstraction—that binds a collection of primitives to form a

language. Speci�cally:

– The evaluator enables us to deal with nested expressions. For example, although simply applying primitives

would su�ce for evaluating the expression 1 + 6, it is not adequate for handling 1 + (2 * 3). As far

as the operator + is concerned, its arguments must be numbers, and it would choke if we passed it the

expression 2 * 3 as an argument. One important role of the evaluator is to choreograph composition so

that 2 * 3 is reduced to 6 before being passed as an argument to +.

– The evaluator allows us to use names. For example, the addition operator has no way to deal with expres-

sions such as x + 1. We need an evaluator to keep track of name and obtain their values before invoking

384 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.1.1

two critical functions in the evaluator, evaluate and apply, which are described in section 4.1.1

(see �gure 4.1).

The implementation of the evaluator will depend upon functions that de�ne the syntax
of the expressions to be evaluated. We will use data abstraction to make the evaluator in-

dependent of the representation of the language. For example, rather than committing to a

choice that an assignment is to be represented by a list beginning with the symbol assignment

we use an abstract predicate is_assignment to test for an assignment, and we use abstract

selectors assignment_name and assignment_value to access the parts of an assignment. Imple-

mentation of expressions will be described in detail in section 4.1.2. There are also operations,

described in section 4.1.3, that specify the representation of functions and environments. For

example, make_function constructs compound functions, lookup_name_value accesses the val-

ues of names, and apply_primitive_function applies a primitive function to a given list of

arguments.

4.1.1 The Core of the Evaluator

Evaluate ApplyFunction,
Arguments

Expression,
Environment

Figure 4.1: The evaluate–apply cycle exposes the essence of a computer language.

The evaluation process can be described as the interplay between two functions: evaluate

and apply.

the operators.

– The evaluator allows us to de�ne compound functions. This involves keeping track of function de�nitions,

knowing how to use these de�nitions in evaluating expressions, and providing a mechanism that enables

functions to accept arguments.

– The evaluator provides the other constructs of the language such as conditional expressions and blocks.

385 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.1.1

The function evaluate

The function evaluate takes as arguments a statement or an expression
5

and an environment.

It classi�es the statement/expression and directs its evaluation. The function evaluate is struc-

tured as a case analysis of the syntactic type of the statement/expression to be evaluated. In

order to keep the function general, we express the determination of the type of a statement/-

expression abstractly, making no commitment to any particular representation for the various

types of statements/expressions. Each type of statement/expression has a predicate that tests

for it and an abstract means for selecting its parts. This abstract syntax makes it easy to see how

we can change the syntax of the language by using the same evaluator, but with a di�erent

collection of syntax functions.

Primitive expressions

– For self-evaluating expressions, such as numbers, evaluate returns the expression itself.

– The function evaluate must look up names in the environment to �nd their values.

Language constructs

– An assignment to (or a declaration of) a name must recursively call evaluate to compute

the new value to be associated with the name. The environment must be modi�ed to

change the binding of the name.

– A conditional expression requires special processing of its parts, so as to evaluate the

consequent if the predicate is true, and otherwise to evaluate the alternative.

– A lambda expression must be transformed into an applicable function by packaging

together the parameters and body speci�ed by the lambda expression with the environ-

ment of the evaluation.

– A sequence of statements requires evaluating its component statements in the order in

which they appear.

– A block requires evaluating its body, while ensuring that declarations within the block

remain local to the block.

– When evaluate encounters a return statement, the return expression is evaluated and

marked as a return value.

Combinations

– An operator combination is treated as a function application. The operator symbol is the

5
We see no need to distinguish between expressions and statements in our evaluator. For example, we do

not need to di�erentiate between expressions and expression statements; we represent them identically and

consequently they are handled in the same way by the evaluate function. JavaScript is syntactically restricted

such that statements cannot appear inside of expressions except in function bodies, but our evaluator is going to

ignore such restrictions. For example, JavaScript does not allow nesting of return statements inside of expressions,

but our evaluator would happily accept programs in which such nesting occurs, provided that we represent them

appropriately, according to section 4.1.2.

386 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.1.1

name of the function being applied, and the operands are the arguments. Thus evaluate

does not need any rules for operators combinations.

– For a function application, evaluate must recursively evaluate the function expression

and the arguments of the application. The resulting function and arguments are passed

to apply, which handles the actual function application.

Here is the de�nition of evaluate:

Ifunction evaluate(stmt, env) {

return is_self_evaluating(stmt)

? stmt

: is_name(stmt)

? lookup_symbol_value(symbol_of_name(stmt), env)

: is_constant_declaration(stmt)

? eval_constant_declaration(stmt, env)

: is_variable_declaration(stmt)

? eval_variable_declaration(stmt, env)

: is_assignment(stmt)

? eval_assignment(stmt, env)

: is_conditional_expression(stmt)

? eval_conditional_expression(stmt, env)

: is_lambda_expression(stmt)

? make_function(lambda_parameters(stmt),

lambda_body(stmt),

env)

: is_sequence(stmt)

? eval_sequence(sequence_statements(stmt), env)

: is_block(stmt)

? eval_block(stmt, env)

: is_return_statement(stmt)

? eval_return_statement(stmt, env)

: is_application(stmt)

? apply(evaluate(function_expression(stmt), env),

list_of_values(args(stmt), env))

: error(stmt, "Unknown syntax -- evaluate");

}

For clarity, evaluate has been implemented as a case analysis using conditional expressions.

The disadvantage of this is that our function handles only a few distinguishable types of

statements and expressions, and no new ones can be de�ned without editing the de�nition

of evaluate. In most interpreter implementations, dispatching on the type of a statement or

expression is done in a data-directed style. This allows a user to add new types of statements

and expressions that evaluate can distinguish, without modifying the de�nition of evaluate

itself. (See exercise 4.3.)

387 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBDABx4BsAngAo2AGm6YA5mgCUoAN7NQKxOFDDEaAPo9MiHIiQA3AKba2CFNFExZ8pSqehMp+JEzRufIbv2GTc0sOG3FJGVkAbmUVAF9QU340U1A1DS1tWFweZBgAEwsYK1RbaHtFGOcs9HgXUzRIflqAXgTjLn5ILnhTUuLobQAjZDyRNlkxSudpmdnTAA8e6ALTaGNEbGgcVfhhKdmDw4gikN0uTC5tnsw0Uon9o8enc5lJp-fnYOttVfXN7egu3G9miM1c7k8qR04I8A3anV6rgaTVkD1mAH46hC4R1IOZqktdkjGvBUe8AFygfKmcCIaCmPKguIJJIpRzTUyYbCYUoSABEAFVoABraDIADuXi+nHggh4KQAtArvAJBHyopVYswtdKvPwtPBtMhwNp4XjbgseGgJL8HPsYZCxdoXhb5layQdMdBGvw0SpKTwuBthKYzd1erSboaXiG3XIbWt7h8VPq0IbjabcfVhEjo9JXe6E8YQdrWCdrG0OplUHkjNYq5akWhrMI0zh4EW7c4HV4MvBMHiQ2GesJqis3Zg-AzW-B2xMEomPYdMaHceHRzWfhPq+gZ3PO36nJTV5112Ot3pnU096TO9EdeXOCftMkAI54uC9Nvwa0L4sVZw0k0HRTBwHhZRfUx31WWAv1nH9ynZME3FhKllhpOkGSZZlEmSVJ1GA7R+C4NMX3gcMAV2b85C7R4e0rU8R0jUi0wonYb3jW1sNAeJcLZP1qjTCANhY+DMwRUBWkPJwTy6JiRMNViekojiJi4v0gIyHtxMHZjFLEs1TEQ6SVHovSyPbHTTG45xeNZAC6JQyFnzfD9YL2ZM6lEtjAVuai1MTGynC1WzS11UBU3TE0YBI5spHpPJhGgS56lo0ynN7HRvX4fgkpSuQ-S9H0-QDIMeT5AAqGK0DihKKr5CRIqNaLkpqxB4uncjEFy5LthoqIAEhnDCx8vDQWAuAGXJDTyUxYGIi4Qj8+C0vw9IdFcmC4LnVaqlQITqMk0BNs-MifJ-G8NQOeiMlA8DBEg6DP1UkzQCKnLXspXh5WWVsJqmyAZrmhbumsW5zKU0D2P8pNPOccbJqNQHtFm+bzlB-bhBwLhhXME73NeuHkO85SdmW9t+qu4KWTwpDphunRBPIwEUeB9GQku17MUijcakmoG0cW740EEHBhly797E+qFM30LhBn4cxUZBjnJcJt6IoNYR2jlhWlbZoXUBfUXxcupdHkpbL+G4rUH3YCtnwV5BYGFG9OwclQmdAYZRiOp2XaGEYREl7ivf4Z2OgwVoEYBgWVbB4QfcEKnPf22pqtqhko810iMwz9qEuEcOJqSFOsVQ2T1yTt5kwWJYVjWDZUBU4vI4kfOOryX9bQ1O3+gY7RtMhlTv3dun6Ox3HB4yqyPI+SuR20xt6mbEpJZronnB7+8y3tp94WdNr4pH+Cx6mL3DKOhfeligvKNn9e-zL2-4uNsXkH4WeX62HY39Nx-DJ3imPRQyO9wrPh1ogeWitWaCwxjYUeT8PbcCPgMEW79P6GW1ucKBetYHxyNug-+K0N4cmHL0SB0D9ZwNOFgx+tpSFb0CtqJwu9+7PiZvzfB7MWyINtMg7+f8P6z04SzZWPDCEmw-pdRhMlyG81YmIg28CH4kKfrIlQ6ktTMBAMcPe6AsC4AICQcgVBaCMDoAAJjYSEGWyR+AmgXnSKQl1kEM20N6MWnJXGgAAD6+JMhkNM+hoAuMliofxgSdDDA-qYSarjImPAyFbHxESAlJJ0NSWkhcQ4jX0TLciUgpAMiIlrRB8AAAW5hCmrXcYGYM4SABkjTQBVK4IlcJzQumgEqdUrgUgwGjRlr1bapI3EZQKf04pBQeaIL5CM9Ugz8lEOERmEZrjx4TLaYlLqEsVq9xsRWDI38T5zg9u4wp0zSlpjdqAPkJydiLLyf3B5LMVl7LOUhei2zhC7OED8v5kt7AHPCq8w0dCVrnK2XEnZQZcqAv2SCoZGRRFxwkQgyFXyJl9imSU2Zp87mou4YbaATy+62KJeIklQiPljKxdiVpMLflwv+UyhFO0SzkorJS5RtCswbMqN8tlLL2Wkk5YczgGRKF4KpfAgVTgLm4pmWUglfJpUwNlSEMlEqvDquoQQtBUjaVpSFe05l3VWVmtFcCpF+S9XEpURCz5groVWpFSyoFtr+4ZGImLPIXALxNl4Zil1DKcVFLxSq9s-JfWDH9YGle1htXhVjfGwMFwricnJnS0NqFsY8FbEa5qHiUoSABR6xFSz+6poDUneV6UGXlotda8V4UtIz2HtDENCrsU6EuZGm5cyh7kVJoCZNQyl4TkTWvbtDbUJNuNV62xKKax1lQA2KdbUZ3Op7WGvtSrrlUQJerFQfIxxruSp-ZeW7SVLu5ZuRsU4OmzvLpCJqrhwC3IYHezg55H2CXra+vUBpp6fsQZYn9Xg-3bg6Eendc630gY-bcgAzJBuxUE3KjJNb27Q-blWDtVfjUw478mTzxphraqkoUMp5nyYjDVjrwTkFW2xxGzqjouuEhQrDd3zuFRaoFrGKwQxHVDQE1H6X8bNf5YTnBcwcfE1x5jOGGWipY885dIEwIQWI5J3NkJkk+lUnJzKRESL6XOvpvjhmsrGfU625F0Ti6u248A3D+HD23L5P7YUpH+7kaGC5wD9E6O+cY7krlnBfOB1GIBoDjK3WCf2aZmW319QTVVi+xVEaCNwY7Hc9LiBMtJvQ7qBNN6QuuthclnaqWXRVcbQJ+FFaOWpadA15A7oaOoSMzlYQXWNNRalApZ00gBvdak5CH5g30MKc65NgzXg-mzZ3josAuoMDgGwHgIgZBKDUHoEwFDOqCkDl6PMWpEz5iSW6f2PEqXAu6mEOmlK1xfzVyQZs2jWsz3ZFyMsQo+iGontAK9zNNwJCfa0adldYEAcFGe+AK7e68MHp5uAfkWR4f5CB-0fztjyvg7cFm0QKPULvppKICQ37Uvlbrcj8ZP3SLIcx6ACDdPRo-Ebv8dijPvsU6Q1TtnaHHs43MNpLBBIdjk8QzcvkkusyMel4CdD7bsSz0MrLsznmeaALuYrhEBOKyG7xDuQk2CETa8SzV3KWv0MwXDs2UJ3O-jN3YvwgXkI-kw-CuZbbKUQyJiZ9JxKvuhmO+QMkIYYwM2mDHsNbsEz6k8gD9sIBWova9J+Dph6vwm4-0BEdK20RwpPbj4WjBv5DJyBD5CFPlfxbV6zEN07ae8ZGvBnHhwiebNeB+e3srcerJd5Sj33jfeekssH6luuqwG5u8L1RTvEh4QfZIuYT37naOrCkJUxvH9a9dNaIrUJ++1-mwxGDsqWNxcWAr+85vpcocb9d5fmYlJT974qQf0uoAAA8EUu+5+kc7+V+nI3IwgfIAAKsgMgKANjNAIIOEJAJRBgA0D4IgAyJSHyKAAANSgCg7TDBLOJqDByd7yAEGMa4EEFEHwz9ikHgAiAX5gEf4JBcjIDlSwHwHgCmDigoFoHHSQCYHYF3L4GEGbwqAkGhJkG-615UH8jiF0FODSFSCyEsGpbhzIDCjCE0oPxGpnyfAR5rBERwEFpb4HDhQxxyGr6gHILXS4YpKP6sGPArgmFaEFrKFMLzRR7OKu4F4qQ9zKGUjvK3atA-LOFeEaw-IX5REhH-TmoSwUESB-IaF+ghSzBAS-BhE9JVI573T+G86q72FzAcE8jvL8hCjDD5CgALJly2Q0z8RPBezt5HT+4V7qRPD0TWHt40qj7bCwySEqC9E16iDd71HBRTAZEIZeC-CmFdZB7Fj1aoJ6F0IGGgDwiGFODgLuFmGLG7TbFDLWGP62F-50wOGo5OEUGg5uHGDzGeGSGR7O5SCFHu4SZBGeQhFGo5ERHXFEyYjJCGgxFtwbEdAuGHDxHxKArJFT4WppEHDxAaQETZHH65Gb656vFL4HEzAQGcG-6VHQDVHLC1EpSgBKgoK1SURPIImNElEzAtFx5tGjbt77FBTIQMo9HD6P5jFj4aJwwjEt48kDETFxBTHb4Vy7ELEw7rZ6L9BbY7bGL7ZmJHZ0A0Cw46B6AGB1hmB44czjA9a2Zo65ZeZhB8iakBCIBmDG6cDmnanmAGACBKZyr6lTb97NZ3AHJey2mBC6lgxHQ8xoh0bbKMZODbLvCDHOB0a7IhkqC7LhkaJ0Yp4xnX4bDxmBm-aRTJmRRpmzB0Z9b8CMb5lHARlOB0a1hoACBcBqgSDlmVnIGHAlkpi-a4mYAxktlPCNk5y7B8jYyVLOiDBoANS9kVL9kYAHCdl0Z4HJlODCDzASDJySQAB8oAN2BB9ZE5v2Co05Kgs5858gzQy5N2yo65CZv29UEgMwu5oAC5B5K5oAFU15KgG58uwA25Ggc515+5h5oAYAJ56Z8uAApG+VeTed+QBY+aAM+d2cftOSBV+XeaicnKefLgAIRdKwUfmgV3loWtBIX-ndn-7AWYXwU3aAEqB4W5m-b-7NDblwVLl3nUXkVQVQGLlEV7n0U3bLlMXIXdmLk0UXnOB0W3mcWtCfk8VQEoVvl3nOC3kqAoVOCXZogahen+B2m+mSJV6SR+j5qWp5ASDemWlBCjQaYqVak+nlbICDAABWc0P4WlBwOlbA9FiZqlgQjGC6HpnZ0wBlOpm2ylacYOrlhlO4iidlJ+WsdGWSmEeQjGUVCUXlQxkZv2hA0A2SRg1ZKgKVaVsoCViVTZ8uw52gpAhAMZhVxVuVeVdGhVAAosmTVRVYlXRgAHJcBNVvktVNXgmJX+U1CBVmXBVEqP72WzCOX0UD7zg+X4hpz8wmUBWTUhXMzgot7DUzCjW3keXI4TVBU6mooaago+APTzVI4wASAvCRTW7pYPR0jaDUiYBCB+FWVcDtDjT6DgRzwfDzUOmKyUTOl2B8kHBnUGhRDTCaYViAm6H55FG7DW5z6A6Q1vG7AnrfTz4vbbVGX6J9ESBRF9UWk7XTVvLJFI18Ao1HVc6WU2UIC-jY3zVEo14NVODZ53QQTw1Yk7yKy1DZ5SDhyDANg84I1HTg08CYkqQainbXy3IWEzEYYOI-DDjOKcxHCYhMbtjSSUjJKB5qyK0RRwE6FC3vL6EYLFrrL0KJiq0yw8o0LBpzjSQrgHwW0GoS2m1HBq06D2qapW2kg20Dxu28oe0HjO1paoKnKe1a3PhgqO3Fhm0rrLAXobp6DToYrW2h122rohBx1BrboFa2hR06A1oVaryJ0h3LgIF37PZ53E7vYyLY2RmXBxq1pBxV15UyRO0QkYZPTuSa3F0uSUbPTsadq+QyJPw51BbOyuYrRe2OzBZ8It0HAu3Twa7935bgm21VjDpWbT2R0B3HKYElaZ3L0qhCBDhrhMRc7XoF2D0MJ0FNQZijENYm3FjgnHhlHeZCiigShjSCCAhcBHnKjXzarMBew4CHXYBSAZpHTprJBQEMCRCKA9LnYwMoYwOxBPLi1AN+DICgOXApF5FM15582s1AA

Metalinguistic Abstraction 4.1.1

Apply

The function apply takes two arguments, a function and a list of arguments to which the

function should be applied. The function apply classi�es functions into two kinds: It calls

apply_primitive_function to apply primitives; it applies compound functions by sequen-

tially evaluating the statements that make up the body of the function. The environment for

the evaluation of the body of a compound function is constructed by extending the base envi-

ronment carried by the function to include a frame that binds the parameters of the function

to the arguments to which the function is to be applied. Here is the de�nition of apply:

Ifunction apply(fun, args) {

if (is_primitive_function(fun)) {

return apply_primitive_function(fun, args);

} else if (is_compound_function(fun)) {

const result = evaluate(function_body(fun),

extend_environment(

function_parameters(fun),

args,

function_environment(fun)));

return is_return_value(result)

? return_value_content(result)

: undefined;

} else {

error(fun, "Unknown function type -- apply");

}

}

In order to return a value, JavaScript functions need to evaluate a return statement. If a function

terminates without return, the value undefined is returned. Thus, if the evaluation of the

function body yields a return value, the content of the return value is retrieved, and otherwise

the value undefined is returned.

Function arguments

When evaluate processes a function application, it uses list_of_values to produce the list

of arguments to which the function is to be applied. The function list_of_values takes as an

argument the arguments of the application. It evaluates each argument and returns a list of

the corresponding values:
6

Ifunction list_of_values(exps, env) {

6
We could have simpli�ed the is_application function clause in evaluate by using map (and stipulating

that args returns a list) rather than writing an explicit list_of_values function. We chose not to use map here

to emphasize the fact that the evaluator can be implemented without any use of higher-order functions (and

thus could be written in a language that doesn’t have higher-order functions), even though the language that it

supports will include higher-order functions.

388 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzjjrpTgq29UGTQNlVC2Qs9FAA84UwecxCA5dYkgyABAEY0giVRAN07UsxHATCJznOCiTQGpURqJ0x0MX8LH-JkxBJLo50A4jSMTZ83w-dgRjvLFoFpEZ8X5JlBUHWQyNA9xwP0XZ4EwW04P-HCaT7TBFS0boNTIhDJjvLsxGUhlVNmBchzIiigmw0R9OxFS4QEHNFzIl93x7bjphML13XtMZgPEtR3EQcBQDEXYyxSeB0g870PR8xRlH8xopNAGBejw6AuG6F93FfbgBFMAwgpC4wBgnP0y2zWL4oo0Akss7t8K6Mry0iEiZETLK3Bysx8oSmJjPgCAGozaRp1tUAAF5QGqurcKGpqKpamp2q1QLgt2KTRvqtVGqcTa4ok7Ukrw7bhq6WiOpiLq8q4A70Vqh43R9MRqskpkdtLANYra+oLv8d9so41zvyoycLBgeEQXSjSKiZKrXrTaSQmQgQxBhkitS8aBka1dC+EwsRNwAKnB0lQQywnNzkH9QaMEmEShsR5kQFG0bi58AEh3EBz9LlANBG2LZBIEWM4VkuEznFugq1uMR6YuuOHGn6vmnAwSa5ftEss06CX2ImJLQpwcLIo1h1pHRk1Mexk0gjbOoNP5jpJ2F05lguEZ1WO0rM3KiFFvI0cJkdwWXbeMWPbEcVJSirzxBewP9berXffgCWSLZ36rp6rUDeMfqFld95LmbaNQB-ay5gLsP3dQDJslySFtLcTF+CeQ5jkL8OhWqeO4iosRW+eDvq4+OuSkb+OgixlDM+5rjOHcuNI1ZPzomV-V0gm0Al6MDfIV+5X4kbPKt+D52Rbdj51Q3vW3GVunIYytWy5BqcH7JjSj8EEjfvu6wcI3iOBOhJRB8UsAoTCqByxfzynId+UNfJsWcpxL8+h3IbXmn7L4q94ZFlAFHE4G1aLPWAYpKyG1DLCTJEGeO6IkFz1QTxCGiIFrYMTFLZWtEt4zWYWCbMm1NLLXcLwseuQBG8KRKIlGQZQC0TZL-bQeDzoMN5u5Qe7dXiixrqJECvVQAiNPPXPIxD1EvE7toqRRoJgzVMcPLRo9iEyMTEAmIy0coaBQao6kbR5idHMU2Fe7C9EGOKGI4h+c-Ej17IY8eNDrFkPEBEi+RcRgCKcfUFx-g3HMGYCACAPMPZYFwAQEg5AqC0EYHQAATJ47iuxTDmEsGQxA9hIRS1zkYLG2RVxtNAAAHz6RRepskWkOGuBoAZQzjA5FyFwDobTJnal2NPaRwp3CLPRLsFKXA0oZX3ioupxh5h2DsBlIw5cV7wAABYnGOYrTQiiIK7AwhucZAAyN5oAbl8Adms8a-zQDXNuXwOwyCgaI06WEM2ks9EdOOac7o5z+4r03DDR8YKCmcBiWIqcMM2mwsefob5GkmarOqOxFymKIUSNYdUW6cKQUIqRZILcNLOjooOZwNljVQlkphX4JKxLGZ4xRkK0ljc4oYvnvoblaS1m9UFXMklIrhXMwlVKxhuwkn+OLuMhVhLmjwrORc7Bm5tVRJGByyl0rQDmvsdE3l+KBUGrFSq11aqFaSs5foO1l9eyOPlc6hGXylWqpRuKz1Grea7FsZov11DA1uAZSc41yLTWxp1ZailtTOAZotbXbFfL7mKp+WGsQ7qi0Z29bI-YGjM21wDXS-VwaK1lsjdW3YupeSUIHE6pNBqZKMtTSylFXaVJUNQFanN+gx1KiGCqVcut6UGvFCkCQvKaYwzkK29t1rGFjr3nqoNeDW0RuFF6vd0bjAYJ9s1RNDzg2DpTYik10g5CbhvR9bMU7wU1UJeO3tR7+0ttDWe8lUbDm8X4qgQS-YRJ9ofXgp9TLX1iVoaAM12JcQCXpEJAcP6qW2psoZNSeygOIYgtTLQ4AUQMGzb+gy-JeJLubXgqjOyURVPo4RxjxI7IOSbceyjINqMogAMzcZtfUzyT1yN-sfUcodL601vow6bAjNqCEx1k6rYtBry6bnU3IRaEGsUyY9MnT6eq3BCaJaBlVCtTP6C9u9bWAnU56ZA6Wkz1aGKWezGnTzeCwMeac80MKEVtPy108uhTnTkaxTC52wErmU6xVi0hpGKE226ck5q6ZR9l73ooxCo1ymR2mqXhpxhWml4Ifk2x-um4qvGeFGFneh7isNYgju89SWAS1nrI2XVxXk0oZU2JTcbYhsfGq7zcFAH4NyZLcqj1fXq1MXqytstIWq2Xu4lBTbyAUgkQy08rLKNjs-2rS56CDgrtBZ66Gh7YW-NHZO49-Q4qXscVyWAcFGBwDYDwEQMglBqD0CYGJ6dhq5LiAJPc7r+hLz-MmrJW0YWtPgrEHOqFqpfKAJwcBxrLLMNGyFmA8FlN0O44XWqOQhPsm-q1bgFIFPEXY-AIjsbw7kTgHfa0cnKUjBU7y-NqliplTaEXbhbn+mRMcf56AOjYWFt7y5+0+XE5RNK646riXZpIF8IhBrglwb2M0aVxJzHEpCH-vCagUB-LcHCdJ0Q6wXBKZEc6NmMXkH3eFAHh7uXcWyvMuRHIjDAfbRze4tHk4swndB8KCHk99m1W0QvTDu08RgT2HATwI35YgnRCSuKpnhHbtA6hXBeomuvMaQrzanPyBTC70NNX8IuiuYu-0C83C86uDyI4srIFlgjaRcN9gY3A1JorJfL+rHg-11GN8rRU7Zu8H98LWvj3139ucE776XlntB-xR78Tp7paj9+8P4Pzap+oXn5s73wFKqb9hZAfbAvReFon7kAUAToCCcCXq-scPYNciviUKdqjmXHUHYJAYAU3M6P3kvjXjvgAd-KRFkMAQXsgUEOAQgVclAbkKdgADxwEQHEFIEvRTBrjIAbibgAAqCQ+CHQm8c4kAAYfMqQdYiAGUQQm4oAAA1FNAnDEJIE8PYIFIaDvsoKIV7kIaIehv4JIaMjIcnunC9BZPQYwSwcgBAFwIePojBFwQFjwYNvwd0IISIWIeIe4GodIeALISfvIRhu+rYSoQ4SMk4YaEgbfjOgkMkGkIWmkryrotEL+maOcgkGuqAY0L+sHCQbAjWnlIjonHFisskRbPYc6NEfEMdiQrke4C3nnnYD-tPsXvUMgRMEEIWhNACkKnIV4TpEKjQcURoHUQLG2q4XIOKv4b9ADBMKtLXjwA0WjjcuPsbBUVAr7lLNYrocke+ruDkClJBFChyhMFnDdHohMMrEflvFXsvkIodAakkUflIo-uEAHB0W4BcevgPk-rfJdNEP9JfmggoDEYUU3owiEkYmEUYpgQIBEe4FEZ8QUXEXXrsXcYRkkRgakRvtVB0lkc0eIVMOCbEUUbkaUaMjMTPqMXFOhnUbyuMSGt5q4V4V4KYF0G0d-ECTUdsHzN0RGr0W-hnlgc8X9HYTECMWaKSWPhFpFFPrMZ0OkaaIsYWssdAKsXxOseENeLeNypsY0NsfMUrD4lgFCocUNEfgSYMYlGcd0RcTvo8dcZkh0fcXvqaVwF6lsa8aXgavkZidkn9vktKoDsDiUmDuUpDnQDQDDs8k8DgNhjwFKFSrhDAJ9oakpuHhGdAO+sSIgMGUgKGbHpwImcmYgKGUYEmXWCnE2GwFGa2oWdmsrBmSGWGe6VvOXBSAZsSl7m4MSqODcf4AZqSg2RoKSs2eaRoAZi8h2aAC8t2bWU1j+AOT+MOY0AZsssjF7jOShOiC2e4AZjiGgHWHwOkF7queuZvLcEuW4AZquOuB2UeQwSaPub2U1uKNcnCFkGgJTNeVcreRgBMBeS-KTsIQOW4GIASHIOkMoONAAHygCXiiG7lvkGZXhfkaA-l-kAXAWXi3jgU9nvnIhEzQXBS-mgD-kTQIWgCEzYUaAQVNbAAYWwXYXwUgWgBgDIUjmk4ACkZFWFOFQFVF9FhFoAxFpOqOX55FLFeFsB-5KFBmAAhP8rxcxZRZeGJZNEJXRWhWQUxXBbhVRRQRoHJVOU1mQeNNBXxVJaANpepVxWhYBUpRRSpZeMBUZcJU1oBTpXIP4HpRZaAHZdZfJQTCJRhVRe4KxRoCJW4AjhSOxGWUGRWSLhLjvhNFqKuuWkqnIOWSmZWagtdiFUmWFQtsgFkAAFZ9CpxRUTAxVsAqV9mhWJVe7FmRlxQoX+AJVZlJXizBUam1XZlJLPzlwGbbK7LdBe6dUtIZRvm3GtlNaEDQBpS4ibkOUjVjURQDWDUHlXkiBPmkCEAdmPlGDLWzVzWoUExrUACiA5e1m1c1BmAAcnwCdRhWdSdQycUY1XMIOaVXVcxr4jyqvvlY0IVSpUKlzvFY9S1T4gsClU1X9QngDX4uvu9TEJ9axcWVVQ9WlYlc9YDexL+tNpFM1fVWSGwHIHOD+KnhBGjTmcWNspgAIOkLiVlXwPwPzE8OFFiaOBjTmUbMcEiAWZGdVRMLjVRM+P4NWtSakHieWPjWggSKAoisKfibQnbHxDjiDeFdKpcXIC0W4IzdqnIRzTENLRpIzRldlblb5MrRoKrWDWdHvkde4AKRPkKRApUb7sgscANGPnYPEDgfSDbSKbPnzIomkBLULS+DDmjXGTjTBIiW4CMYGQjU9ZzpVWqUlITTreGdjSYfOM8aqeHXnKzuzvLagnGftNCcrCSMhJ7TNGrsgAaLnRrcAqLd-r7RVIbRMAtrTtLmqBXfXY0ExJXbkQtrXSbpVZySVimPbh7vREyEXQyV4PHrxEnoXfZAyUEL1VDBdKqdCaeRuEnTuHuAeMeG6YwhFCkDdDePooNpuanb9mWUIG1U1hjV7k5axaBRRS+IHXWJAL5OXAwHIFxs+EAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932cu8sU0uDUHxfkmUFQdZFRdD3B85p4EwQLO1LMQaT7TA8IyjVRtCyZpLmhaGSWwTVsTQyglm0R5uxRa4TE-b6hfDrqq6t0fTGNA2X49wwIg3YyxSWqTC9d17Sevj8u8iKsOS1L0sy6Icrohr3qYowBgnP0y30yIgLG7UJuO7sdORzNUYhdGakTVq2tovKtUE8TUrVLpIiiyTQEMzaTtp-HS3LYmZFJrV4b80HiwKQL2fppwoqBlmJtFjNpCisn3BhymTWxh4Ho9AzbJJMXOezBdpCAnnrq1d9FbfD92BGUBxy6KcYHhEFIbEComUxzRBeaaBRIEZ2wldrUvC9gQBC1IIlR0sRNwAKnt0lQQyqPNzkG3JwsWOESd+ZEB9l2MefABIdxzc6tBG2LdjFjOFZLn15xXtAxjdnVgHrjd-xqdAdGmeb30CYDSEFbcCbPtYn6e8BlnA+9lmgjbOpugkMvJ0gSvlguEYrLxnWsyJpwMYcxzS46ZfV-eGuxHFSVfu9DWWcckGOZ3+Ba7zqjFYphrgf8YfmLaeZOlOGvJsuYTRxEMMiamCxAFnxGBkbIuRITrTcJifgTxDjHGgdXMkIDRxgMkGIVBzwMFvCwfJU88CfatzvhiUAQcBBk3ahbL8+hpgKXiPGVko164aA7opJmcZEgKWQAaAe0QO7sMEBgKSR9y4r0wevNoYhFJvzcB3dOjsMpSOtuA1ORh1HxwXhIuiKj3ZphYcLOaikD5qQJBpLSCgdKoHLEY56oB9GQ1cYmKit1LacFYf5FGXMvhcK-hNS+Jx-LC3ENQ1m4h-I7UGtgxcMTbheJukwy4XUHaIjRsExM3DQAdyiUzHGYhsl6QAVEq6SgyblLgSUKKZS44VPpsUBBQZQBRLZGTCaUT0mdVYYQ9Brwq4KOGi9L+dTyENKqUMl48iPj1PackiYpS5nENGYsqpHTEzWI0LzGiGgMlW1YZAgBJCxkViUAUqZbS8hVLOafUhxZpnLKHFqUpjyFm9m2YuUaezRrpOYCAKqvj0BYFwAQEg5AqC0EYHQAATMczgTczAWGOmlBw1wCk-yMF7bIq5IQaAAD7EsMk3KamKiWgFJeS4wORchcA6ES2l2pdh0OpSSslbLjDgzSita4-S7q7HmHYOwGVEbgJRPAAAFicUVbdcXhw3NigAZKq0Acq+AL2xRJPVoBZXyr4HYIVYLPZ+yJaEj2IrjXis4jbLcLsWrFzuq80o5QLXYqtWYzVTKF5Z0ocKbxyLfIAmaUE6o3DcWirtZK-BnDNzlKRM6nxzDsLhuzEswNkbgYTS1f6vg2cxD5rEAGxBnkXVmqTZm35Oa-B5r9aWwtPsy2t2DZ1XYXyLnAOFFG61xgY0SodQmrtmzLgppDYUv+UDu29jdZa+tHsS1luXc28t7a7qjqAT86wDo61DyXY2strag0brNbsdZIzt1JP3aYosk1bVDqlQmy93yRgTs6q+2dsD51esXT61dRbAPZucGhM9aav1jtgbWuuubD3aqbUWk91QK2psybsXUvIEkDgXQen1NqxVPvjcEzcmHFqJNQB+u6ZGzJ+1VLXN2YSawSDubol2chgPltNWmsjilcN3qwpx5DoHwPoeMAEvuuTb3hXwwOx99rn0kYk7rToVGzXxIGjhv9eH72cdbtxsT3VaQjH6v2Ia-GZP3oI7G4dwSUmbhpL1UI9JNNDTU2m7a-Jlo6t7XBn1KctDgBRAwUTVtPPEm6gxvt-mdGBZRAi0LnBwtLUEDmXz-770BZSiiAAzIl0N19-p7tgxlrC1miNpekKVHu7nMnhMK49Ym0XMtSs3DVuQxMDNWx7iWJ+UWVBuFK-oPTQauucBloEqTz9GPwZ8wbfL4VH6E2foDZrWFhNATGwVr6Y8-qNb3jN2TeLvaAy280JG29lurb81ZkIJ2NuocnbsARFnLNlbk4RhTxGqugE3AI2rVt6sve0wJ-QDq-vsMSEnTuwozsCKESIkHoPfUIeE49jtAJaz1kbMhJH0b5NxsqyNRNWOGwfAB+N6q5GtPpZ04Jo9a79OVrTYBCzDbUdrrR+ju6B44QUXVMgFIQE1sFY5YLzbzPMkyznGIcXh3dONrl2d7WfP5yy6F-L9ba6lfm2BWAZyGBwDYDwEQMglBqD0CYDlp7A7priAJIqj2l49VSSmraM79XnJiFoxZNUcgrEhOiBNcHLE2IcS4mCpOKSffaEsv74R6RumS6tp23AYfNIR+YShR3R3B1feROAUqof2IZ+chT-QzlFTKlj2qbPOKPZZaC4X0AIWzuV74+AHPLWJxxebwltvVPXJOP0p3+vMWe-Zeb3lj3EoImC0aTFbMXesLg8ibu6Hi-OgLYFmYxpUTl8Fbz4Tghu7Spr8KOXt7Qtd3dViifwoB+UcFqLfvhbdp4jAnsJYBxbl9L5O9femWgcpOjLEbhav-kHrNmIMAQMnAB-icFkH+OZFwBMkXONB7MqihMgUnu+B3IapYKPLhEPi0kzHQi+J1J7sgSxhQq4lEsLgAVhJgW6rQbuhLmhlbGAeEFmlZMgcBGgXTsNo2pwVwAtsIVFDwX7HwYNugT6mWsIW-rYvPN-jwI4i0tQSUCwXRP7oCCcBATIZlnUHYLKuobkMLi7tbIYcYQUEBIZF4JgZQZ6ncpoYbKAFkDocoUgjQscPYMYcwcoAADwWE+Eyr342G4LcBrjIAbibgAAqCQoA4o0A6Q5EdgkAAYncqQdYiAGUQQm4oAAA1MzPfG4JIE8PYGBIaH4QUb9qVNUSkv4KUZihUaEWhHfEdJEdEXEcgBAFwIeCkWkXrBkaTjkb9nUcUd4JSuUeAJUU4coIUdDnkYUfUe4I0VMYaNYdzmavEEkKkFmo0m6hMtELATwIjAkCkNAfUAUu4CXGXCYVoZ0pIm3BMLihyn4csc6GaKcYLprOMfsnAcgJ-nYMoaoeWF4u8UEG6pJPqiWm8b8V4CWhse8RoBCbca2rMXIGWhsSYv4KbI0PDGaFCa7nKgQd9EQT-sPlvlcaaB0XcaVLuDkBxLQn7M6hMErJ-CzB3MIUzKAVQbzCrB7DIlgX7NwUKeEDUEidccgeIaKSIdiWbPKQIaiF8ecTAXdLchQvsXcnIAUIcdcXdJ8dsSqZcV-HqWaoKcwdqY8VSSDEdq8bMSklMAoMqT8ffO-gCZisCb-hCGCbZBCXcoSU-ncWEY5F4KYF0AiZIpaQIJ4RyJ3KiYzuiQamuliYPNlEUXiYxASeYfgTtmSSoV6SViaIVFEbSb9vSSXt0EyeEI1OmhnMmnKW4Gydae3H-FgH7NyVvMRLycbPyT6oKWIcwTKeKb8W4GIXQUOQ2dlNDJAT6gaWcRcTUrriCgbhCibtCubnCkwDQDbnhDBHBERF7qhCLg+p9sfmRJuNBARPBFwJfpefuScDBHWMtk2EeTdvThzkWh5Okh3HeYRIhGClog6hSODvmtDm4PmqOMOWOK1gGmBRoAGpBXsuDsqnBaAMqohcBa1jbKhTbBhY0ODuyt7NDoRcHOiFBf4ODjiGgHWHwOkNDlRTRckbcORe4ODsWZgHBexSaCxW4ODuKLKnCFkGgEnPxTKoJRgBMDxRoODvkahW4GIASHIOkMoBJAAHygCXiFFMVSXaL4KbhXhyUaAKVKUqXqWXi3jaVIWtaJxyAxDGWgDKWSRmWgBRwOUaA6Xg7ACGUQSKUOWmUaWgBgCWWYV6UACk3l9ljlalAVoVbloAHlrWLuclkV-lzu+qylVlelAAhHqslb5VFc5TlVJBlSFciJuP4RFflalaAIERoCVfha1v4RJIZSlU5QFU1XVQlXpapZVSZW1ZeOpZ1ZlWVapc1bZe4K1dFQNVJH5cNZHFld5QFe4NFRoFlW4A7hSFRD+fhPeZnnOk4ZJFqOKOcfmnIL+deXtRvFta2edQeVTsgFkAAFZ9DPyHUTDHXFRtXIU7V-nQ6cYeQ6X+C3X-nMIS7bV7l-mRb-yvVSQOrg58qQzQ4I0ZSA0jm8WtaEDQAQy4h0W2WY3Y21So1o26VlWiVGCkCEBwVk0U1E1o18UiBiUACiqFZNjNtNI54OAAcnwJzd5dzZzTGeMddXMGhT9RdV8swW9Y0B9eBNFSWp3mdWLURI8mDTdUrdFNOpUqwVLTEDLW1f9WhIrRDeLZrdNuQWqVjrhMDZdWsGRHODbI-jhEYGlHoppKuL+B6Y9XwPwKXE8N9C6aONbY+ccEiC+cpCkvbeAs+P4MnpwGGbscQeWI-upEoYnfpDEnPJpN7urTbS8k4XIBKaLcbcrabdwezW4JnQvNbZXg9c9QgK4oXdbV8nQeXfBcSbmZ6RSc4OkscOJPgXYPEG4fSOSSQdIhFGkGnRCFRJOinFOOOQyJ4saVsBNLzqzgvetFPMHMaGHIWhuKUtLhRNAUSC4bsikrPRYOOSrmvcfTUGtECh3DgLhNqsZvJNhkNEzGZKYJHAwNUQik+M6ufdKQ6gwHII-XCN0C-S5K5iMHIAAOyt0GrEkD0PX4gj1IjPhAA

Metalinguistic Abstraction 4.1.1

return no_args(exps)

? null

: pair(evaluate(first_arg(exps), env),

list_of_values(rest_args(exps), env));

}

Conditional expressions

The function eval_conditional_expression evaluates the predicate part of a conditional

expression in the given environment. If the result is true, the consequent is evaluated, otherwise

the alternative:

Ifunction eval_conditional_expression(stmt, env) {

return is_true(evaluate(cond_expr_pred(stmt), env))

? evaluate(cond_expr_cons(stmt), env)

: evaluate(cond_expr_alt(stmt), env);

}

The use of is_true in eval_conditional_expression highlights the issue of the connec-

tion between an implemented language and an implementation language. The predicate is

evaluated in the language being implemented and thus yields a value in that language. The

interpreter predicate is_true translates that value into a value that can be tested by the con-

ditional expression in the implementation language: The metacircular representation of truth

might not be the same as that of the underlying JavaScript.
7

Sequences

The function eval_sequence is used by evaluate to evaluate a sequence of statements at the

toplevel, or in a block. It takes as arguments a sequence of statements and an environment,

and evaluates the statements in the order in which they occur. The value returned is the value

of the �nal statement, except if the result of evaluating any statement in the sequence yields a

return value, that value is returned and the subsequent statements are ignored.
8

Ifunction eval_sequence(stmts, env) {

if (is_empty_sequence(stmts)) {

return undefined;

} else if (is_last_statement(stmts)) {

return evaluate(first_statement(stmts),env);

7
In this case, the language being implemented and the implementation language are the same. Contemplation

of the meaning of is_true here yields expansion of consciousness without the abuse of substance.

8
The treatment of return statements in eval_sequence re�ects the proper result of evaluating function

applications in JavaScript, but the evaluator presented here does not comply with the ECMAScript speci�cation

for the value of programs that consist of sequences of statements outside of any function body. Exercise 4.9

addresses this gap.

389 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvEwvXde0xiGw6RtAxjdjLFJare70PS+vj8u8iKsOS1L0sy6IcrohqwIg3YBgnP0y30yIgPQk0xo20QtrVLosfLXGakTVq2tovKtUE8TUtJjNpCiyTQGOonu22snM2xiFKZkamtVRpiC2h4sLpJzGnCiiHjrG5nZbZi6afcJH6YJyXXrdH0DNskk+dLANweF+p1bcd8NbfD92BGLrDB6iwYHhEF4bEComXxtwxt2BaBAET2wm9rV5sWrUVr4NbNwAKld0lQQy2PNzkU6pwThEPfmRAg69vHnwASHcW3OrQRti3YxYzhWS4F2qX6NDF3Y9bB64fZiRnQFxjnW-tEss06evnEtzQdYB1jgb7h1pFmk1w8D46gjbOpugkCvJ0gavlguEYrN5geBZzJw8Ycxzy46Tft-eOuxHFSUQY+8RjscqHZZN7Nh4LqiNbphrIdGuPZibR5idFODvJsuZ56O0kGIRmCxwE3xGBkbIuRIShSaLsfgTxDjHEQbXMkUDRxxCdmIbBzw8FvAIfJU8qCg7txfhicai0abtTtl+fQ0wFLxHjKyH6ACu6KQ5nGRIClkAGkhDTLuPDBAYCkhfSuW98G7zaGIRSP83Bd0zu7DKciYHOyMNopOa8ZF0Q0WPNMnC+qbUUmfNSBINJaQUDpVA5ZTHfSMfDb6iYqLPXtpwLh-lyY4y+Pw6IY174nH8tLRh0lNr+QZAKQhi5Ym3B8U9dhlxXpu0RCE6Qw0BEgNABdDm3MxA5L0mA6WQZDo0wqSgkoUVymJ0qWTYoaCakXTZDTMaatS4vS4eQ3Brwa4qMHLIMJ7h6m0MadLIZLxlEfAaR0lJEwynzMoaMpZ1TFyHTsRoEWNENCZIdlw+BYCqFjIrEoRu2EWnLLyNLc519qHFhmSsocWoynPMWb2HZQ49lfItrbZgIAqr+PQFgXABASDkCoLQRgdAABMJzOAtzMBYImaUHDXFuX7EIkBsirkhBoAAPqSwyLd4BPHsCS0A5LKXGByLkLgHQSUMu1P7RadKyUUs5cYWGaUMqSP6RC5o8w7B2AykYbqKJ4AAAsTgSo7uFSxzRVoblxQAMi1aARVfA164oksa0ACqlV8DsBkzq-sQ4koAfiowEqpWcVlXwzcXsWqio4d3dppRyi2txfanW+q1453ocKXxqLfIAhaRTYUjcHVOula60Jm4KlIk9X4716bswPLtX4MaIaxBhrEEWkt7dPJeqyTmqp1gZ7OATcG1lobo5B3LRGyN1rgFzAQZcyB8bIaJotc6mVpC3U-L7ZcTNUbQATq2b2d54aG6DqbQa4trbS3NvXbndBlas1ZLnRAv5db82+1XS2nd7bqh7pnVg-YwzfnJOXQWoBjrh3JrHamjZIyj0jGnZ1b9j6aG+tPRYoseqt0lrLRuitnaXqAcncg-5DaV1qug5emDHarUvXRmEeUvJElMkFOMjuQ7JUftgW63UBH+REb-XBsV1HFTKm0JZUDqrwPihSBIX1Z0jBezkOhpdzgb2dSY4pdjhbIMbqvSJhj3q-KS0PnG59Z61W7CTS6z9+TQCbiCfzDN8mskJNowOST57t3CdEzh7ttIRj4lM8R8z6njCadHZR0JqTNw0jgqgBz-ZiP-pejSPsmA8LCsDS+tVp0tDgBRAwIzDsQuJKxOgZz4GYspRREixLnBkv8jhGJdLWFMtxb4QAZly9Gx++tItqfAxp99WmPM6c3NPILYrIk1bbifUjOtZVtfej6VO3devYbFdPZTn87VuCi+BoT6DxveuVsbQex9Z59bQ1uymS3jPXSm0PcGja1WyaArth2E8ga4Wnkd1DDWCWB3BudtFxgMaraPrdubWEuWPdO9ZsVuwRHsY4991zTX3PrYmZuERHXvVdaB3VsDJXSHQ54YkEb1xnv6BEWIiRiOkf6AW+3LHzQfwNn7apgn4rwcpta2TxsU6qvgo4aFujQpKcg8J9JndxOq0O1uvjqTa6S2ybQkziat1kD3U2-d-j3Kpdnb55wFbk0HAK5l1hIt6uSdG1V+qdXx3wMlu1yCsFzkMDgGwHgIgZBKDUHoEwcrt7XOYECgSFVY1LzGqktS20JOuvOTEGZEOqpvq2MmfV5HsDvO4DYhxLiELU6pODxZNUchw+HOd1iVi7FNIJ44ShD3r63OyvAKVFice8-OVh1k5yzHzKsbVIXvF-WnYSzi2X0ACWSd14k+AIv0W2+xZQnIHLPfqqWGcW5fS-eW+D4nMPzvlX-cSiiUpp5qBYoD4yyj6JdaRsxWzEzxTlimkXW36Dt95HmvIi6bpvfhQa8Owf7aVLsUyF1ov1z4XG7z9M7tPEMCPYJPjwC4q0utPUHPkbhupnp1CrpbraomFAZrlurAQMnAIAScFkH+A3gUiXO4GNBqihLgbUrbF3GapYJPLhK5K4tmBzAHAIC+J1AHg3jxnQt9BdEBMgfoEQYuhwXWorvug7AgeEA8lZA3sBPgZHt-mvCIVwEznIVFOISHJIbNgQTrCWnIf-g4qvCAWARTL6vwXROnoCCcEgUGtFnUHYAqmwSUFwd7l1FYTYQUHPNGKAEQSwQGoYXIC4QdFkKYSARghoEEMcPYDYXwcoAADyOFhHyof5mIvxTBrjIAbibgAAqCQoA4o0A6Q5EdghKn83cqQdYiAGUQQm4oAAA1JzK-G4JIDSnYGBIaBEVUbpqVK0akv4PUdik0fEXjC-EEIVCkWIOkZkeAFwIeHkQUUPEUbWPWGUbph0bUd4NSj0eAM0YYcoNUSNhUdUZ0e4N0fYL0b4UzvEEkKkA8k0ougUtEJ1GaDKgkNxuYVqGXBXLYbkEYVwQAhMA6gwe8QkbUVMAoA8VLgbMsQchgcgEAXYHodPhCD4vsUwoupJCakWhEYibEBBmur4RiUiW8eWpsXICWicaPG1KLIxGaCiT7oqpQVdrCbQZ0CqmsskZqr6qVLuDkBxONCHJ6hMJrP-MdF3HIRzPAawSLNrGqgosQSHGIdKeEEdOCW4IoZwXKfIeYv4NbFbOEjrPcWcU8cCkId+PcoulcWycUoIDce4HccCXqRATct8UqS9FKXwT4bIkyY0L8dyuibZECTwCCdxhiQAVCdivSeAQibZEEMiQ4WiZsfsV4KYF0EWi4a6QIEERMJGfiTBoSaar-m6eqb-OSRBJSQ4RQYDMDDQa0u6TEEMayXQuydAJyZpNyeEI1HclnIZqSfybchMEKQ3iKQfHIXafmR6TrFKYoXwaqQqYqVgDKSqVocOdlIjNqWqrqY8UORkqCmAOblCtbrCnbgikwDQFntBARPBIhBCsVBrtViXqQmRJuCeXBAhE-pwA+YRCcDBHWEfE2KhIbigT-juh5Bkl3K+WefnnXBzLKhSANiGiNm4CGqOFOSdCjmGrBRoGGghfsgNhqqhe4dHJgBhVBSjt1Dhd1ARY0ANj9gICNpReiIhe4ANjiGgHWHwOkCNoxcxbkbcHRW4ANjWahTWSaNxRoANuKAqnCFkGgKnKJfKuJRgBMEJfoiMZUThW4GIASHIOkMoBJAAHygCXjVGcUKUDZXgqUaBqUaVaW6WXi3iGWYUo4pxyAxDmWgCaWSRWWgCxwuUaBGUo7ACmUQTqUuWWV6WgBgC2WEXR4ACk-lzlrlOlIVkVXloAPl0e3uKlsVwVXuJqmldl0eAAhMaulYFXFe5QVVJDlRFciJuJETFcVZlaANERoBVeRSjpERJKZRlW5SFW1U1SlVVdpbVRZV1ZeLpb1blf1e1Y5e4J1fFSNVJEFeNSMXlf5SFe4PFRoHlW4O7hSFRMBfhI+eeSznwZJFqFxpuganICBURObrtUUldYdb2MgFkAAFZ9DwByKnU1jFRdVYX7VvkjYLYeQKX+D3VgV7y3VzDuF-WgXPJ6KyoDaCrwwjaI0ZTA3TnCUo6EDQBwy4isWOVY0421Ro3o0iUiAyWkCECoXSVGAU3E3Tmk1iUACiOF1NjNdNipA2AAcnwJzf5dzZzWmeCRDUJKDT8sdRJJ9dxuBPFUWv3pddDURLDcLeJKLSAggpwSdRMGddLbpYDWhPLTBAdalu0EPFRJ1DhHhIbW+WDWsGRHON1F-thHMbhGlIYppKuL+CGc9XwPwOXE8EDGCapKDR+ccEiN+cpKkvbU7M+P4ErieBFGkBWeWI7epLoUnfpLEivJpEHgrQ9cgi6TUeCarT2mAhEfshMFnWvKDXXk9a9QgN9LiVDVbTDWrbWjOOzW4KWVQaGUiJGscOJBQXYPEP4fSFPgyeJPIgnT3fpFRDOmctiL5qEPSI5k+hMs8eoS5o6q7uIN8tiKFuFoarsuGW4bvXniloJBqIdIZIMdYsTPlsSIVpDgdJnswF3DgLhPffhVJGZKYCMb7g1F4AwEwkik+J6vPZpIvf5kkmsO-allpPyESTSWWdQWPZWU+EAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEYusMHqLBgeEQXS7oxAqJl0PcYGQkW5mwlZrV5sWrUVr4NbNwAKjp0lQQy0XNzkU6pwlhFGbEeZEAEbnwiAzyAEh3DfcmvxPRti3YxYzhWS4F2qQGNDAiDdjdH1ITZxpBPEyIMCkx2PRLLNOit5xWtGiKsN2MsUlqkwvXde0xlmk1+YEJbEuw2s6iZtBjcnSAzeWC4Ris7auj9Mt9I9tCHMczOOmz3P3ktsRxUlKPvQ9AzHI7kli8zUv-bjtDPOiHK6Ia-LvJD3zmLaeZOlOPOm1zBOqckKHp4WOf65GDJslyZ3jsxfgnkOY4N4tslF9HOJqbEQ-nhPt4z-k08d-V64keTBak6D9qDcuV640jKyAGY9QBu1AIpSS4D4gRgUsgA0kIg5gOgYIT2oBq4mxzqffObQxCKSou4MBisGYZVQfLWmoRJbK2QXRfBQMJ4o0hopSuakCQaS0goHSqByzUKGqAIhUtui8MTFRZ6FNODTALBPX2vccxfGAdEMaTcTj+Quu3VSeMrpphct9AcRoO4xGEWTTqEj6aIjLnIxMNtQHT1ABdSBGjTF6VnqooMh0g6OO3iUKKYhHFIk8bvVxF02RBzGhdIxL0JG32Pq8c22C-rDRAR45+XjVFRJeFgj4-jX6Li1BotJ99YmZJcYuQ6zCNCJiem4X+lMJFu3Xg-OJFYlBWKScUXI3i6mzwaZk5JASckTA0Z0uuj9izFKHKU3JpN9bMBAFVMR6AsC4AICQcgVBaCMDoAAJmqZwB2ZgLAQzSg4a4ViOZGAWtkVckINAAB8bmGQdqDI51zQB3IecYHIuQuAdGuW87UuxP7ZOtm4P56JdjJVSsra44T5nNHmHYOwGUjDdRRPAAAFiceFLtND0KgsLDcJyABkhLQAYr4BnYUkkJJSXRZivgdgYWG2aCza5ICznwsRZxFFQDNwsxavrTqvTSjlB5qyhR9CyVM1VkC5wIidmTzhJQ8sJyx7svpZy5F18eW+OzPy0RTKdWzyFWKuhWjSXfKlcLdWkqVZWudoPfVf9DVdDGc4G2Y0bXSttWre1jK-67CGRk5CKq-BqoRUi7lcjNyBu6ZcPV8rrFzHqYU3sxqQ2mqLOa8l3rrUWpzfauVnUY0pq3q67FHq81eq9W-QtL1dj5JifPYNlLVW4uMByiNWqo0NqDSMeNnUe2xq3mmltoaJWVrtZ6u1Nba2wsHSW+SZb3XjuzVW6dwoHUJt2LqXk6Mfrn1HRm0O7b1WdpXjyndMN92oH7S9S9ZkeaqgDuW+h4oUgSDacK85PM5BTp9TWv1lNL2KRNTis1f71bVo3bOplfkpEl2VYesDmaQanq5V26QpV-IId1TBv+-k926PTchrCEHnaAd2VPd6dIr1EaQ+FM1qHw3ofPXI467ho3Yg+qEekOjfq3thQTYkcMKXW1bWa06WhwAogYHhymQmMY4OIwxzNkmUook2XJzgCmiayLE2OiT1NJHSaAQAZi0wq72sdlNho1ZGzDoBNxWa4AJplSiW4xwdNIICy7DMryc9HH0ss0FOCAhRk8gWfY4b7iqqpR79BkbfuFiARdpGIe8y+8Deby7Ja7ml7MAcfPiczVBjLyWw6sUjs5-uvmUOcyTv3crxgBgTmi3p+ARWDN1fOVzUrHXN2dV2AA0DJGFUdpY+10qADXN-3c8Nmz9CUWbmm3IaFAqXoANgfA5TKnSMTv-RuprcJaz1kbM2-T8W4Voc1axhzm4fwNg+DNymzlaO-RGxW1d67qgWfIvOD7K7LU+r6wPZLE1brIHupl7rgKxCQ7C+t2FqU1Q3QonDqHtW9vZvh79vLEOMfFawl6nHZMZlgGchgcA2A8BEDIJQag9AmCma3e2sG4gCTYt2-oS81KaVs+S+55yYgH0WTVHIJh8j2aLevpx1i7FNJcXmbLdjbgRfaEsuLuB6RgmI9g1POXHFFeGxQpz2zZ7kTgFKixNihvnLPc4K9tXT6TenOlxOKTKE5CyeS69kD4BTdu66B7y3oBNM++qpYDhbl9L+9d35oP6mQ-mYFxKZRUjVExWzAH+PYhNwqOsC5uQmfOi-bg1o7xF1s-dfGzd5EQTHP58KPb-QjfbRvVijfAvVesdA-VpX37dp4jAnsJHngnCnHIksWy+hXqKm67-sjicVPRVT-FVl7Nc-HU1LgEPk4WQ-zmS4AkvWUuzWrQ3Mv8IOv3xgNpZYSruFXJcOzJAwFL5OqC8Px+l+vCLqddP5muft-iUL-gXgjlvg7oflklZIfsBCfpdjapflwL9kgVFDATzHAXFpdl6kgQPqwunKPuPsqp+qAXROLoCCcKvgAVhMcPYOisAbkD5rzl1HUHYPQQUPHNGKAEAZ-qKkKqQQ9OAhQaPu-BiCwXQWigwTQqAAADziFsGSEcGiGxDcBrjIAbibgAAqCQoA4o0A6Qf2kAAYaCqQdYiAGUQQm4oAAA1KACro0JIE8PYGBIaPwcoLYcFlYbYfYTEI4Uci4Z3jQsoWIYVOobntocgBAFwIeIYcYWgKYfWBYY5jYXYfot4E8s4eAK4SQe4Y5qVCkT4f4H4ZkYaEob9vEEkKkFkt4kKgktEMYgoMigkO+lQY0IKsbFIQIZzhMGcrDm4YUSoWaE0ZDmomkfIP0MgMPnYIQdHhCMIgMWIUKlSlJDav0WMV4DakoQsRoEEOgvmm4XIF6mUUHO4O+BMHbOtAoMsaAHfuHJHE-hPt0aaGoQSp+qVLuDkBxONDzPyhMMPHlMdGAkgZAovl0EgZcUoCcY0GNHsagfwShLAWUo5KgX-giRgbQjEGcW4FiaNqiMMS0VMhAfoK0i-DUW8bYoIHUe4A0TwPiRCU8RoO0T8vwXIEoVYj0W2j1g1msUZFMI0RUe+tsYPpMUcjMc-nMfUMEW4LsZ+tcasTkQMV4KYF0JsSgqyYIFKU0HsdWjkYcXascVqDRFqBcWaNcbcQ-mKY8eyc8UVLUY5h8fLt0N8eEI1NhEqrhlCdlLRACSaECYfiCaluCXPiaDCR0XCSQWieEEdGMW4CiWAZGcgRif4DiW1GvpmkMQKfSaTrMhTosjTisvTuskwDQCznhDBHBERELqhJjmNtdiimRJuNBARPBC5r9k2RWScDBHWDIk2NWYTglvturB5GTGAu2YRIhPMqQtfBSEtpKsFm4JKqONGWODLtKvORoNKkuWUktufuudwfiluTOTLt1Hud1IeY0EtgCotMFleUnOiMuSdDLjiGgHWHwOkMFs+a+QYbcA+e4EtqEZgOuQBSaL+W4EtuKOinCFkGgLLBBWilBRgBMKBRoEttYXuW4GIASHIOkMoBJAAHygCXi2HfnIXLzIibhXjoUaCYXYW4UEWXi3gkXbky4yxyAxA0WgA4WST0WgCiycUaCkVLbABUUQRYWcV0WEWgBgBMVHn+YACkIlHFXF+Fklcl-FoAglMuvO6FSlElPO1K4lzF-mAAhNSjpWJcpTxaZVJDhUZeRTIYpRZXpbIW4LZbJfZRJFRbpdxZJTIVJIZe5bnnhY5bRT5ZeARRoG5ReTLnhZ5Wxe4N5SpeFf5VFSuSZSJZJe4CpRoMZW4BzhSFRKOfhB2UbqmiQZJFqG+mIJKnIGOS2aVQXIVTYnVZWRHsgFkAAFZ9AdYVUTBVVsA+U7nFXjnBZkYeSkX+AtUTmGwI5FXlnjlvTtD+yQIopLYQppQZTBbrWMwTUxlgUy6EDQCQq4jvlsWHXHW1S7V7VkW55wVGCkCEDrl3UPVXV7XgUiDwUACie5d1n1r1MZS2AAcnwIDSJcDYDZqY5E1XMNwcNfVYGvwb1Y0P1T5YgQdFNYtTPP1i+HNc2URIGn-kjTECjSpWNRXLDfNfDWvP7FRJ1DhGWXjdNchGRHON1N3sSSdrhGlEYMlJgL+KKR1XwPwJnE8BHKMaOBjV2ccEiL2cpD4azdTM+P4PPpTMqVUQ8eWOzdwPgQrhrfpPYW2OnMLnDa1fMtAXINsRoBjQjbqQbWnJpMbZTabYbJOJ1d1bwpbRTYzZjevH-v9W4OaRHI-lHuKYHPrMcOJHfnYPEFkPiCHRPpAmrWkHrRCFRAmhItVh7FSaBIxBVkHR5k7OXAyVznwppClBtZlEPN6Q1BcduoCN3KWOlv1sXdQfoBoqCflhCOXDIMGdidXdaRoECalpEFFJAsdO3cPT3E3Q9L3TELXcYK3t2JPdIFFHxCAhyWah3SPWEoaf3evdCfQhnZFrHD4Xlm1oVjULPcmUPNMmAjgLhM5pAmRmZKYLngwE+DcfzqAKZk+I+IPEfa3LHPfQXR6IcRivfvnSnYHEAA

Metalinguistic Abstraction 4.1.1

} else {

const first_stmt_value =

evaluate(first_statement(stmts),env);

if (is_return_value(first_stmt_value)) {

return first_stmt_value;

} else {

return eval_sequence(

rest_statements(stmts),env);

}

}

}

Blocks

The function eval_block is used by evaluate to evaluate block statements. The constants

and variables declared in the block need to be local to the block. The evaluation of block

statements evaluates the body of the block with respect to an environment that extends the

current environment with a binding of the local names of the block body to a special value

"*unassigned*".

Ifunction list_of_unassigned(names) {

return is_null(names)

? null

: pair("*unassigned*", list_of_unassigned(tail(names)));

}

Ifunction eval_block(stmt, env) {

const body = block_body(stmt);

const locals = scan_out_declarations(body);

const unassigneds = list_of_unassigned(locals);

return evaluate(body,

extend_environment(locals, unassigneds, env));

}

The function scan_out_declarations collects the list of all names declared in the body state-

ments. For a name to be included in the list, it needs to be declared outside of any other

block.

Ifunction scan_out_declarations(stmt) {

if (is_sequence(stmt)) {

const stmts = sequence_statements(stmt);

return is_empty_sequence(stmts)

? null

: append(scan_out_declarations(first_statement(stmts)),

scan_out_declarations(make_sequence(

rest_statements(stmts))));

} else {

390 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAGxgZygfTsT4CGaaMA5mAKYAmAFGPgLbloCUiA3gFCLeIBO5UELyTpMYEMmS0GTZlx4KA-InGT5C7gC5EAB3wxe1AEQAqAkVIVKJowBoU6LDjx0LZKtSj6pdRi2bMANwAkAocAL5AA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAGxgZygfTsT4CGaaMA5mAKYAmAFGPgLbloCUiA3gFCLeIBO5UELyTpMYEMmS0GTZlx4KA-InGT5C7gC5EAB3wxe1AEQAqAkVIVKJowBoU6LDjx0LZKtSj6pdRi2bMANwAkAocAL4coJCwCIhoEPhg2CBYlOQQyPi8+LFgaNQY9FCsnAowwIjUomjkAI4g5JDkhVDFAezqGhAIGPFtUGiIALzx9Y3NmBi55Ixgg63tgV0K-ILCiKKzOlAAnlPjTRAtRYNyGheIyqrIK5fa+Do6TTQJSSlpGVk5eQXABhgpl4oLMmlBFmdmLY7pdYW9knBUph0plsrl4PlqPR8ABrcgHBpHFow2Gksl8JhYaYguYLU7+ALLBThRDkZC1TqwtZCERoTA9fJeebIr5ovIQ87k5SoDDUAXTYUo77ohBTXb0ABGcCkpwCJIU2lEADdsjB8BrkPilWKMRL9RppY5qCbeGaLVbRT8MWrNdqJZLyYhtDcmTxIpEAPQRxDRaAYobAXhweiIADKAEkAMIABUQAClU4gACwAOgAjOWouA43FyCbkCAZhD7E0jaV1NyNjU2bg6-gG+iwCQ7WTlP1ivbDXzfCcBgHLtK4HAcSAdD6tchMPXGoV1RvsLgZxKW2A25PNnz5ULPqivQgR6TlH3N1ekjfleLTiez2Sp1vTealoireKpgA+sJPvW-6uoBHogZ+AzfvOFx-oQxBkLS4ELqyUFoZYmFfqyp7IRof4CpQMB5P2mDkAAHjo-AWPeur2pB1HkZRGLUXRDFMMQzGIURP6kn+WSapQ+A0fRjH8WBLGjog2J4pgsbimJGoSZgeg5IwIK8AUurQoGxkoAwGmSVqlC7Me9omdwrYkQaF4EhMxxYRcbGbrUhLNIUhyTNSoLzAZc5IeeogWnAEA4u5Do4dRkXRc2QmOTwf6dskgUEXOrHxZuGVAjM2XFGFv7OY8OioIkCHtLlFXINZz6NiC1Cqd6PEybahkpUZdncDKTi4NuTDUNkJAhe0SGpVorK8EmhiEUYACqYA4mAcAAO5IGguzzPgtGIAAtIdeXNeQRhBBEVYxBiiD1dZ0T2GNLCctwFRVKIDEwPQnFGvibX3tEHRlBoGV3U8DVaa6P2wH9KnVuKj13bw42XWGrLsuQmyVNUl7JjoiJgJQ8M3YD4DA3cV4UmgEhQCMp1NgDySWQ95O9X1lx0SCRM0aeBgIJhtkczGCPetpMh6X8bNCxzz3s8LsJM7zRr82AmFA4ydxg6IBXDdQjG09NSgUusyTDfyCDc+CBvICUMvaOA6T-FYoaICybIciDCjkHNcCGEjy2retW0i6TSB7M8R0nfdF2u+G101kgA0Hv+DYjTxaBIa9PBg+tmDPdQGfTdcEi3CJuj6IYTWMwCWBjYX9EsEh8uBsnzjDQUjF1yjBRF1NyyREzeUW0TnEINx0l8V1gkOdnJs8s5UC8Du1cteRUkMVDHjdQ5RtXAza8IMTHUjxNJSlWVq8tOvJ-9uCO-EQPCd5MP3mubOxSZylc-vbjNH0DsfYb8iQQn8HPVYAgF6O3IM7Kgrs3YYw5L-UQWRARZTBKAimgYwZX1arXQqNIMH0ihA5eB7tMbgJ4FTf4+kqQDFTo0emQtcE0LQcCIK98BhN1ISSZBfJdb9h3KwuhxQGHkCweSMGwigSiOGvA5kiCsZe1JDgqCwDfIyxzpSAhHCz7cMfiSSIzIrpD2fJgAq6D5jJVnsosGSl8QCLTtQTRB8WgFQ6lPASk0XGkl3k-UxuE3BqyITPYic8qbDXprgvCGEwRiOPCleBMTMp7m1PE5JtJ1x+m6sNJC8CwZyJMaLWsUEXRuiAtaO8clQltjnskrJm49ZlNgsBD83odq+h1KFEkuDmnulaTaVUesH5thbjwHhLJuDP1umY18ipPSgWsWE5R9SOn7j1nM98gyUmdJsrCXBmyBlVPiSMqEPSDGRA4FGUOicExJhTBmHM+ZCylgrAAJmmXEbsyBezbkHMOXUc9tbThAJqH2EpuAAB9IW2RqEvGAQ4IWIGhbCvkWptTkCSBClF5JRA3CRVCmFuK+TQNga8Oc-jim8kwF4EgJAqCYAGslKAAALfEtL2wQNNs5PQBgIUADJ+WIDZfgcl7QRjDFGKy9l+ASCUrDs5I8gLbGQK7HyWl9LiZMsWjOWORSFVrLSc4JVc4gWqqQCKmgXgYBdPaJdQeVLypBOKiUbOwKaWys1Yyp0i0Mlgj1Q6hVfrhSGtta6r2YNLWeG8NQKN1qw0BE1oGxOd1nVxOGaaiN5rhWYqtTG+N-p7WfOpYcypizlUdmzaIDVDLtWCSMKWhZeQA3FsQI2+C7TUkJrddmuNMa+02sLUWoe7a2lDMER-cNlbuUDqkAW3USbW3GgAv0stNUp1aO5dWz1tafX1r6RUptGIW1DwPXBMdOyNwQqzTO3N0bB2zqHfKlNZ6jmgROZm6dC9H3zrnIuoeKCzKaQ8Uxap4qb0L23XS3dspFrqWA5PUDJ7HXwckuLXSPsz6cu4HYx4u5OkpxnPYR9C7h0oaAxZOAVlr1fo2D+mNpHn0vx1uanRLrsPzzVR66DWq90lUQEYCx7DaTIYVe4xDskaObu-Xe39dqmO3VEBxKim4QOSYrdJrjNbeOwcEj4htR8x50FUxJ49ZGFU32klvMVG6cPZuTvwYAyUyzmZTZZze8opN2e5Q5mByU3muZfu53g+dbZec40nRw5i-OEQAMyBcU3ydRbkNPecg+qndOnOH8aMMl86CW4j2JciA4hPafNOly-5Y4dhxxnAU3EPLbGwRYfYDwWjFrZMMb-fVpA0jLHZbOGVmTorME9epnQoqzXMFDY2HJur+qU1bAAXsYrvlSsQa4-i4hY3ANsMm1Y9b7XFWl3vWG-wO20XICijFVLaWtOZe9bpnLiUcSiZTUVl74WwZMqMC9mruoxsvcwCzcLEWc0jbm-+x1oh6owGqtPcDR2oNerrTl2H8OEBvZfkrNTCPbNg5I91hbL8C63cjZ1wdkOocKrzgXOAOgXobepfi+nLAxvSPrqzjj5ORtc7G13fOPdqBc5m+HGNfOrpXOjEzO5yY0xZlzAWYs5YSyxaXeq5eLRaIcbBwdSVUrNdjaK0zag6GBCYfsCzLOKryuygMwAwmxMmZ2B8WbyWluqO7DycTxLFsHeOxJonVqOv3Xace+CYA9h7cEwD87grvWqVaTRBh-SwezW26wI51q9gXPs8TyD4AIf7NRaz5HxAAW89h2VqrdWReM-Rac2X+LRvcQONYxsy2YI68Lx+44xoNWBRW3j85PvLRhrd-uzx8PzoJ1R9H1j26o+R5Wxn2nCfHWIcxvH8Po4V3iBDmr0mYJVibFdDBgWiZrbpGJhkIXZZZ-e13sv6YyAe-8Qagejpcg1uwhcoXry-2L-b3SIKmaVf+QBQ-AWMEemEMVtY3L-fDDcL+DudfCuPlUNZAidNnH3OIG-RgBpP4L-UoX-TTDfGgPA8RdnL-MRQgmQYgtrP-WbGNCgnfWibmY+PmI-AiLtTA9kS3QgfEU-RgpOJoEgVlRA7UF6fXFAUQ8Q+sFgWyZQAArEVvFSBAjA+weQqERADUAQ5WPebQS0IccQjA1gAAHhkOMJZVXwUOMifF9kMCMAABUlxFIkhdhkYSBQVmt4hVxKoYAqBtAjBEAABqRAHxDQDAV0IcCoayUw0IgTKPBIiIhQKIhFEgWImwvUYybQH2eaYwFwuAGMcgDaTw7w4KXwiGAIygII5IhWbgNImI4AOIng1gMImrYIsIlIngRojI5orI4fK7ZcVcBpE5Lta3LoF-I0RlJcHQO-WpZRBQIeeECQvgxALQyhC4d1LbVo7op8U8GY+nZxeo8ZV-OAffEgSA4-cEXebo7QUNCVUYKNUw7o7gZQKNLQ14oMeIRIMCedVo+wAtLQtGS4IxS4X+VsR4xAMA7YFbVsGvLvTYjQPIv2VYqPFaLUR2FQGQPVWEchT2IWahL-ema-BAnhbBbNFYiggg1qIgsZYWakjuWkugkEi4ME7gdksHVsQ4uY5-R1VZLtMYzpTQ-sCYpYx1bkoY3k+-RWR1FYjQ9Y-sRnIWbYk7F4vqfY6YqU44hWXfc49Iq4zCW4vqe4rtKE543Y4WZQWoLAD4pUkU5APee4H4rFf4zpJuaErfJUzWPE8I2ECE08KEmE5bfYeErgxExYzmBwtEgTDEx3bExgKOVNdCa43E0ExRJEhQIkmQEk-BCg+Y1klRSk345k-AjA0s8RekjmRkrAisn00EroTknBA47Uy-KXG5X4GMe5eXJ5JXV5EsIsdXKGb6X6f6KlVqcmUXReB7JlAOL6GGGAP6BfOIec0czAb6SqDhRZIGKcx9DWJ+KmVc2GMcsOIYUYJlGEH7S1GrHgS1YyM5S4H7eNG87geNe8+kn7AAl8tA3gd8y8irAab8gaP8x8irPFUuGrcCyQMkB8i4H7CiNASqfAXYGrBCpCjw0kWCjQH7FE3gF83CwMLChQH7bEVlfODUNAOwUillcioYWEIingH7EI78ngagWiewXYVgYYAAPkQAOjCIwoYv6gq0OhYu4DYo4q4t4oOhOkEo-IqxsHsAuAksQE4pGGksQBMFUu4CEocDtwjDEqqHYtUqkr4sQGjDkv-LtwAFJDKVK1KeKzLrLtLEBdKft9cWL7LTK9dJUTL5K7cABCSVTy4yhyjSoK0YTi-y8EIwMwuy0K7yxACw7gKKqymKsw4YMSry9SsyjKlKtyirbi+KySnKg6Xi-K6K4wbizKpShQbKxysq0YPytK4wAKwysyhQRy7gAKngbXGES6Q86GNcpWDAkYEkbEOYy1ewI8xck825Aa3oOmGauGJWOADUAAKwyEGDGthAmonKQEcs-KGuPJqz3PJgCCrIUGWrmt+AWsFF0GOtmtPmvDPL0vBB+1JQRSoBq0+qsF0pOOwoq3TDAGdkohQqUuBtBr2H+oBsYoq2oswGzHTBfIRqRphthreuMARoAFFvycb0bYafsAA5fAImwykmomp0+ou6voa656t8Agnay4PayoRyqNQvaax6uGTZbAwakc48+m4UDuJmi4FmnKvci6h6-mp6nmy6Iee6Ychcla8cpGMaAaVAhWhFFwdIXgBqA09a-AE0BIV0HYHUkyOmjcy0Wkbc6WPqNWxwIIDQHA7aSBNcMMqAqxVArmF4Q0jBFxCqF4U3Lmm6ztd0+wL4qWpW-EQ5Uwy6i4AOomIO6W5WqvNaza6AL+COumw5FAuOjQYMiA9264otS0OmMAkgK7XQ1TTgj2umUYG0kYouzCS6VtMxT7QiIQqhRanQz3emIHEHAHLoKmK7RIdkemeED4N9X4agFmQsqmcwFMqgV6tuXABeywDwEe70-JbNXBK3Hxb2nmJujBTetYte9wSgL+PxSXKmegfYF7embSWoYwNgNtbuvXRAMsQIRAWLL+osN5L+8IPVNukemKW+4HEBwEtlcAuEmu4uwIIAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3DzzrpgU+J41ZenolN0BFJtuNEgU5ADUhA3d43wQMCktBG2LdjFjOFZLnVRSqPcXeJ7LjLr66wwevHqEAe5dL50XfjXNM+h1aKQciadSdQtIKB0qgcsoC6Zf0Ht0OmiYqLPQppwNe-ltaKy+NvZOcdxSSgLN7KKBkjLq38ujH6ZIgxJzUvUXB+dLivVLoiEh0hhp813hdG26teF6U6LQoMh0DbiIyNkXItDxFInkSUBGF02QGzGhdMmq8Hj8CeIcY4pxlgXBYaQxMgMNByNPAovIvsDHPGMW8Z+IxVG5CNBMdWjijGvCfmY+SvtpGJlgW4d2NENBcMpmvU2CwTHvGQlvSxfMbHFEUb7WJkiXEBOLLYtRrCvF9VRm0eYWT-EfCkYuQ6oSNDhOYMwEAVV8HoCwLgAgJByBUFoIwOgAAmKJnBdimHMJYIptgHDXCseFSBzQFrZFXJCDQAAfJZhkhmgzShM4UyzVnal2DkXIXAOiLJWWskIi1FluFOXs4wQs0rw2uLol6IM+B2DsBlGW-8UTwAABYnHmHYaumha7GFWhuSZAAyCFoA-l8G6IsiSiLQC-P+a8p5zTZnN0WXzYGxgAXvM4t1LclcWorxenkxRU5K7YuiGNWF8Lp6N2uJwzquxlH8OcFY3FRh8UfKJVvTc7LOikrwQXbCwCVEUqZdshmdKjkMq7o3elYhGWQjQiyl6QquhBJlX4OVcKVWKsNTPNVGqMW7EyY-UxTZJmypBTy15BLPmSC3Ja+JrjUAioGfoN12SKlSppRAosML5XGqVaG1VzLPJkoxb68pvYdXVC5XHZVqrI3CmjaK7huwfEvHdTkwNwKZkvLeXyr5Arc3OPjSML1nVK1+Otb2ANtq9UpojUa1NRqo1mrFfW-NFTE2crtTMztJr03VEzd65oupeRMIHIW6ZwaS1Ov5aQzcM6YbMM9T27hG6zLN1VAuJNw7g3ihSBINJpRyjNzkKO6VE6d2Uw3YpBd+qFVjq7Rmx9gzjBEKdjrXVQasLLrLS6gVf607ZlrS9Rh3150tqA-oO9ar0ViotdiD6oR6Rwd+q++1vLCXltIWwjQm4aSYa+v2X60HY3YhhnDeFCGi3BtOlocAKIGDfp9XR9Gb0j1DtbTM1jKUUS9K46AAmxIiY5kA8xrCwn2NbwAMziaGQnD0eHi14sdaBmTAjQCbmph6GjYrKG+nU9zXWyahNfMMxZrgI9QC61Q9woz9oSxZk6Px4CbhBPBuQ8ylzlNQ4eednp+AQFrP+dDc5mNYqU6hfTlZk9WFx0RdU8YVm7M3MOmkJFlLvlzkNx5kFn9MtASp08+F-LfngNFcbml5WpXCvr3DJGJjcmWsEedeF0qh8TPcLM61zesnF3yds-1uQjy4vcMPsfU+HWxtIfbSawLM3KZstrPWRsiTRvcu66u-TgqtsNg+AN4L1VN3wb222g1aXJ2dVuh1t9YbXtRua+NZAk15xiGQPdIF3L66Nz+0BD7IXdog4B7d+FkOPsJdupDqLqWjWw7zg0sAzkMDgGwHgIgZBKDUHoEwJTU6QZg3EASIFS3QCXkRVJUGtoPtDecmIfdFk1RyBgWQxDf8XVkdwGxDiXFmkjxI6ANn2hLKc5PukTR62yssUF5pYXBcUJU-2zpwjLrwClUV+xZXzlzucGcoqZUku1Rq6mWNBTKE5CcbB5dl94B1dxxtzr0AYmHfNMsEgty+lndW9d--ah7H3cqaZxKE4-kMmoFii7mzfPo-WAc3IGK2YMvUMgbQwOgetMOtLVr5EGiDNJ8KEb-QpfbRvVimIHPOLoevcDuJu08RgT2B9zwZBEjkTJNpXHVVdTOohex1i3v5CR2hsHy9FvyBTAKT-OZLggjl7j+DWClCi+5fvl3iiywrF2auRQdmG2QOXydWZ4vi9di6YXRq6vrC6+pU3+T6D+X+gR-hHcXRDfzcfO+fv8tgah-lwOJsAVFFZIvn-pEgAcikasAc3gSBpIgp3n7i7Jes-nRJzoCCcGPjzscPYL8lfiUJFnTl1HUHYIQQULNNqF4Ovhflik-nIFQQdFkNgR3kjBoEEPgRQT8kQbkJFgADxkEEG8HMFJxTBrjIAbibgAAqCQoA4o0A6Q5EdgkAAYTmqQdYiAGUQQm4oAAA1LbI5O4JIE8PYGBIaE-soIYY5noYYWLv4KYZshYbXlfGhEnLjJIdIXIcgBAFwIeCoWodmBgGgJofWDoQZgYUYcYd4BsuYeAJYegdYQZqVFEQ4SYXEXYC4cweJvEEkKkF-lIpeoItEKvAoDLAkOergTEJ1LfMcowaAMwVMhMIDhclYekc6GaBUX9nQjEWEnAK3psh3l3uWDgh0UEFKpJEisqu0X0c6MqmIXMRMXfG9kkXIKqjkZHG4DnI0FLGaFMfTn8nvmzLhIft3lTl4l4XwQIKVLuDkBxONM3KShMNHA1HzBMLvMATbMPpfu7LHDMnUaMGAU-j-uEEdHMW4GAbfqCSAeAjEDsdlH3jMl0XkVUVnFmpTKknYkUXYkwYICUe4GUTwN0WiUoM0ZCeSisQ0U0e8Y0K0cVrMUZFMOUaib0cYTPm3nYMMagT3hwmLhMZegcSGgaoybZF4KYF0AsVfHiQIBwRMMsccpGmsbASapsdnNETEHsQoEKbvllqcb7kfp0BcaaFcVKrcdAPcZpI8eEI1OKpPEiM8Y0K8eSTEJ8Yvt8dtF0MAetFnP8cGoCTCV-hAb-jUo5FCS-jCdGi8WLEicGiiZUT6UoGTOjk0gXFjjju0vjl0kTnQDQKTqCvhHBERCzqhEjl1prj1sVKVNBARPBA5uJjWUWScDBHWGFk2KWQVsKe+o3B5GTLvI2YRIhM0r-EShSESpuPSo5m4PSqOOCWOLZoylORoIyrOTUuOWCkueLl3JgKuWObZt1Jud1LuY0OOXXItI5meQ3OiHOSdLZjiGgHWHwOkI5veY+cobcDee4OOYVFIUuT+TudqJ+W4OOeKL8nCFkGgCPKBT8uBRgBMEBRoOOfoZuW4GIASHIOkMoBJAAHw05RHvkIW87IibhXgoUaBoUYVYW4WXi3gEVrm2bDxyAxAUWgCYWSTUWgA9ysUaCEXjnABkUQToWsVUV4VgB0V7l84ACkAlLFbFOFeFkl3FoAvFtmdOKFslIltOSKmF9FfOAAhIiupUJXJRxQZVJDpRJcRQITJcZZpaAEIRoBZSebZgIRJGRRpexXha5Y5SpXzthTZZRZ5ZeLhT5bpcRdhW5Uxe4B5fJcFVJMJWFWIJuHpQJXhe4PJRoHpW4JThSFRP2YWYOSrk2ugZJFqGemIPSnIAOXWUVSMK-vlTBE2bVfJMgFkAAFZ9ARalUTDlVsCeXrkFV1mObIYeSEX+DVXFnVT1UlLi6DVESWojlfLjl3IiyOYrUZRjUQnAW2aEDQDCy4jPlMW7X7W1SbVbVEVJXQVGCkCEBLlXU3VnVbUgUiAwUACim5V1r1j1EJ45AAcnwL9QJf9b9XKXMXlTNRNdFCUnEk-t1Y0L1Z5cqs7lVXNVDXMAsNNXMLNY1YVW6rfnDTEAjfJSNWhCjTjTVQtVRI9ltrhJDc1UCTAABBRN1PHsGjhEYGlEYMlJgL+EMW1XwPwLfE8GzGyaOHTS2ccEiO2cpGLnOCzU+P4G-k5hFGkGceWKzVhPAsrmrfpCRm2AgqzqjfTUGXIB0W4HTW6lYaGY0PrZpIbeTZNd7q1R1QgHTGbRoBbdDZIrft9W4LqfvvqSgYac4GTMcOJLvnYPEKwfSAad3jbBKQUTrRCFRFOoCZOJAFagknVQugxMzMYDlmqi6RJjNUrPHfZolsEWfFqNynqRzN6BprrMdG3A3MdEELbYxnfOnZnR6ugH7JVmFjzL7RMGnQ-P2i-GIENgXe7apAlsQl5oPVGdsUbG8dXfanGo2uYtUE3RdevVnfJM2hmq3c0H2n6rtlvapHEF8ifdWvvZemqmwkEKfjGe+MwCPRnWPdnWZKYElbvLTqAAwArWHdxVJL0k+I+M+EAA

Metalinguistic Abstraction 4.1.1

return is_constant_declaration(stmt)

? list(constant_declaration_symbol(stmt))

: is_variable_declaration(stmt)

? list(variable_declaration_symbol(stmt))

: null;

}

}

The purpose of the lambda expression is purely to create a unique identity; the function will

never be applied and its return value (here null) is irrelevant.

Return statements

The function eval_return_statement is used by evaluate to evaluate return statements. As

seen in the evaluation of sequences, the result of evaluation of return statements needs to be

identi�able so that the evaluation of function bodies can return immediately, even if there are

statements after the return statement. For this purpose, the evaluation of a return statement

wraps the result of evaluating the return expression in a return value object.

Ifunction eval_return_statement(stmt, env) {

return make_return_value(

evaluate(return_expression(stmt),

env));

}

Assignments and declarations

The following function handles assignments to variables. It calls evaluate to �nd the value to

be assigned and transmits the variable and the resulting value to assign_symbol_to_value to

be installed in the designated environment.

Ifunction eval_assignment(stmt, env) {

const value = evaluate(assignment_value(stmt), env);

assign_symbol_value(assignment_symbol(stmt), value, env);

return value;

}

Declarations of constants and variables are treated similar to assignments; they replace the

current value of the name in the environment (which must be "*unassigned*") by the result

of evaluating the value statement. Exercise 4.12 explains how we distinguish variables from

constants and how we prevent assignment to constants.

Ifunction eval_variable_declaration(stmt, env) {

assign_symbol_value(variable_declaration_symbol(stmt),

evaluate(variable_declaration_value(stmt), env),

391 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0w4QDz0i7L4Nj3CXwujbdWpdETZiiiTJQBsOnFh0SUbp-SkQiJKAjC6bJklxwumTTqNS1EyNeNvfxf1hp836WM3I3TFkvD8R8LZejFxanVrsjRKyDm+yDIdDJGh3Y0Q0GYymNT+FsM0asisSgD7YTqYc7przsFaIGcUMRQYTmpMhgC-ZvYrmLhuScrO75mAgCqlU9AWBcAEBIOQKgtBGB0AAExPM4MfMwFgIZpQcNcb5wMQiQGyKuSEGgAA+zLDLH1BpSploBWXsuMDkXIXAOhMt5dqOui1uUsrZWK4wQs0rw2uHMl6IM+B2DsBlGWKjrHwAABYnHmHYc+4U37NFWhualAAyC1oA9V8DAdSiSjrQC6v1aqpVaLmiVyZXzWlRgDXqs4t1LclcWorxeoM7ZU4vXUp9XHW1YDp5HOqBU4l79amTx1sKA+vr-UaqDdYzcIzsyhsqQXH5GaukRqTc4bNcahUJq7o3eNYhE1n08mGj1Ra2Gwv3gzMazbW2tv0SmzquwoXvM4VmvtTC-WqoDZqyQW5x0XMuCW1NoBl0cN7FW71fh+31pbY2sQA6j3DpHS9TdQj5I9prdOk1J6Z6HsfcO91ZbdhnOWVuhRU690ztzYGrVjTNwfuhSMNdnUQMTu3SC6t59912qfU2g9Q7hRoXPR6yDK7hE3rg3WhDg7T2ofQ2+4wupeTox+t+3tv6TUqrVXmwD0hSpkZhpR1A4GXosbMs3VUT9cMmvFCkCQMGzpGErnIB9sH22lvMSxxSu7X5Fhtcho9KHk3EfMV7N+99nbIOo4prCdH535qA-5bWxaNOU38hRgcCnNB4Ybc+1Dr7NPMPenSVjtmY00aU0Zhji7rEkI0JuGkH1Qj0m+gODjHqCbEjhvan9BnC68ILClFEDBLOcFixjAJ3mks8InFocAKICWZf0Nlomenb0+awqdIrKIADMZXmjfzs8a3zxh-0Lqq6Vb+0Wy34N9AnU+uta0mqDZuPrchdYucpt-HT6cY1uBq-oSTZ9ZucFDgtxWKD+NKebTNjtZaU7bcfjzMbSm1PwCSUd1zlhWJf2G9zUbd6OtiYlYdmTlNdiy0Qbp87r3DN0obohnmzXdiWLa+1oHs76MAYC0Byx-XzGDYUh4qxiX7PjZUZuJH03hQbf0I4+TeX8trf0YT5oP4GyTv01jt7XWTNMdAIW2s9ZGyrua85Tzv02vwcc1Jynt1SfQ9Wypx9V20OU4mrdZA909sw6MWIOXN2vubYQZNBwKuFdi4Q9rynJ3Zfy4u1hVt+u87IrAM5DA4BsB4CIGQSg1B6BMAa+ukGYNxAEiNWNS8jqpKg1tJT1HzkxDcYsmqOQ6Smn5YmyxNiHEuJopHkF0A4ftCWSj849IUzbvfeYaxdimkk8FxQj7v9c7-PInAKVePRfOLOWR5Tbn6feNl5pXHOraWa+gAy5T7n8nwDl+x4V7vchSv9+qpYXJbl9JD47yPro9We9NeDxKE4-lfYxWzMPpTE3N-WC4CPDdqBYrg+MAfwoqjD+75h4zlRkyWeX9tE3zgz-oqn-0oHBf+3xeN0Ds1naPEMCPYNPjwHkvUsiImD-qbkevcuultrbs3OtPUDAbrmAvAfMnAMAScFkH+OZFwOssvIwiamaihAQbnu+JfC6vdmzLhK5PktmDbEYi+J1CHgQcJronTBdEBGgWnl3OajBtwYfqrggQQYclZAQcBMQWTgekgeEFzuITweQc3NIctiQZdkevIVwIAVkqAmARATrEIXIAUHTFkICCcNAbGuNnUHYLqpwSULwf7l1LYfYaYQYs6GQewcgVWsIXRAdOYaYGAR4UEMcPYPYb4coAADwuHhE6rX7+FJxTBrjIAbibgAAqCQoA4o0A6Q5Edg9KlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaJEdUSzqVG0anv4A0ZSs0QkcrEnLjCkWkZkcgBAFwIePkYUY-MUWzmUd0BUZ0XUd4Jyk0eAC0UIcoDUcfpUTUV0e4D0WsYaO4c1vEEkKkH8lcjBustEFgTwDLAkEJlYVqKvOvA4bkH4bwQwo0L6krpEfsc6GaA8XLgZMsW4EAcgCAXYAYbPhCOUgCUEFWpJE6gdpsQCbEMpghu4eiRiFfG8UOpsXIK2icS-NlB7IxGaMiQHnqrQezAwZAUahMIVKke8QIKVLuDkBxONM3KGhMNHPQsdJfNoTbIgRwe7LHCahgqMNoRISoQobco5DKcodoe2nyWLNEGrAoMCU8YiuupslWt0lWiYYIDce4HcdqSgV8t8RoK8cKr4caf4d8hML8R9mibZFMFqWcUJuiRCVCTCYwXCfUB4cmEic4aiVwcGWFKYF0M2qYQ6ZGSGfiaeoSc6keiSdnLUY0FLJSc4TQZ-PQTPgGdViaMyYIbouydAJyZpNyeEI1OWmXEiLyY0PyU6Y0EKQQSKRrtoZacEuiGNFKXKb6EIYOUdGCW4EqSISOb2f4DnG4LOfTlhECV6T2WTJbqigXDbnblio7rii7nQDQO7sYNBARPBIhGisVDrs0PfoumRJuMeXBAhK-voPeYRCcDBHWLpk2KhCbugaDh5GTJfC+aeSXrvDbEGhSBNvGsfm4PGqOKOWODjomtBRoImnBbchNmashfwTpGhRBTjt1Fhd1LhY0BNuKg3MfmRQIOiPBSdDjjiGgHWHwOkMfvRYxXkbcDRe4BNqWchaWSaJxW4BNuKLqnCFkGgCPMJTqqJRgBMAJRoBNlUVhW4GIASHIOkMoBJAAHygCXg1HsVyUFbIibhXhKUaAqVqUaXaWXi3j6XoU47DxyAxDmWgDqWSRWWgA9wuUaAGUTbACmUQSqUuWWU6WgBgC2V4WLqbgACk-lzlrlWlIVUVXloAPlOO-uSlcVwVfuTq6ldlkVAAhI6hlYFfFe5YVVJLlRFUZVEbFSVVlaADERoJVSRTjlERJKZZlW5SFW1U1alZFZpbVRZV1ZeNpb1XlUZZpe1Y5e4J1QlSNVJEFeNWIJuPlf5SFe4AlRoPlW4N7hSFRIBfhA+WeQXBIZJFqIJsevWnIEBURNbvtSwmnoda+SBcIsgFkAAFZ9DXZnUTAXVsBdUYVPWnnH5rYeQGX+A3XHW7z3VzCPUwRHVvTtAzFRIqITZyoizH7o0ZTg1jmCU46EDQDCy4jMWOUE1E21Q4242GXLWSVGCkCEDIW0302U241CUiBSUACiWFtNHNLNY5E2AAcnwALf5ULQLQmaQjDUJJDYjawlrEIT9Y0H9V1c2kPtdUDURACjdgdfDc9VCjwYrTEMrQlaDWhOrbrcBVrVRJ1DhHhBbbddVMVABBRN1LfvoLbWlDEppKuL+JSkYO9XwPwGvE8GzKCUZDLe+ccEiF+cpKnnOK7U+P4HnpwNGRcfSeWG7dwHocXunfpEFiAppGHhrVDcIvaZmcsTLVCpEQqY0AXWAjLdzm9Z9QgHTDiXDSeZrSwgIjwXzW4HmQ9gWeAbCc-HnMcOJDQXYPEOYfSIWZATfBFGkLnRCFROujUmZk7Jmszs8RoVhKju-mHaOOrNZpFrzmClTeUquZfDgLhMSMgHYOZDbGZKYMtSoOueYsVtIWNAwInTRB-T-aGurNfXhHfeZESTSZPW9fiLPUiM+EAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqWomRrxt7+L+s06IpdQQiJKFFVR+xJl+I+EssRQYtTqwmS8DZvZfZBkOhkjQ7saIaDMZTGp-C2GaJmRWJQB9sID2LDo5Zvs7nYK0e84o2zBkTHVt8w5wjjmLlObsrO75mAgCqlU9AWBcAEBIOQKgtBGB0AAEzXM4MfMwFgIZpQcNcF5wMQiQGyKuSEGgAA+tLDLH1BsSmloB6WMuMDkXIXAOg0vZdqOui1WV0oZQK4wQs0rw2uKMl6IM+B2DsBlGWKjrHwAABYnHmHYc+4U37NFWhuUlAAyI1oANV8DAaSiS1rQDqs1fKmVCLmiVxpS0phRgtWKs4t1LclcWorxeh83IZ0jAutJW6vV5qwHTz0cKCpuL35wjeTrYUB9yUevlV65VkgtwLL0p0f1lSC6vMnkiLZsb94MzGlGsQMaxA1rrfozyAanV5rLeCytfhq08ujV3Ruja43xs6rsEFDzOGpqre6z1SqfXWM3KO6ZHxC0JtAAujhvYg0VucGmuODa+31p7bW-dTah0vTXUI+SHbt2TsjYeutA7qjNqLeY3Y+yNGLuQuGrtU7M0zpVV8UAm431TPXSMZdnVgOgu0f8rd59u0WqPTPA9CGH3ODQqep1kGx1HOsD-a937b0of3ah9Djri27F1LyPpA5XUEaLM0ad3r-1NMA5RmG-TUDgZemxsyzdVRPzg3HcUKQJAwZDZXOQe6kNNrI+YtjilaOv3o1J-tx7B2ycpl7N+9SU2dqU1hOVCq-05rnf5bW2YuNOt6d9GjX79P6BU2fDTeLmHvTpOx2zE66MGeMIx7NjT-pDPndiD6oR6Q2d+pZ4tBNiRw0tV5+zPCJxaHACiBgGHovYhhm9ATO69WnRSyiLFGXzExdhoIALgn8u8Nqal6xABmErmnjDf0U5oH9RmmMmYA5ub+UXzFtMIVzPDQE8v0Z9b1hOHoR5XxQU1zg38dOUNdW4bzDm71qcfc5-Qoclsuzm2NrCNbdbbfCuQpBVCqv0dQ0klt5GP6sS-lN7mutDuJqMTzU7FHASIIaTzN7zqhU3afSu3Yli2vtb1YZrNs6euWP65TQb4O7OQ-Gyozc8O5DSru+YxxCmUeo6Oxt6TcavsAlrPWRsn6EuE8TX52HLHNw-gbEu+bO3qoed+hD+DvaSdbZx5TW6BOeeIdU3ztDbPxrIEmvOMQyB7pXZ86GoV8vbvPsprt3aqvFfrYQ9r07KcZfqm1wDut+u86wrAM5DA4BsB4CIGQSg1B6BMHq6D3zYNxAEh1WNS81qpKg1tKdwbzkxC8YsmqOQ6SbGMOqzm4LrF2KaS4gikeQzw-aEslH5x6Q2Rk6xInjiKeC4oR9x1mHKjwClRYmxIvzkEecGcoqZUme1Sl7JXHArKUUJyHS6dpvCnwBl7j10QrVfQDFf7xz1y+T9JD47yP2rPfQCNeDxKdpdSvmoFisPtH8eOm4ZmzFbMkutORV9oHBf9HofGeRBdUqB-CgN-0I-20b1YqrMKLvonRGkOB0l3aPEMCPYJYLkm5PpImFflhHWhciurtrbs3OtPUFAbrmArAWMnAEAScFkH+OZFwM0svLHvRgaihHgXnnnJfHapYI9rhDPvmuJFJEYi+J1CHngaJronTBdKNhGsQV3IajBpwbhmrnAXgeWlZHgcBIQYljWggeEJLrIScFwaQc3JIatkQdAfugoQAVkqAqATwHkvQewSUIIUUqAFkICCcJATwVhMcPYOqkYbkKNv7l1HUHYPYQUH-NGKACQawYgZuiYQ9GYRYXoQYhiC4XYWqg4XRMoAADzhFuGREeGhGxDcBrjIAbibgAAqCQoA4o0A6Q5EdglKlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaP4coHUTNtUXUUMv4E0cSq0Z-srEnLjGkRkdkcgBAFwIeIUcUY-KURThUd0FUbUfUQ0bNs0XYIMe0asV0asb0e4P0S0eAIaEkZLvEEkKkOWispunMu4BgTwDLAkCJlYVqKvOvFEQETqhMOmh9u0Qcc6GaE8fLgZOsW4IAcgMAXYHoQYeWOUgCUEJupJDasdgIckS2GaoekkQCRoIiR8Y2miXIHWmcS-NlB7IxGaMiQHhqtQWzLQWAbPp0N8aaGMVEaVLuDkBxONM3P6hMNHPQsdJfAoTbPAWwe7LHHqhgqMAoWIcoXIWco5DKUoVocEjEDnG4OqbTqiMCS8dCiunmtcccjBnIAUHcW4A8TqUgc8gwuaYGh8f4SaYksyd5O6n8WiUMlMAoJaTiRCVCTCeARCPCbZIiTBlSZiQhv8aQl4KYF0DWh4Y6QIOicmFKaLp8QdMSU6aqf4DROSRBJSc4VQZ-PSfoQGfhiaIVOkWyYBhyUnt0NyeEI1CWmXEiLyY0PyS8hMEKXgSKQgsRGKVnBKfRimTKf4XKVwEdGCeaaIcqRIVmbnPOYlkCRcbqUoGTJbvCgXDbnbiio7uii7nQDQO7nhDBHBERKHqhADjfl1siGRJuNBARPBFwM-t4fhKeScDBHWA0k2BeTespsTo3B5GTJfPeW+cXrvDbD6hSBNlGjNm4FGqOBOWOOjjGrBRoDGghWchNgaqhd4XwRhVBejt1Dhd1PhY0BNoKg3DNhRQIOiIhSdOjjiGgHWHwOkDNoxcxQUbcHRe4BNhWZgKhXxSaNxW4BNuKOqnCFkGgCPGJWqhJRgBMMJRoBNjUThW4GIASHIOkMoBJAAHygCXh1GcWKVJbIibhXiqUaDqWaXaV6WXi3hGWYXo7DxyAxBWWgBaWSS2WgA9zuUaDGUTbAAWUQQaXuU2X6WgBgAOUEXx4ACkQVblHlul4VMVvloA-l6O-uqlCVYVfuNqWljl8eAAhNallSFYlV5cVVJPldFaZTEfFWVTlaAHERoNVWRejjERJBZdlZ5eFR1S1elfHjpfVdZT1ZeHpf1QVaZTpZ1S5e4N1UlWNVJKFZNWIJuIVUFeFe4ElRoIVW4N7hSFRMBa+YRIhAimIZJFqMJsht0HICBSdWBXAodSwi+SefdU3sgFkAAFZ9DwCRKXU1jFQ9VYXHWPkzaOYeTGX+B3WPkPVtBPVzAvUPlETfKRImViATYSoiwzaY0ZSQ2TkiXo6EDQDCy4isUuVE0k21R4341o2bgyVGCkCECoX02M3U342iUiCyUACiOF9NXNbNk5E2AAcnwELUFSLULUmaQvDUJNDcjSwgIv4RdRMFdeBElTIQdHLdFArY-DLeJFrTlqwl0FwcrY0KrT1eDWhLdSDfLXMAsLdp1DhMeUjadSXmRHON1N-voE7WlDEppKuL+MSkYJ9XwPwGvE8GzKCUZAbR+ccEiN+cpEMh7bws+P4ALgthFGkHQeWF7dwDocntnfpF0iAppGHjba7RugIXIDiRoAbSCu0QqY0CXWAgbe9V9T9XTDXYjaBSClwQLW4IWTQf6Yyc-HnMcOJFQXYPEOYfSAyfQTfJncPYYVRCujUm2orABq8e4JfBdDbOrOvWwlegdOKW4AaZuisgfVrDBgjPfodMknHBdGuZfDgLhMSMgHYOZDbGZKYKtSoC4eJH7qAAwE+OFVJFiiA6+P6urC-XhO-eZESTSVPR9fiHPUiM+EAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6ZNmAgCqlU9AWBcAEBIOQKgtBGB0AAExmMpsfMwFgIZpQcNcA+4U37NAWtkVckINAAB8oWGWPqDf5kLQAwrhcYHIuQuAdEhSi7UddFpIuhbC3FxghZpXhtcUZL0QZ8DsHYDKMsVHWPgAACxOPMOw59gVFmaKtDcgKABk-LQCsr4GAwFEkJWgBZWymllKbmgubpClpTCjDsrpZxbqW5K4tRXi9HR2ypyVyVdEMaIqwHTz0cKCpnzOC7D2VM-eDNgbGDVfSzV1jNz2s6DqypBdsID2WVrYohzhQH1NZi81XdG5mrEBas+nldXyq9V0VZoanVxxjXGuN+jrWdV2Pwthmj-F-XPs61VNL1UMskFuAt2CtHQB9Ta-Qta-EfAOZax1fhw2itjVGsQma+05tzS9FtRa22ps7a-blA6Z69tnTmuVfrdhqJka8bexbjVTqwtS2lbrGXTM3Cul4rbLiNs6kejR66236pDZOzQGaI1zujY+7NVqE2+vMRetdHDewTucGGh9Pas2DrfYu8xuxdS8j6QOTd96QU7sre6g9kGYb9NQGel6KGzLN1VE-UtcdxQpAkMG0o5Rm5yBnR25w76m1dTCPKXkilYNcqwpRp98awNfOMP5bWDr-3pvgy6ite7q0ep407JEGH5W9O+jBwFAnp0vpA9UYd8r83Yg+qEeksnfrMbLa6jV+6mm21spuGkmmvr9l+lJv1BNiRwzFWmrtcdTpaHACiBgqnbPYhhm9PDAGQWuZSiiN5XnzF2dhoIRp-HnOBd4bU9z1iADMYWuOEK5j-GLW737lt3YZ0TB7v42fMW09LNNdYBe5ZqzcRW5C6045wb+9T07ybcLFxTQHlPUYa-oUOzW+NAUq6xx99XE1+pTv1x+PMhs1S60ksb4GP6sS-gnU+FWFPbpCPi0bH60uy0QQ06bG2ctGPY7rVLtq0UeKsU5xhgncuIaM-9TcljiuU1K5YvTLmVEveuyPK+woeugEcUx+TJrAORvnVaoHdraz1kbMhMH2XmgGardF0qP4GwfDe5wZyqG5O3bgx1yHVGaOdVukjonw3OuztfSpi7+gJq3WQPdfD93Tss-m7t3HCDJoOE52z4nYgBdA4m8z1nM2pV9pF3nS5YBnIYHANgPARAyCUGoPQJgSXaMgzBuIAknKxqXglVJUGtogelecmIbDFk1RyHSTM5H1WWJsQ4lxG5I8hk2+0JZe3zj0gnIW2ll37FNLu4LihQ3KrUeavAKVEPbvnI4969VRUyofdqkj0CsaQX3Nx9AJ5oHeOmPgCj3FicbmUJyFC0X1Prl8n6VL9n77Ffgv55SxbiU7S6m+xitmMvVWfsdOsFwf7ffOgM5TD3kfqiR8D82w9kTyJjmgE3MPwoyeWM+xH29WKs-Cjz-0GxwOk+7TxGBPYSwuS3L6UTM3kFcb3bc967zpXiq7-KpBTGp-tGz-IFMApH+OZFwM0svHdtyryihMAYHu+JfNKpYMtrhPXoGjbEYi+J1JbsAcRronTBdINp-hAV3HyiRrgSPlzrRm-uEO2lZMAcBGAcjjGpQVwJPkwVFDQc3HQW1uAVhHGkwaflkqAlfjwHkoGtgSUKQUUsDoCCcB-uDoFnUHYCymIbkINibl1AoUoQUH-NGKAJAZgYqjepIVoQdFkNIUIQYhiOofYEoYYYNgADxWGKHMr77aHahTBrjIAbibgAAqCQoA4o0A6Q5EdgkAAYV8qQdYiAGUQQm4oAAA1CZqQt4AivYGBIaLYcoAkf9rEQkUMv4JIE8KkeAIaMYRYRoLjB4V4b4cgBAFwIeMEaEZQuEXDlEd0DEfEYkUkQUf8mkcoXRJkavqVB0Xke4N0UUSUYkmTphgkMkGkIYTsoYc0tEGMgoDLAkERrIRMKvOvH0RIfgcHCqqdhkSMc6GaGsSzgZEke4H-hfnYEISIeWOUicUEIYZJJKjGscVcc6DGsYSceUVfDsdmiQQdHGqUS-NlB7IxGaG8abqyggWzEgdfg3hPkChMIVJ4X0aVLuDkBxONM3DqhMNHPQsdJfEwTbH1kwetFnLHCChgqMKwbYVARwRkqQqwXgUyeEAmoSWLHIdymcfEBcT-uTgGu2gsSRnIAUEse4CsTwOcRsfUKiW4NsVirYRKZMYqd5IcdtsCUMlMKsQKURn8Tcf8vcTfhCE8bZC8SRjCcKiNjqaQl4KYF0D8YkmqQIGUdsACVikCTgSCX2mCdnJ0f4FLNCWofAZ-IicIWaVlmpJUZiavtiaHt0HieEI1P6pPJJsEjEESRqf4KScAeSa-lge7DSdynSRyb6CQRWUdF8UqcAWwdWVmf4DnG4C2VTvoPyesVSUoBclcgrnciro8uri8kwDQDrsYNBARPBIhDcsVILgvjHiomRJuJOXBAhJvquYRCcDBHWA0k2KhJLmxh5GTJfJudOeHrvDbJqhSNVmav9m4GaqODWWOD9haveRoBak+SydVryu+boUQV+TeT9t1H+d1IBY0NVnig3P9lBQIOiM+SdD9jiGgHWHwOkP9shahUEbcAhe4NVuiZgO+QRSaLhW4NVuKCynCFkGgCPBRcylRRgBMKRRoNVnEX+W4GIASHIOkMoBJAAHygCXgJHYXMU8LVqbhXjsUaCcXcW8UCWXi3giXfk-bDxyAxAyWgA8WSTyWgA9yaUaCiXVbABSUQRcWaVyWCWgBgBKVAXiUACkJlGlWl-Flldl+loAhlP2Ju7FTlFlxukqPFyl4lAAhBKj5WZc5TpaFVJIFbZciJuHYY5RFX5aAA4RoLFRBT9nYRJFJb5dpZZdlelZ5eJXxUlbJflZeAJUVUFfFXxTlWpe4HlS5ZVVJOZTVWIJuMFSZZZe4C5RoMFW4AbhSFRKefhGuTOQXNQZJFqIRv2hGnIGeURAriNSwroWNVuRecIsgFkAAFZ9DwCRIzU1jFT5U-nrXTn-ZHm8RoQsn+CLUTW7wrVzBrUwTjV+asIHVXkqLVakoiz-a-UZSiW1l4U-aEDQDCy4joVqVg0Q21RA3A0sU-Z0VGCkCEDvnI2o3w0I3kUiD0UACif5yNeNWNwN1WAAcnwGTSZRTWTR6UkU9UJPde9QIrYdNRMLNeBC5YwQdEzbWvNqNa9RtS2ngWzY0BzflUeTdS9VOURHzVROTnDrhEzVbmRHON1IfthIrUYGlDEppKuL+CaTtXwPwGvE8GzJcUZEzTuccEiPucpEMmrbws+P4EHo1hFGkMgeWBrepIIZ7fpF0iAppNbudUtanqqUGaQrzSwizcCbdY0IHWAsranttXtQgHTH8RoFHXMAIngSTe4OGYgaacic-HnMcOJPAXYPEKYfSEiSgVJE6akEXaIVRL-g8F+iegMsZpsW4JsvMb7O3WOr2IYUaGiakpDAPVer+jPmsomLdU-m1mMtSNHYWpPZ3f9N3RoL3SRjsqOqvdoiRiPaaGPfjMvXWsWgsYuIdHPVnO+MwJfDgErdgHYOZDbGZKYB1SoOoeJMbgXk+KAJfEEVJG8n-UJZpX-a+DqurA-XhMgM-WEHIBXVXfiLXUiM+EAA

Metalinguistic Abstraction 4.1.2

env);

}

function eval_constant_declaration(stmt, env) {

assign_symbol_value(constant_declaration_symbol(stmt),

evaluate(constant_declaration_value(stmt), env),

env);

}

Exercise 4.1

Notice that we cannot tell whether the metacircular evaluator evaluates arguments from left

to right or from right to left. Its evaluation order is inherited from the function map of the

underlying JavaScript environment: If the arguments to pair in map are evaluated from left to

right, then evaluate will evaluate arguments from left to right; and if the arguments to pair

are evaluated from right to left, then evaluate will evaluate arguments from right to left.

Write a version of evaluate that evaluates arguments from left to right regardless of the order

of evaluation in the underlying JavaScript. Also write a version of evaluate that evaluates

arguments from right to left.

4.1.2 Representing Statements and Expressions

The evaluator is reminiscent of the symbolic di�erentiation program discussed in section 2.3.2.

Both programs operate on symbolic expressions. In both programs, the result of operating on

a compound expression is determined by operating recursively on the pieces of the expres-

sion and combining the results in a way that depends on the type of the expression. In both

programs we used data abstraction to decouple the general rules of operation from the details

of how expressions are represented. In the di�erentiation program this meant that the same

di�erentiation function could deal with algebraic expressions in pre�x form, in in�x form,

or in some other form. For the evaluator, this means that the syntax of the language being

evaluated is determined solely by the functions that classify and extract pieces of expressions.

Here is the speci�cation of the syntax of our language:

– The self-evaluating items are numbers, strings, boolean values, and null.

Ifunction is_self_evaluating(stmt) {

return is_number(stmt) ||

is_string(stmt) ||

is_boolean(stmt) ||

is_null(stmt) ||

is_undefined(stmt);

}

392 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfRQUwDbDZgNwENsQjYwBzAChSgFsoBKRAbwChEvEAnTKEDySo0YEPQBGmHrQbMuAHwWduq7iLo8YVWYxaIlKtapES4cbJiJhd8w8bUix2bLf2LlDk+nAATTMDamL5uANzsAL7s7BAIdIj0AJ5oAA48cJQ8RPSIALyIKUQ8WNQARFA8IJihiACMoaVM4bFg8UloFVUYUOSY9JhgUHmI2KhQaHzA1O1pGVn0ADSIAAxN7Bo4eIQkZBQ07Z2Y3b39g01AA

Metalinguistic Abstraction 4.1.2

– The function is_name tests whether the given statement is a name expression, and the

function symbol_of_name accesses the JavaScript string that represents the name.

Ifunction is_name(stmt) {

return is_tagged_list(stmt, "name");

}

function symbol_of_name(stmt) {

return head(tail(stmt));

}

The function is_name is de�ned in terms of the function is_tagged_list, which identi-

�es lists beginning with a designated string that we call tag:

Ifunction is_tagged_list(stmt, the_tag) {

return is_pair(stmt) && head(stmt) === the_tag;

}

– Assignments have the form name = value:

Ifunction is_assignment(stmt) {

return is_tagged_list(stmt, "assignment");

}

function assignment_symbol(stmt) {

return head(tail(head(tail(stmt))));

}

function assignment_value(stmt) {

return head(tail(tail(stmt)));

}

– Declarations have the form

const name = value;

or

let name = value;

or

function name(parameter1, . . ., parametern) {

body
}

Here, we treat the latter form (function declarations) as syntactic sugar
9

for

const name = (parameter1, . . ., parametern) => { body; };

The corresponding syntax functions are the following:

Ifunction is_constant_declaration(stmt) {

return is_tagged_list(stmt, "constant_declaration");

}

function constant_declaration_symbol(stmt) {

return head(tail(head(tail(stmt))));

9
In JavaScript, there is a subtle di�erence between the two forms, see footnote 52 in chapter 1.

393 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfSgQwObYKYAmaANqlABQpQC2UANIlABZ4Y4CUiA3gFCL+IATnighBSVGgAOmGIMo0onAGTLELTAQW1OAXn2MWbbAG4eAXx6hIsBMnRhM1PNqXc+A4aPH3j+IqRUrgwARI7OIexmltbQ8EgoAJ7UAEZwxGhwwGjhLlQ67gJCImJIGlpYMMSu7FEWPDwQCFSI1Ik5TqxUmFB4zmBQiLqIMoIoLiEAHiaRZgSoUsSYieSSueRtHc5o3b39SnXzKIvLlMlpGVlbLpu5O1h7eAO1JkA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfSgQwObYKYAmaANqlABQpQC2UANIlABZ4Y4CUiA3gFCL+IATnighBSVGgAOmGIMo0onAGTLELTAQW1OAXn2MWbbAG4eAXx49JWXIRJlypKuQBEYTNTyuGrgB6u7L4eXoEmQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfSgQwObYKYAmaANqlABQpQC2UANIlABZ4Y4CUiA3gFCL+IATnighBSVGgAOmGIMo0onAGTLELTAQW1OAXn2MWbbAG4eAXx6hIsBMnSYUKGNjDU8YClR3c+-YaLi9sb4RKRU2vSIAESOzq7untHsZpbW0PBIcS5uHlBoKACe1ABGcMSRnLwCAWJIGlpYMBUN5E0V3krs3alW4Bl22Ql5aABumMQgeJW+NSJ16niabbIV7ZU9Fjw8EAhUiNSFaEO5ngVYUHiJUIi6iDKCKNPRAB63iACMJslmBKhSxEwhXIJ2uBWKZQqh2OThyYKomEu102fxQAKBINhwzO40m02hoJGCKReR6QA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfSgQwObYKYAmaANqlABQpQC2UANIlABZ4Y4CUiA3gFCL+IATnighBSVGgAOmGIMo0onAGTLELTAQW1OAXn2MWbbAG4eAXx6hIsBMnQQEVTGChoCeCMUyDMtsNpK3Hz8wqLi9sb4RKRUgQwARI5gzq7unt6+-gnsZpbW0PBIyaluHl4+fkVoKACe1ABGcMSBnLwCYWJIGlpYMC095H0tVDrs43lW4IV2JVhp5ZlVCGgAbpjEIHitwR0iXep4mkOyLcOtExZTNkWR64IwmA3ErIuV-jvtofsRkli4hBIZHiiAS90ez1eGXeRRykwK-kQ4KeL3SFSy1TqjWanxCQh+3SOvVO5EG51GSnGuSuCNuyMhaKW-jWGy2uL24UJx3O5MUVMmPDmiGotUZMJWzigeGoeFciF0iBkghQ2wSLygiAAHvLEABGExwngEVBSby1ciSemot4YhDkEVi21gGpYKUy1yXY0oU2Yc1WqHo5bOrFNFoOm1Bl1+aWyylmL0+v0+CHW6FOlmbbbhtORyUxj25IA

Metalinguistic Abstraction 4.1.2

}

function constant_declaration_value(stmt) {

return head(tail(tail(stmt)));

}

function is_variable_declaration(stmt) {

return is_tagged_list(stmt, "variable_declaration");

}

function variable_declaration_symbol(stmt) {

return head(tail(head(tail(stmt))));

}

function variable_declaration_value(stmt) {

return head(tail(tail(stmt)));

}

– Lambda expressions are lists that begin with the string "lambda_expression":

Ifunction is_lambda_expression(stmt) {

return is_tagged_list(stmt, "lambda_expression");

}

function lambda_parameters(stmt) {

return map(symbol_of_name, head(tail(stmt)));

}

function lambda_body(stmt) {

return head(tail(tail(stmt)));

}

– return statements are objects tagged with the string "return":

Ifunction is_return_statement(stmt) {

return is_tagged_list(stmt, "return_statement");

}

function return_expression(stmt) {

return head(tail(stmt));

}

– Conditional expressions are tagged with "conditional_expression" and have a predi-

cate, a consequent, and an alternative.

Ifunction is_conditional_expression(stmt) {

return is_tagged_list(stmt,

"conditional_expression");

}

function cond_expr_pred(stmt) {

return list_ref(stmt, 1);

}

function cond_expr_cons(stmt) {

return list_ref(stmt, 2);

}

function cond_expr_alt(stmt) {

return list_ref(stmt, 3);

}

394 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfSgQwObYKYAmaANqlABQpQC2UANIlABZ4Y4CUiA3gFCL+IATnighBSVGgAOmGIMo0onAGTLELTAQW1OAXn2MWbbAG4eAXx6hIsBMnRhM1PNqXc+A4aPH3j+IqRUrgwARI7OIexmltbQ8EgoAJ7UAEZwxGhwwGjhLlQ67gJCImJIGlpYMMSu7FEWVuBxdpLETikEmGh4AB5Swigo8TWF-F6lvli4hCRkwYghrakdXb39gwiR0Q028YiL7Z0ygk4ieIIow7yeJT7UmFKUyWkZWTknDOXkldX5SrVbsVsSH2yzSBESlw8xW8ZTwmi+smq3xq-3qPAgCCoiGoiRIbQ6iF0iCOKBcIW6hIAfIhuiZNjwCKgpK0IS18Z0en08AMhji8UtMKjGShmZgISDDphjs4oGcLnyJUKmSzyBK0GCIQr2f8gA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfSgQwObYKYAmaANqlABQpQC2UANIlABZ4Y4CUiA3gFCL+IATnighBSVGgAOmGIMo0onAGTLELTAQW1OAXn2MWbbAG4eAXx6hIsBMnTDR4tFUxQ81PGApUd3PvyOYhLoWLiEJGTa9IgAREHOru6e3rHsZpbW0PBICWBoeAAeUsIoKDnRnLwCeep4muRYMMSV6RY8PBAIVIjUAJ5oWbb5BHgQxJiCbjmIuogygih45LFDM8DkhVVCIsGIhSaI5mlmXWA9-SSY1ABGBJiziKRUaMIbl2sIaKPjk9MIDAATG0zhcBrU5s8oK88O8BhNbvcgW1JHkXFhkl4KJc8m00UUSngyhUcbtxOkgA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfSgQwObYKYAmaANqlABQpQC2UANIlABZ4Y4CUiA3gFCL+IATnighBSVGgAOmGIMo0onAGTLELTAQW1OAXn2MWbbAG4eAXx6hIsBMnQQEBGLbCZiaPAA8pwlCngwbSVuPn5hUXF7Y3wiUipghjCBFNT+ACJHMGdXd08fPwCEdPYzS2toQMQsom9faWEtKh1QgQixJHioNGFgRMQARlKLK3BKuxr8+qyUYM5eNpEOxC6evD7m+kQAJmHysddqpynBNHcKTfnk9qjV3v6AZj2eHhmoRGoATzRJusFEXSIZKIGSCFB4cjpKCCEB4RAAfkGiAAXDsTCUzM4UFJiJhPuRJDUXIE8n88P5AuQvj9jn92MMsTi8eRfgUGoQqd9Wb56ZjUEz8dzTjNOTTsideTxGbjBbS2edRULeUA

Metalinguistic Abstraction 4.1.2

– A sequence statement packages a sequence of statements into a single statement. We

include syntax operations on sequences to extract the actual sequence from the sequence

statement, selectors that return the �rst statement and the rest of the statements in

the sequence, and predicates that test whether a sequence is empty or has only one

statement.
10

Ifunction is_sequence(stmt) {

return is_tagged_list(stmt, "sequence");

}

function make_sequence(stmts) {

return list("sequence", stmts);

}

function sequence_statements(stmt) {

return head(tail(stmt));

}

function first_statement(stmts) {

return head(stmts);

}

function rest_statements(stmts) {

return tail(stmts);

}

function is_empty_sequence(stmts) {

return is_null(stmts);

}

function is_last_statement(stmts) {

return is_null(tail(stmts));

}

– A block contains its body statement.

Ifunction is_block(stmt) {

return is_tagged_list(stmt, "block");

}

function make_block(stmt) {

return list("block", stmt);

}

function block_body(stmt) {

return head(tail(stmt));

}

– A function application is an object tagged with the string "application". We provide

access functions for the operator, the operands, and three functions for iterating through

the operand list:

Ifunction is_application(stmt) {

return is_tagged_list(stmt, "application");

10
These selectors for a list of statements—and the corresponding ones for a list of operands—are not intended

as a data abstraction. They are introduced as mnemonic names for the basic list operations in order to make it

easier to understand the explicit-control evaluator in section 5.4.

395 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfSgQwObYKYAmaANqlABQpQC2UANIlABZ4Y4CUiA3gFCL+IATnighBSVGgAOmGIMo0onAGTLELTAQW1OAXn2MWbbAG4eAXx6hIsBMnQo8ARxB5IebUu59+w0ePtjfCJSKk8GACJHFzcIPAj2M0traHgkakwAa1Zo13dPFE5eAT8xJFCKKOc8uIiGKlpCpKtwVLtc2JysKDxqNygUTyKBHyERMvU8TXIsGGIhxIsWmzTEYDkqNCpMHr6wCgaBotHSgI0tQ6allNskYU3t3f7By+OS8YDZ+dfmm9XJXpSKAATy21U6BTevg+EnQYBAxG+iiuyVat0CxEwD26vX6kO8738sLQ8MRM1kSMa7EWlh4EAQVEQ1FBHXciF0iBkgkc5AiAEYTIxBK5BQAWACsJgSZgIqCkmOB5EkrLi5GZYJi7mpZnpYEZ6swbT17MQKq6O1x+0G6rNi1lKHlmEVAOoQJZ4PyBqNhTtcoVSvQmOxFr2FC9tx9Mr9TvI625UC2ONDatBhoj2p49sdivuCceloGKbQabSkaAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfSgQwObYKYAmaANqlABQpQC2UANIlABZ4Y4CUiA3gFCL+IATnighBSVGgAOmGIMo0onAGTLELTAQW1OAXn2MWbbAG4eAXx6hIsBMnQAjYnAgBrbUu58Bw0ePvG+ESkVB4MAEROLq7h7GaW1tDwSNSYrqxRbh6cvD4iYkghFJHObuEMVDrxVuBJdpmuaA5wBACe2V4CQvn+GlpYMMTZcRY8PBAIVIjUrU2lroi6iDKCKHjk4VyIAIwmjIIgeHsALACse+axZgSoUsSY7ZIN5DNz0ewjNyh3D+QNTS12q8Gh8TEA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfSgQwObYKYAmaANqlABQpQC2UANIlABZ4Y4CUiA3gFCL+IATnighBSVGgAOmGIMo0onAGTLELTAQW1OAXn2MWbbAG4eAXx6hIsBMnSYpU0hEy2w2pdz79ho8fbG+ESkVJ4MAESOzjCu7hHsZpbW0PBIKe5oeAAeUsIoKGmenLwCfmJIGlpYMMTFiRZW4Kl2mILYKMXeZSIV6nia5DV1w-UNyc3uiGBwaG0d5HBSKCU+Qr0BkmAgxHVLK0lNNmmIwHJUc+2Ly6s9-pUDWvvjRy1I+VCXC8-dvhtIo2ehx4EAQVEQ1AAnnMnC43CddIgZIIUHhyBFqG4mNI4AB3cgAZgYABZEgkzARUM5MJDyJJonD3OQoTCYnE0uwGpSUNTaRk0llcvlCghmdCGbF4QhOWZQWBwSz5ihEIilWLWYyORSqcQaeQZl9Oor2isuTq9WcUZ95uqlTKeNzeeQPobbSaZUA

Metalinguistic Abstraction 4.1.2

}

function function_expression(stmt) {

return head(tail(stmt));

}

function args(stmt) {

return head(tail(tail(stmt)));

}

function no_args(ops) {

return is_null(ops);

}

function first_arg(ops) {

return head(ops);

}

function rest_args(ops) {

return tail(ops);

}

Exercise 4.2

In this section, we assume that the given program is represented using tagged list notation.

Of course, for actually writing our programs we prefer the JavaScript syntax. The JavaScript

environment for this book provides a function parse that translates a given string in JavaScript

syntax into the corresponding tagged list notation.

Iparse("const x = 1;");

l i s t (" c on s t an t_d e c l a r a t i on " , l i s t ("name" , " x ") , 1)

a. Verify experimentally that the parse function in your JavaScript environment treats

function declarations as constant declarations, ignoring the subtle di�erence between

the two mentioned in footnote 52 of chapter 1.

b. Explore how parse treats the variant of lambda expressions introduced in footnote 21

of chapter 2 by comparing the results of

Iparse("x => 1;");

and

Iparse("x => { return 1; };");

c. Verify experimentally that parse treats operator combinations as applications of primi-

tive functions. Why does this not lead to any confusion in the interpreter?

d. Explore how parse treats conditional statements if (...) \{...\} else \{...\} in-

troduced in section 1.3.2. Install conditional statements for the evaluator by de�ning ap-

propriate syntax functions and the evaluation function eval_conditional_statement.

e. The inverse of the function parse is called unparse. It takes a tagged list as produced

by parse as argument and returns a string that adheres to JavaScript notation. Write

396 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=A4QwTgzgpgFARAYwPYDsIBcAEAPTBeTARgG44BKYoA
http://source-academy.github.io/playground#chap=4&prgrm=A4QwTgzgpgFARADwAQF4B8SCMBuOBKbIA
http://source-academy.github.io/playground#chap=4&prgrm=A4QwTgzgpgFARADwAQF4B8SDeSxQC4CuYAdkgIwDcSAvhXAJQVA

Metalinguistic Abstraction 4.1.2

a function unparse by following the structure of evaluate (without the environment

parameter), but producing a string that represents the given statement, rather than eval-

uating it. Recall from section 3.3.4 that the the operator + can be applied to two strings

to concatenate them and that the primitive function stringify turns values such as 1.5,

true, null and undefined into strings. Unparsing application expressions needs to check

whether the function expression is an operator name, and in that case use in�x or pre�x

notation. Take care to respect operator precedences by surrounding resulting strings

with parentheses (always or whenever necessary).

f. Your unparse function will come in handy when solving later exercises in this section.

Improve unparse by adding blank " " and newline "\n" characters to the result string,

to follow the indentation style used in the JavaScript programs of this book. The activity

of adding/removing such characters to and from a program text is called pretty-printing.

Hint: Passing a string as second argument of the display function will cause the output

to include an actual new line for each newline character.

Exercise 4.3

Rewrite evaluate so that the dispatch is done in data-directed style. Compare this with the

data-directed di�erentiation function of exercise 2.73. (You may use the head of a compound

expression as the type of the expression, as is appropriate for the syntax implemented in this

section.)

Exercise 4.4

Recall the de�nitions of the logical composition operations && and || from chapter 1:

– expression
1
&& expression

2
: The expression expression

1
is evaluated �rst. If it evaluates to

false, false is returned; the expression expression
2

is not evaluated. If it evaluates to true,

the value of expression
2

is returned.

– expression
1
|| expression

2
: The expression expression

1
is evaluated �rst. If it evaluates to

true, true is returned; the expression expression
2

is not evaluated. If it evaluates to false,

the value of expression
2

is returned.

Explore how parse represents && and || expressions. Explain why we should not treat these

expressions as applications of primitive functions, similar to operator combinations. Install &&

and || operations for the evaluator by de�ning appropriate syntax functions and evaluation

functions eval_and and eval_or.

397 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.1.2

Exercise 4.5

In JavaScript, lambda expressions must not have duplicate parameters. The evaluate function

in section 4.1.1 does not check for this.

– Modify the evaluate function such that any attempt to apply a function with duplicate

parameters raises an error.

– Implement a verify function that checks whether any lambda expression in a given

program contains duplicate parameters. With such a function, we could check the entire

given program before we pass it to evaluate.

In order to implement this check in a JavaScript interpreter, which one of these two approaches

would you prefer? Why?

The names declared in the body of a lambda expression outside of a block must be distinct

from each other, and also distinct from the names of the parameters of the lambda expression.

Use your preferred approach above to check for this, as well.

Exercise 4.6

The language Scheme includes a variant of let called let*. We could approximate the seman-

tics of let* in JavaScript by stipulating that a let* declaration implicitly introduces a new

block whose body includes the declaration and all subsequent statements of the statement

sequence in which the declaration occurs. For example, the program

display(1);

let* x = 2;

let* y = x + 3;

display(x + y);

could be seen as a shorthand for

display(1);

{

let x = 2;

{

let y = x + 3;

display(x + y);

}

}

a. Write programs in such an extended JavaScript language that behave di�erently when

some occurrences of the keyword let are replaced with let*.

b. De�ne appropriate syntax functions for this let* variant.

c. Write a function let_star_to_nested_let that that transforms any occurrence of let*

398 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.1.2

in a given program as described above. We can then evaluate programs p in the extended

language by running evaluate(let_star_to_nested_let(p));.

d. Consider the alternative of implementing let* as we implemented let and const, namely

by introducing an evaluation function eval_let_star_declaration. Why does this ap-

proach not work?

Exercise 4.7

The language JavaScript supports while loops that execute a given statement repeatedly. More

speci�cally,

Iwhile (predicate) { body }

evaluates the predicate, and if it holds, it evaluates the body, followed by evaluating the whole

while loop again. Once the result of evaluating the condition is false, the while loop terminates.

Using this syntax, we can for example compute the greatest common divisor of two numbers

using the following function:

Ifunction gcd(a, b) {

while (a !== b) {

if(a > b) {

a = a - b;

} else {

b = b - a;

}

}

return a;

}

a. Declare a function while_loop that takes as arguments a predicate and a body—both

represented by functions of no arguments—and simulates the behavior of the while loop.

The gcd function would then look as follows:

Ifunction gcd(a, b) {

while_loop(() => a !== b,

() => { if (a > b) {

a = a - b;

} else {

b = b - a;

}

}

);

return a;

}

Make sure that your function while_loop generates an iterative process, see section 1.2.1.

b. Explore how parse represents while loops.

399 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=O4CwlgNgpgBAFDAJABwE5QCZgMYEMAuUiMAlDAN5IBGA9hgJ7EC+QA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwgEwBQEMA0iBGAlIgN4BQiliA7gBYwA2ApotogIQC8nBx5VAxDGBsAfL1IVB0rIh6yAtAQDcU6QF9ETBgGcW-aYPxyCiJVlWHE6gJCU11hwCcmUEE6QWbZdWTKpMABYAJjwARmDCZSA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEHcAsEsBsFMD6sD2KAOoAuLQCN4IAnaLLeAO3wE9QBnLAVwBNKs6AoAM0YoGMs0FFQDmfZgAoAhgBp8ASlABvDqDUQYCZGnQTQExQF4AfKCmgAhIcP4Zq9Q8fqDoE8rXQu+86byKVToFBQeY25gC0+ADc9sFxDgC+oPCwdIQB8ZmOeK74oJFSMVmZCbHFjqXF8kXqRPBMRFSFHAlAA

Metalinguistic Abstraction 4.1.2

c. Install while loops for the evaluator by de�ning appropriate syntax functions and a trans-

formation function while_to_function_call that makes use of your function while_loop.

d. What problem arises with this approach for implementing while loops, when the pro-

grammer decides within the body of the loop to return from the function that contains

the loop?

e. Change your approach to address the problem. How about directly installing while loops

for the evaluator, using a function eval_while?

f. Following this direct approach, implement a break; statement that immediately termi-

nates the loop in which it is evaluated.

g. Implement a continue; statement that terminates only the loop iteration in which it is

evaluated, and continues with evaluating the while loop predicate.

Exercise 4.8

Another kind of loop available in JavaScript is the for loop, which combines an initialization,

a predicate, an update statement and a body in a single construct. Similar to the while loop, the

body is repeatedly executed as long as the predicate holds. After every execution, the update

statement is evaluated. Here is a function that reverses a list, using a for loop.

Ifunction reverse(xs) {

let result = null;

for (let current = xs; ! is_null(current); current = tail(current)) {

result = pair(head(current), result);

}

return result;

}

a. Explore how parse represents for loops.

b. Following the approach for while loops in exercise 4.7, �rst implement a function

for_loop that takes as arguments four functions of no arguments, and simulates the

behavior of the for loop. Then install for loops for the evaluator by de�ning appropriate

syntax functions and a transformation function for_to_function_call that makes use

of your function for_loop. Finally, install for loops directly in the interpreter, using a

function eval_for.

c. Assume the you have solved the last part of exercise 4.7. Would this allow for a particu-

larly elegant way to install for loops for the evaluator?

d. Eva Lu Ator tries to combine for loops with lambda expressions in the following pro-

gram.

Ifunction reverse_functions(xs) {

let result = null;

for (let curr = xs; ! is_null(curr); curr = tail(curr)) {

400 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAJwKYDdXIM6oBQAe2AlIgN4BQi1iANqlCqtiLYwLyJiu0DcVNYHGSI89RhBDI0YDoiK9EAQkQxsAfW61aeSdNSziivTLlQAhjB0mDUYqUo0nTFm0ScADpeR4AFqnMAE10pU2IAGhdWO34nAF8BajQoKSQ0Vyh+BIo0TBx8WjUoPABGSIAmSIBme14gA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAJwKYDdXIM6oPqiSwLYAUAHtgJSIDeAUIkwDapQqrYjPsC8iYbswDcjJsDjJEpVuwghkU-pWGIAhIhjY8g5s1LzFVVYaWIoAQxj7TVGgyaOOXHon4AHK8lKkavAHyIABaoFgAmBgrIVAA0ztxQxmKIAL7JaFAKSGguUKIpQA

Metalinguistic Abstraction 4.1.3

result = pair(() => head(curr), result);

}

return result;

}

To her surprise, all functions in the list returned by reverse_functions are useless: They

apply head to null and thus give an error because after execution of the for loop, the

value of the variable curr is null. Alyssa P. Hacker proposes to give each iteration of

any for loop with a declaration of a variable its own “instance” of the variable. Modify

your solution to part (b) to follow Alyssa’s approach, and verify that Eva’s program now

works as expected.

e. The designers of JavaScript decided to follow Alyssa’s approach. Discuss this decision.

Exercise 4.9

Following up on footnote 8, this exercise addresses the question what should be the result of

evaluating a JavaScript program that consists of a sequence containing declarations, blocks, ex-

pression statements, conditional statements and assignments outside of any function body. For

this, JavaScript statically
11

distinguishes between value-producing and non-value-producing
statements. All declarations are non-value-producing, and all expression statements, condi-

tional statements and assignments are value-producing. A block is value-producing if its body

statement is value-producing, and then its value is the value of its body statement. A sequence

is value-producing if any of its component statements is value-producing, and then its value

is the value of its last value-producing component statement. The value of an expression state-

ment is the value of the expression. The value of a conditional statement is the value of the

branch that gets executed, or the value undefined if that branch is not value-producing. The

value of an assignment is the value of the expression to the right of its = sign. Finally, if the

whole program is not value-producing, its value is the value undefined.

a. According to this speci�cation, what are the values of the following programs?

– I1; 2; 3;

– I1; { if (true) { } else { 2; } }

– I1; const x = 2;

– I1; { let x = 2; { x = x + 3; } }

b. Modify the evaluate function of the previous section to adhere to this speci�cation.

11
Here “statically” means that we can make the distinction by inspecting the program rather than by running

it.

401 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=IwbgBATODMJA
http://source-academy.github.io/playground#chap=4&prgrm=IwbgBA3mCWBmYAoAuAnArgUwJSTAXzAwBsBnDXAJnALyA
http://source-academy.github.io/playground#chap=4&prgrm=IwbgBAxg9gdgzgFzADzAXjAJhEA
http://source-academy.github.io/playground#chap=4&prgrm=IwbgBA3mA2CmAuYAeYC8YBM4ovSg1GAMzgC+YpQA

Metalinguistic Abstraction 4.1.3

4.1.3 Evaluator Data Structures

In addition to de�ning the external syntax of expressions, the evaluator implementation must

also de�ne the data structures that the evaluator manipulates internally, as part of the execution

of a program, such as the representation of functions and environments and the representation

of true and false.

Testing of predicates

To enter the consequent of a conditional, we expect the predicate to evaluate to the value true,

and thus we de�ne the evaluator function is_true as follows:

Ifunction is_true(x) {

return x === true;

}

With the de�nition of the function eval_conditional_expression of section 4.1.1, this means

that our evaluator evaluates the alternative statement for any predicate value other than true.

Representing functions

To handle primitives, we assume that we have available the following functions:

– apply_primitive_function(fun, args) applies the given primitive function to the ar-

gument values in the list args and returns the result of the application.

– is_primitive_function(fun) tests whether fun is a primitive function.

These mechanisms for handling primitives are further described in section 4.1.4.

Compound functions are constructed from parameters, function bodies, and environments

using the constructor make_function:

Ifunction make_function(parameters, body, env) {

return list("compound_function",

parameters, body, env);

}

function is_compound_function(f) {

return is_tagged_list(f, "compound_function");

}

function function_parameters(f) {

return list_ref(f, 1);

}

function function_body(f) {

return list_ref(f, 2);

}

402 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfSgJxAUwBQAeAlIgN4BQiVimOUImSBiAvG4lrgNzkC+55VBmz4AjES6IA9FMQoAFnBAAbACY06DJMACGylDkQAjHBB0gDiBMoCeHEchT3cQA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfSgQwObYKYAmaANqlABQpQC2UANIlABZ4Y4CUiA3gFCL+IATnighBSVGgAOmGIMo0onAGTLELTAQW1OAXn2MWbbAG4eAXx6hIsBIjyRicFDDDY0DgG5yE1BxS9OXgEhETEkLBhickCzS2toeCRgOSo0YEFMPxiwTyC+AWFRcXU8TRy8uKtwRLsHCCcUVgAjAE9yDKy8BkDuEIL+IvDEGTkOzL8e3PYqiAQqQ1Y8aikoVo9cnzA-MChEXUQwEGJiMwTbJGpMAGtWc6TyGQmRPEEUBma4AlapvO4B0LFJCkKjkABEcxWcHARHuCDBdABIWRAieXSgr3eiE+31+Mws1RsSWQ6EhUmhYFhNQuHXyISGJUkWFwhBIZA6DAhcChMPS1KSYPx8X5djhYGkmGeGLetP+9LCJRBUDQwmAHMQAEYhYTaskReKce1gHTCgrgWQVXg1cAGAAmbVixBijbeQS+fyy4KmoGIJWW60MADM2p4czAC2o60dBwBV1ufKJCHISIESvBAA8EYgwa1BYiUfw02CGeKqJgMTsoFmnk0M4gANSIVomQXsfMF5hLFZrF1bSv4gioKTETDtSRkilUxNgciRhO69gDocjo36iVSzGzqP6xdmQcoYejjprw1b+cXXc8feH1fT3tu7Yeudi3dAA

Metalinguistic Abstraction 4.1.3

function function_environment(f) {

return list_ref(f, 3);

}

Representing return values

We saw in section 4.1.1 that the evaluation of sequences terminates when the �rst return state-

ment encountered, and that the evaluation of function applications needs to return the value

undefined if the evaluation of the function body does not encounter a return statement. In

order to identify the evaluation of return statements, we introduce return values as evaluator

data structures.

Ifunction make_return_value(content) {

return list("return_value", content);

}

function is_return_value(value) {

return is_tagged_list(value, "return_value");

}

function return_value_content(value) {

return head(tail(value));

}

Operations on Environments

The evaluator needs operations for manipulating environments. As explained in section 3.2,

an environment is a sequence of frames, where each frame is a table of bindings that associate

names with their corresponding values. We use the following operations for manipulating

environments:

– lookup_symbol_value(symbol, env) returns the value that is bound to the symbol in

the environment env, or signals an error if the symbol is unbound.

– extend_environment(symbols, values, base-env) returns a new environment, consisting

of a new frame in which the symbols in the list symbols are bound to the corresponding

elements in the list values, where the enclosing environment is the environment base-env.

– assign_symbol_value(symbol, value, env) �nds the innermost frame of env in which

the symbol is bound, and changes that frame so that the symbol is now bound to the

given value.

To implement these operations we represent an environment as a list of frames. The enclosing

environment of an environment is the tail of the list. The empty environment is simply the

empty list.

Ifunction enclosing_environment(env) {

403 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfSgQwObYKYAmaANqlABQpQC2UANIlABZ4Y4CUiA3gFCL+IATnighBSVGgAOmGIMo0onAGTLELTAQW1OAXn2MWbbAG4eAXx6hIsBIjyRicFDDDY0DgG5yE1BxS9OXgEhETEkLBhickCzS2toeCRgOSo0YEFMPxiwTyC+AWFRcXU8TRy8uKtwRLsHCCcUVgAjAE9yDKy8BkDuEIL+IvDEGTkOzL8e3PYqiAQqQ1Y8aikoVo9cnzA-MChEXUQwEGJiMwTbJGpMAGtWIfE0T0xiEDxyOd3-fJD7pFIqcgAIl+j2er0BDA+UC+VXOSWQ6BBTxeb2Rr2+hTCJUkWFwhBIZHIaO6iGBWLAoJRgJmFmqNnhSLBrCh-iJTIxg3JpXKkWixPYNMsPA+C2o60ZKP2iCutzQEte5AALAAmGkEVBSYiYdqSeVvMVy8mU9FqjVa9p6tAs3bkA16gUmIA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAU0gGzgZxmA5gfVQDcYAnBAW1SgApiBKRAbwChF3FTkoRSkoAhjDR0wRegG4WAXxahIsBImBlMUfMFICqo8czYcuPPogAWyAQBNdkmXPDR4SVBAyZk+AEYBPGpu3IADQoYoxMHIgG7Ea8SAAOQqR+WlTBDFKyEAhqiFDmhBRxUN6EYmSU1IgAvIhgIGhoUix5HsiFxaUk5GBUYFASQA

Metalinguistic Abstraction 4.1.3

return tail(env);

}

function first_frame(env) {

return head(env);

}

function enclose_by(frame, env) {

return pair(frame, env);

}

const the_empty_environment = null;

Each frame of an environment is represented as a pair of lists: a list of the variables bound

in that frame and a list of the associated values.
12

Ifunction make_frame(symbols, values) {

return pair(symbols, values);

}

function frame_symbols(frame) {

return head(frame);

}

function frame_values(frame) {

return tail(frame);

}

To extend an environment by a new frame that associates symbols with values, we make

a frame consisting of the list of symbols and the list of values, and we adjoin this to the

environment. We signal an error if the number of symbols does not match the number of

values.

Ifunction extend_environment(symbols, vals, base_env) {

return length(symbols) === length(vals)

? pair(make_frame(symbols, vals), base_env)

: error(pair(symbols, vals),

length(symbols) < length(vals)

? "Too many arguments supplied"

: "Too few arguments supplied");

}

The function extend_environment is used by apply in section 4.1.1 to bind the parameters of

a function to its arguments.

To look up a symbol in an environment, we scan the list of symbols in the �rst frame. If we

�nd the desired symbol, we return the corresponding element in the list of values. If we do

not �nd the symbol in the current frame, we search the enclosing environment, and so on. If

we reach the empty environment, we signal an “unbound name” error.

12
Frames are not really a data abstraction in the following code: The function assign_symbol_value uses

set_head to directly modify the values in a frame. The purpose of the frame functions is to make the environment-

manipulation functions easy to read.

404 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9YAnVZTACgGcBPZAIzgBtSAaRAN1VpE1IEpEBvAKERDEeTFBB4kAB1Qw8ZSjXpNW7TlwDc-AL79QkWAkT5COCtTqliJoj17DEg4aPGTEAC0yoAJtYK2tXX1oeCQbHFUOK3C7BychFwkkKFlaP1NNHX5+CARSKBRyXH9MRABeFAwccOJaGHziACIAD0amRvJGriY6hoBGJgAmLkzw7HMlK2QimI0gA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAU0gGzgZxmA5gfVQDcYAnBAW1SgApiBKRAbwChF3FTkoRSkoAhjDR0wRegG4WAXxahIsBImBlMUfMFICqo8czYcuPPogAWyAQBNdkmXPDR4SVBAyZk+AEYBPGpu3IADQoYoxMHIgG7Ea8SAAOQqR+WlTBDFKyEAhqiFDmhBRxUN6EYmSU1IgAvIhgIGhoUvKOShQCANYe-jqY3hSecGiYwUQCaCDImGFRnNyxiAlkNL39g8OIo+OTtrLNikjdHisDQ8kBYREzMSbmVmdUO-YKTsopHpsTmPfIFxxXcyZBMJvo89i9kAAPKCoSylEjkMBUMC0Y5rEZjdaeATuOHTCLXJBoVC4PLLPonKbVKo1Il4UmbKYzCIcAD8C0SNDanQ0bzJqyG6KG9GCWJxDCZzMQAC5ELSSaY+RTGAAeWXE+kY+gSyWINnIUjkJIAIgAKnA4Ig2mBvIgBKRcCAkVBMIhMCA4nE0DBkJYZUbEABqSI6kOStSkHC4GDAXyooWBxBG4L+oPa0PM8OR6O+Bn0LXpjgy-WGmim83KZAAd1t9sd1Bdbo9Xp9foTaYL7EzeGzirWjCDScTbY7oa7UZjNFzjxYkOhYFhxHKiOoNC9alLEMHRu8W4AXkbhe302vaABGYIAJmCAGZDyPJXkPMhCsU4UunZIgA

Metalinguistic Abstraction 4.1.3

Ifunction lookup_symbol_value(symbol, env) {

function env_loop(env) {

function scan(symbols, vals) {

return is_null(symbols)

? env_loop(

enclosing_environment(env))

: symbol === head(symbols)

? head(vals)

: scan(tail(symbols), tail(vals));

}

if (env === the_empty_environment) {

error(symbol, "Unbound name");

} else {

const frame = first_frame(env);

return scan(frame_symbols(frame),

frame_values(frame));

}

}

return env_loop(env);

}

To assign a name to a new value in a speci�ed environment, we scan for the symbol of the

name, just as in lookup_symbol_value, and change the corresponding value when we �nd it.

Ifunction assign_symbol_value(symbol, val, env) {

function env_loop(env) {

function scan(symbols, vals) {

return is_null(symbols)

? env_loop(

enclosing_environment(env))

: symbol === head(symbols)

? set_head(vals, val)

: scan(tail(symbols), tail(vals));

}

if (env === the_empty_environment) {

error(symbol, "Unbound name -- assignment");

} else {

const frame = first_frame(env);

return scan(frame_symbols(frame),

frame_values(frame));

}

}

return env_loop(env);

}

The method described here is only one of many plausible ways to represent environments.

Since we used data abstraction to isolate the rest of the evaluator from the detailed choice of

representation, we could change the environment representation if we wanted to. (See exer-

405 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAU0gGzgZxmA5gfVQDcYAnBAW1SgApiBKRAbwChF3FTkoRSkoAhjDR0wRegG4WAXxahIsBImBlMUfMFICqo8czYcuPPogAWyAQBNdkmXPDR4SVBAyZk+AEYBPGpu3IADQoYoxMHIgG7Ea8SAAOQqR+WlTBDFKyEAhqiFDmhBRxUN6EYmSU1IgAvIhgIGhoUvKOSsgAHlColqUk5GBUYLSY3hSecGiYwUQCE8GeAu49YVGc3LGIaKi4eTTDo+OYjFXHG1s70xP0KxEcAPyICWQ0FAIA1h7+Ontjs4gXh3MFh4GNcbogAFynPA7b4HRgAHih21MNH+VzBGPuyFI5CSACIACpwOCIF5gbyIASkXAgAZQTCITAgOJxNAwZCWSF4xAAakiGIFYLUpBwuBgwF8sMuvMQeOC3L5oMFQqgIrw4t8aPRyvYkOxuJohOJymQAHdKdTadQGUyWWyOVyZUqdRxhaKNbsRj9DjK5bKnS7BW71RLUTNDrZZM1FEgXu8NClkJ79r8LiBkD7WBEYiZHkkpZM-jN04cMvYFE5lIn8AXkgEwhEVjmkOYrHWqJHyy0kJ8PGmM+3kA2OE21iZBMJB53o5WMHBXsya17xvh+8mfmlQvoIjPWmJ8HO4jZtxjd0hMBABGB1wcpuHli7m4gYJh8HUGjfLs6dVj94eaN+gYhK4WCij05T9NQNjakBHCQlK1QnK21gFjBsF3GYFjWGigE6vBl7XhOIiocERFhpctgCrIArioguiITUeTAoUxTgX0dIPjq+pwPmy5oPKACqYBjOAli1AEeKURi0goBMyAnsqWRgDkvbVMoqjqL2NhSI+Y7ngRg5LimmBToEuGBr2q7FgOvb0FJYLURwjnRHpIREAexJHukdgsEpOQUCUxAQXS1QrO0nRgN0QXsVBbJqIabR+ni3hJQAXpJZnoRicW0AAjMEABMwQAMz0JlWU3ExBRFIFZQxYMtgsHOC5xEZPxWWg6YJX6AVsRUDUSEAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnO+D7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuP6XBAhBATEfhDGScDBHWA0k2KhO7g7priGQ2pfNGYREGS6TbHmhSAdtWm-m4NWqOEdI0AdrWuWRoLWlWeCgdoGvWTEV3JgE2SWfTt1G2d1F2TWfTrDgIG-sOeiNWWOPTjiGgHWHwOkG-tObOY0bcBOSdPToVBUfWRuZ2dqKue4AduKJ6nCFkGgCPIeR6seRgBMHuW4Adr0W2W4GIASHIOkMoBJAAHygCXj9HLk3kaAHZXgPkaBPkvlvmfmXi3i-nNn07DxyAxAgWgCvmSTgWgA9yIUaB-mF7IibjABAUQTPmIVgVfmgBgBQXdlF4ACkeFCFSFH5xFFF6FoAmFB2SeD5NFRFiesar50FReAAhDGmxQRbRShfxVJNxeRdhbkdRUJRxaAPkRoOJYOUXrkRJEBexchcRSpQpcxfTu+dJaBRpZeJ+dpTxdhe+apXBe4OpXRUZVJIRaZWIJuLxXhcRe4HRRoLxW4HHhSFRLmQmfme3mRjIZJFqNpnRpGnIHmYGYFXAr5SwvGTBImTFfJMgFkAAFZ9D-YhUTBhVsAaUtn+WBlv7GYeSYX+BRVER+5xVzAJUBlEQ4qRJYViAHZWoixv6tUZRlUYn7n06EDQDCy4jzlwV9UDW1RdXdX-n07nlGCkCED1nTWzXjUTUHkiAXkACibZ01a1S13VB2AAcnwHtXhQdXtekRidVUJBVdFCwgIsodlY0LlRpQYQdFdW9O0I-BdeJK9WSnIfdTEI9XRSVWhJFYVfVTdR9eIS9DhHhIlQFRnmRHON1AgdhPzrhGlDEppKuL+KKkYGlXwPwGvE8GzOiUZK9cmccEiGmcpEMojbws+P4E3mdjoGkIKeWMjepI4azfpF0iAppJnqDQWUFcEXILSRoN9eDVrEyTzbWKAvzbDdFbLqlRlQgHTKLbVUlT9aoTtW4HweDnicIZ0A2scOJHwXYPEJ4fSPvgbeJFJKYMzfrTgWIFRE+s8npqsuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaSTaQliTiQ7eWISbZMSeRtyZmWKSUXHVfNoEYNSYkp7QIGddsFfAyQBkyXGr+qydnAMY0FLFyaEbrQIQKVbUKZHaaKKb8TJpKYPjKeEI1GipPEiHKY0AqT3RfPFSqVJGqWQVnJqZOtqfqb6K4evdrdqMaaoVvWaf4FaW1L4f6racCetA6XSpfDgLhJYjbGZKYI5SoGEeJInvPk+MRVJDyh-a+IWurDfQpB4okMybyWbalfiF3UiM+EAA

Metalinguistic Abstraction 4.1.3

cise 4.10.) In a production-quality JavaScript system, the speed of the evaluator’s environment

operations—especially that of symbol lookup—has a major impact on the performance of the

system. The representation described here, although conceptually simple, is not e�cient and

would not ordinarily be used in a production system.
13

Exercise 4.10

Instead of representing a frame as a pair of lists, we can represent a frame as a list of bindings,

where each binding is a symbol-value pair. Rewrite the environment operations to use this

alternative representation.

Exercise 4.11

The functions lookup_symbol_value and assign_symbol_value can be expressed in terms of

a more abstract function for traversing the environment structure. De�ne an abstraction that

captures the common pattern and rede�ne the two functions in terms of this abstraction.

Exercise 4.12

Our language distinguishes constants from variables by using two di�erent keywords: const

and let. However, our interpreter does not make use of this distinction; the function assign_symbol_value

will happily assign a new value to a given symbol, regardless whether it is declared as a con-

stant or a variable. Correct this �aw by calling the function error whenever an attempt is

made to use a constant on the left hand side of an assignment. You may proceed as follows:

– Change the functions scan_out_declarations and (if necessary) extend_environment

such that constants are distinguishable from variables in the frames in which they are

bound.

– Change the function assign_symbol_value such that it checks whether the given symbol

has been declared as a variable or as a constant, and in the latter case signals an error

that assignment operations are not allowed on contants.

13
The drawback of this representation (as well as the variant in exercise 4.10) is that the evaluator may have

to search through many frames in order to �nd the binding for a given variable. (Such an approach is referred to

as deep binding.) One way to avoid this ine�ciency is to make use of a strategy called lexical addressing, which

will be discussed in section 5.5.6.

406 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.1.4

Exercise 4.13

Prior to ECMAScript 2015’s strict mode that we are using in this book, variables in JavaScript

worked quite di�erently from Scheme, which would have made this adaptation considerably

less compelling.

a. Before ECMAScript 2015, the only way to declare a local variable in JavaScript was

using the keyword var instead of the keyword let. The scope of variables declared with

var is the entire body of the immediately surrounding function declaration or lambda

expression, rather than just the immediately enclosing block. Modify scan_out_names

and eval_block such that names declared with const and let follow the scoping rules

of var.

b. When not using the strict mode, JavaScript permits undeclared names to appear on the

left of the = sign in assignments. The meaning of such an assignment is that the new

binding is added to the global environment. Modify the function assign_symbol_value

to make assignment behave this way. The strict mode was introduced in JavaScript in

order to make programs more secure. What security issue is addressed by removing the

ability of assignment to add bindings to the global environment?

4.1.4 Running the Evaluator as a Program

Given the evaluator, we have in our hands a description (expressed in JavaScript) of the process

by which JavaScript statements and expressions are evaluated. One advantage of expressing

the evaluator as a program is that we can run the program. This gives us, running within

JavaScript, a working model of how JavaScript itself evaluates expressions. This can serve as

a framework for experimenting with evaluation rules, as we shall do later in this chapter.

Our evaluator program reduces expressions ultimately to the application of primitive func-

tions. Therefore, all that we need to run the evaluator is to create a mechanism that calls on

the underlying JavaScript system to model the application of primitive functions.

There must be a binding for each primitive function name, so that when evaluate evalu-

ates the function expression of an application of a primitive, it will �nd an object to pass to

apply. We thus set up a global environment that associates unique objects with the names of

the primitive functions that can appear in the expressions we will be evaluating. The global

environment also includes bindings for undefined and other names, so that they can be used

as constants in expressions to be evaluated.

Ifunction setup_environment() {

return extend_environment(

append(primitive_function_symbols,

primitive_constant_symbols),

407 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfSgQwObYKYAmaANqlABQpQC2UANIlABZ4Y4CUiA3gFCL+IATnighBSVGgAOmGIMo0onAGTLELTAQW1OAXn2MWbbAG4eAXx6hIsBIjwAPKHjBEXANzkJqLiigCe1ABGcMQoDO6YYQxBmCisHpy8AkIiYkjELtjMlIEhYXoGmWDZTOSRBXwp1YgA-IgycuTUmADWrMCCmD65waHhiBUo7DFxCWDu7FU1AgBciMWlvfnDiAA8C1k5Q1MzNfV4goJw8gBEACpwcIgtYP6ImILYID5gUCiIKCBSUqSE86dEABqRDTPbgz5QQQwEowYD+Zb9Tgg04MQEgsEQmZUaGw+HlKLDXZYxDzQ7HM6Xa7APAAdweTxevg+Xx+fwIAOBoJJ4JxMOwcIRAT6BS5qMQ6O5POxUP5goJBXYZks1mg8CQLggxDgKH5aA8XjArwoiW4YOEonEjFkxHIiWVVnAarswDkVDQnW6eDtEyS5rSVo0WntFkdNnV9kg2viaCCCM9PgYpq4KX9lqQjXkCbwSd9DogCCohgS1CkUH8+omhuNiF0iDAIGIxDMqtsSBa7Q9XR6wpWESiIDwq2SAgt6Qasnkvf6-eIg+GDtbEezaGnYXI2aSqZSY8DeE0G+7eCVoaXLqPaAq88PXq3AjT46wMFtm-zhagDWh1BgsHcrALYBUJgbwfHWpBUOQ4EUKc4AEHgrpgIQ4qwfBMKECMmLStKUHkKcACSYAIT+-jiogBFEeWGFYdR-A4acLTMGgAAKeGkTcmCMSxVE0VhdEMUwaAAKJsexjGCdxPE8nRABymDSSJAiydJxKSViJ4AUWUhfj+MB-mgGlYG8q55P0taYfwLRSButYAHzqPuWjACMn4wN+v7-u+wHvOp74uW5ukeYBhlQJeA5DmZeyWdZuh2UG5BPi+7DOVprk6XpBleQuPAGX5aUdE6bagQsZDkOZdFBiJQY8hJKR0QlIkJdVdBlSVpyZiJmZNS1EGnFBIlQV1Mx0ZIDZNuKI2NsQEI1QIdEEKgvyYCRDDzSgi33OCM20a15InGxu2CCSW3FT1-FoJgQQoKiZ0XR8ezHXRQIKfw5AOAw-h6HZDhchtD2tQAtM9iCve9n2IN9-2IL9zVDa1ABUQMg1DYPfXDUP8H9PUAPSI29yO2eDiBY+jiCY9BACkuOgwT33kyTZO4fougKUjH007WBgfTDNR0QAhPoLN42zMWE-zdZc910FrFT+Mi99Gz8BLsM9WszMMNUrMo+sdbI9z1R0TZMvC19iB2YrDOnDZas1Jr7NW+beu1a1vNA4TKQi-wvMCA4KkpD5QW5e5HoFeqxkiqB5nsVZQYMCl-l6WegH+5p2lB4naBwEEABWeDQBHkWYFZ1gE3Rcd5eKcUJRu4BJcd1Rl2nIeFieifIOgDcBcH4YINXYB+qOAYSOgWC4IQJAldYaId3+pwniqTcZqnneub8eDGhx6q9-3-C7kglc2lvc9hs6SDxKIUiVp4xxGr45Dbzvg-2E4LhuFW1-GqVWGF1IL-kNP+XdzAGHPsUpVL-30p5Iya5hiOyxN-X+4D06ZxznnBgkdpTgIykZK8Q464zGYCWMsFYDTv18EfbKvkCFoGwNqWIxBL7Vl8LWT4aQL4kO8LfE8ABIHgVCaGZyiAw0hbwTBAA

Metalinguistic Abstraction 4.1.4

append(primitive_function_objects,

primitive_constant_values),

the_empty_environment);

}

Ilet the_global_environment = setup_environment();

It does not matter how we represent primitive function objects, so long as apply can identify

and apply them using the functions is_primitive_function and apply_primitive_function.

We have chosen to represent a primitive function as a list beginning with the string "primitive"

and containing a function in the underlying JavaScript that implements that primitive.

Ifunction is_primitive_function(fun) {

return is_tagged_list(fun, "primitive");

}

function primitive_implementation(fun) {

return head(tail(fun));

}

The function setup_environment will get the primitive names and implementation functions

from a list:
14

Iconst primitive_functions = list(

list("head", head),

list("tail", tail),

list("pair", pair),

list("is_null", is_null),

list("+", (x, y) => x + y),

// more primitive functions

);

const primitive_function_symbols =

map(head, primitive_functions);

const primitive_function_objects =

map(fun => list("primitive", head(tail(fun))),

primitive_functions);

Similar to primitive functions, we de�ne primitive values that are installed in the global

environment by the function setup_environment.

Iconst primitive_constants = list(list("undefined", undefined),

list("math_PI", math_PI)

// more primitive constants

);

const primitive_constant_symbols =

14
Any function de�ned in the underlying JavaScript can be used as a primitive for the metacircular evaluator.

The name of a primitive installed in the evaluator need not be the same as the name of its implementation in the

underlying JavaScript; the names are the same here because the metacircular evaluator implements JavaScript

itself. Thus, for example, we could put list("first", head) or list("square", x => x * x) in the list of

primitive_functions.

408 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfSgQwObYKYAmaANqlABQpQC2UANIlABZ4Y4CUiA3gFCL+IATnighBSVGgAOmGIMo0onAGTLELTAQW1OAXn2MWbbAG4eAXx6hIsBIjwAPKHjBEXANzkJqLiigCe1ABGcMQoDO6YYQxBmCisHpy8AkIiYkjELtjMlIEhYXoGmWDZTOSRBXwp1YgA-IgycuTUmADWrMCCmD65waHhiBUo7DFxCWDu7FU1AgBciMWlvfnDiAA8C1k5Q1MzNfV4goJw8gBEACpwcIgtYP6ImILYID5gUCiIKCBSUqSE86dEABqRDTPbgz5QQQwEowYD+Zb9Tgg04MQEgsEQmZUaGw+HlKLDXZYxDzQ7HM6Xa7APAAdweTxevg+Xx+fwIAOBoJJ4JxMOwcIRAT6BS5qMQ6O5POxUP5goJBXYZks1mg8CQLggxDgKH5aA8XjArwoiW4YOEonEjFkxHIiWVVnAarswDkVDQnW6eDtEyS5rSVo0WntFkdNnV9kg2viaCCCM9PgYpq4KX9lqQjXkCbwSd9DogCCohgS1CkUH8+omhuNiF0iDAIGIxDMqtsSBa7Q9XR6wpWESiIDwq2SAgt6Qasnkvf6-eIg+GDtbEezaGnYXI2aSqZSY8DeE0G+7eCVoaXLqPaAq88PXq3AjT46wMFtm-zhagDWh1BgsHcrALYBUJgbwfHWpBUOQ4EUKc4AEHgrpgIQ4qwfBMKECMmLStKUHkKcACSYAIT+-jiogBFEeWGFYdR-A4acLTMGgAAKeGkTcmCMSxVE0VhdEMUwaAAKJsexjGCdxPE8nRABymDSSJAiydJxKSViJ4AUWUhfj+MB-mgGlYG8q55P0taYfwLRSButYAHzqPuWjACMn4wN+v7-u+wHvOp74uW5ukeYBhlQJeA5DmZeyWdZuh2UG5BPi+7DOVprk6XpBleQuPAGX5aUdE6bagQsZDkOZdFBiJQY8hJKR0QlIkJdVdBlSVpyZiJmZNS1EGnFBIlQV1Mx0ZIDZNuKI2NsQEI1QIdEEKgvyYCRDDzSgi33OCM20a15InGxu2CCSW3FT1-FoJgQQoKiZ0XR8ezHXRQIKfw5AOAw-h6HZDhchtD2tQAtM9iCve9n2IN9-2IL9zVDa1ABUQMg1DYPfXDUP8H9PUAPSI29yO2eDiBY+jiCY9BACkuOgwT33kyTZO4fougKUjH007WBgfTDNR0QAhPoLN42zMWE-zdZc910FrFT+Mi99Gz8BLsM9WszMMNUrMo+sdbI9z1R0TZMvC19iB2YrDOnDZas1Jr7NW+beu1a1vNA4TKQi-wvMCA4KkpD5QW5e5HoFeqxkiqB5nsVZQYMCl-l6WegH+5p2lB4naBwEEABWeDQBHkWYFZ1gE3Rcd5eKcUJRu4BJcd1Rl2nIeFieifIOgDcBcH4YINXYB+qOAYSOgWC4IQJAldYaId3+pwniqTcZqnneub8eDGhx6q9-3-C7kglc2lvc9hs6SDxKIUiVp4xxGr45Dbzvg-2E4LhuFW1-GqVWGF1IL-kNP+XdzAGHPsUpVL-30p5Iya5hiOyxN-X+4D06ZxznnBgkdpTgIykZK8Q464zGYCWMsFYDTv18EfTIH4CFoGwNqWIxBL7Vl8LWT4aQL4kO8LfE8PAqE0MzlEBhpC3gmCAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfSgQwObYKYAmaANqlABQpQC2UANIlABZ4Y4CUiA3gFCL+IATnighBSVGgAOmGIMo0onAGTLELTAQW1OAXn2MWbbAG4eAXx6hIsBMnRTBMajFgA3Vtejww5a514BYVFxe2N8IlIqP3AGACJHZ1cYDzj2M0svWyREl3dWZyliPGo8MCxsmLAAvn5gsSQNLSwYYir2dIseHggEKkRqAE9pJzyU1iKQFERdWv4oigTR5NSGcgAPBkG9AD5EdcQAakRBxHSASAFEHgJUIsxB8klclc9wbwRyIZGk-OliKYdMy3FD3R4vP6FYqlcqYSrfCHjf6A9JAA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBADgJwJYFslSQNwKYH0BmArmMBuBDALwwA2S0AFAFAytu31QMBEAFtgEMAJtwA07fsPbT2ASlEsZdRtygCkNMezUaZe+YunKu3OOoRa2ZpAj0yDe4z2OXWxu9IdLOPerjCENJrifgFBHjBeRj7cQvRwNAIAnlpxEAnJEVHsTtzYCAggFuKs+YW2EZEKjjEoAlC8uAIARhBidQ1NrR7ZbLkA1K7sDAAe4kmyVAB8MCMw-TBJrL1uMQC0Q2yj45OUM3Nri8vV3ioAVJus24u7+zBnR1WGOTEA9Jcw1xPTszCvjysOCoAKQfL63X7AgEnaIqSjwzbgn5zeHUCYwl4qACECJKWzGN2RMBxaMBuQAPGCCd89r9yWx0c8+jFyZRLkjaXNWaxGTUVFMqTsiTMeWSYlM2Xj8ULOTAJaKMczsR9fuxaawsWwRrImcsANxMUCQWCIVDoLB4IgkMhgXAQJIoZogGgUSi61h1OAMSRCcSmtAYHAEYikJDkWQGo3QeDIAMW4PWsO2kDNABW2FIrvdME9DCtP1y-vNOC0PoYOhoeeIshrir0RcDlpDNogEaYTAb8atofIeqAA
http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBADgJwJYFslSQNwKYH1SRQCGYUEMAvDADZLQAUtDARAK5gAm2AZkmNh2YAaGOy69+HAJRCAUDAWKlylauVMo9ZgEkwE9AE9hC3fqgGZ8tdZvq6m5iiJQAFrgAK24wqeuP2y1sgmw0tXzcAUW8fZ0jA4IS7FgA5ImTopVTkqStExKkAblkCaHhkNAwcfHBoEihcCAMUACMQanIKXOUnOHpuSgA+GBdsIg4+mTLUdCw8EuJSCELimthEacq51brcTCJqVmwOrqUevsHh0fHiJGoJyfWK2erCOqWi2UeZqvm3gqA

Metalinguistic Abstraction 4.1.4

map(f => head(f), primitive_constants);

const primitive_constant_values =

map(f => head(tail(f)), primitive_constants);

To apply a primitive function, we simply apply the implementation function to the argu-

ments, using the underlying JavaScript system:
15

Ifunction apply_primitive_function(fun, arglist) {

return apply_in_underlying_javascript(

primitive_implementation(fun),

arglist);

}

For convenience in running the metacircular evaluator, we provide a driver loop that models

the the read-evaluate-print loop of the underlying JavaScript system. It prints a prompt and

reads an input program as a string. It then transforms the program string into a tagged-list

representation of the statement according to the description in section 4.1.2—a process called

parsing and accomplished by the primitive function parse (see exercise 4.2). We precede each

printed result by an output prompt so as to distinguish the value of the program from other

output that may be printed. The driver loop gets the program environment of the previous

program as argument. Following section 3.2.4, the new program environment is constructed

by extending the given environment with bindings of the names declared at toplevel to their

initial value "*unassigned*". The driver loop evaluates the program in the new program

environment and prints the result.

Iconst input_prompt = "M-evaluate input: ";

const output_prompt = "M-evaluate value: ";

function driver_loop(env) {

const input = user_read(input_prompt);

if (input === null) {

display("evaluator terminated");

} else {

const program = parse(input);

15
JavaScript’s apply method of function objects expects arguments in a vector. (Confusingly, vectors are called

arrays in JavaScript. For more on vectors, see section 5.3.1.) Thus, the arglist is transformed into a vector—here

in style using a while loop (see exercise 4.7):

function apply_in_underlying_javascript(prim, arglist) {
const arg_array = []; // empty vector
let i = 0;
while (!is_null(arglist)) {

arg_array[i] = head(arglist); // vector_set (see 5.3.1)
i = i + 1;
arglist = tail(arglist);

}
return prim.apply(prim, arg_array); // apply is accessed via prim

}
We have made use of apply_in_underlying_javascript to de�ne the function apply in section 2.4.3.

409 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfSgQwObYKYAmaANqlABQpQC2UANIlABZ4Y4CUiA3gFCL+IATnighBSVGgAOmGIMo0onAGTLELTAQW1OAXn2MWbbAG4eAXx6hIsBMnRTBMajFgA3Vtejww5a514BYVFxe2N8IlIqP3AGACJHZ1cYDzj2M0svWyREl3dWZyliPGo8MCxsmLAAvn5gsSQNLSwYYir2dIseCAQqRGoAT2knPJTWIpAURF1a-iiKBJHk1IZyAA8GAb0APkQ1xABqRAHEdIBIAUQeAlQizAHySVzlz3BvBHJB4aT86WJJjpmG4oO4PZ6-QrFUrlTCVL7gsZ-AGdLI+RCYKRFIYIjxoVEfawMTCCbDzGqXeqhDFYtAwMBocAEPCCYgDOnYNAAK0wbkwKAgTikFFml1FlxxBWoRRKZQqPnadBFYrFxNJZHSoq6PGprO+o1x+N88KWvwmKAY83IAEYGAAmQFAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+E+pAKYLDNBBCMSLgGzBmCMXYHICPfDefJ1PAMgA-Wqi-QgMBAvBSB2gPm3hnj-QlNwpuLkUA5pFeM5GtSQpiEPT+aAy4EvP4F4BA3jTA9VHA6g00FBIxWbrDa-cwLg8jJuAANr3Fxqf3PEODzrIM3FTEyYkMmj9Ef1f32CRaNwMOTGbgAC6m4LDmZ5xdgixyDJi0QUlAwhoXlN4cj8jCjijSjleJot9AhHDdgvDAAOtAFQ+w7Q4Q6PZurcTo+BRfauLUhFmo-fbQ+HdY8iPYxo6hdOWlCkFAnhHfeJFJJuAALJXh4wGDQBuPwDdEviXybzBMeMCE2y+P+MkoNQXShN0qdTdBPAISwzxmgkhIuNBNQI2zmOwxaARauPuP2MHmewY6NwlM66TmgBSPiWXVyPdIVFxqriwShCiDdCNTeWlRjnZR0K1P1MyNKMjOjPyMqNGTVNRNszaO6OTHVOzN9P+BvXIB2DmQ2xmSmCQS5Nr0TDuLhiJLeKYK+KkZwLN2rPmQHmzLTklIRLYWdbFyhDorwyFIW57Pg3YBrNhCYELIOFl510QgT3oivPFJPOTwRKN7vNE0RN5NSTqy31fM4Be0XPfMamNAFN4RpTIgwtdD2PP1QLBNXNuCpNfkZPnkIvmRpESPvibgqh8CwA6SwCiSDDNNMXxCRoZSbhn0kvpO+kLq8nb3Q34gn335PhAA

Metalinguistic Abstraction 4.1.4

const locals = scan_out_declarations(program);

const unassigneds = list_of_unassigned(locals);

const program_env = extend_environment(locals, unassigneds, env);

const output = evaluate(program, program_env);

user_print(output_prompt, output);

driver_loop(program_env);

}

}

We use a special printing function user_print, to avoid printing the environment part of a

compound function, which may be a very long list (or may even contain cycles).

Ifunction user_print(string, object) {

function prepare(object) {

return is_compound_function(object)

? "< compound-function >"

: is_primitive_function(object)

? "< primitive-function >"

: is_pair(object)

? pair(prepare(head(object)),

prepare(tail(object)))

: object;

}

display(prepare(object), string);

}

We use JavaScript’s prompt function in order to request the input string from the user:

Ifunction user_read(prompt_string) {

return prompt(prompt_string);

}

Now all we need to do to run the evaluator is to initialize the global environment and start

the driver loop. Here is a sample interaction:

Iconst the_global_environment = setup_environment();

driver_loop(the_global_environment);

M−eva lua te input :

Ifunction append(xs, ys) {

return is_null(xs)

? ys

: pair(head(xs), append(tail(xs), ys));

}

M−eva lua te value :
undef ined

M−eva lua te input :

410 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+E+pAKYLDNBBCMSLgGzBmCMXYHICPfDefJ1PAMgA-Wqi-QgMBAvBSB2gPm3hnj-QlNwpuLkUA5pFeM5GtSQpiEPT+aAy4EvP4F4BA3jTA9VHA6g00FBIxWbrDa-cwLg8jJuAANr3Fxqf3PEODzrIM3FTEyYkMmj9Ef1f32CRaNwMOTGbgAC6m4LDmZ5xdgixyDJi0QUlAwhoXlN4cj8jCjijSjleJot9AhHDdgvDAAOtAFQ+w7Q4Q6PZurcTo4+swBfauHhGlJ5ZvCkFAt0XIIZOrGZKYJdQwJMTyk+I+H3dqFvTvfiCfffs+EAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABCAzgUwE4H0NoIYAmAFAA4ZwC2JUWKUGMYA5gJSIDeAUIj4rlCAxIylaqXJUadBsxYBuTgF8gA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+E+pAKYLDNBBCMSLgGzBmCMXYHICPfDefJ1PAMgA-Wqi-QgMBAvBSB2gPm3hnj-QlNwpuLkUA5pFeM5GtSQpiEPT+aAy4EvP4F4BA3jTA9VHA6g00FBIxWbrDa-cwLg8jJuAANr3Fxqf3PEODzrIM3FTEyYkMmj9Ef1f32CRaNwMOTGbgAC6m4LDmZ5xdgixyDJi0QUlAwhoXlN4cj8jCjijSjleJot9AhHDdgvDAAOtAFQ+w7Q4Q6PZurcTo+BRfauLUhFmo-fbQ+HdY8iPYxo6hdOWlCkFAnhHfeJFJJuAALJXh4wGDQBuPwDdEviXybzBMeMCE2y+P+MkoNQXShN0qdTdBPAISwzxmgkhIuNBNQI2zmOwxaARauPuP2MHmewY6NwlM66TmgBSPiWXVyPdIVFxqriwShCiDdCNTeWlRjnZR0K1P1MyNKMjOjPyMqNGTVNRNszaO6OTHVOzN9P+BvXIB2DmQ2xmSmCQS5Nr0TDuLhiJLeKYK+KkZwLN2rPmQHmzLTklIRLYWdbFyhDorwyFIW57Pg3YBrNhCYELIOFl510QgT3oivPFJPOTwRKN7vNE0RN5NSTqy31fM4Be0XPfMamNAFN4RpTIgwtdD2PP1QLBNXNuCpNfkZPnkIvmRpESPvibgqh8CwA6SwCiSDDNNMXxCRoZSbgvgkvpO+kLq8nb3Q34gn335PhAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+E+pAKYLDNBBCMSLgGzBmCMXYHICPfDefJ1PAMgA-Wqi-QgMBAvBSB2gPm3hnj-QlNwpuLkUA5pFeM5GtSQpiEPT+aAy4EvP4F4BA3jTA9VHA6g00FBIxWbrDa-cwLg8jJuAANr3Fxqf3PEODzrIM3FTEyYkMmj9Ef1f32CRaNwMOTGbgAC6m4LDmZ5xdgixyDJi0QUlAwhoXlN4cj8jCjijSjleJot9AhHDdgvDAAOtAFQ+w7Q4Q6PZurcTo+BRfauLUhFmo-fbQ+HdY8iPYxo6hdOWlCkFAnhHfeJFJJuAALJXh4wGDQBuPwDdEviXybzBMeMCE2y+P+MkoNQXShN0qdTdBPAISwzxmgkhIuNBNQI2zmOwxaARauPuP2MHmewY6NwlM66TmgBSPiWXVyPdIVFxqriwShCiDdCNTeWlRjnZR0K1P1MyNKMjOjPyMqNGTVNRNszaO6OTHVOzN9P+BvXIB2DmQ2xmSmCQS5Nr0TDuLhiJLeKYK+KkZwLN2rPmQHmzLTklIRLYWdbFyhDorwyFIW57Pg3YBrNhCYELIOFl510QgT3oivPFJPOTwRKN7vNE0RN5NSTqy31fM4Be0XPfMamNAFN4RpTIgwtdD2PP1QLBNXNuCpNfkZPnkIvmRpESPvibgqh8CwA6SwCiSDDNNMXxCRoZSbgvgMr9gYCbgABKMAPRH9V88wmAm9XqdTaTq4XUwJ15fjAT1TAQ15-t9UTdBIdM6QMJBOJuJqGrygXgWrGRHB86+rAEtYoCXD1lD00V2Ox5DKCr8ToZL+yrDK9N3QQAA

Metalinguistic Abstraction 4.1.5

Iappend(list('a', 'b', 'c'), list('d', 'e', 'f'));

M−eva lua te value :
[' a ' , [' b ' , [' c ' , [' d ' , [' e ' , [' f ' , nu l l]]]]]]

Exercise 4.14

Eva Lu Ator and Louis Reasoner are each experimenting with the metacircular evaluator. Eva

types in the de�nition of map, and runs some test programs that use it. They work �ne. Louis,

in contrast, has installed the system version of map as a primitive for the metacircular evaluator.

When he tries it, things go terribly wrong. Explain why Louis’s map fails even though Eva’s

works.

4.1.5 Data as Programs

In thinking about a JavaScript program that evaluates JavaScript statements and expressions, an

analogy might be helpful. One operational view of the meaning of a program is that a program

is a description of an abstract (perhaps in�nitely large) machine. For example, consider the

familiar program to compute factorials:

Ifunction factorial(n) {

return n === 1

? 1

: factorial(n - 1) * n;

}

We may regard this program as the description of a machine containing parts that decrement,

multiply, and test for equality, together with a two-position switch and another factorial ma-

chine. (The factorial machine is in�nite because it contains another factorial machine within

it.) Figure 4.2 is a �ow diagram for the factorial machine, showing how the parts are wired

together.

411 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+E+pAKYLDNBBCMSLgGzBmCMXYHICPfDefJ1PAMgA-Wqi-QgMBAvBSB2gPm3hnj-QlNwpuLkUA5pFeM5GtSQpiEPT+aAy4EvP4F4BA3jTA9VHA6g00FBIxWbrDa-cwLg8jJuAANr3Fxqf3PEODzrIM3FTEyYkMmj9Ef1f32CRaNwMOTGbgAC6m4LDmZ5xdgixyDJi0QUlAwhoXlN4cj8jCjijSjleJot9AhHDdgvDAAOtAFQ+w7Q4Q6PZurcTo+BRfauLUhFmo-fbQ+HdY8iPYxo6hdOWlCkFAnhHfeJFJJuAALJXh4wGDQBuPwDdEviXybzBMeMCE2y+P+MkoNQXShN0qdTdBPAISwzxmgkhIuNBNQI2zmOwxaARauPuP2MHmewY6NwlM66TmgBSPiWXVyPdIVFxqriwShCiDdCNTeWlRjnZR0K1P1MyNKMjOjPyMqNGTVNRNszaO6OTHVOzN9P+BvXIB2DmQ2xmSmCQS5Nr0TDuLhiJLeKYK+KkZwLN2rPmQHmzLTklIRLYWdbFyhDorwyFIW57Pg3YBrNhCYELIOFl510QgT3oivPFJPOTwRKN7vNE0RN5NSTqy31fM4Be0XPfMamNAFN4RpTIgwtdD2PP1QLBNXNuCpNfkZPnkIvmRpESPvibgqh8CwA6SwCiSDDNNMXxCRoZSbgvgMr9gYCbgABKMAPRH9V88wmAm9XqdTaTq4XUwJ15fjAT1TAQ15-t9UTdBIdM6QMJBOJuJqGrygXgWrGRHB86+rAEtYoCXD1lD00V2Ox5DKCr8ToZL+yrDK9N3QdKDrcT1gpYgTwTrrYAA9YgeaAA5HwCG3ICG1kBG6ACG7ACGwdKG90DGyG1wCm+AAm1RF6wE4k9eeQ2GzG-m9G3IPm-GyWyG8m+W2m+Wxm3IEYnww2420AA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMAhtOAnGKA2AKMASkQG8AoRSxDAUyhAySQF5XEBGCq7qgfg649uALmRoombPiQBaDsQBUiMAG4yAXzJlU6LLjwBWQiqA

Metalinguistic Abstraction 4.1.5

=

factorial--

*

factorial

6 720

1 1

1

Figure 4.2: The factorial program, viewed as an abstract machine.

In a similar way, we can regard the evaluator as a very special machine that takes as input

a description of a machine. Given this input, the evaluator con�gures itself to emulate the

machine described. For example, if we feed our evaluator the de�nition of factorial, as shown

in �gure 4.3, the evaluator will be able to compute factorials.

function factorial(n) {
 return n === 1
 ? 1
 : factorial(n - 1) * n;
}

eval6 720

Figure 4.3: The evaluator emulating a factorial machine.

From this perspective, our evaluator is seen to be a universal machine. It mimics other ma-

chines when these are described as JavaScript programs.
16

16
The fact that the machines are described in JavaScript is inessential. If we give our evaluator a JavaScript

program that behaves as an evaluator for some other language, say C, the JavaScript evaluator will emulate the

C evaluator, which in turn can emulate any machine described as a C program. Similarly, writing a JavaScript

evaluator in C produces a C program that can execute any JavaScript program. The deep idea here is that any

evaluator can emulate any other. Thus, the notion of “what can in principle be computed” (ignoring practicalities

412 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.1.5

This is striking. Try to imagine an analogous evaluator for electrical circuits. This would be

a circuit that takes as input a signal encoding the plans for some other circuit, such as a �lter.

Given this input, the circuit evaluator would then behave like a �lter with the same description.

Such a universal electrical circuit is almost unimaginably complex. It is remarkable that the

program evaluator is a rather simple program.
17

Another striking aspect of the evaluator is that it acts as a bridge between the data objects

that are manipulated by our programming language and the programming language itself.

Imagine that the evaluator program (implemented in JavaScript) is running, and that a user

is typing programs to the evaluator and observing the results. From the perspective of the

user, an input program such as x * x; is a program in the programming language, which

the evaluator should execute. From the perspective of the evaluator, however, the expression

is simply a string or—after parsing—a tagged-list representation that is to be manipulated

according to a well-de�ned set of rules.

That the user’s programs are the evaluator’s data need not be a source of confusion. In

fact, it is sometimes convenient to ignore this distinction, and to give the user the ability to

explicitly evaluate a string as a JavaScript expression, using JavaScript’s primitive function

eval that takes as argument a string. It parses the string and—provided that it syntactically

correct—evaluates the resulting representation in the environment in which eval is applied.

Thus,

Ieval("5 * 5;");

and

Ievaluate(parse("5 * 5;"), the_global_environment);

will both return 25.
18

of time and memory required) is independent of the language or the computer, and instead re�ects an underlying

notion of computability. This was �rst demonstrated in a clear way by Alan M. Turing (1912–1954), whose 1936

paper laid the foundations for theoretical computer science. In the paper, Turing presented a simple computa-

tional model—now known as a Turing machine—and argued that any “e�ective process” can be formulated as a

program for such a machine. (This argument is known as the Church-Turing thesis.) Turing then implemented a

universal machine, i.e., a Turing machine that behaves as an evaluator for Turing-machine programs. He used

this framework to demonstrate that there are well-posed problems that cannot be computed by Turing machines

(see exercise 4.15), and so by implication cannot be formulated as “e�ective processes.” Turing went on to make

fundamental contributions to practical computer science as well. For example, he invented the idea of structuring

programs using general-purpose subroutines. See Hodges 1983 for a biography of Turing.

17
Some people �nd it counterintuitive that an evaluator, which is implemented by a relatively simple function,

can emulate programs that are more complex than the evaluator itself. The existence of a universal evaluator

machine is a deep and wonderful property of computation. Recursion theory, a branch of mathematical logic,

is concerned with logical limits of computation. Douglas Hofstadter’s beautiful book Gödel, Escher, Bach (1979)

explores some of these ideas.

18
Note that eval may not be available in the JavaScript environment that you are using, or its use may be

restricted for security reasons.

413 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=KYNwhgNgFARArAAgFQLgbhgSjUA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+MwOrGZKYJdQAKzxWgDX1PiPjMm8nb3Q34gn335PhAA

Metalinguistic Abstraction 4.1.6

Exercise 4.15

Given a one-argument function p and an object a, p is said to “halt” on a if evaluating the

expression p(a) returns a value (as opposed to terminating with an error message or running

forever). Show that it is impossible to write a function halts that correctly determines whether

p halts on a for any function p and object a. Use the following reasoning: If you had such a

function halts, you could implement the following program:

function run_forever() {

return run_forever();

}

function strange(p) {

return halts(p, p)

? run_forever();

: "halted";

}

Now consider evaluating the expression strange(strange) and show that any possible out-

come (either halting or running forever) violates the intended behavior of halts.
19

4.1.6 Internal Declarations

Our environment model of evaluation (section 3.2.4) and our metacircular evaluator (sec-

tion 4.1.1) evaluate blocks by extending an environment with bindings for the local names that

occur in the body of the block. Initially, the names refer to the special value "*unassigned*",

but evaluation of their declaration statement assigns them to their proper values. Correct

JavaScript programs never attempt to access the value of names before their declaration has

been evaluated. In this section, we explore alternative solutions to problem of local declarations

in programming languages.

Consider a function with internal declarations, such as

Ifunction f(x) {

function is_even(n) {

return n === 0

? true

: is_odd(n - 1);

}

function is_odd(n) {

return n === 0

? false

19
Although we stipulated that halts is given a function object, notice that this reasoning still applies even if

halts can gain access to the function’s text and its environment. This is Turing’s celebrated Halting Theorem,

which gave the �rst clear example of a non-computable problem, i.e., a well-posed task that cannot be carried out

as a computational function.

414 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMAFADwJSIN4ChEHLjTxIwDOA+gKYBu1YKYWehbiATtVCB0kgF4hiAAz52EwgH5EUDiGrjJEgFyIKlOABMtTRAFpEARgwBuJYgC+F0JFgJ1VbbuY4LbLjz6JBwscskZYABDABtyRQDVRxp6RiRDE3M2azYAEgAdUOCwAHNQ6k5qcig0xDS4YDK0gCNtAE9qyrKqjI4c-Oo03EsgA

Metalinguistic Abstraction 4.1.6

: is_even(n - 1);

}

〈rest o f body o f f〉

}

Our intention here is that the name is_odd in the body of the function is_even should refer

to the function is_odd that is declared after is_even. The scope of the name is_odd is the body

block of f, not just the portion of the body of f starting at the point where the declaration of

is_odd occurs. Indeed, when we consider that is_odd is itself de�ned in terms of is_even—so

that is_even and is_odd are mutually recursive functions—we see that the only satisfactory

interpretation of the two declarations is to regard them as if the names is_even and is_odd

were being added to the environment simultaneously. More generally, in block structure, the

scope of a local name is the entire block in which the declaration is evaluated.

The evaluator in section 4.1.1 �nds all locally declared names of a block using scan_out_declarations,

and binds them to the value "*unassigned*", whenever the block is evaluated. For lambda

expressions with local declarations, we can achieve the same e�ect by transforming their bod-

ies into immediately invoked lambda expressions (see section 3.2.3). For example, the lambda

expression

(vars) => {

let u = e1;

let v = e2;

statements
}

would be transformed into

(vars) => {

return ((u, v) => {

u = e1;

v = e2;

statements
})("*unassigned*", "*unassigned*");

}

An alternative strategy for scanning out internal declarations is shown in exercise 4.17.

Unlike the transformation shown above, this enforces the restriction that the declared names’

values can be evaluated without using any of the names’ values.

Exercise 4.16

In this exercise we implement the method just described for interpreting internal declarations

of lambda expressions as syntactic sugar for immediately invoked functions that carry out

assignments.

415 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.1.6

a. Write a function transform_lambda that transforms any lambda expression as shown

above.

b. Install transform_lambda in the interpreter by modifying the function evaluate in an

appropriate way.

c. JavaScript’s semantics requires that any attempt to access the value "*unassigned*"

leads to a runtime error. Change lookup_symbol_value (section 4.1.3) to signal an error

if the value it �nds is "*unassigned*".

d. Even with this protection in place, there is a loophole: A program could declare a variable

in a block and assign a value to the variable before its let declaration is evaluated.

Change the evaluator of section 4.1.1 such that any assignment to a variable declared

with let leads to an error if the declaration has not been evaluated yet.

Exercise 4.17

Consider an alternative strategy for scanning out declarations that translates the example in

the text to

(vars) => {

return ((u, v) => {

return ((a, b) => {

u = a;

v = b;

statements
})(e1, e2);

})("*unassigned*", "*unassigned*");

}

Here a and b are meant to represent new names, created by the interpreter, that do not appear

in the user’s program. Consider the solve function from section 3.5.4:

Ifunction solve(f, y0, dt) {

const y = integral(() => dy, y0, dt);

const dy = stream_map(f, y);

return y;

}

Will this function work if internal de�nitions are scanned out as shown in this exercise? What

if they are scanned out as shown in the text? Explain.

Exercise 4.18

Our implementation of blocks in section 4.1.1 imposes a runtime burden: It needs to scan

the body of the block for locally declared names. We shall devise a simpler mechanism in

this exercise. We can achieve the desired result in many cases by changing the evaluation of

416 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDMUCmBzATgQwDYAUwANIjqQEakAmAHgJSIDeAUIu4qJLAmddQH06BBszYcJWNFBBYktRAGpEdANzj2AXw2IpMuYgDOIALZFSOJSoUB6RACYL-IbUqMAVNfXau0eEmMzdCwTC1IwNFooNzFJaVkkSwA+RAodCQ4AfkQABnSMxAAuRGCzHEZlQIJS8MioAnLaqLdvFl8eALg8ADc0c0QATxyaKEZWCQgEQyhBxABeZFRMXEJEAkY5lOoB0iGR+nUJqZnt+aMoKRwTARMcAAd+gYOdPQTB7yA

Metalinguistic Abstraction 4.1.6

constant and variable declaration such that they force into the innermost frame of the given

environment a binding of the declared name to the result of evaluating the expression on the

right hand side of the declaration.

a. Simplify the declaration of eval_block in section 4.1.1 to ignore local declarations.

b. Declare a function

Iadd_binding_to_frame(name, value, f rame)

that permanently changes the given frame such that after calling the function, the given

name refers to the given value.
c. Change the functions eval_constant_declaration and eval_variable_declaration

such that they make use of add_binding_to_frame instead of set_name_value.

d. Can you �nd programs that behave di�erently with this treatment of local declarations,

compared to the implementation in section 4.1.1?

Exercise 4.19

Draw diagrams of the environment in e�ect when evaluating the statements in the function in

the text, comparing how this will be structured when declarations are interpreted sequentially

as described in exercise 4.18 with how it is structured if declarations are scanned out as

described in section 4.1.1. Why is there an extra frame in the latter case? JavaScript forbids

the re-declaration of parameters as local names in the body block of any function. With this

restriction, can you achieve the scoping for local names in lambda expressions of section 4.1.1,

without constructing the extra frame?

Exercise 4.20

Ben Bitdiddle, Alyssa P. Hacker, and Eva Lu Ator are arguing about the desired result of

evaluating the expression

Ilet a = 1;

function f(x) {

let b = a + x;

let a = 5;

return a + b;

}

f(10);

Ben asserts that the result should be obtained using the sequential implementation for let

as given in exercise 4.18: b is declared to be 11, then a is declared to be 5, so the result is 16.

Alyssa objects that mutual recursion requires the simultaneous scope rule for internal function

declarations, and that it is unreasonable to treat function names di�erently from other names.

417 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=IYExH0CMEsDsTgc3AFwPbgGYCdgFsBTACgBJZ8CSAaAAhIDdgAbAV0tpJwpIEog
http://source-academy.github.io/playground#chap=4&prgrm=DYUwLgBAhhC8EEYDcAoAZgVwHYGMwEsB7LCNACgA8BKCAbwgcZUYlEgCM5oIBqCC1Czbd4AVkGMATuAySSMPu1QBfdGQQAGKkiA

Metalinguistic Abstraction 4.1.6

Thus, she argues for the mechanism implemented in section 4.1.1. This would lead to a being

unassigned at the time that the value for b is to be computed. Hence, in Alyssa’s view the

function should produce an error. Eva has a third opinion. She says that if the declarations of a

and b are truly meant to be simultaneous, then the value 5 for a should be used in evaluating b.

Hence, in Eva’s view a should be 5, b should be 15, and the result should be 20. Which (if any)

of these viewpoints do you support? Can you devise a way to implement internal declarations

so that they behave as Eva prefers?
20

Exercise 4.21

Recursive functions are obtained in a roundabout way in our interpreter: First declare the

name that will refer to the recursive function and assign it to the special value "*unassigned*".

Then de�ne the recursive function in the scope of that name, and �nally assign the name to

the de�ned function. By the time the recursive function gets applied, any occurrences of the

name in the body properly refer to the recursive function. Amazingly, it is possible to specify

recursive functions without using assignment. The following program computes 10 factorial

by applying a recursive factorial function:
21

I(n => (fact => fact(fact, n))

((ft, k) => k === 1

? 1

: k * ft(ft, k - 1)

)

)

(10);

a. Check (by evaluating the expression) that this really does compute factorials. Devise an

analogous expression for computing Fibonacci numbers.

b. Consider the following function, which includes mutually recursive internal de�nitions:

Ifunction f(x) {

function is_even(n) {

return n === 0

? true

: is_odd(n - 1);

}

function is_odd(n) {

20
The designers of JavaScript support Alyssa on the following grounds: Eva is in principle correct—the de�ni-

tions should be regarded as simultaneous. But it seems di�cult to implement a general, e�cient mechanism that

does what Eva requires. In the absence of such a mechanism, it is better to generate an error in the di�cult cases

of simultaneous de�nitions (Alyssa’s notion) than to produce an incorrect answer (as Ben would have it).

21
This example illustrates a programming trick for formulating recursive functions without using assignment.

The most general trick of this sort is the Y operator, which can be used to give a “pure λ-calculus” implementation

of recursion. (See Stoy 1977 for details on the lambda calculus, and Gabriel 1988 for an exposition of theY operator

in the language Scheme.)

418 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=BQOwBAvAfGwGYEMDGAXSNGvslAaMIAlIQFBjkXCxx5gDWh69kEEYAjGRdz7wPwcuvYdwBczAFRga8WnTABaDoyEVSpYOwAMhANxA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMAFADwJSIN4ChEHLjTxIwDOA+gKYBu1YKYWehbiATtVCB0kgF4hiAAz52EwgH5EUDiGrjJEgFyIKlOABMtTRAFpEARgwBuJYgC+F0JFgJ1VbbuY4LbLjz6JBwscskZYABDABtyRQDVRxp6RiRDE3M2aw9uXjIqOgZ0M1xrXFQATiKzIA

Metalinguistic Abstraction 4.1.7

return n === 0

? false

: is_even(n - 1);

}

return is_even(x);

}

Fill in the missing expressions to complete an alternative declaration of f, which uses

neither const nor let nor internal function declarations:

function f(x) {

return (

(is_even, is_odd) =>

is_even(is_even, is_odd, x)

)

((ev, od, n) =>

n === 0 ? true : od(〈??〉, 〈??〉, 〈??〉),

(ev, od, n) =>

n === 0 ? false : ev(〈??〉, 〈??〉, 〈??〉)

);

}

4.1.7 Separating Syntactic Analysis from Execution

The evaluator implemented above is simple, but it is very ine�cient, because the syntactic

analysis of expressions is interleaved with their execution. Thus if a program is executed many

times, its syntax is analyzed many times. Consider, for example, evaluating factorial(4) using

the following de�nition of factorial:

Ifunction factorial(n) {

return n === 1

? 1

: factorial(n - 1) * n;

}

Each time factorial is called, the evaluator must determine that the body is a conditional

expression and extract the predicate. Only then can it evaluate the predicate and dispatch on

its value. Each time it evaluates the expression factorial(n - 1) * n, or the subexpressions

factorial(n - 1) and n - 1, the evaluator must perform the case analysis in evaluate to

determine that the expression is an application, and must extract its operator and operands.

This analysis is expensive. Performing it repeatedly is wasteful.

We can transform the evaluator to be signi�cantly more e�cient by arranging things so that

syntactic analysis is performed only once.
22

We split evaluate, which takes an expression and

22
This technique is an integral part of the compilation process, which we shall discuss in chapter 5. Jonathan

Rees wrote a Scheme interpreter like this in about 1982 for the T project (Rees and Adams 1982). Marc Feeley

419 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMAhtOAnGKA2AKMASkQG9FyKAoCxDAUyhAySQF53EBGam3xAfi48+FAFzI0UTNnxIAtF2IAqRGADclAL6VKqdFlx4ArITVA

Metalinguistic Abstraction 4.1.7

an environment, into two parts. The function analyze takes only the expression. It performs

the syntactic analysis and returns a new function, the execution function, that encapsulates

the work to be done in executing the analyzed expression. The execution function takes an

environment as its argument and completes the evaluation. This saves work because analyze

will be called only once on an expression, while the execution function may be called many

times.

With the separation into analysis and execution, evaluate now becomes

Ifunction evaluate(exp, env) {

return analyze(exp)(env);

}

The result of calling analyze is the execution function to be applied to the environment.

The analyze function is the same case analysis as performed by the original evaluate of

section 4.1.1, except that the functions to which we dispatch perform only analysis, not full

evaluation:

Ifunction analyze(stmt) {

return is_self_evaluating(stmt)

? analyze_self_evaluating(stmt)

: is_name(stmt)

? analyze_name(stmt)

: is_constant_declaration(stmt)

? analyze_constant_declaration(stmt)

: is_variable_declaration(stmt)

? analyze_variable_declaration(stmt)

: is_assignment(stmt)

? analyze_assignment(stmt)

: is_conditional_expression(stmt)

? analyze_conditional_expression(stmt)

: is_lambda_expression(stmt)

? analyze_lambda_expression(stmt)

: is_sequence(stmt)

? analyze_sequence(sequence_statements(stmt))

: is_block(stmt)

? analyze_block(stmt)

: is_return_statement(stmt)

? analyze_return_statement(stmt)

: is_application(stmt)

? analyze_application(stmt)

: error(stmt, "Unknown syntax -- analyze");

}

Here is the simplest syntactic analysis function, which handles self-evaluating expressions.

It returns an execution function that ignores its environment argument and just returns the

1986 (see also Feeley and Lapalme 1987) independently invented this technique in his master’s thesis.

420 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQAbRNeAfWTh+MAIZo0iAObQApgBMAFNFE5ZaAJSgA3s1D7QmWfEiZooXv2iQuXZavUa9BlwH5Q1285f6AXKAAHUURMRQAiACoxCWk5eQiwgBpuXgEhERUYmQVFeGC7FTVNDQ0AbgBIF2YAX2YQCBgEFHQsXAIScipaRjoAJlZGjnNLNFkuYVkAN1EuSFEkaClFPhx4LV0XIxMzCzQrSBwAI1lQlbX9AB8L7x8DEfhMREXl+FWtUCub293+Q+RkLiyUTQF5vD7Xb4uSyeOxnd6XCGQ-SWGDyWTgJ45OGlGoDdjNH55KRSBT8Hh8UHwZLwAAWsn4RPWNy2pmGeyCIUpWgAZNzQHTREo4aAALxi0C0+lEnG1NhNTjQhxcnTM4yswmiYmk8nwSnJMKFWRhMq4uVDUBoACeRwBgmEhuVGwMLJ2AqUeUQsNeaxNssGBMs4kkMjU0F1wqdhjVO0sRJJ8jJqT1oDCQdiofgxplePl5jTIdkYf4VptXrBkZd5jduXyimrHrLPpK2bNBPz0Az-Gms1kju8lf5QPdtYbXObpv9Cr2sFQfGBAjRsC4okw82afed0bZDM18cTFLO+pn6DyRcXy9XQyzE-xnGPc7PsiXK7XqGL1r+jaZm+2VaHNc9Ot-1HOESl9HNzXvU8FyfC9X2gLsZkgXsI37LdB0FAC7BA70wJbSdt2mR5REOQF+HPF8hg3fQB1jXdtSTQ8UyIxASLIijL2aa8-VvcwWLY+kOPg99S2oqNfww4dAPrWtQPHHjc1AfjSME2DKOaRCezEgcZMAnC3nkiCAz2ZcjnkUR+FkAAPAIjBiVBtPQuitQTHVkzCUzDnMyybLsyRUG4ozOE87yglXNR4BONBHIknBRACZYP1tdJDWSXSv0M1tgtULyLL+eRLRi9V0qwsdwKy7dK2LPJIozIqYz2OMGIPb19SqudasLTNyoI8TWR82z1H8kFUJ-YrgNk3Cet4n5j3kRAhhmAa-PXUaaKcxr6NcxjWtAL4kX0MI5oW5oluswb7OgQKKtAOblv4QahVwlUxp2HV+CMcBkwYabFLu87MH4e96vMd7PuTXpfsg1AEwB-gZnDZ6K3QsH0WTABmKHjOLWQAEdkLgFCkbQiTnL3NymLCUZ8cLWAjSxzg4oAa3pamCbpylNBe9aJLcqm8fZo1kjOTR8JmtnadZmrZAzaKIwMEnxsw-SfTFxSMUwPhqvmGWus578eaVp7VlFm9FLsgQOt1sM5e9LnkYklXTYU81LBlgJ4EtHGacJ-Xub6hr9lsfW1ddkzxEt6W6pFg2A+3GFSpjhnt1I5BYCZsS441Fz90R1Z9VT9Prt65n6ULjO1qzvny6SC1cNDgly9+ZACsznSJsA0CG6neGAgCHhYHgkHs-Jnb85TeL+8QQer2ThpeOWobVuJ16-2VyaDO7vNMCkW3y0V10O+wjemy3jxkHhnfouQAJ7YP+ObDsG-naC8wNa1lclmf2P28w7+z4tpfXeihv7+wHKOf+uI6hgAqhgcA2A8BEDIJQag9AmDo1foSTAyFFBWVjlnKyopxQPGQmfUu-AKqKDCg4SKmtkj5UtMkQskx8EDj5jOHAARkCogoQRJI+0DrUIilFehLdGGgGYXPSwHCuE8MoeAVhG0dw5zcuAI8uBZHQATBVYuM0KoPRfMIzWigFH+yrqkD6aM1GgB+mffRDCTGKN5hY8G1jIZ2IIpZaAkwQioDqqYyM5itauOSJjMhogWaWN-JpHBx5IphiceqPmVVuzIVrnErqUi9gpKQr2VJshEmByattCk+S2pbhifTABFT8lA1QPE3U+TClryknYJpc9aZcGQJIRYXifHYA7HrSRZjwG1kkXYkIWt4FKmGYE3+Shxlm3NJ07pZdCrTLUEw7x6wqibHQhyUIGzZBbJYdmKCEo6SWU4Z7PpvjBlhlFB4R+OIbrkKOYlUsaBkj5LvnsiSByPmfi+UpXJL8bpHJEkCkx4UCk6F2avSS0KHBzwhT8pFagdkKz+eqUcRyOlWXibDbxdzo5JS4MC7swLDjiHpLM1UvNCxSFpICgEXMxQim4Iy5llKnAHVAO4AFbyYUsvJd8mYmh6E0r6byg6-hASLGZSWIFWgAA8nKFU0kUDygRtx3AnGwKEMIAAVf4oA4rQEtKAT+BwuoYDQJAPuPAFD+DCKAAA1HtPlB0+CPEWIgcAhUlWsq0B62urqPU6q9XXX1Uh-WFR5TKvl-h9XIENSa5AEBZAAHcrU7xtTbC0Dqp7OpTO6z1Ubvg+qeLGgNIquahv1GWyNXqq1+trQms+XTkBMwdZC20+SRUnPwTdZhZJ-gJTpZCG6aBB4jTJRS8V+DIS0T2AnIN5LE0Vv0Hq7xY6b6KGbVGlZPSpC3IGXVSRm6t3+HXUQjl1Z12aEPQddw1ZtVbtuDe2did50aGpLWDtOraiQn9aARQzC70XNpdcr2zCSWZLMZCFNpwyX6gAKrQD+KiDwDhryQmqBI8lshEPfHOUcx578BDvMWV6gcM7gTotZvOxjf7n1etRaCljJp8M3GAwi0dXaJ3bLPu2PtXBKmDpBVwIdZiR27sE+B7ZJH9DTu-Y+sVG7lM+BXUHWEv62MGB3ZMPdCUDO3GPdWs9fihnbKvUmi0ZLIMPv0x+7dFpjD8DfeKjTdmvVfoYyBX9-7AKAfw+W24oHFOTEg5KK5HtYPEvPQhwJSHMAGsk2EDDWGtE4bUKAAAtPlq1WR7ndRxGFsYowtMuDIzCijkyqPCpo3yuj36IWPpY4kMzSIOM9mini7j3w+P6GG1nAT46ovgWgfPXMcCEHtGQV0NBdAaCYMsLZRAOATqTHpPImAP8lHFNziYmA+oNtbaQDt3RilzvbfpJt-u1sarrjYAdiSJVXvgXObdy7u2CIYA5W5ARfM3S1wMG6KNrHvh8wbGD-QDZIddeh0mMIBy4eBGCJgRHwOUc6nRzqbHyOKRhGhI-WupPbAHSh7cPm800D91EJaWudOGeWqRNTnwfNkNw+Q16jnLg+ZxVpPDQ4aAkhC5pCLjAkJ+cGD5m69HBhcHJEtFoEUAA+UAhCPVs9l-oPm+XFf6GV6AVXopNeEKK7rpHNOUcJGSLcE3ZuNda9ABEU3+g9cpGJ8AI3YGrIq7Vxb0AYBrc4+JwAUj907oPruI8e9AF7vm7LFcx-N679lpuk8o4AIRilTwHrP6fCF545arm3nOUcquj4X53we1X6HL+H3UYQVUiiN2nl3hC2+N+z8T9XNfA-F9AJr3vFeBco-V+3h3LhO-B6n2P5v4Qc9+9dy4F3+gc8GDwQIk033HgXcQDt3hC9H2ih1XFBKbpkg-aP393ipt9+bbuyf3MghDgACsnzwABxf+KJ3zAXc+Zb8rs0oj4ACwJx9IQQD79Zs99Zx4BAgD8X8oJ5wAdvddQ+ZUR0RMR5Ba5sCMQ4gvdXMkQ+ZCBoBCCFomcHdyDKDPZiCSCicW8Jd+BSBCA4cWC2CGDGDK9icWCABRdHAQ7gnguXFHAAOVEHEL90kPEN81EJcHgJPCQOf1+zqRPHnDE1-0hEvxMXT2rAURv2QLUNQJtiUL4BUMP2P1MIEB+XPx0P-3AH0PAIUT-UsJQIQLQJNBukni4C9hgNfyojYGSE-h1GaStUdS9ieAyDREwD8Msw-1EGmBnUeA9gPQ-QCIe0BAzCHleygL5VCNSDKB8CWQJFGBMACCs1K0UHCOskJSqLqjM0nkLCUACP0XU3C0YICJsK0JEJcGaK0SoWMLv0CI0mQE-2-2BW61uG6M8KLB+T6IMFi3dhuTgySwSWzEBEQNiykC6WpXEzWOsweQ5XKN7UOOqJNGm1gVaEQQ6BQW6CYAAHZMFgQZhLQAAvVmMYCYVJNcZ4eWEo7FHYCDF3M4ETFQPwz4qwJUAE+FQ2YE7xdPLtHtSo9dCTaYnwNElKGE3CIdcEt4qE9saOFeAwc5W9DlIkrqMTLkcrUkhApSNgR5V4yE3sSk+Y3JMcWk+E8wEEzXFLA6c5fJR5SYNgSbLkr1UTNEgdddDTZCPEszAcfJcUobfElkxCYiFSciNSTiByCMSofQG4MkxzDlZSdibU4SddGkw0+kkUmAJkiEj4vJFcViTUoSIYCTLueldUXkzo74SUslD01DBkmASbeUl2NsB0qEnot05ecsfUzoo00sR5aM8090y07Ea05Q20wAq1SM3sFM58HUhCaUqacUgcH0w9f00sQM0sb5UUyRMMl4vM9Q+aRaA43yJeXUpGcoTMiwgIRkikvMxQf6XyB6IwY2VWXsxA2AAc3Mgk-MmGe6YGT0mrek0QWc5kx04cxcuGBGTkr0hE6LDXQ9WMbBXsfskMy9flW6espTfwdcy84TUozgejBCbhGCQs+CPec4QJSLEYAWSWMcLTMku2R5CWQmbWTqG2K05dJRFYr2cCjmGOZ9dwGEZ9e8vuFo5YWdQQSAD8uCIYfrBrSCp7fWRYyEV83C-C9SWcRQchRC3sDE1zQBK2WWMi8cFwAjSrYjfk7k2aOY6iosrkFCjA7cjQx8T8tMslMcdCn4U01SSS2MtYAzdwNyeSrUxSt8dMqaAzfwGEcU2ocMzgTcqEkKCyAGTskaEk-Qb7QxYwKKR5MygxGFWhb8wbGy+khhRynKbyBxDM1c5Qw4DcochhdysbRE48vlN5AiKhOy1y+hYIiRJ8oyvMZshiv2QJadACsMViWwdZGABgZINgSGLTcsiKvk59MjAqzSCjAqsU59HTHJLSNgBgTSeQvldwFqzSJi-wYq+q-DAym4G6BTSjE-ZIQBNgX5b4HTBOCamAJ9LdTq4itgMzOVCbcCpAGYPwkxZa07Ji74asOa9AEofIj9UcI64oQagKiwyax5XQky45OuE2MKmax+AArmQ9IzdPAg3Aw9Na-dAw+atw3FIGueB634LpdOTOc5LyjlJuPy+uKc7gNOcVMCnC98jSgi5oaKUKioOE26ek6IYMOIdA96dIIm2IHISGxdcUmG4K+cxQXGg8nk8q0AIKy8glFohovWam0VUACm7IeQYFS9VUx0qJfqVivWSuAm5QzAemlkxQKqCyy6fcoElmo8zXchJqnBOWx8lhMG5s3w6eIePUpG8AeWrc-RZW4aVWuk5Qh8loDle6vMkIq+W2vi3kw9ayJ8PC+kI2meF7W8lhU6hwhKB29PB20Mq1SazKXqb22AX23uKeAOhyRKz+Ka5EJwxQdbYY4-PbaAEoUq9CXw-w3O2AoI07XNXeMKriojCwLO6RDRbhLRUY1O-bJdO2vsuKhyjlfRIRey4xV7ZUzuxA2Gmbd0hxIenVc5OyGwRAuGsRcDTmlu84uqfu+Kqur5ZgeMngq2xLI43UT7MKtWn4bW3sWergZSxauOSpdQhpRW9QOe9qz9fmrRHAuIAywjKrXiiRNLVNAA-UGAJmaAZALNN+XqT2AIYjQrCRKyH2yKJOgeeCPDAwQypshm6WnTUYcYSyX4hYJYOEHVdwcG7Bn4pCP4gh3CHVfwRUNQYSyEYh5sh0QhyEGh6cASzGmiqyt4IhuctUgsrGrsnh1huS50gSThoSlh74Rh+c9Ul0s0zS7hq+74Nh+GErYk4R6RvhsWtkvOZRl+xurRE6VAM6DslWqR3VbRqMmGYxiExecxqhkRywJy62pS+QmRtUlxsxm2ixnwVR9K3xtwKxr4n2JC7KumEiti0Cahn4cuehrR8GuJwJgwVR9qKOKWxxhJ5stJnWDR-Rvxn4f2k2zJyx8GopqiZJvwX+9LSmDDYB0B8wK0MMUQS3IrB667ZZPB3sc6GTbQW4Zm4JpegIDQeq2oZgKYchyKWKzWXsMIPp8FXBHZAcbXGxUoUAAjL6GgYo6oY0ZISNHYvYs6fe0rMoIAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQAbRNeAfWTh+MAIZo0iAObQApgBMAFNFE5ZaAJSgA3s1D7QmWfEiZooXv2iQuXZavUa9BlwH5Q1285f6AXKAAHUURMRQAiACoxCWk5eQiwgBpuXgEhERUYmQVFeGC7FTVNDQ0AbgBIF2YAX2YQCBgEFHQsXAIScipaRjoAJlZGjnNLNFkuYVkAN1EuSFEkaClFPhx4LV0XIxMzCzQrSBwAI1lQlbX9AB8L7x8DEfhMREXl+FWtUCub293+Q+RkLiyUTQF5vD7Xb4uSyeOxnd6XCGQ-SWGDyWTgJ45OGlGoDdjNH55KRSBT8Hh8UHwZLwAAWsn4RPWNy2pmGeyCIUpWgAZNzQHTREo4aAALxi0C0+lEnG1NhNTjQhxcnTM4yswmiYmk8nwSnJMKFWRhMq4uVDUBoACeRwBgmEhuVGwMLJ2AqUeUQsNeaxNssGBMs4kkMjU0F1wqdhjVO0sRJJ8jJqT1oDCQdiofgxplePl5jTIdkYf4VptXrBkZd5jduXyimrHrLPpK2bNBPz0Az-Gms1kju8lf5QPdtYbXObpv9Cr2sFQfGBAjRsC4okw82afed0bZDM18cTFLO+pn6DyRcXy9XQyzE-xnGPc7PsiXK7XqGL1r+jaZm+2VaHNc9Ot-1HOESl9HNzXvU8FyfC9X2gLsZkgXsI37LdB0FAC7BA70wJbSdt2mR5REOQF+HPF8hg3fQB1jXdtSTQ8UyIxASLIijL2aa8-VvcwWLY+kOPg99S2oqNfww4dAPrWtQPHHjc1AfjSME2DKOaRCezEgcZMAnC3nkiCAz2ZcjnkUR+FkAAPAIjBiVBtPQuitQTHVkzCUzDnMyybLsyRUG4ozOE87yglXNR4BONBHIknBRACZYP1tdJDWSXSv0M1tgtULyLL+eRLRi9V0qwsdwKy7dK2LPJIozIqYz2OMGIPb19SqudasLTNyoI8TWR82z1H8kFUJ-YrgNk3Cet4n5j3kRAhhmAa-PXUaaKcxr6NcxjWtAL4kX0MI5oW5oluswb7OgQKKtAOblv4QahVwlUxp2HV+CMcBkwYabFLu87MH4e96vMd7PuTXpfsg1AEwB-gZnDZ6K3QsH0WTABmKHjOLWQAEdkLgFCkbQiTnL3NymLCUZ8cLWAjSxzg4oAa3pamCbpylNBe9aJLcqm8fZo1kjOTR8JmtnadZmrZAzaKIwMEnxsw-SfTFxSMUwPhqvmGWus578eaVp7VlFm9FLsgQOt1sM5e9LnkYklXTYU81LBlgJ4EtHGacJ-Xub6hr9lsfW1ddkzxEt6W6pFg2A+3GFSpjhnt1I5BYCZsS441Fz90R1Z9VT9Prt65n6ULjO1qzvny6SC1cNDgly9+ZACsznSJsA0CG6neGAgCHhYHgkHs-Jnb85TeL+8QQer2ThpeOWobVuJ16-2VyaDO7vNMCkW3y0V10O+wjemy3jxkHhnfouQAJ7YP+ObDsG-naC8wNa1lclmf2P28w7+z4tpfXeihv7+wHKOf+uI6hgAqhgcA2A8BEDIJQag9AmDo1foSTAyFFBWVjlnKyopxQPGQmfUu-AKqKDCg4SKmtkj5UtMkQskx8EDj5jOHAARkCogoQRJI+0DrUIilFehLdGGgGYXPSwHCuE8MoeAVhG0dw5zcuAI8uBZHQATBVYuM0KoPRfMIzWigFH+yrqkD6aM1GgB+mffRDCTGKN5hY8G1jIZ2IIpZaAkwQioDqqYyM5itauOSJjMhogWaWN-JpHBx5IphiceqPmVVuzIVrnErqUi9gpKQr2VJshEmByattCk+S2pbhifTABFT8lA1QPE3U+TClryknYJpc9aZcGQJIRYXifHYA7HrSRZjwG1kkXYkIWt4FKmGYE3+Shxlm3NJ07pZdCrTLUEw7x6wqibHQhyUIGzZBbJYdmKCEo6SWU4Z7PpvjBlhlFB4R+OIbrkKOYlUsaBkj5LvnsiSByPmfi+UpXJL8bpHJEkCkx4UCk6F2avSS0KHBzwhT8pFagdkKz+eqUcRyOlWXibDbxdzo5JS4MC7swLDjiHpLM1UvNCxSFpICgEXMxQim4Iy5llKnAHVAO4AFbyYUsvJd8mYmh6E0r6byg6-hASLGZSWIFWgAA8nKFU0kUDygRtx3AnGwKEMIAAVf4oA4rQEtKAT+BwuoYDQJAPuPAFD+DCKAAA1HtPlB0+CPEWIgcAhUlWsq0B62urqPU6q9XXX1Uh-WFR5TKvl-h9XIENSa5AEBZAAHcrU7xtTbC0Dqp7OpTO6z1Ubvg+qeLGgNIquahv1GWyNXqq1+trQms+XTkBMwdZC20+SRUnPwTdZhZJ-gJTpZCG6aBB4jTJRS8V+DIS0T2AnIN5LE0Vv0Hq7xY6b6KGbVGlZPSpC3IGXVSRm6t3+HXUQjl1Z12aEPQddw1ZtVbtuDe2did50aGpLWDtOraiQn9aARQzC70XNpdcr2zCSWZLMZCFNpwyX6gAKrQD+KiDwDhryQmqBI8lshEPfHOUcx578BDvMWV6gcM7gTotZvOxjf7n1etRaCljJp8M3GAwi0dXaJ3bLPu2PtXBKmDpBVwIdZiR27sE+B7ZJH9DTu-Y+sVG7lM+BXUHWEv62MGB3ZMPdCUDO3GPdWs9fihnbKvUmi0ZLIMPv0x+7dFpjD8DfeKjTdmvVfoYyBX9-7AKAfw+W24oHFOTEg5KK5HtYPEvPQhwJSHMAGsk2EDDWGtE4bUKAAAtPlq1WR7ndRxGFsYowtMuDIzCijkyqPCpo3yuj36IWPpY4kMzSIOM9mini7j3w+P6GG1nAT46ovgWgfPXMcCEHtGQV0NBdAaCYMsLZRAOATqTHpPImAP8lHFNziYmA+oNtbaQDt3RilzvbfpJt-u1sarrjYAdiSJVXvgXObdy7u2CIYA5W5ARfM3S1wMG6KNrHvh8wbGD-QDZIddeh0mMIBy4eBGCJgRHwOUc6nRzqbHyOKRhGhI-WupPbAHSh7cPm800D91EJaWudOGeWqRNTnwfNkNw+Q16jnLg+ZxVpPDQ4aAkhC5pCLjAkJ+cGD5m69HBhcHJEtFoEUAA+UAhCPVs9l-oPm+XFf6GV6AVXopNeEKK7rpHNOUcJGSLcE3ZuNda9ABEU3+g9cpGJ8AI3YGrIq7Vxb0AYBrc4+JwAUj907oPruI8e9AF7vm7LFcx-N679lpuk8o4AIRilTwHrP6fCF545arm3nOUcquj4X53we1X6HL+H3UYQVUiiN2nl3hC2+N+z8T9XNfA-F9AJr3vFeBco-V+3h3LhO-B6n2P5v4Qc9+9dy4F3+gc8GDwQIk033HgXcQDt3hC9H2ih1XFBKbpkg-aP393ipt9+bbuyf3MghDgACsnzwABxf+KJ3zAXc+Zb8rs0oj4ACwJx9IQQD79Zs99Zx4BAgD8X8oJ5wAdvddQ+ZUR0RMR5Ba5sCMQ4gvdXMkQ+ZCBoBCCFomcHdyDKDPZiCSCicW8Jd+BSBCA4cWC2CGDGDK9icWCABRdHAQ7gnguXFHAAOVEHEL90kPEN81EJcHgJPCQOf1+zqRPHnDE1-0hEvxMXT2rAURv2QLUNQJtiUL4BUMP2P1MIEB+XPx0P-3AH0PAIUT-UsJQIQLQJNBukni4C9hgNfyojYGSE-h1GaStUdS9ieAyDREwD8Msw-1EGmBnUeA9gPQ-QCIe0BAzCHleygL5VCNSDKB8CWQJFGBMACCs1K0UHCOskJSqLqjM0nkLCUACP0XU3C0YICJsK0JEJcGaK0SoWMLv0CI0mQE-2-2BW61uG6M8KLB+T6IMFi3dhuTgySwSWzEBEQNiykC6WpXEzWOsweQ5XKN7UOOqJNGm1gVaEQQ6BQW6CYAAHZMFgQZhLQAAvVmMYCYVJNcZ4eWEo7FHYCDF3M4ETFQPwz4qwJUAE+FQ2YE7xdPLtHtSo9dCTaYnwNElKGE3CIdcEt4qE9saOFeAwc5W9DlIkrqMTLkcrUkhApSNgR5V4yE3sSk+Y3JMcWk+E8wEEzXFLA6c5fJR5SYNgSbLkr1UTNEgdddDTZCPEszAcfJcUobfElkxCYiFSciNSTiByCMSofQG4MkxzDlZSdibU4SddGkw0+kkUmAJkiEj4vJFcViTUoSIYCTLueldUXkzo74SUslD01DBkmASbeUl2NsB0qEnot05ecsfUzoo00sR5aM8090y07Ea05Q20wAq1SM3sFM58HUhCaUqacUgcH0w9f00sQM0sb5UUyRMMl4vM9Q+aRaA43yJeXUpGcoTMiwgIRkikvMxQf6XyB6IwY2VWXsxA2AAc3Mgk-MmGe6YGT0mrek0QWc5kx04cxcuGBGTkr0hE6LDXQ9WMbBXsfskMy9flW6espTfwdcy84TUozgejBCbhGCQs+CPec4QJSLEYAWSWMcLTMku2R5CWQmbWTqG2K05dJRFYr2cCjmGOZ9dwGEZ9e8vuFo5YWdQQSAD8uCIYfrBrSCp7fWRYyEV83C-C9SWcRQchRC3sDE1zQBK2WWMi8cFwAjSrYjfk7k2aOY6iosrkFCjA7cjQx8T8tMslMcdCn4U01SSS2MtYAzdwNyeSrUxSt8dMqaAzfwGEcU2ocMzgTcqEkKCyAGTskaEk-Qb7QxYwKKR5MygxGFWhb8wbGy+khhRynKbyBxDM1c5Qw4DcochhdysbRE48vlN5AiKhOy1y+hYIiRJ8oyvMZshiv2QJadACsMViWwdZGABgZINgSGLTcsiKvk59MjAqzSCjAqsU59HTHJLSNgBgTSeQvldwFqzSJi-wYq+q-DAym4G6BTSjE-ZIQBNgX5b4HTBOCamAJ9LdTq4itgMzOVCbcCpAGYPwkxZa07Ji74asOa9AEofIj9UcI64oQagKiwyax5XQky45OuE2MKmax+AArmQ9IzdPAg3Aw9Na-dAw+atw3FIGueB634LpdOTOc5LyjlJuPy+uKc7gNOcVMCnC98jSgi5oaKUKioOE26ek6IYMOIdA96dIIm2IHISGxdcUmG4K+cxQXGg8nk8q0AIKy8glFohovWam0VUACm7IeQYFS9VUx0qJfqVivWSuAm5QzAemlkxQKqCyy6fcoElmo8zXchJqnBOWx8lhMG5s3w6eIePUpG8AeWrc-RZW4aVWuk5Qh8loDle6vMkIq+W2vi3kw9ayJ8PC+kI2meF7W8lhU6hwhKB29PB20Mq1SazKXqb22AX23uKeAOhyRKz+Ka5EJwxQdbYY4-PbaAEoUq9CXw-w3O2AoI07XNXeMKriojCwLO6RDRbhLRUY1O-bJdO2vsuKhyjlfRIRey4xV7ZUzuxA2Gmbd0hxIenVc5OyGwRAuGsRcDTmlu84uqfu+Kqur5ZgeMngq2xLI43UT7MKtWn4bW3sWergZSxauOSpdQhpRW9QOe9qz9fmrRHAuIAywjKrXiiRNLVNAA-UGAJmaAZALNN+XqT2AIYjQrCRKyH2yKJOgeeCPDAwQypshm6WnTUYcYSyX4hYJYOEHVdwcG7Bn4pCP4gh3CHVfwRUNQYSyEYh5sh0QhyEGh6cASzGmiqyt4IhuctUgsrGrsnh1huS50gSThoSlh74Rh+c9Ul0s0zS7hq+74Nh+GErYk4R6RvhsWtkvOZRl+xurRE6VAM6DslWqR3VbRqMmGYxiExecxqhkRywJy62pS+QmRtUlxsxm2ixnwVR9K3xtwKxr4n2JC7KumEiti0Cahn4cuehrR8GuJwJgwVR9qKOKWxxhJ5stJnWDR-Rvxn4f2k2zJyx8GopqiZJvwX+9LSmDDYB0B8wK0MMUQS3IrB6wKZgB62KzWXsMIbQGWiwwhDlBgUoV3D1EZ0AaoY0XzXIS5XY8Ys6fe0rMoIAA

Metalinguistic Abstraction 4.1.7

expression:

Ifunction analyze_self_evaluating(stmt) {

return env => stmt;

}

Looking up the value of a name must still be done in the execution phase, since this depends

upon knowing the environment.
23

Ifunction analyze_name(stmt) {

return env => lookup_symbol_value(

symbol_of_name(stmt), env);

}

The function analyze_assignment also must defer actually setting the variable until the exe-

cution, when the environment has been supplied. However, the fact that the assignment_value

expression can be analyzed (recursively) during analysis is a major gain in e�ciency, because

the assignment_value expression will now be analyzed only once. The same holds true for

constant and variable declarations.

Ifunction analyze_assignment(stmt) {

const symbol = assignment_symbol(stmt);

const vfun = analyze(assignment_value(stmt));

return env => {

const value = vfun(env);

assign_symbol_value(symbol, value, env);

return value;

};

}

function analyze_variable_declaration(stmt) {

const symbol = variable_declaration_symbol(stmt);

const vfun = analyze(variable_declaration_value(stmt));

return env =>

assign_symbol_value(symbol, vfun(env), env);

}

function analyze_constant_declaration(stmt) {

const symbol = constant_declaration_symbol(stmt);

const vfun = analyze(constant_declaration_value(stmt));

return env =>

assign_symbol_value(symbol, vfun(env), env);

}

For conditional expressions, we extract and analyze the predicate, consequent, and alternative

at analysis time.

23
There is, however, an important part of the search for a name that can be done as part of the syntactic analysis.

As we will show in section 5.5.6, one can determine the position in the environment structure where the value

of the variable will be found, thus obviating the need to scan the environment for the entry that matches the

variable.

421 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQzMgNgTwF4FMD6AzrusPrgG4YjKxgDmAFIVALZQCUiA3on-wCh+iAE64oIEUlxgKiALwA+RC3YBuAQF8BAgPS7EYEOnSIYhRFAAWuRLlYAHKJjuyYIhKxlREjMHB8QYgATRBsxDgBIAVQMHAJiUnIqdBo6JgdkEWJGACIoERBcNVyODj9jdA41IA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARjoCYAoKOJVURNAfTQBTADbg+ggG4BDYZClJoAcwAUaeDngBKUAG9WoA6EyD4kTNB79okHACNBmVeq0GAPq-2Gvh3gPiZEJScNbVB3T28vX1tkZGFBKWhgl3DI719rYWFk0LcPNKj+GAATQXBAwWKcgG5WAF92GAQUC194KUVFSr5hXnhkgBpQeAALQT52xW09L2NTc0s+AAcpREc1ENAAMi3QMakqjZcAXlPhsYmO2oaOZu4MqRxBHN0IoxMzVv5JruKevsGoAARNBHoIgZpro1OC1QGgAJ52OJ8ZBiUFPF4zQxzT57BJVdqIbJHTSQ+rQu5fPhSNBoRCKaBPaD9EmvbEfBZtDq-f5qQFAml0hlM+AQqG3LgWQX0xmCZkCRExYnOaYRHELfYE1bZTXKQnKkKksk3JqS0DS4Vy+B8aSyZ6srHveYWXX6vXanKk8Wm2G+WCoNSJa2lWDCKSYeQtTFqjlUn7dXp8o5DIH+9DteUhsMRyVi8kS2FpwOZwSh8OR1AKpEGlyO9Uu-HuonKV0eklG70w7hFjPB0vZivQG0ySD2lVsgz1vEHJvZN3t40Us2+aQBKS2eJ8LPlyXR9nOxbxv6JlnOFOrxDrzfbnMtPMmrsWC9X8Y3wdVpV7yex6da5ut5sF0XAtuGfDdX37HcWmHO0vydXEALnNsVS9fMfXufgwzsYopHEAAPJZjFpKMHRjA8uU6BMAWTYEsNsHD8MIwRiNQe8l1hOiGJWCMnngBw0DgqccCkJZVEVZFUT4dFBCGRDPWA9CLE43CYmKeFBJ-OT5xQhTH0Wes-HkQQRQ08jvm5KikzPYEDMDPiRTYkCLAMwQCKIulUFMhDG20w1O0pRY02KRBJRkRj3JI8c6x-CieRPQE3gKLxU1QYLQuEcLmI86BHMU0AgvC5ZjEOKKyNxE8+GMcBAQYXSAoK1zCL4IsvIWCqqsBZg6rNBq3OpYRT02aKD3aspAQAZm631+CEABHUc4DHIays5czKOPajrKBOaFtgcEpu4YSAGtxh2uU9uSNBVX3cqAW2wR5vO8EhiOK7-LNM7FsM+yrQEh1DBWhsZ18rQDoscpMDUb7jKtS7ru-A9dVesH3ihuyYeZP7nCuid4IWEG3rQvTfGMpZ4HhAQHt2pb4Bx4bcQySAsjh97pp6GlrXRkzkdxqdGeZgnUIfALomEZBYCOuC8bjCyNqsjQUw3cWjtyvTjvGJWJdapS7s1lWXpVVnuD1vhVPU0jZk0nzkL8omRf4ESll6WBB21w9Zd5Qb4BTR3ncHVWAqczKWKSC2Ee84GbdBo2pUwRQseWm6NWt5sQY7O2zWgZBqTjgTkCWOnAcWTJsnzwnhbNCGofDFQy-h6Xf2UOuY9R60a7zgv66nN1m-JVgQAgRSMHAbA8CIMhKGoegmHG9iMImTBR2UPD64bvDQFOY5hkXwQW-VvgnOUbiwT4yGhjNoY5QkVep3ilKcCWZASgPxSgQGRKkoMY-eP48-kDUy+0Br4tz9LgR+z9D7gBvjFNacUATgBTP6B+T9oB-CcgHSuilljlh-pDZQUDcYN1GtVBBoBaotyDmbfB0CRp9EqmNUhXUKFYKvmsVAJkCGOiIXQjqpDJp7ykCdehzoYJLzTHxZkNDbp8iBAZW0o4375VQBIrQID+ByJHM8eRggpGrUuOtT2yhtEpg0XaDBsJTGjmaso2G2jdFAz-NkOxKNzpizpEocQQC2GymZMoK+9jhgen8RQtYUMR5gj8UAgJupgkZ1hK45AQhTbqXCU8QB19dBeDeFOFYax8E8RkqAWJDQeznHGKTcmniJDeJFBvUAJdahOVAPvVJ9pxLCDQEMbRhdLYHlyesdpnTQDdJRq0j8cQBKtOmFk3pEcqhTIoQU0RzF8lgmmQDWZ+MPQLLidwVyEi-isOwD4lkgyukyCGbYGk5SomENvnKRQowxLVhxpvUA8QlBPNtFdD+3gAD8oB+nKBaQU55SohnfM0Ofa5VTNC-K8AALneQ8p5CIXnaAADzIs+SMIxFy4Wf0MAChw2BHBAgACqxGaYkeE5o442F+nCSASwnaIEqEioEoAADUoB4WEoMGoAIShEDgHNoM7QPLFGcp5Xy-lgrAiKBFepSFBL+VIpJcgMllLkAQEEAAdzpYoBlmMmUst6Oy4E3LeX8qSvK4VoqwUTIlcCFMVrZWErtYqh1KqW5i2QEdZl4yMraMdcIdJq8mlXx6LEUS-jCFeCaWgF2ocznDPxfGtIfMrBM2JOK91BRiVAOjfnZQ+bCUJPcYoKpNTYb+NVTaxFcJ2kbzOEjPNDa0gAt1JCstBQkVJsSLOUNV0hhuh9fChoBQRWgEiRIFtW9RjlIfpUo57CrSrwKBqgZ1YUwAFVoAxBKPUsEeYCh1CKR0wQGbIilNaXUqu1pWmzrJPyqcA6khjLReC1ZTwoW9s-mM7pP6dEvrSJOww4Hw4LCjX62NUSW4WiHF+5EIbkNhrTehuNXDI1Ftg8+69g89LvuHecjpG7M0wKkjm4d9abWFokMW0S-7vAVoVdW45Jk63Mf7c2t5bb0XMYMACoQ1pu0XNI7Rht-bk1DrQyOwJzZx1nutWkads751lPEMuimq6TnkciFu0Ne6D0oOKMep4oAAC0lnzTEUtMyU9YGL1CAI14W9BT72hMfaC2Jr6fzEc-YM4Df6O1JUA5oyZBTUJnreJBhuMGY3PqhP3MATlh6jwICQcgVBaCMDoDQOeVJCKIBwCFRAEhxiQJgF3SjR5DEcBTMV0rSAKvmO4E1srFW+Aladhjdou4OA1cRinbIg3FylI6y1yrQ86nxV+XfTUijDCahtSFyId99RLYMPqVb780h336VtwFqxMC7fm3dE8R2Txnf23dfmwhFH3c-mt7wd9gpoCdlIeEij3ufdpUlF7Xg75bq21u-lgPDB32EqMaktg0Bv2hyMWHGACgQ4MHfLlR3DDLyGPCbQxwAB8oB148v+2j95d1LNY4MDj0AeON5E-XjZsne31t3QAFTU5nXhXH+PGegHZ3Tgw5O77AC57T+nhPiegDACz87MiACk4ued0759LhXQvQAi7upvLHEu1frzeXj1nr27oAEJTh65V5L-nFut7G-l-0IEGLle84Z9LrFBgHe3ZkRi441P9fu-Xn7r32uZEE9d6roPoAieh5N0Du6BP-dDG8IHqX68k9x8d8oIEZuufS68FLgwZvDAr1+WSCbARmvlem4+INGBjjwuEqJTUQxJs15fo+QmleSuddr5SFEtgABWpZaYbybyJfBMB3cHar33xRckxvk+8O3rraWK8BngICufU3rHpiDA3infI74lDKBUYoijT-lGgJUZfoWkp30INAa-IVvsp6fy-8md-78+6d4jvgpAhAW2-+gB3+P+puMi-+AAokdtAWAeAZDndAAHJSBIFc4oFIGSYIFpAb7pjb696749hBj17j4FDN74Lu66hQJt474d5EGYy4FqD4HV5db0HWjdKkFpDkHgCUEjbUJQrMF9577Fi0xkhNK+wUyr794DYwBDA1wngBISHdZDin6YDCDwhsZD5SDSBJoBBkylqhZSHdYPzxAiiuyDbx78ryF9CQjeC7IWAiaBq6YmQBL7JyiHJeIcawz-qOzuFHy0Fr5YJyZDCCYr4BHjBsH17wGGC+GoL+EEEd5BzIDD6j5DKhFeBGGREjKWGfyLpaZkw6aeFrqSJQjxBb55GKBixXIZTOFWh1KOFLDsbFH9BkiFbmigjqEABe4w0kmIkQ2SP4V8M+sQAajRaGyyBh2B4xkkvRJI4ayWiQMg8I3RUkES3EQgOeOA8I0k1QEIBKfieEByTRJyygUO2xJ6Ah8UtUIR2BFRVRYUtRkikIQAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQAbRNeAfWTh+MAIZo0iAObQApgBMAFNFE5ZaAJSgA3s1D7QmWfEiZooXv2iQuXZavUa9BlwH5Q1285f6AXKAAHUURMRQAiACoxCWk5eQiwgBpuXgEhERUYmQVFeGC7FTVNDQ0AbgBIF2YAX2YQCBgEFHQsXAIScipaRjoAJlZGjnNLNFkuYVkAN1EuSFEkaClFPhx4LV0XIxMzCzQrSBwAI1lQlbX9AB8L7x8DEfhMREXl+FWtUCub293+Q+RkLiyUTQF5vD7Xb4uSyeOxnd6XCGQ-SWGDyWTgJ45OGlGoDdjNH55KRSBT8Hh8UHwZLwAAWsn4RPWNy2pmGeyCIUpWgAZNzQHTREo4aAALxi0C0+lEnG1NhNTjQhxcnTM4yswmiYmk8nwSnJMKFWRhMq4uVDUBoACeRwBgmEhuVGwMLJ2AqUeUQsNeaxNssGBMs4kkMjU0F1wqdhjVO0sRJJ8jJqT1oDCQdiofgxplePl5jTIdkYf4VptXrBkZd5jduXyimrHrLPpK2bNBPz0Az-Gms1kju8lf5QPdtYbXObpv9Cr2sFQfGBAjRsC4okw82afed0bZDM18cTFLO+pn6DyRcXy9XQyzE-xnGPc7PsiXK7XqGL1r+jaZm+2VaHNc9Ot-1HOESl9HNzXvU8FyfC9X2gLsZkgXsI37LdB0FAC7BA70wJbSdt2mR5REOQF+HPF8hg3fQB1jXdtSTQ8UyIxASLIijL2aa8-VvcwWLY+kOPg99S2oqNfww4dAPrWtQPHHjc1AfjSME2DKOaRCezEgcZMAnC3nkiCAz2ZcjnkUR+FkAAPAIjBiVBtPQuitQTHVkzCUzDnMyybLsyRUG4ozOE87yglXNR4BONBHIknBRACZYP1tdJDWSXSv0M1tgtULyLL+eRLRi9V0qwsdwKy7dK2LPJIozIqYz2OMGIPb19SqudasLTNyoI8TWR82z1H8kFUJ-YrgNk3Cet4n5j3kRAhhmAa-PXUaaKcxr6NcxjWtAL4kX0MI5oW5oluswb7OgQKKtAOblv4QahVwlUxp2HV+CMcBkwYabFLu87MH4e96vMd7PuTXpfsg1AEwB-gZnDZ6K3QsH0WTABmKHjOLWQAEdkLgFCkbQiTnL3NymLCUZ8cLWAjSxzg4oAa3pamCbpylNBe9aJLcqm8fZo1kjOTR8JmtnadZmrZAzaKIwMEnxsw-SfTFxSMUwPhqvmGWus578eaVp7VlFm9FLsgQOt1sM5e9LnkYklXTYU81LBlgJ4EtHGacJ-Xub6hr9lsfW1ddkzxEt6W6pFg2A+3GFSpjhnt1I5BYCZsS441Fz90R1Z9VT9Prt65n6ULjO1qzvny6SC1cNDgly9+ZACsznSJsA0CG6neGAgCHhYHgkHs-Jnb85TeL+8QQer2ThpeOWobVuJ16-2VyaDO7vNMCkW3y0V10O+wjemy3jxkHhnfouQAJ7YP+ObDsG-naC8wNa1lclmf2P28w7+z4tpfXeihv7+wHKOf+uI6hgAqhgcA2A8BEDIJQag9AmDo1foSTAyFFBWVjlnKyopxQPGQmfUu-AKqKDCg4SKmtkj5UtMkQskx8EDj5jOHAARkCogoQRJI+0DrUIilFehLdGGgGYXPSwHCuE8MoeAVhG0dw5zcuAI8uBZHQATBVYuM0KoPRfMIzWigFH+yrqkD6aM1GgB+mffRDCTGKN5hY8G1jIZ2IIpZaAkwQioDqqYyM5itauOSJjMhogWaWN-JpHBx5IphiceqPmVVuzIVrnErqUi9gpKQr2VJshEmByattCk+S2pbhifTABFT8lA1QPE3U+TClryknYJpc9aZcGQJIRYXifHYA7HrSRZjwG1kkXYkIWt4FKmGYE3+Shxlm3NJ07pZdCrTLUEw7x6wqibHQhyUIGzZBbJYdmKCEo6SWU4Z7PpvjBlhlFB4R+OIbrkKOYlUsaBkj5LvnsiSByPmfi+UpXJL8bpHJEkCkx4UCk6F2avSS0KHBzwhT8pFagdkKz+eqUcRyOlWXibDbxdzo5JS4MC7swLDjiHpLM1UvNCxSFpICgEXMxQim4Iy5llKnAHVAO4AFbyYUsvJd8mYmh6E0r6byg6-hASLGZSWIFWgAA8nKFU0kUDygRtx3AnGwKEMIAAVf4oA4rQEtKAT+BwuoYDQJAPuPAFD+DCKAAA1HtPlB0+CPEWIgcAhUlWsq0B62urqPU6q9XXX1Uh-WFR5TKvl-h9XIENSa5AEBZAAHcrU7xtTbC0Dqp7OpTO6z1Ubvg+qeLGgNIquahv1GWyNXqq1+trQms+XTkBMwdZC20+SRUnPwTdZhZJ-gJTpZCG6aBB4jTJRS8V+DIS0T2AnIN5LE0Vv0Hq7xY6b6KGbVGlZPSpC3IGXVSRm6t3+HXUQjl1Z12aEPQddw1ZtVbtuDe2did50aGpLWDtOraiQn9aARQzC70XNpdcr2zCSWZLMZCFNpwyX6gAKrQD+KiDwDhryQmqBI8lshEPfHOUcx578BDvMWV6gcM7gTotZvOxjf7n1etRaCljJp8M3GAwi0dXaJ3bLPu2PtXBKmDpBVwIdZiR27sE+B7ZJH9DTu-Y+sVG7lM+BXUHWEv62MGB3ZMPdCUDO3GPdWs9fihnbKvUmi0ZLIMPv0x+7dFpjD8DfeKjTdmvVfoYyBX9-7AKAfw+W24oHFOTEg5KK5HtYPEvPQhwJSHMAGsk2EDDWGtE4bUKAAAtPlq1WR7ndRxGFsYowtMuDIzCijkyqPCpo3yuj36IWPpY4kMzSIOM9mini7j3w+P6GG1nAT46ovgWgfPXMcCEHtGQV0NBdAaCYMsLZRAOATqTHpPImAP8lHFNziYmA+oNtbaQDt3RilzvbfpJt-u1sarrjYAdiSJVXvgXObdy7u2CIYA5W5ARfM3S1wMG6KNrHvh8wbGD-QDZIddeh0mMIBy4eBGCJgRHwOUc6nRzqbHyOKRhGhI-WupPbAHSh7cPm800D91EJaWudOGeWqRNTnwfNkNw+Q16jnLg+ZxVpPDQ4aAkhC5pCLjAkJ+cGD5m69HBhcHJEtFoEUAA+UAhCPVs9l-oPm+XFf6GV6AVXopNeEKK7rpHNOUcJGSLcE3ZuNda9ABEU3+g9cpGJ8AI3YGrIq7Vxb0AYBrc4+JwAUj907oPruI8e9AF7vm7LFcx-N679lpuk8o4AIRilTwHrP6fCF545arm3nOUcquj4X53we1X6HL+H3UYQVUiiN2nl3hC2+N+z8T9XNfA-F9AJr3vFeBco-V+3h3LhO-B6n2P5v4Qc9+9dy4F3+gc8GDwQIk033HgXcQDt3hC9H2ih1XFBKbpkg-aP393ipt9+bbuyf3MghDgACsnzwABxf+KJ3zAXc+Zb8rs0oj4ACwJx9IQQD79Zs99Zx4BAgD8X8oJ5wAdvddQ+ZUR0RMR5Ba5sCMQ4gvdXMkQ+ZCBoBCCFomcHdyDKDPZiCSCicW8Jd+BSBCA4cWC2CGDGDK9icWCABRdHAQ7gnguXFHAAOVEHEL90kPEN81EJcHgJPCQOf1+zqRPHnDE1-0hEvxMXT2rAURv2QLUNQJtiUL4BUMP2P1MIEB+XPx0P-3AH0PAIUT-UsJQIQLQJNBukni4C9hgNfyojYGSE-h1GaStUdS9ieAyDREwD8Msw-1EGmBnUeA9gPQ-QCIe0BAzCHleygL5VCNSDKB8CWQJFGBMACCs1K0UHCOskJSqLqjM0nkLCUACP0XU3C0YICJsK0JEJcGaK0SoWMLv0CI0mQE-2-2BW61uG6M8KLB+T6IMFi3dhuTgySwSWzEBEQNiykC6WpXEzWOsweQ5XKN7UOOqJNGm1gVaEQQ6BQW6CYAAHZMFgQZhLQAAvVmMYCYVJNcZ4eWEo7FHYCDF3M4ETFQPwz4qwJUAE+FQ2YE7xdPLtHtSo9dCTaYnwNElKGE3CIdcEt4qE46RaA43yJeByCMcoG4b7NgR5V4yE3sf6XyB6IwY2VWKkhA26GkjlOkj4hkmGe6YGLudk5Q0QLkq1CE3kxQRk2yeGLgPONkoE8wEE9XQ9WMbBXsAINgSbLQdwWALU4ZfwUUmASbM+ejBCbhGCZ8TiWcTOSLEYAWSWMcLTc5EWR5CWQmbWTqG2Lkcrb4HTFYr2d0jmGOZ9dwGEZ9Q0vuFo5YWdQQSAS0uCIYfrBrT0p7fWRYyEM0uMhM9SG08hIM3sDE1zQBK2WWdM8cFwAjSrYjFLBFaROYnM60kaXCUMjAqUhs8iNSJssTMcCMn4ZSdiLsoeOEAzdwNyAc1SK04SddXsitfwGEX0kbUozgHkqEkKCyAGMk5s-eGrDkoRYwKKR5dcgxGFWhPeNYRc26DkhhI8nKbyBxbEYUiww4MU1c3sBhQbeEpUxEjXQ9N5AiKhQxA8uhUAF807CRYTZcvMCUqEgsv2QJadB0sMViWwdZGABgZINgSGLTAcZU6rAwMjdCzSCjdCk059HTHJLSNgBgTSeQvldwaizSIs-wLCsi-DS80bG6BTSjE-ZIQBNgX5P0pRBOfimAJ9LdBilMtgMzOVCbd0pAGYPwkxKS07Is74asUS9AEofIj9UcTS4oDip8xAgSx5XQt84WO2T8rOCnOwASrQQ9IzdPAg3Aw9WS-dAwsStw3FTyueN834LpdOTOc5G8jlJuB8+uIy7gNOcVN02Mi0zsqcpMxQD8ioOEq85Q6IYMOIdA96dITK2IHIAKxdS84K18mC98sRKy3Cn8zXMCkEOolohovWIq0VUAfK7IeQYFS9fE+kqJfqUsvWSudKiwzAMqgk3sKqTcy6McS86q6LF3chSinBUa407qqC8U8a3uKeGeZecsSk3c5Q8AMa+kgAt-Ka4aGayKo0loDlMy8qkIq+S6xUiC+alUvlayJ8eM+kXw6eXI-U7ZHShwhKa69Pa6ybEIuy-FT6yKLageXI8Cz+QS5EJwxQdbYY4-PbaAEoHC9CXw-w9G2AoIhGq+KyqsojCwFG+szhbhLRUYhyT7Z0vcoCs8kihefcs8iAy8g658sRVmt-BxV7LmgijkuyGwRA0KsRcDAlRq84uqdmkRXNXeLrSoBQ-RWWvWT7Ky56ywJaia9QMWui3VOOSpdQhpRQUWuUw2nwfwZyuIDiwjKrWs-QZDAA-UGAJmaAZALNN+XqT2AIYjQrCRKyaG76x1X62eQyl2NscqtuJRUYcYSyX4hYJYEcyEdwPy+On4pCP4lOlsyEfwRUNQLkHVdO8q6Eou1O74Au6cDsoSKiSuo2vynouu3atYHVauxCYiFSBKxM1u+Q0uzaicnu3M7ctu-On4dsaOPO74Ae3qyewa6ez9WaGGE6VAM6Uk6ahunwWe3k9Q+aYkxeTexe62n4Y886vukuja3qs+jei6relwDuuC++wzK+3ep+pCumVMss0Cdun4cuYutO1+qE-+5+vwH4dqKOBet4S+vyiBnWKe6B8ewMMOna8k4+twIB0O7a4c9BgwZNNLVNdyDDD2r28wK0MMUQS3IrN867c0Py+esMIKjk29bkkrTsGcx87mxAyYY6yUhh2w3JJ6-jGq-Cnwc5fJR5Hh1ayCrdUTNEgdddDTZCPEszAcfJIWnwaoHq3eoelutBvarFYW5QlhkFLuwcxKjSDhiKrhpSXhz4rVFcVibuvRhCBRqaWa9CPCw9ORslCTRR2x6RlhFRqOlcsu5uoc+upGFWzol0xzDlcJixt8Kxt4EqjkqRwAzB9sjQx8RJ1xwRoU56rxgokrMTPx1DAJ+qgGl6qbehthvWMKUYcIQhDlbXGxUoY0RNKW+o9WxhvmKyY0ZINyR4ryy5XY8Ys6RLI41WIAA

Metalinguistic Abstraction 4.1.7

Ifunction analyze_conditional_expression(stmt) {

const pfun = analyze(cond_expr_pred(stmt));

const cfun = analyze(cond_expr_cons(stmt));

const afun = analyze(cond_expr_alt(stmt));

return env =>

is_true(pfun(env)) ? cfun(env) : afun(env);

}

Analyzing a lambda expression also achieves a major gain in e�ciency: We analyze the

lambda body only once, even though functions resulting from evaluation of the lambda ex-

pression may be applied many times.

Ifunction analyze_lambda_expression(stmt) {

const parameters = lambda_parameters(stmt);

const body = lambda_body(stmt);

const bfun = analyze(body);

return env =>

make_function(parameters, bfun, env);

}

Analysis of a sequence of statements is more involved.
24

Each statement in the sequence is

analyzed, yielding an execution function. These execution functions are combined to produce

an execution function that takes an environment as argument and sequentially calls each

individual execution function with the environment as argument.

Ifunction analyze_sequence(stmts) {

function sequentially(fun1, fun2) {

return env => {

const fun1_val = fun1(env);

return is_return_value(fun1_val)

? fun1_val

: fun2(env);

};

}

function loop(first_fun, rest_funs) {

return is_null(rest_funs)

? first_fun

: loop(sequentially(first_fun,

head(rest_funs)),

tail(rest_funs));

}

const funs = map(analyze, stmts);

return is_null(funs)

? env => undefined

: loop(head(funs), tail(funs));

}

24
See exercise 4.23 for some insight into the processing of sequences.

422 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQAbRNeAfWTh+MAIZo0iAObQApgBMAFNFE5ZaAJSgA3s1D7QmWfEiZooXv2iQuXZavUa9BlwH5Q1285f6AXKAAHUURMRQAiACoxCWk5eQiwgBpuXgEhERUYmQVFeGC7FTVNDQ0AbgBIF2YAX2YQCBgEFHQsXAIScipaRjoAJlZGjnNLNFkuYVkAN1EuSFEkaClFPhx4LV0XIxMzCzQrSBwAI1lQlbX9AB8L7x8DEfhMREXl+FWtUCub293+Q+RkLiyUTQF5vD7Xb4uSyeOxnd6XCGQ-SWGDyWTgJ45OGlGoDdjNH55KRSBT8Hh8UHwZLwAAWsn4RPWNy2pmGeyCIUpWgAZNzQHTREo4aAALxi0C0+lEnG1NhNTjQhxcnTM4yswmiYmk8nwSnJMKFWRhMq4uVDUBoACeRwBgmEhuVGwMLJ2AqUeUQsNeaxNssGBMs4kkMjU0F1wqdhjVO0sRJJ8jJqT1oDCQdiofgxplePl5jTIdkYf4VptXrBkZd5jduXyimrHrLPpK2bNBPz0Az-Gms1kju8lf5QPdtYbXObpv9Cr2sFQfGBAjRsC4okw82afed0bZDM18cTFLO+pn6DyRcXy9XQyzE-xnGPc7PsiXK7XqGL1r+jaZm+2VaHNc9Ot-1HOESl9HNzXvU8FyfC9X2gLsZkgXsI37LdB0FAC7BA70wJbSdt2mR5REOQF+HPF8hg3fQB1jXdtSTQ8UyIxASLIijL2aa8-VvcwWLY+kOPg99S2oqNfww4dAPrWtQPHHjc1AfjSME2DKOaRCezEgcZMAnC3nkiCAz2ZcjnkUR+FkAAPAIjBiVBtPQuitQTHVkzCUzDnMyybLsyRUG4ozOE87yglXNR4BONBHIknBRACZYP1tdJDWSXSv0M1tgtULyLL+eRLRi9V0qwsdwKy7dK2LPJIozIqYz2OMGIPb19SqudasLTNyoI8TWR82z1H8kFUJ-YrgNk3Cet4n5j3kRAhhmAa-PXUaaKcxr6NcxjWtAL4kX0MI5oW5oluswb7OgQKKtAOblv4QahVwlUxp2HV+CMcBkwYabFLu87MH4e96vMd7PuTXpfsg1AEwB-gZnDZ6K3QsH0WTABmKHjOLWQAEdkLgFCkbQiTnL3NymLCUZ8cLWAjSxzg4oAa3pamCbpylNBe9aJLcqm8fZo1kjOTR8JmtnadZmrZAzaKIwMEnxsw-SfTFxSMUwPhqvmGWus578eaVp7VlFm9FLsgQOt1sM5e9LnkYklXTYU81LBlgJ4EtHGacJ-Xub6hr9lsfW1ddkzxEt6W6pFg2A+3GFSpjhnt1I5BYCZsS441Fz90R1Z9VT9Prt65n6ULjO1qzvny6SC1cNDgly9+ZACsznSJsA0CG6neGAgCHhYHgkHs-Jnb85TeL+8QQer2ThpeOWobVuJ16-2VyaDO7vNMCkW3y0V10O+wjemy3jxkHhnfouQAJ7YP+ObDsG-naC8wNa1lclmf2P28w7+z4tpfXeihv7+wHKOf+uI6hgAqhgcA2A8BEDIJQag9AmDo1foSTAyFFBWVjlnKyopxQPGQmfUu-AKqKDCg4SKmtkj5UtMkQskx8EDj5jOHAARkCogoQRJI+0DrUIilFehLdGGgGYXPSwHCuE8MoeAVhG0dw5zcuAI8uBZHQATBVYuM0KoPRfMIzWigFH+yrqkD6aM1GgB+mffRDCTGKN5hY8G1jIZ2IIpZaAkwQioDqqYyM5itauOSJjMhogWaWN-JpHBx5IphiceqPmVVuzIVrnErqUi9gpKQr2VJshEmByattCk+S2pbhifTABFT8lA1QPE3U+TClryknYJpc9aZcGQJIRYXifHYA7HrSRZjwG1kkXYkIWt4FKmGYE3+Shxlm3NJ07pZdCrTLUEw7x6wqibHQhyUIGzZBbJYdmKCEo6SWU4Z7PpvjBlhlFB4R+OIbrkKOYlUsaBkj5LvnsiSByPmfi+UpXJL8bpHJEkCkx4UCk6F2avSS0KHBzwhT8pFagdkKz+eqUcRyOlWXibDbxdzo5JS4MC7swLDjiHpLM1UvNCxSFpICgEXMxQim4Iy5llKnAHVAO4AFbyYUsvJd8mYmh6E0r6byg6-hASLGZSWIFWgAA8nKFU0kUDygRtx3AnGwKEMIAAVf4oA4rQEtKAT+BwuoYDQJAPuPAFD+DCKAAA1HtPlB0+CPEWIgcAhUlWsq0B62urqPU6q9XXX1Uh-WFR5TKvl-h9XIENSa5AEBZAAHcrU7xtTbC0Dqp7OpTO6z1Ubvg+qeLGgNIquahv1GWyNXqq1+trQms+XTkBMwdZC20+SRUnPwTdZhZJ-gJTpZCG6aBB4jTJRS8V+DIS0T2AnIN5LE0Vv0Hq7xY6b6KGbVGlZPSpC3IGXVSRm6t3+HXUQjl1Z12aEPQddw1ZtVbtuDe2did50aGpLWDtOraiQn9aARQzC70XNpdcr2zCSWZLMZCFNpwyX6gAKrQD+KiDwDhryQmqBI8lshEPfHOUcx578BDvMWV6gcM7gTotZvOxjf7n1etRaCljJp8M3GAwi0dXaJ3bLPu2PtXBKmDpBVwIdZiR27sE+B7ZJH9DTu-Y+sVG7lM+BXUHWEv62MGB3ZMPdCUDO3GPdWs9fihnbKvUmi0ZLIMPv0x+7dFpjD8DfeKjTdmvVfoYyBX9-7AKAfw+W24oHFOTEg5KK5HtYPEvPQhwJSHMAGsk2EDDWGtE4bUKAAAtPlq1WR7ndRxGFsYowtMuDIzCijkyqPCpo3yuj36IWPpY4kMzSIOM9mini7j3w+P6GG1nAT46ovgWgfPXMcCEHtGQV0NBdAaCYMsLZRAOATqTHpPImAP8lHFNziYmA+oNtbaQDt3RilzvbfpJt-u1sarrjYAdiSJVXvgXObdy7u2CIYA5W5ARfM3S1wMG6KNrHvh8wbGD-QDZIddeh0mMIBy4eBGCJgRHwOUc6nRzqbHyOKRhGhI-WupPbAHSh7cPm800D91EJaWudOGeWqRNTnwfNkNw+Q16jnLg+ZxVpPDQ4aAkhC5pCLjAkJ+cGD5m69HBhcHJEtFoEUAA+UAhCPVs9l-oPm+XFf6GV6AVXopNeEKK7rpHNOUcJGSLcE3ZuNda9ABEU3+g9cpGJ8AI3YGrIq7Vxb0AYBrc4+JwAUj907oPruI8e9AF7vm7LFcx-N679lpuk8o4AIRilTwHrP6fCF545arm3nOUcquj4X53we1X6HL+H3UYQVUiiN2nl3hC2+N+z8T9XNfA-F9AJr3vFeBco-V+3h3LhO-B6n2P5v4Qc9+9dy4F3+gc8GDwQIk033HgXcQDt3hC9H2ih1XFBKbpkg-aP393ipt9+bbuyf3MghDgACsnzwABxf+KJ3zAXc+Zb8rs0oj4ACwJx9IQQD79Zs99Zx4BAgD8X8oJ5wAdvddQ+ZUR0RMR5Ba5sCMQ4gvdXMkQ+ZCBoBCCFomcHdyDKDPZiCSCicW8Jd+BSBCA4cWC2CGDGDK9icWCABRdHAQ7gnguXFHAAOVEHEL90kPEN81EJcHgJPCQOf1+zqRPHnDE1-0hEvxMXT2rAURv2QLUNQJtiUL4BUMP2P1MIEB+XPx0P-3AH0PAIUT-UsJQIQLQJNBukni4C9hgNfyojYGSE-h1GaStUdS9ieAyDREwD8Msw-1EGmBnUeA9gPQ-QCIe0BAzCHleygL5VCNSDKB8CWQJFGBMACCs1K0UHCOskJSqLqjM0nkLCUACP0XU3C0YICJsK0JEJcGaK0SoWMLv0CI0mQE-2-2BW61uG6M8KLB+T6IMFi3dhuTgySwSWzEBEQNiykC6WpXEzWOsweQ5XKN7UOOqJNGm1gVaEQQ6BQW6CYAAHZMFgQZhLQAAvVmMYCYVJNcZ4eWEo7FHYCDF3M4ETFQPwz4qwJUAE+FQ2YE7xdPLtHtSo9dCTaYnwNElKGE3CIdcEt4qE9saOFeAwc5W9DlIkrqMTLkcrUkhApSNgR5V4yE3sSk+Y3JMcWk+E8wEEzXFLA6c5fJR5SYNgSbLkr1UTNEgdddDTZCPEszAcfJcUobfElkxCYiFSciNSTiByCMSofQG4MkxzDlZSdibU4SddGkw0+kkUmAJkiEj4vJFcViTUoSIYCTLueldUXkzo74SUslD01DBkmASbeUl2NsB0qEnot05ecsfUzoo00sR5aM8090y07Ea05Q20wAq1SM3sFM58HUhCaUqacUgcH0w9f00sQM0sb5UUyRMMzBejBCbhGCQs+CPec4QJSLEYAWSWMcLTMku2R5CWQmbWTqG2K05dJRFYr2UcjmGOZ9dwGEZ9fwAYoUWdQQSANsuCIYfrBrccp7fWRYyEZsrcnc9SWcRQchec3sDE1zQBK2WWY88cFwAjSrYjfk7k2aOYi8osrkJcjAxQAs3cjSdMqaVcn4U01SdsqiOEAzdwNyaCrU2CsCslMcAzfwGEcU2ocMzgZkx0skHKbyAGJeXUkk-Qb7QxYwKKR5EKCyIRGi4xDMmrekhhOi4ivKMRKcuk5Qw4RkikvMxQBhQbb83kw9N5AiKhai2hKlYIiRYTUo-CvM72QWP2QJadPssMViWwdZGABgZINgSGLTcsxEl3L8nwMjfSzSCjfSsU59HTHJLSNgBgTSeQvldwFyzSe8-wIy+y-DHCm4G6BTSjE-ZIQBNgX5b4HTBOCKmAJ9LdTyg8tgMzOVCbUcpAGYPwkxZK07e874asOK9AEofIj9UcIq4oQK1i5QyKx5XQgiz44WO2USrOCnOwSKrQQ9IzdPAg3Aw9NK-dAw+Ktw3FYaueBqsuLpdOTOc5dijlJuBxFi3iiwqa8VEczc1slC0Cq8kSioOE26ek6IYMOIdA96dII62IHIVajdcU2agS3Mgk3sXar0hE6LF3fikMuolohovWa64FC67IeQYFS9VUwi9qKOPWSuA65QzAe6iaxQKqUiy6Tkl6nksyzXchJynBWGz62zUGwkx1aeIePUzMiw8AOGoS-RJG4aFG6qiw0QWqjleqvMkIq+Wm-jdGw9ayJ8bc+kXwomoI+s7ZUqhwhKBmu0l3cWkEBsq1Dq-FHmyKXuKeGeF7U7XNXefBHs9kYY4-PbaAEoEy9CXw-wnW2AoItWz+U2N8wjKrLWupThbhLRUYhyT7Qc+kxi2S2yheD2qKCA5U5axAuambd0hxV7f2yi+kuyGwRA+a7ir6p284uqH2uhdWr5ZgeMngqmxLI43UT7FqoEyqGpDkqOrgNYMzdwLG+kDJMMBG9QaO9yz9UAXquIHCm2z8nVZDAA-UGAJmaAZALNN+XqT2AIYjQrCRKyBWvmwmlWgKFq3Cl4oSqGnTUYcYSyX4hYJYeCyEdwCanGVeqYJCP4ze3CHVfwRUNQAC7eh6tUh0Le74M+6cX8ray8kaE+q+3ekCl+y+++qC50gSZ+-8u+3Va+wi5CmM8it4U+n4NkvOMu9+lSmB7+xu6RGGE6VAM6XyMi1+yB+Bx69Q+aRaA4zB5GoBnwB+oisyCyam2MuB74HelS+ixeEht+n+3sn2Bclh4B3e285YLSumQ8580CKBywcuJBnwehvB0R0hlwch8GnWYknBuhkBqEuRic2B+Q8h-mme7B2hrhhB6e4mzhshiRNLVNdyDDXu-u8wK0MMUQS3IrCa67c0D+1BwhphmmkmumxAgICmx64CmGe6R6dmiO5Q2AXxlk-xhO3ydQzs18gO2WiW5R-MgJuGBGYJsbTmvlWMbBXsHx3GlhLQdwMJ-JrQNcoW05KBFxrRNBiE9x9cMKUYcIEhYjdwdGUAfwR40oY0RNXIS5XY8Ys6bO0rMoIAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQAbRNeAfWTh+MAIZo0iAObQApgBMAFNFE5ZaAJSgA3s1D7QmWfEiZooXv2iQuXZavUa9BlwH5Q1285f6AXKAAHUURMRQAiACoxCWk5eQiwgBpuXgEhERUYmQVFeGC7FTVNDQ0AbgBIF2YAX2YQCBgEFHQsXAIScipaRjoAJlZGjnNLNFkuYVkAN1EuSFEkaClFPhx4LV0XIxMzCzQrSBwAI1lQlbX9AB8L7x8DEfhMREXl+FWtUCub293+Q+RkLiyUTQF5vD7Xb4uSyeOxnd6XCGQ-SWGDyWTgJ45OGlGoDdjNH55KRSBT8Hh8UHwZLwAAWsn4RPWNy2pmGeyCIUpWgAZNzQHTREo4aAALxi0C0+lEnG1NhNTjQhxcnTM4yswmiYmk8nwSnJMKFWRhMq4uVDUBoACeRwBgmEhuVGwMLJ2AqUeUQsNeaxNssGBMs4kkMjU0F1wqdhjVO0sRJJ8jJqT1oDCQdiofgxplePl5jTIdkYf4VptXrBkZd5jduXyimrHrLPpK2bNBPz0Az-Gms1kju8lf5QPdtYbXObpv9Cr2sFQfGBAjRsC4okw82afed0bZDM18cTFLO+pn6DyRcXy9XQyzE-xnGPc7PsiXK7XqGL1r+jaZm+2VaHNc9Ot-1HOESl9HNzXvU8FyfC9X2gLsZkgXsI37LdB0FAC7BA70wJbSdt2mR5REOQF+HPF8hg3fQB1jXdtSTQ8UyIxASLIijL2aa8-VvcwWLY+kOPg99S2oqNfww4dAPrWtQPHHjc1AfjSME2DKOaRCezEgcZMAnC3nkiCAz2ZcjnkUR+FkAAPAIjBiVBtPQuitQTHVkzCUzDnMyybLsyRUG4ozOE87yglXNR4BONBHIknBRACZYP1tdJDWSXSv0M1tgtULyLL+eRLRi9V0qwsdwKy7dK2LPJIozIqYz2OMGIPb19SqudasLTNyoI8TWR82z1H8kFUJ-YrgNk3Cet4n5j3kRAhhmAa-PXUaaKcxr6NcxjWtAL4kX0MI5oW5oluswb7OgQKKtAOblv4QahVwlUxp2HV+CMcBkwYabFLu87MH4e96vMd7PuTXpfsg1AEwB-gZnDZ6K3QsH0WTABmKHjOLWQAEdkLgFCkbQiTnL3NymLCUZ8cLWAjSxzg4oAa3pamCbpylNBe9aJLcqm8fZo1kjOTR8JmtnadZmrZAzaKIwMEnxsw-SfTFxSMUwPhqvmGWus578eaVp7VlFm9FLsgQOt1sM5e9LnkYklXTYU81LBlgJ4EtHGacJ-Xub6hr9lsfW1ddkzxEt6W6pFg2A+3GFSpjhnt1I5BYCZsS441Fz90R1Z9VT9Prt65n6ULjO1qzvny6SC1cNDgly9+ZACsznSJsA0CG6neGAgCHhYHgkHs-Jnb85TeL+8QQer2ThpeOWobVuJ16-2VyaDO7vNMCkW3y0V10O+wjemy3jxkHhnfouQAJ7YP+ObDsG-naC8wNa1lclmf2P28w7+z4tpfXeihv7+wHKOf+uI6hgAqhgcA2A8BEDIJQag9AmDo1foSTAyFFBWVjlnKyopxQPGQmfUu-AKqKDCg4SKmtkj5UtMkQskx8EDj5jOHAARkCogoQRJI+0DrUIilFehLdGGgGYXPSwHCuE8MoeAVhG0dw5zcuAI8uBZHQATBVYuM0KoPRfMIzWigFH+yrqkD6aM1GgB+mffRDCTGKN5hY8G1jIZ2IIpZaAkwQioDqqYyM5itauOSJjMhogWaWN-JpHBx5IphiceqPmVVuzIVrnErqUi9gpKQr2VJshEmByattCk+S2pbhifTABFT8lA1QPE3U+TClryknYJpc9aZcGQJIRYXifHYA7HrSRZjwG1kkXYkIWt4FKmGYE3+Shxlm3NJ07pZdCrTLUEw7x6wqibHQhyUIGzZBbJYdmKCEo6SWU4Z7PpvjBlhlFB4R+OIbrkKOYlUsaBkj5LvnsiSByPmfi+UpXJL8bpHJEkCkx4UCk6F2avSS0KHBzwhT8pFagdkKz+eqUcRyOlWXibDbxdzo5JS4MC7swLDjiHpLM1UvNCxSFpICgEXMxQim4Iy5llKnAHVAO4AFbyYUsvJd8mYmh6E0r6byg6-hASLGZSWIFWgAA8nKFU0kUDygRtx3AnGwKEMIAAVf4oA4rQEtKAT+BwuoYDQJAPuPAFD+DCKAAA1HtPlB0+CPEWIgcAhUlWsq0B62urqPU6q9XXX1Uh-WFR5TKvl-h9XIENSa5AEBZAAHcrU7xtTbC0Dqp7OpTO6z1Ubvg+qeLGgNIquahv1GWyNXqq1+trQms+XTkBMwdZC20+SRUnPwTdZhZJ-gJTpZCG6aBB4jTJRS8V+DIS0T2AnIN5LE0Vv0Hq7xY6b6KGbVGlZPSpC3IGXVSRm6t3+HXUQjl1Z12aEPQddw1ZtVbtuDe2did50aGpLWDtOraiQn9aARQzC70XNpdcr2zCSWZLMZCFNpwyX6gAKrQD+KiDwDhryQmqBI8lshEPfHOUcx578BDvMWV6gcM7gTotZvOxjf7n1etRaCljJp8M3GAwi0dXaJ3bLPu2PtXBKmDpBVwIdZiR27sE+B7ZJH9DTu-Y+sVG7lM+BXUHWEv62MGB3ZMPdCUDO3GPdWs9fihnbKvUmi0ZLIMPv0x+7dFpjD8DfeKjTdmvVfoYyBX9-7AKAfw+W24oHFOTEg5KK5HtYPEvPQhwJSHMAGsk2EDDWGtE4bUKAAAtPlq1WR7ndRxGFsYowtMuDIzCijkyqPCpo3yuj36IWPpY4kMzSIOM9mini7j3w+P6GG1nAT46ovgWgfPXMcCEHtGQV0NBdAaCYMsLZRAOATqTHpPImAP8lHFNziYmA+oNtbaQDt3RilzvbfpJt-u1sarrjYAdiSJVXvgXObdy7u2CIYA5W5ARfM3S1wMG6KNrHvh8wbGD-QDZIddeh0mMIBy4eBGCJgRHwOUc6nRzqbHyOKRhGhI-WupPbAHSh7cPm800D91EJaWudOGeWqRNTnwfNkNw+Q16jnLg+ZxVpPDQ4aAkhC5pCLjAkJ+cGD5m69HBhcHJEtFoEUAA+UAhCPVs9l-oPm+XFf6GV6AVXopNeEKK7rpHNOUcJGSLcE3ZuNda9ABEU3+g9cpGJ8AI3YGrIq7Vxb0AYBrc4+JwAUj907oPruI8e9AF7vm7LFcx-N679lpuk8o4AIRilTwHrP6fCF545arm3nOUcquj4X53we1X6HL+H3UYQVUiiN2nl3hC2+N+z8T9XNfA-F9AJr3vFeBco-V+3h3LhO-B6n2P5v4Qc9+9dy4F3+gc8GDwQIk033HgXcQDt3hC9H2ih1XFBKbpkg-aP393ipt9+bbuyf3MghDgACsnzwABxf+KJ3zAXc+Zb8rs0oj4ACwJx9IQQD79Zs99Zx4BAgD8X8oJ5wAdvddQ+ZUR0RMR5Ba5sCMQ4gvdXMkQ+ZCBoBCCFomcHdyDKDPZiCSCicW8Jd+BSBCA4cWC2CGDGDK9icWCABRdHAQ7gnguXFHAAOVEHEL90kPEN81EJcHgJPCQOf1+zqRPHnDE1-0hEvxMXT2rAURv2QLUNQJtiUL4BUMP2P1MIEB+XPx0P-3AH0PAIUT-UsJQIQLQJNBukni4C9hgNfyojYGSE-h1GaStUdS9ieAyDREwD8Msw-1EGmBnUeA9gPQ-QCIe0BAzCHleygL5VCNSDKB8CWQJFGBMACCs1K0UHCOskJSqLqjM0nkLCUACP0XU3C0YICJsK0JEJcGaK0SoWMLv0CI0mQE-2-2BW61uG6M8KLB+T6IMFi3dhuTgySwSWzEBEQNiykC6WpXEzWOsweQ5XKN7UOOqJNGm1gVaEQQ6BQW6CYAAHZMFgQZhLQAAvVmMYCYVJNcZ4eWEo7FHYCDF3M4ETFQPwz4qwJUAE+FQ2YE7xdPLtHtSo9dCTaYnwNElKGE3CIdcEt4qE9saOFeAwc5W9DlIkrqMTLkcrUkhApSNgR5V4yE3sSk+Y3JMcWk+E8wEEzXFLA6c5fJR5SYNgSbLkr1UTNEgdddDTZCPEszAcfJcUobfElkxCYiFSciNSTiByCMSofQG4MkxzDlZSdibU4SddGkw0+kkUmAJkiEj4vJFcViTUoSIYCTLueldUXkzo74SUslD01DBkmASbeUl2NsB0qEnot05ecsfUzoo00sR5aM8090y07Ea05Q20wAq1SM3sFM58HUhCaUqacUgcH0w9f00sQM0sb5UUyRMMl4vM9Q+aRaA43yJeXUpGcoTMiwgIRkikvMxQf6XyB6IwY2VWXsxA2AAc3Mgk-MmGe6YGT0mrek0QWc5kx04cxcuGBGTkr0hE6LDXQ9WMbBXsfskMy9flW6espTfwdcy84TUozgejBCbhGCQs+CPec4QJSLEYAWSWMcLTMku2R5CWQmbWTqG2K05dJRFYr2cCjmGOZ9dwGEZ9e8vuFo5YWdQQSAD8uCIYfrBrSCp7fWRYyEV83C-C9SWcRQchRC3sDE1zQBK2WWMi8cFwAjSrYjfk7k2aOY6iosrkFCjA7cjQx8T8tMslMcdCn4U01SSS2MtYAzdwNyeSrUxSt8dMqaAzfwGEcU2ocMzgTcqEhiv2QJadACsMViWwdZGABgZINgSGLTcsxEl3XinwMjeyzSCjeysU59HTHJLSNgBgTSeQvldwEKzSJi-wJy-y-DAym4G6BTSjE-ZIQBNgX5b4HTBODKmAJ9LdSK4itgMzOVCbcCpAGYPwkxYq07Ji74asPK9AEofIj9UcJq4oRK1c5QzKx5XQky45OuE2QbPiinOwTKrQQ9IzdPAg3Aw9Mq-dAw-Ktw3FZaueAa34LpdOTOc5BhR5JuBxDM7qiwra8VMCnC98jSgi5oaKBhMoeMhM+k6IYMOIdA96dIZ62IHIU6jdcU3ajcocu6ss9CH0w4esglFohovWH64FT67IeQYFS9VUx0qJfqVivWSuW6ekzAAG+cxQKqAGTskaUsg8nktyzXchIKnBHGx8lhda5s3w6eIePUqciAXGlkgAt-Qmy6fc46xAh8loDlfqvMkIq+Xm-jcmw9ayJ8PC+kRmmeF7W8lhVqhwhKAW9PAW0Mq1Ca-FGWyKXuKeBWhyYI3NXefBP89kYY4-PbaAEoFy9CXw-wq22AoI07U202TiwjKrC2upThbhLRUY42-bJdOk5QoRYwKKXyhecO2hfrfbZU0OiwvajlexMRCAhO-Qc5OyGwRAjlBxOoyG84uqGOkRd2rrB6xg-RIuvWT7Ea7TJRKm3sbOrgZSwquOSpdQhpfG9QHO8Kz9UAWauIAyr2ninVZDAA-UGAJmaAZALNN+XqT2AIYjQrCRKyPWuWx1Jm2eRKoyvMIczGnTUYcYSyX4hYJYOEHVdwDao+n4pCP48+3CHVfwRUNQYSyEK+5sh0C+yEZ+6cASq6mi4mt4S+uctUgs66rs4Bn+uS50gSABoS7+74D++c9Ul0s0zSoB1u74X++GErYkqBpB0BlGtkvOLB-u6RGGE6VAM6DsnmxB3VIhqMyhtsxeOhx+6BywEKCybm4aN+whjarh1h3h+hnwHBsykRtwRhr4n2JCqyumEiti0CJ+n4cuPhhhja1RiRgwHB9qKODG9h-h5s3RnWfBsh0Rn4eW5mgx9Rhmzeo2zB+Q5NNLVNdyDDae2e8wK0MMUQS3IrAa67c0ARnKbyHhpS-Bb7QxCOzWR5QRku4xI6xOxA5O7gYJvKNOhJzO+ksGu0wcvGoG0miRSWvlN5AiKhSJ2O+hE2xZWoZgVGL6IJsybh2h3hsKUYcIQhLvUoY0cK3IS5XY8Ys6RLI4tYFW0ASGHVcDCGgO6usMRQPmKyY0ZINyR4tw+qyEHYvYwZ-pYZ5sIAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQAbRNeAfWTh+MAIZo0iAObQApgBMAFNFE5ZaAJSgA3s1D7QmWfEiZooXv2iQuXZavUa9BlwH5Q1285f6AXKAAHUURMRQAiACoxCWk5eQiwgBpuXgEhERUYmQVFeGC7FTVNDQ0AbgBIF2YAX2YQCBgEFHQsXAIScipaRjoAJlZGjnNLNFkuYVkAN1EuSFEkaClFPhx4LV0XIxMzCzQrSBwAI1lQlbX9AB8L7x8DEfhMREXl+FWtUCub293+Q+RkLiyUTQF5vD7Xb4uSyeOxnd6XCGQ-SWGDyWTgJ45OGlGoDdjNH55KRSBT8Hh8UHwZLwAAWsn4RPWNy2pmGeyCIUpWgAZNzQHTREo4aAALxi0C0+lEnG1NhNTjQhxcnTM4yswmiYmk8nwSnJMKFWRhMq4uVDUBoACeRwBgmEhuVGwMLJ2AqUeUQsNeaxNssGBMs4kkMjU0F1wqdhjVO0sRJJ8jJqT1oDCQdiofgxplePl5jTIdkYf4VptXrBkZd5jduXyimrHrLPpK2bNBPz0Az-Gms1kju8lf5QPdtYbXObpv9Cr2sFQfGBAjRsC4okw82afed0bZDM18cTFLO+pn6DyRcXy9XQyzE-xnGPc7PsiXK7XqGL1r+jaZm+2VaHNc9Ot-1HOESl9HNzXvU8FyfC9X2gLsZkgXsI37LdB0FAC7BA70wJbSdt2mR5REOQF+HPF8hg3fQB1jXdtSTQ8UyIxASLIijL2aa8-VvcwWLY+kOPg99S2oqNfww4dAPrWtQPHHjc1AfjSME2DKOaRCezEgcZMAnC3nkiCAz2ZcjnkUR+FkAAPAIjBiVBtPQuitQTHVkzCUzDnMyybLsyRUG4ozOE87yglXNR4BONBHIknBRACZYP1tdJDWSXSv0M1tgtULyLL+eRLRi9V0qwsdwKy7dK2LPJIozIqYz2OMGIPb19SqudasLTNyoI8TWR82z1H8kFUJ-YrgNk3Cet4n5j3kRAhhmAa-PXUaaKcxr6NcxjWtAL4kX0MI5oW5oluswb7OgQKKtAOblv4QahVwlUxp2HV+CMcBkwYabFLu87MH4e96vMd7PuTXpfsg1AEwB-gZnDZ6K3QsH0WTABmKHjOLWQAEdkLgFCkbQiTnL3NymLCUZ8cLWAjSxzg4oAa3pamCbpylNBe9aJLcqm8fZo1kjOTR8JmtnadZmrZAzaKIwMEnxsw-SfTFxSMUwPhqvmGWus578eaVp7VlFm9FLsgQOt1sM5e9LnkYklXTYU81LBlgJ4EtHGacJ-Xub6hr9lsfW1ddkzxEt6W6pFg2A+3GFSpjhnt1I5BYCZsS441Fz90R1Z9VT9Prt65n6ULjO1qzvny6SC1cNDgly9+ZACsznSJsA0CG6neGAgCHhYHgkHs-Jnb85TeL+8QQer2ThpeOWobVuJ16-2VyaDO7vNMCkW3y0V10O+wjemy3jxkHhnfouQAJ7YP+ObDsG-naC8wNa1lclmf2P28w7+z4tpfXeihv7+wHKOf+uI6hgAqhgcA2A8BEDIJQag9AmDo1foSTAyFFBWVjlnKyopxQPGQmfUu-AKqKDCg4SKmtkj5UtMkQskx8EDj5jOHAARkCogoQRJI+0DrUIilFehLdGGgGYXPSwHCuE8MoeAVhG0dw5zcuAI8uBZHQATBVYuM0KoPRfMIzWigFH+yrqkD6aM1GgB+mffRDCTGKN5hY8G1jIZ2IIpZaAkwQioDqqYyM5itauOSJjMhogWaWN-JpHBx5IphiceqPmVVuzIVrnErqUi9gpKQr2VJshEmByattCk+S2pbhifTABFT8lA1QPE3U+TClryknYJpc9aZcGQJIRYXifHYA7HrSRZjwG1kkXYkIWt4FKmGYE3+Shxlm3NJ07pZdCrTLUEw7x6wqibHQhyUIGzZBbJYdmKCEo6SWU4Z7PpvjBlhlFB4R+OIbrkKOYlUsaBkj5LvnsiSByPmfi+UpXJL8bpHJEkCkx4UCk6F2avSS0KHBzwhT8pFagdkKz+eqUcRyOlWXibDbxdzo5JS4MC7swLDjiHpLM1UvNCxSFpICgEXMxQim4Iy5llKnAHVAO4AFbyYUsvJd8mYmh6E0r6byg6-hASLGZSWIFWgAA8nKFU0kUDygRtx3AnGwKEMIAAVf4oA4rQEtKAT+BwuoYDQJAPuPAFD+DCKAAA1HtPlB0+CPEWIgcAhUlWsq0B62urqPU6q9XXX1Uh-WFR5TKvl-h9XIENSa5AEBZAAHcrU7xtTbC0Dqp7OpTO6z1Ubvg+qeLGgNIquahv1GWyNXqq1+trQms+XTkBMwdZC20+SRUnPwTdZhZJ-gJTpZCG6aBB4jTJRS8V+DIS0T2AnIN5LE0Vv0Hq7xY6b6KGbVGlZPSpC3IGXVSRm6t3+HXUQjl1Z12aEPQddw1ZtVbtuDe2did50aGpLWDtOraiQn9aARQzC70XNpdcr2zCSWZLMZCFNpwyX6gAKrQD+KiDwDhryQmqBI8lshEPfHOUcx578BDvMWV6gcM7gTotZvOxjf7n1etRaCljJp8M3GAwi0dXaJ3bLPu2PtXBKmDpBVwIdZiR27sE+B7ZJH9DTu-Y+sVG7lM+BXUHWEv62MGB3ZMPdCUDO3GPdWs9fihnbKvUmi0ZLIMPv0x+7dFpjD8DfeKjTdmvVfoYyBX9-7AKAfw+W24oHFOTEg5KK5HtYPEvPQhwJSHMAGsk2EDDWGtE4bUKAAAtPlq1WR7ndRxGFsYowtMuDIzCijkyqPCpo3yuj36IWPpY4kMzSIOM9mini7j3w+P6GG1nAT46ovgWgfPXMcCEHtGQV0NBdAaCYMsLZRAOATqTHpPImAP8lHFNziYmA+oNtbaQDt3RilzvbfpJt-u1sarrjYAdiSJVXvgXObdy7u2CIYA5W5ARfM3S1wMG6KNrHvh8wbGD-QDZIddeh0mMIBy4eBGCJgRHwOUc6nRzqbHyOKRhGhI-WupPbAHSh7cPm800D91EJaWudOGeWqRNTnwfNkNw+Q16jnLg+ZxVpPDQ4aAkhC5pCLjAkJ+cGD5m69HBhcHJEtFoEUAA+UAhCPVs9l-oPm+XFf6GV6AVXopNeEKK7rpHNOUcJGSLcE3ZuNda9ABEU3+g9cpGJ8AI3YGrIq7Vxb0AYBrc4+JwAUj907oPruI8e9AF7vm7LFcx-N679lpuk8o4AIRilTwHrP6fCF545arm3nOUcquj4X53we1X6HL+H3UYQVUiiN2nl3hC2+N+z8T9XNfA-F9AJr3vFeBco-V+3h3LhO-B6n2P5v4Qc9+9dy4F3+gc8GDwQIk033HgXcQDt3hC9H2ih1XFBKbpkg-aP393ipt9+bbuyf3MghDgACsnzwABxf+KJ3zAXc+Zb8rs0oj4ACwJx9IQQD79Zs99Zx4BAgD8X8oJ5wAdvddQ+ZUR0RMR5Ba5sCMQ4gvdXMkQ+ZCBoBCCFomcHdyDKDPZiCSCicW8Jd+BSBCA4cWC2CGDGDK9icWCABRdHAQ7gnguXFHAAOVEHEL90kPEN81EJcHgJPCQOf1+zqRPHnDE1-0hEvxMXT2rAURv2QLUNQJtiUL4BUMP2P1MIEB+XPx0P-3AH0PAIUT-UsJQIQLQJNBukni4C9hgNfyojYGSE-h1GaStUdS9ieAyDREwD8Msw-1EGmBnUeA9gPQ-QCIe0BAzCHleygL5VCNSDKB8CWQJFGBMACCs1K0UHCOskJSqLqjM0nkLCUACP0XU3C0YICJsK0JEJcGaK0SoWMLv0CI0mQE-2-2BW61uG6M8KLB+T6IMFi3dhuTgySwSWzEBEQNiykC6WpXEzWOsweQ5XKN7UOOqJNGm1gVaEQQ6BQW6CYAAHZMFgQZhLQAAvVmMYCYVJNcZ4eWEo7FHYCDF3M4ETFQPwz4qwJUAE+FQ2YE7xdPLtHtSo9dCTaYnwNElKGE3CIdcEt4qE9saOFeAwc5W9DlIkrqMTLkcrUkhApSNgR5V4yE3sSk+Y3JMcWk+E8wEEzXFLA6c5fJR5SYNgSbLkr1UTNEgdddDTZCPEszAcfJcUobfElkxCYiFSciNSTiByCMSofQG4MkxzDlZSdibU4SddGkw0+kkUmAJkiEj4vJFcViTUoSIYCTLueldUXkzo74SUslD01DBkmASbeUl2NsB0qEnot05ecsfUzoo00sR5aM8090y07Ea05Q20wAq1SM3sFM58HUhCaUqacUgcH0w9f00sQM0sb5UUyRMMl4vM9Q+aRaA43yJeXUpGcoTMiwgIRkikvMxQf6XyB6IwY2VWXsxA2AAc3Mgk-MmGe6YGT0mrek0QWc5kx04cxcuGBGTkr0hE6LDXQ9WMbBXsfskMy9flW6espTfwdcy84TUozgejBCbhGCQs+CPec4QJSLEYAWSWMcLTMku2R5CWQmbWTqG2K05dJRFYr2cCjmGOZ9dwGEZ9e8vuFo5YWdQQSAD8uCIYfrBrSCp7fWRYyEV83C-C9SWcRQchRC3sDE1zQBK2WWMi8cFwAjSrYjfk7k2aOY6iosrkFCjA7cjQx8T8tMslMcdCn4U01SSS2MtYAzdwNyeSrUxSt8dMqaAzfwGEcU2ocMzgTcqEkKCyAGTskaEk-Qb7QxYwKKR5MygxGFWhb8wbGy+khhRynKbyBxDM1c5Qw4DcochhdysbRE48vlN5AiKhOy1y+hYIiRJ8oyvMZs8uTOc5LyjlJuPy+uKc7gNOcVMCnC98jSgi5oaKUKioOE26ek6IYMOIdA96dIeq2IHILpQeDdcUzK4K+cxQKqg8nkiKzXIKy8glFohovWDq7zUAVq7IeQYFS9VUx0qJfqVivWSuWq5QzAXqlkxQKqCyy6fcoEoao8zXchHJLSHax8lhOeEy+kXw6eIePU-K8AXarc-RQ64aY6uk5Qh8loDlXQ+6kIq+H6vi3kw9ayJ8PCh6x1J6oI28lhfIpEIGgczXf60Mq1NgYoM+KG2AGG3uKeGeF7U7XNXefBP89kYY4-PbaAEoLTAcXw-w6m2AoI0mz+U2TiwjKrSmupThbhLRUYhyT7YC+koReyzWCjTxcW1yiA5U36iwrKmbd0hxV7eWjy7a9QGwRA7KsRcDcawW84uqGWkRMmr5ZgeMngz6xLI43UT7MKk6n4S6nBOybW+Q74dwZ2+kDJMMfarWrgZS69WarRHAuIAy7mninVZDAA-UGAJmaAZALNN+XqT2AIYjQrCRKyaGyKQmgeeCPDAwQypsvqzanTUYcYSyX4hYJYOEHVdwe6nGCuqYJCP4mu3CHVfwRUNQYSyEeu5sh0WuyETu6cASsqmiqyt4OuuctUgs8qrsyeoeuS50gSMeoSwej26ela9SmM+ewO74Ye+GErYkhejehutkvOPez9firRE6VAM6Dso69e3VTeqMmGW+iExeR+9uxeywJyr6pS+Qvu+cskHy8yh+76p+nwA+hinu0+5smBhikiti0CDun4dKyBtwF+suDqiub+-ep2ipda32jBwzLB1aswJBjavBq+wMOG4m3ewBshx6+hiey+qBiRNLVNdyDDeOxO8wK0MMUQS3Ire667c0BuhBu2YdXqcCpAGYPwgAhgZINgSGBm9CH03inwMjGABgTSKW6ABgMU59HTL2xRzSd2l9eeXR7sJi-wFRox-DAym4G6BTSjE-ZIQBbGpdBFCnOwTxmAJ9LddwNxtgMzOVCbWR1iWwdZYi4Ipi74asfx9AEoZGrdUcJJnG3jV6gJx5IGvM4WKRsspRBOLx305+n0gg3Aw9cJ-dAwgJtw3FepqbCRgC32RBohn-WKzWXsMIBgAABlKFAF6AGdAHRgGeNBKG8FyEuV2PGLOhttKzKCAA

Metalinguistic Abstraction 4.1.7

For return statements, we analyze the return expression and apply the resulting execution

function in the execution function for the return statement.

Ifunction analyze_return_statement(stmt) {

const rfun = analyze(return_expression(stmt));

return env => make_return_value(rfun(env));

}

The bodies of blocks are scanned only once for local declarations, and their bindings are

installed in the environment, once the execution function for the block is called.

Ifunction analyze_block(stmt) {

const body = block_body(stmt);

const locals = scan_out_declarations(body);

const unassigneds = list_of_unassigned(locals);

const bfun = analyze(body);

return env => bfun(extend_environment(locals, unassigneds, env));

}

To analyze an application, we analyze the function expression and arguments and construct

an execution function that calls the execution function of the function expression (to obtain

the actual function to be applied) and the argument execution functions (to obtain the actual

arguments). We then pass these to execute_application, which is the analog of apply in

section 4.1.1. The function execute_application di�ers from apply in that the function body

for a compound function has already been analyzed, so there is no need to do further analysis.

Instead, we just call the execution function for the body on the extended environment.

Ifunction analyze_application(stmt) {

const ffun = analyze(function_expression(stmt));

const afuns = map(analyze, args(stmt));

return env =>

execute_application(ffun(env),

map(afun => afun(env), afuns));

}

function execute_application(fun, args) {

if (is_primitive_function(fun)) {

return apply_primitive_function(fun, args);

} else if (is_compound_function(fun)) {

const parameters = function_parameters(fun);

const body = function_body(fun);

const result = body(extend_environment(parameters, args,

function_environment(fun)));

return is_return_value(result)

? return_value_content(result)

: undefined;

} else {

error(fun, "unknown function type -- execute_application");

423 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQAbRNeAfWTh+MAIZo0iAObQApgBMAFNFE5ZaAJSgA3s1D7QmWfEiZooXv2iQuXZavUa9BlwH5Q1285f6AXKAAHUURMRQAiACoxCWk5eQiwgBpuXgEhERUYmQVFeGC7FTVNDQ0AbgBIF2YAX2YQCBgEFHQsXAIScipaRjoAJlZGjnNLNFkuYVkAN1EuSFEkaClFPhx4LV0XIxMzCzQrSBwAI1lQlbX9AB8L7x8DEfhMREXl+FWtUCub293+Q+RkLiyUTQF5vD7Xb4uSyeOxnd6XCGQ-SWGDyWTgJ45OGlGoDdjNH55KRSBT8Hh8UHwZLwAAWsn4RPWNy2pmGeyCIUpWgAZNzQHTREo4aAALxi0C0+lEnG1NhNTjQhxcnTM4yswmiYmk8nwSnJMKFWRhMq4uVDUBoACeRwBgmEhuVGwMLJ2AqUeUQsNeaxNssGBMs4kkMjU0F1wqdhjVO0sRJJ8jJqT1oDCQdiofgxplePl5jTIdkYf4VptXrBkZd5jduXyimrHrLPpK2bNBPz0Az-Gms1kju8lf5QPdtYbXObpv9Cr2sFQfGBAjRsC4okw82afed0bZDM18cTFLO+pn6DyRcXy9XQyzE-xnGPc7PsiXK7XqGL1r+jaZm+2VaHNc9Ot-1HOESl9HNzXvU8FyfC9X2gLsZkgXsI37LdB0FAC7BA70wJbSdt2mR5REOQF+HPF8hg3fQB1jXdtSTQ8UyIxASLIijL2aa8-VvcwWLY+kOPg99S2oqNfww4dAPrWtQPHHjc1AfjSME2DKOaRCezEgcZMAnC3nkiCAz2ZcjnkUR+FkAAPAIjBiVBtPQuitQTHVkzCUzDnMyybLsyRUG4ozOE87yglXNR4BONBHIknBRACZYP1tdJDWSXSv0M1tgtULyLL+eRLRi9V0qwsdwKy7dK2LPJIozIqYz2OMGIPb19SqudasLTNyoI8TWR82z1H8kFUJ-YrgNk3Cet4n5j3kRAhhmAa-PXUaaKcxr6NcxjWtAL4kX0MI5oW5oluswb7OgQKKtAOblv4QahVwlUxp2HV+CMcBkwYabFLu87MH4e96vMd7PuTXpfsg1AEwB-gZnDZ6K3QsH0WTABmKHjOLWQAEdkLgFCkbQiTnL3NymLCUZ8cLWAjSxzg4oAa3pamCbpylNBe9aJLcqm8fZo1kjOTR8JmtnadZmrZAzaKIwMEnxsw-SfTFxSMUwPhqvmGWus578eaVp7VlFm9FLsgQOt1sM5e9LnkYklXTYU81LBlgJ4EtHGacJ-Xub6hr9lsfW1ddkzxEt6W6pFg2A+3GFSpjhnt1I5BYCZsS441Fz90R1Z9VT9Prt65n6ULjO1qzvny6SC1cNDgly9+ZACsznSJsA0CG6neGAgCHhYHgkHs-Jnb85TeL+8QQer2ThpeOWobVuJ16-2VyaDO7vNMCkW3y0V10O+wjemy3jxkHhnfouQAJ7YP+ObDsG-naC8wNa1lclmf2P28w7+z4tpfXeihv7+wHKOf+uI6hgAqhgcA2A8BEDIJQag9AmDo1foSTAyFFBWVjlnKyopxQPGQmfUu-AKqKDCg4SKmtkj5UtMkQskx8EDj5jOHAARkCogoQRJI+0DrUIilFehLdGGgGYXPSwHCuE8MoeAVhG0dw5zcuAI8uBZHQATBVYuM0KoPRfMIzWigFH+yrqkD6aM1GgB+mffRDCTGKN5hY8G1jIZ2IIpZaAkwQioDqqYyM5itauOSJjMhogWaWN-JpHBx5IphiceqPmVVuzIVrnErqUi9gpKQr2VJshEmByattCk+S2pbhifTABFT8lA1QPE3U+TClryknYJpc9aZcGQJIRYXifHYA7HrSRZjwG1kkXYkIWt4FKmGYE3+Shxlm3NJ07pZdCrTLUEw7x6wqibHQhyUIGzZBbJYdmKCEo6SWU4Z7PpvjBlhlFB4R+OIbrkKOYlUsaBkj5LvnsiSByPmfi+UpXJL8bpHJEkCkx4UCk6F2avSS0KHBzwhT8pFagdkKz+eqUcRyOlWXibDbxdzo5JS4MC7swLDjiHpLM1UvNCxSFpICgEXMxQim4Iy5llKnAHVAO4AFbyYUsvJd8mYmh6E0r6byg6-hASLGZSWIFWgAA8nKFU0kUDygRtx3AnGwKEMIAAVf4oA4rQEtKAT+BwuoYDQJAPuPAFD+DCKAAA1HtPlB0+CPEWIgcAhUlWsq0B62urqPU6q9XXX1Uh-WFR5TKvl-h9XIENSa5AEBZAAHcrU7xtTbC0Dqp7OpTO6z1Ubvg+qeLGgNIquahv1GWyNXqq1+trQms+XTkBMwdZC20+SRUnPwTdZhZJ-gJTpZCG6aBB4jTJRS8V+DIS0T2AnIN5LE0Vv0Hq7xY6b6KGbVGlZPSpC3IGXVSRm6t3+HXUQjl1Z12aEPQddw1ZtVbtuDe2did50aGpLWDtOraiQn9aARQzC70XNpdcr2zCSWZLMZCFNpwyX6gAKrQD+KiDwDhryQmqBI8lshEPfHOUcx578BDvMWV6gcM7gTotZvOxjf7n1etRaCljJp8M3GAwi0dXaJ3bLPu2PtXBKmDpBVwIdZiR27sE+B7ZJH9DTu-Y+sVG7lM+BXUHWEv62MGB3ZMPdCUDO3GPdWs9fihnbKvUmi0ZLIMPv0x+7dFpjD8DfeKjTdmvVfoYyBX9-7AKAfw+W24oHFOTEg5KK5HtYPEvPQhwJSHMAGsk2EDDWGtE4bUKAAAtPlq1WR7ndRxGFsYowtMuDIzCijkyqPCpo3yuj36IWPpY4kMzSIOM9mini7j3w+P6GG1nAT46ovgWgfPXMcCEHtGQV0NBdAaCYMsLZRAOATqTHpPImAP8lHFNziYmA+oNtbaQDt3RilzvbfpJt-u1sarrjYAdiSJVXvgXObdy7u2CIYA5W5ARfM3S1wMG6KNrHvh8wbGD-QDZIddeh0mMIBy4eBGCJgRHwOUc6nRzqbHyOKRhGhI-WupPbAHSh7cPm800D91EJaWudOGeWqRNTnwfNkNw+Q16jnLg+ZxVpPDQ4aAkhC5pCLjAkJ+cGD5m69HBhcHJEtFoEUAA+UAhCPVs9l-oPm+XFf6GV6AVXopNeEKK7rpHNOUcJGSLcE3ZuNda9ABEU3+g9cpGJ8AI3YGrIq7Vxb0AYBrc4+JwAUj907oPruI8e9AF7vm7LFcx-N679lpuk8o4AIRilTwHrP6fCF545arm3nOUcquj4X53we1X6HL+H3UYQVUiiN2nl3hC2+N+z8T9XNfA-F9AJr3vFeBco-V+3h3LhO-B6n2P5v4Qc9+9dy4F3+gc8GDwQIk033HgXcQDt3hC9H2ih1XFBKbpkg-aP393ipt9+bbuyf3MghDgACsnzwABxf+KJ3zAXc+Zb8rs0oj4ACwJx9IQQD79Zs99Zx4BAgD8X8oJ5wAdvddQ+ZUR0RMR5Ba5sCMQ4gvdXMkQ+ZCBoBCCFomcHdyDKDPZiCSCicW8Jd+BSBCA4cWC2CGDGDK9icWCABRdHAQ7gnguXFHAAOVEHEL90kPEN81EJcHgJPCQOf1+zqRPHnDE1-0hEvxMXT2rAURv2QLUNQJtiUL4BUMP2P1MIEB+XPx0P-3AH0PAIUT-UsJQIQLQJNBukni4C9hgNfyojYGSE-h1GaStUdS9ieAyDREwD8Msw-1EGmBnUeA9gPQ-QCIe0BAzCHleygL5VCNSDKB8CWQJFGBMACCs1K0UHCOskJSqLqjM0nkLCUACP0XU3C0YICJsK0JEJcGaK0SoWMLv0CI0mQE-2-2BW61uG6M8KLB+T6IMFi3dhuTgySwSWzEBEQNiykC6WpXEzWOsweQ5XKN7UOOqJNGm1gVaEQQ6BQW6CYAAHZMFgQZhLQAAvVmMYCYVJNcZ4eWEo7FHYCDF3M4ETFQPwz4qwJUAE+FQ2YE7xdPLtHtSo9dCTaYnwNElKGE3CIdcEt4qE9saOFeAwc5W9DlIkrqMTLkcrUkhApSNgR5V4yE3sSk+Y3JMcWk+E8wEEzXFLA6c5fJR5SYNgSbLkr1UTNEgdddDTZCPEszAcfJcUobfElkxCYiFSciNSTiByCMSofQG4MkxzDlZSdibU4SddGkw0+kkUmAJkiEj4vJFcViTUoSIYCTLueldUXkzo74SUslD01DBkmASbeUl2NsB0qEnot05ecsfUzoo00sR5aM8090y07Ea05Q20wAq1SM3sFM58HUhCaUqacUgcH0w9f00sQM0sb5UUyRMMl4vM9Q+aRaA43yJeXUpGcoTMiwgIRkikvMxQf6XyB6IwY2VWXsxA2AAc3Mgk-MmGe6YGT0mrek0QWc5kx04cxcuGBGTkr0hE6LDXQ9WMbBXsfskMy9flW6espTfwdcy84TUozgejBCbhGCQs+CPec4QJSLEYAWSWMcLTMku2R5CWQmbWTqG2K05dJRFYr2cCjmGOZ9dwGEZ9e8vuFo5YWdQQSAD8uCIYfrBrSCp7fWRYyEV83C-C9SWcRQchRC3sDE1zQBK2WWMi8cFwAjSrYjfk7k2aOY6iosrkFCjA7cjQx8T8tMslMcdCn4U01SSS2MtYAzdwNyeSrUxSt8dMqaAzfwGEcU2ocMzgTcqEkKCyAGTskaEk-Qb7QxYwKKR5MygxGFWhb8wbGy+khhRynKbyBxDM1c5Qw4DcochhdysbRE48vlN5AiKhOy1y+hYIiRJ8oyvMZshiv2QJadACsMViWwdZGABgZINgSGLTcsiKvk59MjAqzSCjAqsU59HTHJLSNgBgTSeQvldwFqzSJi-wYq+q-DAym4G6BTSjE-ZIQBNgX5b4HTBOCamAJ9LdTq4itgMzOVCbcCpAGYPwkxZa07Ji74asOa9AEofIj9UcI64oQagKiwyax5XQky45OuE2MKmax+AArmQ9IzdPAg3Aw9Na-dAw+atw3FIGueB634LpdOTOc5LyjlJuPy+uKc7gNOcVMCnC98jSgi5oaKUKioOE26ek6IYMOIdA96dIIm2IHISGxdcUmG4K+cxQXGg8nk8q0AIKy8glFohovWam0VUACm7IeQYFS9VUx03uKeGeJS9YHs66xA8AemlkgAt-Cyy6fc2Wq1W6jle6vMkIq+NW-jcqw9ayJ8PC+kXw6eXI28lhU6hwhKB8wAzXe20MjW0Gs+Y22AU28WgeXI07XNXefBP89kYY4-PbaAEoUq9CXw-w4O2AoI32z+U2TiwjKrQOupThbhLRUYhyT7YC+koReyzWWqhefO1yiA5UukwKsRIut-BxV7cujy5QuyGwRAuGsRcDTmzO84uqEukRP2r5ZgeMng-RLuvWT7MKoEyqGpDkpurgZSxauOSpdQhpRQGeueitfwH6uIAy5OninVZDAA-UGAJmaAZALNN+XqT2AIYjQrCRKyE2yKL2i22eQalKucxWyuLOf88YSyX4hYJYOEHVdwcG0Yb+qYJCP4-+3CHVfwRUNQYSyEIB5sh0AByEGB6cASzGmiqyt4QBt+sWgsrGrsnB1BuS50gSTBoSlB74RB+c9Ul0s0zS7Btez9H4NkvOZhnwGhtUth+B74NBlsk6VAM6Ds1Wqh3VPBqMmGQRiExeURqBkhywJylW4aXh8R8GpRkRlRsRnwfh9K7RtwCRr4n2JC7KumEiti0CaBn4cuVRzhwxiGtOCueRvhn4dqKOPWfRwzextxnWYk4hlxwMR1J+qW3B8G82yWohjhlwZNNLVNdyDDY+0+8wK0MMUQS3IrB667c0cGnxqC9h-Bc5TABWrcqqZRqWl69CH08hJqnBIpx8lhKbHJipVinmlxNGMKUYcIGo4fD1BgUoY0ZISGRNdu+okesMRQPmKyAZ0SgANmBsuV2PGLOkSyONViAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAGxgZygfTsT4CGaaMA5mAKYAmAFGPgLbloCUiA3gFCLeIBO5UELyTpMYEMmS0GTZlx4KA-InGT5C7gC5EAB3wxe1AEQAqAkVIVKJowBoU6LDjx0LZKtSj6pdRi2bMANwAkAocAL4cAPRRiKCQsAhocbxw9IgAygCSAMIACogAUhmIACwAdACMVdGx8dDwYMnAqenZ+UUlFdUATBz1iSJomGjkyLjkAG74yCD4sGAk1Bj0UKycCvyCwoii4vQARuSGK2vcAD7n6ho8ohi8MIvLUKusiJfXN7vDB3BwyOR8GBnq93lcvgo9hIpKc3hdwRDuKJwJRyMBHh5YYEIv1wA0EN9MF4SCQqJhUBgQVB7FAABbkIn4Ejra5bIRDTB6AxU1gAMl5iHp+BosMQAF4JYg6QzidjIgNGoTfOQeexWQJ2YTiaTKOTHFT7EZlUYgjiFQS0ABPQ7-bC4ZWqjY8Nk7IU0LwwGEvNam+V4waEwjEMiMMBQR3qF0c7Vkinh06GoOWUNQE1y3EJRVJkPkMMja2-L2gp18DWuwHu7zUN2eKuwgK+jP4pDZsApzDTWYq0UlqOCiu1z2Dos+xvmjkQJJePOoiDIfC8eaNCPOsvRpk6vWUhOIIyTprTrCz+eLwZps3+xX7jBAo-kOcLpcIfM2kcs1fbJA1j1Sb9170NmOl4Eteh6YMej6DB2MwgN2AFqh+mp-kOP48gE6bjoS0wPPgBwAuB94nk+wI9pGa5ahusb6juRjYTAuH4RBp6NOefqZgSdEMQyTHES+hYrtwfbIb+A6ofW6EXuxSCcXh3GEZBjTQV2Amlp+-bCsOmniRhwEcvOhyUPgmDkAAHjo-AWAgKl9qIMa6nGBq7vpByGcZZkWcQCCsU2AbOa5eiLowUDHGg1nkfQ+A6MsBa2s4yr2MJaFAVJKAMC5Rm-JQlphWpiViQBElsc2hJRiMXjBSmOWarZlH2dR3qGqVN4VbmqbJcVpWmeZTCeSR8G9uRiX1jpKWiPulAwIMMxud1ll9cWZFqTVJJUduDWIJ8iLcHuCATVNyAzR5LHtQG42HZy-Aiv1i2anGmD8MAjmVCdV67ed15VTsd0PY5PQvSBb1dbwmAzPG12IV9jj3WijkAMz-RyowAI6wZAcELRD64rXVa2rIayOoxA5DeZhEUANYMgTuZE1SLAIYJ5EOUYVNo3YiCnCwI3FSzRNlfM5ApqFPY8Dd5YaflrwI3EBgYHzLVhrT74M7lA4c1LFlYM1AutUL3p0wNakS1AnOScVogCzoUCWiM5Ao9T6PG0rqnVcMqgjibRUBqI86y1rlVq-Tzs7FCkhaXrhU+Yqoh4XAEBkypQdY5uDk0THcck7piDkwyafx6RmMOJSRi52zWKmwGueYJl2X5wXQ0FVzXvDJFOioBAxGfUnq1g3ju4t23xEZyl46HT1y614n6mVkOw3l1mvAkLrGPK0holVkbDaN4qYBwCDC+hXAOj66LHJu9Qh8e5HBLorwssLksF9O0JA6P1vBIa3vi-n0fT-kahr84lqHEXSzRWiZFyAUYoZQqjlFhlfaMvBYLUBMk7SeJlxSSigIg8gb8kDZ0wOOagAUZDBVvvYau9hcyTFQX2Jmk56A6DgCiAhuk7CbS2sQoKIVyFwCypQsA1DcGEnoYw5hhDgA0PIstZO+pgCGhEUwsAupxxD2KiPThAgQrUAkYHSe30YZyMQM9IRI9q7aMkWpfRj1DF-RMbpYyAiDAIEqjokseioY-UMfDIR+DSqdiQfuYKYYLG3X1EYPxMFib2ECa1KWogInKX8eQEJwdhh2S3OGJJjU1xKVgqogMCTYKYBiQrJJKSvxryHGUqW1NkBwGIIsBxkwnFtlatQKh5SpRVg6SYmWWAWgyHaQIzpNYelzwJLU+pOdsoDMYPw6h7AwibHIlyQwszyDzMbKBKU9JjIMKtk0lpKZxQqGhNiUm+AKYEMCt2GKyA0D2CScfZZalVnRVfA8xATypbrL4v8UK6z1hLLrgOQFJibm5KYNom5QKRYvM1KhMF4ykCmSCbqKhRy2lWg+Y8mYnyDiEAZB03RtDcwkDpO8wsdMJRihQGSilnYWDsKULofQhh8HrMpf83F9zmDkMJU0uQW1EDaABIsCl2KqWsAADx0vFbSagjKhXCsQMoY4qRDBGAACp-CzkCS0iB74gEFuzEAOhW4wCoNoIwiAADUG0VWInuI8EgMBgA1zuXTe1bMbX2uZY651iw3XZSVcq4V2h1VwE1TquAcRyAAHdDUL2NTrU15rUBWt3Hah1jqviBtde6rlvLs0+uzf6lV+bg2KrxRHTCdS4BkzNX8g6SSi2bN0ZhKh5I-hRWJW4hQmE0DtxIp6nlzzhU2VdtCItTLc0aDVQI7th9qDlsdZMhpJBDmpFaQrDpYa50ivZncjBtKaySv+fug9qqp7Vt5aura2gh1Ai0p6vlXSqk1tNBCSIEI3WICGZME9OyiX7Othi7dKZUEQkjScO5hoACqYBfgohUDIc837EBjFGLoiE2z1knJvrLTlYyVV9ifcCX5577nQpkHy+9KrflPJo4wCS37rg-oLl2+tvbhlCNbM2yFbavkzHbW4zti7uMAagzwQdw6Z1jukzcSdYhp1UdnXOhdkwl1RXo18ddLqt3OLaXu3TWgj2viA2e19pmeDKFGFgGsjKeWXsdY+uTYlX00irKG7EGHmV-oA0B6UezLZgccRB2JOG9O8A1UJowiHkNKNQ4wRAABaVLhq3A7rar5r44RMP3PIFFm4eGbkEb6dcwZJGJ3kXI8xymnr6t0avV8RjkSAUwq-Xl9j6o1JcZ7VJ9MQDxygLSOAjoUDujlFKPAwk5kYD0EmjASYDJxHgF-ktNJtUMnaPAIaebi3YArfyYqA7S2VuYAW63bWYYO7xA26vcWVZ7tbKnLoB4h3lurZASchy7CmZujZjwN0jrms3CZj+IH3Afyg9sP9sJqyoesoMLD+HRc4xI7jKjr4TMQ7IDZnjraYONBMwmmgVu+BLRszJxTg1iJicKCZjBqHMGVUM54EzCKdIQYHDQHYLntIefJAhOz7gTNbVI54Mg+wlpWBigAHyIHQfaunovC7hiMKlyX3BpeIFl+KRX6CMuq7hzjsJNh7A3F1-rhXSvEAmD19wNXTMoja--SZGXcvDeIFiCbtHGuACkbvrde7twHx3iBndhJpZLkPBu7c0r11HouABCCUsePdJ-j+gtPtLZem-B2E6VwfM82+97K7g+f-fGGlWKbXcfbfoNr5X5PGv5cl899nxAiuW8F5J2E+XdfLcKAb97wfvfq9GBT27u3ChbfcBTzwFB7DTTbLO0d77Ulm3JDFMyiKUU3T2HX19lhUkTZr4++dzfzZsAHAAFb3mNuKPfkVdtIFt0zY-x2EqVKkC9tXGgX+1+gw5+b2QBxSU4t4O+6u1ATMKIaIGIlAbM8B6IVgABLWZuRcWQYAqBk0VOlu2BuBVs6BGB-eRcAumAeQWQUOFBVBJBpBHOYSFBAAokjiwfQQwTAUYAAHL4DcFu68HcEuacEKCr5gGX4b4QEHi3jb7P4Qj77aLx41gSJH4SEn6gRQFiEHjvYLZX5SE3h5hPJyFfAKHABKG-7mJvrgEaFhgmyYT9zWzgFrZgD2D3xxidIOGXZgAuCoi8DICWgGZ374DTBDoPCWwroHrgFXYAgph3brZ96OpuGOBBAaDIrswag6CGbZbUCdKoq5jorhZGYKymYtz5FEJqEXYjxqb2A2Y3DWGQF5hqYcE8ClFKLlG6GSEjxwD36P6fK1GAEVEMg2FYDfIJHCrBYWwHLgZFFrDpgAhQDAaYAkB1IEoHTTHZYnL2ZNrrGVSmjDY-YtBjbtCQJdAwIADss2QIMwloAAXpTGMBMP4kuE8MLKkfCjsFQvHqcHxnQP4XcWIIMq8cCivB8QIvHvWo2pkVRoJv0QoNCXFICQBJsj8dcf8a2P7ODDwNslRicuia1M2jyLltwNspMPELib8bcSqHiYYZEmhESZPJ8bbv2ltCSZEicqSeAINiUVlgJq2lRjyrBMiaZn2EkvSXliiX8QyDJIxPJMxFZD2KENwNcNicerStKXJA+HKd4VRoScqW9hye-oahSXcdWjhLJARJqbxHyQ3L1pqIyYrquvxtCXyXBl8vEFJkKZ7FmMaUMQ0XeJaYMI6IqTmsSW9jibSsMRaURFBDqWXAoCSWSbSlcZKdQJGTxFBNaZLPSX2PaSGRCE6XcoJvyW6ZyR0p6ZcT6VIXtI0NNEDGPPKf1MEHqdoToImUaaiSqGdEDBdJiDafGW9hAG2cmZSamYDO5PoXSc2RgIakOT6aOUoudKDJOe8SimCQrqurZNgkQu6XuteoOaWcMoevgDubxmkeRtgCAP6dGY0EvGcG4gFncLbITA7AEMVogNiXrJsU+fbHLDdsbLqRCMppMdbDzA7OpltMoG7PetoK0SKMOheVeQpEkNohVn7FiuHM0RCOeUwohVqaFPgqBRESITVr7OVH+bef4KxjwPllhkVsySCROH6VGUhfNGsPesoA5GmbKbxLGQVNBVhAuPROaemePABLphxfqOqcxVqQSfWLptoG7PSZEF6QSMOf8X5EZHWXNAnGvo+FwrfL9mlP5HpZorfABViW9tXIZQZBlLwjXABPSdsgcLOR2dQNXF1gxZhmufLquhyrpEQiZaQvivEOWfYZWYRQHGJpnCzLADMP4W-pUPYPEH9G+Tmd5W+f2dofEJUEpARuAJUFyaRlIsMIUiqNlUpMISqsoOVZ2LCdoMlYVeKT1gOpnJJoRv0ntqWERuAOOkpsVSpqHB-PEOBVVdLLfB1WAKZqKgNjFfRJIDMhViFbCV8DWENT1QEGMVeqhGtU0FRdwBxqGVlT1ScgoWpRsuzOHNmf1WfMNawKuppvHigYgautNcusoetV5kOLdVLGddDJ+L+RicvIddObwC5SmZ1O5PWaxXtQyelb4jkq2qDQedQj9ZWf3DAO3IGQqVOQscAGDSOSPFpb1MuRZdocecdbSqdT6a4fvCTZ5faauqZPeJeQyOjZjcuHjcjZhXqlFOTe-ornzR6TOetTUiZMzcFCDOmhjXES4UmovKgg+cME4f5S9qleRJ4crVJG-jTfLUpQVthorRAQwoosoiretopu+WAYFSFHlVvhokFW-h5RoE5XZbbTfmYvdmKaTSDUwBIAsbSmYnkQuTsW0vbdwnLQ8hwMGaQYTYUdkf-l7Z5fEgjbSRZH7ZVV8MoKVVIUEuGGncgGxXOtoE9VYHrbRW+TBtrbuOAGTDvPGkgJhFbDoEVulphmLRACzZLRauzV5E7cpRWa5RPJPI+eMMZE8QsEsLCMysoL9aMKPVMDBM8ZPWJRCNoHsIia8NPe2ZKQCYwDyMymvcMFxQGaJZvRCDPZWcfdeQ2WfV8IfdBGaTKSfTfYXZndvZSQ-UJU-dfdDQfYGFloDa-TcBfR2SDAA+hbfTcPfeNEtggLWZDdpVPefe-f8TA-tKPIgyvXfYSBpRg8TUg2-b9bg0TafUAxoPfRFVg8Ayg-cXbGjMsN+WjADTrGhH-dHHUnHPvcg79bnFw9g8nf9WhQrAQ9Q79U1GRYA5VffWzR3CI-OjQ13QPFjVQ+Q5hjFlGo5PFmALXXAPXUerdkbhlmdSdqpZWbw0PS7VlCcpXGYnGd7QsRw3ipsfBThdJcRKFO5SEMCZbdoeYMGFYNAXdM4H45YB4I47yo5ZZfjSaZ47aaCYBrbs5aWSZGilkZVOE58iE+4JQJ8nukNjwxw-HAFKMMYGwD49OegrSqUIEErjU+ECaGGp4Lsssd0bWXHZBoEEAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQAbRNeAfWTh+MAIZo0iAObQApgBMAFNFE5ZaAJSgA3s1D7QmWfEiZooXv2iQuXZavUa9BlwH5Q1285f6AXKAAHUURMRQAiACoxCWk5eQiwgBpuXgEhERUYmQVFeGC7FTVNDQ0AbgBIF2YAX2YQCBgEFHQsXAIScipaRjoAJlZGjnNLNFkuYVkAN1EuSFEkaClFPhx4LV0XIxMzCzQrSBwAI1lQlbX9AB8L7x8DEfhMREXl+FWtUCub293+Q+RkLiyUTQF5vD7Xb4uSyeOxnd6XCGQ-SWGDyWTgJ45OGlGoDdjNH55KRSBT8Hh8UHwZLwAAWsn4RPWNy2pmGeyCIUpWgAZNzQHTREo4aAALxi0C0+lEnG1NhNTjQhxcnTM4yswmiYmk8nwSnJMKFWRhMq4uVDUBoACeRwBgmEhuVGwMLJ2AqUeUQsNeaxNssGBMs4kkMjU0F1wqdhjVO0sRJJ8jJqT1oDCQdiofgxplePl5jTIdkYf4VptXrBkZd5jduXyimrHrLPpK2bNBPz0Az-Gms1kju8lf5QPdtYbXObpv9Cr2sFQfGBAjRsC4okw82afed0bZDM18cTFLO+pn6DyRcXy9XQyzE-xnGPc7PsiXK7XqGL1r+jaZm+2VaHNc9Ot-1HOESl9HNzXvU8FyfC9X2gLsZkgXsI37LdB0FAC7BA70wJbSdt2mR5REOQF+HPF8hg3fQB1jXdtSTQ8UyIxASLIijL2aa8-VvcwWLY+kOPg99S2oqNfww4dAPrWtQPHHjc1AfjSME2DKOaRCezEgcZMAnC3nkiCAz2ZcjnkUR+FkAAPAIjBiVBtPQuitQTHVkzCUzDnMyybLsyRUG4ozOE87yglXNR4BONBHIknBRACZYP1tdJDWSXSv0M1tgtULyLL+eRLRi9V0qwsdwKy7dK2LPJIozIqYz2OMGIPb19SqudasLTNyoI8TWR82z1H8kFUJ-YrgNk3Cet4n5j3kRAhhmAa-PXUaaKcxr6NcxjWtAL4kX0MI5oW5oluswb7OgQKKtAOblv4QahVwlUxp2HV+CMcBkwYabFLu87MH4e96vMd7PuTXpfsg1AEwB-gZnDZ6K3QsH0WTABmKHjOLWQAEdkLgFCkbQiTnL3NymLCUZ8cLWAjSxzg4oAa3pamCbpylNBe9aJLcqm8fZo1kjOTR8JmtnadZmrZAzaKIwMEnxsw-SfTFxSMUwPhqvmGWus578eaVp7VlFm9FLsgQOt1sM5e9LnkYklXTYU81LBlgJ4EtHGacJ-Xub6hr9lsfW1ddkzxEt6W6pFg2A+3GFSpjhnt1I5BYCZsS441Fz90R1Z9VT9Prt65n6ULjO1qzvny6SC1cNDgly9+ZACsznSJsA0CG6neGAgCHhYHgkHs-Jnb85TeL+8QQer2ThpeOWobVuJ16-2VyaDO7vNMCkW3y0V10O+wjemy3jxkHhnfouQAJ7YP+ObDsG-naC8wNa1lclmf2P28w7+z4tpfXeihv7+wHKOf+uI6hgAqhgcA2A8BEDIJQag9AmDo1foSTAyFFBWVjlnKyopxQPGQmfUu-AKqKDCg4SKmtkj5UtMkQskx8EDj5jOHAARkCogoQRJI+0DrUIilFehLdGGgGYXPSwHCuE8MoeAVhG0dw5zcuAI8uBZHQATBVYuM0KoPRfMIzWigFH+yrqkD6aM1GgB+mffRDCTGKN5hY8G1jIZ2IIpZaAkwQioDqqYyM5itauOSJjMhogWaWN-JpHBx5IphiceqPmVVuzIVrnErqUi9gpKQr2VJshEmByattCk+S2pbhifTABFT8lA1QPE3U+TClryknYJpc9aZcGQJIRYXifHYA7HrSRZjwG1kkXYkIWt4FKmGYE3+Shxlm3NJ07pZdCrTLUEw7x6wqibHQhyUIGzZBbJYdmKCEo6SWU4Z7PpvjBlhlFB4R+OIbrkKOYlUsaBkj5LvnsiSByPmfi+UpXJL8bpHJEkCkx4UCk6F2avSS0KHBzwhT8pFagdkKz+eqUcRyOlWXibDbxdzo5JS4MC7swLDjiHpLM1UvNCxSFpICgEXMxQim4Iy5llKnAHVAO4AFbyYUsvJd8mYmh6E0r6byg6-hASLGZSWIFWgAA8nKFU0kUDygRtx3AnGwKEMIAAVf4oA4rQEtKAT+BwuoYDQJAPuPAFD+DCKAAA1HtPlB0+CPEWIgcAhUlWsq0B62urqPU6q9XXX1Uh-WFR5TKvl-h9XIENSa5AEBZAAHcrU7xtTbC0Dqp7OpTO6z1Ubvg+qeLGgNIquahv1GWyNXqq1+trQms+XTkBMwdZC20+SRUnPwTdZhZJ-gJTpZCG6aBB4jTJRS8V+DIS0T2AnIN5LE0Vv0Hq7xY6b6KGbVGlZPSpC3IGXVSRm6t3+HXUQjl1Z12aEPQddw1ZtVbtuDe2did50aGpLWDtOraiQn9aARQzC70XNpdcr2zCSWZLMZCFNpwyX6gAKrQD+KiDwDhryQmqBI8lshEPfHOUcx578BDvMWV6gcM7gTotZvOxjf7n1etRaCljJp8M3GAwi0dXaJ3bLPu2PtXBKmDpBVwIdZiR27sE+B7ZJH9DTu-Y+sVG7lM+BXUHWEv62MGB3ZMPdCUDO3GPdWs9fihnbKvUmi0ZLIMPv0x+7dFpjD8DfeKjTdmvVfoYyBX9-7AKAfw+W24oHFOTEg5KK5HtYPEvPQhwJSHMAGsk2EDDWGtE4bUKAAAtPlq1WR7ndRxGFsYowtMuDIzCijkyqPCpo3yuj36IWPpY4kMzSIOM9mini7j3w+P6GG1nAT46ovgWgfPXMcCEHtGQV0NBdAaCYMsLZRAOATqTHpPImAP8lHFNziYmA+oNtbaQDt3RilzvbfpJt-u1sarrjYAdiSJVXvgXObdy7u2CIYA5W5ARfM3S1wMG6KNrHvh8wbGD-QDZIddeh0mMIBy4eBGCJgRHwOUc6nRzqbHyOKRhGhI-WupPbAHSh7cPm800D91EJaWudOGeWqRNTnwfNkNw+Q16jnLg+ZxVpPDQ4aAkhC5pCLjAkJ+cGD5m69HBhcHJEtFoEUAA+UAhCPVs9l-oPm+XFf6GV6AVXopNeEKK7rpHNOUcJGSLcE3ZuNda9ABEU3+g9cpGJ8AI3YGrIq7Vxb0AYBrc4+JwAUj907oPruI8e9AF7vm7LFcx-N679lpuk8o4AIRilTwHrP6fCF545arm3nOUcquj4X53we1X6HL+H3UYQVUiiN2nl3hC2+N+z8T9XNfA-F9AJr3vFeBco-V+3h3LhO-B6n2P5v4Qc9+9dy4F3+gc8GDwQIk033HgXcQDt3hC9H2ih1XFBKbpkg-aP393ipt9+bbuyf3MghDgACsnzwABxf+KJ3zAXc+Zb8rs0oj4ACwJx9IQQD79Zs99Zx4BAgD8X8oJ5wAdvddQ+ZUR0RMR5Ba5sCMQ4gvdXMkQ+ZCBoBCCFomcHdyDKDPZiCSCicW8Jd+BSBCA4cWC2CGDGDK9icWCABRdHAQ7gnguXFHAAOVEHEL90kPEN81EJcHgJPCQOf1+zqRPHnDE1-0hEvxMXT2rAURv2QLUNQJtiUL4BUMP2P1MIEB+XPx0P-3AH0PAIUT-UsJQIQLQJNBukni4C9hgNfyojYGSE-h1GaStUdS9ieAyDREwD8Msw-1EGmBnUeA9gPQ-QCIe0BAzCHleygL5VCNSDKB8CWQJFGBMACCs1K0UHCOskJSqLqjM0nkLCUACP0XU3C0YICJsK0JEJcGaK0SoWMLv0CI0mQE-2-2BW61uG6M8KLB+T6IMFi3dhuTgySwSWzEBEQNiykC6WpXEzWOsweQ5XKN7UOOqJNGm1gVaEQQ6BQW6CYAAHZMFgQZhLQAAvVmMYCYVJNcZ4eWEo7FHYCDF3M4ETFQPwz4qwJUAE+FQ2YE7xdPLtHtSo9dCTaYnwNElKGE3CIdcEt4qE9saOFeAwc5W9DlIkrqMTLkcrUkhApSNgR5V4yE3sSk+Y3JMcWk+E8wEEzXFLA6c5fJR5SYNgSbLkr1UTNEgdddDTZCPEszAcfJcUobfElkxCYiFSciNSTiByCMSofQG4MkxzDlZSdibU4SddGkw0+kkUmAJkiEj4vJFcViTUoSIYCTLueldUXkzo74SUslD01DBkmASbeUl2NsB0qEnot05ecsfUzoo00sR5aM8090y07Ea05Q20wAq1SM3sFM58HUhCaUqacUgcH0w9f00sQM0sb5UUyRMMl4vM9Q+aRaA43yJeXUpGcoTMiwgIRkikvMxQf6XyB6IwY2VWXsxA2AAc3Mgk-MmGe6YGT0mrek0QWc5kx04cxcuGBGTkr0hE6LDXQ9WMbBXsfskMy9flW6espTfwdcy84TUozgejBCbhGCQs+CPec4QJSLEYAWSWMcLTMku2R5CWQmbWTqG2K05dJRFYr2cCjmGOZ9dwGEZ9e8vuFo5YWdQQSAD8uCIYfrBrSCp7fWRYyEV83C-C9SWcRQchRC3sDE1zQBK2WWMi8cFwAjSrYjfk7k2aOY6iosrkFCjA7cjQx8T8tMslMcdCn4U01SSS2MtYAzdwNyeSrUxSt8dMqaAzfwGEcU2ocMzgTcqEkKCyAGTskaEk-Qb7QxYwKKR5MygxGFWhb8wbGy+khhRynKbyBxDM1c5Qw4DcochhdysbRE48vlN5AiKhOy1y+hYIiRJ8oyvMZshiv2QJadACsMViWwdZGABgZINgSGLTcsiKvk59MjAqzSCjAqsU59HTHJLSNgBgTSeQvldwFqzSJi-wYq+q-DAym4G6BTSjE-ZIQBNgX5b4HTBOCamAJ9LdTq4itgMzOVCbcCpAGYPwkxZa07Ji74asOa9AEofIj9UcI64oQagKiwyax5XQky45OuE2MKmax+AArmQ9IzdPAg3Aw9Na-dAw+atw3FIGueB634LpdOTOc5LyjlJuPy+uKc7gNOcVMCnC98jSgi5oaKUKioOE26ek6IYMOIdA96dIIm2IHISGxdcUmG4K+cxQXGg8nk8q0AIKy8glFohovWam0VUACm7IeQYFS9VUx0qJfqVivWSuAm5QzAemlkxQKqCyy6fcoElmo8zXchJqnBOWx8lhMGoc6WnTUYcYSyX4hYJYOEHVdwcGk2n4pCP4y23CHVfwRUNQYSyEG25sh0K2yEV26cASzGmiqyt4a2uctUgsrGrs0Ov2uS50gSIOoS3274L2+c9Ul0s0zSkO5S2OwMErYkmOlO8OsWtkvOHO74f2lsk6VAM6DslW5O3VYuqMmGauiExeeu523O8OMycyuu4aD2ou8Gpy5W-uhunwSu9KsetwJur4n2JC7KumEiti0CF2n4cuAexu8G9eqegwSu9qKOKWzuwe5s-enWAu8uz9H4Xw6eIeHetzcG6+meJS+Q5NNLVNdyDDJmaAZALNcwK0MMUQS3IrB667c0B+x1G+qiPUpG8AeWrc-REe5+sK85B8loDle6vMkIq+VW-jcqw9ayJ8PC+kR+3I28lhU6hwhKVB9PVB0Mq1SazKXqAh2AIh3uKeJ+hyRKz+Ka5EJwxQdbYY4-PbaAEoUq9CXw-wwR2AoI07XNXeMKriojCwPh6RDRbhLRUYzh-bJdOk5QoReyzWWqhefR1yiA5U3Riw2Gmbd0hxV7cxjy2W9QGwRAuGsRcDTmjR84uqExkRORr5ZgeMnghBxLI43UT7MKtWn4bW3sOyZx9qxu6J9QhpRWpxrgC+vzfmrRHAuIAywjKrXiiRN+w5WRsIGAL+n+t+XqT2AIYjQrCRKyQhyKNhgeeCPDAwQy5gZgcB9hoeMKUYcIbXGxUoY0RNdx+orxnmlHKyY0ZINyAAVmBsuV2PGLOhCdK2bCAA

Metalinguistic Abstraction 4.1.7

}

}

Our new evaluator uses the same data structures, syntax functions, and run-time support

functions as in sections 4.1.2, 4.1.3, and 4.1.4.

Exercise 4.22

Extend the evaluator in this section to support while loops. (See exercise 4.7.)

Exercise 4.23

Alyssa P. Hacker doesn’t understand why analyze_sequence needs to be so complicated. All

the other analysis functions are straightforward transformations of the corresponding evalua-

tion functions (or evaluate clauses) in section 4.1.1. She expected analyze_sequence to look

like this:

Ifunction analyze_sequence(stmts) {

function execute_sequence(funs, env) {

if (is_null(funs)) {

return undefined;

} else if (is_null(tail(funs))) {

return head(funs)(env);

} else {

const head_val = head(funs)(env);

return is_return_value(head_val)

? head_val

: execute_sequence(tail(funs), env);

}

}

const funs = map(analyze, stmts);

return execute_sequence(funs, env);

}

Eva Lu Ator explains to Alyssa that the version in the text does more of the work of evaluating

a sequence at analysis time. Alyssa’s sequence_execution function, rather than having the

calls to the individual execution functions built in, loops through the functions in order to call

them: In e�ect, although the individual expressions in the sequence have been analyzed, the

sequence itself has not been.

Compare the two versions of sequence_execution. For example, consider the common case

(typical of function bodies) where the sequence has just one expression. What work will the

execution function produced by Alyssa’s program do? What about the execution function

produced by the program in the text above? How do the two versions compare for a sequence

424 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQAbRNeAfWTh+MAIZo0iAObQApgBMAFNFE5ZaAJSgA3s1D7QmWfEiZooXv2iQuXZavUa9BlwH5Q1285f6AXKAAHUURMRQAiACoxCWk5eQiwgBpuXgEhERUYmQVFeGC7FTVNDQ0AbgBIF2YAX2YQCBgEFHQsXAIScipaRjoAJlZGjnNLNFkuYVkAN1EuSFEkaClFPhx4LV0XIxMzCzQrSBwAI1lQlbX9AB8L7x8DEfhMREXl+FWtUCub293+Q+RkLiyUTQF5vD7Xb4uSyeOxnd6XCGQ-SWGDyWTgJ45OGlGoDdjNH55KRSBT8Hh8UHwZLwAAWsn4RPWNy2pmGeyCIUpWgAZNzQHTREo4aAALxi0C0+lEnG1NhNTjQhxcnTM4yswmiYmk8nwSnJMKFWRhMq4uVDUBoACeRwBgmEhuVGwMLJ2AqUeUQsNeaxNssGBMs4kkMjU0F1wqdhjVO0sRJJ8jJqT1oDCQdiofgxplePl5jTIdkYf4VptXrBkZd5jduXyimrHrLPpK2bNBPz0Az-Gms1kju8lf5QPdtYbXObpv9Cr2sFQfGBAjRsC4okw82afed0bZDM18cTFLO+pn6DyRcXy9XQyzE-xnGPc7PsiXK7XqGL1r+jaZm+2VaHNc9Ot-1HOESl9HNzXvU8FyfC9X2gLsZkgXsI37LdB0FAC7BA70wJbSdt2mR5REOQF+HPF8hg3fQB1jXdtSTQ8UyIxASLIijL2aa8-VvcwWLY+kOPg99S2oqNfww4dAPrWtQPHHjc1AfjSME2DKOaRCezEgcZMAnC3nkiCAz2ZcjnkUR+FkAAPAIjBiVBtPQuitQTHVkzCUzDnMyybLsyRUG4ozOE87yglXNR4BONBHIknBRACZYP1tdJDWSXSv0M1tgtULyLL+eRLRi9V0qwsdwKy7dK2LPJIozIqYz2OMGIPb19SqudasLTNyoI8TWR82z1H8kFUJ-YrgNk3Cet4n5j3kRAhhmAa-PXUaaKcxr6NcxjWtAL4kX0MI5oW5oluswb7OgQKKtAOblv4QahVwlUxp2HV+CMcBkwYabFLu87MH4e96vMd7PuTXpfsg1AEwB-gZnDZ6K3QsH0WTABmKHjOLWQAEdkLgFCkbQiTnL3NymLCUZ8cLWAjSxzg4oAa3pamCbpylNBe9aJLcqm8fZo1kjOTR8JmtnadZmrZAzaKIwMEnxsw-SfTFxSMUwPhqvmGWus578eaVp7VlFm9FLsgQOt1sM5e9LnkYklXTYU81LBlgJ4EtHGacJ-Xub6hr9lsfW1ddkzxEt6W6pFg2A+3GFSpjhnt1I5BYCZsS441Fz90R1Z9VT9Prt65n6ULjO1qzvny6SC1cNDgly9+ZACsznSJsA0CG6neGAgCHhYHgkHs-Jnb85TeL+8QQer2ThpeOWobVuJ16-2VyaDO7vNMCkW3y0V10O+wjemy3jxkHhnfouQAJ7YP+ObDsG-naC8wNa1lclmf2P28w7+z4tpfXeihv7+wHKOf+uI6hgAqhgcA2A8BEDIJQag9AmDo1foSTAyFFBWVjlnKyopxQPGQmfUu-AKqKDCg4SKmtkj5UtMkQskx8EDj5jOHAARkCogoQRJI+0DrUIilFehLdGGgGYXPSwHCuE8MoeAVhG0dw5zcuAI8uBZHQATBVYuM0KoPRfMIzWigFH+yrqkD6aM1GgB+mffRDCTGKN5hY8G1jIZ2IIpZaAkwQioDqqYyM5itauOSJjMhogWaWN-JpHBx5IphiceqPmVVuzIVrnErqUi9gpKQr2VJshEmByattCk+S2pbhifTABFT8lA1QPE3U+TClryknYJpc9aZcGQJIRYXifHYA7HrSRZjwG1kkXYkIWt4FKmGYE3+Shxlm3NJ07pZdCrTLUEw7x6wqibHQhyUIGzZBbJYdmKCEo6SWU4Z7PpvjBlhlFB4R+OIbrkKOYlUsaBkj5LvnsiSByPmfi+UpXJL8bpHJEkCkx4UCk6F2avSS0KHBzwhT8pFagdkKz+eqUcRyOlWXibDbxdzo5JS4MC7swLDjiHpLM1UvNCxSFpICgEXMxQim4Iy5llKnAHVAO4AFbyYUsvJd8mYmh6E0r6byg6-hASLGZSWIFWgAA8nKFU0kUDygRtx3AnGwKEMIAAVf4oA4rQEtKAT+BwuoYDQJAPuPAFD+DCKAAA1HtPlB0+CPEWIgcAhUlWsq0B62urqPU6q9XXX1Uh-WFR5TKvl-h9XIENSa5AEBZAAHcrU7xtTbC0Dqp7OpTO6z1Ubvg+qeLGgNIquahv1GWyNXqq1+trQms+XTkBMwdZC20+SRUnPwTdZhZJ-gJTpZCG6aBB4jTJRS8V+DIS0T2AnIN5LE0Vv0Hq7xY6b6KGbVGlZPSpC3IGXVSRm6t3+HXUQjl1Z12aEPQddw1ZtVbtuDe2did50aGpLWDtOraiQn9aARQzC70XNpdcr2zCSWZLMZCFNpwyX6gAKrQD+KiDwDhryQmqBI8lshEPfHOUcx578BDvMWV6gcM7gTotZvOxjf7n1etRaCljJp8M3GAwi0dXaJ3bLPu2PtXBKmDpBVwIdZiR27sE+B7ZJH9DTu-Y+sVG7lM+BXUHWEv62MGB3ZMPdCUDO3GPdWs9fihnbKvUmi0ZLIMPv0x+7dFpjD8DfeKjTdmvVfoYyBX9-7AKAfw+W24oHFOTEg5KK5HtYPEvPQhwJSHMAGsk2EDDWGtE4bUKAAAtPlq1WR7ndRxGFsYowtMuDIzCijkyqPCpo3yuj36IWPpY4kMzSIOM9mini7j3w+P6GG1nAT46ovgWgfPXMcCEHtGQV0NBdAaCYMsLZRAOATqTHpPImAP8lHFNziYmA+oNtbaQDt3RilzvbfpJt-u1sarrjYAdiSJVXvgXObdy7u2CIYA5W5ARfM3S1wMG6KNrHvh8wbGD-QDZIddeh0mMIBy4eBGCJgRHwOUc6nRzqbHyOKRhGhI-WupPbAHSh7cPm800D91EJaWudOGeWqRNTnwfNkNw+Q16jnLg+ZxVpPDQ4aAkhC5pCLjAkJ+cGD5m69HBhcHJEtFoEUAA+UAhCPVs9l-oPm+XFf6GV6AVXopNeEKK7rpHNOUcJGSLcE3ZuNda9ABEU3+g9cpGJ8AI3YGrIq7Vxb0AYBrc4+JwAUj907oPruI8e9AF7vm7LFcx-N679lpuk8o4AIRilTwHrP6fCF545arm3nOUcquj4X53we1X6HL+H3UYQVUiiN2nl3hC2+N+z8T9XNfA-F9AJr3vFeBco-V+3h3LhO-B6n2P5v4Qc9+9dy4F3+gc8GDwQIk033HgXcQDt3hC9H2ih1XFBKbpkg-aP393ipt9+bbuyf3MghDgACsnzwABxf+KJ3zAXc+Zb8rs0oj4ACwJx9IQQD79Zs99Zx4BAgD8X8oJ5wAdvddQ+ZUR0RMR5Ba5sCMQ4gvdXMkQ+ZCBoBCCFomcHdyDKDPZiCSCicW8Jd+BSBCA4cWC2CGDGDK9icWCABRdHAQ7gnguXFHAAOVEHEL90kPEN81EJcHgJPCQOf1+zqRPHnDE1-0hEvxMXT2rAURv2QLUNQJtiUL4BUMP2P1MIEB+XPx0P-3AH0PAIUT-UsJQIQLQJNBukni4C9hgNfyojYGSE-h1GaStUdS9ieAyDREwD8Msw-1EGmBnUeA9gPQ-QCIe0BAzCHleygL5VCNSDKB8CWQJFGBMACCs1K0UHCOskJSqLqjM0nkLCUACP0XU3C0YICJsK0JEJcGaK0SoWMLv0CI0mQE-2-2BW61uG6M8KLB+T6IMFi3dhuTgySwSWzEBEQNiykC6WpXEzWOsweQ5XKN7UOOqJNGm1gVaEQQ6BQW6CYAAHZMFgQZhLQAAvVmMYCYVJNcZ4eWEo7FHYCDF3M4ETFQPwz4qwJUAE+FQ2YE7xdPLtHtSo9dCTaYnwNElKGE3CIdcEt4qE9saOFeAwc5W9DlIkrqMTLkcrUkhApSNgR5V4yE3sSk+Y3JMcWk+E8wEEzXFLA6c5fJR5SYNgSbLkr1UTNEgdddDTZCPEszAcfJcUobfElkxCYiFSciNSTiByCMSofQG4MkxzDlZSdibU4SddGkw0+kkUmAJkiEj4vJFcViTUoSIYCTLueldUXkzo74SUslD01DBkmASbeUl2NsB0qEnot05ecsfUzoo00sR5aM8090y07Ea05Q20wAq1SM3sFM58HUhCaUqacUgcH0w9f00sQM0sb5UUyRMMl4vM9Q+aRaA43yJeXUpGcoTMiwgIRkikvMxQf6XyB6IwY2VWXsxA2AAc3Mgk-MmGe6YGT0mrek0QWc5kx04cxcuGBGTkr0hE6LDXQ9WMbBXsfskMy9flW6espTfwdcy84TUozgejBCbhGCQs+CPec4QJSLEYAWSWMcLTMku2R5CWQmbWTqG2K05dJRFYr2cCjmGOZ9dwGEZ9e8vuFo5YWdQQSAD8uCIYfrBrSCp7fWRYyEV83C-C9SWcRQchRC3sDE1zQBK2WWMi8cFwAjSrYjfk7k2aOY6iosrkFCjA7cjQx8T8tMslMcdCn4U01SSS2MtYAzdwNyeSrUxSt8dMqaAzfwGEcU2ocMzgTcqEkKCyAGTskaEk-Qb7QxYwKKR5MygxGFWhb8wbGy+khhRynKbyBxDM1c5Qw4DcochhdysbRE48vlN5AiKhOy1y+hYIiRJ8oyvMZshiv2QJadACsMViWwdZGABgZINgSGLTcsiKvk59MjAqzSCjAqsU59HTHJLSNgBgTSeQvldwFqzSJi-wYq+q-DAym4G6BTSjE-ZIQBNgX5b4HTBOCamAJ9LdTq4itgMzOVCbcCpAGYPwkxZa07Ji74asOa9AEofIj9UcI64oQagKiwyax5XQky45OuE2MKmax+AArmQ9IzdPAg3Aw9Na-dAw+atw3FIGueB634LpdOTOc5LyjlJuPy+uKc7gNOcVMCnC98jSgi5oaKUKioOE26ek6IYMOIdA96dIIm2IHISGxdcUmG4K+cxQXGg8nk8q0AIKy8glFohovWam0VUACm7IeQYFS9VUx0qJfqVivWSuAm5QzAemlkxQKqCyy6fcoElmo8zXchJqnBOWx8lhMG5s3w6eIePUpG8AeWrc-RZW4aVWuk5Qh8loDle6vMkIq+W2vi3kw9ayJ8PC+kI2meF7W8lhU6hwhKB29PB20Mq1SazKXqb22AX23uKeAOhyRKz+Ka5EJwxQdbYY4-PbaAEoUq9CXw-w3O2AoI07XNXeMKriojCwLO6RDRbhLRUY1O-bJdO2vsuKhyjlfRIRey4xV7ZUzuxA2Gmbd0hxIenVc5OyGwRAuGsRcDTmlu84uqfu+Kqur5ZgeMngq2xLI43UT7MKtWn4bW3sWergZSxauOSpdQhpRW9QOe9qz9fmrRHAuIAywjKrXiiRNLVNAA-UGAJmaAZALNN+XqT2AIYjQrCRKyH2yKJOgeeCPDAwQypshm6WnTUYcYSyX4hYJYOEHVdwcG7Bn4pCP4gh3CHVfwRUNQYSyEYh5sh0QhyEGh6cASzGmiqyt4IhuctUgsrGrsnh1huS50gSThoSlh74Rh+c9Ul0s0zS7hq+74Nh+GErYk4R6RvhsWtkvOZRl+xurRE6VAM6DslWqR3VbRqMmGYxiExecxqhkRywJy62pS+QmRtUlxsxm2ixnwVR9K3xtwKxr4n2JC7KumEiti0Cahn4cuehrR8GuJwJgwVR9qKOKWxxhJ5stJnWDR-Rvxn4f2k2zJyx8GopqiZJvwX+9LSmDDYB0B8wK0MMUQS3IrB667c0Eh8JomZ6nQHslwEdOBhOhB9KyamTH+v81dN6mOju24AcH6j+oDL+4jSZ3TUqGZ2Z7TdCQG46-qobZZ6rEeySGq+9f8GO+qnexqmpDkt0Nq7ejq457sHq2B+BkJwWdZoG+UnjTis2+au6--B64WO2F69CeOxO0Z+axs5gLp0JlCbpyJ21WKzWXsMIBgAABlKFAF6AxdAHRgxeNBKG8FyEuV2PGLOn3tKzKCAA

Metalinguistic Abstraction 4.2.1

with two expressions?

Exercise 4.24

Design and carry out some experiments to compare the speed of the original metacircular

evaluator with the version in this section. Use your results to estimate the fraction of time that

is spent in analysis versus execution for various functions.

4.2 Lazy Evaluation

Now that we have an evaluator expressed as a JavaScript program, we can experiment with

alternative choices in language design simply by modifying the evaluator. Indeed, new lan-

guages are often invented by �rst writing an evaluator that embeds the new language within

an existing high-level language. For example, if we wish to discuss some aspect of a proposed

modi�cation to JavaScript with another member of the JavaScript community, we can sup-

ply an evaluator that embodies the change. The recipient can then experiment with the new

evaluator and send back comments as further modi�cations. Not only does the high-level im-

plementation base make it easier to test and debug the evaluator; in addition, the embedding

enables the designer to snarf
25

features from the underlying language, just as our embedded

JavaScript evaluator uses primitives and control structure from the underlying JavaScript. Only

later (if ever) need the designer go to the trouble of building a complete implementation in a

low-level language or in hardware. In this section and the next we explore some variations on

JavaScript that provide signi�cant additional expressive power.

4.2.1 Normal Order and Applicative Order

In section 1.1, where we began our discussion of models of evaluation, we noted that JavaScript

is an applicative-order language, namely, that all the arguments to JavaScript functions are

evaluated when the function is applied. In contrast, normal-order languages delay evaluation

of function arguments until the actual argument values are needed. Delaying evaluation of

function arguments until the last possible moment (e.g., until they are required by a primitive

operation) is called lazy evaluation.
26

Consider the function

25
Snarf: “To grab, especially a large document or �le for the purpose of using it either with or without the

owner’s permission.” Snarf down: “To snarf, sometimes with the connotation of absorbing, processing, or under-

standing.” (These de�nitions were snarfed from Steele et al. 1983. See also Raymond 1993.)

26
The di�erence between the “lazy” terminology and the “normal-order” terminology is somewhat fuzzy.

Generally, “lazy” refers to the mechanisms of particular evaluators, while “normal-order” refers to the semantics

of languages, independent of any particular evaluation strategy. But this is not a hard-and-fast distinction, and

the two terminologies are often used interchangeably.

425 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.2.1

Ifunction try_me(a, b) {

return a === 0 ? 1 : b;

}

Evaluating try_me(0, head(null)); generates an error in JavaScript. With lazy evaluation,

there would be no error. Evaluating the expression would return 1, because the argument

head(null) would never be evaluated.

An example that exploits lazy evaluation is the de�nition of a function unless

Ifunction unless(condition, usual_value, exceptional_value) {

return condition ? exceptional_value : usual_value;

}

that can be used in expressions such as

Iunless(xs === null,

head(xs),

display("error: xs should not be null"));

This won’t work in an applicative-order language because both the usual value and the ex-

ceptional value will be evaluated before unless is called (compare exercise 1.6). An advantage

of lazy evaluation is that some functions, such as unless, can do useful computation even if

evaluation of some of their arguments would produce errors or would not terminate.

If the body of a function is entered before an argument has been evaluated we say that the

function is non-strict in that argument. If the argument is evaluated before the body of the

function is entered we say that the function is strict in that argument.
27

In a purely applicative-order language, all functions are strict in each argument. In a purely

normal-order language, all compound functions are non-strict in each argument, and primitive

functions may be either strict or non-strict. There are also languages (see exercise 4.31) that

give programmers detailed control over the strictness of the functions they de�ne.

A striking example of a function that can usefully be made non-strict is pair (or, in general,

almost any constructor for data structures). One can do useful computation, combining ele-

ments to form data structures and operating on the resulting data structures, even if the values

of the elements are not known. It makes perfect sense, for instance, to compute the length of

a list without knowing the values of the individual elements in the list. We will exploit this

idea in section 4.2.3 to implement the streams of chapter 3 as lists formed of non-strict pairs

27
The “strict” versus “non-strict” terminology means essentially the same thing as “applicative-order” versus

“normal-order,” except that it refers to individual functions and arguments rather than to the language as a whole.

At a conference on programming languages you might hear someone say, “The normal-order language Hassle

has certain strict primitives. Other functions take their arguments by lazy evaluation.”

426 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4variant=lazy&&prgrm=PTAEGUHsFcCcGMCmoCC8CGATRBbAnqJAA6IB2AzqAC4AWAlpUbJAOazo4BQIodpoAG3QAvAjkjYAdKADCNSJHLIARFDhJQAcoBMy6pG5gqkUPEg4i6WMgDudWqHJVYdeFVDjsnAGbRSbukh+ZzwAfRxEAAp0ABpQACMASlAAb05QDNBrKjh+dFAAXiLQAAZQAH5QAEZQAC4EgG4ASE4AX05OEPCokriaRCxI0mgBAUTEhqA
http://source-academy.github.io/playground#chap=4variant=lazy&&prgrm=MYewdgzgLgBAHhGBeGYCuAbDBuAUAenxgGUQ0AnYAUxgEFgBDAEyoFsBPGEAByshigALAJaJu5EAHNyDVgSLCwMDAwBenViBYA6GAGFBIEBBoAiUhWowA5QCZTAkPMcxQrbg3I0A7sKExocmFgWE0WXAAzNDAQ4XAYaIwqCAgAClAwJj84sAAaBIg0BgwAfQA3YrQqfKo4am4oHOLyyqoAShgAbxge3txemC8oCiUMrMb4gH4YWvqJsGaKjCqYAC4CotKlqrwAX1xcROS0hGQkFHQsXP6BnsEqZlSENtyASBvbrIhuFXZU0yo5Ak5HWpwghkwTFQIFgACMaJcMKY2m1sEA
http://source-academy.github.io/playground#chap=4variant=lazy&&prgrm=PTAEGUHsFcCcGMCmoCC8CGATRBbAnqJAA6IB2AzqAC4AWAlpUbJAOazo4BQIodpoAG3QAvAjkjYAdKADCNSJHLIARFDhJQAcoBMy6pG5gqkUPEg4i6WMgDudWqHJVYdeFVDjsnAGbRSbukh+PwFEcnIACjNSTHtA0gAaUGhyaHQBAH0AN3ToRCTEAA8kIip49OzcxABKUABvUEamzibQayo4fmjYsqDQAH5QIpLe0gqcgTzQAC5k1PGqgG5OAF9OaKdQQsoAXlBSaAEBZZCwyO3QHav9w4EEltbGmkQsCO3qhIBIB8fY8iIhHgIspELBmLBZhdyPJDph9pB3AAjZAHI7KarVRZAA

Metalinguistic Abstraction 4.2.2

Exercise 4.25

Suppose that (in ordinary applicative-order JavaScript) we de�ne unless as shown above and

then de�ne factorial in terms of unless as

Ifunction factorial(n) {

return unless(n === 1,

n * factorial(n - 1),

1);

}

What happens if we attempt to evaluate factorial(5);? Will our de�nitions work in a normal-

order language?

Exercise 4.26

Ben Bitdiddle and Alyssa P. Hacker disagree over the importance of lazy evaluation for im-

plementing things such as unless. Ben points out that it’s possible to implement unless in

applicative order as a new kind of expression, akin to conditional expressions. Alyssa coun-

ters that, if one did that, unless would be merely syntax, not a function that could be used

in conjunction with higher-order functions. Fill in the details on both sides of the argument.

Show how to de�ne the evaluation of unless as a new kind of expression (as we de�ned the

evaluation of conditional expressions in section 1.1.6), by introducing appropriate syntax func-

tions and installing an evaluation function in the evaluate function of section 4.1.1. Give an

example of a situation where it might be useful to have unless available as a function, rather

than as a new expression syntax.

4.2.2 An Interpreter with Lazy Evaluation

In this section we will implement a normal-order language that is the same as JavaScript except

that compound functions are non-strict in each argument. Primitive functions will still be

strict. It is not di�cult to modify the evaluator of section 4.1.1 so that the language it interprets

behaves this way. Almost all the required changes center around function application.

The basic idea is that, when applying a function, the interpreter must determine which

arguments are to be evaluated and which are to be delayed. The delayed arguments are not

evaluated; instead, they are transformed into objects called thunks.
28

28
The word thunk was invented by an informal working group that was discussing the implementation of

call-by-name in Algol 60. They observed that most of the analysis of (“thinking about”) the expression could be

done at compile time; thus, at run time, the expression would already have been “thunk” about (Ingerman et

al. 1960).

427 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4variant=lazy&&prgrm=PTAEGUHsFcCcGMCmoCC8CGATRBbAnqJAA6IB2AzqAC4AWAlpUbJAOazo4BQIodpoAG3QAvAjkjYAdKADCNSJHLIARFDhJQAcoBMy6pG5gqkUPEg4i6WMgDudWqHJVYdeFVDjsnAGbRSbukh+PwFEcnIACjNSTHtA0gAaUGhyaHQBAH0AN3ToRCTEAA8kIip49OzcxABKUABvUEamzibQayo4fmjYsqDQAH5QIpLe0gqcgTzQAC5k1PGqgG5OAF9DCBgEZDQsXAJiMkpaBlAmVnYuHj5BETEJRGk5BSVQVU2NHT1jdeNTc0trKA7A4nC43B57pwfH4An1vOg3JAXOkIqRanUWk12p1kqRQuFUaAALwk0AARgSmNa1JpoH4ACpQPDEciBISALTk6qU2m8ppk6rLNY+BHGVkRACsgqAA

Metalinguistic Abstraction 4.2.2

The thunk must contain the information required to produce the value of the argument

when it is needed, as if it had been evaluated at the time of the application. Thus, the thunk

must contain the argument expression and the environment in which the function application

is being evaluated.

The process of evaluating the expression in a thunk is called forcing.
29

In general, a thunk will be forced only when its value is needed: when it is passed to a

primitive function that will use the value of the thunk; when it is the value of a predicate of a

conditional; and when it is the value of an operator that is about to be applied as a function

. One design choice we have available is whether or not to memoize thunks, similar to the

optimization for streams in section 3.5.1. With memoization, the �rst time a thunk is forced, it

stores the value that is computed. Subsequent forcings simply return the stored value without

repeating the computation. We’ll make our interpreter memoize, because this is more e�cient

for many applications. There are tricky considerations here, however.
30

Modifying the evaluator

The main di�erence between the lazy evaluator and the one in section 4.1 is in the handling

of function applications in evaluate and apply.

The is_application clause of evaluate becomes

I: is_application(stmt)

? apply(actual_value(function_expression(stmt), env),

args(stmt), env)

This is almost the same as the is_application clause of evaluate in section 4.1.1. For lazy

evaluation, however, we call apply with the operand expressions, rather than the arguments

produced by evaluating them. Since we will need the environment to construct thunks if the

arguments are to be delayed, we must pass this as well. We still evaluate the operator, because

apply needs the actual function to be applied in order to dispatch on its type (primitive versus

compound) and apply it.

Whenever we need the actual value of an expression, we use

29
This is analogous to the use of force on the delayed objects that were introduced in chapter 3 to represent

streams. The critical di�erence between what we are doing here and what we did in chapter 3 is that we are

building delaying and forcing into the evaluator, and thus making this uniform and automatic throughout the

language.

30
Lazy evaluation combined with memoization is sometimes referred to as call-by-need argument passing, in

contrast to call-by-name argument passing. (Call-by-name, introduced in Algol 60, is similar to non-memoized

lazy evaluation.) As language designers, we can build our evaluator to memoize, not to memoize, or leave this

an option for programmers (exercise 4.31). As you might expect from chapter 3, these choices raise issues that

become both subtle and confusing in the presence of assignments. (See exercises 4.27 and 4.29.) An excellent

article by Clinger (1982) attempts to clarify the multiple dimensions of confusion that arise here.

428 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgRQB3ReAC1B2QAmicIlgBDJKgzhkmUABsxALwCeoAKYA3MfMgSU0VmDGxYsodADmoeMgIlyVWnQBMr5lDiTooE-D3yAPrauuoAFOoAHgAOADQa0JoAlKAA3sygmaCY6v6YPjKYsOqBXBEhevDhUXEJyUkA3MwAvh4wCAYKiGjwgcjggWKYlsE6kOpoETFo8eqJKakAkBlZ2bmQ+aDQyIPDkzVoSSurWQD8W5Dy8scnoABcoNFiiJhhfgGjoWEimD27llNoodZvNYjdbrd5N1ev1-p9xpMcn8hpZ9tMkiD6k1Wm0vJ0oX9YQJ1IoVOoBP80UDMQtliccnkfNtKYDDuDVudoJdrhDMg8ni8wsTSaV4N8XsjhqyMXUMezeZkCTCBsKxGSKSjERNeprpTTGi1cR1UL5otF5CpvjB4pqaWljsJQGFuoFophEDguIhNCVPMboFboEkFvKGRsfGIzRbXe7PUgfYE-d4wvKFZlPPElX0Bij4RM3nt9Q1MmxYNwxFZycdmhp5Gh1KBHc60IEzDhosgYBSkwZA8H7bczOh4KAAEaCNQAXgg7W8gXHAktngNg6kI7QKhw47roGnPdQrqGYhwuXUvz7TVXw7WaEuI+nWjGEnCqbTEIXKjBb+-mSiVWgFJzJoLyoCe0BihuW7IHW8Svj+EJsDIVzIJwVhdNADZlhWlhVvBeFZkSJJquSLK2rKX54T++7QIEQEgdAYFisuwaXvS6ybC6Yb5HmYRIneRw-ucXE0RUJRDv+Yp8fI8ACd+DxduoIgYQIrGgDWJL1gOJxntgrwZqAABEACq0AANbbOwBSzp08AqNEDYALQOaa5oqAZK6ZK0rTURoIStqgQjeDotExEiaC9jUmB2ksNzCY2LbwJg4xvAgHyiWEQ6AaFMbkoCmBypRlFAcGcGgOcj66M+GUBSFbr+egeUysVpUPBVlThJltWYIM0mNTS2JGt48WBPAYiWDhFJKmEPQ4PA8Q8CUo2WCGqxxS6AqvDNMmgAAZDtoDcOoYgCNN8CzSkk6XTYh0jWNA0+S6mVeqgwU9M+jGnedWlrIyw1LRNgRTVtsGUQZT1BUEb1VIx7n3dZJqdVtOUnVtK2ZHFWY5OAn1zaADAGt58M+IjZ29EOkyo99GPQoEWM4-ELgE4NnQk7NPUQaTaM-eGXR-HTwOgAAzEzPkVfVgUGK9o3Q3MHOzdFdJZGtCVJeE7zBelrO9G6uWoxRhU-sVskKuVFRVVr9UU5zNItb5T5VNVAGBEjOhyzJ-WGqLfn1gAjuMcDhFtMyyt9jbgE6LrqO2tnO+oftzMUOOHFzbG-QpSnkqpam1ppTYuoofxQ1HstJ-26TfnFbVVT8hfS8X4Gl7ExVZ+pdYNuXELkyONe9Ejom7qApV25VDs987dcfUHGLN6mectsJPFj33YzqGXQ9xUvpN5lnqyt5pHdppX3tx-7idD6t2rj+9stW7NwIz7yrS757RO88qgQwGIaDhZYylhNAx4Jgp2VoELkVx-6ALZLyTk3JUz8meK8AyAAqT+39EC-3JEggymYaawlQT-P+o1EDyAgSeZOjRFirBfniE0aBxA0U7L0YksBFCYH0FIHGKc56x3jgHThKdVhd1AEHAevtT4lCLoxW+Mkd5K3Yj4SO0cVA8PEaXIeMCrhDweJGeyAFpr0L6JAJh6gWFHm8JMTe18G5TwKgbTIdCKyGOMaYth5iwg4DEKZCRJ8E4vjsZRJEvcJ431LsGDynkc7t1TCAruFZnGsPYQGVG6i36OzeuBQIzCElzkgtufhWjhraHdGIUc8gShZLMb2ZJ8FzhTSKYgEpZTMkmOyQYZ2m48mo2Nm+B4YD5At2of6Ye855DIFgKZemIcD6gCER+AepSxmmXnBOThWchGjPEDuacDiGFGOaS4xJkwPzhJmWuUA+D0HKQwNOAiAwLkYJOhsnQhws5H3tuED8+tDaRH-IBRI9EPpPJgucgBaCHnByNnDGhPgxYL0kSXAWxVQ5xQ8V42m8ieLn1-GbB2C9IoTHCqgThXz-GQsGUNMWX8CGT1JtFG4Qj+4PhxWrMFDFZY8T1rKLOVLLntKgkEdKPLf6MT5Z062oBRIewvr9USUKhli3qY08pLTKlEsRfMUOQqaK5OgjxRVpTlUHJyR06CxLUxVwdvqppFTXFtPSpy4qJKsgzxrJkZmJoxaxIyTaxJkykXTK1aK3Vms1xxP2a0g8OqSF63NcytJo1vUqttQee14rHXmvmHKoakdmUUh4DACZyBRwACtgHyL+mNAGU0i3FviAZC1JF81mVhuSmy3AC08QbXm9tZky2-UOsdMIRCSFdpGj20yLFW0mkKMUUUYQa1cPDs2MdBb50lrXryIRUl7y+FShrFeKZ-EQibUsmoa7S1OqPSe2iiRz2Tt5PWXoA6To1rraOk9LaH25ECM+odzwSELviNuxoJYwA5HNCYBsNQOBcF4FwDAolUyPtusQv9qHAMXCuCBrIiFZA4RHDADC5JyR1GieW7dDRFYRI0g2YQy733jrvQIuRv1r3pQXS3SJodpU8xrQMwm0LQCqmUWUGoCtYrlqmgZD9swYgewE0Ml0J671pCoTxjiCVK0kWrSWutH6Rav2vWek9faea-uHUO8dk6FNDSM7ekzyLy3mf-WhkhJnrPMCMDOaF0hsB4CIGQSg1B6BMBcO6hRLZ6zyAGBaxAVhOGOd+i6LkW4zwJdAAAHwy6VF0PR3Txcppl7Lb4XTjmgkdJJnMis5ZbH09LmQss1Y-gBRScXdacyzZ0ZLgCEvTJAf9bT0JJkGQASeFtNnOhRuzKAnrlM+tOaOidCzXTOsmhdFqmlX0D79a05NIbAsDIbdluN8LvhWUiqjb144cVnOodu9GzmYTVsRnO+y1NW3rsLcHRZ5bj2DOCceqGxNRqqlVe2+WpTu3Ab7dpYZL18TVXQBOz5eH4bEdBoex9ljZnFuubCPd-hHmUdA4R8mkSB65uff7bjn7Lmun-cUy2K1hqI2Vax+jCHmnxqDZ6MN5naOyfI9fvzn1xr+VXex5sAnBP6cM6GiLpNiSOVg6pzj77LnfvnSJ6-fOx5RwCDEF1AloP2fcw07dbne3ecHcUFuA3Ru0GoCF4J23+vDdPDYSeKo55KeS58B46I00TVBFhKN9Q8QZd-eewoPX9uPwS459T9XqHNcyW1wD+eGL4XWJV37itlvofW9hwZOFwTwLO6GXi0Kxu1W58T2rpbdPHvR8BwBZ6ACgj4sd2z7a4Oktc6rTD+Wg9Qbg0lp36v3eK9DU6pFZGCezc+ExopSZ+No+z+yuTBf1M+Yr4FozdfNU5+u235Jmm-NYfCxb5FnxfDff1-NwNq3bs61iN8dPzoqLvG8MTlPKmZ-ecDI38A5sFhFSYXkp0fBgDZ1s94BpEFgshVcpcacm8tdo9LEZYc874uYbtccp5o9Akr5MC4DS5-9WNUC4C5cusWwo5ogY5oDA5wCcDOdQFuRS5r9AYv4gkrE3ZDgyCeZks2DU9k4OCFlxkF9F989B8i9h8DIxDTIP8TQv8RlFlT9fopN5DQDUZo95DllFwJDcDk9Mc08OCdEoRxBkx79JDIcC8gZi8zDRBElFCrJoUHdCUe9mCk9G9UMVtIDfA9g1CG88dU8ns-DmRdRkAgRPCBDas2DIiICJtp0JQdQpR4jojkDB00iCDL4Iioj+DNgLMsjDQvNqJfNcB7BAsnAQs6BBZTslNVYwhIhTNNhIhdwrpEpxho9lDqIwgPdAFvdg5PkpkJN1ChswZcAOwuxEwiZsEsVMg+ivczxBiJx5M6iWw2xJinYejwBmiIsLdpCmI60NjOwtiZiqDp0iZDxPdTxzwdjEseZl9sZwB4g18-DqI9Clxdi350UniGZziXD-Qb1gJsA2UG47j5tRjd9fihZ-i+BPESgF4Q1wJZYvipNESV5QDxIUSOD0SvhRIvibCDiwhJVDJcTxhnDF88x6oJJiSV4viCd8TYSE5RlworAgSAUS5-URieYLMXVTsx5wBriIgNUISgi+TRY4AWSShRwlxrjoo1M88Npvg5SuVDQhEFpaIlF2SQTGIB4+kmgfJuihSo1g5RI+DRTNglSTT4gzTYTBTAEMcLFriEDED1MfBf17STw7Tri8wnTAEXS3U3SbAXNPTV5o8-w5g-lgTQIEVg9TTnl4hRwv4SguSgyykrAeAg9+U+DLobk5hLBMyQgoE0xzglSjTZs4ybTnkZQkz6wgTukIQHh0yCzuAsztw+CAAeBQfMws6s8+cqTAXSMIAyAAFWQDsA8WgDUBREgCkWEUgCjEQHJAeAMlAAAGoR9-E8s4tLBhBLQTSUgNzQDVyNy5jbhtyrA9zaS6wSofxWpBzZBhyxy7BwB1B2B-DLBZyb55zFzlzDJ1zNy7ELzdzwB9y4zDzDI60AKzyThgKryiz08hlRlkBTIFyMcOVg86VVgJTNBAZxzA9UyIQfIdk2zoJ4ybzuMIQQE6sDyYLMhypEg8LIjD0j0EgWFkBWSRg6IdTOT5gGz4IHgo02jpxf1aKj1zhf0EK6KshBL6E8cDz5oXMEKTln5eQmwgJhLroUytTuKYzwJmNbgdJHyo060TJxwuwthAFP0IQ94olvwhFQyB4BShSH43w4oSLQzHTlT-TL1CpPKzTvKvSVKsgn4QruTNggImKCLM0-DA0pt7VMKJUdAsKsgcKorhTkhKL0xX4SLrSkqKLpleRqK2CxK8IGLcLkLA9pK2KWSdztS9KxQjYzzBLg9NLRLwK6LzhkNJKEz8r+K5JhE5LltwLFLUNlLZEIlZ4l0NLcytLNS6DlFdLQTe8h4jLNpErjJoBzKAJLKTxQAnIztqVjtgrqM24sqTgHLrinLkjEwXKYqK5y0PKfSTTArV5fLKJ-KV4-SgqJq1IbhQqH8YVGLKqMqmYSiiYyj-MHAgtnAmAaA1iYwPQvQExtiYB0i9in9C8mJrRDI3Qkb4x1AKS8a4xvQSgPRzR65pZexlx8j3SUDUNmIBohFibkbfQIaB4pp5QpNn1QCshn0fxbETgpNh1ebMhh0BbL0pMNpRbHgEEJauaxilQZalR5aIQpNBCrhQCNb5A0xBbVgpMhA0AIM3J4hDbjbdbJaxi1rRa1rvw9asgpMPEeBBhRw0BsEnbuAXaMBeR7bFQxi1yZashGj4gVALoAA+UAVojctQUAX21JAyByQOzIYO0AUO3cCO1o5yGOuOqTLBeIW4FOtOycDO0AJBVOzIHOsY4AJOp0SIEO8OyO0AMAbOy2wAgAUhrsLobtaLbvLtjtbrFAMlzMDq7vTsbtmtDoHuHIAEJLoR667U7u7QBZ7pxJ6FbACOzO6F6i6S6uzMg161axiOzJwk7R7i7G7j797K7ACw6t766x7WiI6r6p6DIw6T787Vgz6S637n717B7p6a7G7Vhz7Mhp6sgmj5QDRmbYxWbpjXCTTdxUwA98dFt4gWaCa4H-QIDoH8bSbMG5wa0TE4DEHeRkHPAx6paYGCbQCCdmI46Th0G8HSioGzlGGEx4drlUkpN042sBBQCeHlJ6HWKHaxjCBoAlIuATbMgxGJHbIhHhH46PbAhSBCBRalGVH5HhHHaJBPaABRGWpR3RzR1iqTAAOTEFMZrvMdMf6oUdjqaBwZJvYZJ0dJIYhDIbHo9JlDYbEhJ2wdYaobwdRzNLcduA8fPtoeDDQcCeceHDiQgJ8jMOUR8fweppxpRCVC+KSdKBogUkwAtDquLTEG0DoXdDoJYvghSfJrKUYl9WXHeohAyehGw0QMSKgPWGiHquWrCC+IjKdiWo+jmJ0UjN6JibZvgcrMArsRSdRwUqGbNBGZSfeMIYQGDmqvmLGctgTV6FtIaZOA1NoJjgGexMNDKRHA1MsFGSTM73+R4vAlEQ6a6Y+gNFOwbT9RFKQL2KixixxR3M4TgnODANmjggeG6xPH+ZLIUHHNQs6fiop2D2mzD2JVlBBeGlR1FxNxkgBeGXRcV0sNh2ajTFBaZyGAaQNQF19WqRNmGQVxB1r2H0JYVGJcGFeywKxchcpVZZfxRaJbRYCnb2Ci73cIhepc9X5YhjcMxZtl5dbwlhekhjLzdlsfopxfFfHyIMpveeSFRd1zt0NyFcxeVbKjhLRR6Nd3twWJuPgL2fwlj0N3jxjTsZ5aZeGgYJFegWGTdYYI1akWRcZd5GZfkPdYhFNmCiDfVW1Zlcz0ZB9YRU5mxdhSz0Va1aNeZYcIsMNduGxaSZSn8H3S+HeINfpfdnIjot1AdXmFRbWuGxMnMhQigJUHAjEEzucgbRO2YCERwGSewEsE9wHg93rGHIYGLFSBsFVmLEFmLGaBbTea7ZjGQF7ePHmhukOcWtuYasaCAA

Metalinguistic Abstraction 4.2.2

Ifunction actual_value(exp, env) {

return force_it(evaluate(exp, env));

}

instead of just evaluate, so that if the expression’s value is a thunk, it will be forced.

Our new version of apply is also almost the same as the version in section 4.1.1. The di�er-

ence is that evaluate has passed in unevaluated operand expressions: For primitive functions

(which are strict), we evaluate all the arguments before applying the primitive; for compound

functions (which are non-strict) we delay all the arguments before applying the function.

Ifunction apply(fun, args, env) {

if (is_primitive_function(fun)) {

return apply_primitive_function(

fun, list_of_arg_values(args, env)); // changed

} else if (is_compound_function(fun)) {

const body = function_body(fun);

const symbols = function_parameters(fun);

const result = evaluate(

body,

extend_environment(symbols,

// following line changed

list_of_delayed_args(args, env),

function_environment(fun)));

return is_return_value(result)

? return_value_content(result)

: undefined;

} else {

error(fun, "Unknown function type -- apply");

}

}

The functions that process the arguments are just like list_of_values from section 4.1.1,

except that list_of_delayed_args delays the arguments instead of evaluating them, and

list_of_arg_values uses actual_value instead of evaluate:

function list_of_arg_values(exps, env) {

return no_args(exps)

? null

: pair(actual_value(first_arg(exps), env),

list_of_arg_values(rest_args(exps), env));

}

function list_of_delayed_args(exps, env) {

return no_args(exps)

? null

: pair(delay_it(first_arg(exps), env),

list_of_delayed_args(rest_args(exps), env));

429 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgRQB3ReAC1B2QAmicIlgBDJKgzhkmUABsxALwCeoAKYA3MfMgSU0VmDGxYsodADmoeMgIlyVWnQBMr5lDiToG7bonqABRo8DjwADQa0JoAlKAA3sygyZjq8JCYPohoAPpo6vLgOVo6ekhWwaHwMUnJdfUA-MkhYbX19QBcoNk50GI4QS3Vbe3JTfLIyADWkAAOeSo4AEbI8jl+kIOLK2vIRX0DlWExkerRNaOd3blm6PBi0PA5Auqwipj6qEfDl3VNJWtbiEHk8Xm8xB9vN9TucRqMuj1tJhEGIlvJ1M9Xu9PtBvhdfqB-n51hCUWiMWDsVChjDYnD2gjcmI0GhEJZoANHnj6Y1fDocszWezOfBoVE6QTQIycrchN5+eoAB6zVIsgzcyVE-myrgGBXK1Wsr408X437SnXytbA+DqEUaglawGoOV6633W32k1nCUE6WKZYCMTFA3qNXGqpmy5NHBiKYYzwIdUBpZBnKzCH9NLqTBoPHhHmSgkptMrAQqfOFouXH1R+HXPLqACOmzgg0jVcJfOtzdbsEGvbO-byHrtZ3geaGJ1NnelaOQsCmDt+Tpy88XYtrs4bqXSmRHAS9Hc13Zyu4y0APnvHm9hkulYlms3kohxeNGnaaj+fFZM6X5GxBIm3ghiqYZGriU60icna-BCliTpG0Hbjm2CYGKABEACq0BTNAyDsD4aAqI8YiKqAAC0FHdmU6gYTEADczAAL4eDASaoAo2RPHsAqYJYJK6GGgRKrMaDQQkACQcLnpkoD4XxCEicqaB1ry0CQPI8hVl0GaIOhf56GsgGBCIuZPPBylidOtYFtW9QviEOS8fBgmbHmqoWfxeaiap0GMSxzBsV4BhcU5vEvIoKjqAIik+SpEnxNJ7SyT4CnwfF1lVk0GlaTpoB6ehkViCoORcKZ+lOZZvk2ecdn2ckjk8UUxXRbFGWBJ5cVWX5poBaxwGhd+8gVp4kQZYlbTCKAgQ9CqiA4LqmgJuxUKeDEcSJJcqWgMNpXzYtSDLTkg1fLBlxjWFzWKW5wkTX1DHJGwsDcA8lgxW0zEaPI+TdOAM09GYOCzMgMCxaduLrZt9JAvAoBlmoAC8ECrQYa6CKNMABaMsOgMRyyrBgyMQ+mmYDLauamVjTE41IcOqppcPIwCtGBOd9kI-VDUEkqtrQLFPr6agXrbITkTs9zoBsDIWkEYgVhcdA6igC9b0fZL9lNc5LUFCVMXdfdtkS9zJOC9gHI3lD2MpWkF47rb+4mQz8g-NWTSpbdMqoHzorO67RZdGD6giErAg08kX0FL9W3tKhshU9AkTYbh+GESjIWcfAKizMrVG7U+I30eHoCsQNqOcQCXv87qqD6mB4a4qJmCJcldQ7T08CYJsgSGQBpRBLKoGYOmqQCFZmAwRr3O1mp7ROqzg9N1XmUT8hAc0QEgSLwaAou+PtWxExZcZ1kuT3JY72xU1Yo8Bi5-Q-U7e5IV74AGSv6A3DqGIY9TqAiMAJsF-HI58j7BQ4qfKurpa7ukPDeP+MdQBPxAWIC++tr4mmNqADClo3RXjHI8IugUIYqxdCOMII8YrvkQTtLWqRwBigYP1cB3hSH83IU8IE1C2i0O4meYOYoXDMJIYPIYu9RQIJ4Q7HwdCBEmgAMzCPLj4SuuCYH4KPGEFuIxkGd27r3Yy-ct5kLEWBX+SEsGSxnrBeem9RFVGXvmGc68WZ2JMQ4nQEikKmjASQyu+QWxDnbGEcSpoEgjGmrNXIdpZhZ0bIEts3xVIP22tI0AQcQ4xWLiXb6v1Ik9EUE5G0BCvEhI2uE6sO1XG2gquZDR8Cqh+VrNkyOP1laIPaLjMyRSHGAX-qAc61SgKVSeMUzRE4TjNMLPk3IHsTLdNGb0-u5SOm-B2gsjht1sn1FadHc6VTiQBL7EELBXUxnjkQmU8IUzfisR2cQ5RV1tY5BgIKNkodAgHDDCklIaSei5XkJ8rMqlCw5U0tpc0BUxD6UCBhAAVK8tU7IYpwowpELWvFEVCg+fcRAgKvnJMYpJeoDyT543EJeUGoIsSZm8Jc6oFS6gzPiccvEPzOl0zxo0-pRygn1MePS62oxkExLibyxJQwQVu3kuC86XRvxnF-hS5ykBqXgkhAYPMGzzlcklRtLmU80DKqpZidVOI8yxnjCyoJbMp4azOaOEU9LCVCpyVHdphZkGwxBKaqk6opznXGNxYxdwfWUlpWjfGOw2VyobEiMk6JfURojMcCWQaQiBHjaiRN4aNWoAWATQFU5Z6XC6AClppKIGnnXEub05xGXJFxgjfpNb0bljxNk3GExxA-R5ca1VSa83oECAjV1uMsXvJikTJ5mK+hIo+d2nQqlskHNKJvTmWDeaKuKNEIWFsuSLp+pECdyKBChJnr4x5lcPY6tKREMJHSdqWoxHMoxxshmdWkUPcC-qLF2tjucJRZLK5vOFA0rRD6Ri4z6czDYm9QP7qeCZKCPiRgIYLTsW6Pd50igw6sJxgFoIrrSYBS9wHiRZvJIOt8dbYgNt2vOvDhihKZtJNmikNKh1McrL8D9lGc2cZxFhlDRtePnCPnUFhoVVF0zDYJ6kVRJr1HQ1G1YWHvWPGoyBVTRa-01jgzUjTaq-X5uQ940TNZxOVtYT0IZsUeAwCXMgJYAArdlujUGXxyNfZzLmk52ZAdwRzRDj5Voc7hLDAXwtTHc2kr+P9Ai4sBVFoLuENpkarTITAw5yq+fZcy6LgQ8vsvqLjP2-SDFYcsZKaLoEiuucnv+0YtWfT1bc66+o+QnjxbHr5-zBn9bRaIb8LrOQeuJehYCvLkQ-aMSemAVIz4TDK1EhwLgvAuAYEAoWUbSWJt4ra9OAFc26jS1kO9OGMAlYxRiuKT1aS-YMVbhHXJythBROKAN+zqWnMNZK23NJtWTJ5Zaa9+jj80m+YraF1hrUyqilEtoiHe4ZHBowkN04yoiPWdCh3H7h2EgkuR3bDunn0HBr69gobQGws-bq9F2LKPP7fzHnthnNPWEteiIln7jO7bjbZ5NnnjmNrMKMOnCB0hsB4CIGQSg1B6BMBcFJziPR8iFE+2u8olhuHE7kv8yAywczvlAAAH1N7BNXnd5Y67-mbi3RYegrFWN-SCkZ7eW9yACk3yRzee5efzYO8sqFTgyzZr3WZdcA6Z6TtBV9g0mgwl8kLKuiKi12PsSPki9c+AF0L4tYfcdMhw+BhlNC-lnzJ-HjNieEMihTyQuv45uPZ9+UzvPB2O+6eOKLwvnEm+abM8cBtO0u-7e79UdLOPVc3Fk5p3NNH3fl5j5XuP3mE+KewUZrTBgG+PO3wv7T6eo9ILiyz8fgQx-FqnzD0KB-5NoyH2XqR7fz+C4O9fvvkD+McbNQp4fy+JOq+XmGCm+GEP+O+qAe+ZKEBh+kax+rep+r+CWe2V+kYve0+PgsBD+pmRiiBo+b+Que2n+mBDYJYwYTcP6Kaz+0eQBKCa+oBEGGE5B36Dc0BVaLBGYHw5MOYgqI+aSsYswwQ6ezyXykQaBPeHOoULBCMJ+BBKBRB+e6BUhM+-CKO-Kd6PyHmDBG+TBN6jq447BrCHslBDcchZ+ChH+6BX+DYaifQawphEE5hK+9BIBuh96WCOCLoNc9hrBEERhd+ZCS8ZizhdssiDCJoTCNh28Koji+BaS4RgiKhPgMRw8nioRckiRCiyRDY4q-YGRkC58bhNeYBeRdEORz61qEqjSWhCRaOZRaKXKZSNhZRGhfB8QkmtBckEhk+Nh2qBhuqNR-ByB5izRpBDqcCAqSStRTOxBNRNhtmwMYqg41RZSwxdB3ueqCxuQhSiykxd6qk6x+uXu4KF+eqORTu3ataS+OiFerh5OJRTBNaARnElRNaBRV0sKzxkQoepBrashiBSB-OhBVhPe2xAoBcr4-+NBbedBRRDxd6Scw0UJu+ORpsoYZh8RIxZx1hpBHUWJwJlhgKcxkhNh6U3kRW1kRxkC3uyA1kfRIyiklJhxgB3R5+dJy64xYYXkSkHJMxdse2fJYC4uEMUuuA9gcuTgiudA8iqeDYeiQQiofOck5EACyMCpNhlREMgQXBWYFMoSnMkGOenxXhwMoM7CEMaKWCupPBuYkQhpUyt+qhQMIMYMJ0yipkyphRVe6+Ga4AScLp5p4MyiLxPgJMNp2YlM4AXpTy9CpkkQURpBJMsh0Z9GvCTkcZ-poAQifRyiO6mge69oqZj6dRGZAiWZiimpcYL6X6JktwPsMZ18GEr6QkjR9Z44FxsytZRigEMZsexRoohG2CLZmwoZQJjs-cVcPsrGQkMZY+vZORQ4EwrIVg+ZhZN4tYaZgOQujpcpGy4A3BQQm5JZ2Ju5ficAy5GISwo0h5iUROXRPgL8B5WY2OrEuMt8xQSxpUZsws44-S5acpWph5whhaoSgELJtxTOL8OmYF-cnJTpYZh5TGWqh5m095sJbJCWz5AwaJSF4FpkqFhOnRD5NgQu2F6gi5iofMAsu65sIsoFkQfgBpzIGIx5kFYRZwlgPAIFOwhxapCgnF3FTFJafwUKMKQFWe6esFP004SwLF+ZIlyQXQ6IVg3FMFcQAAPAJapdwDOVKtKnHOhBhAACqTB8APBqDwSG4XJ4xzDPiIAxRdAYSgAADUAyTWIQyIVgwgFY6lrl2CSc-l1WdQnlNuPlelG07MXQhlsKpldg4A6g7Au0-E1lAqtlkJjl2CQVHl1u3l4AvlUlcQbljRzlblwVzQuVlg4VwlOREw0wcwTGwm6eSmdQ55mg3mkwQhbFvwJCRqDwPFYsoAwl4OqSLhmxhVwV-w0QHVdJtqTWUQbwyAK5AkP5iGIkgGwVXQOm-8gC426l5VXY42wlB1W1FKZxhVkQe2NV2ydQdylwkSPoO16pwCoq35tFv5jw-2owMVOmScOEKwYM8kWYw2lwuyHq1YXSh5-S+5wFNyRYO0fVkMSFMFBFWYjW815Ft0KFaNHWt1Iwd1GFKi01dVXVVmCFDG2KjVyGzVQ1OgLVyQbVM1pNdGqyrVjyiNA1R6tNMlI1wqdx41oFilowU17VJNc1U8S5S1Nua5dFG5G1ksW16eT1zOCW+1U8TQo2R1S6jFOgQtpa5K-VxBF1pFB211hYX00y-061mgytH5r1MtH1MJkoP1NNycAN-MQNAwlE1EA+8AINowYNvNHKdwWAWY0NjJ5F1tuNfNTOHNmNKN5F6NTWmN+Fid0dJc+N7FckPoTNUdwp0syiYpMuDg8uzgTANAcpc0yIh0iAx02p601J8pPp18l0GEB0S05RNh7dR0GIC0z4JSb4DdrJueIJgKUMYCuM3dtdK0J80618PITZPWjRdQPW9kSddQTZSWy9yQSWa9BqG9aOhU29Ylcg1Y69jUaOTUx9TUe9C9aOBuWkjRD98gko59JpQgaAS2KgjRH9X9r9+9F9GaGEhl29hlZ9ADJpsYPAAoSwaAaKUD3AMDGAvwb9TZLlx9dQgQiokQKgcQiMAAfKAORG5WoKAKg2jhRBg8kFgzg3g4Q+RNRKQ+Q0A6ipEKMDQ6ALg--PQ6AHCpw8kMw6KBhMAFQzNNg5w3Q0Q1LPw2QxA02QAKSiMcNcMENSPyMyOCOwpqkYPKOSOqmAK4NyNo4ACEACOj4jKjPDpjyMhjd9QDGlSjFjejoAWlyQtjlwTZGliMVDuj3DUjXjbjmjGE+DjjtDfj5EhDgTRjQD+D3jbD9QvjqjETyMEj0TQjxjojUj9QqjyQxjdQSpPIAUk91dHd7pJ8yF-8hYghl+LOkQU9ddhdRTnK9TM9ECzkrmrwE4lTvw1TngfjTZLTjRY+VsED7QLTZTkuTTId4zRmc9waTZGSweAgjRizocb981DkaOhA0AIcXA39bD2zuzWc6zGzgDQjCDOQpAhA29FzVzJzpzTZFzAAosfc8-cxs02QAHJiCfOiPfOfN63-pTMhAFQlM93Lz3CaYwXdOXC9N+PjbRl1NgvT0QsgicnFMLSlPb7gUwujBwuqPDP6qguYvguzMBSN4Fz7TIsNMnwJzjT8RNQxl7RlSXhByYAjTS0uZiDaBGrIixLi32TjN93ogiiD1YyjNwQMvcQnaSbk1dYNWrX2gxlbrsKKs3jGwKr8w6nUutNH4MXuVNYzNz6jIXUatPiKrasksosky+adOhIHXEs13HTYtwXvP1B21fkO2IbMLohwwfmWATByUOHvWIY8q2zzBqtcgBRymVYmSI5GkkVZY5YI4DZWT+TCmxtGJcH5CwoMD+UuAMT0SXXAIBvOYKghsiiMRAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAGxgZygfTsTBDAJwHNMA3PZEAUzQAoqAPABzQBpEqxSBKRAbwCQAKESjRBKlBAEkYOPmJ1GLbiLHrEAfkRgQyZGo2iAXIiZ4YBWnmggKZCtVrBLGBUXrM03dpx6tDIyDUNxx3B0oaWgk3QiIlLx8OLm5uAG4hAF8hIVBIWAQUdCwwgBMqZDwATypS9wSWXxT+YQ0JKRkdeTiG70CNbV19fvVTc0tacsqqzBgoZ1csOM8VJv8RoLEQktwp6tr66JolxRXvNdSM7IB6a8Q86HgwNHuCOABbRABlAEkAYQACogAFJfRAAFgAdABGGFCW6IADucwAFoh3nBSjAXBA8AVnvc4AQUHgAF5VDjkSh4p7wu42CBErFgIiIKBwb7-IGgiGQgBM-Ny4EehSoVLsUCotAw7ygF34hna0iQ6EwaAquDFjhpLOlUFlqk2om0iBlUA2YlMqrAeHeUrNhqN2mQcDgAGsQEw1VV3gAjODICJONA+-2BsI2u16g0XC0mRCqxnPKB4MBYcoQSoEGkIaNQR2bbRawNJjCp9NUTOEHNgPOxo2IK1oBwEGB4X3IKiYDNZmt5gtBItUlttjtdnvV-F15I8OONhPNvBoNAwIhgO1p-tzof2Jcrtcb+Zm+tGpuYJNY-H2ZQxFe5h3byn2C9zJ7X5i3p7TvwDoxnl9XoGZaSoeW4NjuJYIJeb5ASmIGcEe+pyjOv4aGelR+qUeCYDeNB3rWD7geieBul2DxThhvpYZg5jZnakoEHQDoBA2rEaJR1H+qUVT9ixbH8T+c5nuqACO1CQPaSGoeoEFqlQYmcBA9ryeJSlqnBVCHkxUknpsZ4dnAEBumBTpPoGBlGd+KRCQumBKjI6l4ppCEmYWZl2ZIyqOfBm7HihNmqngTBMKguJTg6RiPkFIU8TYUj2OKUrkU8OEfnhX7MShfH8WIPS8f5DamFQBBvFYfkAEQAKpgG6ciIkgIZpngDCIAAtK1ZkSlQ5XpFkQr5E8iBxXYgaJSs8p8IE9lIMARJqXM9Dik540ob12TJaKw4ATBqVMJ+uY3hNrRiNNtlQAQTjDQljhSheu0EDREilCsBA+HOOWbD+0kyZ1y13Te54IA0r26Xpv2SrQ-0fvgyDzDeSQ-lc-UiiqzYpkQRAHNs05QCiXbo7wk3qKdqrjGVUmIAAZJTiB43gz0RQAvMzbJ45g6NIxtqOA2A0EIPYwHOb5FNE+InmdKq6OY3U2N+e9Gjldt-OwU5h49Zzwr4ogd1mo9tT9gqJ3i0g2wecA07QmtyNazrSE89pBqG2LHQm8UZvTnyVtc9rUHqbKMOIY7ouIKdpsSObfkAMxe5rg3FjzfM2irPmB8hP4tFNxtnRdUpXaNN2Q77ut7frzHyx9Ghfe9EFdYXvN+1gpb5YJrFFUtEO2-7FCpwjKQawNm0CypimSbKbAoU7ojYogtCqppTBQDMomqaPUDeITFqneA5QuGAtQZOomQcMg6oJsAM+qpUbiC6BZrr5PRqncWtcuIxWA3y5d8+IjgRHxUp-Bw0KWKA9xFgNyDFQRAjNEDy2fstV+18NK3yQucH+mxp6z2bNNCBCw37gMSqkB+mxToIPfnbRKB8gh-xPpAwBxCs7x2XiPWg5cjaINVghB2a9v59wtNkQ+fVvamzCOAPcq497PUjDQDexMs7Wj0MgWgUi+huSGAYMGZNaDlQAFSiOXOI2o2jyrsGEbgPR+4JG0BTDARRyjUjpAEOoQRsdChoFxGAbAIAKxVmzPiLhMixAYNVEwiS-YAlGGAaaFBUDTTDwkt5IWa9+yUKMCTZs89F5yQUqEr+8tBgKPlqYaKnAGbuM8d43sfjcHsJTnmde2UK6iDcamcp3ZKyVKeHQd4JEuwhKUiwxpgyYhkI4WmLh69Li-2PgAzecjmzAPLG0nxfZCKsWdMUOuZY0xLI6Qgb0foAxhMKbZcgrZ2ydh2ZODKUlWHrIwLQU5o4LkTl8SlEMBzFEOm+n+HQCiUmIGyOtFxSB44WWMn5dOgDIlcQpNAsFmAYXJMCJEl0uIT4xOaR4uAXjLmvKBrQGFvV1CRPMQY0oLxoGmMwKStc+tUUUG8P8p+7cpQwoaWxRgkp65+EsAgUC9KT7sBpRI8eX1+4o3ctgj+wtZQTUzi7YipEPIuxwaw8GUpsG4X0feHSaqjRiucQPEFw4xEHk-khOVxKgYgMSjEuBENTXrgQjgzKaDcr6LXPssMODHWHi9YczKiULhMqzhQw1Er46PPOeOdpVydWyonoAx1-r86RAeYQJ5Mbln4hTbxC09qpRRrHLimsLqdJZXzbwo+ohrZxy2taxZLyVkWsTYEZN7zvVjQWdsptOaO0Bt1Z9FlmyUw9tjXijxY1XUpHZWIH+QKjW2QLXUXG4BjJwF9AAK3CSHOZ7M8AYyxhsjdm72DlWXezFEa71bhq1qumqOCL33rdDu06dNnrWMUU+q9NVJkLolbNAg815gnp3UEtGP711bsIXQsQkSYh6BAdAvOqrBlGmfbtWgoHZ1odEBhvwWHoNEqCOqLA77COnsQOellK7IM3s2KRzA5HP0UaSAh2G6RRAIgkCFGwkDlBIlRAmNeiBEoWkYyxlj2Hfn6E42IBEgHMYgPAHvWotQZyzIVexqAaRjqiGoafbEmCcI0cvWu1jO7ZEKow2NUD-yDO0M08qRAJ77O3sGnsGYC1lBHXlc57G5Vn3GI4MwYN7nCiS0g6x-gTirPOclge6WmBsYnrPUFmOi78PMCsZB19WdmMWEUc+v9tbCj4a4DltdeWFUFZsVYwrlXf0lbpPcYFLxgBvE+L8QEIIwRQlhHyUr3N1TIE1O3GAuoIqALSZgXQfpioG0QAAHyW+9YJ50JseAist1brFVT+gDFQVMBsVtrebGoxbohTt7ebNvKgu9S5SXFVra0tpV7Vfi2jRLR77kVSkTe-9Wt+3hlwFIg2038tHY-Q1r5z3BqBQ9U6mV+ZJ4zalj91OZ7fUIQB0NoaiO-XA-B4qSH9N6t1dq58qS9i4eFGx9sqdIsSc1ah+TorMPqcZYlYmBtY7s3XKDszz7+7D0yw2RVbtFS41gFx97SXJa+2hgHYLo2LOycscp2EkrcvedS4nWWlXztnOa5Y18rnL3mxFueeO5thvd0KoS6L5L4uW3lSt1m3ZMvzeDXdwrt5Suqd27fazjXIeOcGhp+FpAvve0pUZ0H0n0O6um857T7mHFsJavwsT1Xwv0di9+67jP910oIFl8CkkmFsK0TewxfxqOs7dKYNKAP2BQdvfYJrs3afK9UWwoiqbQvOgm-D-mbXFfVRSqQeahPDuvtO9lq7qfoyoDl8XZqtK2qCJM9z8PsPdXYdR9skrJOJet856NxLefSXF8Jr1YrKCr5lZn-wmviVUM9p6wZjvy-rs3Dhwtm90KA-weibkH13z-ywAAL8k9h7xAIDgv3t38zdmgJbWjh72CTiX6XAN-zOm+wL0xyoz6W6iAKQG6SVWILqXCVDg2XKmIOCy-h72IISS0nBzECHyQC72px71IRYJn24QbzV2-zHlIN3RqUSXGWoKzhTxEIwPSXeAXiXiwNXm8EEOFwu0YKP0viXBGVqS-jUKv1mwUTZyoNEP21RXBR-1wMdxvxdwTXKjBTfy1nIK7DBUQJoPuQcIsIYKeyP3hQHysKQL33V1H3H0XUCmClCltxR2DjR3wOd0L3sOiiiPxCcMGi5hfwFxiI4Npn30DzHx7zyhwKCM4LyJMO7yPzkEODgBUAMO5guxqMZSP14OWEaKkKEKwxUB72GWqNqNiOkIazaKRhay5na0605B6x5H60hEjjx0lhzloAYA+06BamZmgXOmoB7xcMwC5loBr3omKnHjZVbTi06AC0ZAUOxXri5mMT1X2MkEOPYGOPnTmPmQ+CYCuLqF2OAGWO5nzwSPmGADPQuI+O3h2OBTSMKAyPuLr2cF+KKH-3u2cHYEth4OBQRUxB4h+Ifg8KgKRKBMQFgOaPRJ5TeCR0BPhLDnxPYHQKP22OwS7QQC5WyNOMgK0QZJumCyTGZLMKwWNhwQIRxL3X+OxiDSow5MiEhKQAlOoB5mZPTUiHhM1wIVEMUhdBXBZBwi4F5XJPoGaAh2swaxeO9l4I6zez1J4CFI6ONIrzVLgHVARSxLoioAmliwgLMAsCsDNLtDC2yEiVxi7AyRmFJL5QQhiTUQyG9m2O9PtAD3HkSlUINOc00WB3jJuiaMB3SOdJTToBjMJjdNwPIzzJ4OzITOcGdPzPYNZLZAa2LKP05RKS1NIB1NvjjPYCpCOKXEDP1L8zOM4CIFxhbw+VULWJQH7MHI7O+WNA9ImGjOdKHLDDTJPiSF9C7KbKnPnE7BZEHNTN4AAB4xztyUQFSVE2IiwSoiQtEAAVV0YiMACkOIEALSU0T0EKGAWoUwcqRAAAahgVwyiVbBZGxB4l3J-KozPTAr1Q0AwEAqIGApPNSHLiKgvKsHKhvI5GACoERCGmICfM4RfMiPfNKE-Mgv-Jgs23gtAt-OCy-N-KgvUHIqAuAB4knNEJdHdE9BTRdQD0tTEG9j8GS1dGb0hQtG9kxQXIDCXMTPlhmw0LjI3LcgEvYub3osrkgHVM2ybJbJcirjQ1MGBygRZnI13NUunPI0nNMvnHEtN3kvYBY1Yv+QEXQXPgtMMvWLZiDK0rJMPEsyCGKlKgkuQDPWqn9G3h0De3oyoWmUczYkiRjJiVNPnLdQbFOnEpjJzPLLezen-L4tLPTMyrtEmU2H4TEBKtwKUqEotNEPbVbynR4tEwoF4tEH4q4EEpqKqqIT4or3EtTPbIZV8tST3TkuHIUp+gqvatMrtI1JIBDN1N0o+n0oDzctyLJxMsGW0EY3MoZT6uQFGrQlNHcXKNsprLqwcr4T-KCAwT8GWoDJwgUMyVmp8s6qMH8svOB2CrAFCt5nCrtDag6np1X2IyMAc2eqAWtVeDewSrARjKqscqCFSsOvStTIKqoGypyohrtAgVzIrKBo0DKoBV7JBVauUthr6hGLa1eA+AmO5D6xhEhHBFeMehgHeFfFIDImBWcHAHaLz3iOxjyDPT2mZtZpIJ70FpZtgDZtmAUM7EPD7DyG5uCKT0UXlqtkiTFuFvBKNQpQRPmA2AC3fWCzEHfX4jRvYloM-UNrw0KxNpwwCzJktpnOJDYlNvUAC22Adu2Btr1toPkX0GC19uQAbBdq2FoKxDQF4yqGCzDojqDtttoNeoIEtoTudrjs8O6VxnwF9DQGMXTpREzpeE2GDtEAC2-IdrEEWPYCqF4EZgAD5EAWpfyKREAi6datFWoy7RAK7EAq6oE66WoOom6W6AsjF2AjAu6e7a767EBtFu7RAh7aDrgO6Z4GBK7q6+7EA7hB7U75hyoABSJe8eteqe3e2e5u7erRNYsuw+3uqe0cqu8+8qAAQmZivpXu7qPpamfugXvu9s8L3IPrfonvXoPNEB-uCFoL3MZg7uvsnpakgdAfns8JroAdXpvpajroQYfprqgdHvUBgfXuwcwd-p3sfqXqnvUEntEEfrECWI2F6jVtbHFpgEloyNTKgQtCb1oHfXYHVolvZq1vofBt4eYf4ZRmwC3UrBE0Zg4aCk5qQEnrtsYeFuC01xVpbo0GEZYba0EeTDMCUb4ftlHSkdboCzuwe1KGCzMYm1qHUfRuLtoJ+DAF3jmEjtHsceccXlsbsYC1zswABB+Ett8f8a8fRp8bxDzoAFEHbfGImQmcqAsAA5PABJpepJhJvawZHRjAPRoWgx+XNh6RzYTh8+SeospITRrsSXJohh3JkRwxxZBM9hop2Rkpuu1R1IHh-Rupqp3qb2ZImYCpzWlGOR9gOIbYeE-p2YDxO7AgZAKoTSzdPAcgNxVsBeAZD6QZ5mkKRJOWrmnDI0MZ4oOTdgzM1xTyL0R6lyeEhs7lbU7ylyNVYpXmPYrprRo1HM9gSynJphyW-J2yx54KEpF52pt5sRk9SR8eL5wZ+XBMuJsQW6zyy5tMK2TsEBW6ogF0VcwMJFpDWJKQC5u50MzcXqPHfpkZnC+IJq8DJmn50RqcFW5606SZwZ3Y+i-mnWtvcIMsnoC4OTBECAFEVMaWQwEG6lkEz4oZ+lrm3y6FTEhK9ExFeWuGyJAp1rd5mEw4uR3G0QeDGgRDO1YdL5sQNlI10QG5uoHFwKyFuxjQBTAMF0ZEFkIoPebWQVlkWoU1s20IXYCofYOoPKHlitG19QDIy1tRuGmbGUjVPVjjcubQKNuUlybTUa0wKxiRFJEG2DBO8lqqGqOqGaCvReJgSBdqIaSIyOoGwFHINWygbWxRkF7qdgfBqexu3qMlkKEAcebGaEdgT2OytmDFjda8Ql8k9IIAA

Metalinguistic Abstraction 4.2.2

}

The other place we must change the evaluator is in the handling of conditional expres-

sions, where we must use actual_value instead of evaluate to get the value of the predicate

expression before testing whether it is true or false:

Ifunction eval_conditional_expression(expr, env) {

return is_true(actual_value(cond_expr_pred(expr),

env))

? evaluate(cond_expr_cons(expr), env)

: evaluate(cond_expr_alt(expr), env);

}

Finally, we must change the driver_loop function (section 4.1.4) to use actual_value instead

of evaluate, so that if a delayed value is propagated back to the read-evaluate-print loop, it

will be forced before being printed. We also change the prompts to indicate that this is the

lazy evaluator:

Iconst input_prompt = "L-evaluate input: ";

const output_prompt = "L-evaluate value: ";

function driver_loop(env) {

const input = user_read(input_prompt);

if (input === null) {

display("evaluator terminated");

} else {

const program = parse(input);

const locals = scan_out_declarations(program);

const unassigneds = list_of_unassigned(locals);

const program_env = extend_environment(locals, unassigneds, env);

const output = actual_value(program, program_env);

user_print(output_prompt, output);

driver_loop(program_env);

}

}

With these changes made, we can start the evaluator and test it. The successful evaluation

of the try_me expression discussed in section 4.2.1 indicates that the interpreter is performing

lazy evaluation:

Iconst the_global_environment = setup_environment();

driver_loop(the_global_environment);

L−eva lua te input :

function try_me(a, b) {

return a === 0 ? 1 : b;

}

430 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgRQB3ReAC1B2QAmicIlgBDJKgzhkmUABsxALwCeoAKYA3MfMgSU0VmDGxYsodADmoeMgIlyVWnQBMr5lDiToG7bonqABRo8DjwADQa0JoAlKAA3sygyZjq8JCYPohoAPpo6vLgOVo6ekhWwaHwMUnJdfUA-MkhYbX19QBcoNk50GI4QS3Vbe3JTfLIyADWkAAOeSo4AEbI8jl+kIOLK2vIRX0DlWExkerRNaOd3blm6PBi0PA5Auqwipj6qEfDl3VNJWtbiEHk8Xm8xB9vN9TucRqMuj1tJhEGIlvJ1M9Xu9PtBvhdfqB-n51hCUWiMWDsVChjDYnD2gjcmI0GhEJZoANHnj6Y1fDocszWezOfBoVE6QTQIycrchN5+eoAB6zVIsgzcyVE-myrgGBXK1Wsr408X437SnXytbA+DqEUaglawGoOV6633W32k1nCUE6WKZYCMTFA3qNXGqpmy5NHBiKYYzwIdUBpZBnKzCH9NLqTBoPHhHmSgkptMrAQqfOFouXH1R+HXPLqACOmzgg0jVcJfOtzdbsEGvbO-byHrtZ3geaGJ1NnelaOQsCmDt+Tpy88XYtrs4bqXSmRHAS9Hc13Zyu4y0APnvHm9hkulYlms3kohxeNGnaaj+fFZM6X5GxBIm3ghiqYZGriU60icna-BCliTpG0Hbjm2CYGKABEACq0BTNAyDsD4aAqI8YiKqAAC0FHdmU6gYTEADczAAL4eDASaoKAf56GsgGBEqszQQkIznpkECyMOXD8RsAT8cq0GMSxbFeAYCjZE8ewCpglgkroYZybMaBCfEACQcKiT4+FaQhBloHWvLQJA8jyFWXQZog6HcQBpRAR5ITWbZ061gW1b1C+-mafBumbHmqpPPBeYCXZClMaxykcT44UaUULyKCo6gCNZiXKkZpoJGZ7QWaAVkJYFVZNI5zmuaA7noblYgqDkUkiLm8XaYF0EhaFyRZTkmntflhW1XFRUDaaimscBqnfvIFaeJECXGW0wigIEPQqogOC6poCbsVCngxHEiSXFVK2dQdR1ICdORLV8sGXOtakRUUUWAXmm3zQxyRsLA3APJYBVtMxGjyPk3TgLtPRmDgszIDAhWvbiF1XfSQLwKAZZqAAvBAZ0GGughrTAimjHjoDEcsqwYCTmPppmAy2rmgQXUxtNSPjqpOfjJMArRgTvaFhNDcNBJKra0CFT6HmoF62xM5EEsy6AbAyM5BGIFYanQOooCg+DkNa6Fo3jQUHUFbNAPBZrMus0r2Acje2M05VaQXjuvv7nxgvyD81ZNBZ0UYrc8uisHodFl06PqCIxsCLzyTQwUcPXe0qGyNzMCRNhuH4YRpMqZx8AqLMJtUVxT6rfR6egKxi1k5xPT3JYEOFVlYo8BiXc4-UVX7WIHnvgAZJPoDcOoYgCO+RPLzYc85F3qXpd4DaWm6V5jlyU7CXUo+5F3Pc5H3JrO6AGG76g-I2gf8BN0pmOmy6I5hOmqSL0fOegCqqNVI4AxQMAWlvVSsov5PCBO+ABQD1JnmTmKFwED37QKGAKEO8C2iIP8iAsUABmdB7cfAAhlC6XUD93SHhvN6c45URIByyGfTAmxAheV4j5QImCqg-wKpWS2Mtaz2XaE6MWfDv5wKgjOBONFZJSPijg2RtZN7vwofkFsQ52xhFKrWY+dQdp7VyHaWYVdGzaLbN8Oyw8bosNAEnFOBVm4txhnDYxPRFD+SfkePRl1DGSiqqLWSPUfGjj8ROE4aiRiZ1hibAB7Q6ZhKeFgwCoASbvRCbabmflUkRPoVUZKMTfieNyBHPiKSYGRwCYk34VUqlpJ8q4+ocTs7vWCcSLRfYgg3xmr48ciF-HhBKZcVirS35kK+tlHIMBBRslToEA4YY7EpAcT0Rq8gllZjsoWBqTkXLmhauPdCGEABUcy1TsgKmcjCkRrZFEuUKRZ9xEBbOWbYxiJl6iTIrkRcQl40agixJmbwQzqiBPhojXI3SdF4lWUk-m9MikZPpoONs+8RTgu9qMU+xQUYWNhdYoYuyw7VQOe9Lo34zh-wBWNSAwLwSQgMHmRpBTD5FMutLYRaA6VAsxEynEeZYzxksT08WwjLb9PZROGxl1LquLaQkwseK8YggFVSdUU53rjHUrw-m6rKSgvJgzHY8LKUNiRGSdEGrjURmOJrXVIRAhWtRDao1zLUALEZlsqcYjLhdE2Yq35GVTzriXAw2IkK6aE1ReGim5Y8SuLphMcQsNUW8oePSxlmqpCBEJjij+dxHF9CuanZm0yxqPNLc8wRqadB2VcZ00oskpY3zljS4o0RlYey5PW2GkQnkLIKvo84pC-mngjgMjlYQtojwcSKjEFSeHO2yUECOAlDRaqQjfX4oj1FTIofM4UhTZ1lUSXTdJIsZI5OPb2p4fFVHnFcXe71OxI6cLLSKN9qx8ygEAtBJtDjAIHonRQ115JbWesglUOddRX2mtWB+iD7qQXQZ-b6nde6b1BBQxSNDOIP1PtiNy+oMTobJEgZxCharHhQbfJGhFCG1bcL0vqu4hqCMgUQ5h44pG6hrvY8COjHrCOPqQqafjyRyNUdYcUHDhUeAwCXMgJYAArBFeLz72z7qptTRc12Ke4Mp1+bcJ1Kdwh+wz69jO4U0w4ueC9AivK2dZizUwFUhu3jITAklRR6YRWUmzynAgBYRfUOmcdUVcI-buyU7nQKhfUzBSVvwEs+iSxpwt9R8hPEc4vPTBmFPBdwq-X4uWcj5ec+PLZAXIhx0YsDMAqRnwmBNgJDgXBeBcAwIBQsFWXPVbeZl6cmzGt1B1rICG+MYDGwKgVcUKqHFxwYhVOoSr4YmPky220RmQthchfOvcPgEt8QC4q9xyr6kOL08GszoaJpdVFAJYya21nHemYEDC7m7kaHkqaUDobO62ZU8lhIPyjt+07mIbuOm9WFdvj98dob0vKmcyD+zH2quDfc55+7290vRHR8pzHftsc1aG1s3HePmBGHLhlaQ2A8BEDIJQag9AmAuFkw2fIhRtv+HKJYXBkOxIbMgMsHM75QAAB9pewR6CEZEFQj4y7l0WHoKxVjzxg8cVX8vcibKl8kWX+vZkK2TgbQRU5Afbw2VmYXJ91lnxhxfK+sHb7LNM9znjVbej2--swrH89F6Db9Tb1SPQ72RNWVpl3cPnUmgwlH8cXv37J7ozxh3gCHPB8p4Ecnw2-U07T1+8cRHIyBKqgXqnFOi-h47jcA1ImuPbt1wgp3684+9z1Yn2jOa7XQFT1Mvv9HuMsaz1X3Pg3q-wuL8Ppv-f0Pibb3gnPTmce18jHPidiJSRuvw4K6kFf28feh7D7vCf3cYTw6PgwQ+J039E2Pn1E+18h4pzPovyPt6P5b165fEKJ+ZOU+FOoeW+3+EeuQJYwYm64EregBq+p+zu5+l8PeV+0BoEW6qA9+oaGBGYHwHMOY2KleC6j4wQLGvuyykQn+4B9emU-QqYwYhMr+Qe6+oBm+xw2+QO5SLCmKp6CBjuSBneKBbuZ6GEU6MqOB28G6oY4YOuAh72wBbBheW+dBO8VCVomBcB9qCh2eQh2mF+oo18Wsd8Ghe8sBchUhUCn8m6Aif8x+iBfswCKCJo4Cah0CthMiDhghThSChCJoaC7hNhBo2CRh3hihYkzhoCJoJCahCu6K-YLBUOyBruaBYhRK-YVhnEi6YqcKJKMeDifcGEGRdEkQ+RahJRfBjwxB8QdQjhYkNBnBahbKdCM6USJBrB9h-iah0qrRsq+RHRfsYB3RXmkB+K5inUJRcqgxouBuBycqcRUBzI+SfR0xQBsxvQ8xwxUSEBDea4qaEa4RERcmBhqBl+Yh4aWRPgOR4aSRkReqGElxZRkYah8azBAeIuPgjR1QuxcmK0r4R+K+PhGxpxohEQt8-x4g3gVx9OIEFhEEdxXxIBKhTRoxnEtUHxxxs8yJNeKJPxvx1UyAs0yAhkBRQhhuJJjaaJPgVS8EoWpJMxSJTmlJBJM0tULJjJNgFOLJm8dOmMjOuA9grOTgHOdARC3Onc7CQQiopOYk5Ey8JM8AUpahORmMgQ+BWYnMpUUs56gevhzqphKMaMCsL0ZCdyN8GphBuYkQOpMm78SMuAqM6Mppfy3MspJxXeZxoo4ARcyMTpJpmMMJrMlp2YXM4A7plahCPpoAbh1JsJ5MzB4ZkK+CTwUZkQgRcZrs3a7s9oSZiSKZyCoC0ZsRcZORy6bG0c44EZRR5Zmwv2lZjwBJPQtZuGPkEZZ+qRzqAGt8LZMJLZlCjwN4gEEZM+w5BJQ4EwrIVgXamgPa9oBi+ZDig2dpUyVS4ABBQQC5epDRueK5YGcAk5GISwa0G5xkEOwJPgrU3Mp5AOSkdMA84xFibsKs44qKQa3OqpG55BPqpUf0EZV5PGv5PkVJ+Oqk65WYGGrKG5V055WJVW4FAwBJCFGIf015WYMFdRnxXJw2yF45io8sis2ZL5h8LGQFA6BMzIGIW5WF6IVgPA35OwdkGSK8tFlg9FfgpKJ4V5n5-upFkQHF04SwlFM5-qdQXQrF9FgFcQAAPAoGcGxdwC6g2qJbyHnKcgACqTB8APBqDwTi6DL0xzDPiIAFRdAYSgAADUoAcWdQiuBslgwgFYUlllt8RcLlNlzQSp9ljlSlsMl0EsXQalX2mldg4A6g7AXE2k+l1RhlDcJlAgZl7lqWyKSuDl4ATlpFcQVlv25lVlHlKV3l6VvltiahEw0wcwGGRGLGcGyQGi0Ql8kwsw-EjCdSdQ78makEfF-6ylh29i5J8xUlNl-w9VZVTV+V0mB5yAU5Okz596zVsQKlfo9MLGzFJMVWg1yVTQVWAl+VXQHVeeUlkQg2Al2W62hYxiPoq1q8VFBKnUs1Io4WNYmAaEDFqwRcOEKw6M1UWYZWYyl2vVfMxayFqKa5X5oyQSDi+1yFkFaFiFUmls0NqFuFp1GcsS255CI1jV81BJzGPqVVPq-FOgNV8Z1GmNJJ2NANJN-yDwr15FAllNWFYuzktNnFw0w1mgDV5NHlE5U19lM5c5N4oiN8e1K1Cp2JTmG1lsTQFW21DahN8gi1Aa9MAKB1mVR1FOJ1LS621lpSCM81V1D5ZiT5RF96j1owQVPG710An1Cs31AwlE1E6eL8KNbiWcV2RYySG5INeSL0YNz6HSkNKt0NgFsN6gKWyVtVG5kcUF6FLt4yZ1WFPonNTVMmfJZCApzODgbOzgTANAEpuQD0x0p0rpF0nJHZ8e3phct8hdT0dEBJNdiAz0h0z4z8b4pd6xTJ7+OF1MECdMDdz0-JqKfcPIRR+Wv2dQ+WoU4d7QRRLm49yQLmU9UmRRrU89xyHkS9I9DxWUa9WUm9lwRRTN8gv2R9ko09YUDxQgaArWKgv2V9N9Z9y9Dxal89al1Y59dQRRsYPAAoSwaAdy393Av9GAvwH9I0DxFla9dQgQiokQKgcQRMAAfKAORFZWoKAGA59hhBRFA8kDA3Awg8g+RNROg5g0UbcpEKMPg6APAxkkQ6AGcjQ8kGQw8cALg7tLAzQ4Qyg9rEwxg0-QaQAKTsPUO0NIM8OCN8MsMGkKlQOiPcPykrzwMCOigYQACEy8cjnDYj9DGjJMyjW9Bp0lIj2jCjoAslyQBjB9Dx0lRMuD8jdDPDtjlj0jqjiDJjBDjj5EyDLjKjX2iDdjlD9QDj4j3jJMXDfj6j7DPD9Q4jyQajdQMpPIikfdyIj0jdxdGUkFGShYsYTV+WkQ-dmTYKKTSKRTLpWTemrwE4OTvweTBcPg4jK9aTRdv2M+Xs8N9Q5T-JpTxa5TfeFafcRRTiluAgv2IzqcmDEdF9BphA0AKcXAt9lDczCzVcUz0z4DBpgDOQpAhA892zuz6zGzX9EgQDAAomvds2c0c9M0UQAHJiB3PsMPN3OK2pa9MhAtQtO10DnCapKkW1OXD1MIziPwXTj9ML5UmpOHRF2-P3B0Z-SAujDAuOPtNcpfMws-MDOKRp4Nz3TfMZMVPnRV3wRZQRl3RdSXhJyYCrR81qZiDaC8rIjmISoyzlPN3ogiht3UydOXCkvqTjZ1GgWcS5YVX3U3gRkdomnitcjOzUoKzqkEsD1kKQUawR0QscYZ5q1ytPg0qKuYuEusxVMIClTjUat-PR03P1CG23X805lVmbzoj4wPmWATBCVrAyvCxorpDzCeuBCKTc40ZmE0JaFyEGSYCvbo0NhKkcIxZ8QeEhFgSLybpWupZC1FgSKKLBEqi-PhtBR3j3gKI5IJs5s6DPYGj5uxC8l0w4CdQltyAkz4H5BfYxsmxNAMBSigAuAMSvxBsKzUJ9AeuyEIm1sDmKwGhHVrxG13Um0PUMRAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgRQB3ReAC1B2QAmicIlgBDJKgzhkmUABsxALwCeoAKYA3MfMgSU0VmDGxYsodADmoeMgIlyVWnQBMr5lDiToG7bonqABRo8DjwADQa0JoAlKAA3sygyZjq8JCYPohoAPpo6vLgOVo6ekhWwaHwMUnJdfUA-MkhYbX19QBcoNk50GI4QS3Vbe3JTfLIyADWkAAOeSo4AEbI8jl+kIOLK2vIRX0DlWExkerRNaOd3blm6PBi0PA5Auqwipj6qEfDl3VNJWtbiEHk8Xm8xB9vN9TucRqMuj1tJhEGIlvJ1M9Xu9PtBvhdfqB-n51hCUWiMWDsVChjDYnD2gjcmI0GhEJZoANHnj6Y1fDocszWezOfBoVE6QTQIycrchN5+eoAB6zVIsgzcyVE-myrgGBXK1Wsr408X437SnXytbA+DqEUaglawGoOV6633W32k1nCUE6WKZYCMTFA3qNXGqpmy5NHBiKYYzwIdUBpZBnKzCH9NLqTBoPHhHmSgkptMrAQqfOFouXH1R+HXPLqACOmzgg0jVcJfOtzdbsEGvbO-byHrtZ3geaGJ1NnelaOQsCmDt+Tpy88XYtrs4bqXSmRHAS9Hc13Zyu4y0APnvHm9hkulYlms3kohxeNGnaaj+fFZM6X5GxBIm3ghiqYZGriU60icna-BCliTpG0Hbjm2CYGKABEACq0BTNAyDsD4aAqI8YiKqAAC0FHdmU6gYTEADczAAL4eDASaoKAf56GsgGBEqszQQkIznpkECyMOXD8RsAT8cq0GMSxbFeAYCjZE8ewCpglgkroYZybMaBCfEACQcKiT4+FaQhBloHWvLQJA8jyFWXQZog6HcQBpRAR5ITWbZ061gW1b1C+-mafBumbHmqpPPBeYCXZClMaxykcT44UaUULyKCo6gCNZiXKkZpoJGZ7QWaAVkJYFVZNI5zmuaA7noblYgqDkUkiLm8XaYF0EhaFyRZTkmntflhW1XFRUDaaimscBqnfvIFaeJECXGW0wigIEPQqogOC6poCbsVCngxHEiSXFVK2dQdR1ICdORLV8sGXOtakRUUUWAXmm3zQxyRsLA3APJYBVtMxGjyPk3TgLtPRmDgszIDAhWvbiF1XfSQLwKAZZqAAvBAZ0GGughrTAimjHjoDEcsqwYCTmPppmAy2rmgQXUxtNSPjqpOfjJMArRgTvaFhNDcNBJKra0CFT6HmoF62xM5EEsy6AbAyM5BGIFYanQOooCg+DkNa6Fo3jQUHUFbNAPBZrMus0r2Acje2M05VaQXjuvv7nxgvyD81ZNBZ0UYrc8uisHodFl06PqCIxsCLzyTQwUcPXe0qGyNzMCRNhuH4YRpMqZx8AqLMJtUVxT6rfR6egKxi1k5xAIyi6uqoPqYHhriAmYMZFV1FVPTwJgmyBF5vE+YEsqgZg6apAIBmYDBlsy7W9ntE6YuL0PXfoOvQV3veNGyYfBoCiHp-Qal6XeA29yWBDhVZWKPAYq-OP1OPuRWrvgAGTANANwdQYg15TlAETOBNgIE5Ffo-TGDZLRuivGOLkMCc6gAAUgsQb97afxNM7UAGF0G93dIeccTclKoMXkMFeBV3y4KqqNVI4AxQMAWk-VSjCqjH0QscYSY8A6ZXUmeZOYoXC8IYS6EcYRb6ihwW0dhkjOFigAMxyPbj4TulC+jUOvNgqoI8RLiJflPIIs9I4LwUUwsC0CkJkK1jvWC+8r4OMEUCfMM4E6X1tPYhWij4p3ygqaFBejTz5BbEOdsYRSq1lEXUHae1ch2lmFXRscS2zfDsn-G6lik4pwKs3FuMM4ZpJ6IofyNosEqKqAUlJkoqqi1kj1Opo4jyJJOLWcpmdYYm1we0OmnSnhMMArA0A712lBPGZgnpE4+nnHKfUapuQI58QWZMnyl0WkEiqjswRgE1l1EGdnd6bTiSxL7EEMhM16kimEcs8I-TCysXqK3PhnFrZFBgIKNkqdAgHDDIUlIlieiNXkCCrMdlCwNSci5c0LUxAeUCBhAAVACtU7ICqYowpEP5OQcVCmBfcRAMLQUFMYiZeo9DoloHEJeNGoIsSZm8C88F8NEa5FufEvE3L6h0yGMzemg42yLPHFys5EK9xZAySjbJ-K8mit3nvaqSL3pdG-GcaBzKxqQDZeCSEBg8zHJoaY3pm8t7NANayzEJqcR5ljPGHJdzxa2q1o87p0r8mXUugMypwzCz4LxiCR1VJ1RTneuMdSwTgSPEjRy8mDMdiCu1Q2JEZJ0TJtNRGY4ms40hECNm1EubKQptQAsRmMKpzqvrNCgZDKK76OJOuJc3pzgHLpoTaZHaKbljxOUumExxCw2mUyh4hrjVRqkIEQm3tkh01JUCgqYriWrrxWvMdOg7LlOuaUWSUsyFyz1cUaIysPZcl3bDSIW7U5JPOLo1tp4I5PJvF22IByqquoxFs+ezs5lBAjkPcC0aXFevqDvKJr7O6AuFJ+sxZURl0ymSLGSQSEPXqeHxCJ7z6jYZrTsOx2GRTEdWH4wCD8LHytAKcltGVTxlvJHmt8X7uVEbTasOxLGK3svzZebjdbIM1kw0EPjFIBM4jsfh840tc6rJYnUH5bbtT8wjZWwTt5v0jK42rOeekE33CTVpmTwnKy-GA8ZzT0mQJ4aQqaBT0GlNt1fT0YDhUeAwCXMgJYAArbl+DX7vxyJ-Pz-mi6eaQdwHzdC3NMe87hOx0WktTCC5YiBUDAgUphal2LuFA2MefjITAklRQRe5RsmLPnAiVaFXUOmcdpm2L4q4yUaXQJ1YCzaqD9ROs+m64Fpd7R8hPCy2vCLUXxNeYK1MOhvwxs5AmzltFMLKuRDjoxYGYBUjPhMCbASHAuC8C4BgQChYlu5dW5Sob05oXbbqDrWQEN8YwGNgVAq4pQ2WLjgxUeGdg3w3ScUGbNXcJ3Ya3Kv2nW+KVaDVnENvwqoRebQl5+E0uqigEuY-+ljP4YTS4SjQ8lInFdUhPObd2Ej0rx3RiehDQvhYC0XInL7Etza62ljLdGVvXe5+z5+A3og5bmzzv2fO1s3ZhQL3hRhy4ZWkNgPARAyCUGoPQJgLhVMNnyIUUHR7yiWFYbRv2ULIDLBzO+UAAAfG3sEeghGRBUGBtv7dFh6CsVYkDIKRjdw73I0LrfJDtwHklCtk4GxYVOWDTGoVZhN3Ts3uQQvEPjSaDCoL4s6+E2NfYCfVFJ7EpL279bY-Px6GRpDIi2GQpT4ztPJaM9V8eNn1BLeJkGcT9D4vkC17XZLyJ44Aby-LVxTh2Tfva+8779Luf9bBcU5uBp0zdmIM17UXXghRCP7p+QxQlfs6q3QDb9E8Nq+nUgQs4XnvPhB+BHvwvxfnFz9H8E5PjfYiZ-Zf51Lhfo-OJERSRy0pNL919qgWlgsG9d8m999JM2NvBT9X14CzMr8u8b88FMtZ8B9sC-9IwR9ydOIUC19q0HNP9b9wFcDbtrt-9CCFUwt+hUxgwwMB5u9MD6d68d8ws98wgi4SxmDQwB4kCmN+C2YPgOYcwuVIDLFYxZhggDM89egsxIhH98Dn9MpGDSxKY2Cqp78aC1CAD6D31fUrUIDp9k9t8mceCIhyFjDLV4BhDn5QNBCIIdCsCf88Dh9DC0Fu4rQl5wMC0zDN8ODLDG9GleCZktYD8FYe4jF-ChD1DTYFEj4nE3C6MOFpETQeFvDr4VQhE0i-YMiuETRZEcjkib4dBwigiv9CiNFMjkMdFvDHcJV+wCixIGcuCSF98VV+xHDVI-13UBU1VpD0j40MIei6JIg1VvCJipVHgpD4gVMaje8PDS98DvCLUTEqi7IRiJdZ9pi6DMCul7CXkdjzCxJ9DekmjFUslOoJj-Vdj2jA8kV-VriGDjitiHjzj6Cg9LjllEjPcx1O0p9TcnjQiYCqii4O0+jOIBiO02iJES0MJoSpjIxvCB1CY2D2C9jVih9qgASmQG5XxqQQTlj6DU8ITMIVpiSDAYSfBXYXDwDwVdCqC8Sit0dlptIFjgicT+8pc-iCCOTOIaouS6tDJmSt8g9kBxSNi-I+pjdpSzieSVjJsZTDiZpapFSJS6NrstTH55dMYldcB7A1cnBNc6AtEdcJ5rFAhFRxcxJyI4ESZJ5NhvCBjMZAgMxxDsxcxIgpYUNQTETRQD8UY0YQlMZCUyEvSsxOZSp-T3khT6DkZUZ0YXo9FuZ7TyToDuCS1wAi5kywyMY9E6SFcQJoyJCuZwBMyvonhNE8zQBsjDjWZMSqyf18c6iuF6zSimy9EL1NAr17RWyRl1F-I6zIhGjDiBiAMjNo5xxqyCdpzNhidZzHgCSpF5VeM9k2yQiKSczRRqNbDxFI4SzFyo5UAY5S0tzhz3C+TbtAJ2SdchwJhWQrA+yBybxklrydSpcEydcFlwBvT+Ju0vzeSgLYhvCnzkB8g1w1pvTjJacyTUV0UALlCydWI6Zv5iglVOo3YVZxxpkm0dd3TALhNSo-pqygFSLIhyKNjvSKNYZuZvSroEKKCVsUKBhEj2KMQ-pGKsxmKljELrsuLEiz0QlcKcN5Da0yK90-TmQMRPzAyFAzhLAeBJKdgdinSlKrBVK-B4UiwmggFiKC8DNpLYZpwlg5K+yG1kguh0RtLuA1KmY4gAAeLSlShy3S6yv4DQTANCDFAAFUmD4AeDUHggt2lXpjmGfEQAKi6AwlAAAGpIivUncDZLBhAKxSK4gkrid4qkr2s6hUqrAMrLyzKvKbKfK-KMJAq7BwB1B2AuJtJwr5jIqiTYryFErkrbUir0rwBMqTLsryEi5OqCrmhJ40qSrPLEiJhpg5h6LZMDMtp6hUEfQwtJg5CFLfhUEp1IITLqK90ocfYQig8sqCr-hog1rpTPU+tIKXydJxL7R3FbUuhhNYF4EVtTqoMmgVtPLRqpR6ZmV58BrIhrsprZUW5Cw0kfQ3rnTEFMlskHq5yDkrNfL85hMi4cIVh0ZqoswFtLgLkkciwxlvTpl-zAKCMiwqodreKBh6LzUmLnNbUuLI56a+KRsvkRhPlELVqZqNrXMdd9Na0Fra19r5Alq6gVqLreawLDrtrAaqL6MDrkailjqXjPqZZzrNBLq5DRrbq0q3z3ZHrn0yEXqDMYbKDst1atYmglsfqZLFb5Byr6xqaaDgabApcwaPkur2gobohzbML4acLL1DakaRkUa-L0byFMbCycaBhKJqIO88bRgCbla+Y7gsAsxSa5SXpyalNqwqbAbmbSKab1BesoNmaeLhL2bzlObFKeb1qZb9SdY9EjSVcHB1dnAmAaArTAFkRHpEBnoPSLpHiszOj41PoMIHpjo6JEip6noMRDpnwGk3xh7viLbbyYVsZH46Y56B7TpW0N140eQCcJtic6gJtQoy66gCdcsz7khctL7GaayMVWo76kK5Bqwr6Roxiso36spH7j6xjzdnJidgH5BJQv7n6MIhA0B9sVBicYG4GIGn6Cc85MA760HP6UGxjYweABQlg0BCVcHuB8GMBfhIGCcEq366hbTIgVA4giYAA+UAciJKtQUAChsYiiah5IWh0Aeh2BZh8iaidhzhpEglSIUYPhgRphlh0ATFfh5IMR4M4AHh3aRUOhhhoR7WRRjh7BpEgAUjUeka0bkYMd0eUYxSdOoZMcEbkc0vof0eDIAEI4EbGNH+HTHyJXGSZHHAGkTnLjGPGZHtHXLkg-HLgCdnKiYeHbHZHyJonwnLGMJGGgnNG7HyJmGkmnGMVGGYnJH6g4ntG8nsn-GXG1G5H6hZHkhnG6g7SeRFId6+7p60zW06bYFCxZCH8+9Ihd7B6W7Gn+YWpmn57WmMoxoAtXgJwOnfgunPA7GCc+nJj1658vYn72glmxnOVBn07NnX9D6S0CcSko8BBidjnU5IG+swoxjCBoAU4uB4HJHbn7mq5Lmrnv6kTiGchSBCA76vmfm3n3mCcvmABRN+0FwFq5gnAAOTEGhbUdhehadttR2ZCGGcOhadf3aaJk6cfG5jsbYunD2cP33WYCaYxdGaxb+hmcuDmYJdZIzKJZGb3qERM2WSYnbwbnumZf6dbQLmgA2m0iymrLui6kvCTkwFWn1v8zEG0CZWRCyWuuGk2cXvRBFBXupnWbgiFfUkexU0TPFXSHmERq5GrNEsVmDrwq5Gdl1QVk9J5f3vGYVr+vRf7ueixayq1dGFtbXk2dZgiymdKhdeJbuAjXIq9faADuwoNqteqEfnRHxkwssAmAsrWBNeFkNbmvTcCEUh10gHyGXgOi5BVFwCyRHGd0sEiADYQHBVQVsHLbSqGymaugByLyTNLcLK2fVGrfjn0vIWcoLPRgokxlSc1mlD9fTJ7ZqDpQ1QwmcqWeHb0VHZnauH2jRXQineYBXe8owgAG08qbBkAG2KgVsp3Brcqt3qwkr62eq58z3OqMIABdDCS9hkemca4qvqptmt5teoRBvKDFKiID4DkD0DsD7hiN4Z0tiZD96wHKgAHRP06pvdg+-YgIQ5P0SPzZzCkWyxLaVWPcsAouV0Vfw7LZ6t4TpgNlmCNRXmg+mQwgABkKJgNuhoAaP4A4qmI6ZWUOO6OlUGPmPWPAIuPmAdcBBkQTpl5pbNrGshnqOjVplsPl5UhssFOngyO42Rhql2PFPNKHtU7QB-2OpAO645lZAbAcwjo+hbQBB46IPyEk6KlEdDPjOKwMJwPPOvOIOyF1P+OskH3EOD31PAvMPwamnkBLBxDpkvT8g9pdOtPfhR0Fw91J17VaPUCzV7XIvxDq7l0hmH111plN0+hx8WFb1SWkuhmS2ov+g+zplzWY2JKKv71SuyV10aMqv07eO9OuIEAeI7EavxDensBaucArLwblOV4DYKsjU+PNOq25ujU8ujPJOcPpahu6uKaM4lJmAJO97pOG6k2U2FRLWcNc22AhPxM2OOOOgDTolJ5OpDgxA-TmLbpzaAAGLsBgf6pYIGViS7lj67kT+Xc5yGeXK7w3E2dTu7tgR7nIQ4D7lQ2fB7RSQH4TnyWHsABgIAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgRQB3ReAC1B2QAmicIlgBDJKgzhkmUABsxALwCeoAKYA3MfMgSU0VmDGxYsodADmoeMgIlyVWnQBMr5lDiToG7bonqABRo8DjwADQa0JoAlKAA3sygyZjq8JCYPohoAPpo6vLgOVo6ekhWwaHwMUnJdfUA-MkhYbX19QBcoNk50GI4QS3Vbe3JTfLIyADWkAAOeSo4AEbI8jl+kIOLK2vIRX0DlWExkerRNaOd3blm6PBi0PA5Auqwipj6qEfDl3VNJWtbiEHk8Xm8xB9vN9TucRqMuj1tJhEGIlvJ1M9Xu9PtBvhdfqB-n51hCUWiMWDsVChjDYnD2gjcmI0GhEJZoANHnj6Y1fDocszWezOfBoVE6QTQIycrchN5+eoAB6zVIsgzcyVE-myrgGBXK1Wsr408X437SnXytbA+DqEUaglawGoOV6633W32k1nCUE6WKZYCMTFA3qNXGqpmy5NHBiKYYzwIdUBpZBnKzCH9NLqTBoPHhHmSgkptMrAQqfOFouXH1R+HXPLqACOmzgg0jVcJfOtzdbsEGvbO-byHrtZ3geaGJ1NnelaOQsCmDt+Tpy88XYtrs4bqXSmRHAS9Hc13Zyu4y0APnvHm9hkulYlms3kohxeNGnaaj+fFZM6X5GxBIm3ghiqYZGriU60icna-BCliTpG0Hbjm2CYGKABEACq0BTNAyDsD4aAqI8YiKqAAC0FHdmU6gYTEADczAAL4eDASaoKAf56GsgGBEqszQQkIznpkECyMOXD8RsAT8cq0GMSxbFeAYCjZE8ewCpglgkroYZybMaBCfEACQcKiT4+FaQhBloHWvLQJA8jyFWXQZog6HcQBpRAR5ITWbZ061gW1b1C+-mafBumbHmqpPPBeYCXZClMaxykcT44UaUULyKCo6gCNZiXKkZpoJGZ7QWaAVkJYFVZNI5zmuaA7noblYgqDkUkiLm8XaYF0EhaFyRZTkmntflhW1XFRUDaaimscBqnfvIFaeJECXGW0wigIEPQqogOC6poCbsVCngxHEiSXFVK2dQdR1ICdORLV8sGXOtakRUUUWAXmm3zQxyRsLA3APJYBVtMxGjyPk3TgLtPRmDgszIDAhWvbiF1XfSQLwKAZZqAAvBAZ0GGughrTAimjHjoDEcsqwYCTmPppmAy2rmgQXUxtNSPjqpOfjJMArRgTvaFhNDcNBJKra0CFT6HmoF62xM5EEsy6AbAyM5BGIFYanQOooCg+DkNa6Fo3jQUHUFbNAPBZrMus0r2Acje2M05VaQXjuvv7nxgvyD81ZNBZ0UYrc8uisHodFl06PqCIxsCLzyTQwUcPXe0qGyNzMCRNhuH4YRpMqZx8AqLMJtUVxT6rfR6egKxi1k5xAIyi6uqoPqYHhriAmYMZFV1FVPTwJgmyBF5vE+YEsqgZg6apAIBmYDBlsy7W9ntE6YuL0PXfoOvQV3veNGyYfBoCiHp-Qal6XeA29yWBDhVZWKPAYq-OP1OPuRWrvgAGTANANwdQYg15TlAETOBNgIE5Ffo-TGDZLRuivGOLkMCc6gAAUgsQb97afxNM7UAGF0G93dIeccTclKoMXkMFeBV3y4KqqNVI4AxQMAWk-VSjCqjH0QscYSY8A6ZXUmeZOYoXC8IYS6EcYRb6ihwW0dhkjOFigAMxyPbj4TulC+jUOvNgqoI8RLiJflPIIs9I4LwUUwsC0CkJkK1jvWC+8r4OMEUCfMM4E6X1tPYhWij4p3ygqaFBejTz5BbEOdsYRSq1lEXUHae1ch2lmFXRscS2zfDsn-G6lik4pwKs3FuMM4ZpJ6IofyNosEqKqAUlJkoqqi1kj1Opo4jyJJOLWcpmdYYm1we0OmnSnhMMArA0A712lBPGZgnpE4+nnHKfUapuQI58QWZMnyl0WkEiqjswRgE1l1EGdnd6bTiSxL7EEMhM16kimEcs8I-TCysXqK3PhnFrZFBgIKNkqdAgHDDIUlIlieiNXkCCrMdlCwNSci5c0LUxAeUCBhAAVACtU7ICqYowpEP5OQcVCmBfcRAMLQUFMYiZeo9DoloHEJeNGoIsSZm8C88F8NEa5FufEvE3L6h0yGMzemg42yLPHFys5EK9xZAySjbJ-K8mit3nvaqSL3pdG-GcaBzKxqQDZeCSEBg8zHJoaY3pm8t7NANayzEJqcR5ljPGHJdzxa2q1o87p0r8mXUugMypwzCz4LxiCR1VJ1RTneuMdSwTgSPEjRy8mDMdiCu1Q2JEZJ0TJtNRGY4ms40hECNm1EubKQptQAsRmMKpzqvrNCgZDKK76OJOuJc3pzgHLpoTaZHaKbljxOUumExxCw2mUyh4hrjVRqkIEQm3tkh01JUCgqYriWrrxWvMdOg7LlOuaUWSUsyFyz1cUaIysPZcl3bDSIW7U5JPOLo1tp4I5PJvF22IByqquoxFs+ezs5lBAjkPcC0aXFevqDvKJr7O6AuFJ+sxZURl0ymSLGSQSEPXqeHxCJ7z6jYZrTsOx2GRTEdWH4wCD8LHytAKcltGVTxlvJHmt8X7uVEbTasOxLGK3svzZebjdbIM1kw0EPjFIBM4jsfh840tc6rJYnUH5bbtT8wjZWwTt5v0jK42rOeekE33CTVpmTwnKy-GA8ZzT0mQJ4aQqaBT0GlNt1fT0YDhUeAwCXMgJYAArbl+DX7vxyJ-Pz-mi6eaQdwHzdC3NMe87hOx0WktTCC5YiBUDAgUphal2LuFA2MefjITAklRQRe5RsmLPnAiVaFXUOmcdpm2L4q4yUaXQJ1YCzaqD9ROs+m64Fpd7R8hPCy2vCLUXxNeYK1MOhvwxs5AmzltFMLKuRDjoxYGYBUjPhMCbASHAuC8C4BgQChYlu5dW5Sob05oXbbqDrWQEN8YwGNgVAq4pQ2WLjgxUeGdg3w3ScUGbNXcJ3Ya3Kv2nW+KVaDVnENvwqoRebQl5+E0uqigEuY-+ljP4YTS4SjQ8lInFdUhPObd2Ej0rx3RiehDQvhYC0XInL7Etza62ljLdGVvXe5+z5+A3og5bmzzv2fO1s3ZhQL3hRhy4ZWkNgPARAyCUGoPQJgLhVMNnyIUUHR7yiWFYbRv2ULIDLBzO+UAAAfG3sEeghGRBUGBtv7dFh6CsVYkDIKRjdw73I0LrfJDtwHklCtk4GxYVOWDTGoVZhN3Ts3uQQvEPjSaDCoL4s6+E2NfYCfVFJ7EpL279bY-Px6GRpDIi2GQpT4ztPJaM9V8eNn1BLeJkGcT9D4vkC17XZLyJ44Aby-LVxTh2Tfva+8779Luf9bBcU5uBp0zdmIM17UXXghRCP7p+QxQlfs6q3QDb9E8Nq+nUgQs4XnvPhB+BHvwvxfnFz9H8E5PjfYiZ-Zf51Lhfo-OJERSRy0pNL919qgWlgsG9d8m999JM2NvBT9X14CzMr8u8b88FMtZ8B9sC-9IwR9ydOIUC19q0HNP9b9wFcDbtrt-9CCFUwt+hUxgwwMB5u9MD6d68d8ws98wgi4SxmDQwB4kCmN+C2YPgOYcwuVIDLFYxZhggDM89egsxIhH98Dn9MpGDSxKY2Cqp78aC1CAD6D31fUrUIDp9k9t8mceCIhyFjDLV4BhDn5QNBCIIdCsCf88Dh9DC0Fu4rQl5wMC0zDN8ODLDG9GleCZktYD8FYe4jF-ChD1DTYFEj4nE3C6MOFpETQeFvDr4VQhE0i-YMiuETRZEcjkib4dBwigiv9CiNFMjkMdFvDHcJV+wCixIGcuCSF98VV+xHDVI-13UBU1VpD0j40MIei6JIg1VvCJipVHgpD4gVMaje8PDS98DvCLUTEqi7IRiJdZ9pi6DMCul7CXkdjzCxJ9DekmjFUslOoJj-Vdj2jA8kV-VriGDjitiHjzj6Cg9LjllEjPcx1O0p9TcnjQiYCqii4O0+jOIBiO02iJES0MJoSpjIxvCB1CY2D2C9jVih9qgASmQG5XxqQQTlj6DU8ITMIVpiSDAYSfBXYXDwDwVdCqC8Sit0dlptIFjgicT+8pc-iCCOTOIaouS6tDJmSt8g9kBxSNi-I+pjdpSzieSVjJsZTDiZpapFSJS6NrstTH55dMYldcB7A1cnBNc6AtEdcJ5rFAhFRxcxJyI4ESZJ5NhvCBjMZAgMxxDsxcxIgpYUNQTETRQD8UY0YQlMZCUyEvSsxOZSp-T3khT6DkZUZ0YXo9FuZ7TyToDuCS1wAi5kywyMY9E6SFcQJoyJCuZwBMyvonhNE8zQBsjDjWZMSqyf18c6iuF6zSimy9EL1NAr17RWyRl1F-I6zIhGjDiBiAMjNo5xxqyCdpzNhidZzHgCSpF5VeM9k2yQiKSczRRqNbDxFI4SzFyo5UAY5S0tzhz3C+TbtAJ2SdchwJhWQrA+yBybxklrydSpcEydcFlwBvT+Ju0vzeSgLYhvCnzkB8g1w1pvTjJacyTUV0UALlCydWI6Zv5iglVOo3YVZxxpkm0dd3TALhNSo-pqygFSLIhyKNjvSKNYZuZvSroEKKCVsUKBhEj2KMQ-pGKsxmKljELrsuLEiz0QlcKcN5Da0yK90-TmQMRPzAyFAzhLAeBJKdgdinSlKrBVK-B4UiwmggFiKC8DNpLYZpwlg5K+yG1kguh0RtLuA1KmY4gAAeLSlShy3S6yv4DQTANCDFAAFUmD4AeDUHggt2lXpjmGfEQAKi6AwlAAAGpIivUncDZLBhAKxSK4gkrid4qkr2s6hUqrAMrLyzKvKbKfK-KMJAq7BwB1B2AuJtJwr5jIqiTYryFErkrbUir0rwBMqTLsryEi5OqCrmhJ40qSrPLEiJhpg5h6LZMDMtp6hUEfQwtJg5CFLfhUEp1IITLqK90ocfYQig8sqCr-hog1rpTPU+tIKXydJxL7R3FbUuhhNYF4EVtTqoMmgVtPLRqpR6ZmV58BrIhrsprZUW5Cw0kfQ3rnTEFMlskHq5yDkrNfL85hMi4cIVh0ZqoswFtLgLkkciwxlvTpl-zAKCMiwqodreKBh6LzUmLnNbUuLI56a+KRsvkRhPlELVqZqNrXMdd9Na0Fra19r5Alq6gVqLreawLDrtrAaqL6MDrkailjqXjPqZZzrNBLq5DRrbq0q3z3ZHrn0yEXqDMYbKDst1atYmglsfqZLFb5Byr6xqaaDgabApcwaPkur2gobohzbML4acLL1DakaRkUa-L0byFMbCycaBhKJqIO88bRgCbla+Y7gsAsxSa5SXpyalNqwqbAbmbSKab1BesoNmaeLhL2bzlObFKeb1qZb9SdY9EjSVcHB1dnAmAaArTAFkRHpEBnoPSLpHiszOj41PoMIHpjo6JEip6noMRDpnwGk3xh7viLbbyYVsZH46Y56B7TpW0N140eQCcJtic6gJtQoy66gCdcsz7khctL7GaayMVWo76kK5Bqwr6Roxiso36spH7j6xjzdnJidgH5BJQv7n6MIhA0B9sVBicYG4GIGn6Cc85MA760HP6UGxjYweABQlg0BCVcHuB8GMBfhIGCcEq366hbTIgVA4giYAA+UAciJKtQUAChsYiiah5IWh0Aeh2BZh8iaidhzhpEglSIUYPhgRphlh0ATFfh5IMR4M4AHh3aRUOhhhoR7WRRjh7BpEgAUjUeka0bkYMd0eUYxSdOoZMcEbkc0vof0eDIAEI4EbGNH+HTHyJXGSZHHAGkTnLjGPGZHtHXLkg-HLgCdnKiYeHbHZHyJonwnLGMJGGgnNG7HyJmGkmnGMVGGYnJH6g4ntG8nsn-GXG1G5H6hZHkhnG6g7SeRFId6+7p60zW06bYFCxZCH8+9Ihd7B6W7Gn+YWpmn57WmMoxoAtXgJwOnfgunPA7GCc+nJj1658vYn72glmxnOVBn07NnX9D6S0CcSko8BBidjnU5IG+swoxjCBoAU4uB4HJHbn7mq5Lmrnv6kTiGchSBCA76vmfm3n3mCcvmABRN+0FwFq5gnAAOTEGhbUdhehadttR2ZCGGcOhadf3aaJk6cfG5jsbYunD2cP33WYCaYxdGaxb+hmcuDmYJdZIzKJZGb3qERM2WSYnbwbnumZf6dbQLmgA2m0iymrLui6kvCTkwFWn1v8zEG0CZWRCyWuuGk2cXvRBFBXupnWbgiFfUkexU0TPFXSHmERq5GrNEsVmDrwq5Gdl1QVk9J5f3vGYVr+vRf7ueixayq1dGFtbXk2dZgiymdKhdeJbuAjXIq9faADuwoNqteqEfnRHxkwssAmAsrWBNeFkNbmvTcCEUh10gHyGXgOi5BVFwCyRHGd0sEiADYQHBVQVsHLbSqGymaugByLyTNLcLK2fVGrfjn0vIWcoLPRgokxlSc1mlD9fTJ7ZqDpQ1QwmcqWeHb0VHZnauH2jRXQineYBXe8owgAG08qbBkAG2KgVsp3Brcqt3qwkr62eq58z3OqMIABdDCS9hkemca4qvqptmt5teoRBvKDFKiID4DkD0DsD7hiN4Z0tiZD96wHKgAHRP06pvdg+-YgIQ5P0SPzZzCkWyxLaVWPcsAouV0Vfw7LZ6t4TpgNlmCNRXmg+mQwgABkKJgNuhoAaP4A4qmI6ZWUOO6OlUGPmPWPAIuPmAdcBBkQTpl5pbNrGshnqOjVplsPl5UhssFOngyO42Rhql2PFPNKHtU7QB-2OpAO645lZAbAcwjo+hbQBB46IPyEk6KlEdDPjOKwMJwPPOvOIOyF1P+OskH3EOD31PAvMPwamnkBLBxDpkvT8g9pdOtPfhR0Fw91J17VaPUCzV7XIvxDq7l0hmH111plN0+hx8WFb1SWkuhmS2ov+g+zplzWY2JKKv71SuyV10aMqv07eO9OuIEAeI7EavxDensBaucArLwblOV4DYKsjU+PNOq25ujU8ujPJOcPpahu6uKaM4lIJO97pOG6k2U2FRLWcNc22AhPxM2OOOOgDTolJ5OpDgxA-TmLbpzaAAGLsBgf6pYIGViC7ljq7kT+Xc5yGeXS7w3E2dT27tgB7nIQ4d7lQ2fB7RSAH4TnyGHsABgIAA

Metalinguistic Abstraction 4.2.2

L−eva lua te value :
undef ined

L−eva lua te input :

try_me(0, head(null));

L−eva lua te value :
1

Representing thunks

Our evaluator must arrange to create thunks when functions are applied to arguments and to

force these thunks later. A thunk must package an expression together with the environment,

so that the argument can be produced later. To force the thunk, we simply extract the expression

and environment from the thunk and evaluate the expression in the environment. We use

actual_value rather than evaluate so that in case the value of the expression is itself a thunk,

we will force that, and so on, until we reach something that is not a thunk:

function force_it(obj) {

return is_thunk(obj)

? actual_value(thunk_exp(obj), thunk_env(obj))

: obj;

}

One easy way to package an expression with an environment is to make a list containing

the expression and the environment. Thus, we create a thunk as follows:

Ifunction delay_it(exp, env) {

return list("thunk", exp, env);

}

function is_thunk(obj) {

return is_tagged_list(obj, "thunk");

}

function thunk_exp(thunk) {

return head(tail(thunk));

}

function thunk_env(thunk) {

return head(tail(tail(thunk)));

}

Actually, what we want for our interpreter is not quite this, but rather thunks that have been

memoized. When a thunk is forced, we will turn it into an evaluated thunk by replacing the

stored expression with its value and changing the thunk tag so that it can be recognized as

already evaluated.
31

31
Notice that we also erase the env from the thunk once the expression’s value has been computed. This makes

431 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgRQB3ReAC1B2QAmicIlgBDJKgzhkmUABsxALwCeoAKYA3MfMgSU0VmDGxYsodADmoeMgIlyVWnQBMr5lDiToG7bonqABRo8DjwADQa0JoAlKAA3sygyZjq8JCYPohoAPpo6vLgOVo6ekhWwaHwMUnJdfUA-MkhYbX19QBcoNk50GI4QS3Vbe3JTfLIyADWkAAOeSo4AEbI8jl+kIOLK2vIRX0DlWExkerRNaOd3blm6PBi0PA5Auqwipj6qEfDl3VNJWtbiEHk8Xm8xB9vN9TucRqMuj1tJhEGIlvJ1M9Xu9PtBvhdfqB-n51hCUWiMWDsVChjDYnD2gjcmI0GhEJZoANHnj6Y1fDocszWezOfBoVE6QTQIycrchN5+eoAB6zVIsgzcyVE-myrgGBXK1Wsr408X437SnXytbA+DqEUaglawGoOV6633W32k1nCUE6WKZYCMTFA3qNXGqpmy5NHBiKYYzwIdUBpZBnKzCH9NLqTBoPHhHmSgkptMrAQqfOFouXH1R+HXPLqACOmzgg0jVcJfOtzdbsEGvbO-byHrtZ3geaGJ1NnelaOQsCmDt+Tpy88XYtrs4bqXSmRHAS9Hc13Zyu4y0APnvHm9hkulYlms3kohxeNGnaaj+fFZM6X5GxBIm3ghiqYZGriU60icna-BCliTpG0Hbjm2CYGKABEACq0BTNAyDsD4aAqI8YiKqAAC0FHdmU6gYTEADczAAL4eDASaoKAf56GsgGBEqszQQkIznpkECyMOXD8RsAT8cq0GMSxbFeAYCjZE8ewCpglgkroYZybMaBCfEACQcKiT4+FaQhBloHWvLQJA8jyFWXQZog6HcQBpRAR5ITWbZ061gW1b1C+-mafBumbHmqpPPBeYCXZClMaxykcT44UaUULyKCo6gCNZiXKkZpoJGZ7QWaAVkJYFVZNI5zmuaA7noblYgqDkUkiLm8XaYF0EhaFyRZTkmntflhW1XFRUDaaimscBqnfvIFaeJECXGW0wigIEPQqogOC6poCbsVCngxHEiSXFVK2dQdR1ICdORLV8sGXOtakRUUUWAXmm3zQxyRsLA3APJYBVtMxGjyPk3TgLtPRmDgszIDAhWvbiF1XfSQLwKAZZqAAvBAZ0GGughrTAimjHjoDEcsqwYCTmPppmAy2rmgQXUxtNSPjqpOfjJMArRgTvaFhNDcNBJKra0CFT6HmoF62xM5EEsy6AbAyM5BGIFYanQOooCg+DkNa6Fo3jQUHUFbNAPBZrMus0r2Acje2M05VaQXjuvv7nxgvyD81ZNBZ0UYrc8uisHodFl06PqCIxsCLzyTQwUcPXe0qGyNzMCRNhuH4YRpMqZx8AqLMJtUVxT6rfR6egKxi1k5xAIyi6uqoPqYHhriAmYMZFV1FVPTwJgmyBF5vE+YEsqgZg6apAIBmYDBlsy7W9ntE6YuL0PXfoOvQV3veNGyYfBoCiHp-Qal6XeA29yWBDhVZWKPAYq-OP1OPuRWrvgAGTANANwdQYg15TlAETOBNgIE5Ffo-TGDZLRuivGOLkMCc6gAAUgsQb97afxNM7UAGF0G93dIeccTclKoMXkMFeBV3y4KqqNVI4AxQMAWk-VSjCqjH0QscYSY8A6ZXUmeZOYoXC8IYS6EcYRb6ihwW0dhkjOFigAMxyPbj4TulC+jUOvNgqoI8RLiJflPIIs9I4LwUUwsC0CkJkK1jvWC+8r4OMEUCfMM4E6X1tPYhWij4p3ygqaFBejTz5BbEOdsYRSq1lEXUHae1ch2lmFXRscS2zfDsn-G6lik4pwKs3FuMM4ZpJ6IofyNosEqKqAUlJkoqqi1kj1Opo4jyJJOLWcpmdYYm1we0OmnSnhMMArA0A712lBPGZgnpE4+nnHKfUapuQI58QWZMnyl0WkEiqjswRgE1l1EGdnd6bTiSxL7EEMhM16kimEcs8I-TCysXqK3PhnFrZFBgIKNkqdAgHDDIUlIlieiNXkCCrMdlCwNSci5c0LUxAeUCBhAAVACtU7ICqYowpEP5OQcVCmBfcRAMLQUFMYiZeo9DoloHEJeNGoIsSZm8C88F8NEa5FufEvE3L6h0yGMzemg42yLPHFys5EK9xZAySjbJ-K8mit3nvaqSL3pdG-GcaBzKxqQDZeCSEBg8zHJoaY3pm8t7NANayzEJqcR5ljPGHJdzxa2q1o87p0r8mXUugMypwzCz4LxiCR1VJ1RTneuMdSwTgSPEjRy8mDMdiCu1Q2JEZJ0TJtNRGY4ms40hECNm1EubKQptQAsRmMKpzqvrNCgZDKK76OJOuJc3pzgHLpoTaZHaKbljxOUumExxCw2mUyh4hrjVRqkIEQm3tkh01JUCgqYriWrrxWvMdOg7LlOuaUWSUsyFyz1cUaIysPZcl3bDSIW7U5JPOLo1tp4I5PJvF22IByqquoxFs+ezs5lBAjkPcC0aXFevqDvKJr7O6AuFJ+sxZURl0ymSLGSQSEPXqeHxCJ7z6jYZrTsOx2GRTEdWH4wCD8LHytAKcltGVTxlvJHmt8X7uVEbTasOxLGK3svzZebjdbIM1kw0EPjFIBM4jsfh840tc6rJYnUH5bbtT8wjZWwTt5v0jK42rOeekE33CTVpmTwnKy-GA8ZzT0mQJ4aQqaBT0GlNt1fT0YDhUeAwCXMgJYAArbl+DX7vxyJ-Pz-mi6eaQdwHzdC3NMe87hOx0WktTCC5YiBUDAgUphal2LuFA2MefjITAklRQRe5RsmLPnAiVaFXUOmcdpm2L4q4yUaXQJ1YCzaqD9ROs+m64Fpd7R8hPCy2vCLUXxNeYK1MOhvwxs5AmzltFMLKuRDjoxYGYBUjPhMCbASHAuC8C4BgQChYlu5dW5Sob05oXbbqDrWQEN8YwGNgVAq4pQ2WLjgxUeGdg3w3ScUGbNXcJ3Ya3Kv2nW+KVaDVnENvwqoRebWlHWejpDYDwEQMglBqD0CYC4VTDZ8iFFB0e8olhWG0b9lCyAywczvlAAAHxZ7BHoIRkQVBgaz9nRYegrFWJAyCkY+cc9yNC5nyQ2cS5JQrZOBsWFTlg0xqFWYaf-0hbkELxD40mgwqC+LJPhNjX2Br1RWu6Mreu-W1Xz8ehkaQyIth2uCFEI-vr5DGEnePGN6g33EyDOa+h2JG3a3Ajh9u-WorCXn6B9k2L131vIFr2u7byMseSdIw06ZuzEGXdqLd7rz3JaDfhrz067w-vokV9nVWoTwfLeh58FHmFbfBVZ-kXcWzVfyYOcL2IlP2X08R5j-b1SiJSTlqk33gt1QWnBcIaFkh3vJNsery+pj6+zMgQs83vBmXU83fb8fjPxwA0T84jv-P1aB8L+T37Dv5-qhd+iTU-oqZgxgYHiHw-dGJ5l89cy9vcSxv9QwB4a9X0wC2YPgOYcwuVF9LFYxZhggDMzdegsxIgO9x9itVIYDCY-8qpn8x9M8t8HdNlxEpUrUH8i8ACdcgDS9Gkwgi531fU-dyDVJQMICIIiCj8R9SCL8r8FVj5XQqEl5wN59wUl8PcwsvcWCZktYKFu4rQJDIDODOJr4VRmFnFB8W8vonhNETQeFhDTYFEj5fED91F-IjDkNZFTCtDl4dBmDaCh8-YOFpETQdFTDOcJV+w+D6D3cV95CIhyEVV+woCmM-13UBU1UkC6NP4MJwi6JIg1VTDkjqCJxWEVM3Cw8z9BDX9TCLUTEXC7J4in9j80i8DOIfVLUsi4jH8xIX991qiRDMllU-CElllyixJ6dnJ-UfDchakJl2DSjpC3cpdmi393NcgO0-9-86cGDZDV8FCMIO1Ijn5oi5irDLFEj1jUjIxTCB1CCD8Fi8iBDo9M9BiBQG5XxqQk86DFigjgCXCi4Vo7iDANjVJXYeCC9XD9CcCrjWiuJtJEDGjW98jbsX9L9gSapQS6tDJxjAipdkBESii-I+pqdUSyjwTwFj9sSNCfAZpaoCSeifBrsCTH4jBy4MosdcB7A8cnBCc6AtFs8ddrFAhFQMs6NyI4ESZJ5NhTDojMZAgMw4DsxcxIgpYUNacxJEjkZUZ0YXo9FCUyExSsxOZSppT3k49J8bhcBFSQkRTwBuSniS85CS1wAi4FS0YjSVTCSaSQJ1T4CuYTSf1diNFpErTQATDgTWZCC3SRlrDDCvTIh7C-S9EL1NAr17RAzZSJEbDQzQBvDgToiAMjNo5xxTS5T40MJ0zNhCUzDHgszrj8yJM9l3TAjzTP5qNyEyyviaiqDAJj4Y5S0Kygz+C08I9AJpimMhwJhWQrAoyYybxkkOy6NrsdSScFlwBxT+Ju1xyKjsspzUF+zkB8g1w1pxTjJ6Urc-YgFZysDIklI6Zv5iglVOo3YVZxxpkm0SdhS5zhNSo-psyfAgEnzIgXyijxSKNYZuZxSrpdzciITstDyBgHSwKMQ-p-ysxAKcjgKbAI9IKHSz0QkrycM0Da1ny90pTmQMQxz4yFAzhLAeBMKdgyi+SiKrBSK-B4UiwmggEHyLcDNsLYZpwlg8KoyG1kguh0RqLuAyKmY4gAAeKikigS2i7iv4DQTANCDFAAFUmD4AeDUHggZ2lXpjmGfEQAKi6AwlAAAGpFCvUucDZLBhAKwny4gjLCz9KjL2s6hTKrALK2y2KpKeKZK5KMJFK7BwB1B2AQTLB1LHgMA0AtKXxdLyFDLjLbUnLzLwBLKWLrLyEi5oqHLmhJ4zKXLJKHSJhpg5hfzZMDMtp6hVzogwtJhUCCLfhUEp1IIWLPy90ocfZkSkVBK2KHL-hyq8rUD0q6g1zBydJ0L7R3FbUuhhNYF4EVsrK+qmgVtJK+rxrmUT92rkpELbscrZUW5Cw0kfRJr+TEF2jLzL13YRRmroNZL85hMi4cIVh0ZqoswFtLgLkkciwxlxTpkZy5yCMiwqo6qYKBhfzzUALnNbVILI5gbYKRsvkRhPkEKfQKrUT5zYhTD9Na0ira1Gr5ASq6gyrNBEaqqFzCxarlqPz6MmqDlkcJi2qZqtYur8aerPVbUBqzLhzTrRzn0yFxqDN9q8TstabLYmglt5qcLyb5B3L6x-rbckrIhrtNqPkYr2hdroheazyjq2brzHhzr+rLr0JrryFbrbSBAHqBhKJqJA8nrRgXrKbLh3qsxPqMSXpvqlNqw-rlrwanyAb1BesoNwboLkLobzlYbCKEbGapzqTMY6SccHB8dnAmAaA2SV5DpjpTpW0C5oAkSzTGCLTRRPoMIHoU6Gy3zkRHpEBnpDpnwGk3wLoyS+auzbtsZH46YC6npU7aTplP4eREiJtCy6gJtQofa6hEjcte7khcsB7QaDCMVWpR7UUPIJ6u7cyspZ6soF7LhEi+j5BCzN7JRB6RpcyhA0B9sVBCzD7j7d7J7Ei85MBR7r7qw96p6MJYweABQlg0BCVn7uBX6MBfgH7EiDLZ66hOTIgVA4giYAA+UAciIytQUAP+3MiiQB5IYB0AUB2BSB8iaiWB+BktLFJB3aRUEBsBjB0ATFVB5IHB0UDCYAfBlBtBiBqB7WchuBy+3MgAUlocIdQeIcYbYeYcoYxT5MAboZ4d5PgVAdYdwYAEI4FhGuH6GSGZGSYJHF7cHhLOGiH0HGHRLkgVH17czhKiYkGRGtHyJDHdGBGMJwGNHuHTHQBIGLHJGqHwGjHIh2gTGGHyIXHHHVGqGpH8HGH6gGHkgpG6guSeRFJm6S6U7lTW0gbYFCwUDI9U9IgW6y627OVIn+YWponW7YmMoxoAtXgJwEnfgknPAtHEi0mTpCyO8vZJ72hqmMmzUsm7gcnk68m68N141EiSklcBBCy+nU4H6+swpczCBoAU4uAT63GJmpmq4RnRn97cHP6chSBCBR7Vn1nFmlnEjVmABRWeg5nZ0ZxIgAOTEDOfwYubOYlttVaZCHadLuejr3iaJkScfG5i0ZWxNNSdyfSaERM2WSYiiY6YBdeb+lKcuHKe+chJhRNOnCacBZBBaIDwbnun+eemNMLkCqylfPrh-C6kvCTkwFWlZv8zEG0CZWRCySZuGiRYrvRBFGrupgabgm0jxaBnpV1M4jGwKuGpvHxdQsVhOs1tFGdl1QVlFMxeaerTJr6qeZideasrZdGElbXiRdZgi2KdKgVaRYhZ8mSmdjVovI1pw14XRHxjPMsAmA4rWAFceEnV9nmAddFEUhJwmi6lFAEnMT3JzNwbS0LJ9ePJ5ZELSzuwSCAv0MAOWPjSm3IUDYdIG2VByzm3xefzTaTbmyjNTZ83TbhZWrSxhLSjphwAxeQEsDgOmTFPyAxQYCBniBsGsSBi0SBmYjoWszLZXgrbgNlsOtNddcYiAA

Metalinguistic Abstraction 4.2.2

Ifunction is_evaluated_thunk(obj) {

return is_tagged_list(obj, "evaluated_thunk");

}

function thunk_value(evaluated_thunk) {

return head(tail(evaluated_thunk));

}

function force_it(obj) {

if (is_thunk(obj)) {

const result = actual_value(

thunk_exp(obj),

thunk_env(obj));

set_head(obj, "evaluated_thunk");

set_head(tail(obj), result); // replace exp with its value

set_tail(tail(obj), null); // forget unneeded env

return result;

} else if(is_evaluated_thunk(obj)) {

return thunk_value(obj);

} else {

return obj;

}

}

Notice that the same delay_it function works both with and without memoization.

Exercise 4.27

Suppose we type in the following de�nitions to the lazy evaluator:

Ilet count = 0;

function id(x) {

count = count + 1;

return x;

}

Give the missing values in the following sequence of interactions, and explain your answers.
32

Iconst w = id(id(10));

L−eva lua te input :

count;

no di�erence in the values returned by the interpreter. It does help save space, however, because removing the

reference from the thunk to the env once it is no longer needed allows this structure to be garbage-collected and its

space recycled, as we will discuss in section 5.3. Similarly, we could have allowed unneeded environments in the

memoized delayed objects of section 3.5.1 to be garbage-collected, by having memo do something like fun = null;
to discard the function fun (which includes the environment in which the lambda expression that makes up the

tail of the stream was evaluated) after storing its value.

32
This exercise demonstrates that the interaction between lazy evaluation and side e�ects can be very confusing.

This is just what you might expect from the discussion in chapter 3.

432 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgRQB3ReAC1B2QAmicIlgBDJKgzhkmUABsxALwCeoAKYA3MfMgSU0VmDGxYsodADmoeMgIlyVWnQBMr5lDiToG7bonqABRo8DjwADQa0JoAlKAA3sygyZjq8JCYPohoAPpo6vLgOVo6ekhWwaHwMUnJdfUA-MkhYbX19QBcoNk50GI4QS3Vbe3JTfLIyADWkAAOeSo4AEbI8jl+kIOLK2vIRX0DlWExkerRNaOd3blm6PBi0PA5Auqwipj6qEfDl3VNJWtbiEHk8Xm8xB9vN9TucRqMuj1tJhEGIlvJ1M9Xu9PtBvhdfqB-n51hCUWiMWDsVChjDYnD2gjcmI0GhEJZoANHnj6Y1fDocszWezOfBoVE6QTQIycrchN5+eoAB6zVIsgzcyVE-myrgGBXK1Wsr408X437SnXytbA+DqEUaglawGoOV6633W32k1nCUE6WKZYCMTFA3qNXGqpmy5NHBiKYYzwIdUBpZBnKzCH9NLqTBoPHhHmSgkptMrAQqfOFouXH1R+HXPLqACOmzgg0jVcJfOtzdbsEGvbO-byHrtZ3geaGJ1NnelaOQsCmDt+Tpy88XYtrs4bqXSmRHAS9Hc13Zyu4y0APnvHm9hkulYlms3kohxeNGnaaj+fFZM6X5GxBIm3ghiqYZGriU60icna-BCliTpG0Hbjm2CYGKABEACq0BTNAyDsD4aAqI8YiKqAAC0FHdmU6gYTEADczAAL4eDASaoKAf56GsgGBEqszQQkIznpkECyMOXD8RsAT8cq0GMSxbFeAYCjZE8ewCpglgkroYZybMaBCfEACQcKiT4+FaQhBloHWvLQJA8jyFWXQZog6HcQBpRAR5ITWbZ061gW1b1C+-mafBumbHmqpPPBeYCXZClMaxykcT44UaUULyKCo6gCNZiXKkZpoJGZ7QWaAVkJYFVZNI5zmuaA7noblYgqDkUkiLm8XaYF0EhaFyRZTkmntflhW1XFRUDaaimscBqnfvIFaeJECXGW0wigIEPQqogOC6poCbsVCngxHEiSXFVK2dQdR1ICdORLV8sGXOtakRUUUWAXmm3zQxyRsLA3APJYBVtMxGjyPk3TgLtPRmDgszIDAhWvbiF1XfSQLwKAZZqAAvBAZ0GGughrTAimjHjoDEcsqwYCTmPppmAy2rmgQXUxtNSPjqpOfjJMArRgTvaFhNDcNBJKra0CFT6HmoF62xM5EEsy6AbAyM5BGIFYanQOooCg+DkNa6Fo3jQUHUFbNAPBZrMus0r2Acje2M05VaQXjuvv7nxgvyD81ZNBZ0UYrc8uisHodFl06PqCIxsCLzyTQwUcPXe0qGyNzMCRNhuH4YRpMqZx8AqLMJtUVxT6rfR6egKxi1k5xAIyi6uqoPqYHhriAmYMZFV1FVPTwJgmyBF5vE+YEsqgZg6apAIBmYDBlsy7W9ntE6YuL0PXfoOvQV3veNGyYfBoCiHp-Qal6XeA29yWBDhVZWKPAYq-OP1OPuRWrvgAGTANANwdQYg15TlAETOBNgIE5Ffo-TGDZLRuivGOLkMCc6gAAUgsQb97afxNM7UAGF0G93dIeccTclKoMXkMFeBV3y4KqqNVI4AxQMAWk-VSjCqjH0QscYSY8A6ZXUmeZOYoXC8IYS6EcYRb6ihwW0dhkjOFigAMxyPbj4TulC+jUOvNgqoI8RLiJflPIIs9I4LwUUwsC0CkJkK1jvWC+8r4OMEUCfMM4E6X1tPYhWij4p3ygqaFBejTz5BbEOdsYRSq1lEXUHae1ch2lmFXRscS2zfDsn-G6lik4pwKs3FuMM4ZpJ6IofyNosEqKqAUlJkoqqi1kj1Opo4jyJJOLWcpmdYYm1we0OmnSnhMMArA0A712lBPGZgnpE4+nnHKfUapuQI58QWZMnyl0WkEiqjswRgE1l1EGdnd6bTiSxL7EEMhM16kimEcs8I-TCysXqK3PhnFrZFBgIKNkqdAgHDDIUlIlieiNXkCCrMdlCwNSci5c0LUxAeUCBhAAVACtU7ICqYowpEP5OQcVCmBfcRAMLQUFMYiZeo9DoloHEJeNGoIsSZm8C88F8NEa5FufEvE3L6h0yGMzemg42yLPHFys5EK9xZAySjbJ-K8mit3nvaqSL3pdG-GcaBzKxqQDZeCSEBg8zHJoaY3pm8t7NANayzEJqcR5ljPGHJdzxa2q1o87p0r8mXUugMypwzCz4LxiCR1VJ1RTneuMdSwTgSPEjRy8mDMdiCu1Q2JEZJ0TJtNRGY4ms40hECNm1EubKQptQAsRmMKpzqvrNCgZDKK76OJOuJc3pzgHLpoTaZHaKbljxOUumExxCw2mUyh4hrjVRqkIEQm3tkh01JUCgqYriWrrxWvMdOg7LlOuaUWSUsyFyz1cUaIysPZcl3bDSIW7U5JPOLo1tp4I5PJvF22IByqquoxFs+ezs5lBAjkPcC0aXFevqDvKJr7O6AuFJ+sxZURl0ymSLGSQSEPXqeHxCJ7z6jYZrTsOx2GRTEdWH4wCD8LHytAKcltGVTxlvJHmt8X7uVEbTasOxLGK3svzZebjdbIM1kw0EPjFIBM4jsfh840tc6rJYnUH5bbtT8wjZWwTt5v0jK42rOeekE33CTVpmTwnKy-GA8ZzT0mQJ4aQqaBT0GlNt1fRNLqooBLmP-pYz+GEeAwCmISjQ8lImMefhPbgQXAjICWAAKyuvS3zdGJ6EPfjkT+cX4tF0C7hOhbmmN5amKBQIxXuVVQgVAsraKYXlZfUV6LuEL2aDK01qYFXLFVbXhSurtW2tBYDY-Iw5cMrSGwHgIgZBKDUHoEwFwqmGz5EKMUTDBtLCsNo37KFkBlg5nfKAAAPod2CPQQjIgqDAo7J2iw9BWKsSBkFIzXdO7kaFB3kjHdeyShWycDYsKnLBpjUKsybZS9t3Ir8MskOQxhUFBXFvCbGvsUHqjwdiW6zVylgqgeRaZLinDYO5UQ4IUQj+8aTQYTI7Qhrz9qdJos2j4nGPIE9f65j3rgrA0ReWgT8jDmRFsK66zrHfXsf1tp6pJGGnTN2Yg4LtRkLIfpeIRT2H4bZdOu8Aj+RdxbNa9TQZoneDhfVc5xz-rEvJecQ17Oqtl4BfVBaZVkXnPOcS9x1L3Ikm2PUme0L1LyuyeZbV2EIuPuzPa+tz4CPcvq2M-94rujFvscp5E8cIbPPOKx4N9Wx34KXdm-6+7yM3PCt48y-0VMwYwMD2N-gqHquS2U5LDX0MA8dfRNb2zD4HMcxcud5Y2MsxggGeR70LMkQ09c8978qvpZKb19N2z7HJeM-R-9vKqVVqncB5J438nzfYfvt9Y8Tvr7QPt4gkv5PrvLel9nwq4+roqFL3AwW3fSf98q8P40sPMytYKFu4rQ38O8N9r4VRmFnEFcxE6MOFpETQeFH9TYFEj5fEmcTc4CNEEDkNZFkCIDl4dA-9P9YC-Z4CuETQdFkCzsJV+wb9v9g8Yd-8MIVV+xz8mM-13UBU1VB8sCS0WDaC6JIg1VkDWCMQP1HgB94gVNSCWci9xcH8s8fALUTFiC7JeC-ZMcRClCTculLUJx-UNCxI19llqDFUslOoxDDC98xIdtnJ-UzDK89DVDrCv9bC3skVRd-UN87sx1O1E90cn8D8Q8j9mCO12Dn5OCO16CxJ-NwjhDIxkCB1CZjdMDNC78FCM9HCVpXw-cYDmcgif8QjiCi4cjxAo9kDXYr95cSCCjwEMj09qgN9aoMDC8V8xdGjM9y9VIaptI8xkBDIC8ldehPCBj90dCFl4JYtBijCfBMcxiN8ZpaoFjZibB+sFjhsdY9FxtcB7BpsnA5s6AtFFsJ5rFAhFROs6NyI4ESZJ5NhkDODMZAgMxe9sxcxIgpYUMttYj40gCUY0YQlMZCUyEXisxOZSpPj3lujOJpd-j0YXo9FuZLiGDod41wAi5kZUZ4SgSN9WZQS+8uZwBkSfj-JNF0TQAkCJi9FB01piSJFSTpFyS8CqTW0Wsr17QiSf0-NsCuFySqCdDOCAMjNo5xw6SvpRQMIhTNgQsRTHgfDNlxFeM9kuTA9SdUSS1qNyEpS6JFjFTAJj4Y5S1lSRk2ivDAIy9FshwJhWQrA2T3Z7RkkTTLFOcoTFsFlwBXj+Ju0nTb9qtXTUErTkB8g1w1pXjjJktZCfAgEPTJ9wtWI6Zv5iglVOo3YVZxxpkm1FtHjPThNSo-oxSgFczIh8zKjXiKNYZuZXiksZDIz6jqsYyBhcSyy-pKysxqzkhvifBOcGz1AN8z0QlUzCciz6M90PjmQMRHTOyFAzhLAeBR9a11CbjpyrA5y-B4UiwmggFszUcDM8y91pwlhxyWsG1kguh0QVzuB5ydh1CAAeZc2cy8tck8v4DQTANCDFAAFUmD4AeDUHgl22lXpjmGfEQAKi6AwlAAAGoACvVzt1thAKxcy4hoKQsILoLXF6g4KrAEKjTYZLoJYug850IMIvy7BwB1B2AuJtIALJCgKG5QKBBwKoKYLbUsLLAcKkLmLULmKMK6g2KcKnyN8Jhpg5hyzZMDMtp6gAzohMtJgR9JzfhUEp1IJdziz9yDlfh8F3skLeL-gZLhKR9eKXM3ggz1s7S0yuR3FbUuhhNYF4EtDdznyTxMcnyjKpR6ZmUvCkLIhOdBLZUW5Cw0kfQ7LbjEFMlslByRQhUaw3z85hMi4cIVh0Zqosw6FfgLkQ1qwxlXjpl3TPSCMiwqplLWyBhyzzUqznNbUezI5yq2yl12hPlzkpyfRZKBivTYhkD9Na1xLa01L5BJK6hpLNBWr5LvTCwlLPLhynyNKilVTtLHKyE9LhqDLPVbVAybSdJIqbwrKZYbKDMQq6zoEFqt4mh8gngXLRyRz5AnL6xir3dHKfL+s-KPkWL2ggrogDrEzwqUzL17TRSZrRgiKrzVgEroAkqFYUqBhKJqJ6d4A0rLgMqAbRl+YsAsxcq-Ingez2r6rNLLFirqrcySrezKqt5qqWyezud0qRhGq6iWqVrXSRtMYdjJsHAZtnAmAaATjAFkRHpEBnoniLpVi0tGC0TC5yEHpjodTkCJanoMRDpnwGk3xBabC5iGiC5oALS6YZa+bTpW0N140eR-NusQs6hutQobV2h-NesTbkhetzaSb-NWobbUUPJ7bDbfispnaso3bLh-M7D5AQt-bJQLawpfihA0BnwOoQtw7I61ACQQ66h-MiKbaiLqwE6RpfjYweABQlg0BCUs7uAc6MBfh07xSMVILna6hzjIgVA4giYAA+UAciaCuO0u-zCiSu5Iau0AWu2BRu8iaiVuh234glSIUYbu3uhupu0ATFHu5INu344ATu3aRUGuuu-u7WOe0ABe-ggAUmXonvXunt3q3p3olJuMrsPr7unqXNruHv4IAEI4FL7V6e6j7yIn6SY773b+CbyD7X7J6N67zkhv7fbfibyiZO6r6p7yIIGQGz6MV67-617r7yJG74H76JT67IGx76hoGN7sGMGf6JSH7l7p76gp7kgH66gLieRFItaebJaETWTczYFCxh9AhutIhtb+btj6GUaeHdaMoxoEtXgJw2HfgOHPBr7HbGHZaQtp8vYSb2hBHmGxt+G7gWo5GdahETNxGSZP5-MSl-sBAQtjHU5S6oNLbfjCBoAU4uAVATbbH7Gq5LGrHE7M6JBC7SBCAbaC6cgfG3H3Gy6MJ-GABRZ28JoJ9x-zAAOTEFieXvidiZuttQ0ZCC0cOiYdtzKokcuCkevsxyJO4e0eelt3GIYaydlt0YjT+jydGAKansUcuhKaqZ0fKcUlQTuhXjad4dbXVo2m0iyjFO6YNh+xeEwFWjMvizEG0CZWRCyVWuGlUflvRBFCVupmUbgiGfUkYnaB0LOtEq2q5DFP7MVl+ostFGdl1QVmeNKaEZAmHLcsyd5rKZlwmQeuuafD1Tud6YefJmyzEdKmedUZyfzK2dGC+uTPMpw14XRHxkTMsAmEPLWGOeFnFXSHmDRcCEUi5tWyPVtEKmK1iwSzFOFvVNFGyyLmAyJfawiNUmKzsRpaQXazFOn2Zfq0qIkjlspdJYOQ2RZZi2y32RGWFRRrjmmVsT4mefaEZYEhJcSwhctjleiAVcpsuDOpyHmIS2pfE1paC3htGE1en2FciDjj2e1jAFSEjv7FC1mA4C4F4C4AwEAkLE1bd3WNJciGhQteBjABkG0jSFABgGNgKgKnFFDUsTjgYlHgzmDXhnSXxf8EJcFdwjVeirqMZb4mFaDSzkytmr9my2bTSjphwHumwEsF72mRePyAxQYCBmkLuPUCBi0SBmYjoWszLZXmQErf6B8rCuhbRcYiAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgRQB3ReAC1B2QAmicIlgBDJKgzhkmUABsxALwCeoAKYA3MfMgSU0VmDGxYsodADmoeMgIlyVWnQBMr5lDiToG7bonqABRo8DjwADQa0JoAlKAA3sygyZjq8JCYPohoAPpo6vLgOVo6ekhWwaHwMUnJdfUA-MkhYbX19QBcoNk50GI4QS3Vbe3JTfLIyADWkAAOeSo4AEbI8jl+kIOLK2vIRX0DlWExkerRNaOd3blm6PBi0PA5Auqwipj6qEfDl3VNJWtbiEHk8Xm8xB9vN9TucRqMuj1tJhEGIlvJ1M9Xu9PtBvhdfqB-n51hCUWiMWDsVChjDYnD2gjcmI0GhEJZoANHnj6Y1fDocszWezOfBoVE6QTQIycrchN5+eoAB6zVIsgzcyVE-myrgGBXK1Wsr408X437SnXytbA+DqEUaglawGoOV6633W32k1nCUE6WKZYCMTFA3qNXGqpmy5NHBiKYYzwIdUBpZBnKzCH9NLqTBoPHhHmSgkptMrAQqfOFouXH1R+HXPLqACOmzgg0jVcJfOtzdbsEGvbO-byHrtZ3geaGJ1NnelaOQsCmDt+Tpy88XYtrs4bqXSmRHAS9Hc13Zyu4y0APnvHm9hkulYlms3kohxeNGnaaj+fFZM6X5GxBIm3ghiqYZGriU60icna-BCliTpG0Hbjm2CYGKABEACq0BTNAyDsD4aAqI8YiKqAAC0FHdmU6gYTEADczAAL4eDASaoKAf56GsgGBEqszQQkIznpkECyMOXD8RsAT8cq0GMSxbFeAYCjZE8ewCpglgkroYZybMaBCfEACQcKiT4+FaQhBloHWvLQJA8jyFWXQZog6HcQBpRAR5ITWbZ061gW1b1C+-mafBumbHmqpPPBeYCXZClMaxykcT44UaUULyKCo6gCNZiXKkZpoJGZ7QWaAVkJYFVZNI5zmuaA7noblYgqDkUkiLm8XaYF0EhaFyRZTkmntflhW1XFRUDaaimscBqnfvIFaeJECXGW0wigIEPQqogOC6poCbsVCngxHEiSXFVK2dQdR1ICdORLV8sGXOtakRUUUWAXmm3zQxyRsLA3APJYBVtMxGjyPk3TgLtPRmDgszIDAhWvbiF1XfSQLwKAZZqAAvBAZ0GGughrTAimjHjoDEcsqwYCTmPppmAy2rmgQXUxtNSPjqpOfjJMArRgTvaFhNDcNBJKra0CFT6HmoF62xM5EEsy6AbAyM5BGIFYanQOooCg+DkNa6Fo3jQUHUFbNAPBZrMus0r2Acje2M05VaQXjuvv7nxgvyD81ZNBZ0UYrc8uisHodFl06PqCIxsCLzyTQwUcPXe0qGyNzMCRNhuH4YRpMqZx8AqLMJtUVxT6rfR6egKxi1k5xAIyi6uqoPqYHhriAmYMZFV1FVPTwJgmyBF5vE+YEsqgZg6apAIBmYDBlsy7W9ntE6YuL0PXfoOvQV3veNGyYfBoCiHp-Qal6XeA29yWBDhVZWKPAYq-OP1OPuRWrvgAGTANANwdQYg15TlAETOBNgIE5Ffo-TGDZLRuivGOLkMCc6gAAUgsQb97afxNM7UAGF0G93dIeccTclKoMXkMFeBV3y4KqqNVI4AxQMAWk-VSjCqjH0QscYSY8A6ZXUmeZOYoXC8IYS6EcYRb6ihwW0dhkjOFigAMxyPbj4TulC+jUOvNgqoI8RLiJflPIIs9I4LwUUwsC0CkJkK1jvWC+8r4OMEUCfMM4E6X1tPYhWij4p3ygqaFBejTz5BbEOdsYRSq1lEXUHae1ch2lmFXRscS2zfDsn-G6lik4pwKs3FuMM4ZpJ6IofyNosEqKqAUlJkoqqi1kj1Opo4jyJJOLWcpmdYYm1we0OmnSnhMMArA0A712lBPGZgnpE4+nnHKfUapuQI58QWZMnyl0WkEiqjswRgE1l1EGdnd6bTiSxL7EEMhM16kimEcs8I-TCysXqK3PhnFrZFBgIKNkqdAgHDDIUlIlieiNXkCCrMdlCwNSci5c0LUxAeUCBhAAVACtU7ICqYowpEP5OQcVCmBfcRAMLQUFMYiZeo9DoloHEJeNGoIsSZm8C88F8NEa5FufEvE3L6h0yGMzemg42yLPHFys5EK9xZAySjbJ-K8mit3nvaqSL3pdG-GcaBzKxqQDZeCSEBg8zHJoaY3pm8t7NANayzEJqcR5ljPGHJdzxa2q1o87p0r8mXUugMypwzCz4LxiCR1VJ1RTneuMdSwTgSPEjRy8mDMdiCu1Q2JEZJ0TJtNRGY4ms40hECNm1EubKQptQAsRmMKpzqvrNCgZDKK76OJOuJc3pzgHLpoTaZHaKbljxOUumExxCw2mUyh4hrjVRqkIEQm3tkh01JUCgqYriWrrxWvMdOg7LlOuaUWSUsyFyz1cUaIysPZcl3bDSIW7U5JPOLo1tp4I5PJvF22IByqquoxFs+ezs5lBAjkPcC0aXFevqDvKJr7O6AuFJ+sxZURl0ymSLGSQSEPXqeHxCJ7z6jYZrTsOx2GRTEdWH4wCD8LHytAKcltGVTxlvJHmt8X7uVEbTasOxLGK3svzZebjdbIM1kw0EPjFIBM4jsfh840tc6rJYnUH5bbtT8wjZWwTt5v0jK42rOeekE33CTVpmTwnKy-GA8ZzT0mQJ4aQqaBT0GlNt1fT0YDhUeAwCXMgJYAArbl+DX7vxyJ-Pz-mi6eaQdwHzdC3NMe87hOx0WktTCC5YiBUDAgUphal2LuFA2MefjITAklRQRe5RsmLPnAiVaFXUOmcdpm2L4q4yUaXQJ1YCzaqD9ROs+m64Fpd7R8hPCy2vCLUXxNeYK1MOhvwxs5AmzltFMLKuRDjoxYGYBUjPhMCbASHAuC8C4BgQChYlu5dW5Sob05oXbbqDrWQEN8YwGNgVAq4pQ2WLjgxUeGdg3w3ScUGbNXcJ3Ya3Kv2nW+KVaDVnENvwqoRebQl5+E0uqigEuY-+ljP4YTS4SjQ8lInFdUhPObd2Ej0rx3RiehDQvhYC0XInL7Etza62ljLdGVvXe5+z5+A3og5bmzzv2fO1s3ZhQL3hRhy4ZWkNgPARAyCUGoPQJgLhVMNnyIUUHR7yiWFYbRv2ULIDLBzO+UAAAfG3sEeghGRBUGBtv7dFh6CsVYkDIKRjdw73I0LrfJDtwHklCtk4GxYVOWDTGoVZhN3Ts3uQQvEPjSaDCoL4s6+E2NfYCfVFJ7EpL279bY-Px6GRpDIi2GQpT4ztPJaM9V8eNn1BLeJkGcT9D4vkC17XZLyJ44Aby-LVxTh2Tfva+8779Luf9bBcU5uBp0zdmIM17UXXghRCP7p+QxQlfs6q3QDb9E8Nq+nUgQs4XnvPhB+BHvwvxfnFz9H8E5PjfYiZ-Zf51Lhfo-OJERSRy0pNL919qgWlgsG9d8m999JM2NvBT9X14CzMr8u8b88FMtZ8B9sC-9IwR9ydOIUC19q0HNP9b9wFcDbtrt-9CCFUwt+hUxgwwMB5u9MD6d68d8ws98wgi4SxmDQwB4kCmN+C2YPgOYcwuVIDLFYxZhggDM89egsxIhH98Dn9MpGDSxKY2Cqp78aC1CAD6D31fUrUIDp9k9t8mceCIhyFjDLV4BhDn5QNBCIIdCsCf88Dh9DC0Fu4rQl5wMC0zDN8ODLDG9GleCZktYD8FYe4jF-ChD1DTYFEj4nE3C6MOFpETQeFvDr4VQhE0i-YMiuETRZEcjkib4dBwigiv9CiNFMjkMdFvDHcJV+wCixIGcuCSF98VV+xHDVI-13UBU1VpD0j40MIei6JIg1VvCJipVHgpD4gVMaje8PDS98DvCLUTEqi7IRiJdZ9pi6DMCul7CXkdjzCxJ9DekmjFUslOoJj-Vdj2jA8kV-VriGDjitiHjzj6Cg9LjllEjPcx1O0p9TcnjQiYCqii4O0+jOIBiO02iJES0MJoSpjIxvCB1CY2D2C9jVih9qgASmQG5XxqQQTlj6DU8ITMIVpiSDAYSfBXYXDwDwVdCqC8Sit0dlptIFjgicT+8pc-iCCOTOIaouS6tDJmSt8g9kBxSNi-I+pjdpSzieSVjJsZTDiZpapFSJS6NrstTH55dMYldcB7A1cnBNc6AtEdcJ5rFAhFRxcxJyI4ESZJ5NhvCBjMZAgMxxDsxcxIgpYUNQTETRQD8UY0YQlMZCUyEvSsxOZSp-T3khT6DkZUZ0YXo9FuZ7TyToDuCS1wAi5kywyMY9E6SFcQJoyJCuZwBMyvonhNE8zQBsjDjWZMSqyf18c6iuF6zSimy9EL1NAr17RWyRl1F-I6zIhGjDiBiAMjNo5xxqyCdpzNhidZzHgCSpF5VeM9k2yQiKSczRRqNbDxFI4SzFyo5UAY5S0tzhz3C+TbtAJ2SdchwJhWQrA+yBybxklrydSpcEydcFlwBvT+Ju0vzeSgLYhvCnzkB8g1w1pvTjJacyTUV0UALlCydWI6Zv5iglVOo3YVZxxpkm0dd3TALhNSo-pqygFSLIhyKNjvSKNYZuZvSroEKKCVsUKBhEj2KMQ-pGKsxmKljELrsuLEiz0QlcKcN5Da0yK90-TmQMRPzAyFAzhLAeBJKdgdinSlKrBVK-B4UiwmggFiKC8DNpLYZpwlg5K+yG1kguh0RtLuA1KmY4gAAeLSlShy3S6yv4DQTANCDFAAFUmD4AeDUHggt2lXpjmGfEQAKi6AwlAAAGpIivUncDZLBhAKxSK4gkrid4qkr2s6hUqrAMrLyzKvKbKfK-KMJAq7BwB1B2AuJtJwr5jIqiTYryFErkrbUir0rwBMqTLsryEi5OqCrmhJ40qSrPLEiJhpg5h6LZMDMtp6hUEfQwtJg5CFLfhUEp1IITLqK90ocfYQig8sqCr-hog1rpTPU+tIKXydJxL7R3FbUuhhNYF4EVtTqoMmgVtPLRqpR6ZmV58BrIhrsprZUW5Cw0kfQ3rnTEFMlskHq5yDkrNfL85hMi4cIVh0ZqoswFtLgLkkciwxlvTpl-zAKCMiwqodreKBh6LzUmLnNbUuLI56a+KRsvkRhPlELVqZqNrXMdd9Na0Fra19r5Alq6gVqLreawLDrtrAaqL6MDrkailjqXjPqZZzrNBLq5DRrbq0q3z3ZHrn0yEXqDMYbKDst1atYmglsfqZLFb5Byr6xqaaDgabApcwaPkur2gobohzbML4acLL1DakaRkUa-L0byFMbCycaBhKJqIO88bRgCbla+Y7gsAsxSa5SXpyalNqwqbAbmbSKab1BesoNmaeLhL2bzlObFKeb1qZb9SdY9EjSVcHB1dnAmAaArTAFkRHpEBnoPSLpHiszOj41PoMIHpjo6JEip6noMRDpnwGk3xh7viLbbyYVsZH46Y56B7TpW0N140eQCcJtic6gJtQoy66gCdcsz7khctL7GaayMVWo76kK5Bqwr6Roxiso36spH7j6xjzdnJidgH5BJQv7n6MIhA0B9sVBicYG4GIGn6Cc85MA760HP6UGxjYweABQlg0BCVcHuB8GMBfhIGCcEq366hbTIgVA4giYAA+UAciJKtQUAChsYiiah5IWh0Aeh2BZh8iaidhzhpEglSIUYPhgRphlh0ATFfh5IMR4M4AHh3aRUOhhhoR7WRRjh7BpEgAUjUeka0bkYMd0eUYxSdOoZMcEbkc0vof0eDIAEI4EbGNH+HTHyJXGSZHHAGkTnLjGPGZHtHXLkg-HLgCdnKiYeHbHZHyJonwnLGMJGGgnNG7HyJmGkmnGMVGGYnJH6g4ntG8nsn-GXG1G5H6hZHkhnG6g7SeRFId6+7p60zW06bYFCxZCH8+9Ihd7B6W7Gn+YWpmn57WmMoxoAtXgJwOnfgunPA7GCc+nJj1658vYn72glmxnOVBn07NnX9D6S0CcSko8BBidjnU5IG+swoxjCBoAU4uB4HJHbn7mq5Lmrnv6kTiGchSBCA76vmfm3n3mCcvmABRN+0FwFq5gnAAOTEGhbUdhehadttR2ZCGGcOhadf3aaJk6cfG5jsbYunD2cP33WYCaYxdGaxb+hmcuDmYJdZIzKJZGb3qERM2WSYnbwbnumZf6dbQLmgA2m0iymrLui6kvCTkwFWn1v8zEG0CZWRCyWuuGk2cXvRBFBXupnWbgiFfUkexU0TPFXSHmERq5GrNEsVmDrwq5Gdl1QVk9J5f3vGYVr+vRf7ueixayq1dGFtbXk2dZgiymdKhdeJbuAjXIq9faADuwoNqteqEfnRHxkwssAmAsrWBNeFkNbmvTcCEUh10gHyGXgOi5BVFwCyRHGd0sEiADYQHBVQVsHLbSqGymaugByLyTNLcLK2fVGrfjn0vIWcoLPRgokxlSc1mlD9fTJ7ZqDpQ1QwmcqWeHb0VHZnauH2jRXQineYBXe8owgAG08qbBkAG2KgVsp3Brcqt3qwkr62eq58z3OqMIABdDCS9hkemca4qvqptmt5teoRBvKDFKiID4DkD0DsD7hiN4Z0tiZD96wHKgAHRP06pvdg+-YgIQ5P0SPzZzCkWyxLaVWPcsAouV0Vfw7LZ6t4TpgNlmCNRXmg+mQwgABkKJgNuhoAaP4A4qmI6ZWUOO6OlUGPmPWPAIuPmAdcBBkQTpl5pbNrGshnqOjVplsPl5UhssFOngyO42Rhql2PFPNKHtU7QB-2OpAO645lZAbAcwjo+hbQBB46IPyEk6KlEdDPjOKwMJwPPOvOIOyF1P+OskH3EOD31PAvMPwamnkBLBxDpkvT8g9pdOtPfhR0Fw91J17VaPUCzV7XIvxDq7l0hmH111plN0+hx8WFb1SWkuhmS2ov+g+zplzWY2JKKv71SuyV10aMqv07eO9OuIEAeI7EavxDensBaucArLwblOV4DYKsjU+PNOq25ujU8ujPJOcPpahu6uKaM4lIxOJO97pOG6k2U2FRLWcNc22AhPxM2OOOOh5cE2kiYAM2AAGIGVBRANeO0mnMwJ76ZH7x4TqhgIGKqRUIGViS7lj67kTmZNgc5yGeXK7w3E2dTu7kGIZhqkmD7vaNeBgZ7orCH4TnyLoeXOHgQMTgn67lH+Xf7+AJiCnpHh2zYVHsAZy1UVGdAdQRh8nsARH-wW0G7o1ZnjgOnnnyHhnkT+XVnsMdn-ILnhHsXvn5HhLoXmnkX0AXn2iRn9QIXqX2BqQTnoAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgRQB3ReAC1B2QAmicIlgBDJKgzhkmUABsxALwCeoAKYA3MfMgSU0VmDGxYsodADmoeMgIlyVWnQBMr5lDiToG7bonqABRo8DjwADQa0JoAlKAA3sygyZjq8JCYPohoAPpo6vLgOVo6ekhWwaHwMUnJdfUA-MkhYbX19QBcoNk50GI4QS3Vbe3JTfLIyADWkAAOeSo4AEbI8jl+kIOLK2vIRX0DlWExkerRNaOd3blm6PBi0PA5Auqwipj6qEfDl3VNJWtbiEHk8Xm8xB9vN9TucRqMuj1tJhEGIlvJ1M9Xu9PtBvhdfqB-n51hCUWiMWDsVChjDYnD2gjcmI0GhEJZoANHnj6Y1fDocszWezOfBoVE6QTQIycrchN5+eoAB6zVIsgzcyVE-myrgGBXK1Wsr408X437SnXytbA+DqEUaglawGoOV6633W32k1nCUE6WKZYCMTFA3qNXGqpmy5NHBiKYYzwIdUBpZBnKzCH9NLqTBoPHhHmSgkptMrAQqfOFouXH1R+HXPLqACOmzgg0jVcJfOtzdbsEGvbO-byHrtZ3geaGJ1NnelaOQsCmDt+Tpy88XYtrs4bqXSmRHAS9Hc13Zyu4y0APnvHm9hkulYlms3kohxeNGnaaj+fFZM6X5GxBIm3ghiqYZGriU60icna-BCliTpG0Hbjm2CYGKABEACq0BTNAyDsD4aAqI8YiKqAAC0FHdmU6gYTEADczAAL4eDASaoKAf56GsgGBEqszQQkIznpkECyMOXD8RsAT8cq0GMSxbFeAYCjZE8ewCpglgkroYZybMaBCfEACQcKiT4+FaQhBloHWvLQJA8jyFWXQZog6HcQBpRAR5ITWbZ061gW1b1C+-mafBumbHmqpPPBeYCXZClMaxykcT44UaUULyKCo6gCNZiXKkZpoJGZ7QWaAVkJYFVZNI5zmuaA7noblYgqDkUkiLm8XaYF0EhaFyRZTkmntflhW1XFRUDaaimscBqnfvIFaeJECXGW0wigIEPQqogOC6poCbsVCngxHEiSXFVK2dQdR1ICdORLV8sGXOtakRUUUWAXmm3zQxyRsLA3APJYBVtMxGjyPk3TgLtPRmDgszIDAhWvbiF1XfSQLwKAZZqAAvBAZ0GGughrTAimjHjoDEcsqwYCTmPppmAy2rmgQXUxtNSPjqpOfjJMArRgTvaFhNDcNBJKra0CFT6HmoF62xM5EEsy6AbAyM5BGIFYanQOooCg+DkNa6Fo3jQUHUFbNAPBZrMus0r2Acje2M05VaQXjuvv7nxgvyD81ZNBZ0UYrc8uisHodFl06PqCIxsCLzyTQwUcPXe0qGyNzMCRNhuH4YRpMqZx8AqLMJtUVxT6rfR6egKxi1k5xAIyi6uqoPqYHhriAmYMZFV1FVPTwJgmyBF5vE+YEsqgZg6apAIBmYDBlsy7W9ntE6YuL0PXfoOvQV3veNGyYfBoCiHp-Qal6XeA29yWBDhVZWKPAYq-OP1OPuRWrvgAGTANANwdQYg15TlAETOBNgIE5Ffo-TGDZLRuivGOLkMCc6gAAUgsQb97afxNM7UAGF0G93dIeccTclKoMXkMFeBV3y4KqqNVI4AxQMAWk-VSjCqjH0QscYSY8A6ZXUmeZOYoXC8IYS6EcYRb6ihwW0dhkjOFigAMxyPbj4TulC+jUOvNgqoI8RLiJflPIIs9I4LwUUwsC0CkJkK1jvWC+8r4OMEUCfMM4E6X1tPYhWij4p3ygqaFBejTz5BbEOdsYRSq1lEXUHae1ch2lmFXRscS2zfDsn-G6lik4pwKs3FuMM4ZpJ6IofyNosEqKqAUlJkoqqi1kj1Opo4jyJJOLWcpmdYYm1we0OmnSnhMMArA0A712lBPGZgnpE4+nnHKfUapuQI58QWZMnyl0WkEiqjswRgE1l1EGdnd6bTiSxL7EEMhM16kimEcs8I-TCysXqK3PhnFrZFBgIKNkqdAgHDDIUlIlieiNXkCCrMdlCwNSci5c0LUxAeUCBhAAVACtU7ICqYowpEP5OQcVCmBfcRAMLQUFMYiZeo9DoloHEJeNGoIsSZm8C88F8NEa5FufEvE3L6h0yGMzemg42yLPHFys5EK9xZAySjbJ-K8mit3nvaqSL3pdG-GcaBzKxqQDZeCSEBg8zHJoaY3pm8t7NANayzEJqcR5ljPGHJdzxa2q1o87p0r8mXUugMypwzCz4LxiCR1VJ1RTneuMdSwTgSPEjRy8mDMdiCu1Q2JEZJ0TJtNRGY4ms40hECNm1EubKQptQAsRmMKpzqvrNCgZDKK76OJOuJc3pzgHLpoTaZHaKbljxOUumExxCw2mUyh4hrjVRqkIEQm3tkh01JUCgqYriWrrxWvMdOg7LlOuaUWSUsyFyz1cUaIysPZcl3bDSIW7U5JPOLo1tp4I5PJvF22IByqquoxFs+ezs5lBAjkPcC0aXFevqDvKJr7O6AuFJ+sxZURl0ymSLGSQSEPXqeHxCJ7z6jYZrTsOx2GRTEdWH4wCD8LHytAKcltGVTxlvJHmt8X7uVEbTasOxLGK3svzZebjdbIM1kw0EPjFIBM4jsfh840tc6rJYnUH5bbtT8wjZWwTt5v0jK42rOeekE33CTVpmTwnKy-GA8ZzT0mQJ4aQqaBT0GlNt1fT0YDhUeAwCXMgJYAArbl+DX7vxyJ-Pz-mi6eaQdwHzdC3NMe87hOx0WktTCC5YiBUDAgUphal2LuFA2MefjITAklRQRe5RsmLPnAiVaFXUOmcdpm2L4q4yUaXQJ1YCzaqD9ROs+m64Fpd7R8hPCy2vCLUXxNeYK1MOhvwxs5AmzltFMLKuRDjoxYGYBUjPhMCbASHAuC8C4BgQChYlu5dW5Sob05oXbbqDrWQEN8YwGNgVAq4pQ2WLjgxUeGdg3w3ScUGbNXcJ3Ya3Kv2nW+KVaDVnENvwqoRebQl5+E0uqigEuY-+ljP4YTS4SjQ8lInFdUhPObd2Ej0rx3RiehDQvhYC0XInL7Etza62ljLdGVvXe5+z5+A3og5bmzzv2fO1s3ZhQL3hRhy4ZWkNgPARAyCUGoPQJgLhVMNnyIUUHR7yiWFYbRv2ULIDLBzO+UAAAfG3sEeghGRBUGBtv7dFh6CsVYkDIKRjdw73I0LrfJDtwHklCtk4GxYVOWDTGoVZhN3Ts3uQQvEPjSaDCoL4s6+E2NfYCfVFJ7EpL279bY-Px6GRpDIi2GQpT4ztPJaM9V8eNn1BLeJkGcT9D4vkC17XZLyJ44Aby-LVxTh2Tfva+8779Luf9bBcU5uBp0zdmIM17UXXghRCP7p+QxQlfs6q3QDb9E8Nq+nUgQs4XnvPhB+BHvwvxfnFz9H8E5PjfYiZ-Zf51Lhfo-OJERSRy0pNL919qgWlgsG9d8m999JM2NvBT9X14CzMr8u8b88FMtZ8B9sC-9IwR9ydOIUC19q0HNP9b9wFcDbtrt-9CCFUwt+hUxgwwMB5u9MD6d68d8ws98wgi4SxmDQwB4kCmN+C2YPgOYcwuVIDLFYxZhggDM89egsxIhH98Dn9MpGDSxKY2Cqp78aC1CAD6D31fUrUIDp9k9t8mceCIhyFjDLV4BhDn5QNBCIIdCsCf88Dh9DC0Fu4rQl5wMC0zDN8ODLDG9GleCZktYD8FYe4jF-ChD1DTYFEj4nE3C6MOFpETQeFvDr4VQhE0i-YMiuETRZEcjkib4dBwigiv9CiNFMjkMdFvDHcJV+wCixIGcuCSF98VV+xHDVI-13UBU1VpD0j40MIei6JIg1VvCJipVHgpD4gVMaje8PDS98DvCLUTEqi7IRiJdZ9pi6DMCul7CXkdjzCxJ9DekmjFUslOoJj-Vdj2jA8kV-VriGDjitiHjzj6Cg9LjllEjPcx1O0p9TcnjQiYCqii4O0+jOIBiO02iJES0MJoSpjIxvCB1CY2D2C9jVih9qgASmQG5XxqQQTlj6DU8ITMIVpiSDAYSfBXYXDwDwVdCqC8Sit0dlptIFjgicT+8pc-iCCOTOIaouS6tDJmSt8g9kBxSNi-I+pjdpSzieSVjJsZTDiZpapFSJS6NrstTH55dMYldcB7A1cnBNc6AtEdcJ5rFAhFRxcxJyI4ESZJ5NhvCBjMZAgMxxDsxcxIgpYUNQTETRQD8UY0YQlMZCUyEvSsxOZSp-T3khT6DkZUZ0YXo9FuZ7TyToDuCS1wAi5kywyMY9E6SFcQJoyJCuZwBMyvonhNE8zQBsjDjWZMSqyf18c6iuF6zSimy9EL1NAr17RWyRl1F-I6zIhGjDiBiAMjNo5xxqyCdpzNhidZzHgCSpF5VeM9k2yQiKSczRRqNbDxFI4SzFyo5UAY5S0tzhz3C+TbtAJ2SdchwJhWQrA+yBybxklrydSpcEydcFlwBvT+Ju0vzeSgLYhvCnzkB8g1w1pvTjJacyTUV0UALlCydWI6Zv5iglVOo3YVZxxpkm0dd3TALhNSo-pqygFSLIhyKNjvSKNYZuZvSroEKKCVsUKBhEj2KMQ-pGKsxmKljELrsuLEiz0QlcKcN5Da0yK90-TmQMRPzAyFAzhLAeBJKdgdinSlKrBVK-B4UiwmggFiKC8DNpLYZpwlg5K+yG1kguh0RtLuA1KmY4gAAeLSlShy3S6yv4DQTANCDFAAFUmD4AeDUHggt2lXpjmGfEQAKi6AwlAAAGpIivUncDZLBhAKxSK4gkrid4qkr2s6hUqrAMrLyzKvKbKfK-KMJAq7BwB1B2AuJtJwr5jIqiTYryFErkrbUir0rwBMqTLsryEi5OqCrmhJ40qSrPLEiJhpg5h6LZMDMtp6hUEfQwtJg5CFLfhUEp1IITLqK90ocfYQig8sqCr-hog1rpTPU+tIKXydJxL7R3FbUuhhNYF4EVtTqoMmgVtPLRqpR6ZmV58BrIhrsprZUW5Cw0kfQ3rnTEFMlskHq5yDkrNfL85hMi4cIVh0ZqoswFtLgLkkciwxlvTpl-zAKCMiwqodreKBh6LzUmLnNbUuLI56a+KRsvkRhPlELVqZqNrXMdd9Na0Fra19r5Alq6gVqLreawLDrtrAaqL6MDrkailjqXjPqZZzrNBLq5DRrbq0q3z3ZHrn0yEXqDMYbKDst1atYmglsfqZLFb5Byr6xqaaDgabApcwaPkur2gobohzbML4acLL1DakaRkUa-L0byFMbCycaBhKJqIO88bRgCbla+Y7gsAsxSa5SXpyalNqwqbAbmbSKab1BesoNmaeLhL2bzlObFKeb1qZb9SdY9EjSVcHB1dnAmAaArTAFkRHpEBnoPSLpHiszOj41PoMIHpjo6JEip6noMRDpnwGk3xh7viLbbyYVsZH46Y56B7TpW0N140eQCcJtic6gJtQoy66gCdcsz7khctL7GaayMVWo76kK5Bqwr6Roxiso36spH7j6xjzdnJidgH5BJQv7n6MIhA0B9sVBicYG4GIGn6Cc85MA760HP6UGxjYweABQlg0BCVcHuB8GMBfhIGCcEq366hbTIgVA4giYAA+UAciJKtQUAChsYiiah5IWh0Aeh2BZh8iaidhzhpEglSIUYPhgRphlh0ATFfh5IMR4M4AHh3aRUOhhhoR7WRRjh7BpEgAUjUeka0bkYMd0eUYxSdOoZMcEbkc0vof0eDIAEI4EbGNH+HTHyJXGSZHHAGkTnLjGPGZHtHXLkg-HLgCdnKiYeHbHZHyJonwnLGMJGGgnNG7HyJmGkmnGMVGGYnJH6g4ntG8nsn-GXG1G5H6hZHkhnG6g7SeRFId6+7p60zW06bYFCxZCH8+9Ihd7B6W7Gn+YWpmn57WmMoxoAtXgJwOnfgunPA7GCc+nJj1658vYn72glmxnOVBn07NnX9D6S0CcSko8BBidjnU5IG+swoxjCBoAU4uB4HJHbn7mq5Lmrnv6kTiGchSBCA76vmfm3n3mCcvmABRN+0FwFq5gnAAOTEGhbUdhehadttR2ZCGGcOhadf3aaJk6cfG5jsbYunD2cP33WYCaYxdGaxb+hmcuDmYJdZIzKJZGb3qERM2WSYnbwbnumZf6dbQLmgA2m0iymrLui6kvCTkwFWn1v8zEG0CZWRCyWuuGk2cXvRBFBXupnWbgiFfUkexU0TPFXSHmERq5GrNEsVmDrwq5Gdl1QVk9J5f3vGYVr+vRf7ueixayq1dGFtbXk2dZgiymdKhdeJbuAjXIq9faADuwoNqteqEfnRHxkwssAmAsrWBNeFkNbmvTcCEUh10gHyGXgOi5BVFwCyRHGd0sEiADYQHBVQVsHLbSqGymaugByLyTNLcLK2fVGrfjn0vIWcoLPRgokxlSc1mlD9fTJ7ZqDpQ1QwmcqWeHb0VHZnauH2jRXQineYBXe8owgAG08qbBkAG2KgVsp3Brcqt3qwkr62eq58z3OqMIABdDCS9hkemca4qvqptmt5teoRBvKDFKiID4DkD0DsD7hiN4Z0tiZD96wHKgAHRP06pvdg+-YgIQ5P0SPzZzCkWyxLaVWPcsAouV0Vfw7LZ6t4TpgNlmCNRXmg+mQwgABkKJgNuhoAaP4A4qmI6ZWUOO6OlUGPmPWPAIuPmAdcBBkQTpl5pbNrGshnqOjVplsPl5UhssFOngyO42Rhql2PFPNKHtU7QB-2OpAO645lZAbAcwjo+hbQBB46IPyEk6KlEdDPjOKwMJwPPOvOIOyF1P+OskH3EOD31PAvMPwamnkBLBxDpkvT8g9pdOtPfhR0Fw91J17VaPUCzV7XIvxDq7l0hmH111plN0+hx8WFb1SWkuhmS2ov+g+zplzWY2JKKv71SuyV10aMqv07eO9OuIEAeI7EavxDensBaucArLwblOV4DYKsjU+PNOq25ujU8ujPJOcPpahu6uKaM4lIJO97pOG6k2U2FRLWcNc22AhPxM2OOOOh5cE2kiYAM2AAGIGVBRANeO0mnMwR76Zb7x4TqhgIGKqRUIGViC7ljq7kTmZNgc5yGeXS7w3E2dT27kGIZhqkmd7vaNeBgJ7orcH4TnyLoeXWHgQMT-Hq75H+XP7+AJicnxHh2zYFHsAZy1UVGdAdQRhsnsABH-wW0a7o1JnjgWn7niH+nkT+XFnsMNn-ITn+H0X3npHhLwX6n4X0AHn2iBn9QQXyX2BqQDnoAA

Metalinguistic Abstraction 4.2.2

L−eva lua te value :

〈response〉

L−eva lua te input :

w;

L−eva lua te value :

〈response〉

L−eva lua te input :

count;

L−eva lua te value :

〈response〉

Exercise 4.28

The function evaluate uses actual_value rather than evaluate to evaluate the operator be-

fore passing it to apply, in order to force the value of the operator. Give an example that

demonstrates the need for this forcing.

Exercise 4.29

Exhibit a program that you would expect to run much more slowly without memoization than

with memoization. Also, consider the following interaction, where the id function is de�ned

as in exercise 4.27 and count starts at 0:

Ifunction square(x) {

return x * x;

}

L−eva lua te input :

square(id(10));

L−eva lua te value :

〈response〉

433 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgRQB3ReAC1B2QAmicIlgBDJKgzhkmUABsxALwCeoAKYA3MfMgSU0VmDGxYsodADmoeMgIlyVWnQBMr5lDiToG7bonqABRo8DjwADQa0JoAlKAA3sygyZjq8JCYPohoAPpo6vLgOVo6ekhWwaHwMUnJdfUA-MkhYbX19QBcoNk50GI4QS3Vbe3JTfLIyADWkAAOeSo4AEbI8jl+kIOLK2vIRX0DlWExkerRNaOd3blm6PBi0PA5Auqwipj6qEfDl3VNJWtbiEHk8Xm8xB9vN9TucRqMuj1tJhEGIlvJ1M9Xu9PtBvhdfqB-n51hCUWiMWDsVChjDYnD2gjcmI0GhEJZoANHnj6Y1fDocszWezOfBoVE6QTQIycrchN5+eoAB6zVIsgzcyVE-myrgGBXK1Wsr408X437SnXytbA+DqEUaglawGoOV6633W32k1nCUE6WKZYCMTFA3qNXGqpmy5NHBiKYYzwIdUBpZBnKzCH9NLqTBoPHhHmSgkptMrAQqfOFouXH1R+HXPLqACOmzgg0jVcJfOtzdbsEGvbO-byHrtZ3geaGJ1NnelaOQsCmDt+Tpy88XYtrs4bqXSmRHAS9Hc13Zyu4y0APnvHm9hkulYlms3kohxeNGnaaj+fFZM6X5GxBIm3ghiqYZGriU60icna-BCliTpG0Hbjm2CYGKABEACq0BTNAyDsD4aAqI8YiKqAAC0FHdmU6gYTEADczAAL4eDASaoKAf56GsgGBEqszQQkIznpkECyMOXD8RsAT8cq0GMSxbFeAYCjZE8ewCpglgkroYZybMaBCfEACQcKiT4+FaQhBloHWvLQJA8jyFWXQZog6HcQBpRAR5ITWbZ061gW1b1C+-mafBumbHmqpPPBeYCXZClMaxykcT44UaUULyKCo6gCNZiXKkZpoJGZ7QWaAVkJYFVZNI5zmuaA7noblYgqDkUkiLm8XaYF0EhaFyRZTkmntflhW1XFRUDaaimscBqnfvIFaeJECXGW0wigIEPQqogOC6poCbsVCngxHEiSXFVK2dQdR1ICdORLV8sGXOtakRUUUWAXmm3zQxyRsLA3APJYBVtMxGjyPk3TgLtPRmDgszIDAhWvbiF1XfSQLwKAZZqAAvBAZ0GGughrTAimjHjoDEcsqwYCTmPppmAy2rmgQXUxtNSPjqpOfjJMArRgTvaFhNDcNBJKra0CFT6HmoF62xM5EEsy6AbAyM5BGIFYanQOooCg+DkNa6Fo3jQUHUFbNAPBZrMus0r2Acje2M05VaQXjuvv7nxgvyD81ZNBZ0UYrc8uisHodFl06PqCIxsCLzyTQwUcPXe0qGyNzMCRNhuH4YRpMqZx8AqLMJtUVxT6rfR6egKxi1k5xAIyi6uqoPqYHhriAmYMZFV1FVPTwJgmyBF5vE+YEsqgZg6apAIBmYDBlsy7W9ntE6YuL0PXfoOvQV3veNGyYfBoCiHp-Qal6XeA29yWBDhVZWKPAYq-OP1OPuRWrvgAGTANANwdQYg15TlAETOBNgIE5Ffo-TGDZLRuivGOLkMCc6gAAUgsQb97afxNM7UAGF0G93dIeccTclKoMXkMFeBV3y4KqqNVI4AxQMAWk-VSjCqjH0QscYSY8A6ZXUmeZOYoXC8IYS6EcYRb6ihwW0dhkjOFigAMxyPbj4TulC+jUOvNgqoI8RLiJflPIIs9I4LwUUwsC0CkJkK1jvWC+8r4OMEUCfMM4E6X1tPYhWij4p3ygqaFBejTz5BbEOdsYRSq1lEXUHae1ch2lmFXRscS2zfDsn-G6lik4pwKs3FuMM4ZpJ6IofyNosEqKqAUlJkoqqi1kj1Opo4jyJJOLWcpmdYYm1we0OmnSnhMMArA0A712lBPGZgnpE4+nnHKfUapuQI58QWZMnyl0WkEiqjswRgE1l1EGdnd6bTiSxL7EEMhM16kimEcs8I-TCysXqK3PhnFrZFBgIKNkqdAgHDDIUlIlieiNXkCCrMdlCwNSci5c0LUxAeUCBhAAVACtU7ICqYowpEP5OQcVCmBfcRAMLQUFMYiZeo9DoloHEJeNGoIsSZm8C88F8NEa5FufEvE3L6h0yGMzemg42yLPHFys5EK9xZAySjbJ-K8mit3nvaqSL3pdG-GcaBzKxqQDZeCSEBg8zHJoaY3pm8t7NANayzEJqcR5ljPGHJdzxa2q1o87p0r8mXUugMypwzCz4LxiCR1VJ1RTneuMdSwTgSPEjRy8mDMdiCu1Q2JEZJ0TJtNRGY4ms40hECNm1EubKQptQAsRmMKpzqvrNCgZDKK76OJOuJc3pzgHLpoTaZHaKbljxOUumExxCw2mUyh4hrjVRqkIEQm3tkh01JUCgqYriWrrxWvMdOg7LlOuaUWSUsyFyz1cUaIysPZcl3bDSIW7U5JPOLo1tp4I5PJvF22IByqquoxFs+ezs5lBAjkPcC0aXFevqDvKJr7O6AuFJ+sxZURl0ymSLGSQSEPXqeHxCJ7z6jYZrTsOx2GRTEdWH4wCD8LHytAKcltGVTxlvJHmt8X7uVEbTasOxLGK3svzZebjdbIM1kw0EPjFIBM4jsfh840tc6rJYnUH5bbtT8wjZWwTt5v0jK42rOeekE33CTVpmTwnKy-GA8ZzT0mQJ4aQqaBT0GlNt1fT0YDhUeAwCXMgJYAArbl+DX7vxyJ-Pz-mi6eaQdwHzdC3NMe87hOx0WktTCC5YiBUDAgUphal2LuFA2MefjITAklRQRe5RsmLPnAiVaFXUOmcdpm2L4q4yUaXQJ1YCzaqD9ROs+m64Fpd7R8hPCy2vCLUXxNeYK1MOhvwxs5AmzltFMLKuRDjoxYGYBUjPhMCbASHAuC8C4BgQChYlu5dW5Sob05oXbbqDrWQEN8YwGNgVAq4pQ2WLjgxUeGdg3w3ScUGbNXcJ3Ya3Kv2nW+KVaDVnENvwqoRebQl5+E0uqigEuY-+ljP4YTS4SjQ8lInFdUhPObd2Ej0rx3RiehDQvhYC0XInL7Etza62ljLdGVvXe5+z5+A3og5bmzzv2fO1s3ZhQL3hRhy4ZWkNgPARAyCUGoPQJgLhVMNnyIUUHR7yiWFYbRv2ULIDLBzO+UAAAfG3sEeghGRBUGBtv7dFh6CsVYkDIKRjdw73I0LrfJDtwHklCtk4GxYVOWDTGoVZhN3Ts3uQQvEPjSaDCoL4s6+E2NfYCfVFJ7EpL279bY-Px6GRpDIi2GQpT4ztPJaM9V8eNn1BLeJkGcT9D4vkC17XZLyJ44Aby-LVxTh2Tfva+8779Luf9bBcU5uBp0zdmIM17UXXghRCP7p+QxQlfs6q3QDb9E8Nq+nUgQs4XnvPhB+BHvwvxfnFz9H8E5PjfYiZ-Zf51Lhfo-OJERSRy0pNL919qgWlgsG9d8m999JM2NvBT9X14CzMr8u8b88FMtZ8B9sC-9IwR9ydOIUC19q0HNP9b9wFcDbtrt-9CCFUwt+hUxgwwMB5u9MD6d68d8ws98wgi4SxmDQwB4kCmN+C2YPgOYcwuVIDLFYxZhggDM89egsxIhH98Dn9MpGDSxKY2Cqp78aC1CAD6D31fUrUIDp9k9t8mceCIhyFjDLV4BhDn5QNBCIIdCsCf88Dh9DC0Fu4rQl5wMC0zDN8ODLDG9GleCZktYD8FYe4jF-ChD1DTYFEj4nE3C6MOFpETQeFvDr4VQhE0i-YMiuETRZEcjkib4dBwigiv9CiNFMjkMdFvDHcJV+wCixIGcuCSF98VV+xHDVI-13UBU1VpD0j40MIei6JIg1VvCJipVHgpD4gVMaje8PDS98DvCLUTEqi7IRiJdZ9pi6DMCul7CXkdjzCxJ9DekmjFUslOoJj-Vdj2jA8kV-VriGDjitiHjzj6Cg9LjllEjPcx1O0p9TcnjQiYCqii4O0+jOIBiO02iJES0MJoSpjIxvCB1CY2D2C9jVih9qgASmQG5XxqQQTlj6DU8ITMIVpiSDAYSfBXYXDwDwVdCqC8Sit0dlptIFjgicT+8pc-iCCOTOIaouS6tDJmSt8g9kBxSNi-I+pjdpSzieSVjJsZTDiZpapFSJS6NrstTH55dMYldcB7A1cnBNc6AtEdcJ5rFAhFRxcxJyI4ESZJ5NhvCBjMZAgMxxDsxcxIgpYUNQTETRQD8UY0YQlMZCUyEvSsxOZSp-T3khT6DkZUZ0YXo9FuZ7TyToDuCS1wAi5kywyMY9E6SFcQJoyJCuZwBMyvonhNE8zQBsjDjWZMSqyf18c6iuF6zSimy9EL1NAr17RWyRl1F-I6zIhGjDiBiAMjNo5xxqyCdpzNhidZzHgCSpF5VeM9k2yQiKSczRRqNbDxFI4SzFyo5UAY5S0tzhz3C+TbtAJ2SdchwJhWQrA+yBybxklrydSpcEydcFlwBvT+Ju0vzeSgLYhvCnzkB8g1w1pvTjJacyTUV0UALlCydWI6Zv5iglVOo3YVZxxpkm0dd3TALhNSo-pqygFSLIhyKNjvSKNYZuZvSroEKKCVsUKBhEj2KMQ-pGKsxmKljELrsuLEiz0QlcKcN5Da0yK90-TmQMRPzAyFAzhLAeBJKdgdinSlKrBVK-B4UiwmggFiKC8DNpLYZpwlg5K+yG1kguh0RtLuA1KmY4gAAeLSlShy3S6yv4DQTANCDFAAFUmD4AeDUHggt2lXpjmGfEQAKi6AwlAAAGpIivUncDZLBhAKxSK4gkrid4qkr2s6hUqrAMrLyzKvKbKfK-KMJAq7BwB1B2AuJtJwr5jIqiTYryFErkrbUir0rwBMqTLsryEi5OqCrmhJ40qSrPLEiJhpg5h6LZMDMtp6hUEfQwtJg5CFLfhUEp1IITLqK90ocfYQig8sqCr-hog1rpTPU+tIKXydJxL7R3FbUuhhNYF4EVtTqoMmgVtPLRqpR6ZmV58BrIhrsprZUW5Cw0kfQ3rnTEFMlskHq5yDkrNfL85hMi4cIVh0ZqoswFtLgLkkciwxlvTpl-zAKCMiwqodreKBh6LzUmLnNbUuLI56a+KRsvkRhPlELVqZqNrXMdd9Na0Fra19r5Alq6gVqLreawLDrtrAaqL6MDrkailjqXjPqZZzrNBLq5DRrbq0q3z3ZHrn0yEXqDMYbKDst1atYmglsfqZLFb5Byr6xqaaDgabApcwaPkur2gobohzbML4acLL1DakaRkUa-L0byFMbCycaBhKJqIO88bRgCbla+Y7gsAsxSa5SXpyalNqwqbAbmbSKab1BesoNmaeLhL2bzlObFKeb1qZb9SdY9EjSVcHB1dnAmAaArTAFkRHpEBnoPSLpHiszOj41PoMIHpjo6JEip6noMRDpnwGk3xh7viLbbyYVsZH46Y56B7TpW0N140eQCcJtic6gJtQoy66gCdcsz7khctL7GaayMVWo76kK5Bqwr6Roxiso36spH7j6xjzdnJidgH5BJQv7n6MIhA0B9sVBicYG4GIGn6Cc85MA760HP6UGxjYweABQlg0BCVcHuB8GMBfhIGCcEq366hbTIgVA4giYAA+UAciJKtQUAChsYiiah5IWh0Aeh2BZh8iaidhzhpEglSIUYPhgRphlh0ATFfh5IMR4M4AHh3aRUOhhhoR7WRRjh7BpEgAUjUeka0bkYMd0eUYxSdOoZMcEbkc0vof0eDIAEI4EbGNH+HTHyJXGSZHHAGkTnLjGPGZHtHXLkg-HLgCdnKiYeHbHZHyJonwnLGMJGGgnNG7HyJmGkmnGMVGGYnJH6g4ntG8nsn-GXG1G5H6hZHkhnG6g7SeRFId6+7p60zW06bYFCxZCH8+9Ihd7B6W7Gn+YWpmn57WmMoxoAtXgJwOnfgunPA7GCc+nJj1658vYn72glmxnOVBn07NnX9D6S0CcSko8BBidjnU5IG+swoxjCBoAU4uB4HJHbn7mq5Lmrnv6kTiGchSBCA76vmfm3n3mCcvmABRN+0FwFq5gnAAOTEGhbUdhehadttR2ZCGGcOhadf3aaJk6cfG5jsbYunD2cP33WYCaYxdGaxb+hmcuDmYJdZIzKJZGb3qERM2WSYnbwbnumZf6dbQLmgA2m0iymrLui6kvCTkwFWn1v8zEG0CZWRCyWuuGk2cXvRBFBXupnWbgiFfUkexU0TPFXSHmERq5GrNEsVmDrwq5Gdl1QVk9J5f3vGYVr+vRf7ueixayq1dGFtbXk2dZgiymdKhdeJbuAjXIq9faADuwoNqteqEfnRHxkwssAmAsrWBNeFkNbmvTcCEUh10gHyGXgOi5BVFwCyRHGd0sEiADYQHBVQVsHLbSqGymaugByLyTNLcLK2fVGrfjn0vIWcoLPRgokxlSc1mlD9fTJ7ZqDpQ1QwmcqWeHb0VHZnauH2jRXQineYBXe8owgAG08qbBkAG2KgVsp3Brcqt3qwkr62eq58z3OqMIABdDCS9hkemca4qvqptmt5teoRBvKDFKiID4DkD0DsD7hiN4Z0tiZD96wHKgAHRP06pvdg+-YgIQ5P0SPzZzCkWyxLaVWPcsAouV0Vfw7LZ6t4TpgNlmCNRXmg+mQwgABkKJgNuhoAaP4A4qmI6ZWUOO6OlUGPmPWPAIuPmAdcBBkQTpl5pbNrGshnqOjVplsPl5UhssFOngyO42Rhql2PFPNKHtU7QB-2OpAO645lZAbAcwjo+hbQBB46IPyEk6KlEdDPjOKwMJwPPOvOIOyF1P+OskH3EOD31PAvMPwamnkBLBxDpkvT8g9pdOtPfhR0Fw91J17VaPUCzV7XIvxDq7l0hmH111plN0+hx8WFb1SWkuhmS2ov+g+zplzWY2JKKv71SuyV10aMqv07eO9OuIEAeI7EavxDensBaucArLwblOV4DYKsjU+PNOq25ujU8ujPJOcPpahu6uKaM4lIJO97pOG6k2U2FRLWcNc22AhPxM2OOOOh5cE2kiYAM2AAGIGVBRANeO0mnMwR76Zb7x4TqhgIGKqRUIGViC7ljq7kTmZNgc5yGeXS7w3E2dT275u19NAFsCEIIT7xY4H+Rlh0H+HiHxHh2zYLoeXWHgQMT8H1j5H+XdHvQVIPaNeBgJ7oranyHnyFHsAZy1UVGdAdQRhqnsABH-wW0a7o1Lnh7x4Jidn4nkT+XHnsMPn-IRhoAA

Metalinguistic Abstraction 4.2.2

L−eva lua te input :

count;

L−eva lua te value :

〈response〉
Give the responses both when the evaluator memoizes and when it does not.

Exercise 4.30

Cy D. Fect, a reformed C programmer, is worried that some side e�ects may never take place,

because the lazy evaluator doesn’t force the expressions in a sequence. Since the value of an

expression in a sequence other than the last one is not used (the expression is there only for its

e�ect, such as assigning to a variable or printing), there can be no subsequent use of this value

(e.g., as an argument to a primitive function) that will cause it to be forced. Cy thus thinks

that when evaluating sequences, we must force all expressions in the sequence except the �nal

one. He proposes to modify evaluate_sequence from section 4.1.1 to use actual_value rather

than evaluate:

function eval_sequence(stmts, env) {

if (is_empty_sequence(stmts)) {

return undefined;

} else if (is_last_statement(stmts)) {

return evaluate(first_statement(stmts),env);

} else {

const first_stmt_value =

actual_value(first_statement(stmts),env);

if (is_return_value(first_stmt_value)) {

return first_stmt_value;

} else {

return eval_sequence(

rest_statements(stmts),env);

}

}

}

a. Ben Bitdiddle thinks Cy is wrong. He shows Cy the for_each function described in

exercise 2.23, which gives an important example of a sequence with side e�ects:

Ifunction for_each(fun, items) {

if (is_null(items)){

return undefined;

} else {

fun(head(items));

for_each(fun, tail(items));

}

434 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgRQB3ReAC1B2QAmicIlgBDJKgzhkmUABsxALwCeoAKYA3MfMgSU0VmDGxYsodADmoeMgIlyVWnQBMr5lDiToG7bonqABRo8DjwADQa0JoAlKAA3sygyZjq8JCYPohoAPpo6vLgOVo6ekhWwaHwMUnJdfUA-MkhYbX19QBcoNk50GI4QS3Vbe3JTfLIyADWkAAOeSo4AEbI8jl+kIOLK2vIRX0DlWExkerRNaOd3blm6PBi0PA5Auqwipj6qEfDl3VNJWtbiEHk8Xm8xB9vN9TucRqMuj1tJhEGIlvJ1M9Xu9PtBvhdfqB-n51hCUWiMWDsVChjDYnD2gjcmI0GhEJZoANHnj6Y1fDocszWezOfBoVE6QTQIycrchN5+eoAB6zVIsgzcyVE-myrgGBXK1Wsr408X437SnXytbA+DqEUaglawGoOV6633W32k1nCUE6WKZYCMTFA3qNXGqpmy5NHBiKYYzwIdUBpZBnKzCH9NLqTBoPHhHmSgkptMrAQqfOFouXH1R+HXPLqACOmzgg0jVcJfOtzdbsEGvbO-byHrtZ3geaGJ1NnelaOQsCmDt+Tpy88XYtrs4bqXSmRHAS9Hc13Zyu4y0APnvHm9hkulYlms3kohxeNGnaaj+fFZM6X5GxBIm3ghiqYZGriU60icna-BCliTpG0Hbjm2CYGKABEACq0BTNAyDsD4aAqI8YiKqAAC0FHdmU6gYTEADczAAL4eDASaoKAf56GsgGBEqszQQkIznpkECyMOXD8RsAT8cq0GMSxbFeAYCjZE8ewCpglgkroYZybMaBCfEACQcKiT4+FaQhBloHWvLQJA8jyFWXQZog6HcQBpRAR5ITWbZ061gW1b1C+-mafBumbHmqpPPBeYCXZClMaxykcT44UaUULyKCo6gCNZiXKkZpoJGZ7QWaAVkJYFVZNI5zmuaA7noblYgqDkUkiLm8XaYF0EhaFyRZTkmntflhW1XFRUDaaimscBqnfvIFaeJECXGW0wigIEPQqogOC6poCbsVCngxHEiSXFVK2dQdR1ICdORLV8sGXOtakRUUUWAXmm3zQxyRsLA3APJYBVtMxGjyPk3TgLtPRmDgszIDAhWvbiF1XfSQLwKAZZqAAvBAZ0GGughrTAimjHjoDEcsqwYCTmPppmAy2rmgQXUxtNSPjqpOfjJMArRgTvaFhNDcNBJKra0CFT6HmoF62xM5EEsy6AbAyM5BGIFYanQOooCg+DkNa6Fo3jQUHUFbNAPBZrMus0r2Acje2M05VaQXjuvv7nxgvyD81ZNBZ0UYrc8uisHodFl06PqCIxsCLzyTQwUcPXe0qGyNzMCRNhuH4YRpMqZx8AqLMJtUVxT6rfR6egKxi1k5xAIyi6uqoPqYHhriAmYMZFV1FVPTwJgmyBF5vE+YEsqgZg6apAIBmYDBlsy7W9ntE6YuL0PXfoOvQV3veNGyYfBoCiHp-Qal6XeA29yWBDhVZWKPAYq-OP1OPuRWrvgAGTANANwdQYg15TlAETOBNgIE5Ffo-TGDZLRuivGOLkMCc6gAAUgsQb97afxNM7UAGF0G93dIeccTclKoMXkMFeBV3y4KqqNVI4AxQMAWk-VSjCqjH0QscYSY8A6ZXUmeZOYoXC8IYS6EcYRb6ihwW0dhkjOFigAMxyPbj4TulC+jUOvNgqoI8RLiJflPIIs9I4LwUUwsC0CkJkK1jvWC+8r4OMEUCfMM4E6X1tPYhWij4p3ygqaFBejTz5BbEOdsYRSq1lEXUHae1ch2lmFXRscS2zfDsn-G6lik4pwKs3FuMM4ZpJ6IofyNosEqKqAUlJkoqqi1kj1Opo4jyJJOLWcpmdYYm1we0OmnSnhMMArA0A712lBPGZgnpE4+nnHKfUapuQI58QWZMnyl0WkEiqjswRgE1l1EGdnd6bTiSxL7EEMhM16kimEcs8I-TCysXqK3PhnFrZFBgIKNkqdAgHDDIUlIlieiNXkCCrMdlCwNSci5c0LUxAeUCBhAAVACtU7ICqYowpEP5OQcVCmBfcRAMLQUFMYiZeo9DoloHEJeNGoIsSZm8C88F8NEa5FufEvE3L6h0yGMzemg42yLPHFys5EK9xZAySjbJ-K8mit3nvaqSL3pdG-GcaBzKxqQDZeCSEBg8zHJoaY3pm8t7NANayzEJqcR5ljPGHJdzxa2q1o87p0r8mXUugMypwzCz4LxiCR1VJ1RTneuMdSwTgSPEjRy8mDMdiCu1Q2JEZJ0TJtNRGY4ms40hECNm1EubKQptQAsRmMKpzqvrNCgZDKK76OJOuJc3pzgHLpoTaZHaKbljxOUumExxCw2mUyh4hrjVRqkIEQm3tkh01JUCgqYriWrrxWvMdOg7LlOuaUWSUsyFyz1cUaIysPZcl3bDSIW7U5JPOLo1tp4I5PJvF22IByqquoxFs+ezs5lBAjkPcC0aXFevqDvKJr7O6AuFJ+sxZURl0ymSLGSQSEPXqeHxCJ7z6jYZrTsOx2GRTEdWH4wCD8LHytAKcltGVTxlvJHmt8X7uVEbTasOxLGK3svzZebjdbIM1kw0EPjFIBM4jsfh840tc6rJYnUH5bbtT8wjZWwTt5v0jK42rOeekE33CTVpmTwnKy-GA8ZzT0mQJ4aQqaBT0GlNt1fT0YDhUeAwCXMgJYAArbl+DX7vxyJ-Pz-mi6eaQdwHzdC3NMe87hOx0WktTCC5YiBUDAgUphal2LuFA2MefjITAklRQRe5RsmLPnAiVaFXUOmcdpm2L4q4yUaXQJ1YCzaqD9ROs+m64Fpd7R8hPCy2vCLUXxNeYK1MOhvwxs5AmzltFMLKuRDjoxYGYBUjPhMCbASHAuC8C4BgQChYlu5dW5Sob05oXbbqDrWQEN8YwGNgVAq4pQ2WLjgxUeGdg3w3ScUGbNXcJ3Ya3Kv2nW+KVaDVnENvwqoRebQl5+E0uqigEuY-+ljP4YTS4SjQ8lInFdUhPObd2Ej0rx3RiehDQvhYC0XInL7Etza62ljLdGVvXe5+z5+A3og5bmzzv2fO1s3ZhQL3hRhy4ZWkNgPARAyCUGoPQJgLhVMNnyIUUHR7yiWFYbRv2ULIDLBzO+UAAAfG3sEeghGRBUGBtv7dFh6CsVYkDIKRjdw73I0LrfJDtwHklCtk4GxYVOWDTGoVZhN3Ts3uQQvEPjSaDCoL4s6+E2NfYCfVFJ7EpL279bY-Px6GRpDIi2GQpT4ztPJaM9V8eNn1BLeJkGcT9D4vkC17XZLyJ44Aby-LVxTh2Tfva+8779Luf9bBcU5uBp0zdmIM17UXXghRCP7p+QxQlfs6q3QDb9E8Nq+nUgQs4XnvPhB+BHvwvxfnFz9H8E5PjfYiZ-Zf51Lhfo-OJERSRy0pNL919qgWlgsG9d8m999JM2NvBT9X14CzMr8u8b88FMtZ8B9sC-9IwR9ydOIUC19q0HNP9b9wFcDbtrt-9CCFUwt+hUxgwwMB5u9MD6d68d8ws98wgi4SxmDQwB4kCmN+C2YPgOYcwuVIDLFYxZhggDM89egsxIhH98Dn9MpGDSxKY2Cqp78aC1CAD6D31fUrUIDp9k9t8mceCIhyFjDLV4BhDn5QNBCIIdCsCf88Dh9DC0Fu4rQl5wMC0zDN8ODLDG9GleCZktYD8FYe4jF-ChD1DTYFEj4nE3C6MOFpETQeFvDr4VQhE0i-YMiuETRZEcjkib4dBwigiv9CiNFMjkMdFvDHcJV+wCixIGcuCSF98VV+xHDVI-13UBU1VpD0j40MIei6JIg1VvCJipVHgpD4gVMaje8PDS98DvCLUTEqi7IRiJdZ9pi6DMCul7CXkdjzCxJ9DekmjFUslOoJj-Vdj2jA8kV-VriGDjitiHjzj6Cg9LjllEjPcx1O0p9TcnjQiYCqii4O0+jOIBiO02iJES0MJoSpjIxvCB1CY2D2C9jVih9qgASmQG5XxqQQTlj6DU8ITMIVpiSDAYSfBXYXDwDwVdCqC8Sit0dlptIFjgicT+8pc-iCCOTOIaouS6tDJmSt8g9kBxSNi-I+pjdpSzieSVjJsZTDiZpapFSJS6NrstTH55dMYldcB7A1cnBNc6AtEdcJ5rFAhFRxcxJyI4ESZJ5NhvCBjMZAgMxxDsxcxIgpYUNQTETRQD8UY0YQlMZCUyEvSsxOZSp-T3khT6DkZUZ0YXo9FuZ7TyToDuCS1wAi5kywyMY9E6SFcQJoyJCuZwBMyvonhNE8zQBsjDjWZMSqyf18c6iuF6zSimy9EL1NAr17RWyRl1F-I6zIhGjDiBiAMjNo5xxqyCdpzNhidZzHgCSpF5VeM9k2yQiKSczRRqNbDxFI4SzFyo5UAY5S0tzhz3C+TbtAJ2SdchwJhWQrA+yBybxklrydSpcEydcFlwBvT+Ju0vzeSgLYhvCnzkB8g1w1pvTjJacyTUV0UALlCydWI6Zv5iglVOo3YVZxxpkm0dd3TALhNSo-pqygFSLIhyKNjvSKNYZuZvSroEKKCVsUKBhEj2KMQ-pGKsxmKljELrsuLEiz0QlcKcN5Da0yK90-TmQMRPzAyFAzhLAeBJKdgdinSlKrBVK-B4UiwmggFiKC8DNpLYZpwlg5K+yG1kguh0RtLuA1KmY4gAAeLSlShy3S6yv4DQTANCDFAAFUmD4AeDUHggt2lXpjmGfEQAKi6AwlAAAGpIivUncDZLBhAKxSK4gkrid4qkr2s6hUqrAMrLyzKvKbKfK-KMJAq7BwB1B2AuJtJwr5jIqiTYryFErkrbUir0rwBMqTLsryEi5OqCrmhJ40qSrPLEiJhpg5h6LZMDMtp6hUEfQwtJg5CFLfhUEp1IITLqK90ocfYQig8sqCr-hog1rpTPU+tIKXydJxL7R3FbUuhhNYF4EVtTqoMmgVtPLRqpR6ZmV58BrIhrsprZUW5Cw0kfQ3rnTEFMlskHq5yDkrNfL85hMi4cIVh0ZqoswFtLgLkkciwxlvTpl-zAKCMiwqodreKBh6LzUmLnNbUuLI56a+KRsvkRhPlELVqZqNrXMdd9Na0Fra19r5Alq6gVqLreawLDrtrAaqL6MDrkailjqXjPqZZzrNBLq5DRrbq0q3z3ZHrn0yEXqDMYbKDst1atYmglsfqZLFb5Byr6xqaaDgabApcwaPkur2gobohzbML4acLL1DakaRkUa-L0byFMbCycaBhKJqIO88bRgCbla+Y7gsAsxSa5SXpyalNqwqbAbmbSKab1BesoNmaeLhL2bzlObFKeb1qZb9SdY9EjSVcHB1dnAmAaArTAFkRHpEBnoPSLpHiszOj41PoMIHpjo6JEip6noMRDpnwGk3xh7viLbbyYVsZH46Y56B7TpW0N140eQCcJtic6gJtQoy66gCdcsz7khctL7GaayMVWo76kK5Bqwr6Roxiso36spH7j6xjzdnJidgH5BJQv7n6MIhA0B9sVBicYG4GIGn6Cc85MA760HP6UGxjYweABQlg0BCVcHuB8GMBfhIGCcEq366hbTIgVA4giYAA+UAciJKtQUAChsYiiah5IWh0Aeh2BZh8iaidhzhpEglSIUYPhgRphlh0ATFfh5IMR4M4AHh3aRUOhhhoR7WRRjh7BpEgAUjUeka0bkYMd0eUYxSdOoZMcEbkc0vof0eDIAEI4EbGNH+HTHyJXGSZHHAGkTnLjGPGZHtHXLkg-HLgCdnKiYeHbHZHyJonwnLGMJGGgnNG7HyJmGkmnGMVGGYnJH6g4ntG8nsn-GXG1G5H6hZHkhnG6g7SeRFId6+7p60zW06bYFCxZCH8+9Ihd7B6W7Gn+YWpmn57WmMoxoAtXgJwOnfgunPA7GCc+nJj1658vYn72glmxnOVBn07NnX9D6S0CcSko8BBidjnU5IG+swoxjCBoAU4uB4HJHbn7mq5Lmrnv6kTiGchSBCA76vmfm3n3mCcvmABRN+0FwFq5gnAAOTEGhbUdhehadttR2ZCGGcOhadf3aaJk6cfG5jsbYunD2cP33WYCaYxdGaxb+hmcuDmYJdZIzKJZGb3qERM2WSYnbwbnumZf6dbQLmgA2m0iymrLui6kvCTkwFWn1v8zEG0CZWRCyWuuGk2cXvRBFBXupnWbgiFfUkexU0TPFXSHmERq5GrNEsVmDrwq5Gdl1QVk9J5f3vGYVr+vRf7ueixayq1dGFtbXk2dZgiymdKhdeJbuAjXIq9faADuwoNqteqEfnRHxkwssAmAsrWBNeFkNbmvTcCEUh10gHyGXgOi5BVFwCyRHGd0sEiADYQHBVQVsHLbSqGymaugByLyTNLcLK2fVGrfjn0vIWcoLPRgokxlSc1mlD9fTJ7ZqDpQ1QwmcqWeHb0VHZnauH2jRXQineYBXe8owgAG08qbBkAG2KgVsp3Brcqt3qwkr62eq58z3OqMIABdDCS9hkemca4qvqptmt5teoRBvKDFKiID4DkD0DsD7hiN4Z0tiZD96wHKgAHRP06pvdg+-YgIQ5P0SPzZzCkWyxLaVWPcsAouV0Vfw7LZ6t4TpgNlmCNRXmg+mQwgABkKJgNuhoAaP4A4qmI6ZWUOO6OlUGPmPWPAIuPmAdcBBkQTpl5pbNrGshnqOjVplsPl5UhssFOngyO42Rhql2PFPNKHtU7QB-2OpAO645lZAbAcwjo+hbQBB46IPyEk6KlEdDPjOKwMJwPPOvOIOyF1P+OskH3EOD31PAvMPwamnkBLBxDpkvT8g9pdOtPfhR0Fw91J17VaPUCzV7XIvxDq7l0hmH111plN0+hx8WFb1SWkuhmS2ov+g+zplzWY2JKKv71SuyV10aMqv07eO9OuIEAeI7EavxDensBaucArLwblOV4DYKsjU+PNOq25ujU8ujPJOcPpahu6uKaM4lIJO97pOG6k2U2FRLWcNc22AhPxM2OOOOgDTolStigTAHLPouA7QzieUQcg9XucAClFiqpzmylnOhkadPBum1PPQCkgYHvIFQZ+WQapdvvIeKloZ6ULuWOruRP5cAeBBX3kh5dLvDcTZ1Pbvntl4YeHLHTmG3PbTpxP4ABWAAdnHJcAYEiAAA42eis2BGf5ctEWf5cOf8f0fCeHbNgSewBsegA

Metalinguistic Abstraction 4.2.2

}

He claims that the evaluator in the text (with the original eval_sequence) handles this

correctly:

L−eva lua te input :

for_each(x => display(x),

list(57, 321, 88));

57
321
88
L−eva lua te value :
undef ined
Explain why Ben is right about the behavior of for_each.

b. Cy agrees that Ben is right about the for_each example, but says that that’s not the kind

of program he was thinking about when he proposed his change to eval_sequence. He

de�nes the following two functions in the lazy evaluator:

Ifunction f1(x) {

x = pair(x, list(2));

return x;

}

function f2(x) {

function f(e) {

e;

return x;

}

function set_x(y) {

x = y;

}

return f(set_x(pair(x, list(2))));

}

What are the values of f1(1) and f2(1) with the original eval_sequence? What would

the values be with Cy’s proposed change to eval_sequence?

c. Cy also points out that changing eval_sequence as he proposes does not a�ect the

behavior of the example in part a. Explain why this is true.

d. How do you think sequences ought to be treated in the lazy evaluator? Do you like Cy’s

approach, the approach in the text, or some other approach?

435 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgRQB3ReAC1B2QAmicIlgBDJKgzhkmUABsxALwCeoAKYA3MfMgSU0VmDGxYsodADmoeMgIlyVWnQBMr5lDiToG7bonqABRo8DjwADQa0JoAlKAA3sygyZjq8JCYPohoAPpo6vLgOVo6ekhWwaHwMUnJdfUA-MkhYbX19QBcoNk50GI4QS3Vbe3JTfLIyADWkAAOeSo4AEbI8jl+kIOLK2vIRX0DlWExkerRNaOd3blm6PBi0PA5Auqwipj6qEfDl3VNJWtbiEHk8Xm8xB9vN9TucRqMuj1tJhEGIlvJ1M9Xu9PtBvhdfqB-n51hCUWiMWDsVChjDYnD2gjcmI0GhEJZoANHnj6Y1fDocszWezOfBoVE6QTQIycrchN5+eoAB6zVIsgzcyVE-myrgGBXK1Wsr408X437SnXytbA+DqEUaglawGoOV6633W32k1nCUE6WKZYCMTFA3qNXGqpmy5NHBiKYYzwIdUBpZBnKzCH9NLqTBoPHhHmSgkptMrAQqfOFouXH1R+HXPLqACOmzgg0jVcJfOtzdbsEGvbO-byHrtZ3geaGJ1NnelaOQsCmDt+Tpy88XYtrs4bqXSmRHAS9Hc13Zyu4y0APnvHm9hkulYlms3kohxeNGnaaj+fFZM6X5GxBIm3ghiqYZGriU60icna-BCliTpG0Hbjm2CYGKABEACq0BTNAyDsD4aAqI8YiKqAAC0FHdmU6gYTEADczAAL4eDASaoKAf56GsgGBEqszQQkIznpkECyMOXD8RsAT8cq0GMSxbFeAYCjZE8ewCpglgkroYZybMaBCfEACQcKiT4+FaQhBloHWvLQJA8jyFWXQZog6HcQBpRAR5ITWbZ061gW1b1C+-mafBumbHmqpPPBeYCXZClMaxykcT44UaUULyKCo6gCNZiXKkZpoJGZ7QWaAVkJYFVZNI5zmuaA7noblYgqDkUkiLm8XaYF0EhaFyRZTkmntflhW1XFRUDaaimscBqnfvIFaeJECXGW0wigIEPQqogOC6poCbsVCngxHEiSXFVK2dQdR1ICdORLV8sGXOtakRUUUWAXmm3zQxyRsLA3APJYBVtMxGjyPk3TgLtPRmDgszIDAhWvbiF1XfSQLwKAZZqAAvBAZ0GGughrTAimjHjoDEcsqwYCTmPppmAy2rmgQXUxtNSPjqpOfjJMArRgTvaFhNDcNBJKra0CFT6HmoF62xM5EEsy6AbAyM5BGIFYanQOooCg+DkNa6Fo3jQUHUFbNAPBZrMus0r2Acje2M05VaQXjuvv7nxgvyD81ZNBZ0UYrc8uisHodFl06PqCIxsCLzyTQwUcPXe0qGyNzMCRNhuH4YRpMqZx8AqLMJtUVxT6rfR6egKxi1k5xAIyi6uqoPqYHhriAmYMZFV1FVPTwJgmyBF5vE+YEsqgZg6apAIBmYDBlsy7W9ntE6YuL0PXfoOvQV3veNGyYfBoCiHp-Qal6XeA29yWBDhVZWKPAYq-OP1OPuRWrvgAGTANANwdQYg15TlAETOBNgIE5Ffo-TGDZLRuivGOLkMCc6gAAUgsQb97afxNM7UAGF0G93dIeccTclKoMXkMFeBV3y4KqqNVI4AxQMAWk-VSjCqjH0QscYSY8A6ZXUmeZOYoXC8IYS6EcYRb6ihwW0dhkjOFigAMxyPbj4TulC+jUOvNgqoI8RLiJflPIIs9I4LwUUwsC0CkJkK1jvWC+8r4OMEUCfMM4E6X1tPYhWij4p3ygqaFBejTz5BbEOdsYRSq1lEXUHae1ch2lmFXRscS2zfDsn-G6lik4pwKs3FuMM4ZpJ6IofyNosEqKqAUlJkoqqi1kj1Opo4jyJJOLWcpmdYYm1we0OmnSnhMMArA0A712lBPGZgnpE4+nnHKfUapuQI58QWZMnyl0WkEiqjswRgE1l1EGdnd6bTiSxL7EEMhM16kimEcs8I-TCysXqK3PhnFrZFBgIKNkqdAgHDDIUlIlieiNXkCCrMdlCwNSci5c0LUxAeUCBhAAVACtU7ICqYowpEP5OQcVCmBfcRAMLQUFMYiZeo9DoloHEJeNGoIsSZm8C88F8NEa5FufEvE3L6h0yGMzemg42yLPHFys5EK9xZAySjbJ-K8mit3nvaqSL3pdG-GcaBzKxqQDZeCSEBg8zHJoaY3pm8t7NANayzEJqcR5ljPGHJdzxa2q1o87p0r8mXUugMypwzCz4LxiCR1VJ1RTneuMdSwTgSPEjRy8mDMdiCu1Q2JEZJ0TJtNRGY4ms40hECNm1EubKQptQAsRmMKpzqvrNCgZDKK76OJOuJc3pzgHLpoTaZHaKbljxOUumExxCw2mUyh4hrjVRqkIEQm3tkh01JUCgqYriWrrxWvMdOg7LlOuaUWSUsyFyz1cUaIysPZcl3bDSIW7U5JPOLo1tp4I5PJvF22IByqquoxFs+ezs5lBAjkPcC0aXFevqDvKJr7O6AuFJ+sxZURl0ymSLGSQSEPXqeHxCJ7z6jYZrTsOx2GRTEdWH4wCD8LHytAKcltGVTxlvJHmt8X7uVEbTasOxLGK3svzZebjdbIM1kw0EPjFIBM4jsfh840tc6rJYnUH5bbtT8wjZWwTt5v0jK42rOeekE33CTVpmTwnKy-GA8ZzT0mQJ4aQqaBT0GlNt1fT0YDhUeAwCXMgJYAArbl+DX7vxyJ-Pz-mi6eaQdwHzdC3NMe87hOx0WktTCC5YiBUDAgUphal2LuFA2MefjITAklRQRe5RsmLPnAiVaFXUOmcdpm2L4q4yUaXQJ1YCzaqD9ROs+m64Fpd7R8hPCy2vCLUXxNeYK1MOhvwxs5AmzltFMLKuRDjoxYGYBUjPhMCbASHAuC8C4BgQChYlu5dW5Sob05oXbbqDrWQEN8YwGNgVAq4pQ2WLjgxUeGdg3w3ScUGbNXcJ3Ya3Kv2nW+KVaDVnENvwqoRebQl5+E0uqigEuY-+ljP4YTS4SjQ8lInFdUhPObd2Ej0rx3RiehDQvhYC0XInL7Etza62ljLdGVvXe5+z5+A3og5bmzzv2fO1s3ZhQL3hRhy4ZWkNgPARAyCUGoPQJgLhVMNnyIUUHR7yiWFYbRv2ULIDLBzO+UAAAfG3sEeghGRBUGBtv7dFh6CsVYkDIKRjdw73I0LrfJDtwHklCtk4GxYVOWDTGoVZhN3Ts3uQQvEPjSaDCoL4s6+E2NfYCfVFJ7EpL279bY-Px6GRpDIi2GQpT4ztPJaM9V8eNn1BLeJkGcT9D4vkC17XZLyJ44Aby-LVxTh2Tfva+8779Luf9bBcU5uBp0zdmIM17UXXghRCP7p+QxQlfs6q3QDb9E8Nq+nUgQs4XnvPhB+BHvwvxfnFz9H8E5PjfYiZ-Zf51Lhfo-OJERSRy0pNL919qgWlgsG9d8m999JM2NvBT9X14CzMr8u8b88FMtZ8B9sC-9IwR9ydOIUC19q0HNP9b9wFcDbtrt-9CCFUwt+hUxgwwMB5u9MD6d68d8ws98wgi4SxmDQwB4kCmN+C2YPgOYcwuVIDLFYxZhggDM89egsxIhH98Dn9MpGDSxKY2Cqp78aC1CAD6D31fUrUIDp9k9t8mceCIhyFjDLV4BhDn5QNBCIIdCsCf88Dh9DC0Fu4rQl5wMC0zDN8ODLDG9GleCZktYD8FYe4jF-ChD1DTYFEj4nE3C6MOFpETQeFvDr4VQhE0i-YMiuETRZEcjkib4dBwigiv9CiNFMjkMdFvDHcJV+wCixIGcuCSF98VV+xHDVI-13UBU1VpD0j40MIei6JIg1VvCJipVHgpD4gVMaje8PDS98DvCLUTEqi7IRiJdZ9pi6DMCul7CXkdjzCxJ9DekmjFUslOoJj-Vdj2jA8kV-VriGDjitiHjzj6Cg9LjllEjPcx1O0p9TcnjQiYCqii4O0+jOIBiO02iJES0MJoSpjIxvCB1CY2D2C9jVih9qgASmQG5XxqQQTlj6DU8ITMIVpiSDAYSfBXYXDwDwVdCqC8Sit0dlptIFjgicT+8pc-iCCOTOIaouS6tDJmSt8g9kBxSNi-I+pjdpSzieSVjJsZTDiZpapFSJS6NrstTH55dMYldcB7A1cnBNc6AtEdcJ5rFAhFRxcxJyI4ESZJ5NhvCBjMZAgMxxDsxcxIgpYUNQTETRQD8UY0YQlMZCUyEvSsxOZSp-T3khT6DkZUZ0YXo9FuZ7TyToDuCS1wAi5kywyMY9E6SFcQJoyJCuZwBMyvonhNE8zQBsjDjWZMSqyf18c6iuF6zSimy9EL1NAr17RWyRl1F-I6zIhGjDiBiAMjNo5xxqyCdpzNhidZzHgCSpF5VeM9k2yQiKSczRRqNbDxFI4SzFyo5UAY5S0tzhz3C+TbtAJ2SdchwJhWQrA+yBybxklrydSpcEydcFlwBvT+Ju0vzeSgLYhvCnzkB8g1w1pvTjJacyTUV0UALlCydWI6Zv5iglVOo3YVZxxpkm0dd3TALhNSo-pqygFSLIhyKNjvSKNYZuZvSroEKKCVsUKBhEj2KMQ-pGKsxmKljELrsuLEiz0QlcKcN5Da0yK90-TmQMRPzAyFAzhLAeBJKdgdinSlKrBVK-B4UiwmggFiKC8DNpLYZpwlg5K+yG1kguh0RtLuA1KmY4gAAeLSlShy3S6yv4DQTANCDFAAFUmD4AeDUHggt2lXpjmGfEQAKi6AwlAAAGpIivUncDZLBhAKxSK4gkrid4qkr2s6hUqrAMrLyzKvKbKfK-KMJAq7BwB1B2AuJtJwr5jIqiTYryFErkrbUir0rwBMqTLsryEi5OqCrmhJ40qSrPLEiJhpg5h6LZMDMtp6hUEfQwtJg5CFLfhUEp1IITLqK90ocfYQig8sqCr-hog1rpTPU+tIKXydJxL7R3FbUuhhNYF4EVtTqoMmgVtPLRqpR6ZmV58BrIhrsprZUW5Cw0kfQ3rnTEFMlskHq5yDkrNfL85hMi4cIVh0ZqoswFtLgLkkciwxlvTpl-zAKCMiwqodreKBh6LzUmLnNbUuLI56a+KRsvkRhPlELVqZqNrXMdd9Na0Fra19r5Alq6gVqLreawLDrtrAaqL6MDrkailjqXjPqZZzrNBLq5DRrbq0q3z3ZHrn0yEXqDMYbKDst1atYmglsfqZLFb5Byr6xqaaDgabApcwaPkur2gobohzbML4acLL1DakaRkUa-L0byFMbCycaBhKJqIO88bRgCbla+Y7gsAsxSa5SXpyalNqwqbAbmbSKab1BesoNmaeLhL2bzlObFKeb1qZb9SdY9EjSVcHB1dnAmAaArTAFkRHpEBnoPSLpHiszOj41PoMIHpjo6JEip6noMRDpnwGk3xh7viLbbyYVsZH46Y56B7TpW0N140eQCcJtic6gJtQoy66gCdcsz7khctL7GaayMVWo76kK5Bqwr6Roxiso36spH7j6xjzdnJidgH5BJQv7n6MIhA0B9sVBicYG4GIGn6Cc85MA760HP6UGxjYweABQlg0BCVcHuB8GMBfhIGCcEq366hbTIgVA4giYAA+UAciJKtQUAChsYiiah5IWh0Aeh2BZh8iaidhzhpEglSIUYPhgRphlh0ATFfh5IMR4M4AHh3aRUOhhhoR7WRRjh7BpEgAUjUeka0bkYMd0eUYxSdOoZMcEbkc0vof0eDIAEI4EbGNH+HTHyJXGSZHHAGkTnLjGPGZHtHXLkg-HLgCdnKiYeHbHZHyJonwnLGMJGGgnNG7HyJmGkmnGMVGGYnJH6g4ntG8nsn-GXG1G5H6hZHkhnG6g7SeRFId6+7p60zW06bYFCxZCH8+9Ihd7B6W7Gn+YWpmn57WmMoxoAtXgJwOnfgunPA7GCc+nJj1658vYn72glmxnOVBn07NnX9D6S0CcSko8BBidjnU5IG+swoxjCBoAU4uB4HJHbn7mq5Lmrnv6kTiGchSBCA76vmfm3n3mCcvmABRN+0FwFq5gnAAOTEGhbUdhehadttR2ZCGGcOhadf3aaJk6cfG5jsbYunD2cP33WYCaYxdGaxb+hmcuDmYJdZIzKJZGb3qERM2WSYnbwbnumZf6dbQLmgA2m0iymrLui6kvCTkwFWn1v8zEG0CZWRCyWuuGk2cXvRBFBXupnWbgiFfUkexU0TPFXSHmERq5GrNEsVmDrwq5Gdl1QVk9J5f3vGYVr+vRf7ueixayq1dGFtbXk2dZgiymdKhdeJbuAjXIq9faADuwoNqteqEfnRHxkwssAmAsrWBNeFkNbmvTcCEUh10gHyGXgOi5BVFwCyRHGd0sEiADYQHBVQVsHLbSqGymaugByLyTNLcLK2fVGrfjn0vIWcoLPRgokxlSc1mlD9fTJ7ZqDpQ1QwmcqWeHb0VHZnauH2jRXQineYBXe8owgAG08qbBkAG2KgVsp3Brcqt3qwkr62eq58z3OqMIABdDCS9hkemca4qvqptmt5teoRBvKDFKiID4DkD0DsD7hiN4Z0tiZD96wHKgAHRP06pvdg+-YgIQ5P0SPzZzCkWyxLaVWPcsAouV0Vfw7LZ6t4TpgNlmCNRXmg+mQwgABkKJgNuhoAaP4A4qmI6ZWUOO6OlUGPmPWPAIuPmAdcBBkQTpl5pbNrGshnqOjVplsPl5UhssFOngyO42Rhql2PFPNKHtU7QB-2OpAO645lZAbAcwjo+hbQBB46IPyEk6KlEdDPjOKwMJwPPOvOIOyF1P+OskH3EOD31PAvMPwamnkBLBxDpkvT8g9pdOtPfhR0Fw91J17VaPUCzV7XIvxDq7l0hmH111plN0+hx8WFb1SWkuhmS2ov+g+zplzWY2JKKv71SuyV10aMqv07eO9OuIEAeI7EavxDensBaucArLwblOV4DYKsjU+PNOq25ujU8ujPJOcPpahu6uKaM4myGBbTuVHT36+HP5ZERsqpFR9TUFwAXB9uDkrv+JDr1Bwbzvf2JbGU0gchFRAgBGw66npkVBXuKDiiPuvugEPGTuA0FogA

Metalinguistic Abstraction 4.2.3

Exercise 4.31

The approach taken in this section is somewhat unpleasant, because it makes an incompatible

change to JavaScript. It might be nicer to implement lazy evaluation as an upward-compatible
extension, that is, so that ordinary JavaScript programs will work as before. We can do this by

introducing optional parameter declaration as a new syntactic form inside function declara-

tions to let the user control whether or not arguments are to be delayed. While we’re at it, we

may as well also give the user the choice between delaying with and without memoization.

For example, the declaration

function f(a, b, c, d) {

parameters("strict", "lazy", "strict", "lazy_memo");

. . .
}

would de�ne f to be a function of four arguments, where the �rst and third arguments are

evaluated when the function is called, the second argument is delayed, and the fourth argument

is both delayed and memoized. You can assume that the parameter declaration is always the

�rst statement in the body of a function declaration, and if it is omitted, all parameters are strict.

Thus, ordinary function declaration will produce the same behavior as ordinary JavaScript,

while adding the "lazy_memo" declaration to each parameter of every compound function will

produce the behavior of the lazy evaluator de�ned in this section. Design and implement the

changes required to produce such an extension to JavaScript. The parse function will treat

parameter declarations as function applications, so you need to modify apply to dispatch to

your implementation of the new syntactic form. You must also arrange for evaluate or apply

to determine when arguments are to be delayed, and to force or delay arguments accordingly,

and you must arrange for forcing to memoize or not, as appropriate.

4.2.3 Streams as Lazy Lists

In section 3.5.1, we showed how to implement streams as delayed lists. We used a lambda

expression to construct a “promise” to compute the tail of a stream, without actually ful�lling

that promise until later. We were forced to create streams as a new kind of data object similar

but not identical to lists, and this required us to reimplement many ordinary list operations

(map, append, and so on) for use with streams.

With lazy evaluation, streams and lists can be identical, so there is no need for separate list

and stream operations. All we need to do is to arrange matters so that pair is non-strict. One

way to accomplish this is to extend the lazy evaluator to allow for non-strict primitives, and

to implement pair as one of these. An easier way is to recall (section 2.1.3) that there is no

fundamental need to implement pair as a primitive at all. Instead, we can represent pairs as

436 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.2.3

functions:
33

Ifunction pair(x, y) {

return m => m(x, y);

}

function head(z) {

return z((p, q) => p);

}

function tail(z) {

return z((p, q) => q);

}

In terms of these basic operations, the standard de�nitions of the list operations will work

with in�nite lists (streams) as well as �nite ones, and the stream operations can be implemented

as list operations. Here are some examples:

Ifunction list_ref(items, n) {

return n === 0

? head(items)

: list_ref(tail(items), n - 1);

}

function map(fun, items) {

return is_null(items)

? null

: pair(fun(head(items)),

map(fun, tail(items)));

}

function scale_list(items, factor) {

return map(x => x * factor, items);

}

function add_lists(list1, list2) {

return is_null(list1)

? list2

: is_null(list2)

? list1

: pair(head(list1) + head(list2),

add_lists(tail(list1),

tail(list2)));

}

const ones = pair(1, ones);

const integers = pair(1, add_lists(ones, integers));

list_ref(integers, 17);

L−eva lua te input :

33
This is the functional representation described in exercise 2.4. Essentially any functional representation

(e.g., a message-passing implementation) would do as well. Notice that we can install these de�nitions in the

lazy evaluator simply by typing them at the driver loop. If we had originally included pair, head, and tail as

primitives in the global environment, they will be rede�ned. (Also see exercises 4.33 and 4.34.)

437 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4variant=lazy&&prgrm=GYVwdgxgLglg9mABABwIYwE4AoAeAaRATwEpEBvASAChFbEMBTKEDJAW0QF4A+RN3AiQDcVAL5VQkWAkQALBqgAmWAF6kydRDTqNmrRCqyIsyAgEdSPFImIjxk6PCRR0AG1XrttXSySHjpogWXLxmNnZUVPJKWC4w7miYWACMBInYAMwEAEzEebZAA
http://source-academy.github.io/playground#chap=4variant=lazy&&prgrm=GYVwdgxgLglg9mABABwIYwE4AoAeAaRATwEpEBvASAChFbEMBTKEDJAW0QF4A+RN3AiQDcVAL5VQkWAkQALBqgAmWAF6kydRDTqNmrRCqyIsyAgEdSPFImIjxk6PCRR0AG1XrttXSySHjpogWXLxmNnYS4I4yrjAAzlAA+ozAWDBQDGxxBGDq1Jo++kicJYgADF6amgD8cgrK6ZlxxJVVtABciLEJyQypLjDujVnEOYgAtIgAjLZikVJOfKjIWJIEw83kFHSVhUjxiWAgrkMZI61ttUcnF1WdaJir4FjySmlnzaO3bVVsy09gAgDU5NYhgiIOaRIOIQVCuBiJbpQd5NAjAVDQOAYTwFJi+JYrHAhRBEgBUiHRmIw6w+s3sUShiCUikR8SgcSwSKmBCRACYcTo8foDtd3FyWj8al02bzvnROiLjmKZaQdpKqrUuXLNPd0NhXspxYgANR1N58r7qq1MxQspEc4GctkzPDa63qx0W8FzCAIBKIBAMOJcFB6rDcgNgIOzX1gf0wMAZADmDAwwc4oceEeZrISHMD2UQCeTqc+IioSN6qWLDBTaYIUwA7LYgA

Metalinguistic Abstraction 4.2.3

l i s t _ r e f (i n t e g e r s , 1 7) ;
L−eva lua te value :
18

Note that these lazy lists are even lazier than the streams of chapter 3: The head of the list,

as well as the tail, is delayed.
34

In fact, even accessing the head or tail of a lazy pair need not

force the value of a list element. The value will be forced only when it is really needed—e.g.,

for use as the argument of a primitive, or to be printed as an answer.

Lazy pairs also help with the problem that arose with streams in section 3.5.4, where we

found that formulating stream models of systems with loops may require us to sprinkle our

programs with additional delayed lambda expressions, beyond the ones required to construct

a stream pair. With lazy evaluation, all arguments to functions are delayed uniformly. For

instance, we can implement functions to integrate lists and solve di�erential equations as we

originally intended in section 3.5.4:

Ifunction integral(integrand, initial_value, dt) {

const int =

pair(initial_value,

add_lists(scale_list(integrand, dt),

int));

return int;

}

function solve(f, y0, dt) {

const y = integral(dy, y0, dt);

const dy = map(f, y);

return y;

}

list_ref(solve(x => x, 1, 0.001), 1000);

L−eva lua te input :
l i s t _ r e f (s o l v e (x => x , 1 , 0 . 0 0 1) , 1 0 0 0) ;
L−eva lua te value :
2 . 716924

Exercise 4.32

Give some examples that illustrate the di�erence between the streams of chapter 3 and the

“lazier” lazy lists described in this section. How can you take advantage of this extra laziness?

34
This permits us to create delayed versions of more general kinds of list structures, not just sequences. Hughes

1990 discusses some applications of “lazy trees.”

438 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4variant=lazy&&prgrm=GYVwdgxgLglg9mABABwIYwE4AoAeAaRATwEpEBvASAChFbEMBTKEDJAW0QF4A+RN3AiQDcVAL5VQkWAkQALBqgAmWAF6kydRDTqNmrRCqyIsyAgEdSPFImIjxk6PCRR0AG1XrttXSySHjpogWXLxmNnYS4I4yrjAAzlAA+ozAWDBQDGxxBGDq1Jo++kicJYgADF6amgD8cgrK6ZlxxJVVtABciLEJyQypLjDujVnEOYgAtIgAjLZikVJOfKjIWJIEw83kFHSVhUjxiWAgrkMZI61ttUcnF1WdaJir4FjySmlnzaO3bVVsy09gAgDU5NYhgiIOaRIOIQVCuBiJbpQd5NAjAVDQOAYTwFJi+JYrHAhRBEgBUiHRmIw6w+s3sUShiCUikR8SgcSwSKmBCRACYcTo8foDtd3FyWj8al02bzvnROiLjmKZaQdpKqrUuXLNPd0NhXspxYgANR1N58r7qq1MxQspEc4GctkzPDa63qx0W8FzCAIBKIBAMOJcFB6rDcgNgIOzX1gf0wMAZADmDAwwc4oceEeZrISHMD2UQCeTqc+IioSN6qWLDBTaYIUwA7LNIYsa0mMHC0ona52wIp1mB0jA4YkAG5wkAMAiKKB5Sqx+OJrjfB7YBPD0cT1xT13um12tkcmFwhFI7vJvsDxCzy379XF724vT7RMQhmLOJwVxjhirQRlDOc7kAufpQEQIbtp27iKIQAFAbMmiLuBsEhn8KzAIIiGCi+RARJWKRYF+P5-kSVj4NMBBlAAdGUZT8gQACsdG2EAA

Metalinguistic Abstraction 4.3

Exercise 4.33

Ben Bitdiddle tests the lazy list implementation given above by evaluating the expression

head(list("a", "b", "c"));

To his surprise, this produces an error. After some thought, he realizes that the “lists” obtained

from the primitive list function are di�erent from the lists manipulated by the new de�nitions

of pair, head, and tail. Modify the evaluator such that applications of the primitive list

function typed at the driver loop will produce true lazy lists.

Exercise 4.34

Modify the driver loop for the evaluator so that lazy pairs and lists will print in some reason-

able way. (What are you going to do about in�nite lists?) You may also need to modify the

representation of lazy pairs so that the evaluator can identify them in order to print them.

4.3 Nondeterministic Computing

In this section, we extend the JavaScript evaluator to support a programming paradigm called

nondeterministic computing by building into the evaluator a facility to support automatic search.

This is a much more profound change to the language than the introduction of lazy evaluation

in section 4.2.

Nondeterministic computing, like stream processing, is useful for “generate and test” appli-

cations. Consider the task of starting with two lists of positive integers and �nding a pair of

integers—one from the �rst list and one from the second list—whose sum is prime. We saw

how to handle this with �nite sequence operations in section 2.2.3 and with in�nite streams in

section 3.5.3. Our approach was to generate the sequence of all possible pairs and �lter these to

select the pairs whose sum is prime. Whether we actually generate the entire sequence of pairs

�rst as in chapter 2, or interleave the generating and �ltering as in chapter 3, is immaterial to

the essential image of how the computation is organized.

The nondeterministic approach evokes a di�erent image. Imagine simply that we choose (in

some way) a number from the �rst list and a number from the second list and require (using

some mechanism) that their sum be prime. This is expressed by following function:

Ifunction prime_sum_pair(list1, list2) {

const a = an_element_of(list1);

const b = an_element_of(list2);

require(is_prime(a + b));

return list(a, b);

439 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4variant=non-det&&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgSIYyAPoATGADdhMAEYAbfAQA0iAJ4kK1GjjoM2iAKTrEAXnOIADJx59o8JDDBQcAcxxZRyKNlhhXIsBYcAC2eGCalNS09EgADhgwWOHKUdrp6XgkpgB8Qs5uHl4+WH4BQaHhiADUiACMRGkZGUQ2vOD2gsIicVgwIfgRZE12Ao4uyXHIkc06ekhomLh4ABY4GGJ4U0QkeWBNs9QA-IhQWCA4B4eIAFxCohLSyHKKKYhrG1vTjdfNJ8AYeTIS6-DJ3GATPDeXAYEIiHwweRfHacbQ8bQxfQQjxbPoDaZtCAIbyIXr9HDIMykxLJABMqVBsyyZjy0PWcOAiMhV0Zv26ZIGqh5vMOThc7k8Im8vic5WCYQAzDthb9Wu1+A5SXicFKQHCEkk8PJhFA6qpjd5aZptE0iWASRgqRgwCIcIoBs4RHBgEaTQ1UdQ7STZE6XW6cB6oF6fRaoFaA1RcOgkvh+dq8I7arIUU1MUhYxnVNm2uQBTrkHqejTfd48GbEArVABWVQADiI5pNeFpllUCpb9TqlhzAHoR4gAAq4ZCUgBEACVwLPEMA4FhTmsV0kScg4PIQGMAHSIAAqajilzHpywahEGFciX2V6cG5wiHnAFEJwAZRCCKCbn0rgrFAqiruuIRrm+u77mMyBAA

Metalinguistic Abstraction 4.3

}

It might seem as if this function merely restates the problem, rather than specifying a way

to solve it. Nevertheless, this is a legitimate nondeterministic program.
35

The key idea here is that expressions in a nondeterministic language can have more than

one possible value. For instance, an_element_of might return any element of the given list.

Our nondeterministic program evaluator will work by automatically choosing a possible value

and keeping track of the choice. If a subsequent requirement is not met, the evaluator will

try a di�erent choice, and it will keep trying new choices until the evaluation succeeds, or

until we run out of choices. Just as the lazy evaluator freed the programmer from the details

of how values are delayed and forced, the nondeterministic program evaluator will free the

programmer from the details of how choices are made.

It is instructive to contrast the di�erent images of time evoked by nondeterministic evalua-

tion and stream processing. Stream processing uses lazy evaluation to decouple the time when

the stream of possible answers is assembled from the time when the actual stream elements

are produced. The evaluator supports the illusion that all the possible answers are laid out

before us in a timeless sequence. With nondeterministic evaluation, an expression represents

the exploration of a set of possible worlds, each determined by a set of choices. Some of the

possible worlds lead to dead ends, while others have useful values. The nondeterministic pro-

gram evaluator supports the illusion that time branches, and that our programs have di�erent

possible execution histories. When we reach a dead end, we can revisit a previous choice point

and proceed along a di�erent branch.

The nondeterministic program evaluator implemented below is called the amb evaluator

because it is based on a special “function” called amb. We can type the above de�nition of

prime_sum_pair at the amb evaluator driver loop (along with de�nitions of is_prime, is_prime,

an_element_of, and require) and run the function as follows:

amb−eva lua te input :

Iprime_sum_pair(list(1, 3, 5, 8), list(20, 35, 110));

s t a r t i n g a new problem
amb−eva lua te value :
[3 , [2 0 , nu l l]]

The value returned was obtained after the evaluator repeatedly chose elements from each

35
We assume that we have previously de�ned a function is_prime that tests whether numbers are prime. Even

with is_prime de�ned, the prime_sum_pair function may look suspiciously like the unhelpful “pseudo-JavaScript”

attempt to de�ne the square-root function, which we described at the beginning of section 1.1.7. In fact, a square-

root function along those lines can actually be formulated as a nondeterministic program. By incorporating a

search mechanism into the evaluator, we are eroding the distinction between purely declarative descriptions and

imperative speci�cations of how to compute answers. We’ll go even farther in this direction in section 4.4.

440 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4variant=non-det&&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgSIYyAPoATGADdhMAEYAbfAQA0iAJ4kK1GjjoM2iAKTrEAXnOIADJx59o8JDDBQcAcxxZRyKNlhhXIsBYcAC2eGCalNS09EgADhgwWOHKUdrp6XgkpgB8Qs5uHl4+WH4BQaHhiADUiACMRGkZGUQ2vOD2gsIicVgwIfgRZE12Ao4uyXHIkc06ekhomLh4ABY4GGJ4U0QkeWBNs9QA-IhQWCA4B4eIAFxCohLSyHKKKYhrG1vTjdfNJ8AYeTIS6-DJ3GATPDeXAYEIiHwweRfHacbQ8bQxfQQjxbPoDaZtCAIbyIXr9HDIMykxLJABMqVBsyyZjy0PWcOAiMhV0Zv26ZIGqh5vMOThc7k8Im8vic5WCYQAzDthb9Wu1+A5SXicFKQHCEkk8PJhFA6qpjd5aZptE0iWASRgqRgwCIcIoBs4RHBgEaTQ1UdQ7STZE6XW6cB6oF6fRaoFaA1RcOgkvh+dq8I7arIUU1MUhYxnVNm2gKdcg9T0ab7vHgzYgFaoAKyqAAcRHNJrwtMsqgVzfqdUsOYA9MPEAAFXDISkAIgASuAZ4hgHAsKc1sukiTkHB5CAxgA6RAAFTUcUuo9OWDUIgwrkS+0vTnXOEQc4AouOADKIQRQDd9K4KxQKoK5riEq6vjue5jMgQA

Metalinguistic Abstraction 4.3.1

of the lists, until a successful choice was made.

Section 4.3.1 introduces amb and explains how it supports nondeterminism through the

evaluator’s automatic search mechanism. Section 4.3.2 presents examples of nondeterminis-

tic programs, and section 4.3.3 gives the details of how to implement the amb evaluator by

modifying the ordinary JavaScript evaluator.

4.3.1 Search and amb

To extend JavaScript to support nondeterminism, we introduce a new syntactic form called amb.
36

The expression amb(e1, e2, . . . , en) returns the value of one of the n expressions ei “ambigu-

ously.” For example, the expression

Ilist(amb(1, 2, 3), amb("a", "b"));

can have six possible values:

list(1, "a") list(1, "b") list(2, "a")

list(2, "b") list(3, "a") list(3, "b")

An amb expression with a single choice produces an ordinary (single) value.

An amb expression with no choices—the expression amb()—is an expression with no accept-

able values. Operationally, we can think of amb() as an expression that when evaluated causes

the computation to “fail”: The computation aborts and no value is produced. Using this idea,

we can express the requirement that a particular predicate expression p must be true as follows:

Ifunction require(p) {

return ! p ? amb() : "Satisfied require";

}

With amb and require, we can implement the an_element_of function used above:

Ifunction an_element_of(items) {

require(! is_null(items));

return amb(head(items), an_element_of(tail(items)));

}

An application of an_element_of fails if the list is empty. Otherwise it ambiguously returns

either the �rst element of the list or an element chosen from the rest of the list.

We can also express in�nite ranges of choices. The following function potentially returns

any integer greater than or equal to some given n:

Ifunction an_integer_starting_from(n) {

36
The idea of amb for nondeterministic programming was �rst described in 1961 by John McCarthy (see Mc-

Carthy 1967).

441 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4variant=non-det&&prgrm=DYSwzgLgFAhgtgIygRgDQAIBMGDMBKDeJAIhmI2IWLzwG4AoAekfQAUAnAUzDHWICUArgDti6AGYB7duggALThJDtI6MJOCCIIScIB06ACoBPAA6cmLCO2MB9GAHMYIYZfQvZC9PwCirADLoup6K7CAOchAYUjJw0orqmtq6YEA
http://source-academy.github.io/playground#chap=4variant=non-det&&prgrm=GYVwdgxgLglg9mABAJwKYEcQzQCgA4CUiA3gFCIUqpQjJICEieiA-IgIYC2ARjkQFyIARAGV2sAM7AYqACZVM2VEIDclSqQC+pUhAQSoiAB6IAvBx44AjABpEAZjsBWOwHY7ATgIrSaRbhMAPnMAFm9SIx8AeijEAAU0CQlhACVwIURgOGREKAALVEzsA0QJOAAbEFgEADpEABUATzxUUhjc5EaAfXYAc3YYMDbYwdyCxBSAUTiAGUQEMcLkGF68qDssnM5swrLK6rAJIA
http://source-academy.github.io/playground#chap=4variant=non-det&&prgrm=GYVwdgxgLglg9mABAQzAfQKYBsMFsNhRpzAAUMUeAzgJSIDeAUIi4gE4YCOIMHpAhIhhU0YEFizlKuWjQDczVhygg2SZLgBGpABYZkAEynUaAGhTpseAkRKkoyGJIoma8xgF9GjCAipREAA8qRABeRCxhKFIAImQAB3icGPMYzVQMlMQYiDZUTQw2NgBPGPdUTBx8QmIyYPkASEYAembEAAUOKhCYgCVwGMRgODZEKD0h3n9EKjgsEFgEADpEABVi+IwWtqgStGQAc0cwbaEkcYxEXoBRdoAZRAQxibYYA50oc2HR3BHL2fmizAVCAA
http://source-academy.github.io/playground#chap=4variant=non-det&&prgrm=GYVwdgxgLglg9mABAQzAfRmKBTA5tgJzQGcpkDYxc1gC4BbACjAEpEBvAKER8QOyggCSZPQBGzADQp0mHPiKlylarQbNEAakQBGFiwDcnAL6dOEBKUQAPRAF4ZGLHkIkyFTKrpM9R-gEcQGH5GWwA+BwAWADoAVkNOayMAemTEAAV+YmJEACIAJXBcxGA4AkQoAAtsEuCrYjgAGxBYBGjEABUATwAHbE5UioIutGRcZEwBtMwK6sR8gFF0gBlEBFmaghhcSqhpUvL6MpqG5tawYiA

Metalinguistic Abstraction 4.3.1

return amb(n, an_integer_starting_from(n + 1));

}

This is like the stream function integers_starting_from described in section 3.5.2, but with

an important di�erence: The stream function returns an object that represents the sequence

of all integers beginning with n, whereas the amb function returns a single integer.
37

Abstractly, we can imagine that evaluating an amb expression causes time to split into

branches, where the computation continues on each branch with one of the possible val-

ues of the expression. We say that amb represents a nondeterministic choice point. If we had a

machine with a su�cient number of processors that could be dynamically allocated, we could

implement the search in a straightforward way. Execution would proceed as in a sequential

machine, until an amb expression is encountered. At this point, more processors would be

allocated and initialized to continue all of the parallel executions implied by the choice. Each

processor would proceed sequentially as if it were the only choice, until it either terminates

by encountering a failure, or it further subdivides, or it �nishes.
38

On the other hand, if we have a machine that can execute only one process (or a few concur-

rent processes), we must consider the alternatives sequentially. One could imagine modifying

an evaluator to pick at random a branch to follow whenever it encounters a choice point.

Random choice, however, can easily lead to failing values. We might try running the evaluator

over and over, making random choices and hoping to �nd a non-failing value, but it is better

to systematically search all possible execution paths. The amb evaluator that we will develop

and work with in this section implements a systematic search as follows: When the evaluator

encounters an application of amb, it initially selects the �rst alternative. This selection may

itself lead to a further choice. The evaluator will always initially choose the �rst alternative at

each choice point. If a choice results in a failure, then the evaluator automagically
39 backtracks

to the most recent choice point and tries the next alternative. If it runs out of alternatives at

any choice point, the evaluator will back up to the previous choice point and resume from

there. This process leads to a search strategy known as depth-�rst search or chronological
backtracking.

40

37
In actuality, the distinction between nondeterministically returning a single choice and returning all choices

depends somewhat on our point of view. From the perspective of the code that uses the value, the nondeterministic

choice returns a single value. From the perspective of the programmer designing the code, the nondeterministic

choice potentially returns all possible values, and the computation branches so that each value is investigated

separately.

38
One might object that this is a hopelessly ine�cient mechanism. It might require millions of processors

to solve some easily stated problem this way, and most of the time most of those processors would be idle.

This objection should be taken in the context of history. Memory used to be considered just such an expensive

commodity. In 1964 a megabyte of RAM cost about $400,000. Now every personal computer has many megabytes

of RAM, and most of the time most of that RAM is unused. It is hard to underestimate the cost of mass-produced

electronics.

39
Automagically: “Automatically, but in a way which, for some reason (typically because it is too complicated,

or too ugly, or perhaps even too trivial), the speaker doesn’t feel like explaining.” (Steele 1983, Raymond 1993)

40
The integration of automatic search strategies into programming languages has had a long and checkered

442 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.3.1

Driver loop

The driver loop for the amb evaluator has some unusual properties. It reads an expression and

prints the value of the �rst non-failing execution, as in the prime_sum_pair example shown

above. If we want to see the value of the next successful execution, we can ask the interpreter

to backtrack and attempt to generate a second non-failing execution. This is signaled by

typing try_again. If any other input except try_again is given, the interpreter will start a new

problem, discarding the unexplored alternatives in the previous problem. Here is a sample

interaction:

amb−eva lua te input :

Iprime_sum_pair(list(1, 3, 5, 8), list(20, 35, 110));

S t a r t i n g a new problem
amb−eva lua te value :
[3 , [2 0 , nu l l]]

amb−eva lua te input :

Itry_again

amb−eva lua te value :
[3 , [110 , nu l l]]

amb−eva lua te input :

Itry_again

amb−eva lua te value :
[8 , [3 5 , nu l l]]

amb−eva lua te input :

Itry_again

history. The �rst suggestions that nondeterministic algorithms might be elegantly encoded in a programming

language with search and automatic backtracking came from Robert Floyd (1967). Carl Hewitt (1969) invented a

programming language called Planner that explicitly supported automatic chronological backtracking, providing

for a built-in depth-�rst search strategy. Sussman, Winograd, and Charniak (1971) implemented a subset of this

language, called MicroPlanner, which was used to support work in problem solving and robot planning. Similar

ideas, arising from logic and theorem proving, led to the genesis in Edinburgh and Marseille of the elegant language

Prolog (which we will discuss in section 4.4). After su�cient frustration with automatic search, McDermott and

Sussman (1972) developed a language called Conniver, which included mechanisms for placing the search strategy

under programmer control. This proved unwieldy, however, and Sussman and Stallman (1975) found a more

tractable approach while investigating methods of symbolic analysis for electrical circuits. They developed a

non-chronological backtracking scheme that was based on tracing out the logical dependencies connecting facts,

a technique that has come to be known as dependency-directed backtracking. Although their method was complex,

it produced reasonably e�cient programs because it did little redundant search. Doyle 1979 and McAllester

(McAllester 1978, McAllester 1980) generalized and clari�ed the methods of Stallman and Sussman, developing

a new paradigm for formulating search that is now called truth maintenance. Modern problem-solving systems

all use some form of truth-maintenance system as a substrate. See Forbus and deKleer 1993 for a discussion of

elegant ways to build truth-maintenance systems and applications using truth maintenance. Zabih, McAllester,

and Chapman 1987 describes a nondeterministic extension to Scheme that is based on amb; it is similar to the

interpreter described in this section, but more sophisticated, because it uses dependency-directed backtracking

rather than chronological backtracking. Winston 1992 gives an introduction to both kinds of backtracking.

443 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4variant=non-det&&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgSIYyAPoATGADdhMAEYAbfAQA0iAJ4kK1GjjoM2iAKTrEAXnOIADJx59o8JDDBQcAcxxZRyKNlhhXIsBYcAC2eGCalNS09EgADhgwWOHKUdrp6XgkpgB8Qs5uHl4+WH4BQaHhiADUiACMRGkZGUQ2vOD2gsIicVgwIfgRZE12Ao4uyXHIkc06ekhomLh4ABY4GGJ4U0QkeWBNs9QA-IhQWCA4B4eIAFxCohLSyHKKKYhrG1vTjdfNJ8AYeTIS6-DJ3GATPDeXAYEIiHwweRfHacbQ8bQxfQQjxbPoDaZtCAIbyIXr9HDIMykxLJABMqVBsyyZjy0PWcOAiMhV0Zv26ZIGqh5vMOThc7k8Im8vic5WCYQAzDthb9Wu1+A5SXicFKQHCEkk8PJhFA6qpjd5aZptE0iWASRgqRgwCIcIoBs4RHBgEaTQ1UdQ7STZE6XW6cB6oF6fRaoFaA1RcOgkvh+dq8I7arIUU1MUhYxnVNm2gKdcg9T0ab7vHgzYgFaoAKyqAAcRHNJrwtMsqgVzfqdUsOYA9MPEAAFXDISkAIgASuAZ4hgHAsKc1sukiTkHB5CAxgA6RAAFTUcUuo9OWDUIgwrkS+0vTnXOEQc4AouOADKIQRQDd9K4KxQKoK5riEq6vjue5jMgQA
http://source-academy.github.io/playground#chap=4variant=non-det&&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgSIYyAPoATGADdhMAEYAbfAQA0iAJ4kK1GjjoM2iAKTrEAXnOIADJx59o8JDDBQcAcxxZRyKNlhhXIsBYcAC2eGCalNS09EgADhgwWOHKUdrp6XgkpgB8Qs5uHl4+WH4BQaHhiADUiACMRGkZGUQ2vOD2gsIicVgwIfgRZE12Ao4uyXHIkc06ekhomLh4ABY4GGJ4U0QkeWBNs9QA-IhQWCA4B4eIAFxCohLSyHKKKYhrG1vTjdfNJ8AYeTIS6-DJ3GATPDeXAYEIiHwweRfHacbQ8bQxfQQjxbPoDaZtCAIbyIXr9HDIMykxLJABMqVBsyyZjy0PWcOAiMhV0Zv26ZIGqh5vMOThc7k8Im8vic5WCYQAzDthb9Wu1+A5SXicFKQHCEkk8PJhFA6qpjd5aZptE0iWASRgqRgwCIcIoBs4RHBgEaTQ1UdQ7STZE6XW6cB6oF6fRaoFaA1RcOgkvh+dq8I7arIUU1MUhYxnVNm2gKdcg9T0ab7vHgzYgFaoAKyqAAcRHNJrwtMsqgVzfqdUsOYA9MPEAAFXDISkAIgASuAZ4hgHAsKc1sukiTkHB5CAxgA6RAAFTUcUuo9OWDUIgwrkS+0vTnXOEQc4AouOADKIQRQDd9K4KxQKoK5riEq6vjue5jMgQA
http://source-academy.github.io/playground#chap=4variant=non-det&&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgSIYyAPoATGADdhMAEYAbfAQA0iAJ4kK1GjjoM2iAKTrEAXnOIADJx59o8JDDBQcAcxxZRyKNlhhXIsBYcAC2eGCalNS09EgADhgwWOHKUdrp6XgkpgB8Qs5uHl4+WH4BQaHhiADUiACMRGkZGUQ2vOD2gsIicVgwIfgRZE12Ao4uyXHIkc06ekhomLh4ABY4GGJ4U0QkeWBNs9QA-IhQWCA4B4eIAFxCohLSyHKKKYhrG1vTjdfNJ8AYeTIS6-DJ3GATPDeXAYEIiHwweRfHacbQ8bQxfQQjxbPoDaZtCAIbyIXr9HDIMykxLJABMqVBsyyZjy0PWcOAiMhV0Zv26ZIGqh5vMOThc7k8Im8vic5WCYQAzDthb9Wu1+A5SXicFKQHCEkk8PJhFA6qpjd5aZptE0iWASRgqRgwCIcIoBs4RHBgEaTQ1UdQ7STZE6XW6cB6oF6fRaoFaA1RcOgkvh+dq8I7arIUU1MUhYxnVNm2gKdcg9T0ab7vHgzYgFaoAKyqAAcRHNJrwtMsqgVzfqdUsOYA9MPEAAFXDISkAIgASuAZ4hgHAsKc1sukiTkHB5CAxgA6RAAFTUcUuo9OWDUIgwrkS+0vTnXOEQc4AouOADKIQRQDd9K4KxQKoK5riEq6vjue5jMgQA
http://source-academy.github.io/playground#chap=4variant=non-det&&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgSIYyAPoATGADdhMAEYAbfAQA0iAJ4kK1GjjoM2iAKTrEAXnOIADJx59o8JDDBQcAcxxZRyKNlhhXIsBYcAC2eGCalNS09EgADhgwWOHKUdrp6XgkpgB8Qs5uHl4+WH4BQaHhiADUiACMRGkZGUQ2vOD2gsIicVgwIfgRZE12Ao4uyXHIkc06ekhomLh4ABY4GGJ4U0QkeWBNs9QA-IhQWCA4B4eIAFxCohLSyHKKKYhrG1vTjdfNJ8AYeTIS6-DJ3GATPDeXAYEIiHwweRfHacbQ8bQxfQQjxbPoDaZtCAIbyIXr9HDIMykxLJABMqVBsyyZjy0PWcOAiMhV0Zv26ZIGqh5vMOThc7k8Im8vic5WCYQAzDthb9Wu1+A5SXicFKQHCEkk8PJhFA6qpjd5aZptE0iWASRgqRgwCIcIoBs4RHBgEaTQ1UdQ7STZE6XW6cB6oF6fRaoFaA1RcOgkvh+dq8I7arIUU1MUhYxnVNm2gKdcg9T0ab7vHgzYgFaoAKyqAAcRHNJrwtMsqgVzfqdUsOYA9MPEAAFXDISkAIgASuAZ4hgHAsKc1sukiTkHB5CAxgA6RAAFTUcUuo9OWDUIgwrkS+0vTnXOEQc4AouOADKIQRQDd9K4KxQKoK5riEq6vjue5jMgQA

Metalinguistic Abstraction 4.3.1

There are no more va lues o f
prime_sum_pair ([1 , [3 , [5 , [8 , nu l l]]]] , [2 0 , [3 5 , [110 , nu l l]]])

amb−eva lua te input :

Iprime_sum_pair(list(19, 27, 30), list(11, 36, 58));

S t a r t i n g a new problem
amb−eva lua te value :
[3 0 , [1 1 , nu l l]]

Exercise 4.35

Write a function an_integer_between that returns an integer between two given bounds.

This can be used to implement a function that �nds Pythagorean triples, i.e., triples of integers

(i, j,k) between the given bounds such that i ≤ j and i2 + j2 = k2
, as follows:

Ifunction a_pythogorean_triple_between(low, high) {

const i = an_integer_between(low, high);

const j = an_integer_between(i, high);

const k = an_integer_between(j, high);

require(i * i + j * j === k * k);

return list(i, j, k);

}

Exercise 4.36

Exercise 3.69 discussed how to generate the stream of all Pythagorean triples, with no upper

bound on the size of the integers to be searched. Explain why simply replacing an_integer_between

by an_integer_starting_from in the function in exercise 4.35 is not an adequate way to gen-

erate arbitrary Pythagorean triples. Write a function that actually will accomplish this. (That is,

write a function for which repeatedly typing try_again would in principle eventually generate

all Pythagorean triples.)

Exercise 4.37

Ben Bitdiddle claims that the following method for generating Pythagorean triples is more

e�cient than the one in exercise 4.35. Is he correct? (Hint: Consider the number of possibilities

that must be explored.)

Ifunction a_pythagorean_triple_between(low, high) {

const i = an_integer_between(low, high);

const hsq = high * high;

444 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4variant=non-det&&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgSIYyAPoATGADdhMAEYAbfAQA0iAJ4kK1GjjoM2iAKTrEAXnOIADJx59o8JDDBQcAcxxZRyKNlhhXIsBYcAC2eGCalNS09EgADhgwWOHKUdrp6XgkpgB8Qs5uHl4+WH4BQaHhiADUiACMRGkZGUQ2vOD2gsIicVgwIfgRZE12Ao4uyXHIkc06ekhomLh4ABY4GGJ4U0QkeWBNs9QA-IhQWCA4B4eIAFxCohLSyHKKKYhrG1vTjdfNJ8AYeTIS6-DJ3GATPDeXAYEIiHwweRfHacbQ8bQxfQQjxbPoDaZtCAIbyIXr9HDIMykxLJABMqVBsyyZjy0PWcOAiMhV0Zv26ZIGqh5vMOThc7k8Im8vic5WCYQAzDthb9Wu1+A5SXicFKQHCEkk8PJhFA6qpjd5aZptE0iWASRgqRgwCIcIoBs4RHBgEaTQ1UdQ7STZE6XW6cB6oF6fRaoFaA1RcOgkvh+dq8I7arIUU1MUhYxnVNm2gKdcg9T0ab7vHg6gBOVS0gDsqgVliI5pNtbNiAVADZVABWAAcOYA9GPEAAFXDISkAIgASuB54hgHAsKc1mukiTkHB5CAxgA6RAAFTUcUuE9OWDUIgwrkS+xvTi3OEQi4AolOADKIQQoG3PpXBWKBVHXTcQg3D990PMZkCAA
http://source-academy.github.io/playground#chap=4variant=non-det&&prgrm=GYVwdgxgLglg9mABAQwPoAcCeUAWcDmcATgKbJipREzoA2JqARiVAO4klgAUtcrANIhwx8OAJSIA3ohmyAULMQQEAZyiIYiALwoKMMFBL4SRJi3acefQcNFiA3AtnKwaxACttu1PsPHTzGwc3DA2IuKOii5uANZe5D4GRiZmQZbuYXaRsqQAjiAwpFyaAFQaiADUHohlnlr1iHFlMQ5OMqRQIERItDBqxYIZja0AvnJyaFi4BMRkFFQ09KkW3ACsggCMq60A9DuIAAqkKiqIAEQASuBniMDEiLgkt4VuKnC0ILAIAHSIACqYdAkOR7B5ETCoZD4ZD6EH7fQPHBPC4AUQOABlEAhEU9qKIoII7kREABbWaIN4fL6uIA
http://source-academy.github.io/playground#chap=4variant=non-det&&prgrm=GYVwdgxgLglg9mABAQwPoAcCeUAWyDmcATgKbJipREzoA2JqARiVAO4klgAUtcrANIhwx8OAJSIA3gChEcxBAQBnKIhiIAvCgowwUEvhJEmLdpx59Bw0WIDcs+YrAqhSgI6ahInIgBUX0Xt5BWVVACtPclRdfUNjZjYObhgrbzsHOScXAGt3T3V-dQBqRAj-MKD5UjcQGFIuHDyAPi1ct3TgrNVszwBbZFxUdyIoLjaOqpIaupIuGCVovQMjMbEJuVp50ZTSwWz0gF9paVBIWAQ1BZjloi4ADwkZYNIoECIkO80NLX7B4F5iPdDtI0FhcARiGQKFQaPQTIlzABWQQARkRdiAA

Metalinguistic Abstraction 4.3.2

const j = an_integer_between(i, high);

const ksq = i * i + j * j;

require(hsq >= ksq);

const k = math_sqrt(ksq);

require(is_integer(k));

list(i, j, k);

}

4.3.2 Examples of Nondeterministic Programs

Section 4.3.3 describes the implementation of the amb evaluator. First, however, we give some

examples of how it can be used. The advantage of nondeterministic programming is that we

can suppress the details of how search is carried out, thereby expressing our programs at a

higher level of abstraction.

Logic Puzzles

The following puzzle (taken from Dinesman 1968) is typical of a large class of simple logic

puzzles:

Baker, Cooper, Fletcher, Miller, and Smith live on di�erent �oors of an apartment

house that contains only �ve �oors. Baker does not live on the top �oor. Cooper

does not live on the bottom �oor. Fletcher does not live on either the top or the

bottom �oor. Miller lives on a higher �oor than does Cooper. Smith does not live on

a �oor adjacent to Fletcher’s. Fletcher does not live on a �oor adjacent to Cooper’s.

Where does everyone live?

We can determine who lives on each �oor in a straightforward way by enumerating all the

possibilities and imposing the given restrictions:
41

Ifunction multiple_dwelling() {

const baker = amb(1, 2, 3, 4, 5);

41
Our program uses the following function to determine if the elements of a list are distinct:

Idistinct(list(1, 2, 4, 4,5));

Ifunction distinct(items) {
return is_null(items)

? true
: is_null(tail(items))

? true
: is_null(member(head(items), tail(items)))

? distinct(tail(items))
: false;

}

445 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4variant=non-det&&prgrm=GYVwdgxgLglg9mABAExgZ1pKAKGUCmAtmgJSIDeAkAFCJ2IBO+UIDS6A+mCADY+4FiJWvVEB+RFAYh8I0XQBciTtz7YoAQxj88RUsPnyJUmXMOIlK3v0JEARvgbYAFvg3IBekgBpJWnYL6BubiKOiY0Or+nkLBIYqIwBo8aPgA3NQAvtSgWPBIhLywAA48+BzIAO74fDBgAObYZORmEAgYiHYaANaOiAC8iBqEdtgAjL4ATL4AzL4ALL4ArCQZom1gHW1wxX2Dw6MTiNOIc4iLiCtr9BsdwGVQEK4MA0Mj41OzC8urre1QiEI2jKL327yOJzOFyuf02ALQQKgzleBw+xy+5x+1zoTAAjiAYExsKgMHVIjxwtgur0GL5trtaYkHk9HL4gXxWYgEXhnCQ+djGPh8YT8NgAISIKk9Pb9QYrX6iPEEokS7D0mWDMb8sxKkXiyX3Zgs0Gyy7axVC5Wi1WGx7PAamrUK+i6onskGIAB8iHVDGdOMtetVhA0SI4GjsaGw3KRiAAtEyjc8yLLNeaXYGVZKQ2GI1Hbcb4z64DtHCnHemAyw2IgKRhsHWcAAiamOJu+Vt+7xmeL0RvYJu+9vF0tdnu92uUpsF57Dmdl7sT+T9pvutts4EL8e9lcx5zDvfa7LUQo8EplCrVWoNJppIA
http://source-academy.github.io/playground#chap=4&prgrm=CYSwzgLiB2DGEAoA25EEYA0ACATNgLARgKwCUpA3EA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAExgZ1pKAKGUCmAtmgJSIDeAkAFCJ2IBO+UIDS6A+mCADY+4FiJWvVEB+RFAYh8I0XQBciTtz7YoAQxj88RUsPnyJUmXMOIlK3v0JEARvgbYAFvg3IBekgBpJWnYL6BubiKOiY0Or+nkLBIYqIwBo8aPgA3NQAvtTUqBgwWNg84dgAjL4ATL4ALDXeAKwkJGlAA

Metalinguistic Abstraction 4.3.2

const cooper = amb(1, 2, 3, 4, 5);

const fletcher = amb(1, 2, 3, 4, 5);

const miller = amb(1, 2, 3, 4, 5);

const smith = amb(1, 2, 3, 4, 5);

require(distinct(list(baker, cooper, fletcher, miller, smith)));

require(! (baker === 5));

require(! (cooper === 1));

require(! (fletcher === 5));

require(! (fletcher === 1));

require(miller > cooper);

require(! (math_abs(smith - fletcher) === 1));

require(! (math_abs(fletcher - cooper) === 1));

return list(list("baker", baker),

list("cooper", cooper),

list("fletcher", fletcher),

list("miller", miller),

list("smith", smith));

}

Evaluating the expression multiple_dwelling() produces the result

list(list("baker", 3), list("cooper", 2), list("fletcher", 4),

list("miller", 5), list("smith", 1))

Although this simple function works, it is very slow. Exercises 4.39 and 4.40 discuss some

possible improvements.

Exercise 4.38

Modify the multiple-dwelling function to omit the requirement that Smith and Fletcher do

not live on adjacent �oors. How many solutions are there to this modi�ed puzzle?

Exercise 4.39

Does the order of the restrictions in the multiple-dwelling function a�ect the answer? Does

it a�ect the time to �nd an answer? If you think it matters, demonstrate a faster program

obtained from the given one by reordering the restrictions. If you think it does not matter,

argue your case.

Exercise 4.40

In the multiple dwelling problem, how many sets of assignments are there of people to �oors,

both before and after the requirement that �oor assignments be distinct? It is very ine�cient

to generate all possible assignments of people to �oors and then leave it to backtracking to

446 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.3.2

eliminate them. For example, most of the restrictions depend on only one or two of the person-

�oor names, and can thus be imposed before �oors have been selected for all the people. Write

and demonstrate a much more e�cient nondeterministic function that solves this problem

based upon generating only those possibilities that are not already ruled out by previous

restrictions.

Exercise 4.41

Write an ordinary JavaScript program to solve the multiple dwelling puzzle.

Exercise 4.42

Solve the following “Liars” puzzle (from Phillips 1934):

Five schoolgirls sat for an examination. Their parents—so they thought—showed

an undue degree of interest in the result. They therefore agreed that, in writing

home about the examination, each girl should make one true statement and one

untrue one. The following are the relevant passages from their letters:

– Betty: “Kitty was second in the examination. I was only third.”

– Ethel: “You’ll be glad to hear that I was on top. Joan was second.”

– Joan: “I was third, and poor old Ethel was bottom.”

– Kitty: “I came out second. Mary was only fourth.”

– Mary: “I was fourth. Top place was taken by Betty.”

What in fact was the order in which the �ve girls were placed?

Exercise 4.43

Use the amb evaluator to solve the following puzzle:
42

Mary Ann Moore’s father has a yacht and so has each of his four friends: Colonel

Downing, Mr. Hall, Sir Barnacle Hood, and Dr. Parker. Each of the �ve also has one

daughter and each has named his yacht after a daughter of one of the others. Sir

Barnacle’s yacht is the Gabrielle, Mr. Moore owns the Lorna; Mr. Hall the Rosalind.

The Melissa, owned by Colonel Downing, is named after Sir Barnacle’s daughter.

Gabrielle’s father owns the yacht that is named after Dr. Parker’s daughter. Who

is Lorna’s father?

42
This is taken from a booklet called “Problematical Recreations,” published in the 1960s by Litton Industries,

where it is attributed to the Kansas State Engineer.

447 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.3.2

Try to write the program so that it runs e�ciently (see exercise 4.40). Also determine how

many solutions there are if we are not told that Mary Ann’s last name is Moore.

Exercise 4.44

Exercise 2.42 described the “eight-queens puzzle” of placing queens on a chessboard so that

no two attack each other. Write a nondeterministic program to solve this puzzle.

Parsing natural language

Programs designed to accept natural language as input usually start by attempting to parse
the input, that is, to match the input against some grammatical structure. For example, we

might try to recognize simple sentences consisting of an article followed by a noun followed

by a verb, such as “The cat eats.” To accomplish such an analysis, we must be able to identify

the parts of speech of individual words. We could start with some lists that classify various

words:
43

Iconst nouns = list("noun", "student", "professor", "cat", "class");

const verbs = list("verb", "studies", "lectures", "eats", "sleeps");

const articles = list("article", "the", "a");

We also need a grammar, that is, a set of rules describing how grammatical elements are

composed from simpler elements. A very simple grammar might stipulate that a sentence

always consists of two pieces—a noun phrase followed by a verb—and that a noun phrase

consists of an article followed by a noun. With this grammar, the sentence “The cat eats” is

parsed as follows:

list("sentence",

list("noun-phrase",

list("article", "the"),

list("noun", "cat"),

list("verb", "eats"))

We can generate such a parse with a simple program that has separate functions for each of

the grammatical rules. To parse a sentence, we identify its two constituent pieces and return

a list of these two elements, tagged with the symbol sentence:

Ifunction parse_sentence() {

return list("sentence",

parse_noun_phrase(),

43
Here we use the convention that the �rst element of each list designates the part of speech for the rest of

the words in the list.

448 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=MYewdgzgLgBGIFdIwLwwDYEtoAoBE8SeANDHtAgCYCmYUJZADgE4gBm1EEIzDewAQ3ql+6AVzwBKANwAoWaEiwAbtWYAjCKgzYo+VRr4VKmTn3TVgUBMzMjqQiEYvVGTmfMXQYA5lEzAFlpoWLh4vv6B1HxQABbRIgJS0kA
http://source-academy.github.io/playground#chap=4variant=non-det&&prgrm=MYewdgzgLgBGIFdIwLwwDYEtoAoBE8SeANDHtAgCYCmYUJZADgE4gBm1EEIzDewAQ3ql+6AVzwBKANwAoWaEiwAbtWYAjCKgzYo+VRr4VKmTn3TVgUBMzMjqQiEYvVGTmfMXQYA5lEzAFlpoWLh4vv6B1HxQABbRIgJSchawSIy+ENSU2mAI6OhybEhWmOAwGcxZAPoA7jyUOPXMlNWhUJIwAN4wvX2yfTC2AI4ImLY4AIQw2NV5BTjpmdmSHoMjYxMAttRb6mo48QKNS1UrpFACmOhNDW26qzCTKGjz6Gt9XrBsiGCtzTk0EcTmBKllKB9eqdwdpLtdFqDlhC5OtqNZmGAdLhgbcWvdoJJSD8kP8Gh4AL6yYpgUrlMHUOa-aqMWLMcTUHCdLoDPq2dGY9r4QhgAC0LLZWRIPMGMpl9LqDRwEQCQUJ0tlGvlAJwwogqzklOptMx8swoIQejNjAtXPV0Oy2itFpRn3A3iydG08o9UFowA5kKG1FG4w5szeCPpEMDfJsmJ9BqpJX8dOW1R9foD3Vl6tjGKxenItF9NIS6o1crTwuZrPZnOI5YrfS1ioMmn1skpslN5r0grwcQSvX4QgYZAcUHcMiAA

Metalinguistic Abstraction 4.3.2

parse_word(verbs));

}

A noun phrase, similarly, is parsed by �nding an article followed by a noun:

Ifunction parse_noun_phrase() {

return list("noun-phrase",

parse_word(articles),

parse_word(nouns));

}

At the lowest level, parsing boils down to repeatedly checking that the next unparsed word is

a member of the list of words for the required part of speech. To implement this, we maintain

a global variable unparsed, which is the input that has not yet been parsed. Each time we

check a word, we require that unparsed, must be non-empty and that it should begin with a

word from the designated list. If so, we remove that word from unparsed, and return the word

together with its part of speech (which is found at the head of the list):
44

Ifunction parse_word(word_list) {

require(! is_null(unparsed));

require(member(head(unparsed), tail(word_list)) !== null);

const found_word = head(unparsed);

unparsed = tail(unparsed);

return list(head(word_list), found_word);

}

To start the parsing, all we need to do is set unparsed, to be the entire input, try to parse a

sentence, and check that nothing is left over:

Ilet unparsed = null;

Ifunction parse_input(input) {

unparsed = input;

const sent = parse_sentence();

require(is_null(unparsed));

return sent;

}

We can now try the parser and verify that it works for our simple test sentence:

amb−eva lua te input :

Iparse_input(list("the", "cat", "eats"));

S t a r t i n g a new problem
amb−eva lua te value :
l i s t (" s en t enc e " ,

44
Notice that parse_word, uses assignment to modify the unparsed input list. For this to work, our amb evaluator

must undo the e�ects of assignment operations when it backtracks.

449 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4variant=non-det&&prgrm=MYewdgzgLgBGIFdIwLwwDYEtoAoBE8SeANDHtAgCYCmYUJZADgE4gBm1EEIzDewAQ3ql+6AVzwBKANwAoWaEiwAbtWYAjCKgzYo+VRr4VKmTn3TVgUBMzMjqQiEYvVGTmfMXQYA5lEzAFlpoWLh4vv6B1HxQABbRIgJSchawSIy+ENSU2mAI6OhybEhWmOAwGcxZAPoA7jyUOPXMlNWhUJIwAN4wvX2yfTC2AI4ImLY4AIQw2NV5BTjpmdmSHoMjYxMAttRb6mo48QKNS1UrpFACmOhNDW26qzCTKGjz6Gt9XrBsiGCtzTk0EcTmBKllKB9eqdwdpLtdFqDlhC5OtqNZmGAdLhgbcWvdoJJSD8kP8Gh4AL6yYpgUrlMHUapZOi0YDUHCdHqDGADPq2dGY9r4JlQFkJHlciV9elzX7VRixZjiNmE8WSiXSgE4AyaVZySnU2mY6WYUEIPQmxhmjmq6HZbQWs0oz7gbzC7TS4Wi9lO3obcZs2ZvBH0iGQoZomyY4V6qklfx05YypByhVK9ndVV8yNYvQEX4AWnliqyJFVasGGoaOAiASCKvLksrLRwhEgutklNkxtNekFeDiCV6-CEDDIDig7hkQA
http://source-academy.github.io/playground#chap=4variant=non-det&&prgrm=DYUwLgBArgdgDgQwE4GcQBMIF4IysYAbgCgBjAexhUhnNhWwmAEtqAKAIltg4BoIO1KOhAwwfAXCTkAZiBQpySCR1IJx-VcAQKOAShJlK1CADcQSAEYMcLdh3NWVQ9M3krQpMFCTvNIdRRnUBA4IINiIypIZDBmUlAbJlYwTlj40BUwAAsQFQR9EhlYL2ZKCERUEAB9bhhquGykHRA2PQgAb2IIHohfbyQYZPs6gFpG5rQ+bt7Zud7KtGqAdyV0NnSE+T1eGfn9iuQl1aR1upQ9CIBfYmKYUvLFmrQxUVJW9o75vb7wHyG7KlBKIwG88rsDgcnrU6PUJi02hDIfNoSd1o5rJcSDc7g8htDmPAoKlCXBiZ8frAnpgcKTiSRZhRohAXpAcNDWWC2gzer4AI5QZi+NisWr4YBsKlHDBYn79f4skHY24lOKPaUrNZsNHVQGfb6zfmC4UAQggorwBEl8Gl6FlhpAAqFrQAtiAXZYLGxcgh1lKqnb+GAEMwJTq9e0TVgcJbgBFGcZIDJYehNadGD6-TaA-Hev60DSIMHQ9bqbmevLBsNUpntWtdSkdhBk7BU2jrpECUTUoDODlwT1VOoJAIAmBwgYgA
http://source-academy.github.io/playground#chap=4variant=non-det&&prgrm=DYUwLgBArgdgDgQwE4GcQBMIF4IysYAbiA
http://source-academy.github.io/playground#chap=4variant=non-det&&prgrm=DYUwLgBArgdgDgQwE4GcQBMIF4IysYAbgCgBjAexhUhnNhWwmAEtqAKAIltg4BoIO1KOhAwwfAXCTkAZiBQpySCR1IJx-VcAQKOAShJlK1CADcQSAEYMcLdh3NWVQ9M3krQpMFCTvNIdRRnUBA4IINiIypIZDBmUlAbJlYwTlj40BUwAAsQFQR9EhlYL2ZKCERUEAB9AHcldDZ6pHRquzA9CABvCF6+4j6IXwBHKGZfNgBCCFZqvAI2WEq0dD0IwZGxiYBbEG3LCzZchEal5BW9fjAEZmAmhraUtYhJrBx54HW+imiIGToYK1mpgcMdTvBzhgvr0zlUQRBrrdFhC4dChuAfDBkuwwfcWo9qJc-gCgQ0IgBfYjFGClcrLGrcGDVODZJA6EBsTpdAZ9XzeJBY9qcRkAWhZbLQfB5gxlMvpdQabHSCXkl2lso18uBbEZKDWJEp1NpWPlaDEolIHK5svVfMx2NSglEYAteV46o1cshcwBzNZ7M57s9nq1isc1n1xENJTidO9zHgUFSCbgSa56thK0YKaTJEGPxMZsgOFNztdnLzvJAo3GHNmH2R9NWaLtAogRYNkXlOdSQo4OTdvVU6gkAgCYHCBiAA
http://source-academy.github.io/playground#chap=4variant=non-det&&prgrm=DYUwLgBArgdgDgQwE4GcQBMIF4IysYAbgCgBjAexhUhnNhWwmAEtqAKAIltg4BoIO1KOhAwwfAXCTkAZiBQpySCR1IJx-VcAQKOAShJlK1CADcQSAEYMcLdh3NWVQ9M3krQpMFCTvNIdRRnUBA4IINiIypIZDBmUlAbJlYwTlj40BUwAAsQFQR9EhlYL2ZKCERUEAB9AHcldDZ6pHRquzA9CABvCF6+4j6IXwBHKGZfNgBCCFZqvAI2WEq0dD0IwZGxiYBbEG3LCzZchEal5BW9fjAEZmAmhraUtYhJrBx54HW+imiIGToYK1mpgcMdTvBzhgvr0zlUQRBrrdFhC4dChuAfDBkuwwfcWo9qJc-gCgQ0IgBfYjFGClcrLGrcGDVODZJA6EBsTpdAZ9XzeJBY9qcRkAWhZbLQfB5gxlMvpdQabHSCXkl2lso18uBbEZKDWJEp1NpWPlaDEolIHK5svVfMx2NSglEYAteV46o1cshcwBzNZ7M57s9nq1isc1n1xENJTidO9zHgUFSCbgSa56thK0YKaTJEGPxMZsgOFNztdnLzvJAo3GHNmH2R9NWaLtAogRYNxHlOdSQo4OTdvVU6gkAgCYHCBiAA

Metalinguistic Abstraction 4.3.2

l i s t (" noun−phrase " ,
l i s t (" a r t i c l e " , " the ") ,
l i s t (" noun " , " ca t ")) ,

l i s t (" verb " , " e a t s "))

The amb evaluator is useful here because it is convenient to express the parsing constraints

with the aid of require. Automatic search and backtracking really pay o�, however, when we

consider more complex grammars where there are choices for how the units can be decom-

posed.

Let’s add to our grammar a list of prepositions:

Iconst prepositions = list("prep", "for", "to", "in", "by", "with");

and de�ne a prepositional phrase (e.g., “for the cat”) to be a preposition followed by a noun

phrase:

Ifunction parse_prepositional_phrase() {

return list("prep-phrase",

parse_word(prepositions),

parse_noun_phrase());

}

Now we can de�ne a sentence to be a noun phrase followed by a verb phrase, where a verb

phrase can be either a verb or a verb phrase extended by a prepositional phrase:
45

Ifunction parse_sentence() {

return list("sentence",

parse_noun_phrase(),

parse_verb_phrase());

}

function parse_verb_phrase() {

function maybe_extend(verb_phrase) {

return amb(verb_phrase,

maybe_extend(list("verb-phrase",

verb_phrase,

parse_prepositional_phrase())));

}

return maybe_extend(parse_word(verbs));

}

While we’re at it, we can also elaborate the de�nition of noun phrases to permit such things

as “a cat in the class.” What we used to call a noun phrase, we’ll now call a simple noun phrase,

and a noun phrase will now be either a simple noun phrase or a noun phrase extended by a

prepositional phrase:

45
Observe that this de�nition is recursive—a verb may be followed by any number of prepositional phrases.

450 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4variant=non-det&&prgrm=MYewdgzgLgBADgJwKZxBAlld4IwLwwA260AFAESIrkA0M5AZiArfVCK-emK+QEYBPXgHdMAC3IBKANxA
http://source-academy.github.io/playground#chap=4variant=non-det&&prgrm=DYUwLgBArgdgDgQwE4GcQBMIF4IysYAbgCgAzWAYzAEsB7GCRVEAfQHdal0AKDrl4NRRgAlBADeEKdOLSISEAEco1BdwCEEISzwFusJmnQiRJOQuWqQ3ALYgbAIxBJuACxAIeB5EZEAaCDAEamBeTnQBIVExdSwcXWBTWWkKemEIUlpYCL5MHHdPfXgfDCS5b2Y8wODQit8zaQUwKCQGQWE3Dx5cyOF-DKyYHPCkgF9iVJh0uAU4WhRqGjTsCHawbgAiGZA4DYCNzKQ9iA2wWmOT6hhjjYcATxu2RdcNpMn0mEGUFbXNz9gbsIoOgQDAwDcZrRSCAUChODcKAhwfsKMAELDXiQJmlIAA3ZwOb44X4bfFIByA5roagwm6gKgtWn7DxgFCA0A7NlJbFTSDIGiomE-KKbfnUQU3MDuG4ITFkShLBiGVgLGxwUA6QYsOCuJDo6xiSRyCDJKRNFptEUbVXqkAAWn+MDtOr1aD2puNnqkyvY4W4YsFKH8Hq9xp9uW4jqDY2I8pgVDoSpKmtg2t1+u4ho95HjiogNgQdycLBAAA8wKCeI6066QFnQ+bWhAEI5I1qXfq-CHQ56C0XWGWK0NuCTHc7026uz3pzOvdWO2gp7PlzOfds5gtFQhgDWMyYTA0pONzOALfnC8XB5XuD6bRr5xODTGcwn6Ixk2gwaCKAaJB7G5aHTWqCQ4-u6K7esmD61pmS4rj6ZIOLuaCZjGcavkmzAsIhyG-uI2YKom579iW5bXjhC51n+Dank2LYONwFGPnBEHEZeZHDiSiHjrW4Gsfx0hMbWLECRBa6zPMiyJtuuGoQeHqjAAkIpMgns0TZ9uxQ48OGfqIdGJDjC+eY+lccBQOsZkWfW0h1BgKxWWAh4QO8kCfpAOC3iB34Gs5FgqGo2gJEUyrGGUjS0Qw7mGehJnJuuklbjulGZhInr-pFqxWuuPH6nx8HJhGCWbomQYiauUHto+qExcQpnwBZI5WlKICUsCIGPM8krSiiSL5Su1ocnAbL7Fc3WtSiaIYgeQA
http://source-academy.github.io/playground#chap=4variant=non-det&&prgrm=DYUwLgBArgdgDgQwE4GcQBMIF4IysYAbgCgAzWAYzAEsB7GCRVEAfQHdal0AKDrl4NRRgAlBADeEKdOLSISEAEco1BdwCEEISzwFusJmnQiRJOQuWqQ3ALYgbAIxBJuACxAIeB5EZEAaCDAEamBeTnQBIVExdSwcXWBTWWkKemEIUlpYCL5MHHdPfXgfDCS5b2Y8wODQit8zaQUwKCQGQWE3Dx5cyOF-DKyYHPCkgF9iVJh0uAU4WhRqGjTsCHawbgAiGZA4DYCNzKQ9iA2wWmOT6hhjjYcATxu2RdcNpPIYKjoGQ1ZtuYWljAEMAWHBXEgEGhuGJJHIIMkpE0Wm0ops-gBaMEQtB7BFw-FSH7scLcP7zRZfFD+PEEuFEmCDUHgyHWEwkcaTdIM2AoFZrTbc677YRQdAgGBgG4zWikEAoFCcG4UBCS-YUYCQlCvEgTNKQABuzgcvJw-I2hqQDhuIvQ1DlN1AVBa9v2HjAWuFoB2WqSuqmkGQNHVcr5qI2geowZuYHcNwQ2rIlEBjBKLAWNjgoB0jKxLOhEnxeKRrVWYfTmZA6MFmOZOL8NNp0iJuW4EeDVPrjYJzZJgqpY2IiY+yfpOdrrIkePen3oEBsCDuThYIAAHmBxTxBUzsSAYQ3EeBkRAEI5uFvc2hO13afPF6xV+uhtwzdWLyBcdfP1-cGOd1fvwB+JEmSAJfMC255iYbJ4uM5iHiWt5Lg+G6kqm5ZZue47QgO04jqmVxwFA6wEURe7lMUlQrCRYANFInKQGgEorESjGPhQrK0fISgqGo2gJEUPzGGUjTwQwrHskOM7fGh4psRO4hFqJpYdBsrHiuxH4AaOsAQVC1KAUSFoOLprIDpJeHMCwRkmfmClyLhXxzguSFrih1lvmRBLFgwJ4ONw7njv+gGIferlPmaRk1jummAbFUgBX++5xZ+wGzOSgLgW+2HQXIowAJB5TIcHNAhzmhY+PA9lw-lGv2EnEES1HPmGMbvsKzRihKjzPNGsZqiqMXfqpXpwB6lxCicrVKhq8qvKYQA

Metalinguistic Abstraction 4.3.2

Ifunction parse_simple_noun_phrase() {

return list("simple-noun-phrase",

parse_word(articles),

parse_word(nouns));

}

function parse_noun_phrase() {

function maybe_extend(noun_phrase) {

return amb(noun_phrase,

maybe_extend(list("noun-phrase",

noun_phrase,

parse_prepositional_phrase())));

}

return maybe_extend(parse_simple_noun_phrase());

}

Our new grammar lets us parse more complex sentences. For example

Iparse_input(list("the", "student", "with", "the", "cat",

"sleeps", "in", "the", "class"));

produces

list("sentence",

list("noun-phrase",

list("simple-noun-phrase",

list("article", "the"), list("noun", "student")),

list("prep-phrase", list("prep", "with"),

list("simple-noun-phrase",

list("article", "the"),

list("noun", "cat")))),

list("verb-phrase",

list("verb", "sleeps"),

list("prep-phrase", list("prep", "in"),

list("simple-noun-phrase",

list("article", "the"),

list("noun", "class")))))

Observe that a given input may have more than one legal parse. In the sentence “The pro-

fessor lectures to the student with the cat,” it may be that the professor is lecturing with the

cat, or that the student has the cat. Our nondeterministic program �nds both possibilities:

Iparse_input(list("the", "professor", "lectures",

"to", "the", "student", "with", "the", "cat"));

produces

list("sentence",

list("simple-noun-phrase",

list("article", "the"), list("noun", "professor")),

451 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4variant=non-det&&prgrm=DYUwLgBArgdgDgQwE4GcQBMIF4IysYAbgCgAzWAYzAEsB7GCRVEAfQHdal0AKDrl4NRRgAlBADeEKdOLSISEAEco1BdwCEEISzwFusJmnQiRJOQuWqQ3ALYgbAIxBJuACxAIeB5EZEAaCDAEamBeTnQBIVExdSwcXWBTWWkKemEIUlpYCL5MHHdPfXgfDCS5b2Y8wODQit8zaQUwKCQGQWE3Dx5cyOF-DKyYHPCkgF9iVJh0uAU4WhRqGjTsCHawbgAiGZA4DYCNzKQ9iA2wWmOT6hhjjYcATxu2RdcNpPIYKjoGQ1ZtuYWljAEMAWHBXEgEGhuGJJHIIMkpE0Wm0ops-gBaMEQtB7BFw-FSH7scLcP7zRZfFD+PEEuFEmCDUHgyHWEwkcaTdIM2AoFZrTbc677YRQdAgGBgG4zWikEAoFCcG4UBCS-YUYCQlCvEgTNKQABuzgcvJw-I2hqQDhuIvQ1DlN1AVBa9v2HjAWuFoB2WqSuqmkGQNHVcr5qI2geowZuYHcNwQ2rIlEBjBKLDQEvFFFZEjxSNaqzD6bAmZAuNptPpjKxLOhfhp5cJqYtDiZ2NZY2IiY+yaJzdbNZhePen3oEBsCDuThYIAAHsWhtw+9W0IPaXmGAhHIujf20HWG+Xx5PWLP5zwzc3McycfuD3f70vryBb-fXxXU2SAV9gbv22y8aMACQgEyOY4DImOE5Tqe4o8ESuTbpaVIdsOPaplccBQOsGFYau0h1BgKw4WADRSJykBFisRJFiW0KkfISgqGo2gJEUPzGGUjTgfmRbsl2I7fKmCw2HAoA6FWT7QhI+K5txKIdBswmiSA6KClebZlm+8EkhGwZUi+97aVw3CCshfH8WhzDibAv5SeIQ5Jl8kHHtOc6wSZEltnh+LrhAm4OB5NnLs+9b3ke0FuQuZpqcFmlvvFciCr+BkJfFRKfhS9A-sF0ImJxUjjGBzT5uFJ6RXBQnUCJYlJTl-7jMQRLEdwZoxqWwrNGKEqPM80axmqKpxa+ilenAHqXEKJxtUqGryq8phAA
http://source-academy.github.io/playground#chap=4variant=non-det&&prgrm=DYUwLgBArgdgDgQwE4GcQBMIF4IysYAbgCgAzWAYzAEsB7GCRVEAfQHdal0AKDrl4NRRgAlBADeEKdOLSISEAEco1BdwCEEISzwFusJmnQiRJOQuWqQ3ALYgbAIxBJuACxAIeB5EZEAaCDAEamBeTnQBIVExdSwcXWBTWWkKemEIUlpYCL5MHHdPfXgfDCS5b2Y8wODQit8zaQUwKCQGQWE3Dx5cyOF-DKyYHPCkgF9iVJh0uAU4WhRqGjTsCHawbgAiGZA4DYCNzKQ9iA2wWmOT6hhjjYcATxu2RdcNpPIYKjoGQ1ZtuYWljAEMAWHBXEgEGhuGJJHIIMkpE0Wm0ops-gBaMEQtB7BFw-FSH7scLcP7zRZfFD+PEEuFEmCDUHgyHWEwkcaTdIM2AoFZrTbc677YRQdAgGBgG4zWikEAoFCcG4UBCS-YUYCQlCvEgTNKQABuzgcvJw-I2hqQDhuIvQ1DlN1AVBa9v2HjAWuFoB2WqSuqmkGQNHVcr5qI2geowZuYHcNwQ2rIlEBjBKLAWNjgoB0jKxLOhEnxeKRrVWYfTmZA6MFmOZOL8NNp0iJuW4EeDVPrjYJzZJgqpY2IiY+yfpOdrrIkePen3oEBsCDuThYIAAHmBxTxBUzsSAYQ3EeBkRAEI5uFvc2hO13afPF6xV+uhtwzdWLyBcdfP1-cGOd1fvwB+JEmSAJfMC255iYbJ4uM5iHiWt5Lg+G6kqm5ZZue47QgO04jmh4qPhQE7iEW8Eoh0GxoBK4pER+AGjrAEFQtSgFEhaDhMayA5DjO3ypuxnH5iRci4V8c4Lkha4oQJb57rSxYMCeDjcDJ47-oBiH3lJT5muxNY7nRgFGVIql-vuxmfsBszkoC4Fvth0FyKMACQzkyHBzQIRJWmPjwPZcCpRr9uyPF4cwLBXHAUDrJF0VydIdQYCssVgA0UicpAVGQDgRJZTRrJpfISgqGo2gJEUPzGGUjRkRAWUhUSKXPmGMbvsKzRihKjzPNGsZqiqhnfpRXpwB6lxCicrVKhq8qvKYQA
http://source-academy.github.io/playground#chap=4variant=non-det&&prgrm=DYUwLgBArgdgDgQwE4GcQBMIF4IysYAbgCgAzWAYzAEsB7GCRVEAfQHdal0AKDrl4NRRgAlBADeEKdOLSISEAEco1BdwCEEISzwFusJmnQiRJOQuWqQ3ALYgbAIxBJuACxAIeB5EZEAaCDAEamBeTnQBIVExdSwcXWBTWWkKemEIUlpYCL5MHHdPfXgfDCS5b2Y8wODQit8zaQUwKCQGQWE3Dx5cyOF-DKyYHPCkgF9iVJh0uAU4WhRqGjTsCHawbgAiGZA4DYCNzKQ9iA2wWmOT6hhjjYcATxu2RdcNpPIYKjoGQ1ZtuYWljAEMAWHBXEgEGhuGJJHIIMkpE0Wm0ops-gBaMEQtB7BFw-FSH7scLcP7zRZfFD+PEEuFEmCDUHgyHWEwkcaTdIM2AoFZrTbc677YRQdAgGBgG4zWikEAoFCcG4UBCS-YUYCQlCvEgTNKQABuzgcvJw-I2hqQDhuIvQ1DlN1AVBa9v2HjAWuFoB2WqSuqmkGQNHVcr5qI2geowZuYHcNwQ2rIlEBjBKLAWNjgoB0jKxLOhEnxeKRrVWYfTmZA6MFmOZOL8NNp0iJuW4EeDVPrjYJzZJgqpY2IiY+yfpOdrrIkePen3oEBsCDuThYIAAHmBxTxBUzsSAYQ3EeBkRAEI5uFvc2hO13afPF6xV+uhtwzdWLyBcdfP1-cGOd1fvwB+JEmSAJfMC255iYbJ4uM5iHiWt5Lg+G6kqm5ZZue47QgO04jmh4qPhQE7iEW8Eoh0GxoBK4pER+AGjrAEFQtSgFEhaDhMayA5DjO3ypuxnH5iRci4V8c4Lkha4oQJb57rSxYMCeDjcDJ47-oBiH3lJT5muxNY7nRgFGVIql-vuxmfsBszkoC4Fvth0FyKMACQzkyHBzQIRJWmPjwPZcCpRr9uyPF4cwLBXHAUDrJF0VydIdQYCssVgA0UicpAVGQDgRJZTRrJpfISgqGo2gJEUPzGGUjRkRAWUhUSKXPmGMbvvs0qyvKir7I6nkuuZjanOc+ytdazRihKjzPNGsZqiqrymEAA

Metalinguistic Abstraction 4.3.2

list("verb-phrase",

list("verb-phrase",

list("verb", "lectures"),

list("prep-phrase", list("prep", "to"),

list("simple-noun-phrase",

list("article", "the"),

list("noun", "student")))),

list("prep-phrase", list("prep", "with"),

list("simple-noun-phrase",

list("article", "the"),

list("noun", "cat")))))

Asking the evaluator to try again yields

list("sentence",

list("simple-noun-phrase", list("article", "the"),

list("noun", "professor")),

list("verb-phrase",

list("verb", "lectures"),

list("prep-phrase", list("prep", "to"),

list("noun-phrase",

list("simple-noun-phrase",

list("article", "the"),

list("noun", "student")),

list("prep-phrase", list("prep", "with"),

list("simple-noun-phrase",

list("article", "the"),

list("noun", "cat")))))))

Exercise 4.45

With the grammar given above, the following sentence can be parsed in �ve di�erent ways:

“The professor lectures to the student in the class with the cat.” Give the �ve parses and explain

the di�erences in shades of meaning among them.

Exercise 4.46

The evaluators in sections 4.1 and 4.2 do not determine what order operands are evaluated in.

We will see that the amb evaluator evaluates them from left to right. Explain why our parsing

program wouldn’t work if the operands were evaluated in some other order.

452 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.3.3

Exercise 4.47

Louis Reasoner suggests that, since a verb phrase is either a verb or a verb phrase followed

by a prepositional phrase, it would be much more straightforward to de�ne the function

parse_verb_phrase as follows (and similarly for noun phrases):

function parse_verb_phrase() {

return amb(parse_word(verbs),

list("verb-phrase",

parse_verb_phrase(),

parse_prepositional_phrase()));

}

Does this work? Does the program’s behavior change if we interchange the order of expressions

in the amb?

Exercise 4.48

Extend the grammar given above to handle more complex sentences. For example, you could

extend noun phrases and verb phrases to include adjectives and adverbs, or you could handle

compound sentences.
46

Exercise 4.49

Alyssa P. Hacker is more interested in generating interesting sentences than in parsing them.

She reasons that by simply changing the function parse_word so that it ignores the “input

sentence” and instead always succeeds and generates an appropriate word, we can use the

programs we had built for parsing to do generation instead. Implement Alyssa’s idea, and show

the �rst half-dozen or so sentences generated.
47

46
This kind of grammar can become arbitrarily complex, but it is only a toy as far as real language understand-

ing is concerned. Real natural-language understanding by computer requires an elaborate mixture of syntactic

analysis and interpretation of meaning. On the other hand, even toy parsers can be useful in supporting �exible

command languages for programs such as information-retrieval systems. Winston 1992 discusses computational

approaches to real language understanding and also the applications of simple grammars to command languages.

47
Although Alyssa’s idea works just �ne (and is surprisingly simple), the sentences that it generates are a bit

boring—they don’t sample the possible sentences of this language in a very interesting way. In fact, the grammar

is highly recursive in many places, and Alyssa’s technique “falls into” one of these recursions and gets stuck. See

exercise 4.50 for a way to deal with this.

453 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.3.3

4.3.3 Implementing the amb Evaluator

The evaluation of an ordinary JavaScript expression may return a value, may never terminate,

or may signal an error. In nondeterministic JavaScript the evaluation of an expression may

in addition result in the discovery of a dead end, in which case evaluation must backtrack to

a previous choice point. The interpretation of nondeterministic JavaScript is complicated by

this extra case.

We will construct the amb evaluator for nondeterministic JavaScript by modifying the ana-

lyzing evaluator of section 4.1.7.
48

As in the analyzing evaluator, evaluation of an expression

is accomplished by calling an execution function produced by analysis of that expression.

The di�erence between the interpretation of ordinary JavaScript and the interpretation of

nondeterministic JavaScript will be entirely in the execution functions.

Execution functions and continuations

Recall that the execution functions for the ordinary evaluator take one argument: the envi-

ronment of execution. In contrast, the execution functions in the amb evaluator take three

arguments: the environment, and two functions called continuation functions. The evaluation

of an expression will �nish by calling one of these two continuations: If the evaluation results

in a value, the success continuation is called with that value; if the evaluation results in the

discovery of a dead end, the failure continuation is called. Constructing and calling appro-

priate continuations is the mechanism by which the nondeterministic evaluator implements

backtracking.

It is the job of the success continuation to receive a value and proceed with the computation.

Along with that value, the success continuation is passed another failure continuation, which

is to be called subsequently if the use of that value leads to a dead end.

It is the job of the failure continuation to try another branch of the nondeterministic process.

The essence of the nondeterministic language is in the fact that expressions may represent

choices among alternatives. The evaluation of such an expression must proceed with one of the

indicated alternative choices, even though it is not known in advance which choices will lead

to acceptable results. To deal with this, the evaluator picks one of the alternatives and passes

this value to the success continuation. Together with this value, the evaluator constructs and

passes along a failure continuation that can be called later to choose a di�erent alternative.

A failure is triggered during evaluation (that is, a failure continuation is called) when a

user program explicitly rejects the current line of attack (for example, a call to require may

48
We chose to implement the lazy evaluator in section 4.2 as a modi�cation of the ordinary metacircular

evaluator of section 4.1.1. In contrast, we will base the amb evaluator on the analyzing evaluator of section 4.1.7,

because the execution functions in that evaluator provide a convenient framework for implementing backtracking.

454 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.3.3

result in execution of amb(), an expression that always fails—see section 4.3.1). The failure

continuation in hand at that point will cause the most recent choice point to choose another

alternative. If there are no more alternatives to be considered at that choice point, a failure at

an earlier choice point is triggered, and so on. Failure continuations are also invoked by the

driver loop in response to a try_again request, to �nd another value of the expression.

In addition, if a side-e�ect operation (such as assignment to a variable) occurs on a branch

of the process resulting from a choice, it may be necessary, when the process �nds a dead

end, to undo the side e�ect before making a new choice. This is accomplished by having the

side-e�ect operation produce a failure continuation that undoes the side e�ect and propagates

the failure.

In summary, failure continuations are constructed by

– amb expressions—to provide a mechanism to make alternative choices if the current

choice made by the amb expression leads to a dead end;

– the top-level driver—to provide a mechanism to report failure when the choices are

exhausted;

– assignments—to intercept failures and undo assignments during backtracking.

Failures are initiated only when a dead end is encountered. This occurs

– if the user program executes amb();

– if the user types try_again at the top-level driver.

Failure continuations are also called during processing of a failure:

– When the failure continuation created by an assignment �nishes undoing a side e�ect,

it calls the failure continuation it intercepted, in order to propagate the failure back to

the choice point that led to this assignment or to the top level.

– When the failure continuation for an amb runs out of choices, it calls the failure contin-

uation that was originally given to the amb, in order to propagate the failure back to the

previous choice point or to the top level.

Structure of the evaluator

The syntax- and data-representation functions for the amb evaluator, and also the basic analyze

function, are identical to those in the evaluator of section 4.1.7, except for the fact that we need

additional syntax functions to recognize the amb syntactic form:

Ifunction is_amb(stmt) {

return is_tagged_list(stmt, "application") &&

is_name(function_expression(stmt)) &&

symbol_of_name(function_expression(stmt)) === "amb";

455 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARjoCYAoKOJVURNAfTQBTADbg+ggG4BDYZClJoAcwAUaeDngBKUAG9WoA6EyD4kTNB79okHACNBmVeq0GAPq-2Gvh3gPiZEJScNbVB3T28vX1tkZGFBKWhgl3DI719rYWFk0LcPNKj+GAATQXBAwWKcgG5WAF92GAQUC194KUVFSr5hXnhkgBpQeAALQT52xW09L2NTc0s+AAcpREc1ENAAMi3QMakqjZcAXlPhsYmO2oaOZu4MqRxBHN0IoxMzVv5JruKevsGoAARNBHoIgZpro1OC1QGgAJ52OJ8ZBiUFPF4zQxzT57BJVdqIbJHTSQ+rQu5fPhSNBoRCKaBPaD9EmvbEfBZtDq-f5qQFAml0hlM+AQqG3LgWQX0xmCZkCRExYnOaYRHELfYE1bZTXKQnKkKksk3JqS0DS4Vy+B8aSyZ6srHveYWXX6vXanKk8Wm2G+WCoNSJa2lWDCKSYeQtTFqjlUn7dXp8o5DIH+9DteUhsMRyVi8kS2FpwOZwSh8OR1AKpEGlyO9Uu-HuonKV0eklG70w7hFjPB0vZivQG0ySD2lVsgz1vEHJvZN3t40Us2+aQBKS2eJ8LPlyXR9nOxbxv6JlnOFOrxDrzfbnMtPMmrsWC9X8Y3wdVpV7yex6da5ut5sF0XAtuGfDdX37HcWmHO0vydXEALnNsVS9fMfXufgwzsYopHEAAPJZjFpKMHRjA8uU6BMAWTYEsNsHD8MIwRiNQe8l1hOiGJWCMnngBw0DgqccCkJZVEVZFUT4dFBCGRDPWA9CLE43CYmKeFBJ-OT5xQhTH0Wes-HkQQRQ08jvm5KikzPYEDMDPiRTYkCLAMwQCKIulUFMhDG20w1O0pRY02KRBJRkRj3JI8c6x-CieRPQE3gKLxU1QYLQuEcLmI86BHMU0AgvC5ZjEOKKyNxE8+GMcBAQYXSAoK1zCL4IsvIWCqqsBZg6rNBq3OpYRT02aKD3aspAQAZm631+CEABHUc4DHIays5czKOPajrKBOaFtgcEpu4YSAGtxh2uU9uSNBVX3cqAW2wR5vO8EhiOK7-LNM7FsM+yrQEh1DBWhsZ18rQDoscpMDUb7jKtS7ru-A9dVesH3ihuyYeZP7nCuid4IWEG3rQvTfGMpZ4HhAQHt2pb4Bx4bcQySAsjh97pp6GlrXRkzkdxqdGeZgnUIfALomEZBYCOuC8bjCyNqsjQUw3cWjtyvTjvGJWJdapS7s1lWXpVVnuD1vhVPU0jZk0nzkL8omRf4ESll6WBB21w9Zd5Qb4BTR3ncHVWAqczKWKSC2Ee84GbdBo2pUwRQseWm6NWt5sQY7O2zWgZBqTjgTkCWOnAcWTJsnzwnhbNCGofDFQy-h6Xf2UOuY9R60a7zgv66nN1m-JdiMOpOxMUiN4+bWuLNoV4FfcQF3c20HZQESyIHgxIPGoizz222XZl+8BFqxRNEwWUde3KyyLDVAU5jmnuwgRbx5bGakZkFn5ipanduanqIA

Metalinguistic Abstraction 4.3.3

}

function amb_choices(stmt) {

return args(stmt);

}

The symbol amb here is no longer a name with proper scoping. Whenever the symbol amb

appears as the function expression of an application, the evaluator treats the application as a

nondeterministic choice point.
49

We must also add to the dispatch in analyze a clause that will recognize such expressions

and generate an appropriate execution function:

I: is_amb(stmt)

? analyze_amb(stmt)

The top-level function ambeval (similar to the version of evaluate given in section 4.1.7)

analyzes the given expression and applies the resulting execution function to the given envi-

ronment, together with two given continuations:

Ifunction ambeval(exp, env, succeed, fail) {

return analyze(exp)(env, succeed, fail);

}

A success continuation is a function of two arguments: the value just obtained and another

failure continuation to be used if that value leads to a subsequent failure. A failure continuation

is a function of no arguments. So the general form of an execution function is

(env, succeed, fail) => {

// succeed is (value, fail) => . . .
// fail is () => . . .

}

For example, executing

ambeval(exp,

the_global_environment,

(value, fail) => value,

() => "failed");

will attempt to evaluate the given expression and will return either the expression’s value (if

the evaluation succeeds) or the string "failed" (if the evaluation fails). The call to ambeval

in the driver loop shown below uses much more complicated continuation functions, which

continue the loop and support the try_again request.

Most of the complexity of the amb evaluator results from the mechanics of passing the

continuations around as the execution functions call each other. In going through the following

49
To avoid confusion, we shall refrain from declaring amb as a name in our nondeterministic programs.

456 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARjoCYAoKOJVURNAfTQBTADbg+ggG4BDYZClJoAcwAUaeDngBKUAG9WoA6EyD4kTNB79okHACNBmVeq0GAPq-2Gvh3gPiZEJScNbVB3T28vX1tkZGFBKWhgl3DI719rYWFk0LcPNKj+GAATQXBAwWKcgG5WAF92GAQUC194KUVFSr5hXnhkgBpQeAALQT52xW09L2NTc0s+AAcpREc1ENAAMi3QMakqjZcAXlPhsYmO2oaOZu4MqRxBHN0IoxMzVv5JruKevsGoAARNBHoIgZpro1OC1QGgAJ52OJ8ZBiUFPF4zQxzT57BJVdqIbJHTSQ+rQu5fPhSNBoRCKaBPaD9EmvbEfBZtDq-f5qQFAml0hlM+AQqG3LgWQX0xmCZkCRExYnOaYRHELfYE1bZTXKQnKkKksk3JqS0DS4Vy+B8aSyZ6srHveYWXX6vXanKk8Wm2G+WCoNSJa2lWDCKSYeQtTFqjlUn7dXp8o5DIH+9DteUhsMRyVi8kS2FpwOZwSh8OR1AKpEGlyO9Uu-HuonKV0eklG70w7hFjPB0vZivQG0ySD2lVsgz1vEHJvZN3t40Us2+aQBKS2eJ8LPlyXR9nOxbxv6JlnOFOrxDrzfbnMtPMmrsWC9X8Y3wdVpV7yex6da5ut5sF0XAtuGfDdX37HcWmHO0vydXEALnNsVS9fMfXufgwzsYopHEAAPJZjFpKMHRjA8uU6BMAWTYEsNsHD8MIwRiNQe8l1hOiGJWCMnngBw0DgqccCkJZVEVZFUT4dFBCGRDPWA9CLE43CYmKeFBJ-OT5xQhTH0Wes-HkQQRQ08jvm5KikzPYEDMDPiRTYkCLAMwQCKIulUFMhDG20w1O0pRY02KRBJRkRj3JI8c6x-CieRPQE3gKLxU1QYLQuEcLmI86BHMU0AgvC5ZjEOKKyNxE8+GMcBAQYXSAoK1zCL4IsvIWCqqsBZg6rNBq3OpYRT02aKD3aspAQAZm631+CEABHUc4DHIays5czKOPajrKBOaFtgcEpu4YSAGtxh2uU9uSNBVX3cqAW2wR5vO8EhiOK7-LNM7FsM+yrQEh1DBWhsZ18rQDoscpMDUb7jKtS7ru-A9dVesH3ihuyYeZP7nCuid4IWEG3rQvTfGMpZ4HhAQHt2pb4Bx4bcQySAsjh97pp6GlrXRkzkdxqdGeZgnUIfALomEZBYCOuC8bjCyNqsjQUw3cWjtyvTjvGJWJdapS7s1lWXpVVnuD1vhVPU0jZk0nzkL8omRf4ESll6WBB21w9Zd5Qb4BTR3ncHVWAqczKWKSC2Ee84GbdBo2pUwRQseWm6NWt5sQY7O2zWgZBqTjgTkCWOnAcWTJsnzwnhbNCGofDFQy-h6Xf2UOuY9R60a7zgv66nN1m-JVgQAgRSMHAbA8CIMhKGoegmHG9iMImTBR2UPD64bvDQFOY5hkXwQW-VvgnOUbiwT4yGhjNoY5QkVep3ilKcCWZASgPxSgQGRKkoMY-eP48-kDUy+0Br4tz9LgR+z9D7gBvjFNacUATgBTP6B+T9oB-CcgHSuilljlh-pDZQUDcYN1GtVBBoBaotyDmbfB0CRp9EqmNUhXUKFYKvmsVAJkCGOiIXQjqpDJp7ykCdehzoYJLzTHxZkNDbp8iBAZW0o4375VQBIrQID+ByJHM8eRggpGrUuOtT2yhtEpg0XaDBsJTGjmaso2G2jdFAz-NkOxKNzpizpEocQQC2GymZMoK+9jhgen8RQtYUMR5gj8UAgJupgkZ1hK45AQhTbqXCU8QB19dBeDeFOFYax8E8RkqAWJDQeznHGKTcmniJDeJFBvUAJdahOVAPvVJ9pxLCDQEMbRhdLYHlyesdpnTQDdJRq0j8cQBKtOmFk3pEcqhTIoQU0RzF8lgmmQDWZ+MPQLLidwVyEi-isOwD4lkgyukyCGbYGk5SomENvnKRQowxLVhxpvUA8QlBPNtFdD+3gAD8oB+nKBaQU55SohnfM0Ofa5VTNC-K8AALneQ8p5CIXnaAADzIs+SMIxFy4Wf0MAChw2BHBAgACqxGaYkeE5o442F+nCSASwnaIEqEioEoAADUoB4WEoMGoAIShEDgHNoM7QPLFGcp5Xy-lgrAiKBFepSFBL+VIpJcgMllLkAQEEAAdzpYoBlmMmUst6Oy4E3LeX8qSvK4VoqwUTIlcCFMVrZWErtYqh1KqW5i2QEdZl4yMraMdcIdJq8mlXx6LEUS-jCFeCaWgF2ocznDPxfGtIfMrBM2JOK91BRiVAOjfnZQ+bCUJPcYoKpNTYb+NVTaxFcJ2kbzOEjPNDa0gAt1JCstBQkVJsSLOUNV0hhuh9fChoBQRWgEiRIFtW9RjlIfpUo57CrSrwKBqgZ1YUwAFVoAxBKPUsEeYCh1CKR0wQGbIilNaXUqu1pWmzrJPyqcA6khjLReC1ZTwoW9s-mM7pP6dEvrSJOww4Hw4LCjX62NUSW4WiHF+5EIbkNhrTehuNXDI1Ftg8+69g89LvuHecjpG7M0wKkjm4d9abWFokMW0S-7vAVoVdW45Jk63Mf7c2t5bb0XMYMACoQ1pu0XNI7Rht-bk1DrQyOwJzZx1nutWkads751lPEMuimq6TnkciFu0Ne6D0oOKMep4oAAC0lnzTEUtMyU9YGL1CAI14W9BT72hMfaC2Jr6fzEc-YM4Df6O1JUA5oyZBTUJnreJBhuMGY3PqhP3MATlh6jwICQcgVBaCMDoDQOeVJCKIBwCFRAEhxiQJgF3SjR5DEcBTMV0rSAKvmO4E1srFW+Aladhjdou4OA1cRinbIg3FylI6y1yrQ86nxV+XfTUijDCahtSFyId99RLYMPqVb780h336VtwFqxMC7fm3dE8R2Txnf23dfmwhFH3c-mt7wd9gpoCdlIeEij3ufdpUlF7Xg75bq21u-lgPDB32EqMaktg0Bv2hyMWHGACgQ4MHfLlR3DDLyGPCbQxwAB8oB148v+2j95d1LNY4MDj0AeON5E-XjZsne31t3QAFTU5nXhXH+PGegHZ3Tgw5O77AC57T+nhPiegDACz87MiACk4ued0759LhXQvQAi7upvLHEu1frzeXj1nr27oAEJTh65V5L-nFut7G-l-0IEGLle84Z9LrFBgHe3ZkRi441P9fu-Xn7r32uZEE9d6roPoAieh5N0Du6BP-dDG8IHqX68k9x8d8oIEZuufS68FLgwZvDAr1+WSCbARmvlem4+INGBjjwuEqJTUQxJs15fo+QmleSuddr5SFEtgABWpZaYbybyJfBMB3cHar33xRckxvk+8O3rraWK8BngICufU3rHpiDA3infI74lDKBUYoijT-lGgJUZfoWkp30INAa-IVvsp6fy-8md-78+6d4jvgpAhAW2-+gB3+P+puMi-+AAokdtAWAeAZDndAAHJSBIFc4oFIGSYIFpAb7pjb696749hBj17j4FDN74Lu66hQJt474d5EGYy4FqD4HV5db0HWjdKkFpDkHgCUEjbUJQrMF9577Fi0xkhNK+wUyr794DYwBDA1wngBISHdZDin6YDCDwhsZD5SDSBJoBBkylqhZSHdYPzxAiiuyDbx78ryF9CQjeC7IWAiaBq6YmQBL7JyiHJeIcawz-qOzuFHy0Fr5YJyZDCCYr4BHjBsH17wGGC+GoL+EEEd5BzIDD6j5DKhFeBGGREjKWGfyLpaZkw6aeFrqSJQjxBb55GKBixXIZTOFWh1KOFLDsbFH9BkgpaEaUjpa4CZYTw5b0DjR0CzxNK+CPC2CYiRDZK1YezxQ0QChmqIAuy5jaA7AqZJQPAYhByNQRSeTtjbC7DupoYohogRIbFuRZSRSGgaYCh2BAgIZ2DNQjDIDzErJhxQaxzxw1D2HmigjqEABep0IgYgkgI4kYQQLxDcs6L0kAsAe0lQQw4A2oauaAUJMJJUCsEACJCG3x8IfxUkESYJU4EJTK0JggsJ6JRIfO+xyJJJVQfqAajRBxqG7ShxuJGIJI4aORNq8J5JmJMg2J4wykwc2UUsE2OCJg-Es2IxXEopp8CcqibwpSZsEp2EKk-85shs8pm+oAtgHAdSiQvJfxygZsoGrxM6V8kJxJpJXJwgFJHqVJlQwKgi0hUY38YpZ8WpDWRSUSHJ-KVpKMepvx-xj0i0cMhCiaVMVol4WQ6kUg58+m4JZpRJKJcJCJ7u6RUghJ6RNOuExiZJwgXUDOmZhQwinwyyyg2ZmiWBP+wmdpVQ5ZdoyZRIXUhZhgSKoxCZSJFpxQDZeZ0RBQvptQXgcWTSeGD6neQwREj6MAPSFGZkVGzME5nePyHaAKo5HA-6SKeGn0SAMg6h+CXmY5zZXguoC5HAV0vZBQboJ5U50WEGGpeBp5dS5B-pfJBsGghMmyVIJcU+6A2g7q9G7uV+5+7qG5iWVB15o62y15fpWJOJYE14kEt42xpUbmmpaGdScFEEZYiFSG7SHxKFeBEgOpW8z5BpGFW4CF74qGKEA5ScFghJHZSZuZauvahFMAEJ6ReK6GVp+ZUuXC4BiGQapZaGpG4aNF2Bb6NZyggFN+XZuZTC6RdQ3phK-ZnxJFERm+xBb4u4YJpSaFW88KkRWl0EaGeFhgpSrFFgxFMFzwhlFFkoQl1FExB49FNZ3ZzFDaFl7F4BnF3ZPFROfFP+AlDJmiRmGGolh5ElnZUlqCZ+MlvlxpoWil6RKlFcsIal1IdmJywpqFvGtmQoJyQaplBg5lRFXx+pzwiGIoDltsH5ppQC5pjFvpBZBQnlZpZaPlclauOgDaA87ODA7OgmpScQfw2is2sQdJgljJO6npwCgmQVTJU1SoIlM1CVNqkVKJPlh5SUygXV3gvVzAA12BHa811YQl7SSlR1l1Bgw1yyIRV191aQvmD1SUU43FO1Ylz1BgdQq1Z6F1hgKVhWZVAZe+aULQYUmxZxSFQ04x+FTBSwpValygvUTUTEqJ0cd5TBsACN1lSNqUhULU7YH1pSUg2N5VuNqChUMgXsN5JpLlnZblzVn88NbFbVoWA8DFWUSizIgQcglcmqRS8iIJigKxNqA8i62+lQ8xRkwwOqyRhIFgqNyyzG-h3QOZ3FNp4BbQO8KtI1FZItoWAKWNLN9ViZ1J8VmZSKJNxtEgDVZtnVf1e1qW2oZgV64iPNg4EA-NQJsgQt+thKYtYwEtwUCxggAAkKHTMh2gDYmsmiiJAH2FhYOLKavGpr4J9BdDsQFcVahdjPUeGV9FzL9EVd4FmvkZUunTTEuYSgCiXPmpbSyn4e+nHQnQOJKJMvuYXb4sjOeZEE3U-C3VBAGA6UIhXQYZ9ZEAuZ3bTHDOnIOc5lelnQ3KAvviWIndpSqPmgCvFLZWvcZbhe2HXYsGRUZVDVoL2lvQCMfXZXvdWJ6L2kig0rFp8RVJJDAIhvadJNOSafdsoJ-ZWaADXTmvCkikCkCOzm-ZlZUJzkMC-WIBA-lfaW6H-V6BHQDKldwOlXrNlXgYqVvCbFQiSETZqWLC7B0vUbHf3eRbvUPUaUQ3gfAzKJUIfrA3wAwwyPaSQ-inQ0wdqdPlZWTbQ05biHTY1SmYTu6rw0kG4RTbUb4pwx0kMGwzJUMv4g7V4BzZaRiTaqpdZcWeYNDNzMhWZZqZgKTQGcoC5KcSHJ6B9QSe2a5UxYzS9RwF5R2h1ere7ho1UPvJYlojIAIerWo-9RiZ8V0G3LnGWaeekrbZo+SZknYbVT-VbT+fCtWVFSXG5cA43Mk1dK4wgezVSbSFzQoLzbCOAPzaMLwOaGuUdWWXHPFU45dWEznO8W6Dkz3eAazePY7abUU27dYB7eU5gFtf7WAMYLAGYHSBVvlDuTLaAM0+3CM5-HU-HN2ZNI09094F40fCdis3IbnB0901aZNEE9gYE82dHXlK5KWPHeML7FLTIdAPs6s6bbE9aXcpRkYVVtAP-WkxtUoV84pN+c8yOqEb6Vk6AsghAkC4Nn7UJu0fZVQoNmPfytIx4dUl4b4mC1gi6TKd+Yc+3Kc-9SwkUVlWNkE4aaqfQkiQNA01LoJts74L45S2pNS0zC4CMwCr43vioiyxTEROy--ffkitJbCSM+cw2uC32kUpgKSsC8CDAEdFnHquDHlOTEsFetZpalyoWUCNcxM3xNSHMQsXeNBeVUa6yia6favLemY3yd+QPhDdY4TRjVvjk4+ZPmpSCzY0IwsCI3bU1eI1HS410z-vKx40G00yYC0wJDk3dZszNUS-fis0MscxrQm4YPq7cxa37I80m1dYS687JWm-m1HdqF1KW0xdULyug1KLoyMX4gRDa5qUbegB66JF6+aHcbAA8U8QJI1DTfGSbV4wzbxfCk0v4BTDfnhP0D248XtF-S9ZRl+XO320K52rmTtdxo3Kuwu5oHk+PSO0s5EDte7pO1JPskOru8xLPWBvCt3JgFO5e62++RBjyeY-iZRkIKIOIILQoCoCSH+UDXyZTD+97aU6CRvUlEimsTTOuwA8BzidJDkHyjB-wDva3ecWfdXYh+pSvQPdhSh9B0feGJeOBFQ5h9a0B+lVfdQ6HFB9K8MZlYYyENR-W8x7DIB8R8vaDagODVY0KVx5-ACulUFGVnxzUQJ1h0K2h+zMqYKdJ2x+awKU64Jwx2kLJ6PUJ0lCJ7o1p-nXtAY0XQfdx-wFg9pwWrh6bCQ5LBZ94LJ7ZP1n1kR8J1Z450ZCx9h4xw7HYC5zp1Zw23Z42sMca67EF-8gF6F+vax8R4ZjMfukq8gCq02syFIEzjZmpW1lKHYN7Y20sNE0Wwzd1Qk7Rbh3l-u-Y-TVW58aOWgHEPHVGIEEsPHYoTl7aDs5DM8ECN1dKjwNAM11vpKqAHUBCKWxUVUeDaSyKKWx1dO23ANA4KCFNmrraDN2rqK8UH6VkAIPV23coE1y14QmUXCLty0Ifg0qHW8EMcyIt2FHhgd97NvBTB0KsD8wRqnf1-HZceey94EBCK5oYD94oK9+9ROvPQDwYCMbl9xEIDnj11ag91apyiNz3eN8kZNxi80USwPFD7aL02gMrat-Uvsv1KfEtzXl1ZmXV7IG3XUkCkT9Tw1wGD9Q2nzDd+YHd4lkCED694onN6T7d8tx9fyklWzWALjzILmS7cretzFdfpUMxiz8N0-VEOz98Yxii-yg96c6e2O+Ab9mGOpECAPIEGT5LyDkr2BglVOMYBVp16oKd8z1CLejmtgp16dlvJyhmw2gADqA3GDzRrDPBLDrLe-8p++1Ul5LAIcNvaBIoADk+AkYaA5QlQ7wgfxg8f1bl1fv56YfCbfvTSTwOXjgIUxkQwK88T+f3gEfpXP9lf1fn8tfkQgDWQjf9+zf9nPA9kGmuoDf7fBgnfLfBeA-vvsqSKxf9gpf9kEFzYK8th3vufo-z1fvx3MAMPafW8DSy-aQhfeUG-fAeqmqVQR-mAcstY1fnfAfkAQfygJeP96-4YQgm3C-i-ExGfzwk-DgLYjYj-nXm3s-bIKf3P6khQAduepDmlf5eBO+t6UzIf2P51JdQf-Z-lAJX5vBkBm-BTNkAwGbds+l-X1jrD5C6hgBnsAJnAOAGoDwCS-HfldT96V5BAj8OkLTy3jxR4+TEJYPHyGDx8hmnA0APH3gDIBeBfAwILwPj62B4QogvVCFBGDx9bCe-PSAf3YGJJxO6vJYCMAjCw9Q+aA2qqwPYGWY1BGgwQEIPwGGEn+4wYASrUYEqD5M2gjtAfyzgwBlg6g65DtUoEPVqBNAo6nQM1IOC22LAgEPH18GiC1AkAUoMyFEGERUQWUTVKIIWKxCwwtIWQdn28EEUHAcOWbAELt62BghpgYKMxFEHxAEALtNAKIISC0xgh8QBgSULkHHtl+KQpguGCQChhmIGQvkPH0aHzF4gogxdKIKkBJDaBgNA-nSBMLjBfBTgwwae2K7dMr+P4VgcMN6yWZfB+g5wUIGMHj0h+hKA-hYI6HNCbB0w5jFsOP6-0UEZ5PAZsw8GeCEC8ggKPYJQTjCXBWgsPp3yL5fZ7A+EA5McMcEGDrkjwgYQUCnANsxh3woQCnnz4bCbUwkeEG8LRbKBWBSw4EUYNBEdpwRD1IESsMKQ59ahK+MwUVAYHKD0o9wzQR2GgGxZLhP+GYQeEhHQiZ2fhIYT1k3BoiJhXoDvvUDJHYFrhZoIYVaCeiTC6hBAo-P0Hj5CAbui0NYY3xREFBbhXw9ETtSRHrCDhOIrIYSOeDMjzhrItkVQMGGKi0hyo3keKKu55QqR5SGkXESVEIjfhmI-4T+AbZmj0RcojNhKM-hGj3hfhVgVkOWGGCxRNqR0ZdVtGGD7R5IrERkRxFKCmBYNDKAiNcGqjB+sWcOhqJJG1VnRMIw4WfyMRpDTh7g9UfGNCwcjYQB-B7vt0+4X92+nfHAXUge5nCaBMA1CnUS3hciRRF0NwZ9RmEf99u2aZmDgOjFPD+Rwo+AJWLZEXDsxNqG4qwFHE7kduNPM7lPm24b9TsMqL3kOO9GsB8xRY2EQEJ6FcDIh4AaIZgAKGj5ihXosfvfn4GCCuBG4vgSELCHwBJB0g7oWMFiHyBZBUAsUEAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARjoCYAoKOJVURNAfTQBTADbg+ggG4BDYZClJoAcwAUaeDngBKUAG9WoA6EyD4kTNB79okHACNBmVeq0GAPq-2Gvh3gPiZEJScNbVB3T28vX1tkZGFBKWhgl3DI719rYWFk0LcPNKj+GAATQXBAwWKcgG5WAF92GAQUC194KUVFSr5hXnhkgBpQeAALQT52xW09L2NTc0s+AAcpREc1ENAAMi3QMakqjZcAXlPhsYmO2oaOZu4MqRxBHN0IoxMzVv5JruKevsGoAARNBHoIgZpro1OC1QGgAJ52OJ8ZBiUFPF4zQxzT57BJVdqIbJHTSQ+rQu5fPhSNBoRCKaBPaD9EmvbEfBZtDq-f5qQFAml0hlM+AQqG3LgWQX0xmCZkCRExYnOaYRHELfYE1bZTXKQnKkKksk3JqS0DS4Vy+B8aSyZ6srHveYWXX6vXanKk8Wm2G+WCoNSJa2lWDCKSYeQtTFqjlUn7dXp8o5DIH+9DteUhsMRyVi8kS2FpwOZwSh8OR1AKpEGlyO9Uu-HuonKV0eklG70w7hFjPB0vZivQG0ySD2lVsgz1vEHJvZN3t40Us2+aQBKS2eJ8LPlyXR9nOxbxv6JlnOFOrxDrzfbnMtPMmrsWC9X8Y3wdVpV7yex6da5ut5sF0XAtuGfDdX37HcWmHO0vydXEALnNsVS9fMfXufgwzsYopHEAAPJZjFpKMHRjA8uU6BMAWTYEsNsHD8MIwRiNQe8l1hOiGJWCMnngBw0DgqccCkJZVEVZFUT4dFBCGRDPWA9CLE43CYmKeFBJ-OT5xQhTH0Wes-HkQQRQ08jvm5KikzPYEDMDPiRTYkCLAMwQCKIulUFMhDG20w1O0pRY02KRBJRkRj3JI8c6x-CieRPQE3gKLxU1QYLQuEcLmI86BHMU0AgvC5ZjEOKKyNxE8+GMcBAQYXSAoK1zCL4IsvIWCqqsBZg6rNBq3OpYRT02aKD3aspAQAZm631+CEABHUc4DHIays5czKOPajrKBOaFtgcEpu4YSAGtxh2uU9uSNBVX3cqAW2wR5vO8EhiOK7-LNM7FsM+yrQEh1DBWhsZ18rQDoscpMDUb7jKtS7ru-A9dVesH3ihuyYeZP7nCuid4IWEG3rQvTfGMpZ4HhAQHt2pb4Bx4bcQySAsjh97pp6GlrXRkzkdxqdGeZgnUIfALomEZBYCOuC8bjCyNqsjQUw3cWjtyvTjvGJWJdapS7s1lWXpVVnuD1vhVPU0jZk0nzkL8omRf4ESll6WBB21w9Zd5Qb4BTR3ncHVWAqczKWKSC2Ee84GbdBo2pUwRQseWm6NWt5sQY7O2zWgZBqTjgTkCWOnAcWTJsnzwnhbNCGofDFQy-h6Xf2UOuY9R60a7zgv66nN1m-JVgQAgRSMHAbA8CIMhKGoegmHG9iMImTBR2UPD64bvDQFOY5hkXwQW-VvgnOUbiwT4yGhjNoY5QkVep3ilKcCWZASgPxSgQGRKkoMY-eP48-kDUy+0Br4tz9LgR+z9D7gBvjFNacUATgBTP6B+T9oB-CcgHSuilljlh-pDZQUDcYN1GtVBBoBaotyDmbfB0CRp9EqmNUhXUKFYKvmsVAJkCGOiIXQjqpDJp7ykCdehzoYJLzTHxZkNDbp8iBAZW0o4375VQBIrQID+ByJHM8eRggpGrUuOtT2yhtEpg0XaDBsJTGjmaso2G2jdFAz-NkOxKNzpizpEocQQC2GymZMoK+9jhgen8RQtYUMR5gj8UAgJupgkZ1hK45AQhTbqXCU8QB19dBeDeFOFYax8E8RkqAWJDQeznHGKTcmniJDeJFBvUAJdahOVAPvVJ9pxLCDQEMbRhdLYHlyesdpnTQDdJRq0j8cQBKtOmFk3pEcqhTIoQU0RzF8lgmmQDWZ+MPQLLidwVyEi-isOwD4lkgyukyCGbYGk5SomENvnKRQowxLVhxpvUA8QlBPNtFdD+3gAD8oB+nKBaQU55SohnfM0Ofa5VTNC-K8AALneQ8p5CIXnaAADzIs+SMIxFy4Wf0MAChw2BHBAgACqxGaYkeE5o442F+nCSASwnaIEqEioEoAADUoB4WEoMGoAIShEDgHNoM7QPLFGcp5Xy-lgrAiKBFepSFBL+VIpJcgMllLkAQEEAAdzpYoBlmMmUst6Oy4E3LeX8qSvK4VoqwUTIlcCFMVrZWErtYqh1KqW5i2QEdZl4yMraMdcIdJq8mlXx6LEUS-jCFeCaWgF2ocznDPxfGtIfMrBM2JOK91BRiVAOjfnZQ+bCUJPcYoKpNTYb+NVTaxFcJ2kbzOEjPNDa0gAt1JCstBQkVJsSLOUNV0hhuh9fChoBQRWgEiRIFtW9RjlIfpUo57CrSrwKBqgZ1YUwAFVoAxBKPUsEeYCh1CKR0wQGbIilNaXUqu1pWmzrJPyqcA6khjLReC1ZTwoW9s-mM7pP6dEvrSJOww4Hw4LCjX62NUSW4WiHF+5EIbkNhrTehuNXDI1Ftg8+69g89LvuHecjpG7M0wKkjm4d9abWFokMW0S-7vAVoVdW45Jk63Mf7c2t5bb0XMYMACoQ1pu0XNI7Rht-bk1DrQyOwJzZx1nutWkads751lPEMuimq6TnkciFu0Ne6D0oOKMep4oAAC0lnzTEUtMyU9YGL1CAI14W9BT72hMfaC2Jr6fzEc-YM4Df6O1JUA5oyZBTUJnreJBhuMGY3PqhP3MATlh6jwICQcgVBaCMDoDQOeVJCKIBwCFRAEhxiQJgF3SjR5DEcBTMV0rSAKvmO4E1srFW+Aladhjdou4OA1cRinbIg3FylI6y1yrQ86nxV+XfTUijDCahtSFyId99RLYMPqVb780h336VtwFqxMC7fm3dE8R2Txnf23dfmwhFH3c-mt7wd9gpoCdlIeEij3ufdpUlF7Xg75bq21u-lgPDB32EqMaktg0Bv2hyMWHGACgQ4MHfLlR3DDLyGPCbQxwAB8oB148v+2j95d1LNY4MDj0AeON5E-XjZsne31t3QAFTU5nXhXH+PGegHZ3Tgw5O77AC57T+nhPiegDACz87MiACk4ued0759LhXQvQAi7upvLHEu1frzeXj1nr27oAEJTh65V5L-nFut7G-l-0IEGLle84Z9LrFBgHe3ZkRi441P9fu-Xn7r32uZEE9d6roPoAieh5N0Du6BP-dDG8IHqX68k9x8d8oIEZuufS68FLgwZvDAr1+WSCbARmvlem4+INGBjjwuEqJTUQxJs15fo+QmleSuddr5SFEtgABWpZaYbybyJfBMB3cHar33xRckxvk+8O3rraWK8BngICufU3rHpiDA3infI74lDKBUYoijT-lGgJUZfoWkp30INAa-IVvsp6fy-8md-78+6d4jvgpAhAW2-+gB3+P+puMi-+AAokdtAWAeAZDndAAHJSBIFc4oFIGSYIFpAb7pjb696749hBj17j4FDN74Lu66hQJt474d5EGYy4FqD4HV5db0HWjdKkFpDkHgCUEjbUJQrMF9577Fi0xkhNK+wUyr794DYwBDA1wngBISHdZDin6YDCDwhsZD5SDSBJoBBkylqhZSHdYPzxAiiuyDbx78ryF9CQjeC7IWAiaBq6YmQBL7JyiHJeIcawz-qOzuFHy0Fr5YJyZDCCYr4BHjBsH17wGGC+GoL+EEEd5BzIDD6j5DKhFeBGGREjKWGfyLpaZkw6aeFrqSJQjxBb55GKBixXIZTOFWh1KOFLDsbFH9BkgpaEaUjpa4CZYTw5b0DjR0CzxNK+CPC2CYiRDZK1YezxQ0QChmqIAuy5jaA7AqZJQPAYhByNQRSeTtjbC7DupoYohogRIbFuRZSRSGgaYCh2BAgIZ2DNQjDIDzErJhxQaxzxw1D2HmigjqEABep0IgYgkgI4kYQQLxDcs6L0kAsAe0lQQw4A2oauaAUJMJJUCsEACJCG3x8IfxUkESYJU4EJTK0JggsJ6JRIfO+xyJJJVQfqAajRBxqG7ShxuJGIJI4aORNq8J5JmJMg2J4wykwc2UUsE2OCJg-Es2IxXEopp8CcqibwpSZsEp2EKk-85shs8pm+oAtgHAdSiQvJfxygZsoGrxM6V8kJxJpJXJwgFJHqVJlQwKgi0hUY38YpZ8WpDWRSUSHJ-KVpKMepvx-xj0i0cMhCiaVMVol4WQ6kUg58+m4JZpRJKJcJCJ7u6RUghJ6RNOuExiZJwgXUDOmZhQwinwyyyg2ZmiWBP+wmdpVQ5ZdoyZRIXUhZhgSKoxCZSJFpxQDZeZ0RBQvptQXgcWTSeGD6neQwREj6MAPSFGZkVGzME5nePyHaAKo5HA-6SKeGn0SAMg6h+CXmY5zZXguoC5HAV0vZBQboJ5U50WEGGpeBp5dS5B-pfJBsGghMmyVIJcU+6A2g7q9G7uV+5+7qG5iWVB15o62y15fpWJOJYE14kEt42xpUbmmpaGdScFEEZYiFSG7SHxKFeBEgOpW8z5BpGFW4CF74qGKEA5ScFghJHZSZuZauvahFMAEJ6ReK6GVp+ZUuXC4BiGQapZaGpG4aNF2Bb6NZyggFN+XZuZTC6RdQ3phK-ZnxJFERm+xBb4u4YJpSaFW88KkRWl0EaGeFhgpSrFFgxFMFzwhlFFkoQl1FExB49FNZ3ZzFDaFl7F4BnF3ZPFROfFP+AlDJmiRmGGolh5ElnZUlqCZ+MlvlxpoWil6RKlFcsIal1IdmJywpqFvGtmQoJyQaplBg5lRFXx+pzwiGIoDltsH5ppQC5pjFvpBZBQnlZpZaPlclauOgDaA87ODA7OgmpScQfw2is2sQdJgljJO6npwCgmQVTJU1SoIlM1CVNqkVKJPlh5SUygXV3gvVzAA12BHa811YQl7SSlR1l1Bgw1yyIRV191aQvmD1SUU43FO1Ylz1BgdQq1Z6F1hgKVhWZVAZe+aULQYUmxZxSFQ04x+FTBSwpValygvUTUTEqJ0cd5TBsACN1lSNqUhULU7YH1pSUg2N5VuNqChUMgXsN5JpLlnZblzVn88NbFbVoWA8DFWUSizIgQcglcmqRS8iIJigKxNqA8i62+lQ8xRkwwOqyRhIFgqNyyzG-h3QOZ3FNp4BbQO8KtI1FZItoWAKWNLN9ViZ1J8VmZSKJNxtEgDVZtnVf1e1qW2oZgV64iPNg4EA-NQJsgQt+thKYtYwEtwUCxggAAkKHTMh2gDYmsmiiJAH2FhYOLKavGpr4J9BdDsQFcVahdjPUeGV9FzL9EVd4FmvkZUunTTEuYSgCiXPmpbSyn4e+nHQnQOJKJMvuYXb4sjOeZEE3U-C3VBAGA6UIhXQYZ9ZEAuZ3bTHDOnIOc5lelnQ3KAvviWIndpSqPmgCvFLZWvcZbhe2HXYsGRUZVDVoL2lvQCMfXZXvdWJ6L2kig0rFp8RVJJDAIhvadJNOSafdsoJ-ZWaADXTmvCkikCkCOzm-ZlZUJzkMC-WIBA-lfaW6H-V6BHQDKldwOlXrNlXgYqVvCbFQiSETZqWLC7B0vUbHf3eRbvUPUaUQ3gfAzKJUIfrA3wAwwyPaSQ-inQ0wdqdPlZWTbQ05biHTY1SmYTu6rw0kG4RTbUb4pwx0kMGwzJUMv4g7V4BzZaRiTaqpdZcWeYNDNzMhWZZqZgKTQGcoC5KcSHJ6B9QSe2a5UxYzS9RwF5R2h1ere7ho1UPvJYlojIAIerWo-9RiZ8V0G3LnGWaeekrbZo+SZknYbVT-VbT+fCtWVFSXG5cA43Mk1dK4wgezVSbSFzQoLzbCOAPzaMLwOaGuUdWWXHPFU45dWEznO8W6Dkz3eAazePY7abUU27dYB7eU5gFtf7WAMYLAGYHSBVvlDuTLaAM0+3CM5-HU-HN2ZNI09094F40fCdis3IbnB0901aZNEE9gYE82dHXlK5KWPHeML7FLTIdAPs6s6bbE9aXcpRkYVVtAP-WkxtUoV84pN+c8yOqEb6Vk6AsghAkC4Nn7UJu0fZVQoNmPfytIx4dUl4b4mC1gi6TKd+Yc+3Kc-9SwkUVlWNkE4aaqfQkiQNA01LoJts74L45S2pNS0zC4CMwCr43vioiyxTEROy--ffkitJbCSM+cw2uC32kUpgKSsC8CDAEdFnHquDHlOTEsFetZpalyoWUCNcxM3xNSHMQsXeNBeVUa6yia6favLemY3yd+QPhDdY4TRjVvjk4+ZPmpSCzY0IwsCI3bU1eI1HS410z-vKx40G00yYC0wJDk3dZszNUS-fis0MscxrQm4YPq7cxa37I80m1dYS687JWm-m1HdqF1KW0xdULyug1KLoyMX4gRDa5qUbegB66JF6+aHcbAA8U8QJI1DTfGSbV4wzbxfCk0v4BTDfnhP0D248XtF-S9ZRl+XO320K52rmTtdxo3Kuwu5oHk+PSO0s5EDte7pO1JPskOru8xLPWBvCt3JgFO5e62++RBjyeY-iZRkIKIOIILQoCoCSH+UDXyZTD+97aU6CRvUlEimsTTOuwA8BzidJDkHyjB-wDva3ecWfdXYh+pSvQPdhSh9B0feGJeOBFQ5h9a0B+lVfdQ6HFB9K8MZlYYyENR-W8x7DIB8R8vaDagODVY0KVx5-ACulUFGVnxzUQJ1h0K2h+zMqYKdJ2x+awKU64Jwx2kLJ6PUJ0lCJ7o1p-nXtAY0XQfdx-wFg9pwWrh6bCQ5LBZ94LJ7ZP1n1kR8J1Z450ZCx9h4xw7HYC5zp1Zw23Z42sMca67EF-8gF6F+vax8R4ZjMfukq8gCq02syFIEzjZmpW1uDB3XEPHVGIEEsPHYoXYN7Ts5DM8ECN1dKjwNAIV1vpKqAHUBCKWxUVUeDaSyKKWx1dO23ANA4KCFNmrraF12rqK8UH6VkAILl23coAV0V4QmUXCNNy0Ifg0qHW8EMcyP12FHhnN97NvBTB0KsD8wRqnbV-HZcee0d4EBCK5oYFd4oMd+9ROvPXdwYCMaV9xEIDnlV1ant1apyk1z3a18ke1xi80USwPB97aL02gMrcN-Uvsv1KfANzXl1ZmWgMtwGHUkCgj5j7IG3T9Q2nzFt+YDt4lkCA98d4oj18j9t4Nx9fyklWzWANDzILmS7craNzFdfpUMxkT410-VEKT98Yxii-ynt6c6e2O+Ab9mGOpECAPIECj+zyDgL2BglVOMYBVuV6oFjz+VCLejmtguV6dlvJyhmw2gADqA3GDzRrDPBLDrKW-8o2+1Ul5LAIcNvaBIoADk+AkYaA5QlQ7w9vxgvv1bl1Nv56LvCbNvTSTwJXjgIUxkQwK88Tsf3gbvtFxc1G6fmfn82fkQgDWQBf9+Rf9nPA9kGmuo+fZfBgFfxfBe9f1vsqSKif9gyf9kEFzYK8thlv0fLfz1Nvi3MAX3IfW8DSQ-aQ8feU4-fAeqmqVQi-mAcstYmfFfdvkADvygJeP9Y-4YQg43-fA-ExYfzwHfDgLYjYB-5X43Pf2QK-a-pIoAdu9SOaJ-XgFft6pmC-S-dSuoW-kf0-7D83gQAifgpmyDgDxukfDfr6x1h8hdQT-T2AE1-5P8QB4BQftPyuo29K8ggR+HSDbqzYAQvvJiEsF95DBfeQzCgaAF97wBkANA2gYEBoG+9bA8IFgXqhCgjBfethWfnpHn5kDEk4nUXksBGARhvuzvUAbVXiikDjASwSzKIPEGCBGBcAwwof3GBP8VaBA4QfJikEdp5+WcGAMsDEHXIdqGAh6lgOwFHVcBmpQwW2y3gyC7BLAtQJAFKDMgWBhEVEFlE1QsCFivgsMLSB4GR8bBBFBwHDmIF8hfeOvWwM4NMDBRmILA+IAgBdpoAWBCQWmM4PiD4DUhvA49kPxCFMFwwSAUMMxAiH9BfeRQ+YvEBYGLoWBUgIITgMBrz86QJhcYHYOMFKDT23VTZpvx-AyCWhvWSzHYIUEmChAKg8eo30JTz9NBlQkoboO6aTCma6gv-qv1-ooIzysAnofUCsFR8mhyw9oYoNMGSCXeFfBPl9nsD4QDkawowYcKEDHDGhBQKcA2wOGjDCkqgn-MJHhAXC0WygRwSghGFKDxhrfDNi8KUEp5rBeQlfMsMEGECwaGUW4c8CNCf8K+MfHYaFl6EHhPh3wmdn4WaE9ZNwoIo4eYML7bC0RCBPgQFGaFWgnoXQ-IfAKPzlChAW3RaECPeENoDBKCDoUcPBELDmM8-aIVyIkHEjGhqIskeXz2HlcbQYQwUYiIz6x9TheULEeUhxFxEBRCI+4bsMeE-gG2ao14TyNP7gElRlwvwjIOiEAjrkrI13pCK8C6iwRDwhNgILkFCD0oMoswV6C-6xZw6Yoj0bVSNE-DphS-IxGEI2EWDSR3o9ERKKSR7dZu53dfmXwr7QC6ke3TYdgO-6oU6iW8KkcyIujCjQxlsc-rN2zTMxoB7otkQ3CZHwAUxZIyweGIbQ3FAabPbII1GiZFsGa3QyOiaURoDt-WbzRcKwGIS-CeEY0AcSOKHHVQdyU3AnitynyTdx+p2GVBb1rE2obe8-aMTINqGUCXBbg+ABwK4E1Cxgvg+QJaKz6sBfeaALIQXBYHMDKBG42gWWECGliM2zXa0R2gAAMhzH-BW2PZfjPxd+chEAA

Metalinguistic Abstraction 4.3.3

code, you should compare each of the execution functions with the corresponding function

for the ordinary evaluator given in section 4.1.7.

Simple expressions

The execution functions for the simplest kinds of expressions are essentially the same as those

for the ordinary evaluator, except for the need to manage the continuations. The execution

functions simply succeed with the value of the expression, passing along the failure continua-

tion that was passed to them.

Ifunction analyze_self_evaluating(stmt) {

return (env, succeed, fail) => succeed(stmt, fail);

}

Ifunction analyze_name(stmt) {

return (env, succeed, fail) =>

succeed(lookup_symbol_value(symbol_of_name(stmt), env),

fail);

}

Ifunction analyze_lambda_expression(stmt) {

const parameters = lambda_parameters(stmt);

const body = lambda_body(stmt);

const bfun = analyze(body);

return (env, succeed, fail) =>

succeed(make_function(parameters, bfun, env),

fail);

}

Notice that looking up a name always “succeeds.” If lookup_name_value fails to �nd the

name, it signals an error, as usual. Such a “failure” indicates a program bug—a reference to

an unbound name; it is not an indication that we should try another nondeterministic choice

instead of the one that is currently being tried.

Conditionals and sequences

Conditionals are also handled in a similar way as in the ordinary evaluator. The execution func-

tion generated by analyze_conditional_expression invokes the predicate execution function

pfun with a success continuation that checks whether the predicate value is true and goes on

to execute either the consequent or the alternative. If the execution of pfun fails, the original

failure continuation for the conditional expression is called.

Ifunction analyze_conditional_expression(stmt) {

const pfun = analyze(cond_expr_pred(stmt));

457 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARjoCYAoKOJVURNAfTQBTADbg+ggG4BDYZClJoAcwAUaeDngBKUAG9WoA6EyD4kTNB79okHACNBmVeq0GAPq-2Gvh3gPiZEJScNbVB3T28vX1tkZGFBKWhgl3DI719rYWFk0LcPNKj+GAATQXBAwWKcgG5WAF92GAQUC194KUVFSr5hXnhkgBpQeAALQT52xW09L2NTc0s+AAcpREc1ENAAMi3QMakqjZcAXlPhsYmO2oaOZu4MqRxBHN0IoxMzVv5JruKevsGoAARNBHoIgZpro1OC1QGgAJ52OJ8ZBiUFPF4zQxzT57BJVdqIbJHTSQ+rQu5fPhSNBoRCKaBPaD9EmvbEfBZtDq-f5qQFAml0hlM+AQqG3LgWQX0xmCZkCRExYnOaYRHELfYE1bZTXKQnKkKksk3JqS0DS4Vy+B8aSyZ6srHveYWXX6vXanKk8Wm2G+WCoNSJa2lWDCKSYeQtTFqjlUn7dXp8o5DIH+9DteUhsMRyVi8kS2FpwOZwSh8OR1AKpEGlyO9Uu-HuonKV0eklG70w7hFjPB0vZivQG0ySD2lVsgz1vEHJvZN3t40Us2+aQBKS2eJ8LPlyXR9nOxbxv6JlnOFOrxDrzfbnMtPMmrsWC9X8Y3wdVpV7yex6da5ut5sF0XAtuGfDdX37HcWmHO0vydXEALnNsVS9fMfXufgwzsYopHEAAPJZjFpKMHRjA8uU6BMAWTYEsNsHD8MIwRiNQe8l1hOiGJWCMnngBw0DgqccCkJZVEVZFUT4dFBCGRDPWA9CLE43CYmKeFBJ-OT5xQhTH0Wes-HkQQRQ08jvm5KikzPYEDMDPiRTYkCLAMwQCKIulUFMhDG20w1O0pRY02KRBJRkRj3JI8c6x-CieRPQE3gKLxU1QYLQuEcLmI86BHMU0AgvC5ZjEOKKyNxE8+GMcBAQYXSAoK1zCL4IsvIWCqqsBZg6rNBq3OpYRT02aKD3aspAQAZm631+CEABHUc4DHIays5czKOPajrKBOaFtgcEpu4YSAGtxh2uU9uSNBVX3cqAW2wR5vO8EhiOK7-LNM7FsM+yrQEh1DBWhsZ18rQDoscpMDUb7jKtS7ru-A9dVesH3ihuyYeZP7nCuid4IWEG3rQvTfGMpZ4HhAQHt2pb4Bx4bcQySAsjh97pp6GlrXRkzkdxqdGeZgnUIfALomEZBYCOuC8bjCyNqsjQUw3cWjtyvTjvGJWJdapS7s1lWXpVVnuD1vhVPU0jZk0nzkL8omRf4ESll6WBB21w9Zd5Qb4BTR3ncHVWAqczKWKSC2Ee84GbdBo2pUwRQseWm6NWt5sQY7O2zWgZBqTjgTkCWOnAcWTJsnzwnhbNCGofDFQy-h6Xf2UOuY9R60a7zgv66nN1m-JVgQAgRSMHAbA8CIMhKGoegmHG9iMImTBR2UPD64bvDQFOY5hkXwQW-VvgnOUbiwT4yGhjNoY5QkVep3ilKcCWZASgPxSgQGRKkoMY-eP48-kDUy+0Br4tz9LgR+z9D7gBvjFNacUATgBTP6B+T9oB-CcgHSuilljlh-pDZQUDcYN1GtVBBoBaotyDmbfB0CRp9EqmNUhXUKFYKvmsVAJkCGOiIXQjqpDJp7ykCdehzoYJLzTHxZkNDbp8iBAZW0o4375VQBIrQID+ByJHM8eRggpGrUuOtT2yhtEpg0XaDBsJTGjmaso2G2jdFAz-NkOxKNzpizpEocQQC2GymZMoK+9jhgen8RQtYUMR5gj8UAgJupgkZ1hK45AQhTbqXCU8QB19dBeDeFOFYax8E8RkqAWJDQeznHGKTcmniJDeJFBvUAJdahOVAPvVJ9pxLCDQEMbRhdLYHlyesdpnTQDdJRq0j8cQBKtOmFk3pEcqhTIoQU0RzF8lgmmQDWZ+MPQLLidwVyEi-isOwD4lkgyukyCGbYGk5SomENvnKRQowxLVhxpvUA8QlBPNtFdD+3gAD8oB+nKBaQU55SohnfM0Ofa5VTNC-K8AALneQ8p5CIXnaAADzIs+SMIxFy4Wf0MAChw2BHBAgACqxGaYkeE5o442F+nCSASwnaIEqEioEoAADUoB4WEoMGoAIShEDgHNoM7QPLFGcp5Xy-lgrAiKBFepSFBL+VIpJcgMllLkAQEEAAdzpYoBlmMmUst6Oy4E3LeX8qSvK4VoqwUTIlcCFMVrZWErtYqh1KqW5i2QEdZl4yMraMdcIdJq8mlXx6LEUS-jCFeCaWgF2ocznDPxfGtIfMrBM2JOK91BRiVAOjfnZQ+bCUJPcYoKpNTYb+NVTaxFcJ2kbzOEjPNDa0gAt1JCstBQkVJsSLOUNV0hhuh9fChoBQRWgEiRIFtW9RjlIfpUo57CrSrwKBqgZ1YUwAFVoAxBKPUsEeYCh1CKR0wQGbIilNaXUqu1pWmzrJPyqcA6khjLReC1ZTwoW9s-mM7pP6dEvrSJOww4Hw4LCjX62NUSW4WiHF+5EIbkNhrTehuNXDI1Ftg8+69g89LvuHecjpG7M0wKkjm4d9abWFokMW0S-7vAVoVdW45Jk63Mf7c2t5bb0XMYMACoQ1pu0XNI7Rht-bk1DrQyOwJzZx1nutWkads751lPEMuimq6TnkciFu0Ne6D0oOKMep4oAAC0lnzTEUtMyU9YGL1CAI14W9BT72hMfaC2Jr6fzEc-YM4Df6O1JUA5oyZBTUJnreJBhuMGY3PqhP3MATlh6jwICQcgVBaCMDoDQOeVJCKIBwCFRAEhxiQJgF3SjR5DEcBTMV0rSAKvmO4E1srFW+Aladhjdou4OA1cRinbIg3FylI6y1yrQ86nxV+XfTUijDCahtSFyId99RLYMPqVb780h336VtwFqxMC7fm3dE8R2Txnf23dfmwhFH3c-mt7wd9gpoCdlIeEij3ufdpUlF7Xg75bq21u-lgPDB32EqMaktg0Bv2hyMWHGACgQ4MHfLlR3DDLyGPCbQxwAB8oB148v+2j95d1LNY4MDj0AeON5E-XjZsne31t3QAFTU5nXhXH+PGegHZ3Tgw5O77AC57T+nhPiegDACz87MiACk4ued0759LhXQvQAi7upvLHEu1frzeXj1nr27oAEJTh65V5L-nFut7G-l-0IEGLle84Z9LrFBgHe3ZkRi441P9fu-Xn7r32uZEE9d6roPoAieh5N0Du6BP-dDG8IHqX68k9x8d8oIEZuufS68FLgwZvDAr1+WSCbARmvlem4+INGBjjwuEqJTUQxJs15fo+QmleSuddr5SFEtgABWpZaYbybyJfBMB3cHar33xRckxvk+8O3rraWK8BngICufU3rHpiDA3infI74lDKBUYoijT-lGgJUZfoWkp30INAa-IVvsp6fy-8md-78+6d4jvgpAhAW2-+gB3+P+puMi-+AAokdtAWAeAZDndAAHJSBIFc4oFIGSYIFpAb7pjb696749hBj17j4FDN74Lu66hQJt474d5EGYy4FqD4HV5db0HWjdKkFpDkHgCUEjbUJQrMF9577Fi0xkhNK+wUyr794DYwBDA1wngBISHdZDin6YDCDwhsZD5SDSBJoBBkylqhZSHdYPzxAiiuyDbx78ryF9CQjeC7IWAiaBq6YmQBL7JyiHJeIcawz-qOzuFHy0Fr5YJyZDCCYr4BHjBsH17wGGC+GoL+EEEd5BzIDD6j5DKhFeBGGREjKWGfyLpaZkw6aeFrqSJQjxBb55GKBixXIZTOFWh1KOFLDsbFH9BkgpaEaUjpa4CZYTw5b0DjR0CzxNK+CPC2CYiRDZK1YezxQ0QChmqIAuy5jaA7AqZJQPAYhByNQRSeTtjbC7DupoYohogRIbFuRZSRSGgaYCh2BAgIZ2DNQjDIDzErJhxQaxzxw1D2HmigjqEABe4w0kUsU4s6L0kAsAe0lQQw4A2ofO+xoJ4JVQfqAajRBxqG7ShxUkESJI4aORNqUJRIKMiQMg8Ifx7M2EuEmxZx2xpUbmm+x2BSp8h+yk2C9J-EHxNJeBZss2IxDEVCJItQ7JTBtgHAdShJvxzwZsoGrxM6V8IJYJggEJEA0JDOsJcplQwKgi0hUY38Jgv8oAQpshRSUSOJ-KeJwgBJ3xxJp0VMT0cMhCia1pzIl4WQ6kUg58+mDcwJTKqpxQkJSpUu6RUgnp6RNOuExiipRIXUyp2BPg6isYyyygoZmiWBP+wmcJ8pVQiZdovpEZyZ9+SKoxMpXp8J2ZwgXUxpuJ0J-JEGbwTSeGD6neQwREj6MAPSFGZkVGzMTZnePyHaAK9ZHA-6SKeGn0SAMg6h+CXmDZwZkQuoXZHAV00RSUboc5LZ0W1ZApW+85dS5BoplpBsGghMmyVIJcU+6A2g7q9G7uV+5+7qQ5iWVBq5o62yq55pRJJJYE14kEt4VJichgpSaGdSH5EEZY35SG7SbJf5tJEgwpW8u5fxeKa44EW4X574qGKEVZUpnpaAaZCpppauva0FMAwJ6ReK6GppkZUuXC4BiGQa8ZaGpG4aGFCBb6OFVQ15N+Pp4ZpZkpoWdQ5ZAGlZnxcFERm+xBb4u4LxSieBAFW88KkR4l0EaGEFBgpShFFgsFFp8F8lKFkodF6FExB4WFrFJZ+FDaalxF4BpFJZFFROVFP+NFKJmiRmGGjF05Up2F3pyg7FuF2oTC6RfF6ReFCGml4wiG3M1JkF0lvGtmQoJyQaylUlTBalIpIVCZdmcVaFtsR50pQCspxZXFMJBQ5lMpZaVlXFNlmSNqA87ODA7OgmpScQfw2is2sQSJtFqJO6hpwCgmDlaJHVSoDFXVPFNqLFnlto-F0ZygauOg3g1VzAdV0ZDavV1YdF7SE1i10ZjVyyIRG1u1aQvme1SUU45FU1TFh1oAdQw1Z661BVwVb5IlqCZWqAYUFJIcYxdhG5gKMFXx91ygvUTUTEJUWVkVTBsA31wlf1qUhULU7YTFpSUg4NqV-1mA-UXsa5mFhZHl+VeFUZn8SwHAFlHaA8WNWUUlCgcglcmqRS8ikYSgKxVVYAi62+lQ8xRkwwOqyRhIFggNyyzG-h3QYZ5FhV4BbQO8-NTVSZ9NoWAKYNRFmNxl5VuZaq5oBN8t3p1li5BgA8ppZgV64igQFNsI4AVNkgI4tNigUthKA8TNgNrNfEAAkPbTMh2kFZ8e+iiJAH2CBYOAnLWG8Gpr4J9BdDsXZSpbSa9PUQ6XtNDCKL7VdVKSTNppTI9ItHDPmgCiXPmkirEYcMmh7V7QOJKJMpOVzLDMjJrZEO7U-AXVBAGOqUIkHc8G5SNcxJzP1n1r7QuejRdc5leqHQ3KAvviWN7RJSqOnUfv0NpSPYpeBe2FnYsEBchdPT+VoL2gCvFIvQpZWEpXPVJvUjmkxQ0BXBxHQpJDAIhmqdJK2QndmszFfbmRnTmvCkikCkCOzufelZUJzkMBVGfaCJ-Y4soPfV6E7QDMfdwMJabGLFrJJaUpyVvCbLyYbG8KUtAxcvUXndXUvYXS0AJBKXDbSR-bFZUIyafWIEQzKGqWg2RgQxyYjb9fgwZbiEZerQVbjUlPqUkG4agk0ScsoNQ0MhQwyCQ9icxiTT5fidUDakJSFcIp8DHWXRFWHXgZgPQ2KcoC5KcW9bDUwwsCw9jX6QTu6qo3LblXzeNYre7uI1UPvJYlojIAIULTdYYK7eAxYF0G3LnAmfOeknlemSZZVc7TfR2dkAjaufCqmZ5SXCZc-Y3GE2eYTQgcTWmbSGTQbYOBAFTaMLwCrTAG5QmXHBrew4tR4znO8W6PEyOs3fyiVedWkMk3Kak-rdYBk8bZgNU1bWAMYLAGYHSBVvlGOezaAKU+3B05-AU-HCWZNMU3U5XaxUfCdhM3IbnBXbM1xZNM49gU425a44VkUnhKWJ7aFXMQsVGA1oakMtYwE1wlmkVAkYEY+KeQ-UWemQmWapIeEZ3pSKecs-HKswVbE6AsghAopE85bUJu0bpVQoNgYTatwx4dUl4b4qEUHNqQyU85szEbnJiwYBsUUXw2Ns48oGbPQthQNEU-6fftY8oL4HY8S--BTEREzC4B0wCnY3viovS2pKS8y0raFkit5T6R09sw2nhbE4Zuc0CDAEdFnHquDHlOTEsFetZpalytOUCK5Ic3xNSCc-7K+WKTq6yqcyvavLemo5aaeQPq9dlJ6LQ0wZU9uZPsJb83HTxUCWrQY-iTMwBqrWYwgT85Y4TtUyM145UztWs11Ti6FhM0MqadM0GxGyxgcz09q77HbWc7IWMx2u3H4xI8IBs1m5ECK+AUFbym4z9QayMX4gRKa7SbLegI66JM6+aHcbAA8U8QJI1N3e67lS83m9NfCk0v4BTDfnhJPe23tNfUdZRieW248ZO3y5EH2R6Iu94EirqHOx25oIk3U1c4W14FNe7sO1JPskOpuwu93V4HFtlce6O5PfOTxXUHdeo5Jbc0IKIOIDTQoCoCSBeRW5aZTB+6bbIObTkHykimsTTIuwCpAwCb+0lBB-wFPTgya3+5A8h7XaHGPQhwveGJeEhVvVhyEGh7I5vTpecavTh8MeleFcR4SjB7I2FYo3R32oFKlE9d8cHDa-B5-Ax-dXvmlC0C9Vo9x9h6x74EydaxR9B-+ySZJyJ9J+B4sI3WB-R7J1aSncHVHadO3bHZ6Ep6LMrKp7x+p1A0Zzx2kIh3I+YAo74hZwWqZ7ZLp8x5R+Jw7HYMZ0lHx5Wx5-Z2u4sGm8a0R65156Z4F67H542oZjMfujK8gHK02syFIEzjZsJW1lKHYMB9W0sL4325xTjTNR9UnFKKlV2-o-47dZ8fWWgHEJ7VGIEEsJ7YoZl7aAs5DM8ECDNdKjwNAI11vpKhdRCFG5ppUckS9fiyKMN2VXe6jQ4KCFNmruNSRWroKwSVkAILV0XTS71014QmUXCJt7g3Ug0vbTWXlIEKfJx3hg157aOpgBTB0KsNAO6QHTt1vm8kCMe494EBCK5oYF94oE96dROr3X9wYCMVl9xEIDnl11ajd-15anUEN8xhUVUeN4i80ZiwPBD7aC87SOYzIEMDNzIJd5GBVgOwgTV7IEXXUkChY1T3VwGPHS3eRMyHN2FHhp9-d9SIDz90T-srN+YGTzomdYSgFaFtjy1zIFxbrXzSt6gmfhxcxsz3FnFhd+zxlHhv+vD5s4e5Rekb9mGOpECAPOr0L8IEUpgKSo5japdUxVOMYBVu16oId0z1CLejmsyUIKdlvJyomw2gADp7PGDzRrDPBLDrL+-8pB-ZUl5LCgAwcefaBIoADk+AkYaA5QlQ7wofxgKfUji1Qf56UfEbQfTSTwmXjgIUxkQwK8gTJfXgMfxXxc1GdfDfn8TfS7+9WQ7f9+nf-n1feAfGjYbfvfBg-fXf68Y-HaE--nFf9gVf9kT5zYK8th-vRf0-h1Qf+3MAUP2fW8DSm-aQZfeUe-fAeqmqVQF-mAcstYDf-fIfkAYfygJe92XlvX4YQgxQXoJfD-VMz-8-BwC2EbC79P+t+ZftkGv639SQoAO3N3zNIF9vA-fW9KZnP6X86kuoUAe12-6IDzq-fLAV-zqRugCBt+XAVHz-60I+QuoKAZ7EcaoCoBa-aMhvyP4bUg+leQQI-DpA08t48UFPkxCWAp8hgKfNpoINAAp94AyAUQWIMCCiCU+tgeELIL1QhQRgKfWwifz0hn9+BiSDjmFCWAjAIw0PSPlv10Y6w+QfA4wEsEsx6CDBggKQff2Yxn8oB-NTgRx3kzGDDCYAqSCgmWD6DrkU1RgXU2YEsCmBrAUpFnBbKzYAQKfcIdAFkFqBIApQZkLIMIiogsomqWQQsQyFhhaQqggvmwKgoOA4ckQswU71sBxDTAwUZiLIPiAIBdaaAWQQkFphxD4gHA+oWoP3Zj98heBcMEgFDDMRih-QFPj0PmLxBZBi6WQVIFyGsC9mZ-OkCYX+LeDrBfgowXgJMET1lAKfOYb1kswxCrBvgoQHYMCEODPBTg4YX0LcGzNZ+eNE4ZfyAYoIFyZAo4cX2CHYF1BAUM-jEJ8E2DD2hXewQmjyjCR4Q9gfCAcjuEwAvh1yFYdMIKBTgq2nwpYUIBTy-90igI4EfC34ZRDdhCI2wUiJn4dDDA8I-YYUkL74iv4ngrQVwKE4ZRsR-gn-oYH77PCXheI7KqiPKRjs-CswnrJuEJHfC6ReIxkUyL74zDPBQgNnqnShHIjsqvA0URIj2iHD2+VwpKB8MWFEipquIo4R4Pa42hChEIwwQENWECjBReIppGf1KG6jngEo0vmdzVhfY0R7IuImaOxGWjXh8KWER50dFEj1RibRUYSlZEgi-CvA0oXsJsHyibUPojah6JsFeif84YxapoIsHaD0o5o2kQEIZGO0jRjfNYX6PRGODbhpQh4XtSCEZjjRp-TwfD2259dnRazfAR-2wF1J4ejwzfsgPDp1Et4swq0DaX1GXCJiufZ4G-xIHf8uxVo7KjKMbEvCixxYm1DcT2aQN32YgYDobSCCvsfw5XftlY3mY0RdmrAYhBiKhgdQdxB4nhGNDHIbdqeuDKfOtz36nYZUfvScWGNYBn9yxvA8YUIPiGJD4Aig5QWMLGAZD5AoYyIEH02EtCC4sgmQUIJfFiCywOQvkRG2R7BCAADP8x-xlks2KE5CXfnIRAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARjoCYAoKOJVURNAfTQBTADbg+ggG4BDYZClJoAcwAUaeDngBKUAG9WoA6EyD4kTNB79okHACNBmVeq0GAPq-2Gvh3gPiZEJScNbVB3T28vX1tkZGFBKWhgl3DI719rYWFk0LcPNKj+GAATQXBAwWKcgG5WAF92GAQUC194KUVFSr5hXnhkgBpQeAALQT52xW09L2NTc0s+AAcpREc1ENAAMi3QMakqjZcAXlPhsYmO2oaOZu4MqRxBHN0IoxMzVv5JruKevsGoAARNBHoIgZpro1OC1QGgAJ52OJ8ZBiUFPF4zQxzT57BJVdqIbJHTSQ+rQu5fPhSNBoRCKaBPaD9EmvbEfBZtDq-f5qQFAml0hlM+AQqG3LgWQX0xmCZkCRExYnOaYRHELfYE1bZTXKQnKkKksk3JqS0DS4Vy+B8aSyZ6srHveYWXX6vXanKk8Wm2G+WCoNSJa2lWDCKSYeQtTFqjlUn7dXp8o5DIH+9DteUhsMRyVi8kS2FpwOZwSh8OR1AKpEGlyO9Uu-HuonKV0eklG70w7hFjPB0vZivQG0ySD2lVsgz1vEHJvZN3t40Us2+aQBKS2eJ8LPlyXR9nOxbxv6JlnOFOrxDrzfbnMtPMmrsWC9X8Y3wdVpV7yex6da5ut5sF0XAtuGfDdX37HcWmHO0vydXEALnNsVS9fMfXufgwzsYopHEAAPJZjFpKMHRjA8uU6BMAWTYEsNsHD8MIwRiNQe8l1hOiGJWCMnngBw0DgqccCkJZVEVZFUT4dFBCGRDPWA9CLE43CYmKeFBJ-OT5xQhTH0Wes-HkQQRQ08jvm5KikzPYEDMDPiRTYkCLAMwQCKIulUFMhDG20w1O0pRY02KRBJRkRj3JI8c6x-CieRPQE3gKLxU1QYLQuEcLmI86BHMU0AgvC5ZjEOKKyNxE8+GMcBAQYXSAoK1zCL4IsvIWCqqsBZg6rNBq3OpYRT02aKD3aspAQAZm631+CEABHUc4DHIays5czKOPajrKBOaFtgcEpu4YSAGtxh2uU9uSNBVX3cqAW2wR5vO8EhiOK7-LNM7FsM+yrQEh1DBWhsZ18rQDoscpMDUb7jKtS7ru-A9dVesH3ihuyYeZP7nCuid4IWEG3rQvTfGMpZ4HhAQHt2pb4Bx4bcQySAsjh97pp6GlrXRkzkdxqdGeZgnUIfALomEZBYCOuC8bjCyNqsjQUw3cWjtyvTjvGJWJdapS7s1lWXpVVnuD1vhVPU0jZk0nzkL8omRf4ESll6WBB21w9Zd5Qb4BTR3ncHVWAqczKWKSC2Ee84GbdBo2pUwRQseWm6NWt5sQY7O2zWgZBqTjgTkCWOnAcWTJsnzwnhbNCGofDFQy-h6Xf2UOuY9R60a7zgv66nN1m-JVgQAgRSMHAbA8CIMhKGoegmHG9iMImTBR2UPD64bvDQFOY5hkXwQW-VvgnOUbiwT4yGhjNoY5QkVep3ilKcCWZASgPxSgQGRKkoMY-eP48-kDUy+0Br4tz9LgR+z9D7gBvjFNacUATgBTP6B+T9oB-CcgHSuilljlh-pDZQUDcYN1GtVBBoBaotyDmbfB0CRp9EqmNUhXUKFYKvmsVAJkCGOiIXQjqpDJp7ykCdehzoYJLzTHxZkNDbp8iBAZW0o4375VQBIrQID+ByJHM8eRggpGrUuOtT2yhtEpg0XaDBsJTGjmaso2G2jdFAz-NkOxKNzpizpEocQQC2GymZMoK+9jhgen8RQtYUMR5gj8UAgJupgkZ1hK45AQhTbqXCU8QB19dBeDeFOFYax8E8RkqAWJDQeznHGKTcmniJDeJFBvUAJdahOVAPvVJ9pxLCDQEMbRhdLYHlyesdpnTQDdJRq0j8cQBKtOmFk3pEcqhTIoQU0RzF8lgmmQDWZ+MPQLLidwVyEi-isOwD4lkgyukyCGbYGk5SomENvnKRQowxLVhxpvUA8QlBPNtFdD+3gAD8oB+nKBaQU55SohnfM0Ofa5VTNC-K8AALneQ8p5CIXnaAADzIs+SMIxFy4Wf0MAChw2BHBAgACqxGaYkeE5o442F+nCSASwnaIEqEioEoAADUoB4WEoMGoAIShEDgHNoM7QPLFGcp5Xy-lgrAiKBFepSFBL+VIpJcgMllLkAQEEAAdzpYoBlmMmUst6Oy4E3LeX8qSvK4VoqwUTIlcCFMVrZWErtYqh1KqW5i2QEdZl4yMraMdcIdJq8mlXx6LEUS-jCFeCaWgF2ocznDPxfGtIfMrBM2JOK91BRiVAOjfnZQ+bCUJPcYoKpNTYb+NVTaxFcJ2kbzOEjPNDa0gAt1JCstBQkVJsSLOUNV0hhuh9fChoBQRWgEiRIFtW9RjlIfpUo57CrSrwKBqgZ1YUwAFVoAxBKPUsEeYCh1CKR0wQGbIilNaXUqu1pWmzrJPyqcA6khjLReC1ZTwoW9s-mM7pP6dEvrSJOww4Hw4LCjX62NUSW4WiHF+5EIbkNhrTehuNXDI1Ftg8+69g89LvuHecjpG7M0wKkjm4d9abWFokMW0S-7vAVoVdW45Jk63Mf7c2t5bb0XMYMACoQ1pu0XNI7Rht-bk1DrQyOwJzZx1nutWkads751lPEMuimq6TnkciFu0Ne6D0oOKMep4oAAC0lnzTEUtMyU9YGL1CAI14W9BT72hMfaC2Jr6fzEc-YM4Df6O1JUA5oyZBTUJnreJBhuMGY3PqhP3MATlh6jwICQcgVBaCMDoDQOeVJCKIBwCFRAEhxiQJgF3SjR5DEcBTMV0rSAKvmO4E1srFW+Aladhjdou4OA1cRinbIg3FylI6y1yrQ86nxV+XfTUijDCahtSFyId99RLYMPqVb780h336VtwFqxMC7fm3dE8R2Txnf23dfmwhFH3c-mt7wd9gpoCdlIeEij3ufdpUlF7Xg75bq21u-lgPDB32EqMaktg0Bv2hyMWHGACgQ4MHfLlR3DDLyGPCbQxwAB8oB148v+2j95d1LNY4MDj0AeON5E-XjZsne31t3QAFTU5nXhXH+PGegHZ3Tgw5O77AC57T+nhPiegDACz87MiACk4ued0759LhXQvQAi7upvLHEu1frzeXj1nr27oAEJTh65V5L-nFut7G-l-0IEGLle84Z9LrFBgHe3ZkRi441P9fu-Xn7r32uZEE9d6roPoAieh5N0Du6BP-dDG8IHqX68k9x8d8oIEZuufS68FLgwZvDAr1+WSCbARmvlem4+INGBjjwuEqJTUQxJs15fo+QmleSuddr5SFEtgABWpZaYbybyJfBMB3cHar33xRckxvk+8O3rraWK8BngICufU3rHpiDA3infI74lDKBUYoijT-lGgJUZfoWkp30INAa-IVvsp6fy-8md-78+6d4jvgpAhAW2-+gB3+P+puMi-+AAokdtAWAeAZDndAAHJSBIFc4oFIGSYIFpAb7pjb696749hBj17j4FDN74Lu66hQJt474d5EGYy4FqD4HV5db0HWjdKkFpDkHgCUEjbUJQrMF9577Fi0xkhNK+wUyr794DYwBDA1wngBISHdZDin6YDCDwhsZD5SDSBJoBBkylqhZSHdYPzxAiiuyDbx78ryF9CQjeC7IWAiaBq6YmQBL7JyiHJeIcawz-qOzuFHy0Fr5YJyZDCCYr4BHjBsH17wGGC+GoL+EEEd5BzIDD6j5DKhFeBGGREjKWGfyLpaZkw6aeFrqSJQjxBb55GKBixXIZTOFWh1KOFLDsbFH9BkgpaEaUjpa4CZYTw5b0DjR0CzxNK+CPC2CYiRDZK1YezxQ0QChmqIAuy5jaA7AqZJQPAYhByNQRSeTtjbC7DupoYohogRIbFuRZSRSGgaYCh2BAgIZ2DNQjDIDzErJhxQaxzxw1D2HmigjqEABep0IgYgkgI4kYQQLxDcs6L0kAsAe0lQQw4A2oauaAUJMJJUCsEACJCG3x8Ifx7M2EuEmxZx2xpUbmm+x2BSp8h+yk2C5J-EHxJJeBZss2IxDEVCJItQ9JTBtgHAdSiQMg2JzwZsoGrxM6V8kJ0JggsJ6JRIfO+xyJEpVQLSikR8OCJgv8oAXJshRSUSORNq8J0pmJfJOJn0F0PM2GeUn0SAMg6hygUg58+m4JopTK4pkpepwgau6RUgEJKxP+NpyycJ2oXUDO6R6Q6isYyyvpdiwZXgwmcplQEZmi-pRIXUUZhgSKoxjpSJzpxQiZwgXUOpDarpQpoAcWTSeGD6neQwREj6MAPSFGZkVGzMVZnePyHaAK5ZHA-6SKeGFpl4WQKSXmFZKZXguoTZHAV00RSUboo5NZ0WEGbwt6NZdS5BvJvxhSyM7JScVIJcU+6A2g7q9G7uV+5+7qXZiWVBM5o62yM5KMK5-Jw4a44EW4kEt4RJichgpSaGdSYE14z574aGdJ75pJEg3JW8t5fxeKD5P5ZYL5Q4qGKEG5wpXpmZKJOZ7pDawFMAEJ6ReK6GrpgZUuXC4BiGQa4ZaGpG4aCFCBb6sZVQR5N+2ZUpuZRZHadQ+ZhKhZBpq5whvYT50FrsYJH5vG3pHJPFb4koQaAFBgpSGFFgoFWJ4FkRYl0EcFtsmyFgSFNFqF7uvaMlWF4BOFOZ+FROhFP+xFBxqG7S5FWpwCQ51FWZygdFLpAZzFDarF6RHFnxYF4wiG3MxJgFeBn5oFdmJyElbJ85QFIFXxhpzwPlVopF8FExB4GlWZWlhO8KulopZaBljFRlmSNqA87ODA7OgmpScQfw2is2sQAajR5lmiRm1lLlhKZl7SpFllGGFFgmdlKJBlQ5SUygauOg3gBVzAxV2BHazV1YrVO6vVY1n8ZVfpwls1S1Xgvmy1n8U4eF-VlFa1BgdQjVkQblupGJnl8lERqUZWqAYUBJIcYxdhIlgKkVXlygvUTUTEqJ0c4VeBsAj1p1z1qUhULU7YlFpSUgP10Vf1qChUMgXss5iFGZmljFMphKSwHAelHaA8yFWUSizIgQcglcmqRS8iIJigi1n8A8i62+lQ8xRkwwOqyRhIFgb1yyzG-h3QxiOVSN4BbQO8rN5Vmie5CBAK31mF8NKVHNwZSKoNItQCYpKFHNbFaQA8rpZgV64iuNg4EABNQJsgxNpNSU5NYwlNwUCxggAAkKbTMh2h5RXLCO+iiJAH2HxZKAnLWG8Gpr4MaTTKSARh+djPUVTE9NDCKC7ftVmvkZUp7XDPmgCiXPmpLSyn4XbU-I7QOM7fggOVzLDMjBOWkEnQ7bxanS0AJPvJHTNetcxJzP1n1i7eObDcWc5leiZcKaAvviWE7ecVoNHUfv0Ipb+eJf+e2HHYsN+RBO3a+Z3Q2gCvFCPQXVBJWAPShL2kig0rFp8RVJJDAIhnGdJLWc3dmszDvVgUJvUjmvCkikCkCOzpvcFZUJzkMOvWINfUKPRUOofV6BbQDDbdwF5abGLFrAJaSYyVvCbKyYbJ9UwX-RcvUcmvbSnXPegMoIKcDaSU-TKJUJSXQhvaCDfVUJA2RsgwyWDauYg--HjpRVOMlXLYWUGYShqUkG4ZDbUb4ng0MqgwyOg+GgrZEJjU5fqTaiddFcIp8EHVnX5VJaSZgEQ-ycoC5KcTdUDYlbiJQ-KalQTu6pI9LRIFw6nraIZYiTRcCoIuMJYlojIAIXhTnYjS3F0G3LnDaWOekrLSo4jXlZbXvQ2dkFLbufCjGfZSXKhWfY3F41dGjQgRjXKbSNjQoHjbCOAATaMLwOaB2WNTaXHHozQ8tTYznO8W6ME5Y+AZlTtQUOE+KZE2rdYBrXE5gGXfrWAMYLAGYHSBVvlFabTaAFk+3DUwUKk-HDmZNBk0U7agY0CjXHIbnPk4M4xZNNo7NRYzM2FsdV-RYK5KWA7d5XMQsVGA1oakMjwwxdQ1wmHUYVVtAEfaAL491Uocc0qds+3BM4WYE6AsghAjc9VnrW2VglQoNgYTagwx4dUl4b4qEUHN-KqXghYaEe3PMwmiwkUScjuaSPMyQ2pPQkiQNOk1LoJns8oL4CY8ixTEREzC4DNQCiY3viovi6i0S2c-fkio5dmTNXM72g832kUpgKSjuSmDAEdFnHquDHlOTEsFetZpalylGUCCsw03xNSBs-7DeadTK6yps+PavLelI+BScUxPIwlfdcE0uZPl5WM+8Qo2pSKTLU6VQwiQM-yuAKjYU-pdsxY9awgR03Y8EyEZM4YPa56z00Mq6f02lZ6wZnhKs9K77NTTIdANC2tVCxa84-6xM1bc5dGwmhibyks1FVxSMX4gRKq6ScLegPq6JIa+aHcbAA8U8QJI1HXRQ6LZa9Ke7k3e0WaP4BTDfnhD3RW3tLvUlGHdueW48d2zS52oxf1dxo3AO5W5oKE4M3symx2v1e7q21JPskOpO0O3XV4HFqa8u+2z3WOUWXUJxdI2CWHUIKIOIETQoCoCSPuZm3eee4CVewqjkHykimsV7Xez-dJK+0lO+-wL3WPaHCqF+wq4B4XSq2+8PeGJeI+UpZB4SgCj-TPfB8ByEFB8McFb5eh4h-ezibFb4re3+4FOdelMHNlL+5-Eh2B6Ry0FdXIxR0R6y74FSddYxyB7hz-axwxx3TS-+5TI9ItJR0lNR4I5HZ7SI5jJ6Bh-wHrMJwWnhxrH-ZLEx2kPx7ZFXdhxPVR4p0I+YJJzDTJ9SHYPJyOz-dm6p5EPx+G8q2h9pyJ7pzZ-xRx6y4ZjMfujy8gHy02syFIEzjZl5W1lKHYNrTm0sI43G7w26a4xspuYp2F9O3W-G4s4VhABnXEA7VGIEEsA7YoSF7aMqZDM8ECINdKjwNADl1vpKsWRCPO5ppUckVdXCyKHV9lXu-1KfKCFNmrro9hWrvSzeVkAIBl2ndl7l4QmUXCCN0XXUg0qbW8EMcyA4N8YxjixVw7aOpgBTB0KsKcwRu7et1vm8kCMuzt4EBCK5oYKd4oLt1tROg3ZdwYCMaF9xEIDnqV1amN1V5anULV8xhUVUU1wC80dGwPM97aHG7SCzbo-Uvsh18t5GBVgNcGWgNNwGHUkCjD6j7IM7ftX5uREt+YGFHhid1t9SDd+d0MO19DQj919tYSodejWAODzIIxSrSzf16gmfvRcxvtXFnFoEJ18T4lv+l99C4uwRekb9mGOpECAPILwj8IGy6So5janteQz+MYBVkV6oGj7uVCAuUN69w4HUpykGx2gADqpfGDzRrDPBLDrLm82pW+msl5LDnOlujHaBIoADk+AkYaA5QlQ7wtvxgPv1QS1Vv56Tv5vVvTSTwIXjgIUxkQwK8MXMfXgLvcX92y8uQGfSUWfkQMdOa+fP+hf3g779kGmuoafpfmfsqAK68dfoW5fVnzSxk9gSf9kl5zYK8thTvUfzfRTVvk3MAxvZmW8DSQ-BQcfeUxvfAeqmqVQi-mAcstY+f5fNvkAdvygJeOfY-4YQgxQXoGfm-VMO-CfnfLYjYB-RXx-Pf2QK-a-3tduJ9WQ-f3g5ft6pmC-S-dSuot-I-h-2H5vBABwfBdB6DAHH8I+pfM-rQj5C6gn+nscxj-yf7ACECg-afstSt6V5BAj8OkM7VmwAgfeTEJYD7yGA+8qm5A0AD73gDIBqBNAwINQJ962B4QzAvVCFBGA+9bCs-PSPP1IGJILqK3JYCMAjBvdHeO1OAdIn6AkDjASwSzCILEGCAGBG-ZjPPyf6s18BQg+TJILUGH9xgWcGAMsFEHXJ+q6A3QdHywGzUcBpJQwYWy3jxQfedg5gWoEgClBmQzAwiKiCyiapmBCxPwWGFpDcCYBNgvAtrzhxEC+QPvcIS4NMDBRmIzA+IAgBVpoBmBCQWmC4PiB4DUhPArpkP1CFMFwwSAUMMxEiEyCih8xeIMwMXTMCpAwQyPql3n50gTCBglBMYKUGLtBqnrKQW1GIHNDeslmOwQoJMFCAVBgzVvsjX0G-9V+qTYofEB0GTMJhn8dQUv2UB2DxyMAoNpgKsFjVeBAUefnYPaGmCJBMfcvvHy+z2B8IByNYW0MUHXIThDQgoFOGzaHC7hQgFPKf3SLCR4Qlwv5soEcFDC3hygj4ZbzyFeBXhIwwpNYLBGGB+BcgwQWRyBFmCT+hgcvpYJ2Et9FGCwb4b8I7Z+EmhPWTcBCI6EojQR6IjEWX0aFTChAS3ITg8M+GmtHBNIiRHtDGGwC9BRXKSLcMhH9UQR4wjkUknCFHDxB5gtatsIpGUimk8-IUUiPpFbCFueUHEeUjxFxEZRkIuUdgSWENxs2aopQXyNj5fCLhyo64Y4PCHDClBbI53jCIMC6jrk+oykebzhF4CERdHDKLKI7D18t25tCUZ-yxEWAlRVw-EVMI0HhCNhYo+oD6PAJ7CzQ8-L7mt0q4ajuhoAirvoIn7ldKumwnYV-1JLMiMe1Iq0E9C2qnCJiofZ4PvxTF39SRxY01syMzE+jxRkYhtDcVS7fsIkp7H8Moyi6c0hm9lP1NVRIoWVJqkkH9iSE4buUUurAYhP8J4RjQpxc4mcdVCtLDcceRdKfEb30GnYZUZvRsQ2it6xjDu04qITUIoGuD3B8AdgZwOqFjA-B8gS0ZECt4+80AWQguMwKYEUDjxNAssEEKrGes-uOwgAAyJt78eZGpiBJ-xgSCg5CIAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARjoCYAoKOJVURNAfTQBTADbg+ggG4BDYZClJoAcwAUaeDngBKUAG9WoA6EyD4kTNB79okHACNBmVeq0GAPq-2Gvh3gPiZEJScNbVB3T28vX1tkZGFBKWhgl3DI719rYWFk0LcPNKj+GAATQXBAwWKcgG5WAF92GAQUC194KUVFSr5hXnhkgBpQeAALQT52xW09L2NTc0s+AAcpREc1ENAAMi3QMakqjZcAXlPhsYmO2oaOZu4MqRxBHN0IoxMzVv5JruKevsGoAARNBHoIgZpro1OC1QGgAJ52OJ8ZBiUFPF4zQxzT57BJVdqIbJHTSQ+rQu5fPhSNBoRCKaBPaD9EmvbEfBZtDq-f5qQFAml0hlM+AQqG3LgWQX0xmCZkCRExYnOaYRHELfYE1bZTXKQnKkKksk3JqS0DS4Vy+B8aSyZ6srHveYWXX6vXanKk8Wm2G+WCoNSJa2lWDCKSYeQtTFqjlUn7dXp8o5DIH+9DteUhsMRyVi8kS2FpwOZwSh8OR1AKpEGlyO9Uu-HuonKV0eklG70w7hFjPB0vZivQG0ySD2lVsgz1vEHJvZN3t40Us2+aQBKS2eJ8LPlyXR9nOxbxv6JlnOFOrxDrzfbnMtPMmrsWC9X8Y3wdVpV7yex6da5ut5sF0XAtuGfDdX37HcWmHO0vydXEALnNsVS9fMfXufgwzsYopHEAAPJZjFpKMHRjA8uU6BMAWTYEsNsHD8MIwRiNQe8l1hOiGJWCMnngBw0DgqccCkJZVEVZFUT4dFBCGRDPWA9CLE43CYmKeFBJ-OT5xQhTH0Wes-HkQQRQ08jvm5KikzPYEDMDPiRTYkCLAMwQCKIulUFMhDG20w1O0pRY02KRBJRkRj3JI8c6x-CieRPQE3gKLxU1QYLQuEcLmI86BHMU0AgvC5ZjEOKKyNxE8+GMcBAQYXSAoK1zCL4IsvIWCqqsBZg6rNBq3OpYRT02aKD3aspAQAZm631+CEABHUc4DHIays5czKOPajrKBOaFtgcEpu4YSAGtxh2uU9uSNBVX3cqAW2wR5vO8EhiOK7-LNM7FsM+yrQEh1DBWhsZ18rQDoscpMDUb7jKtS7ru-A9dVesH3ihuyYeZP7nCuid4IWEG3rQvTfGMpZ4HhAQHt2pb4Bx4bcQySAsjh97pp6GlrXRkzkdxqdGeZgnUIfALomEZBYCOuC8bjCyNqsjQUw3cWjtyvTjvGJWJdapS7s1lWXpVVnuD1vhVPU0jZk0nzkL8omRf4ESll6WBB21w9Zd5Qb4BTR3ncHVWAqczKWKSC2Ee84GbdBo2pUwRQseWm6NWt5sQY7O2zWgZBqTjgTkCWOnAcWTJsnzwnhbNCGofDFQy-h6Xf2UOuY9R60a7zgv66nN1m-JVgQAgRSMHAbA8CIMhKGoegmHG9iMImTBR2UPD64bvDQFOY5hkXwQW-VvgnOUbiwT4yGhjNoY5QkVep3ilKcCWZASgPxSgQGRKkoMY-eP48-kDUy+0Br4tz9LgR+z9D7gBvjFNacUATgBTP6B+T9oB-CcgHSuilljlh-pDZQUDcYN1GtVBBoBaotyDmbfB0CRp9EqmNUhXUKFYKvmsVAJkCGOiIXQjqpDJp7ykCdehzoYJLzTHxZkNDbp8iBAZW0o4375VQBIrQID+ByJHM8eRggpGrUuOtT2yhtEpg0XaDBsJTGjmaso2G2jdFAz-NkOxKNzpizpEocQQC2GymZMoK+9jhgen8RQtYUMR5gj8UAgJupgkZ1hK45AQhTbqXCU8QB19dBeDeFOFYax8E8RkqAWJDQeznHGKTcmniJDeJFBvUAJdahOVAPvVJ9pxLCDQEMbRhdLYHlyesdpnTQDdJRq0j8cQBKtOmFk3pEcqhTIoQU0RzF8lgmmQDWZ+MPQLLidwVyEi-isOwD4lkgyukyCGbYGk5SomENvnKRQowxLVhxpvUA8QlBPNtFdD+3gAD8oB+nKBaQU55SohnfM0Ofa5VTNC-K8AALneQ8p5CIXnaAADzIs+SMIxFy4Wf0MAChw2BHBAgACqxGaYkeE5o442F+nCSASwnaIEqEioEoAADUoB4WEoMGoAIShEDgHNoM7QPLFGcp5Xy-lgrAiKBFepSFBL+VIpJcgMllLkAQEEAAdzpYoBlmMmUst6Oy4E3LeX8qSvK4VoqwUTIlcCFMVrZWErtYqh1KqW5i2QEdZl4yMraMdcIdJq8mlXx6LEUS-jCFeCaWgF2ocznDPxfGtIfMrBM2JOK91BRiVAOjfnZQ+bCUJPcYoKpNTYb+NVTaxFcJ2kbzOEjPNDa0gAt1JCstBQkVJsSLOUNV0hhuh9fChoBQRWgEiRIFtW9RjlIfpUo57CrSrwKBqgZ1YUwAFVoAxBKPUsEeYCh1CKR0wQGbIilNaXUqu1pWmzrJPyqcA6khjLReC1ZTwoW9s-mM7pP6dEvrSJOww4Hw4LCjX62NUSW4WiHF+5EIbkNhrTehuNXDI1Ftg8+69g89LvuHecjpG7M0wKkjm4d9abWFokMW0S-7vAVoVdW45Jk63Mf7c2t5bb0XMYMACoQ1pu0XNI7Rht-bk1DrQyOwJzZx1nutWkads751lPEMuimq6TnkciFu0Ne6D0oOKMep4oAAC0lnzTEUtMyU9YGL1CAI14W9BT72hMfaC2Jr6fzEc-YM4Df6O1JUA5oyZBTUJnreJBhuMGY3PqhP3MATlh6jwICQcgVBaCMDoDQOeVJCKIBwCFRAEhxiQJgF3SjR5DEcBTMV0rSAKvmO4E1srFW+Aladhjdou4OA1cRinbIg3FylI6y1yrQ86nxV+XfTUijDCahtSFyId99RLYMPqVb780h336VtwFqxMC7fm3dE8R2Txnf23dfmwhFH3c-mt7wd9gpoCdlIeEij3ufdpUlF7Xg75bq21u-lgPDB32EqMaktg0Bv2hyMWHGACgQ4MHfLlR3DDLyGPCbQxwAB8oB148v+2j95d1LNY4MDj0AeON5E-XjZsne31t3QAFTU5nXhXH+PGegHZ3Tgw5O77AC57T+nhPiegDACz87MiACk4ued0759LhXQvQAi7upvLHEu1frzeXj1nr27oAEJTh65V5L-nFut7G-l-0IEGLle84Z9LrFBgHe3ZkRi441P9fu-Xn7r32uZEE9d6roPoAieh5N0Du6BP-dDG8IHqX68k9x8d8oIEZuufS68FLgwZvDAr1+WSCbARmvlem4+INGBjjwuEqJTUQxJs15fo+QmleSuddr5SFEtgABWpZaYbybyJfBMB3cHar33xRckxvk+8O3rraWK8BngICufU3rHpiDA3infI74lDKBUYoijT-lGgJUZfoWkp30INAa-IVvsp6fy-8md-78+6d4jvgpAhAW2-+gB3+P+puMi-+AAokdtAWAeAZDndAAHJSBIFc4oFIGSYIFpAb7pjb696749hBj17j4FDN74Lu66hQJt474d5EGYy4FqD4HV5db0HWjdKkFpDkHgCUEjbUJQrMF9577Fi0xkhNK+wUyr794DYwBDA1wngBISHdZDin6YDCDwhsZD5SDSBJoBBkylqhZSHdYPzxAiiuyDbx78ryF9CQjeC7IWAiaBq6YmQBL7JyiHJeIcawz-qOzuFHy0Fr5YJyZDCCYr4BHjBsH17wGGC+GoL+EEEd5BzIDD6j5DKhFeBGGREjKWGfyLpaZkw6aeFrqSJQjxBb55GKBixXIZTOFWh1KOFLDsbFH9BkgpaEaUjpa4CZYTw5b0DjR0CzxNK+CPC2CYiRDZK1YezxQ0QChmqIAuy5jaA7AqZJQPAYhByNQRSeTtjbC7DupoYohogRIbFuRZSRSGgaYCh2BAgIZ2DNQjDIDzErJhxQaxzxw1D2HmigjqEABep0IgYgkgI4kYQQLxDcs6L0kAsAe0lQQw4A2oauaAUJMJJUCsEACJCG3x8IfxUkESYJU4EJTK0JggsJ6JRIfO+xyJJJVQfqAajRBxqG7ShxuJGIJI4aORNq8J5JmJMg2J-xj0i0cMhCiaVMVol4WQ6kUg58+m4JV8kJxJpJXJwgau6RUghJ6RNOuExiZJwgXUDOGphQwinwyyygWpmiWBP+wmVJlQppyycJ2oXUBphgSKoxcpRJKJ9pRIXUHJDaSpoGBgcWTSeGD6neQwREj6MAPSFGZkVGzM4ZnePyHaAKIZHA-6SKeGn0SAMg6h+CXmoZTpXguo8ZHAV00RSUboxZkZ0WEGbwt6kZdS5BiQvJfxBsGghMmyVIJcU+6A2g7q9G7uV+5+7q6ZiWVBVZo62yVZKMTZvx4wYE14kEt42xpUbmm+Ta1YdS85EEZYS5SG7SHxq5eBEgHAdSM5fJeKa44EW4i574qGKEtQHZM6bpSJCpxQnpyp7uvax5MAEJ6ReK6GSpepUuXC4BiGQaJpaGpG4aD52BDcL5KJygg5N+b5OpTC6RdQPphKfpPJs5whvY15O5rsYJpSaGdS8KkRb4koQaB5hgpS35FgW8Z5fxygFFN5VFd5tsj5hJ8F1J75KpDa9Fv54B-575QFROIFP+YFDJmiRmGG0FBZb61pVQSFipDp-poWGF6R2FnxTF4wiG3MK5tFa5pFjFdmJy1FJIMFBgdFJ5jFWJzF+lVoEF95ExB43FSlfF+pBQglcpZaIlqFauOgDaA87ODA7OgmpScQfw2is2sQdJ4FjJO6RS8GgmUlTJiVSoUFyVwCgmilr5IlBZSUyggV3gIVzA4VsFDaaV1YEF7SmFlVDVUVdpKxDVrVXgvmbVSUU4gFxVVlnVAZ6lSUmlnJGJOl9lERqUZWqAYUmxZxy5Q04xh5TBSwtlXxzZzwvUTUTEqJ0ctZa5sAq1ulLFqUhULU7YfVpSUgh141x1qChUMgXs1ZrxT5QC8pHpOpFJhKK1P5vloWA8PFtISizIgQcglcmqRS8iIJigLV-KA8i62+lQ8xRkwwOqyRhIFg21yyzG-h3Q2pgFn14BbQO8ON0V5pMNSZ+UHA7lr5olFpNqSKV1P1r17pvFAV9VkQA8SpZgV64iINg4EA4NQJsgUN5Nn8cNYwCNwUCxggAAkDLTMh2tpRXLCO+iiJAH2IRZKAnLWG8Gpr4J9BdDsRJdZcZdjPUaKV9FzL9DRZEFmvkZUgbTTImYSgCiXPmgzSyn4arU-BrQOFrbmZDJzP1n1nDGWWkN7erQRX7S0AJPvI7QYf1bbcxEHUZCKNraWU9aAOeiIC5sbQ3KAvviWJrecVoPmgCvFKxcXZWGhp6O7YsFuVHVBPNaXQ2uXQCA3ZRdBDXe2L2kig0rFp8RVJJDAIhjadJFGc9fdsoOPXTa7TmvCkikCkCOziPWZZUJzkMEPWIKvUKMhUOjPV6PLQDMrdwLpabGLFrMRWuWbHUibFQpZXtXgRfRcvUcmmrb7U3egMoGbOpaUjvTKJUIflvXwP-QyDac-WRhddfddetd-f-Hjn1QSc+R5R9V5Z-LYFTW4XdbUb4hA0MqA8hUMv4uzd4DxapdyTamNetUaeYNDAZYnEZXgZgDA7OcoC5KcSHJ6Igz+NTe9X6Wg11Zg69djbaLTe7mQ1UPvJYlojIAIfjSQwmqNSfRYF0G3LnKaSWekm9azfw0FXYY+VPYzT2fClaflSXHxQvY3EY1dEJdgf9VSYDbzdYPzeAODaMLwOaKmbBaaXHGI4ToVQYKoznO8W6NY2HQgb9YnaVWAADRgE46DbCK45gAE2LWAMYLAGYHSBVvlNmSjaAEE+3Ck0Ve3O+ZNAI1E5EBI0fCdj44oHIbnOExU0qZNAo7BfI06UrYVkUnhKWOrXpXMQsVGA1oakMhI55VwnbUYVVtALPSzTaUoVM4pN2fU-HI0x9ZY6AsghAks4NqLaAMmVglQoNgnfylgx4dUl4b4qEUHN-CYPxN2WsyU9cywkUScg82WXA2pPQkiQNH40ToJlU74NI58xTEREzC4AEwCtI3vioiC98+C3TffkiipW+QE+076QiZY4ZsM0CDAEdFnHquDHlOTEsFetZpalygaUCK5L03xNSAM-7NOeNfS6yoM83avLeiw+eScUxJw+dY-UwdYw2ZPrpSs9rZnUg8zWM6g-44rUIxIK05EMswFeUwgQU+o9YyERUwYJExU7U0Ms0wTdq4YDSxk3S77EjTIdAIq21SU3MyhYaza-fui+Adhbyso2tbhSMX4gRBy-tSWcK6JKK+aHcbAA8U8QJI1BKzw8gzTTK+JfCk0v4BTDfnhP0GG48XtBPV1ZRl2RmxG4i52jqcVdxo3Pm1m5oLY1E2M0U6nmrsm1JPskOuW8xOnDFgUN3JgCm02wdVWX1XUDheefiZRkIKIOIJDQoCoCSH2Z63yZTGO0LQk6CSqHykimsTTIW-s7OzidJDkKu4FJvsQZ3eyzO2fZXdHSe0lGu-wB3WxSXZuwCmfbe1XaHCu1e4sI5b4tOy7du3pWZfQy3X2ge6glNd8cHNlHuz+2e5NelOB-e-u74MpHB5e5-I+8y0h7NXy2+0B-rRbYbdh0lGh9Q-HY7XQ9bT3e+6LMrJB6h7++fdR9+zh+orGGR1+wRwWnR7ZMHQB4i9e9SHYDR4R3R964x2kHxxa2y6+yEKe8yxJ0Rex94OqpgKSvyPuvi8gIS02syFIEzjZrpW1lKHYELT60sFo-a+M4tUnFKDdVG7wzo0o10yGWgHEOrVGIEEsOrYoUZ7aNU5DM8ECEFdKjwNAB51vpKlnRCE69thcJUckTNa8yKFFzOqI-Uvsv1KfKCFNmrqI3+Wrii9OVkAIC5-7e5554QmUXCMVzHXUg0jLW8EMcyA4GB3hqV97NvBTB0KsDMwRnrSF+rZcQ2514EBCK5oYIN4oF171ROs5lennV4CMcZ9xEIDnoF1aq11apynUJF8xhUVUfFxc80TawPAt7aCzbSCIzIEMKm23ANE15GBVoFRqc57IFrXUkCil8965wGINR2nzI1+YGFHhkCON114otd+l3d1l31fysNR2sd95zIDqdzdjXl6gmfshcxj9wGQPVEP9814lv+q14q8Ve7nN5-L9mGOpECAPIEBl4jyDlj2eupVOMYBVn56oFV991CHWYV0tw4HUpysaw2gADpdPGDzRrDPBLDrJC-8qi+Pkl5LBbvevaBIoADk+AkYaA5QlQ7wEvxgav1QDVov56sv2rovTSTwRnjgIUxkQwK8mSZvkQ8vVnxc1GDvTvn8LvkQc9WQnv9+3vinPA9kGmuoHv-vBggfPvBeEfIvsqSKVv9gNv9kE5zYK8thQvJvsfnVovFXMAfPZmW8DS2faQFveUfPfAeqmqVQVfmAcstYTvgf4vkAkvygJeU9+f4YQgxQXoZvTfVMrfifDgLYjYnffnPfqf2Qtf9fpIoAdu9SOaGf3ggft6pmlf1fdSuoY-3fS--Vgf2-uvC6HoB-PfRvnv-ftCfIuo0-nscja-0-u-CBWfJfxvrAleggj8dIr3W88UavTESwavIYGrySaADQAaveAMgFAFgDAgoAtXrYHhCwC9UIUEYGr1sJl89IFff-oklA5hQlgIwCMMtxl459XK0ifoH-2MBLBLMeAggYICgGN9mMFfafjjU-6gd5MxAwwl33GBZwYAywfAdcmKqP9iBpvF-rBVF6lJuB6AWbACDV4SDYBagSAKUGZCwDCIqILKJqlgELENBYYWkKgLP5iC1ybPOHFIL5Bq9DBcg0wMFGYiwD4gCAbmmgFgEJBaYcg+IB-3sFoDa2sffQXgXDBIBQwzEYwWQJ8HzF4gsAxdLAKkC6DX+TSCvnSBMJcCUEvAmgSTz0ZRML+pA5QGr1iG9ZLMEgqgXwKEB0DE6UfL6pwPX518fGvg+IGwNSEMDShTAiQaWTP7m96gIgyqugICgV8JBiQ-gUQNl6B9LeX2ewPhAOTT0Eh1A65L0Nf4dsfw3rLoeMKEAp4++6RYSPCCGFnNlAv-XIfMNoGLCO0xQzqnMPyGFI2hHgjIqUKwFf8WguAo4QIN76GBA+wg1oXsJIELAVhawtNn4RiE9ZNwhwpIXcOeGPCnhAfLpjEKtBPRkh2fNIW1GkFCBGui0Qoef1qF+cpIYwm4QIWaEcDkRhg7oYQMEFtVn+QIn-O0LNAV9sR2wiEYiITR5Q3h5SD4XETJFHDJhJw6YQeG9YMiaBuwzPssMGG0iRhv-QwXkJoEIibU+wtquyOuScjwCoo1qpgIoHYDYO5Io0LvweFy1CRXgKERYBpHDDPhdQ6vkYgcBw5-hJwwEWqJFEgjShrXZQK1yZHGt9+IXTgYX2C6hcmhIglfsZTqJbxQRcIi6HiL34TF9ezwDvvaPH5GiuRj5WEfABdGEiCRpohtDcS6Zn0MOHDCDlfTwK3NT4QDEYlxBwR3M8ED9Jalvhvo-8sxKkeBjbSBpMEMG0+OyrAx-rcM3KsbPhgiVVaVMlKwKQRNISjDpjf4oAKsda2yprMPqyWYhBsJ4RjQRxE4scdVGzJFcXuMdKfLz04GnYZUgvWMWaIr6Wjf+YQoAfIMUHwBEByA0IWMA0HyBhRzvVgJkJcEFxYBMAoAduLAFlgdBoYqJttxEEAAGQcffm9JFNvxP+X8QUHIRAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARjoCYAoKOJVURNAfTQBTADbg+ggG4BDYZClJoAcwAUaeDngBKUAG9WoA6EyD4kTNB79okHACNBmVeq0GAPq-2Gvh3gPiZEJScNbVB3T28vX1tkZGFBKWhgl3DI719rYWFk0LcPNKj+GAATQXBAwWKcgG5WAF92GAQUC194KUVFSr5hXnhkgBpQeAALQT52xW09L2NTc0s+AAcpREc1ENAAMi3QMakqjZcAXlPhsYmO2oaOZu4MqRxBHN0IoxMzVv5JruKevsGoAARNBHoIgZpro1OC1QGgAJ52OJ8ZBiUFPF4zQxzT57BJVdqIbJHTSQ+rQu5fPhSNBoRCKaBPaD9EmvbEfBZtDq-f5qQFAml0hlM+AQqG3LgWQX0xmCZkCRExYnOaYRHELfYE1bZTXKQnKkKksk3JqS0DS4Vy+B8aSyZ6srHveYWXX6vXanKk8Wm2G+WCoNSJa2lWDCKSYeQtTFqjlUn7dXp8o5DIH+9DteUhsMRyVi8kS2FpwOZwSh8OR1AKpEGlyO9Uu-HuonKV0eklG70w7hFjPB0vZivQG0ySD2lVsgz1vEHJvZN3t40Us2+aQBKS2eJ8LPlyXR9nOxbxv6JlnOFOrxDrzfbnMtPMmrsWC9X8Y3wdVpV7yex6da5ut5sF0XAtuGfDdX37HcWmHO0vydXEALnNsVS9fMfXufgwzsYopHEAAPJZjFpKMHRjA8uU6BMAWTYEsNsHD8MIwRiNQe8l1hOiGJWCMnngBw0DgqccCkJZVEVZFUT4dFBCGRDPWA9CLE43CYmKeFBJ-OT5xQhTH0Wes-HkQQRQ08jvm5KikzPYEDMDPiRTYkCLAMwQCKIulUFMhDG20w1O0pRY02KRBJRkRj3JI8c6x-CieRPQE3gKLxU1QYLQuEcLmI86BHMU0AgvC5ZjEOKKyNxE8+GMcBAQYXSAoK1zCL4IsvIWCqqsBZg6rNBq3OpYRT02aKD3aspAQAZm631+CEABHUc4DHIays5czKOPajrKBOaFtgcEpu4YSAGtxh2uU9uSNBVX3cqAW2wR5vO8EhiOK7-LNM7FsM+yrQEh1DBWhsZ18rQDoscpMDUb7jKtS7ru-A9dVesH3ihuyYeZP7nCuid4IWEG3rQvTfGMpZ4HhAQHt2pb4Bx4bcQySAsjh97pp6GlrXRkzkdxqdGeZgnUIfALomEZBYCOuC8bjCyNqsjQUw3cWjtyvTjvGJWJdapS7s1lWXpVVnuD1vhVPU0jZk0nzkL8omRf4ESll6WBB21w9Zd5Qb4BTR3ncHVWAqczKWKSC2Ee84GbdBo2pUwRQseWm6NWt5sQY7O2zWgZBqTjgTkCWOnAcWTJsnzwnhbNCGofDFQy-h6Xf2UOuY9R60a7zgv66nN1m-JVgQAgRSMHAbA8CIMhKGoegmHG9iMImTBR2UPD64bvDQFOY5hkXwQW-VvgnOUbiwT4yGhjNoY5QkVep3ilKcCWZASgPxSgQGRKkoMY-eP48-kDUy+0Br4tz9LgR+z9D7gBvjFNacUATgBTP6B+T9oB-CcgHSuilljlh-pDZQUDcYN1GtVBBoBaotyDmbfB0CRp9EqmNUhXUKFYKvmsVAJkCGOiIXQjqpDJp7ykCdehzoYJLzTHxZkNDbp8iBAZW0o4375VQBIrQID+ByJHM8eRggpGrUuOtT2yhtEpg0XaDBsJTGjmaso2G2jdFAz-NkOxKNzpizpEocQQC2GymZMoK+9jhgen8RQtYUMR5gj8UAgJupgkZ1hK45AQhTbqXCU8QB19dBeDeFOFYax8E8RkqAWJDQeznHGKTcmniJDeJFBvUAJdahOVAPvVJ9pxLCDQEMbRhdLYHlyesdpnTQDdJRq0j8cQBKtOmFk3pEcqhTIoQU0RzF8lgmmQDWZ+MPQLLidwVyEi-isOwD4lkgyukyCGbYGk5SomENvnKRQowxLVhxpvUA8QlBPNtFdD+3gAD8oB+nKBaQU55SohnfM0Ofa5VTNC-K8AALneQ8p5CIXnaAADzIs+SMIxFy4Wf0MAChw2BHBAgACqxGaYkeE5o442F+nCSASwnaIEqEioEoAADUoB4WEoMGoAIShEDgHNoM7QPLFGcp5Xy-lgrAiKBFepSFBL+VIpJcgMllLkAQEEAAdzpYoBlmMmUst6Oy4E3LeX8qSvK4VoqwUTIlcCFMVrZWErtYqh1KqW5i2QEdZl4yMraMdcIdJq8mlXx6LEUS-jCFeCaWgF2ocznDPxfGtIfMrBM2JOK91BRiVAOjfnZQ+bCUJPcYoKpNTYb+NVTaxFcJ2kbzOEjPNDa0gAt1JCstBQkVJsSLOUNV0hhuh9fChoBQRWgEiRIFtW9RjlIfpUo57CrSrwKBqgZ1YUwAFVoAxBKPUsEeYCh1CKR0wQGbIilNaXUqu1pWmzrJPyqcA6khjLReC1ZTwoW9s-mM7pP6dEvrSJOww4Hw4LCjX62NUSW4WiHF+5EIbkNhrTehuNXDI1Ftg8+69g89LvuHecjpG7M0wKkjm4d9abWFokMW0S-7vAVoVdW45Jk63Mf7c2t5bb0XMYMACoQ1pu0XNI7Rht-bk1DrQyOwJzZx1nutWkads751lPEMuimq6TnkciFu0Ne6D0oOKMep4oAAC0lnzTEUtMyU9YGL1CAI14W9BT72hMfaC2Jr6fzEc-YM4Df6O1JUA5oyZBTUJnreJBhuMGY3PqhP3MATlh6jwICQcgVBaCMDoDQOeVJCKIBwCFRAEhxiQJgF3SjR5DEcBTMV0rSAKvmO4E1srFW+Aladhjdou4OA1cRinbIg3FylI6y1yrQ86nxV+XfTUijDCahtSFyId99RLYMPqVb780h336VtwFqxMC7fm3dE8R2Txnf23dfmwhFH3c-mt7wd9gpoCdlIeEij3ufdpUlF7Xg75bq21u-lgPDB32EqMaktg0Bv2hyMWHGACgQ4MHfLlR3DDLyGPCbQxwAB8oB148v+2j95d1LNY4MDj0AeON5E-XjZsne31t3QAFTU5nXhXH+PGegHZ3Tgw5O77AC57T+nhPiegDACz87MiACk4ued0759LhXQvQAi7upvLHEu1frzeXj1nr27oAEJTh65V5L-nFut7G-l-0IEGLle84Z9LrFBgHe3ZkRi441P9fu-Xn7r32uZEE9d6roPoAieh5N0Du6BP-dDG8IHqX68k9x8d8oIEZuufS68FLgwZvDAr1+WSCbARmvlem4+INGBjjwuEqJTUQxJs15fo+QmleSuddr5SFEtgABWpZaYbybyJfBMB3cHar33xRckxvk+8O3rraWK8BngICufU3rHpiDA3infI74lDKBUYoijT-lGgJUZfoWkp30INAa-IVvsp6fy-8md-78+6d4jvgpAhAW2-+gB3+P+puMi-+AAokdtAWAeAZDndAAHJSBIFc4oFIGSYIFpAb7pjb696749hBj17j4FDN74Lu66hQJt474d5EGYy4FqD4HV5db0HWjdKkFpDkHgCUEjbUJQrMF9577Fi0xkhNK+wUyr794DYwBDA1wngBISHdZDin6YDCDwhsZD5SDSBJoBBkylqhZSHdYPzxAiiuyDbx78ryF9CQjeC7IWAiaBq6YmQBL7JyiHJeIcawz-qOzuFHy0Fr5YJyZDCCYr4BHjBsH17wGGC+GoL+EEEd5BzIDD6j5DKhFeBGGREjKWGfyLpaZkw6aeFrqSJQjxBb55GKBixXIZTOFWh1KOFLDsbFH9BkgpaEaUjpa4CZYTw5b0DjR0CzxNK+CPC2CYiRDZK1YezxQ0QChmqIAuy5jaA7AqZJQPAYhByNQRSeTtjbC7DupoYohogRIbFuRZSRSGgaYCh2BAgIZ2DNQjDIDzErJhxQaxzxw1D2HmigjqEABep0IgYgkgI4kYQQLxDcs6L0kAsAe0lQQw4A2oauaAUJMJJUCsEACJCG3x8IfxUkESYJU4EJTK0JggsJ6JRIfO+xyJJJVQfqAajRBxqG7ShxuJGIJI4aORNq8J5JmJMg2J4wykwc2UUsE2OCJg-Es2IxXEopp8CcqibwpSZsEp2EKk-85shs8pm+oAtgHAdSiQvJfxygZsoGrxM6V8kJxJpJXJwgFJHqVJlQwKgi0hUY38YpZ8WpDWRSUSHJ-KVpKMepvx-xj0i0cMhCiaVMVol4WQ6kUg58+m4JZpRJKJcJCJ7u6RUghJ6RNOuExiZJwgXUDOmZhQwinwyyyg2ZmiWBP+wmdpVQ5ZdoyZRIXUhZhgSKoxCZSJFpxQDZeZ0RBQvptQXgcWTSeGD6neQwREj6MAPSFGZkVGzME5nePyHaAKo5HA-6SKeGn0SAMg6h+CXmY5zZXguoC5HAV0vZBQboJ5U50WEGGpeBp5dS5B-pfJBsGghMmyVIJcU+6A2g7q9G7uV+5+7qG5iWVB15o62y15fpWJOJYE14kEt42xpUbmmpaGdScFEEZYiFSG7SHxKFeBEgOpW8z5BpGFW4CF74qGKEA5ScFghJHZSZuZauvahFMAEJ6ReK6GVp+ZUuXC4BiGQapZaGpG4aNF2Bb6NZyggFN+XZuZTC6RdQ3phK-ZnxJFERm+xBb4u4YJpSaFW88KkRWl0EaGeFhgpSrFFgxFMFzwhlFFkoQl1FExB49FNZ3ZzFDaFl7F4BnF3ZPFROfFP+AlDJmiRmGGolh5ElnZUlqCZ+MlvlxpoWil6RKlFcsIal1IdmJywpqFvGtmQoJyQaplBg5lRFXx+pzwiGIoDltsH5ppQC5pjFvpBZBQnlZpZaPlclauOgDaA87ODA7OgmpScQfw2is2sQdJgljJO6npwCgmQVTJU1SoIlM1CVNqkVKJPlh5SUygXV3gvVzAA12BHa811YQl7SSlR1l1Bgw1yyIRV191aQvmD1SUU43FO1Ylz1BgdQq1Z6F1hgKVhWcIyaKIkAfYWFg4spq8amvgn0F0OxAVxVqF2M9R4ZX0XMv0RV3gWa+RlSsNNMS5hKAKJc+aSKsRhwwNT8YNA4koky+56NviyM55kQ76INVNUEAYDpQieNBhn1kQC59NtMcM6cg5zmV6CNDcoC++JY4N2lKo+aAK8UtlMtxluF7YJNiwZFRlSFIQvaCtAImtdlKt1YnovaSKDSsWnxFUkkMAiG9p0k05Jp92yg9tlZoARNOa8KSKQKQI7ONtmVlQnOQwVtYgft+V9pboLtXoAAkFkqldwOlXrNlXgYqVvCbFQiSB9aUmLC7B0vURTaDeRcrRzUaZnZqaHTKJUIfsHXwOXQyPadnfiqXcnaVWpYaaqQlQSe2a5Uxc1Z-NqWxW4agk0VlQ3R0kMLXTJUMv4n9d4AxdSW5dUDaqpdZcWeYNDNzMhWZZqZgC3dZcoC5KcSHJ6B9Z3fVYmfPT3YTu6jvQPfVcxh1dxYiZJfvJYlojIAIY-TPQmhiZ8V0G3LnGWaeekg1RfU1d1XYbVU7VIKea7dWVFSXG5Z7Y3NA9eV5dgQPHPbSEosyIEHIJXJqucLwOaGuUdWWXHPFb3VdX-TnO8W6Cgz+V-UdW1bzZEBg1SVg+Irg4OBAJqltYSgPMYLAGYHSBVvlDucMDqtQ+3Hw5-GQ-HN2ZNJQyw8zZJUCjXHIbnEzco1aZNIw9gZ-c2QDZGnhKWKDeML7PMeYbIYakMnPZaSmVwtjUYVVtALA+ffaUoc44pN+Ro-HFo0xUg6AsghAt44Nisf8u0fZVQoNjzfyoPR4dUl4b4qEUHC6TKd+f4+3Ho-9SwkUVlWNow23WpPQkiQNBQ1LoJnY1UL4K-UUxTEREzC4HwwCq-XvionUyU4067ffkitJbCXwwYw2r6Ug4Zh6UCDAEdFnHquDHlOTEsFetZpalyoWUCK5KY3xNSHMQsXeNBeVZs6yts9rbWHeUweALveVd+QPpsWcUczeYjXgfQ4fk+dZb45DR3T+C5Z2W5Uo8pRwGgz-j451T8+AVIwA483dcozNdk-fnI0MjozaZC14Gs0IxsxY4cx+rITI8dbnCA-Y0SLo1i5EIM+Af2bynHVKCvSMX4gRKvKUrAA+VvM8+VXIXcbAA8U8QJI1Hc-GWfVU987xfCk0v4BTDfnhP0Gy48XtA7S9ZRl+RKxy9052rmTtdxo3PK1K5oP87zXy4S14Dte7sK1JPskOuq8xMLWBvCt3JgCK8a-S9eR9XUDyQGVLNjUIKIOIPIiCSoCSH+WVQGZTO60CbIF6zkHykimsTTIq27X63ySyZG2G4FBpdLdTecVoL6+lUrSm7cwmyuOGJeOBIXVm6HHLYTTG7BXmy+IW+zcWzrUlOGw7JlRvbW5-ACulZVbDD63W4m6gmVqgGFNc0fZ2y22W+pT2+lIKam90-W+zMqRO9m6W+lQKQO0KUO2kNO9zauwWiO5TEGXDajXtOvRjWrV26LMrKGwuyvYnZu94NO7ZP1n1ue8O+lXe0ZE22myew7HYI+0lK25S1+9e42sMVs67ABxE228B7Lc22u0UpgKSvyPupM8gNM02syFIEzjZmpW1lKHYEG9S0sMA+47JWA+MbVa3Vy5841T-eSxAHTXEKDVGIEEsKDYoTh7aEfOGEIDnt1dKjwNAEx1vpKqAHUBCNC9thcJUckf23kyKKJzOraEMKK23ANA4KCFNmrvJxxWrn08UH6VkAIHRzTcoIx8x4QmUXCAZy0Ifg0lHW8EMcyCp2FHhsZ97NvBTB0KsK4wRtDXx6DZcYa+54EBCK5oYP54oB5+9ROqLcFwYCMbh9xJx0CNx1as51apysJ0zRUVUVJ4k80dkwPLF7aOfbSPffJ-Uvsv1KfKpzXl1ZmWgBZwGHUkCqV3V7IDTT9Q2nzPZ+YI54lkCKFx54oopxVw52px9fyklaFvl6xzILmWYIIPfVpzFdfpUMxu10JxbVEF198YxrE-ys53o-qwK+Ab9mGOpECAPIEJVzNyDmt2Bu8weMYBVpDPaPVz+VCLejmtgs96dlvJyoiw2gADqA3GDzRrDPBLDrL-f8pA+1Ul5LDRtUvaBIoADk+AkYaA5QlQ7woPxgyPi9l1QP56UPkLQPTSTwOHjgIUxkQwK8mSxPkQMPtFxc1GtP9Pn8jPkQ7tWQbP9+HPN7PA9kGmuorPPPBgfPnPBeovgPsqSK5P9glP9kEFzYK8th-3hPUvz1QPZnMA8XWPW8DSGvaQpPeUuvfAeqmqVQ5vmAcstY9PfPIPkAYPygJeTtOvHHt+qvavExOPzwcvDgLYjYbvz3OnSv2QVvNvpIoAdu9SOanvXgfPt6pmZvFvdSuoQfQgOn+PvNfP6fevCm2QufmfPP9vP48Uuo4fnsH9Sf4fcfCB6vhvV1QPleggj8dINNs2AIyPTESwyPQwyP4AmqvfoAyP8AyAQ-w-gQQ-yPtg8IU-eqIUIwyPthxvekpv3fiSvb23SwIwEYnHkPmvTl0i-QXfxgSwlm2-u-gg4-dvzGpv4f-hLfG-bXKeD14vhKpvWcMAywO-1yO1tfB-RPBvkdSb6alP+6ADvnyGR5gCp+agSAKUGZBT9CIqILKIPz74LEp+ZYWkEv3x4gCCKDgOHBAOP5PdbAMA0wMFGYhT94gCAObmgCn4JBaYMA+IC31oHL9dWovXAUwXDBIBQwzEQgcoGR5cD5i8QKfouin5SBsBjfQGqbzpAmFxgYA7-pf31bgMWGJfWhJAJkG9ZLMYA8-j-yEDX9s+t-d3sn2t5kNuB8QeTMozf6fw7+FvZ2igjPJZ9LB9QIAQTykFGD5BF-X-vvyh588yeX2ewPhAOR2Cv+ngoQN4MkEFApwVLDwboMKQ39wCwkeEAEPibKB4oUAlBDoMv76DpeiLGIZfxf7YErBD1Nfqfyf4tAwooQ54EaDj589ABLgjtKoNxCJDkhYrPwtIJ6ybg8hXg--oSnr71DwCK-AKNIKtBPQlBGvRoW1E75CB7Oi0bIfEI7Qf8UECgrwQUIMGGEjBxA5YXvx6H3U+h-Q3nm4Oe42h8BWwqoXT3mEGA-BSQ8pK0LiKbDKh4Q1wZEJ-BUt7hsQ1YYiyKGEpmhNwoIWkOIGZDrkcw6HmwMMBvD8hEQyFiUMf5t9yhGUSoX-y9Dx9YsUdGOvsMMATCLAPwwIW0KMH39iBDg1-s4PREHCmkpvZzkZx8629i+bwQvnUmc6OCG+CfVCnUS3jDCZhF0HYQf0tg+8jO2aZmIXyREXCG40w+AIyP6F7CSRNqG4oDQzapRN+-bQ+iuyigkct6eBJYOc2da9QmoTEVEtHBOZb47WllEdsoG1GYBhCx9A0cQ2nxWULmZoirpaNqoUdQGKZK+u-z+bMMO0bDYkhw2URcN8Gp2INngwVThN+UA8RdNvkqCWM+IEjUAMkUJAWBdRyye+kmJzKP1gWDaNoDvAf4jUKyoY5cvlA9G8tu6j9TMqTSLESBcWRHbUF1Dy6pZtQc3bBgoGDHcAB+gYz1goEUD5jP44YsYJGOCgLFBAqImZB2gBqsBiEqQnhGNAnEzipx1UHcvp1a6Wcp8enXXqdhlR-cpRNqIHuSKpGTjIBogvvrAPgHwA5+C-EQWMAwHyBgR3gIHsjzQBMCC4U-Sfn30PHD9MBLArkQ9RE6giG0AABn8Y-5axWLYCUBLvzkIgAA

Metalinguistic Abstraction 4.3.3

const cfun = analyze(cond_expr_cons(stmt));

const afun = analyze(cond_expr_alt(stmt));

return (env, succeed, fail) =>

pfun(env,

// success continuation for evaluating

// the predicate to obtain pred_value

(pred_value, fail2) =>

is_true(pred_value)

? cfun(env, succeed, fail2)

: afun(env, succeed, fail2),

// failure continuation for evaluating

// the predicate

fail);

}

Sequences are also handled in the same way as in the previous evaluator, except for the

machinations in the subfunction sequentially that are required for passing the continuations.

Namely, to sequentially execute a and then b, we call a with a success continuation that calls

b.

Ifunction analyze_sequence(stmts) {

function sequentially(a, b) {

return (env, succeed, fail) =>

a(env,

(a_value, fail2) =>

is_return_value(a_value)

? succeed(a_value, fail2)

: b(env, succeed, fail2),

fail);

}

function loop(first_fun, rest_funs) {

return is_null(rest_funs)

? first_fun

: loop(sequentially(first_fun,

head(rest_funs)),

tail(rest_funs));

}

const funs = map(analyze, stmts);

return is_null(funs)

? env => undefined

: loop(head(funs), tail(funs));

}

458 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARjoCYAoKOJVURNAfTQBTADbg+ggG4BDYZClJoAcwAUaeDngBKUAG9WoA6EyD4kTNB79okHACNBmVeq0GAPq-2Gvh3gPiZEJScNbVB3T28vX1tkZGFBKWhgl3DI719rYWFk0LcPNKj+GAATQXBAwWKcgG5WAF92GAQUC194KUVFSr5hXnhkgBpQeAALQT52xW09L2NTc0s+AAcpREc1ENAAMi3QMakqjZcAXlPhsYmO2oaOZu4MqRxBHN0IoxMzVv5JruKevsGoAARNBHoIgZpro1OC1QGgAJ52OJ8ZBiUFPF4zQxzT57BJVdqIbJHTSQ+rQu5fPhSNBoRCKaBPaD9EmvbEfBZtDq-f5qQFAml0hlM+AQqG3LgWQX0xmCZkCRExYnOaYRHELfYE1bZTXKQnKkKksk3JqS0DS4Vy+B8aSyZ6srHveYWXX6vXanKk8Wm2G+WCoNSJa2lWDCKSYeQtTFqjlUn7dXp8o5DIH+9DteUhsMRyVi8kS2FpwOZwSh8OR1AKpEGlyO9Uu-HuonKV0eklG70w7hFjPB0vZivQG0ySD2lVsgz1vEHJvZN3t40Us2+aQBKS2eJ8LPlyXR9nOxbxv6JlnOFOrxDrzfbnMtPMmrsWC9X8Y3wdVpV7yex6da5ut5sF0XAtuGfDdX37HcWmHO0vydXEALnNsVS9fMfXufgwzsYopHEAAPJZjFpKMHRjA8uU6BMAWTYEsNsHD8MIwRiNQe8l1hOiGJWCMnngBw0DgqccCkJZVEVZFUT4dFBCGRDPWA9CLE43CYmKeFBJ-OT5xQhTH0Wes-HkQQRQ08jvm5KikzPYEDMDPiRTYkCLAMwQCKIulUFMhDG20w1O0pRY02KRBJRkRj3JI8c6x-CieRPQE3gKLxU1QYLQuEcLmI86BHMU0AgvC5ZjEOKKyNxE8+GMcBAQYXSAoK1zCL4IsvIWCqqsBZg6rNBq3OpYRT02aKD3aspAQAZm631+CEABHUc4DHIays5czKOPajrKBOaFtgcEpu4YSAGtxh2uU9uSNBVX3cqAW2wR5vO8EhiOK7-LNM7FsM+yrQEh1DBWhsZ18rQDoscpMDUb7jKtS7ru-A9dVesH3ihuyYeZP7nCuid4IWEG3rQvTfGMpZ4HhAQHt2pb4Bx4bcQySAsjh97pp6GlrXRkzkdxqdGeZgnUIfALomEZBYCOuC8bjCyNqsjQUw3cWjtyvTjvGJWJdapS7s1lWXpVVnuD1vhVPU0jZk0nzkL8omRf4ESll6WBB21w9Zd5Qb4BTR3ncHVWAqczKWKSC2Ee84GbdBo2pUwRQseWm6NWt5sQY7O2zWgZBqTjgTkCWOnAcWTJsnzwnhbNCGofDFQy-h6Xf2UOuY9R60a7zgv66nN1m-JVgQAgRSMHAbA8CIMhKGoegmHG9iMImTBR2UPD64bvDQFOY5hkXwQW-VvgnOUbiwT4yGhjNoY5QkVep3ilKcCWZASgPxSgQGRKkoMY-eP48-kDUy+0Br4tz9LgR+z9D7gBvjFNacUATgBTP6B+T9oB-CcgHSuilljlh-pDZQUDcYN1GtVBBoBaotyDmbfB0CRp9EqmNUhXUKFYKvmsVAJkCGOiIXQjqpDJp7ykCdehzoYJLzTHxZkNDbp8iBAZW0o4375VQBIrQID+ByJHM8eRggpGrUuOtT2yhtEpg0XaDBsJTGjmaso2G2jdFAz-NkOxKNzpizpEocQQC2GymZMoK+9jhgen8RQtYUMR5gj8UAgJupgkZ1hK45AQhTbqXCU8QB19dBeDeFOFYax8E8RkqAWJDQeznHGKTcmniJDeJFBvUAJdahOVAPvVJ9pxLCDQEMbRhdLYHlyesdpnTQDdJRq0j8cQBKtOmFk3pEcqhTIoQU0RzF8lgmmQDWZ+MPQLLidwVyEi-isOwD4lkgyukyCGbYGk5SomENvnKRQowxLVhxpvUA8QlBPNtFdD+3gAD8oB+nKBaQU55SohnfM0Ofa5VTNC-K8AALneQ8p5CIXnaAADzIs+SMIxFy4Wf0MAChw2BHBAgACqxGaYkeE5o442F+nCSASwnaIEqEioEoAADUoB4WEoMGoAIShEDgHNoM7QPLFGcp5Xy-lgrAiKBFepSFBL+VIpJcgMllLkAQEEAAdzpYoBlmMmUst6Oy4E3LeX8qSvK4VoqwUTIlcCFMVrZWErtYqh1KqW5i2QEdZl4yMraMdcIdJq8mlXx6LEUS-jCFeCaWgF2ocznDPxfGtIfMrBM2JOK91BRiVAOjfnZQ+bCUJPcYoKpNTYb+NVTaxFcJ2kbzOEjPNDa0gAt1JCstBQkVJsSLOUNV0hhuh9fChoBQRWgEiRIFtW9RjlIfpUo57CrSrwKBqgZ1YUwAFVoAxBKPUsEeYCh1CKR0wQGbIilNaXUqu1pWmzrJPyqcA6khjLReC1ZTwoW9s-mM7pP6dEvrSJOww4Hw4LCjX62NUSW4WiHF+5EIbkNhrTehuNXDI1Ftg8+69g89LvuHecjpG7M0wKkjm4d9abWFokMW0S-7vAVoVdW45Jk63Mf7c2t5bb0XMYMACoQ1pu0XNI7Rht-bk1DrQyOwJzZx1nutWkads751lPEMuimq6TnkciFu0Ne6D0oOKMep4oAAC0lnzTEUtMyU9YGL1CAI14W9BT72hMfaC2Jr6fzEc-YM4Df6O1JUA5oyZBTUJnreJBhuMGY3PqhP3MATlh6jwICQcgVBaCMDoDQOeVJCKIBwCFRAEhxiQJgF3SjR5DEcBTMV0rSAKvmO4E1srFW+Aladhjdou4OA1cRinbIg3FylI6y1yrQ86nxV+XfTUijDCahtSFyId99RLYMPqVb780h336VtwFqxMC7fm3dE8R2Txnf23dfmwhFH3c-mt7wd9gpoCdlIeEij3ufdpUlF7Xg75bq21u-lgPDB32EqMaktg0Bv2hyMWHGACgQ4MHfLlR3DDLyGPCbQxwAB8oB148v+2j95d1LNY4MDj0AeON5E-XjZsne31t3QAFTU5nXhXH+PGegHZ3Tgw5O77AC57T+nhPiegDACz87MiACk4ued0759LhXQvQAi7upvLHEu1frzeXj1nr27oAEJTh65V5L-nFut7G-l-0IEGLle84Z9LrFBgHe3ZkRi441P9fu-Xn7r32uZEE9d6roPoAieh5N0Du6BP-dDG8IHqX68k9x8d8oIEZuufS68FLgwZvDAr1+WSCbARmvlem4+INGBjjwuEqJTUQxJs15fo+QmleSuddr5SFEtgABWpZaYbybyJfBMB3cHar33xRckxvk+8O3rraWK8BngICufU3rHpiDA3infI74lDKBUYoijT-lGgJUZfoWkp30INAa-IVvsp6fy-8md-78+6d4jvgpAhAW2-+gB3+P+puMi-+AAokdtAWAeAZDndAAHJSBIFc4oFIGSYIFpAb7pjb696749hBj17j4FDN74Lu66hQJt474d5EGYy4FqD4HV5db0HWjdKkFpDkHgCUEjbUJQrMF9577Fi0xkhNK+wUyr794DYwBDA1wngBISHdZDin6YDCDwhsZD5SDSBJoBBkylqhZSHdYPzxAiiuyDbx78ryF9CQjeC7IWAiaBq6YmQBL7JyiHJeIcawz-qOzuFHy0Fr5YJyZDCCYr4BHjBsH17wGGC+GoL+EEEd5BzIDD6j5DKhFeBGGREjKWGfyLpaZkw6aeFrqSJQjxBb55GKBixXIZTOFWh1KOFLDsbFH9BkgpaEaUjpa4CZYTw5b0DjR0CzxNK+CPC2CYiRDZK1YezxQ0QChmqIAuy5jaA7AqZJQPAYhByNQRSeTtjbC7DupoYohogRIbFuRZSRSGgaYCh2BAgIZ2DNQjDIDzErJhxQaxzxw1D2HmigjqEABep0IgYgkgI4kYQQLxDcs6L0kAsAe0lQQw4A2oauaAUJMJJUCsEACJCG3x8IfxUkESYJU4EJTK0JggsJ6JRIfO+xyJJJVQfqAajRBxqG7ShxuJGIJI4aORNq8J5JmJMg2J4wykwc2UUsE2OCJg-Es2IxXEopp8CcqibwpSZsEp2EKk-85shs8pm+oAtgHAdSiQvJfxygZsoGrxM6V8kJxJpJXJwgFJHqVJlQwKgi0hUY38YpZ8WpDWRSUSHJ-KVpKMepvx4wYE14kEt42xpUbmmpaGdSQZEEZYoZSG7SHxEZeBEgOpW8-pfJeKa44EW4IZ74qGKEtQmyFghJSJFpxQcJCJ7uvaqZMAEJ6ReK6GVpXU7uXC4BiGQayyRmGG4aRZ2BDcZZKJygV+5+lZRITC6RdQ3phKvpPJAZwhvYuZcZrsYJpSUZW88KkRb4koQaSZhgpStZFg6ZWJBpW5eZO5BZtsxZppQC5pKJY51p1ZDah59Z4BjZD5LZUubZP+HZDJmi3ZtovZ6R15g51Jw5qCZ+N+FZZJwgE54BU56Rs5nxGZOJiG3M4Z+5kZvGtmQoJyu5JIfZBgB5aZXx+pzwaFVoXZ7YhF4JZpRJ95MFNpaQL5ZpZa75MFn5ROOgDaA87ODA7OgmpScQfw2is2sQdJnZjJO6npwCgmv5TJUlSopGQF9+b6dpVQgFwF-Kygau3FXgvFzAAl-ZDa8l1YVF7S05xlVlwlyyIRVl9laQvmDlSUU4zZOlNFzloAdQxpn8CFnJGJyFJ5ERqUZWqAYUmxZxYZQ04xyZTBSwJFKFzwvUTUTEqJ0cGpeBsACVQVygyVmAwhnoNFpSUg2VZFuVqUhUMgXs0WScJZdFoFlpVZhO7q8VdZrFoWA8oFtISizIgQcglcmqRS8iIJigKxNqA8i62+lQ8xRkwwOqyRhIFgqVyyzG-h3QxiHFTFP+bQO8a1Ilmi2gwFAKWVbVt59F1JH5WBUm5oHApZ6ll1llkQA8VpZgV64ifVg4EAg1QJsgI1Y1-KE1YwU1wUCxggAAkGDTMh2khRXLCO+iiJAH2MuZKLKavGpr4J9BdDsd+URZGdjPUVTE9NDCKKjR5bVYsBUhTJjTTD8vygCiXPmkirEYcMmgjUjQOCjfgl5sTbDMjNEQUPDU-OzVBAGA6UItTQYZ5ZEERJzP1n1rKVdOnF4OeiIC5jjQ3KAvviWMjecVoPmgCvFGeTrZWGhp6IzYsDGUuRzbrVdZ2kfv0JbdudBKbe2L2kig0rFp8RVJJDAIhvadJD0uTfdsoAHbbfTTmvCkikCkCOzr7XZlBZzkMN7WIHHbhfaW6KHV6JDQDLDdwIlabGLFrKuZqYqVvCbFQgRRlUwYXRcvUazULVbSLegIaaqT5aUqnTKJUIfsnXwB3QyPaTXWRkVSXaVQGS3WpD5QSfVfdYxQzu6tqW1XhAck0ScsoIPUMn3VBUMv4o9d4A1dBbOTaoFWRcIp8Dzb4sXXgZgKPZmS5KcSHIVRMQeHdeWQ+VtQUNfadRILvV4Oxc2YiepWLeMJYlojIAIf-T-YYDDYVqAF0G3LnMoCVTANvWdfvW-ZknYdecHUg+gGHedf7Tmm-ZHY3Dg1dK+dgZ1VSd1e9dYJ9eAINaMLwDdTAFpTOjXJdXPQ5XAznO8W6KQ-zdge1VLd4JQ8SdQ8oh9QNZgKw+NWAMYLAGYHSBVvlDIMIHNbAyYDw2gDI9pe3A+ZNJw8IwLYA0Cuw4aiOjo8ZVaZNJA9gRA6w9A5GnhKWIjeML7DNTIdAHIbnHeRdbPVwlmkVAkYEY+FPtAHg-vYg2apIeEZ3pSGE94-HAI1AwicQ6AsghAopGE4dQWu0TuVQoNpLfym4agivSZKEUHC6TKdk7YzET4xUywkUavWNpA+PRTEREzN7JtU+aFpE74CA20-QkiQNDk1ZQCiA3viooMx0yM5Y0iiOVBbU2FtqF1JA76cQ4Zh6UCDAEdFnHquDHlOTEsFetZpalylpUCK5C43xNSHMQsXeH6UFbc6yvc1FbWFXVvuADfQaScUxA-dRR88w+gHUuQYlYk6jZPT+C-Qxb6YY5ybdUIz-gk9081VZdw+3IgxwGkUYwYIi8I4gz4zBQY6izi14Fcwozc+468x+rIZY6Fno-gwfdqDY3S2kPYwgYfcffOSMX4gRKvKUidcC1vKC0FXIXcbAA8U8QJI1DVSadC347C1+fCk0v4BTDfkvblZK3tIHZ-IEyXJq48dq7bbk1aTpdxo3BK4a8xJoOQ8I2g6y6nmrqq1JPskOpa1K0rWBvCt3JgGq664K4TMrXOZmfiZRkIKIOIMNQoCoCSO6gCvneG4CVGwqjkHykimsTTMa0JqRfOdJKm0lOm-wEbdbW81m6APG088W03fm32hbeGJeDmU7aW3Gzm3ycONmcGcbaHCqGm4sBRRfT24ShWyff29Vb25rWlC0OFffUKbG0O62ziUFKFd8YKTbeO5hJKbhBFf84O5-MO-OQKdu7O7u2kIW5TI9ItDW0lPu22xLdTefbTGbQW4sHrFe7k-na+3O7W-07GA+2+3bfnbZHLehSEOu9SHYP+5EDe6hRB1+6e323cyuSe++081S0h6B8+4ZjMfurs8gPs02syFIEzjZolW1lKHYD9by0sOkr441eSRg1DSaYlVRza9Pa-YxSEpDJzHEIjVGIEEsIjYoRR7aEfOGEIDntxdKjwNAAJ1vpKl5RCEs9thcJUckeFU0yKEpzOoBfUvsv1KfKCFNmrppW+Wrgs7fghlkAIDx5zfx4J4QmUXCDZy0Ifg0mDW8EMcyA4Cu3hnZ1086x0KsOEwRujTJ4jZcQF4oEFxCK5oYJF0F+5ROs5leurV4CMZR9xOJ0CJJ1an51apynUIp8xhUVUep9Ul4cyLUwPOl7aOdbSKtTp+q23ANN55GBVrpcBWgM5wGHUkCjp117ICjT5aFnzF5+YGFHhkCPF4EIok1-p610Z2Tb5VV2ADVzIDBa9atWZxBdfpUMxsNxBp7VEGNz54lv+n57Yzpa2ekb9mGOpECAPIEAZ+tyDgd0lN5TRVOMYBVpDPaN17g1CLejmtgr96dlvJyqSw2gADowPGDzRrDPBLDrKQ-8ow-Xkl5LDlvmgQfaBIoADk+AkYaA5QlQ7w8PxgeP1QVlMP56KPOLMPTSTwFHjgIUxkQwK8DHdPXgaPQd2azMHPXPn8PPUH9SOagv9+wv3g6b9kGmuoAv4vBgkvIv68CvHaSvUvzSxk9gLP9ko6HoK8thkPNPqvzlMPjnMAmXpPW8DSJvaQDPeUlvfAeqmqVQzvmAcstYXPkvcPkACPygJewdFvYnt+hvRvEx5PzwTP2vLYjYQfv3xQAhbobvHvpIoAduovWQof3PgL9Dz8yfdSuocfQgCfVPwjkvRfVvCm2QFfJf4v3vP48Uuoyfns4DpmTvLvWfCBxvtv1PrAleggj8dIKNs2AIePTESwePQweP9DmAk-oAeP8AyAc-8-gQc-ePtg8Ia-eqIUIwePth9vekjv4-iSy7YUSwIwEY4nyPpvT90i-QY-xgSwlm5-l-ggy-XvzGjvyfa1g-y78mN-hhYPlJBQTLAL+1yHSp3xv608e+-ZGHqUizjIMR+fIPHggOgBr81AkAUoMyDX6ERUQWUTVGvwWKECwwtIPfqXzgGakfucOJAffyoHoDTAwUZiGv3iAIBXqaANfgkFpjoD4gA-dgfvwdaq8KBeBcMEgFDDMQaBygPHiIPmLxA1+i6NflIDIG98mkjvOkCYXGCoDQBr-K7npTL6382oo-NQb1ksyoDn+YAoQO-ylrq9P4X-F3gS1EHxB-+egwAb93b7u8Q6KCRWqX3p71AYBxlA-gFEd6aCX+4A6-ij0l6M8vs9gfCAcg8EwAtB1yMIb3w-o-geWwQ8wYUg-7gFhI8IaISUxpKj9TBIQiwSnlCzWCHK6Q1-qUOwLlD7KR-R-if3SgJCr+HYbPsrT8E-56+B4HIXkKXp+FVBPWTcJUNCGQDCU3fDoeAQCFmhVBVoJ6DoJN5dC7+kgoQF50WiWDBetQtIEEJAHFDngAhHwS4KSRUDmhew0YfZXGETCJeMDR3scN2HzCNhHnPKD0PKR9C4itwjIUkP8HetUhEHd4VUIeHZCohLw2IfFDx5UCzBr-dYTak2HGU-h1yaoV3wEEZEgBx-IflOwyh3CjQWfSXnUAhqXC2h5NZ4TEP6FADv+VArwQ5QuH4joe1woAX52UB+dPhpLcvjJ2D5mYt4fnbwTAMl5rk6iW8GYasIuhnCAB7ICPgyL57V9WR8fL0ACPJorD4AXIy4VSOpH8obiMDBNoTUvY8xsMeUT6EgFUbqQpA58fTLRVQYz1FWROdIlIEJJaVEGtlFFgTh0Y-sREIaXCHYh0bCZAGbozRJdR0ZIpRibHGFis2SbeAkKytR4XpDwwPpO8QwGWp3h1beA9W1GOMVizLZeAAU0YjgP+iRR4Y9Rl4LICkm5oNY6WuoFMcg1JBac4uHoMsbgx8pxYgeQralKJDBZwhsYkLMyFRmZipj-qIvK+O7nM7FB3UOYxLFQXLF69mwqYxcKwGIRr0eEY0GcQuLnHVRVG1nQbi5ynxWdLep2GVBDxVHQjWAjvekaCPkFT8MBWA+AFvx35yCxghA+QFCMiAw88eaAHgQXDX6r8p+J4+fmWFIEyjIeRXGAQAAYQx4BVZqy1Ak-5wJBQchEAA

Metalinguistic Abstraction 4.3.3

Declarations and assignments

Declarations are another case where we must go to some trouble to manage the continuations,

because it is necessary to evaluate the declaration-value expression before actually declaring

the new name. To accomplish this, the declaration-value execution function vfun is called with

the environment, a success continuation, and the failure continuation. If the execution of vfun

succeeds, obtaining a value val for the declared name, the name is declared and the success is

propagated:

Ifunction analyze_variable_declaration(stmt) {

const symbol = variable_declaration_symbol(stmt);

const vfun = analyze(variable_declaration_value(stmt));

return (env, succeed, fail) =>

vfun(env,

(val, fail2) => {

assign_symbol_value(symbol, val, env);

return succeed(undefined, fail2);

},

fail);

}

function analyze_constant_declaration(stmt) {

const symbol =

constant_declaration_symbol(stmt);

const vfun = analyze(constant_declaration_value(stmt));

return (env, succeed, fail) =>

vfun(env,

(val, fail2) => {

assign_symbol_value(symbol, val, env);

return succeed(undefined, fail2);

},

fail);

}

Assignments are more interesting. This is the �rst place where we really use the continu-

ations, rather than just passing them around. The execution function for assignments starts

out like the one for declarations. It �rst attempts to obtain the new value to be assigned to the

name. If this evaluation of vfun fails, the assignment fails.

If vfun succeeds, however, and we go on to make the assignment, we must consider the

possibility that this branch of the computation might later fail, which will require us to back-

track out of the assignment. Thus, we must arrange to undo the assignment as part of the

backtracking process.
50

This is accomplished by giving vfun a success continuation (marked with the comment “*1*”

50
We didn’t worry about undoing declarations, since we assume that names are not used prior to the evaluation

of their declaration, see exercise 4.16. declarations are scanned out (section 4.1.6).

459 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARjoCYAoKOJVURNAfTQBTADbg+ggG4BDYZClJoAcwAUaeDngBKUAG9WoA6EyD4kTNB79okHACNBmVeq0GAPq-2Gvh3gPiZEJScNbVB3T28vX1tkZGFBKWhgl3DI719rYWFk0LcPNKj+GAATQXBAwWKcgG5WAF92GAQUC194KUVFSr5hXnhkgBpQeAALQT52xW09L2NTc0s+AAcpREc1ENAAMi3QMakqjZcAXlPhsYmO2oaOZu4MqRxBHN0IoxMzVv5JruKevsGoAARNBHoIgZpro1OC1QGgAJ52OJ8ZBiUFPF4zQxzT57BJVdqIbJHTSQ+rQu5fPhSNBoRCKaBPaD9EmvbEfBZtDq-f5qQFAml0hlM+AQqG3LgWQX0xmCZkCRExYnOaYRHELfYE1bZTXKQnKkKksk3JqS0DS4Vy+B8aSyZ6srHveYWXX6vXanKk8Wm2G+WCoNSJa2lWDCKSYeQtTFqjlUn7dXp8o5DIH+9DteUhsMRyVi8kS2FpwOZwSh8OR1AKpEGlyO9Uu-HuonKV0eklG70w7hFjPB0vZivQG0ySD2lVsgz1vEHJvZN3t40Us2+aQBKS2eJ8LPlyXR9nOxbxv6JlnOFOrxDrzfbnMtPMmrsWC9X8Y3wdVpV7yex6da5ut5sF0XAtuGfDdX37HcWmHO0vydXEALnNsVS9fMfXufgwzsYopHEAAPJZjFpKMHRjA8uU6BMAWTYEsNsHD8MIwRiNQe8l1hOiGJWCMnngBw0DgqccCkJZVEVZFUT4dFBCGRDPWA9CLE43CYmKeFBJ-OT5xQhTH0Wes-HkQQRQ08jvm5KikzPYEDMDPiRTYkCLAMwQCKIulUFMhDG20w1O0pRY02KRBJRkRj3JI8c6x-CieRPQE3gKLxU1QYLQuEcLmI86BHMU0AgvC5ZjEOKKyNxE8+GMcBAQYXSAoK1zCL4IsvIWCqqsBZg6rNBq3OpYRT02aKD3aspAQAZm631+CEABHUc4DHIays5czKOPajrKBOaFtgcEpu4YSAGtxh2uU9uSNBVX3cqAW2wR5vO8EhiOK7-LNM7FsM+yrQEh1DBWhsZ18rQDoscpMDUb7jKtS7ru-A9dVesH3ihuyYeZP7nCuid4IWEG3rQvTfGMpZ4HhAQHt2pb4Bx4bcQySAsjh97pp6GlrXRkzkdxqdGeZgnUIfALomEZBYCOuC8bjCyNqsjQUw3cWjtyvTjvGJWJdapS7s1lWXpVVnuD1vhVPU0jZk0nzkL8omRf4ESll6WBB21w9Zd5Qb4BTR3ncHVWAqczKWKSC2Ee84GbdBo2pUwRQseWm6NWt5sQY7O2zWgZBqTjgTkCWOnAcWTJsnzwnhbNCGofDFQy-h6Xf2UOuY9R60a7zgv66nN1m-JVgQAgRSMHAbA8CIMhKGoegmHG9iMImTBR2UPD64bvDQFOY5hkXwQW-VvgnOUbiwT4yGhjNoY5QkVep3ilKcCWZASgPxSgQGRKkoMY-eP48-kDUy+0Br4tz9LgR+z9D7gBvjFNacUATgBTP6B+T9oB-CcgHSuilljlh-pDZQUDcYN1GtVBBoBaotyDmbfB0CRp9EqmNUhXUKFYKvmsVAJkCGOiIXQjqpDJp7ykCdehzoYJLzTHxZkNDbp8iBAZW0o4375VQBIrQID+ByJHM8eRggpGrUuOtT2yhtEpg0XaDBsJTGjmaso2G2jdFAz-NkOxKNzpizpEocQQC2GymZMoK+9jhgen8RQtYUMR5gj8UAgJupgkZ1hK45AQhTbqXCU8QB19dBeDeFOFYax8E8RkqAWJDQeznHGKTcmniJDeJFBvUAJdahOVAPvVJ9pxLCDQEMbRhdLYHlyesdpnTQDdJRq0j8cQBKtOmFk3pEcqhTIoQU0RzF8lgmmQDWZ+MPQLLidwVyEi-isOwD4lkgyukyCGbYGk5SomENvnKRQowxLVhxpvUA8QlBPNtFdD+3gAD8oB+nKBaQU55SohnfM0Ofa5VTNC-K8AALneQ8p5CIXnaAADzIs+SMIxFy4Wf0MAChw2BHBAgACqxGaYkeE5o442F+nCSASwnaIEqEioEoAADUoB4WEoMGoAIShEDgHNoM7QPLFGcp5Xy-lgrAiKBFepSFBL+VIpJcgMllLkAQEEAAdzpYoBlmMmUst6Oy4E3LeX8qSvK4VoqwUTIlcCFMVrZWErtYqh1KqW5i2QEdZl4yMraMdcIdJq8mlXx6LEUS-jCFeCaWgF2ocznDPxfGtIfMrBM2JOK91BRiVAOjfnZQ+bCUJPcYoKpNTYb+NVTaxFcJ2kbzOEjPNDa0gAt1JCstBQkVJsSLOUNV0hhuh9fChoBQRWgEiRIFtW9RjlIfpUo57CrSrwKBqgZ1YUwAFVoAxBKPUsEeYCh1CKR0wQGbIilNaXUqu1pWmzrJPyqcA6khjLReC1ZTwoW9s-mM7pP6dEvrSJOww4Hw4LCjX62NUSW4WiHF+5EIbkNhrTehuNXDI1Ftg8+69g89LvuHecjpG7M0wKkjm4d9abWFokMW0S-7vAVoVdW45Jk63Mf7c2t5bb0XMYMACoQ1pu0XNI7Rht-bk1DrQyOwJzZx1nutWkads751lPEMuimq6TnkciFu0Ne6D0oOKMep4oAAC0lnzTEUtMyU9YGL1CAI14W9BT72hMfaC2Jr6fzEc-YM4Df6O1JUA5oyZBTUJnreJBhuMGY3PqhP3MATlh6jwICQcgVBaCMDoDQOeVJCKIBwCFRAEhxiQJgF3SjR5DEcBTMV0rSAKvmO4E1srFW+Aladhjdou4OA1cRinbIg3FylI6y1yrQ86nxV+XfTUijDCahtSFyId99RLYMPqVb780h336VtwFqxMC7fm3dE8R2Txnf23dfmwhFH3c-mt7wd9gpoCdlIeEij3ufdpUlF7Xg75bq21u-lgPDB32EqMaktg0Bv2hyMWHGACgQ4MHfLlR3DDLyGPCbQxwAB8oB148v+2j95d1LNY4MDj0AeON5E-XjZsne31t3QAFTU5nXhXH+PGegHZ3Tgw5O77AC57T+nhPiegDACz87MiACk4ued0759LhXQvQAi7upvLHEu1frzeXj1nr27oAEJTh65V5L-nFut7G-l-0IEGLle84Z9LrFBgHe3ZkRi441P9fu-Xn7r32uZEE9d6roPoAieh5N0Du6BP-dDG8IHqX68k9x8d8oIEZuufS68FLgwZvDAr1+WSCbARmvlem4+INGBjjwuEqJTUQxJs15fo+QmleSuddr5SFEtgABWpZaYbybyJfBMB3cHar33xRckxvk+8O3rraWK8BngICufU3rHpiDA3infI74lDKBUYoijT-lGgJUZfoWkp30INAa-IVvsp6fy-8md-78+6d4jvgpAhAW2-+gB3+P+puMi-+AAokdtAWAeAZDndAAHJSBIFc4oFIGSYIFpAb7pjb696749hBj17j4FDN74Lu66hQJt474d5EGYy4FqD4HV5db0HWjdKkFpDkHgCUEjbUJQrMF9577Fi0xkhNK+wUyr794DYwBDA1wngBISHdZDin6YDCDwhsZD5SDSBJoBBkylqhZSHdYPzxAiiuyDbx78ryF9CQjeC7IWAiaBq6YmQBL7JyiHJeIcawz-qOzuFHy0Fr5YJyZDCCYr4BHjBsH17wGGC+GoL+EEEd5BzIDD6j5DKhFeBGGREjKWGfyLpaZkw6aeFrqSJQjxBb55GKBixXIZTOFWh1KOFLDsbFH9BkgpaEaUjpa4CZYTw5b0DjR0CzxNK+CPC2CYiRDZK1YezxQ0QChmqIAuy5jaA7AqZJQPAYhByNQRSeTtjbC7DupoYohogRIbFuRZSRSGgaYCh2BAgIZ2DNQjDIDzErJhxQaxzxw1D2HmigjqEABep0IgYgkgI4kYQQLxDcs6L0kAsAe0lQQw4A2oauaAUJMJJUCsEACJCG3x8IfxUkESYJU4EJTK0JggsJ6JRIfO+xyJJJVQfqAajRBxqG7ShxuJGIJI4aORNq8J5JmJMg2J4wykwc2UUsE2OCJg-Es2IxXEopp8CcqibwpSZsEp2EKk-85shs8pm+oAtgHAdSiQvJfxygZsoGrxM6V8kJxJpJXJwgFJHqVJlQwKgi0hUY38YpZ8WpDWRSUSHJ-KVpKMepvx-xj0i0cMhCiaVMVol4WQ6kUg58+m4JZpRJKJcJCJ7u6RUghJ6RNOuExiZJwgXUDOmZhQwinwyyyg2ZmiWBP+wmdpVQ5ZdoyZRIXUhZhgSKoxCZSJFpxQDZeZ0RBQvptQXgcWTSeGD6neQwREj6MAPSFGZkVGzME5nePyHaAKo5HA-6SKeGn0SAMg6h+CXmY5zZXguoC5HAV0vZBQboJ5U50WEGGpeBp5dS5B-pfJBsGghMmyVIJcU+6A2g7q9G7uV+5+7qG5iWVB15o62y15fpWJOJiG3MpUbmmpaGupdmJyQaHxiFeBEgOpW8z5BpcFVopZ7YA5ScFghJHZSZuZNpaQ2FMAEJZaeK6GVp+ZUuOgDaA87ODA7OgmpScQfw2is2sQdJQaRF7S4aJFHaiGIljJO6GG4lgmb6NZjF3p2B2OaubFXgHFzA3FqlDaUlDJmiRmh5uln8fFyyIRJlllaQvmVlSUU4zFygxptlBgdQTlSUdQKlCaGJnxeFERqUZWqAYUmxZx2xUU4xmFTBSwOFXx+pzwvUTUTEqJ0cd5TBsA0Vvlyg8VmAwhnoElSieBUg6VMFcVqUhUMgXsN5Jp5FNZ3Z1FSUUVdFZpzGA8FFWU+VCgcglcmqRS8iIJigKxNqA8i62+lQ8xRkwwOqyRhIFgiVyyzG-h3QOZzFdV9+bQO8C1-FFZA1oWAKaVjVQC5plFy1mZSKhV+1Egh11J3ZXUnlkQA8VpZgV64igQnVsI4A3VQJsgfV21hKQ1YwI1wUCxggAAkMDTMh2v2Z8e+iiJAH2GWLeAGFLGpr4J9BdDsVwhFVvq9PUeGV9FzL9BhTOQzPwBUhTKjTTEuYSgCiXPmqdSyn4dDU-HDQOJKJMvufjb4sjOeZEIzbDVuJBAjegA6UIuTQYc5ZEAuRzbTHDOnIOc5lehjaRYFJvsQW+LuCSPmgCvFJEWrdBGhp6LTYsGBNeALa7BrQ2lrQCMbRBPDe+Pre2L2kig0rFp8RVJJDAIhvadJNOSafdsoN7ZWaANTTmvCkikCkCOzh7ahZUJzkMG7WIFHUKDfo4v7WCGeZCGDQDBXLCL5abGLFrGCQqaqXUibFQiSHlaUvnRcvUcmjDczVBIjUaRXZqYnTKJUIfvHXwK3QyPaVXWRs3XgdqdPrhcVYaaqU5QSe2TVVRQWYSkPUkG4agk0ScsoH3UMt3cnUMv4rdd4K1ZaRiTaj5cVcWeYNDPBYnIYKUpgEVbFcoC5KcSHLlRMQeNVZ2bVbPZ-NfedTvV4MpbmSxUTnvVUPvJYlojIAIctT-YYJDdndwF0G3LnGWaeekpdfveSZknYR+cXNRmdT+fCtWZ2f7TmrVaHY3Lg1dPRapS1VSbSO1S9YOBAN1aMLwOaGuapWWXHNdStapfAznO8W6OQ9zeAU1eLXdWAK1bQ89dYAw+9ZgMZb9WAMYLAGYHSBVvlDuRNaALw+3PI5-Bw-HN2ZNB-aI2kEA0fCdvo3IbnEI6I1aZNFA9gZA82TA4VkUnhKWLDeML7GNTIdAFYwY4mVdTPVwlmkVAkYEY+N+YHQQyiWWWapIeEZ3pSN+f4yOqEb6aQ6AsghAopFEz9UJu0ZKKbKqVE2LfyovR4dUl4b4uk1gi6TKVEw4zEbnE0wYBsUUSvWNlA2PWpPQkiQNFw6mffmY74KAz0xTEREzC4PIwCqA3viouM301M4HffkioBcna032dqDdb2hk32kUpgKSik8CDAEdFnHquDHlOTEsFetZpalyoWUCK5B43xNSHMQsXeNBbFW86yh86FRfQYLejfQGd+QPsFY-cRSlVvuQ4+ZPr5ak0-Vg6-UdSmYTv+uABwJQ+Acc8tcY9gdo4g+QxZSY56Rdbo2kPo0MnY9wyS888o689438x+rIeS3pS04E2g8IPY6y94E4wgf2byrA1KMfSMX4gRKvKUntegLC6JPC+aHcbAA8U8QJI1JVfGQdRy12TPaxfCk0v4BTDfnhP0Iq48XtD7XZZRl+Sa8qys52rmY5dxo3Na2a5oFi6I0A5sw2o5e7vq1JPskOs68xLLWBvCt3JgAa-61K++RBjySC-iZRkIKIOIL1QoCoObZ-ACrnYm4CSmwqjkHykimsTTLa0HTFQGSycWwW8rfviWLberSqH+WW3ycIb2PzXW+cVoFWyuOGJeOBG2yzR2yW5m8fdbf2w3aHA20lIWw7KhefZ21TU27BbO7DOm2kNO3vmlC0EFQ-UKauwWou35aggFd8YKYO125hJKbhOC7u5Oxmwe+zMqae-8-O-syjbjWjbe0lMO986LeTWfQTQ7VO4sHrPmwu7nSB3u94Ou7ZP1n1qB3e7nTB0ZHOys+u6K5B5EN++W+h5+5EGh+82bbh3a7nYy4RyEFW4ZjMfumc8gBc02syFIEzjZr5W1lKHYJ9WK0sCg5q+-RpeDSaRlaq8i0Ey400qOWgHELDVGIEEsLDYoex7aOY5DM8ECGxdKjwNALJ1vpKqAHUBCJ6xUVUUFR0yKJ63-Ya23ANA4KCFNmrraGZ2rus7fghlkAIJJ6zcoDJ3J4QmUXCO5y0Ifg0sDW8EMcyNZ2FHhl597NvBTB0KsNAHGcjZp7DZcb63F4EBCK5oYGl4oPF45XlXLSIC5orZECMRx9xEIDnmp1alF1apynp9zYZ8kcZ1U80U0wPGV7aIE7SPNfZ-Uvsv1KfDZzXupZmRJ7IKzXUkCn1+N1JwGG5R2nzGF+YBF4lkCDl-F4ohZ4N+F7ZwV4Sh5c1WAJ1zILmY9fNY56gmfsncxgty5S7VEMtye3hv+lFw496zq+Ab9mGOpECAPIEEN6dyDnd2ehPT+MYBVsp6oP5-N1CLejmtgsp6dlvJyiSx2gADquPGDzRrDPBLDrJo82qY9YMl5LCluivaBIoADk+AkYaA5QlQ7wOPxgVP1QJlmP56hPaPmPTSTw7HjgIUxkQwK8GDXPkQxPStftIvYvhKEvmH9SOaMvP+cvUHPA9kGmuo0vSvhgKv8v682voWuvqvfP9gAv9kEFzYK8thhPHPBvzlmPvnMAFXjPW8DSdvBQPPeUzvfAeqmqVQvvmAcstYMvKv2PkAuPygJeftTv4YQgxQXoYvofVMEfJvDgLYjYMfyn8fFv2QAfQfpIoAduCvWQ1v3gKvt6pmPvfvdSuomfcfpf9vbwdfLvCm2Qzf8fbPSvSftCfIuoefnsEDlfefDfCBtv7vllmPleggj8dIk3W88UVPTESwVPQwVPsjK-oAVP8AyAG-m-gQG-VPtg8IB-eqIUIwVPthnvek3vS-iSx7YUSwIwEYlXBPtl3f0i-Qi-xgSwlmj-z-ggu-EPsxm9558FqM-Y9vJjf7ADY+4wLODAGWBP9rkjlEflAM57j9dKk-TUnAOlbz8AQVPbAQfzUCQBSgzIA-oRFRBZRNUB-BYtQLDC0gL+nfTAVhQcBw5ZseAyHrYEIGmBgozEA-vEAQCPU0AB-BILTEIHxBp+Qgy-jywN5MCmC4YJAKGGYhsC+QVPeQfMXiAH9F0B-KQAwPZ6uNvedIEwrAJQQID-+3rPjuLXf5tQ8Bhg3rJZmwG-9EBQgQAZYOgHKcq+gfDhgoPiCQDRGRvT+CAL97+0UEZ5TviSzH7oDVKV-AKN72wGmCkBr-Lnir155fZ7A+EA5MEPgF-9rkiQvQQUCnCis4h2QoQCnkT7pFhI8INIRU1Xp4CHBxQgAaUIx7SDDARQpwYUgwHNCv4MAoqNPzv7pR4hL-DsF4BV5oDIhhvZ+riAqFVCjWfhAwT1k3CtCzBCfcYaMLGHK99B3QoQGF2DK5CyhWDBflsIkR7QXBXfNwUkkWEJDGhrgwwt0I4EDDngywvwfUDWHYFohZob3ncPqHmDteyQvKFMPKQzC4inwtobsKiGhsfworYEf-yuHc9yhqQgERkIX4cDHB--E4UT06HDIWB9wmEesLR439v+fQrdhlC+FGgG+Iw0Gi8LL4TCFg-w9IbMO6GgCOBoQqyhEMpHjCmk3vKLp52S7B8fhTfTTjALMxbwouYQyIeXyQp1Et4Bgq0E9Hy5JCJizPZ4NHwFFZ9Hh8orBocNFGUjWRbIhtDcVca51R2utZ9hKyQq8Y00a4PtsaKQztJCagLTUrRQsAj1b6Ro02kU1QwoQ8qk9DVh621ZE5e0jot1qFj-q4tPuqlfSkyRkpKhSM8lXSopUIZOctWy1fbjakO7gFROeUXOjrTdGDtCEpSZClvHhTZj22lYe2uqUxrDJgWfJTKirVrYDtKwHo22Eiynpv0-R+TGipixEY-4Qx2zUbrpQjHVhRKslPrjZWwLxjYmiYrhimP5Rpif8LjVgMQhqFQwOoi41cTwjGg7k3OE3ALlPlc7O9TsMqVHrqIbSY9ORPIpcZ-y0Gr8iBJA+ACfzP6aCxg1A+QGiPF6sAqeaAcQQXAP779V+V4zfmWHoFqiTG+nDEfygAAMNjH-Ds1sowT78cEtIOQiAA

Metalinguistic Abstraction 4.3.3

below) that saves the old value of the variable before assigning the new value to the variable

and proceeding from the assignment. The failure continuation that is passed along with the

value of the assignment (marked with the comment “*2*” below) restores the old value of

the variable before continuing the failure. That is, a successful assignment provides a failure

continuation that will intercept a subsequent failure; whatever failure would otherwise have

called fail2 calls this function instead, to undo the assignment before actually calling fail2.

Ifunction analyze_assignment(stmt) {

const symbol = assignment_symbol(stmt);

const vfun = analyze(assignment_value(stmt));

return (env, succeed, fail) =>

vfun(env,

(val, fail2) => { // *1*

const old_value = lookup_symbol_value(symbol, env);

assign_symbol_value(symbol, val, env);

return succeed(val,

() => { // *2*

assign_symbol_value(symbol,

old_value,

env);

return fail2();

});

},

fail);

}

Return statements and blocks

Analyzing return statements is straightforward. The execution function applies the execution

function that results from analyzing the return expression to a success continuation that calls

the original success continuation with the return value wrapped in a return value object.

Ifunction analyze_return_statement(stmt) {

const rfun = analyze(return_expression(stmt));

return (env, succeed, fail) =>

rfun(env,

(val, fail2) => succeed(make_return_value(val), fail2),

fail);

}

The execution function for blocks calls the body’s execution function on an extended environ-

ment, without changing success or failure continuations.

Ifunction analyze_block(stmt) {

const body = block_body(stmt);

const locals = scan_out_declarations(body);

460 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARjoCYAoKOJVURNAfTQBTADbg+ggG4BDYZClJoAcwAUaeDngBKUAG9WoA6EyD4kTNB79okHACNBmVeq0GAPq-2Gvh3gPiZEJScNbVB3T28vX1tkZGFBKWhgl3DI719rYWFk0LcPNKj+GAATQXBAwWKcgG5WAF92GAQUC194KUVFSr5hXnhkgBpQeAALQT52xW09L2NTc0s+AAcpREc1ENAAMi3QMakqjZcAXlPhsYmO2oaOZu4MqRxBHN0IoxMzVv5JruKevsGoAARNBHoIgZpro1OC1QGgAJ52OJ8ZBiUFPF4zQxzT57BJVdqIbJHTSQ+rQu5fPhSNBoRCKaBPaD9EmvbEfBZtDq-f5qQFAml0hlM+AQqG3LgWQX0xmCZkCRExYnOaYRHELfYE1bZTXKQnKkKksk3JqS0DS4Vy+B8aSyZ6srHveYWXX6vXanKk8Wm2G+WCoNSJa2lWDCKSYeQtTFqjlUn7dXp8o5DIH+9DteUhsMRyVi8kS2FpwOZwSh8OR1AKpEGlyO9Uu-HuonKV0eklG70w7hFjPB0vZivQG0ySD2lVsgz1vEHJvZN3t40Us2+aQBKS2eJ8LPlyXR9nOxbxv6JlnOFOrxDrzfbnMtPMmrsWC9X8Y3wdVpV7yex6da5ut5sF0XAtuGfDdX37HcWmHO0vydXEALnNsVS9fMfXufgwzsYopHEAAPJZjFpKMHRjA8uU6BMAWTYEsNsHD8MIwRiNQe8l1hOiGJWCMnngBw0DgqccCkJZVEVZFUT4dFBCGRDPWA9CLE43CYmKeFBJ-OT5xQhTH0Wes-HkQQRQ08jvm5KikzPYEDMDPiRTYkCLAMwQCKIulUFMhDG20w1O0pRY02KRBJRkRj3JI8c6x-CieRPQE3gKLxU1QYLQuEcLmI86BHMU0AgvC5ZjEOKKyNxE8+GMcBAQYXSAoK1zCL4IsvIWCqqsBZg6rNBq3OpYRT02aKD3aspAQAZm631+CEABHUc4DHIays5czKOPajrKBOaFtgcEpu4YSAGtxh2uU9uSNBVX3cqAW2wR5vO8EhiOK7-LNM7FsM+yrQEh1DBWhsZ18rQDoscpMDUb7jKtS7ru-A9dVesH3ihuyYeZP7nCuid4IWEG3rQvTfGMpZ4HhAQHt2pb4Bx4bcQySAsjh97pp6GlrXRkzkdxqdGeZgnUIfALomEZBYCOuC8bjCyNqsjQUw3cWjtyvTjvGJWJdapS7s1lWXpVVnuD1vhVPU0jZk0nzkL8omRf4ESll6WBB21w9Zd5Qb4BTR3ncHVWAqczKWKSC2Ee84GbdBo2pUwRQseWm6NWt5sQY7O2zWgZBqTjgTkCWOnAcWTJsnzwnhbNCGofDFQy-h6Xf2UOuY9R60a7zgv66nN1m-JVgQAgRSMHAbA8CIMhKGoegmHG9iMImTBR2UPD64bvDQFOY5hkXwQW-VvgnOUbiwT4yGhjNoY5QkVep3ilKcCWZASgPxSgQGRKkoMY-eP48-kDUy+0Br4tz9LgR+z9D7gBvjFNacUATgBTP6B+T9oB-CcgHSuilljlh-pDZQUDcYN1GtVBBoBaotyDmbfB0CRp9EqmNUhXUKFYKvmsVAJkCGOiIXQjqpDJp7ykCdehzoYJLzTHxZkNDbp8iBAZW0o4375VQBIrQID+ByJHM8eRggpGrUuOtT2yhtEpg0XaDBsJTGjmaso2G2jdFAz-NkOxKNzpizpEocQQC2GymZMoK+9jhgen8RQtYUMR5gj8UAgJupgkZ1hK45AQhTbqXCU8QB19dBeDeFOFYax8E8RkqAWJDQeznHGKTcmniJDeJFBvUAJdahOVAPvVJ9pxLCDQEMbRhdLYHlyesdpnTQDdJRq0j8cQBKtOmFk3pEcqhTIoQU0RzF8lgmmQDWZ+MPQLLidwVyEi-isOwD4lkgyukyCGbYGk5SomENvnKRQowxLVhxpvUA8QlBPNtFdD+3gAD8oB+nKBaQU55SohnfM0Ofa5VTNC-K8AALneQ8p5CIXnaAADzIs+SMIxFy4Wf0MAChw2BHBAgACqxGaYkeE5o442F+nCSASwnaIEqEioEoAADUoB4WEoMGoAIShEDgHNoM7QPLFGcp5Xy-lgrAiKBFepSFBL+VIpJcgMllLkAQEEAAdzpYoBlmMmUst6Oy4E3LeX8qSvK4VoqwUTIlcCFMVrZWErtYqh1KqW5i2QEdZl4yMraMdcIdJq8mlXx6LEUS-jCFeCaWgF2ocznDPxfGtIfMrBM2JOK91BRiVAOjfnZQ+bCUJPcYoKpNTYb+NVTaxFcJ2kbzOEjPNDa0gAt1JCstBQkVJsSLOUNV0hhuh9fChoBQRWgEiRIFtW9RjlIfpUo57CrSrwKBqgZ1YUwAFVoAxBKPUsEeYCh1CKR0wQGbIilNaXUqu1pWmzrJPyqcA6khjLReC1ZTwoW9s-mM7pP6dEvrSJOww4Hw4LCjX62NUSW4WiHF+5EIbkNhrTehuNXDI1Ftg8+69g89LvuHecjpG7M0wKkjm4d9abWFokMW0S-7vAVoVdW45Jk63Mf7c2t5bb0XMYMACoQ1pu0XNI7Rht-bk1DrQyOwJzZx1nutWkads751lPEMuimq6TnkciFu0Ne6D0oOKMep4oAAC0lnzTEUtMyU9YGL1CAI14W9BT72hMfaC2Jr6fzEc-YM4Df6O1JUA5oyZBTUJnreJBhuMGY3PqhP3MATlh6jwICQcgVBaCMDoDQOeVJCKIBwCFRAEhxiQJgF3SjR5DEcBTMV0rSAKvmO4E1srFW+Aladhjdou4OA1cRinbIg3FylI6y1yrQ86nxV+XfTUijDCahtSFyId99RLYMPqVb780h336VtwFqxMC7fm3dE8R2Txnf23dfmwhFH3c-mt7wd9gpoCdlIeEij3ufdpUlF7Xg75bq21u-lgPDB32EqMaktg0Bv2hyMWHGACgQ4MHfLlR3DDLyGPCbQxwAB8oB148v+2j95d1LNY4MDj0AeON5E-XjZsne31t3QAFTU5nXhXH+PGegHZ3Tgw5O77AC57T+nhPiegDACz87MiACk4ued0759LhXQvQAi7upvLHEu1frzeXj1nr27oAEJTh65V5L-nFut7G-l-0IEGLle84Z9LrFBgHe3ZkRi441P9fu-Xn7r32uZEE9d6roPoAieh5N0Du6BP-dDG8IHqX68k9x8d8oIEZuufS68FLgwZvDAr1+WSCbARmvlem4+INGBjjwuEqJTUQxJs15fo+QmleSuddr5SFEtgABWpZaYbybyJfBMB3cHar33xRckxvk+8O3rraWK8BngICufU3rHpiDA3infI74lDKBUYoijT-lGgJUZfoWkp30INAa-IVvsp6fy-8md-78+6d4jvgpAhAW2-+gB3+P+puMi-+AAokdtAWAeAZDndAAHJSBIFc4oFIGSYIFpAb7pjb696749hBj17j4FDN74Lu66hQJt474d5EGYy4FqD4HV5db0HWjdKkFpDkHgCUEjbUJQrMF9577Fi0xkhNK+wUyr794DYwBDA1wngBISHdZDin6YDCDwhsZD5SDSBJoBBkylqhZSHdYPzxAiiuyDbx78ryF9CQjeC7IWAiaBq6YmQBL7JyiHJeIcawz-qOzuFHy0Fr5YJyZDCCYr4BHjBsH17wGGC+GoL+EEEd5BzIDD6j5DKhFeBGGREjKWGfyLpaZkw6aeFrqSJQjxBb55GKBixXIZTOFWh1KOFLDsbFH9BkgpaEaUjpa4CZYTw5b0DjR0CzxNK+CPC2CYiRDZK1YezxQ0QChmqIAuy5jaA7AqZJQPAYhByNQRSeTtjbC7DupoYohogRIbFuRZSRSGgaYCh2BAgIZ2DNQjDIDzErJhxQaxzxw1D2HmigjqEABep0IgYgkgI4kYQQLxDcs6L0kAsAe0lQQw4A2oauaAUJMJJUCsEACJCG3x8IfxUkESYJU4EJTK0JggsJ6JRIfO+xyJJJVQfqAajRBxqG7ShxuJGIJI4aORNq8J5JmJMg2J4wykwc2UUsE2OCJg-Es2IxXEopp8CcqibwpSZsEp2EKk-85shs8pm+oAtgHAdSiQvJfxygZsoGrxM6V8kJxJpJXJwgFJHqVJlQwKgi0hUY38YpZ8WpDWRSUSHJ-KVpKMepvx-xj0i0cMhCiaVMVol4WQ6kUg58+m4JZpRJKJcJCJ7u6RUghJ6RNOuExiZJwgXUDOmZhQwinwyyyg2ZmiWBP+wmdpVQ5ZdoyZRIXUhZhgSKoxCZSJFpxQDZeZ0RBQvptQXgcWTSeGD6neQwREj6MAPSFGZkVGzME5nePyHaAKo5HA-6SKeGn0SAMg6h+CXmY5zZXguoC5HAV0vZBQboJ5U50WEGGpeBp5dS5B-pfJBsGghMmyVIJcU+6A2g7q9G7uV+5+7qG5iWVB15o62y15fpWJOJYE14kEt42xpUbmmpaGdScFEEZYiFSG7SHxKFeBEgOpW8z5BpGFW4CF74qGKEA5ScFghJHZSZuZauvahFMAEJ6ReK6GVp+ZUuXC4BiGQapZaGpG4aNF2Bb6NZyggFN+XZuZTC6RdQ3phK-ZnxJFERm+xBb4u4YJpSaFW88KkRWl0EaGeFhgpSrFFgxFMFzwhlFFkoQl1FExB49FNZ3ZzFDaFl7F4BnF3ZPFROfFP+AlDJmiRmGGolh5ElnZUlqCZ+MlvlxpoWil6RKlFcsIale+aULQYUmxZxSFQ04x+FTBSwRFXx+pNlqUhUTEqJ0cd5TBsAJValygvUTULU7YYlSieBUgDV1lTVFVmx-UXsN5JpLlnZblBZhKxVbFZpzGA8DFWUHVCgcglcmqRS8iIJigKxNqA8i62+lQ8xRkwwOqyRhIFgVVyyzG-h3QOZ3FNp4BbQO8l1fwdim1oWAK9VU1QC5pjFN1mZSKXVH1EgX11J8VSlaQA8VpZgV64igQS1sI4AK1QJsg61L1hK21Ywu1wUCxggAAkNjTMh2ilYVnCMmiiJAH2FhYOLKavGpr4J9BdDsQFQYLpdjPUeGV9FzL9KZZEFmvkZUnTTTEuYSgCiXPmn9Syn4e+qTeTQOJKJMvuRzb4sjOeZEJLU-NLVBAGA6UIvzQYdgTaguQrbTHDOnIOc5leozQ3KAvviWBTdpSqPmgCvFLZbbcZbhe2KLYsGRUZXlVoL2o7QCF7XZa7dWJ6L2kig0rFp8RVJJDAIhvadJNOSafdsoAnZWaAMLTmvCkikCkCOzrHXZjJZzkMNHWIPnUKDJUOqnV6HjQDKldwOlXrMKZqYqVvCbFQiSO1aUmLC7B0vUSTWreRS7ZrUaZ3ZqWXTKJUIfiXXwOPQyPad3fiqPXgdqdPlZWVYaaqQlQSe2a5UxeNZ-CvUkG4agk0ScsoAvR0kMLPTJUMv4qDSrbvf2TaqpdZcWeYNDNzMhWZZqZgN1evS5KcSHJ6O1dvZ9YmcDXvYTu6r-QDffanraPFe7nNfafvJYlojIAITdXAwmhiZ8V0G3LnGWaeekkDZaSmToAVbRcXNRv9T+fCtWVFSXG5VnY3LQ1dF5dgbNVSbSAtTDYOBACtaMLwOaGuXrWWXHIg1A3rV4PgznO8W6Gw8reAdNdI-ylw8STw9DdYPw-DZgIeWo2AMYLAGYHSBVvlDuYdaALI+3Po4SuI-HN2ZNPvaozasg1UECjXHIbnEoy494FaZNNg3rVg82YTZGnhKWGTeML7PtTIdAF4w4+A2Q+SXcpRkYVVtAGnQwyiWWWapIeEZ3pSN+fEyOqEb6Sw6AsghAopN+b+QWu0fZVQoNrrfysfR4dUl4b4qU1gi6TKTU4E14O3P04YBsUUWfWNoExvWpPQkiQNJI0ToJm48oL4Gg5MxTEREzC4LYwCmg3vioqs9Mxs2nffkitJbCbY8Ew2mU32kUpgKSkU8CDAEdFnHquDHlOTEsFetZpalyoWUCK5BE3xNSHMQsXeNBWVUC6yiCz7avLen-QGd+QPjlUA21bVVvmw4+ZPmpcU8A05biCNd9SmVI5cxwBwz-vczdc49gdY4Q2wyEb42kCo-S6noM7mU40S0ywy+E8Y4C9E1Cx+rIbY6Fiy2444z4wTdqF1EMzg9ybynXVKK-SMX4gRDC5qe9egBi6JFi+aHcbAA8U8QJI1ENfGWAyK5A-5fCk0v4BTDfnhP0Lq48XtInUlDzV+fa-q0c52rmcoB65EEirqG6465oKSxyyK4K5EN6+7la1JPskOgG8xCbWBvCt3JgNazG2q++RBjyfC-iZRkIKIOIGtQoCoCSH+aVQGZTPm4jbDaCfbUlEimsTTD6wCuldJDkHyvW-wM7TLecb7ULWW3ycIb2IPd29C+257eGJeOBMOxraHLW5-M26-YHUPbOyEGO8MQXZ-au32+lYhpu729c1bZlagNlYA0KSW9u6-UFGVsezUaez20cx2+zMqYKfe6W+lQKUi2e3O2kI+zree-O-2ziX+2zXtB-Zze7XW4sI3f+0lAu+C9B9+76-pLGGB4rYh56+lbZP1n1m25B8MXYLhwBzuwRzB0h8McC67KRxhwqxR3bVu9c4ZjMfuk88gC802syFIEzjZmpW1lKHYIjUq0sCQ4k7Jb6ZknYR+YB88Ia-ixA6E3lKOWgHEGTVGIEEsGTYofx7aEfOGEIDnhQ9KjwNAOp1vpKqAHUBCFK9thcJUckdlaMyKFZzOgg-UvsgNQ4KCFNmrggxxWrqc8UH6VkAIMp7LUs8Zxp4QmUXCCFy0Ifg0tjW8EMcyB52FHhmp2TaOim9SIoKsBkwRjTeF1vm8kCFGx0LlxCK5oYKVzl4EN6+1abSIC5hbQM1pzIDp5DM8ECAZ1aul6Z5ahZ8rRUVUfZ+080UMwPCMYjeA7SBdS5za23ANCl15+7s1x6jFwGHUkCi50p7ILLQlaFnzMl+YKl4liV1l2V4EIovN+58d15-V4SklaFhN618ILmZDRdX5zFdfpUMxvt7eYOW8IEKfN8Yxs0-yr1-0xG7xekb9mGOpECAPEDyl69yDn90lHUFvT+MYBVh16oOtz+VCLejmtgh16dlvJyhyz-gADpE3GDzRrDPBLDrKU+hY0+Scl5LDp3aujHaBIoADk+AkYaA5QlQ7w9PxgfP1QqjNP56LPcvXgNPTSTw-HjgIUxkQwK84n8vBQbPVDydmv2vNquvkQGdWQhvCBxv3g9b9kGmuoBv5v3glvJvBeDv9+TvVvzSxk9gqv9kEFzYK8th2vMvrvlPNPUXMA3EQgZmW8DSIfn8iveUkf4weqmqVQKfmAcstYDvlvdPkADPygJeydEfunt+gfQfEx4vzwyv3vLYjYxfHXAXfv2Q6fmfpIoAdu9SOaZfCvqLAjz8LfdSuo9fUf3f9Llvw-ovC6HoE-AXUvrvOfP48UuoLfnsmDpmfALfo-4BwfcfY-rAleggj8dIsts2AIfPTESwfPQwfPujV-oAfP8AyAd-9-gQd-fPtg8Ib-eqIUIwfPthCfekJPkVEP6JJr2IPJYCMAjB6dmee-STvFHP7GAlglmCAVAMEDP9s+zGIAS30upH8wB8mWAR2iAFZwYAywSAdcm9Zb9fGO-Xfi4xp6lJiB6rLePAIYFv81AkAUoMyDf6ERUQWUTVG-wWL8CwwtIP-nPzoGakcecOU-nyD54SDWBpgYKMxDf7xAEAkNNAG-wSC0xWB8QQ-moP-5hsaBYgzqpgCQChhmIUg-oHz3DAmD4gb-RdG-ykAiDpeRNIAXSBMLjAGBpA1ARGwoYs8F+tCaQa4N6yWYGByAsgUIHQEct3en8LAan3EbWD42KeUPpgJL4b9YhDAs8nPzl7UCaB0jAAQFCIEoJPB5AmAYb0t5K8vs9gfCAchTqFCUB1yEoU4IKBThFWHguoUIESGlD0iwkeEJUNabn0z+IQtoWgI6ENoohvjVoWEMKS5D9BK+FIRf1AHpQih0AjsD31No5CLeuLBYN0N6G2s-CLgnrJuAmFeCvQbveoOsKcFNIXBVoJ6N4IMGbCdYAQ64YtAiHz9khHXKSLUMmHesRhTLMYQUCAESClhzwE4b4LOHnC9aeQs0ACIcC2AgRtw14QmjyjbDykuwuIoCKGENDphTQn8Iq3RGTCfhWQroRUJRHVD4BEg0IagJeFG8ZhXgPEagIJGnD5eQA+YcfyyoZQhhFAkEQYEt51Bca4ItIH4NxDIiqhewlIdgIkEZCqBYI-kdv2cEpDeuYXEzpiPl7j9jOJfaPkZxM6ZDzhlvXSnUS3hXDkuwZSgb8Ir559jASzbNMzBn5cjOhknIQMyG1EyjQA2Q50R2huJE0d2G7WGDpVQq8ZbM5dEUEGi5odUmCFlXUj1V3ZWgHKtsSTrJySbWlKWtIkloyzsYucKWvFBtAPHZwMB2cgmUpHECeqaJZssQOkoJUZI7pPSwCQTEFSZIVilQIlKsWj0-iRVsmPnOXlD38reBsxzAPMeb1rHVghK7SJzg70LHLI6WboljPBhpHc0fw3FOrjOPM7NjvAj3H0rgwaCsBiE-QqGB1C3F7ieEY0HcsF126xcp8QXJPqdhlQU9Jxow1gEAIVHwC7B1-NgRwPgBf8f+tgsYPwPkBUjIgNPPnmgG0EFw3+r-a-k+Pv5lhhBtolnpZ0XE2oAADGK3vySsw2KEn-GhIKDkIgAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARjoCYAoKOJVURNAfTQBTADbg+ggG4BDYZClJoAcwAUaeDngBKUAG9WoA6EyD4kTNB79okHACNBmVeq0GAPq-2Gvh3gPiZEJScNbVB3T28vX1tkZGFBKWhgl3DI719rYWFk0LcPNKj+GAATQXBAwWKcgG5WAF92GAQUC194KUVFSr5hXnhkgBpQeAALQT52xW09L2NTc0s+AAcpREc1ENAAMi3QMakqjZcAXlPhsYmO2oaOZu4MqRxBHN0IoxMzVv5JruKevsGoAARNBHoIgZpro1OC1QGgAJ52OJ8ZBiUFPF4zQxzT57BJVdqIbJHTSQ+rQu5fPhSNBoRCKaBPaD9EmvbEfBZtDq-f5qQFAml0hlM+AQqG3LgWQX0xmCZkCRExYnOaYRHELfYE1bZTXKQnKkKksk3JqS0DS4Vy+B8aSyZ6srHveYWXX6vXanKk8Wm2G+WCoNSJa2lWDCKSYeQtTFqjlUn7dXp8o5DIH+9DteUhsMRyVi8kS2FpwOZwSh8OR1AKpEGlyO9Uu-HuonKV0eklG70w7hFjPB0vZivQG0ySD2lVsgz1vEHJvZN3t40Us2+aQBKS2eJ8LPlyXR9nOxbxv6JlnOFOrxDrzfbnMtPMmrsWC9X8Y3wdVpV7yex6da5ut5sF0XAtuGfDdX37HcWmHO0vydXEALnNsVS9fMfXufgwzsYopHEAAPJZjFpKMHRjA8uU6BMAWTYEsNsHD8MIwRiNQe8l1hOiGJWCMnngBw0DgqccCkJZVEVZFUT4dFBCGRDPWA9CLE43CYmKeFBJ-OT5xQhTH0Wes-HkQQRQ08jvm5KikzPYEDMDPiRTYkCLAMwQCKIulUFMhDG20w1O0pRY02KRBJRkRj3JI8c6x-CieRPQE3gKLxU1QYLQuEcLmI86BHMU0AgvC5ZjEOKKyNxE8+GMcBAQYXSAoK1zCL4IsvIWCqqsBZg6rNBq3OpYRT02aKD3aspAQAZm631+CEABHUc4DHIays5czKOPajrKBOaFtgcEpu4YSAGtxh2uU9uSNBVX3cqAW2wR5vO8EhiOK7-LNM7FsM+yrQEh1DBWhsZ18rQDoscpMDUb7jKtS7ru-A9dVesH3ihuyYeZP7nCuid4IWEG3rQvTfGMpZ4HhAQHt2pb4Bx4bcQySAsjh97pp6GlrXRkzkdxqdGeZgnUIfALomEZBYCOuC8bjCyNqsjQUw3cWjtyvTjvGJWJdapS7s1lWXpVVnuD1vhVPU0jZk0nzkL8omRf4ESll6WBB21w9Zd5Qb4BTR3ncHVWAqczKWKSC2Ee84GbdBo2pUwRQseWm6NWt5sQY7O2zWgZBqTjgTkCWOnAcWTJsnzwnhbNCGofDFQy-h6Xf2UOuY9R60a7zgv66nN1m-JVgQAgRSMHAbA8CIMhKGoegmHG9iMImTBR2UPD64bvDQFOY5hkXwQW-VvgnOUbiwT4yGhjNoY5QkVep3ilKcCWZASgPxSgQGRKkoMY-eP48-kDUy+0Br4tz9LgR+z9D7gBvjFNacUATgBTP6B+T9oB-CcgHSuilljlh-pDZQUDcYN1GtVBBoBaotyDmbfB0CRp9EqmNUhXUKFYKvmsVAJkCGOiIXQjqpDJp7ykCdehzoYJLzTHxZkNDbp8iBAZW0o4375VQBIrQID+ByJHM8eRggpGrUuOtT2yhtEpg0XaDBsJTGjmaso2G2jdFAz-NkOxKNzpizpEocQQC2GymZMoK+9jhgen8RQtYUMR5gj8UAgJupgkZ1hK45AQhTbqXCU8QB19dBeDeFOFYax8E8RkqAWJDQeznHGKTcmniJDeJFBvUAJdahOVAPvVJ9pxLCDQEMbRhdLYHlyesdpnTQDdJRq0j8cQBKtOmFk3pEcqhTIoQU0RzF8lgmmQDWZ+MPQLLidwVyEi-isOwD4lkgyukyCGbYGk5SomENvnKRQowxLVhxpvUA8QlBPNtFdD+3gAD8oB+nKBaQU55SohnfM0Ofa5VTNC-K8AALneQ8p5CIXnaAADzIs+SMIxFy4Wf0MAChw2BHBAgACqxGaYkeE5o442F+nCSASwnaIEqEioEoAADUoB4WEoMGoAIShEDgHNoM7QPLFGcp5Xy-lgrAiKBFepSFBL+VIpJcgMllLkAQEEAAdzpYoBlmMmUst6Oy4E3LeX8qSvK4VoqwUTIlcCFMVrZWErtYqh1KqW5i2QEdZl4yMraMdcIdJq8mlXx6LEUS-jCFeCaWgF2ocznDPxfGtIfMrBM2JOK91BRiVAOjfnZQ+bCUJPcYoKpNTYb+NVTaxFcJ2kbzOEjPNDa0gAt1JCstBQkVJsSLOUNV0hhuh9fChoBQRWgEiRIFtW9RjlIfpUo57CrSrwKBqgZ1YUwAFVoAxBKPUsEeYCh1CKR0wQGbIilNaXUqu1pWmzrJPyqcA6khjLReC1ZTwoW9s-mM7pP6dEvrSJOww4Hw4LCjX62NUSW4WiHF+5EIbkNhrTehuNXDI1Ftg8+69g89LvuHecjpG7M0wKkjm4d9abWFokMW0S-7vAVoVdW45Jk63Mf7c2t5bb0XMYMACoQ1pu0XNI7Rht-bk1DrQyOwJzZx1nutWkads751lPEMuimq6TnkciFu0Ne6D0oOKMep4oAAC0lnzTEUtMyU9YGL1CAI14W9BT72hMfaC2Jr6fzEc-YM4Df6O1JUA5oyZBTUJnreJBhuMGY3PqhP3MATlh6jwICQcgVBaCMDoDQOeVJCKIBwCFRAEhxiQJgF3SjR5DEcBTMV0rSAKvmO4E1srFW+Aladhjdou4OA1cRinbIg3FylI6y1yrQ86nxV+XfTUijDCahtSFyId99RLYMPqVb780h336VtwFqxMC7fm3dE8R2Txnf23dfmwhFH3c-mt7wd9gpoCdlIeEij3ufdpUlF7Xg75bq21u-lgPDB32EqMaktg0Bv2hyMWHGACgQ4MHfLlR3DDLyGPCbQxwAB8oB148v+2j95d1LNY4MDj0AeON5E-XjZsne31t3QAFTU5nXhXH+PGegHZ3Tgw5O77AC57T+nhPiegDACz87MiACk4ued0759LhXQvQAi7upvLHEu1frzeXj1nr27oAEJTh65V5L-nFut7G-l-0IEGLle84Z9LrFBgHe3ZkRi441P9fu-Xn7r32uZEE9d6roPoAieh5N0Du6BP-dDG8IHqX68k9x8d8oIEZuufS68FLgwZvDAr1+WSCbARmvlem4+INGBjjwuEqJTUQxJs15fo+QmleSuddr5SFEtgABWpZaYbybyJfBMB3cHar33xRckxvk+8O3rraWK8BngICufU3rHpiDA3infI74lDKBUYoijT-lGgJUZfoWkp30INAa-IVvsp6fy-8md-78+6d4jvgpAhAW2-+gB3+P+puMi-+AAokdtAWAeAZDndAAHJSBIFc4oFIGSYIFpAb7pjb696749hBj17j4FDN74Lu66hQJt474d5EGYy4FqD4HV5db0HWjdKkFpDkHgCUEjbUJQrMF9577Fi0xkhNK+wUyr794DYwBDA1wngBISHdZDin6YDCDwhsZD5SDSBJoBBkylqhZSHdYPzxAiiuyDbx78ryF9CQjeC7IWAiaBq6YmQBL7JyiHJeIcawz-qOzuFHy0Fr5YJyZDCCYr4BHjBsH17wGGC+GoL+EEEd5BzIDD6j5DKhFeBGGREjKWGfyLpaZkw6aeFrqSJQjxBb55GKBixXIZTOFWh1KOFLDsbFH9BkgpaEaUjpa4CZYTw5b0DjR0CzxNK+CPC2CYiRDZK1YezxQ0QChmqIAuy5jaA7AqZJQPAYhByNQRSeTtjbC7DupoYohogRIbFuRZSRSGgaYCh2BAgIZ2DNQjDIDzErJhxQaxzxw1D2HmigjqEABep0IgYgkgI4kYQQLxDcs6L0kAsAe0lQQw4A2oauaAUJMJJUCsEACJCG3x8IfxUkESYJU4EJTK0JggsJ6JRIfO+xyJJJVQfqAajRBxqG7ShxuJGIJI4aORNq8J5JmJMg2J4wykwc2UUsE2OCJg-Es2IxXEopp8CcqibwpSZsEp2EKk-85shs8pm+oAtgHAdSiQvJfxygZsoGrxM6V8kJxJpJXJwgFJHqVJlQwKgi0hUY38YpZ8WpDWRSUSHJ-KVpKMepvx-xj0i0cMhCiaVMVol4WQ6kUg58+m4JZpRJKJcJCJ7u6RUghJ6RNOuExiZJwgXUDOmZhQwinwyyyg2ZmiWBP+wmdpVQ5ZdoyZRIXUhZhgSKoxCZSJFpxQDZeZ0RBQvptQXgcWTSeGD6neQwREj6MAPSFGZkVGzME5nePyHaAKo5HA-6SKeGn0SAMg6h+CXmY5zZXguoC5HAV0vZBQboJ5U50WEGGpeBp5dS5B-pfJBsGghMmyVIJcU+6A2g7q9G7uV+5+7qG5iWVB15o62y15fpWJOJYE14kEt42xpUbmmpaGdScFEEZYiFSG7SHxKFeBEgOpW8z5BpGFW4CF74qGKEA5ScFghJHZSZuZauvahFMAEJ6ReK6GVp+ZUuXC4BiGQapZaGpG4aNF2Bb6NZyggFN+XZuZTC6RdQ3phK-ZnxJFERm+xBb4u4YJpSaFW88KkRWl0EaGeFhgpSrFFgxFMFzwhlFFkoQl1FExB49FNZ3ZzFDaFl7F4BnF3ZPFROfFP+AlDJmiRmGGolh5ElnZUlqCZ+MlvlxpoWil6RKlFcsIal1IdmJywpqFvGtmQoJyQaplBg5lRFXx+pzwiGIoDltsH5ppQC5pjFvpBZBQnlZpZaPlclauOgDaA87ODA7OgmpScQfw2is2sQdJgljJO6npwCgmQVTJU1SoIlM1CVNqkVKJPlh5SUygXV3gvVzAA12BHa811YQl7SSlR1l1Bgw1yyIRV191aQvmD1SUU43FO1Ylz1BgdQq1Z6F1hgKVhWZVAZe+aULQYUmxZxSFQ04x+FTBSwpValygvUTUTEqJ0cd5TBsACN1lSNqUhULU7YH1pSUg2N5VuNqChUMgXsN5JpLlnZblzVn88NbFbVoWA8DFWUSizIgQcglcmqRS8iIJigKxNqA8i62+lQ8xRkwwOqyRhIFgqNyyzG-h3QOZ3FNp4BbQO8KtI1FZItoWAKWNLN9ViZ1J8VmZSKJNxtEgDVZtnVf1e1qW2oZgV64iPNg4EA-NQJsgQt+thKYtYwEtwUCxggAAkKHTMh2gDYmsmiiJAH2FhYOLKavGpr4J9BdDsQFcVahdjPUeGV9FzL9EVd4FmvkZUunTTEuYSgCiXPmpbSyn4e+nHQnQOJKJMvuYXb4sjOeZEE3U-C3VBAGA6UIhXQYZ9ZEAuZ3bTHDOnIOc5lelnQ3KAvviWIndpSqPmgCvFLZWvcZbhe2HXYsGRUZVDVoL2lvQCMfXZXvdWJ6L2kig0rFp8RVJJDAIhvadJNOSafdsoJ-ZWaADXTmvCkikCkCOzm-ZlZUJzkMC-WIBA-lfaW6H-V6BHQDKldwOlXrNlXgYqVvCbFQiSETZqWLC7B0vUbHf3eRbvUPUaUQ3gfAzKJUIfrA3wAwwyPaSQ-inQ0wdqdPlZWTbQ05biHTY1SmYTu6rw0kG4RTbUb4pwx0kMGwzJUMv4g7V4BzZaRiTap8V0G3LnGWaeekrbZo+SZknYbVT-VbT+fCtWVFSXG5cA43FY1dF5dgezVSbSFzQoLzbCOAPzaMLwOaGuUdWWXHPFYzVdboznO8W6M4z3eAazePY7abZ427dYB7X45gFtf7WAMYLAGYHSBVvlDuTLaAFE+3Nk5-KE-HN2ZNBE0k73ZJUCjXHIbnPE0k1aZNGo0derd032RiZ8a5KWPHeML7FLTIdAK0zU6bSY9aXcpRkYVVtAP-bYxtUoYs4pN+VMyOqEb6Y46AsghAps4Nn7UJu0fZVQoNmPfytIx4dUl4b4rs1gi6TKd+e0+3H0-9SwkUVlWNt04aaqfQkiQNOE1LoJho1UL4JYs8GbEC0zC4NkwCtC3viogC2pHCwNP-ffkitJbCdk7072ns32kUpgKSls8CDAEdFnHquDHlOTEsFetZpalyoWUCEM-k3xNSHMQsXeNBeVVy6yjy6favLeqTQGd+QPhDSHJ6Nw1vs44+ZPmpdszK0IwsCI3bU1eI1HRwK4z-uS+rfUwgeU-o843dQ0zNZ8-ftU0Mp0xrea4YOyyMwK37BM5a1dR8zM7Jba261HdqF1D60xdULyug1KNZdSHYH4gRCK5qUbegAq6JEq+aHcbAA8U8QJI1DTfGSbRCwzbxfCk0v4BTDfnhP0Cm48XtF-S9ZRl+WW2m1i52rmTtdxo3LWxW5oLq+PTm5U5EDte7oW1JPskOq28xLPWBvCt3JgEW4O7G++RBjyeK-iZRkIKIOIILQoCoCSH+UDXyZTCu97T46CRvUlEimsTTPWwA9uzidJDkHyie-wDva3ecWfdXZe+pSvQPdhTe8e0feGJeOBFQ4+8K1u+lVfdQ6HEe8S8MZldzBB0lACulZVbDJu9+8vaDagODacdK8h5-PB2G0FGVuhzUZh0Kdh2kHe+zMqYKU++e7h-ywKVKyR7B5EOR6PaRwWq+5TEGRnfnXtNDCKMnVi+R1g2xw25gyQ5LCJ42lC7GHx0h0x6J2G7ZP1n1l+5Bw7BG5J-8hxyMap2R4sGM0K+ByEMB2GwZ67JpwYOqqS5qvyPulS8gDS02syFIEzjZmpW1lKHYN7ZG0sEY56wzd1eY7Ra+z5+2+2a5YG58aOWgHEPHVGIEEsPHYoV57aEfOGEIDnt1dKjwNAIl1vpKqAHUBCD6xUVUeDT8yKD6x1cW23ANA4KCFNmrraFV2rri8UH6VkAILF23coAl0l4QmUXCN1y0Ifg0qHW8EMcyPV2FHhn197NvBTB0KsMswRqnbl-HZcf20t4EBCK5oYFt4oMt+9ROvPXtwYCMd59xBl0CFl1anN1apykVz3aV8keV-c80Z8wPBd7aCk2gMrc1-Uvsv1KfA1zXl1ZmTF7IG3XUkCgD5D3FwGD9Q2nzFN+YDN4lkCAd8t4ojV8D9N41x9fyklWzWAN9zILmS7cra1zFdfpUMxkj4V0-VEKj98Yxtc-ynN30723m+Ab9mGOpECAPIECD+TyDgz2BglVOMYBVpDPaMN4j1CLejmtgrL6dlvJyvaw2gADqA3GDzRrDPBLDrKa-8o6+1Ul5LAXs6faBIoADk+AkYaA5QlQ7w+vxgtvQbl1Ov56Jv5rOvTSTwXnjgIUxkQwK8Zjvv3gZvwXP94fkfn80fkQgDWQ8f9+if3gJ79kGmuocfqfBg6fSfBeef2vsqSKgf9gwf9kEFzYK8thmv3vxfz1Ovg3MAV3LvW8DSjfaQ-veUbffAeqmqVQA-mAcstYkf6fevkABvygJeP9rf6Xt+df9fExbvzw5fDgLYjY8-sv7X1f2Qw-o-pIoAdu9SOaS-Xg6ft6pm-fg-dSuo2-Qg7Xnv496fD-7fCm2Qb-T-qfE-P48UuoB-T2AIT8bPwD+5-BAg3y75XUdeleQQI-DpDQ8t48UW3kxCWC28hgtvTJugNAC294AyAbATgMCDYDbetgeEMQL1QhQRgtvWwj3z0h99UBiSAjqzyWAjAIwGXY3k31VY6w+QKA4wEsEswsC2BggAgeP2Yx98D+KteAUwPkycDDCC-KSCgmWCsDrkO1cAZwJ95QCjqMAzUlnCnKzYAQtvXQdAGIFqBIApQZkMQMIiogsomqYgQsTsFhhaQ1Az3toIIoOA4c+gngTL1sAmDTAwUZiMQPiAIAXaaAYgQkFpgmD4gcA0ITQO7aN9XBTBcMEgFDDMRPB-QW3kkPmLxBiBi6YgVIGcHQDAaffOkCYXGBGClBQg3toFySa-9aEPAkob1ksxGCBBygoQCIJf5iD5BEgzISkJkE1DOhsvG-iP1-ooIzyz-BppAM0HYFaBAUPvuUMEEqCOBJvdPgHy+z2B8IByEYTAAqHXIlhhQgoFOB07zDWhhSUQeAWEjwh1htzZQMgOaELC2hKeULAX0+rHChBjw6YXEJXzyCGBCAsGhlHuHPAjQ5-dPhoKmEdpahuIC4VcJLZ+FihPWTcK8MWFqDCUkwsET-hmFmhihVoJ6FUPiFcCj86QoQFN0WjtD4+zwpmvIMRHsD3hHQuQYMO8E7D2ByI+6qiLRFPCih8ghkQCNxFkiJueUKEeUhhFxEuRJwvYV73HY-gdOIot4byPOFrDBRmw5Ad4JaFCDSRNqckQ9WlHXIaR4BDUfdXoF8DGB6URkYCI7AX9Ys4dNkeaNqoCiNhsIroYPyMTuCxhD1VkVaPVEcjBhc3XrutzH4-83gX-OpHN3GFQDL+qFOolvCxHEiLozI2QeyFX69ds0zML-l6FlHBciR8AEMWiLdHujCUNxQGulSU5GQYOicMypqUwBis+SygFyMR2o6S8fw6rWZnawOE6tEmDaDqgaylwQth64waFpxWAF+se6ANVgMQhuE8Ixoo4yceOOqg7kuuUPEblPk65t9TsMqDXrmI9F99vRyA3IRgNMHmD4A5AygTkLGB2D5AaoyIDr1t5oAohBcYgUQIwE7icBZYJwamM17FdPhoWAAAztMf8-rbtn+N-F35yEQAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAGxgZygfTsT4CGaaMA5mAKYAmAFGPgLbloCUiA3gFCLeIBO5UELyTpMYEMmS0GTZlx4KA-InGT5C7gC5EAB3wxe1AEQAqAkVIVKJowBoU6LDjx0LZKtSj6pdRi2bMANwAkAocAL4cAPRRiKCQsAhocbxw9IgAygCSAMIACogAUhmIACwAdACM5QBMHPHQ8CJomGjkyLjkAG74yCD4sGAk1Bj0UKycCvyCwoii4vQARuSGo+PcAD4b6ho8ohi8MEMjUGOsiFs7u3Mti3BwyOT4YCdnF9vXCvMSUmvnmx9PtxROBKORgEcPH9AhF6uBGggbpgvCQSFRMKgMK8oPYoAALcjI-AkCY7aZCZqYPQGbGsABkdMQBPwND+iAAvJzEPjCSiYZEGolKb5yLT2GSBBSkSi0ZQMY5sfYjCKjEFYYKmog0ABPJYPbC4EViyY8cmzZk0LwwX6ncZqgXwoVIwjEMiMMBQY3qM2UmXozGetZKl2Wd1QVX8uEJTUht3kD2tXV3G1vE18SXmp6W7zUC2eHN-AL2qMIpCxsBhzA9Pqitlpn1MrP563NlN24saxGiCBJLwJsEQZD4XgDJpe00Z33E2XyrFBxBGHtgDDPLADocjoUR9WOzVLlf98iD4ejhCJvVt0kTmZIPNWqR3gu2osd3eI-d9tdHjensBV3ogLWz7iteUqPi2960gEkadpSPSHPgiyPJg64nkK47cA2oh+nKAaKgu8EwIhyGoZuTTbg60aIoRxGEqRv7nsmGHpjejYsq2uZNpBhbQTuVFIDRSF0d+aFNP+NbMQ24FSNxz68ZRpZIkOSyUPgmDkAAHjo-AWAgkmTtK07+gq85GMpiyqepWk6cQCAUSWTrmZZegjowUArGg+msfQ+A6CMSb6s4Ir2NJUGvvxKAMBZal3JQ2peWBXE5rJZzyQ5mqiD6rReO5YYJbM2FGbhJm2kqWUrrl8bhuFilZZp2lMLZLx1t6BmhYWMFvpSS6UDAQq9FZDW6c1wH1gZhWosZc6lYgVxAtwi4IL1-XIINNnkTVTo9WtVL8Kyo2taxAaYPwwD4ZUm17ktO37vlSDHad+E1Jd77XfVvCYL0gYHaBswPeC+EAMwvZSbQAI6AZAQGpodUoTTOeGmeDkMQOQ9mwYgPkANaEsj8ao9iLAgZhBl4UYeNQ3YWq2iwnURRTqPZQM5Bhp5dY8LDmbsSldp04pEK8BgTOVR6hNXiTrF5mstN8bVTBYBVLNVWzNPiyxUo8zLClOqILM6FA2qtOQEP49DUBE2NrHfJIYt8zrLRDkLit5dLatYS0qgyU+Yz+HbGW3MgcAQFjzHqwVLQ4bO31jEqSFB1j6NdZj+A45gcfB3dDhYkY6cJ-Y0Ky06udp3AcWh1JSUth1hf+59Og6KgEC-pn8NTdHOILr5DcwE3W4g3EXVrY1Y4tb9t6V5e-fDiQKsw2PbHZhB3vtn7iJgHAn28DP1BwDoFuc8KPw73v-cC0L0-H-v895rvWvpYiOlYNPnm327BmQa-kbRLEsHJMAqTpGyPkIoJQKjVEBvfX0vBALUA0mrMOSANIci5FAaB5BV5IGxoSWC1AXIyHcoLewsVtT2HjF0eBDYyY9noDoOAoJMCwTsHNeaeC3IeSIaXEhiAyH927GkWh9CcHAAoeNCORUo7UGAEqahAiwBykYafQerCBAeUkSIo6jgToAykYgC6GCB78RLmXYRxMJZSn+mdHRz19GwXUmALoBgEB5RMWmBBWcsCPR0cDfRWCtE3nEjApc7kPTqPMQqIwWVqyASpkEqqvCWiRIAqKKJ5BQnhyJJNYqWIUllUnAEtG-dEk1kwLE0WKS0nj25jmcp-d8aB2IEMOxDjUgViqtQHhpi3GQR4TYgwQt-4yHafYipC8hnkP0XUuAbQ07xQGYwUhwz2BhCmAZakhg5nkAWeM2EH5uQEnUjQg2TTHGtI9ByFQPwYQY18Rs-yF40D2BSVfeeay7nJgeYgJ5p9XK4wCsgTyGyJjLOvk2QFNifn5IBT8oFHMVmsUgmCmuiJNLBLlGQk5Ls-kfOrB8xYhBCQdNcZQ+MJB8RvIeETTk7IUAkrJTiuQ81EDKFeTcn55L-mPN6CwIh+KmkMvmtoR4QwyU6nuawAAPDS4VeJqD0uYbsZQKxUiGCMAAFXuMnMA2pEDTxAKzLUIB66oCoNoIwiAADUs1GXzQOEcEgMBgDxVFe81glqqZmstfK611NDhDAdfFel-LGXaCVXAFV6q4BxHIAAdx1VvPVysDVGpgCahcFqrXeuuLav1jr2VEzdUqdNXrrXZvtbmwN+jA5wCxoaxi+oUnsq2fAjGZCMT3D8oS+VGM0BN2alizl-z4GfHdmII+zqKVBszdwRV9i2272oMW71kyGkkGOS0vKPDJ1Tu0OO5AyDqVSyxVuqdTLRlypPRoHdvaOK7u5dyapXLeKfEiJ8B1iAxn7r2QSw5ht0XrriZ0z4obVh-KVAAVTAHcUEKgZDbmfdw-55BAPXF2Rs85Z8sC3J6YutxPbniSIhbegjMhmC2Bw9ajZkLiOMCfdcF9PB6NmNmK2qtHbhn6PLHW1aDbd0DqbZ0lts7WNjKHTwbt17b0DuefNEdns83HvmjOroc6-LkeuMuu1a6nFtM3WprQWo-mfsPWKvTPBlBtCwHmHFA6FPBq1Ne7iR7cQPsHWqeD8q30fqpV+g5+tf32IxQB1xQHeDKsbQuCDUG5EwcYIgAAtHFnVbhTnVRhPB9obRkO7FQz89DfTMNsuw9ahseGXiUaI4CsjF7riUaedR1Jbm6M7EY24lj7aRNfxiAY0sf8AGZFyAUYoZQqjlFKJApE2kYD0D6jALo2CuqSPAG-K2YjMkSPiEqSb03YBzcThFLbM25uYCmw3JWHpm7xGW4lKpLZLvFl2Qdnb83+LJGpXhZhZMLRUx4Bab1pGPvhPvN97g94-tVd2GTNZwPdD6F4GDgH2cAzQ4DPD64ZNrbICphj+a-20fhN6mgBu+BtRUwJ0T7VQJccQ-CcB4HwHrVU40GTHy+JPqLDQHYFneI2fJE+IzhQZNzXQ54LA+w2pWDsgAHyICQZain-OeBkzi8L7govEDi45NLpBiX5fg6Z+Emw9hdhq411LmXiATDq+4Ar7gZMogq-fRpMXEuteIFiLrhHnojAAFIHcm5d+b73VvEA2-ccYKlwv-ea-N958XeuBfhIAISckj079XAekHJ+pXHz3xhxV+7T6b13kruA57x9ncV7IVdR7N0gyvpfQ9k0lwX530ekHS4b-HxX4TJdV6NwoGvrve+d9z0YRPDvzcKDN9wRPPA4HMLVA9w423ZvPdLFx178qfJ+QtPYR7q+GFdRlkvqbh219CmwIsAAVkec2HIt++UW0gM3kPl9n6pqFO7oeND76O7-RfvYugb+T2JSvYq4r2YeZMoI4IkIlAVM0BEIVg3+1W5eXuWQYAiBfUJORu6BmBBsyBKB+u2cXOmAeQWQwOJBZBBBhB3exBAw3OAAotDiQQwdQTQWHkYAAHL4CcEO7cGcG2bsHW4wgn4r5HYfirgb736fDb6SLR55jCJ77AEH4SEejH6AG-6EiqFYBPLSHXCyHADyETxqKkZAGn4gHaEywYxdzICGyaGH78RP72DTwBgjI2GGxHAuBgi8C2GaZX74A9A9qHD6wLonr2EnaPBhgXZLZd6MouGOBBAaBIpIAWa1p-raaiwjIorxhooBb-qix6Zdw5G4LKF-6DySYZqEH2HaEb5sE8BFFyIlHmEH62JwDX634fKma7DVFgEJhfKxFAg8i+ZHLpEpbFiPBQA+YkCBx4qrSjFhjnKpE6BaYpbUBqjfzdZCi9ZpD9bAJDYVCAzlAQIYyiBRTGi7ASgrYZIIwlQxydzJq9wbSIAMiVGvoeyDK2LvTDx6SFjPGMiLq7oGhiAfGDxfHDRQSfpGBRRGAcZLAlJ4hwA9xMDlwGTPy0gcZ0C2EABeuM7QnQUSo4xwo888Yy+cIAEAqMVA9gwA3gAeaA5JlJ+0dxNJ1oU8mJ2oOJwJjAKJrEpJBqFJ5AVJcQtJmuAJDJgpNAVaNayxgJPGfyQJRofwTaAxFGtJGJvQHJhITkakYJTUocD2J4bCgs5y2pVIhpKigs6JOwuyxCJpUUlkxCVpCgNp8Q5yzwGpOJ1AxCjWTGSAfJ9JApQpLJyALuYpgZNANyC2yiBCuKG23CwyKpjKwZbJHpuJJsUMYsAmScFMsAvQth1A+ARComvp76ZCZJ4Z1JIpZuXR3A+AfJNZIuakOSwp1oz0opQhSIRSMCTZSSghU65m4pHgPZNYlZrZfZma2giw-pg5lAo5yAz0iZqprJaWDGOwGMwmGGDh9gj8Dh0mGgsmR8O58QLAemygm58Qemgq7WOZREkgsy+WW5DZ1weYR54A-gi51qkEr5y4tG3ALWqGb55ysh7p2Jmy1MPsPpbiGOT+RMi6Sm0eCBsBi6V586Chb5phCK6FKZoF-4CEQkKEIkZEPxP0PAuyu65ygkJEhFDEu6TppFgBXQrp1KIFmpsqw4RE+F9EF+PGckK5JZ05FZLZIZ0eamjF4ApJDZbFyAc5bZZuwW1WnGspSS4W1YTafFhBJWM51AiFVgMlkFU64QH5nwyZ6pOFNRXFI8JF3AZFhm1K8q5l1FF+tFBczpDFTFOq7JnpDlx4RFf4PFqU6lDYAljJc5Aeol8QElKBUlel0e8lF6il8pcpF4fG8Z2yQhml4Z2lciMBulQl1iDZhlDZJlyRHlqZn0yWLsVliANlF4bpFVVUXGdF1lbl4Abpnloo5YlY-lvMlxUowVEpoV7Z1wYlLwZZ5G0VeVAebAmaXWJglQJgXRuyDwcoKSJp9w0pXG+S4WRWJ6CVF4W1vGnyvQalXRGVjJ0VT51qaxsVGgs1NQC1HZ1qe1yYB1oGl1j180y1+S9g71H1QG7Gv13qDYwZNQax6lf1iA4Q+lz6RlQl2FmpoBciM2CAA0upllqYFxrly4kxOg7lLFXlb01ku0UIvF1pgBEAeN7V1A2070iNs8PVWNGAOqlNqZ1NhN2kn0yA7cv5bi-VQZVZkui6uN4lY1J6XWAZqMRA1VCAgw-QTowAYa3CBJgwJArx1qXWPIQBVAPczM3IkabRVoSADUK1SSpmJR6IzZINoZhB2EaC5tJtNYrAT5ygFNIt9i5ZIVk1T52g+AEVZZ-JntVtsNPAXWwZQgSGQSRwctmoCtcO3QAEhJqtpmGtBIWtvUvc5AwQoQsKU6xV2smopW2AIAX4Plv49N8Cnm+wxsKMZsAQWW0t2N4Fd+1KDMuMOUZ25sTV+5oiwxhsrdYsOGygnsOGPt9cxRhddCJdP4WxkiD5zsbSrsdRnwE9xdBFpdM9vi-dgNjKO589ahYsRY6l4QCGmWcVUFLQ3l096N4wg9Yel9okZ4zlckI9SIlFwk691945ZmYeb9a9V9j9fyUEam2gnsR9JV+NhI5U7dlVc89FjdvALNoF1AdU1k3xI0AVvVswfNs5cNQ1QICDbtXQwdquqlk10eEtEp1AviXZySvQphQdpmed42aIT8W8nkvtb5WyHtA1uD01SRcKcMHsR8HDP58qA5mVnsoV8q2geYIjLAkVNB4t4pUtkd4gv4cQit+I6AzN4A71BZW8MVUu29iALDm828kEcjS9NBotENuwSjApKjMtUd6jsdxjQIXW-AEAQgxAc21VeZetJjAgZjaAbjnw+jM8c5wMeDtjWaWlry08zhbDVjMT3AwZwMxDhBDD7BTDLaGkR4xdhINhOt6EcZz83D-NrJnSI69hQiS2YjAdlD7hu0zRZRjhpTSTGTqTtJ0jSIMidCciDhpYT+TtnwZ5g8jpl2oRS6GkqKKxeUNZti0Zqil2nTcaETCzoJeRGRnod2wdXpnCWi9JXNhj0uXRFDHgmUeSDaxChzEg6w29ygNDiNwSnoNzOkdzX93q2gOlVJ29WT3qyZPTwGThC44AWM680aSAGMBsOgSGCWaa5ql1Rgmk+T7kdc3cjxdk8NnJRTmL6D6wriqGiDrFnxqD4J1cjNkxcjQFj+EDiT28FLJJ-t5zODyZ0TSZft7tT5ILVt7LKBpjaJcjP1KT3ANjKT4THyaT1tIrCgKLXjaLuL0RYAqzQhZTDTFTyA6ToTGg-z1WJls0+diIEDn0Sw7SWk8Cuyrty4NLfkdLOqcJEACJSJnk9UPNQVzLM5g1clXaScqChsFAMz1NTrktxZ3dVxcmjriJIbpmZ5OYnzPAMjTYkbzrzACjMTLLKr3q11ZufrYgKKHEybIbPNCgLWAjswubAbnoVrMsJbplrFxJJZVdHQ6kytdqtIcFpVOFbQzb8dfQid7bQI2g8wgyfwHbxripz4XqQ7F9vRU9D9+L45ygxr99vlA7nw07uFHFVFH9xFZwY77Vm7tEf987a71wG7nVC9k7jKS7B7F7oso7g7vTS0yNmJQ85LV7imnbCNPUL7qNZLepD767Sk9pOp-7n9+7ZVppaNu7N9j7Vd6ZBMgHQIN7ZV-drdwsHd5dghG7ucp7ozX7nJuHSHuwG7UDzMMDsHn7xrZHIs3NU7zoprxH1wKHOFZxTHCg57Dxzc7HGgLHCNir6EPH+mwLpkEG4LcAkLBm522uiWEDe2ikUUvbZrOgXD6rrLIpfDwKJZEDynqbHrglOTScm5aADwxdY4RwOgxdbhSwSnLkbQxg01HqcwYAlnkxbqkNqoKrQx0xbRqNWzKWKrE1lbnNBCdAT2AeqlklAePzlAU8kgrQpnM9FnVnnSExWoiXTQEBoDwQa5ScRwoXA0wmyXHcubxI+gYAobldLnxdkJpXJA5Xqo9dCgdX5XYN8qx9GWSGZ9Cgin1YuCw49nRgjn6axX6aZq4Qnnpm3nMxfnzS2zGTXWvXvQDTRAZtpDwXX0KwYXq+U1T5JnfQWx5yrypD+3ZnSQ0NmaWEHoW3hX7WRgLXRwVMG3XNN34X4NjKhVYtsQS3e6Yd-AZt0X2ViBVApmF3kNzWOw+XN3q0wmemxXxD2b0u3X80ZOQ48URgXWUPwgy3tOYPdGkFDY-Ac2gstYGX53kYAF8XdnKw5yZqMrmaAAOuNvwBDAYKKDoDCvT9akz2W0gLPjoKemcawNoAAOQZCjhoAQhUDpis-8Ai+BAdlM-H1c8itM-XIszLCGB9Qsz2BwJLIq+7A8-zzQV68G-zRG8KoXKSBm8XoW+XpzC5RGZNim82-cB2+W9IKu9Tru-2+MA2da+5TOYthwKJH09K9e9-VM9pfgDU+UDnKgMR-XBq9JzU+YDRpho0Dp+8BZIEsG928s8gBs-UCz7QUx8DdUDQQq-5-V1F9++a+cTsRl8k+xdB9SBZ85911Z5W8hkK+G9k2N0K30Lt-nJ5hN9tCxe9+2N29j-S-UqQQz8T82-V8aJYh5jt9Rz0P9Nyjt+h-sHh+J+K8cBL7kC0LECHdvYKgi8NQ6Ai-2Ai+x23+IAi9QBwCP9P9HCP8i+LDaif-Rp9R4gi9EiyffbOX2Jqn9f2q0HQHiBHD2dOekfTBvdEv7X84sUAmAeQDf559TMqfdvubXAFbFTC8AsIqAPXjgAqQ0A-FGsV35T8IgB-Q-rshIHWsL+WIEXgwM-4YAQAYID0J-20g4BGoYaT-r3AEGOw0AgA3vkz12TE92cJpS-pILYGCBeoTAT-o8GgDh0RBd-J4ObDYGPAT+IgoAdq1d7iDACw4WAIOCYDSDmBxgnuI8E-48hP++AUQYfwxip9iANCZCAwLIFoDrqmnagbzzDwi8XBp2OLAwJQHkC2gGAnwVOmwEZ99GJgx4HehSY+8WEoAnAQwN9hh8aBtAvfuNlT7uDUBFAuAVzzt7XJicywKyKiloD9MPB+KAoYf2HSolTWuQ0IWBUwEoEfI2oUodkUaJ4QWB-TEIWgPCGM99BPARoWgP7w0FEhH1VPtfymQQCqhsAw+goDt7K9MhJ6ZflKDaEdCZmxRZwREUJAjD8hVA71PvxWEoFgBikZwVVFNheCI+awv6JfzaDXcoYAwloZEOIGVC8hsAsYREMzSp9JBcw0UJXwSEZCTh1WM4U6F+ErBFg-w64WbyKFJwNhBKLYY0T+EfDUk+vQgdcAbBnEURTQr4TKwmGMoERZQ4ot0MkF9D8Uzw7nkMO4A4jRhtQkVlMP4B4CmgA0VEZQMBFu9msWdEEYsIQHJx2hiI8oVEOz6ypIRaQx6scJ5He9shoA4rtQGK41D0hCgBfucmK6T9aBdvMilVCO6gCHhwSAmIcJibV9ZeooUvi53L6xdDRqvPkXqPVEgjJRUo71DCXGzGsiOVVG0pwnOTFxHSLlOBkzUDhNx-kixXtEXTna+VPI3pdSrsnMCugrAEBY6M4BjGWAPAAYx9FGMAKLBiWnpSMXyOwZetBajKTMSLSRG5E5uqxVMRykQBJj3AlAD5DwgyYZs4adoz4LCA4AWJqA7YzsZokejti8yCXA7pl0WxU9y+cOT1HT0dFHCOAqfOUd0NsF392BnAqAL-3-42CCQAggYJSI0BM9-B2gveJ-w-5385xT-Y8EQEAFWiIak3WgQAAZkmhBBcm43vHVZHxnwPREAA

Metalinguistic Abstraction 4.3.3

const unassigneds = list_of_unassigned(locals);

const bfun = analyze(body);

return (env, succeed, fail) =>

bfun(extend_environment(locals, unassigneds, env),

succeed, fail);

}

Function applications

The execution function function for applications contains no new ideas except for the technical

complexity of managing the continuations. This complexity arises in analyze_application,

due to the need to keep track of the success and failure continuations as we evaluate the

operands. We use a function get_args to evaluate the list of operands, rather than a simple

map as in the ordinary evaluator.

Ifunction analyze_application(stmt) {

const ffun = analyze(function_expression(stmt));

const afuns = map(analyze, args(stmt));

return (env, succeed, fail) =>

ffun(env,

(fun, fail2) =>

get_args(afuns,

env,

(args, fail3) =>

execute_application(fun,

args, succeed, fail3),

fail2),

fail);

}

In get_args, notice how tailing down the list of afun, execution functions and pairing

up the resulting list of args is accomplished by calling each afun in the list with a success

continuation that recursively calls get_args. Each of these recursive calls to get_args has a

success continuation whose value is the pair of the newly obtained argument onto the list of

accumulated arguments:

Ifunction get_args(afuns, env, succeed, fail) {

return is_null(afuns)

? succeed(null, fail)

: head(afuns)(env,

// success continuation for this afun

(arg, fail2) =>

get_args(tail(afuns),

env,

// success continuation for

// recursive call to get_args

461 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwKZQPoEMBOyDOAFFqGPgDSKpgBul+IEEqqAJpcFjADYCUiAb0TCRAKBGIc6EDiQx8GMCG7dipfL3ESRAfkQMmLVoSUqOXPlu2IAXIgAWqLMZLgNhanSvWf1gPR++ozM+PiIEAiwSliwCIjAcDiIUPbyiK5g3r7ZiMR45jwATPwAvAB8WTlVaJi4BIRQFmpuvOSVVR3Wnm2dvb4BQYah4ZEw0bFICTjtfZ0DUhAy+DA0qOFYKslwKOjYePgzs1V5BAXcAMylFUc3EgbMbIQADlw4J5R1Gj23Pz6cPJdvr8Ov9uMUgbdQbwANyiAC+olI0HgSFQAA9UIsoKhsE8ntwYBAYijCKQPvt6MEjGd+AJvFIoDI5AonjgYABbGCwVYYJETUngTS+PT3IzEPHcACeGFZHK5KxxfJJZPS+1ah2yUJmdnkGAi7KecHArF54GRCAFYH4Mz0SoQGAARnBWJLLbxCBqJOjsWATZ4YDgEOzqFAPTc7WAZbgsMHsTgiKR1TdPhDehGMP7A2Bg2BQ4mk51CE6XRgpAxuFAzsVEOVEJ7rKLHrqGUyMDQNiBUEXndKy8ooNbgbpJNJZG2OziIrmQ92S32K0Kh7ZEMbUMAxmxUz9QeD68Itb47KgcIG3iqAETgADWYDgAHdJmaJslJU81gBad+Ic+IADUe98c90UxEBsVxfFCWJBBzxheFRAGCMwmAQN2UQABlABJABhAAFRAACk0MQAAWAA6ABGUjCkRJ8UUQXV8FQbhgAzdtuBAYkwGQQh8CgdkB0EelR2ZRQQHZB1jx4viBMQAAfWTPQYqA2S4qT+P4OSFKqXUnTgbgnDANSBPkxSFFMVRePUiQTO0hRV3XMBHksgdYQRCN6IURpkDQE0CV4ozKBSHEvNpITGVkDyowDIz+AAMlihwnGMZzShKEpkkcDAvNcmjIGfXUwBjLsUsEiQWwi3UvJ8jA-NDZzKHPQrgxgnL3PwSVxL0jA4BYpriuk0KyuExLnAaJoUtgtzaLiXUsFCGBkGzGcSrpERypEqq2Bq+Q6ukhq5uWRacygFq4Pcg6FqW3MMHazqLIG0rhHWkbjEaHhCEcUa3vu9TeD+1rpqQC6jpDcd2P6qzVqe4bPteppvpi-6zsByKp14rBrtYTFuGjfkVqsZ7KqwbyttqgLvzRxpMex3GUVOqa8roymMcwLGIBxnAoMjW6nR+gSoZHcKkFhsb3pFhGJqRhnzSQZnqfZ2n7TYzsYsewWmRe0XVAlgapdymXIvbNksAdfSMDZjmudVgXCc84nqrJ+rvyNmATbNi3FbAen9efF23ZxD3OYmG6Ot562CZhpKtY+qOdd+vX3L902A5poOUTBlX8bWyOvvh8bdcmn26N1HHxNYLAMzRVlUHmi0s+hoXIs23ydvJ89S4dcvK+r2uvcL9yO67l5OdjY8iHr9WIvZLAnh40Oup6xQisocX8-jgHGbiQeK+LV0J+e1f3rjgcE5R5thJuxpsWO8Ps8bomSZb-ynfPdbL5iVBju99y3-RHvljrg9G2Oc4bvQmhvA2uopysHlAgDY3cywAMMvvYaD8HatydgBYQ55oGwMKtwBBNckHfxRtAhBMopDJSARHRutVSxrnJuRfupCEB+irjgPUCBx7ULvhrOhUhgDk2KBA58ZC-4cI2LtSGNC+E7XoYIp2lwRHFwUIxAAjp2SAEN+YyIqnbR+21n57W-OozRzASGbyQNPK8OJTHUGYEZDQatnpk3PHYrR556DSQ0MouI7jmDv2viGbhkMxC8IiofPmp9LHxADLxQJn9lreMGg3DWItnI+ORjEssmB0ZBNzCEqATjgGN2Ppk6W+UFCfyeFAaU-jtHFN0SJcyjjmExJLnNXJV9Em5lac41BZllDazXkU6JkCFCmzgBAK8t9wkbXtqTDBxjzyTOmRYg21icSrJmSg2hrcVncCmVeTx+gBq+KQNsx0PZZmpIibHEZYzKngQJESPGPDbnzIMY7ZZM8IKvLpm0g26ZxFEJJLstJ9ywG63Oaqeo4K7m5yPg8x5dFbx7HqHAJ4jS5mRRaZi8pRc4jrnjLUPAhB8UpMnsLKOFKYU5PRUQCl-TSlNFpXBeCgRELxBQuhbCeFCIkQoqRc4hKNo4BVmiSlVLEBohrGlZI4rUAws2aaSxzxoyj3jJQXelBPBSpcfs-UhpjSqplp4rBiBh5FTjBQRAOqqC0EBU8o1RpfSmv5MAfVAysoLKfnmBqLqTURnWc+dMVrNUJi9Xs+JAjSSUCYTC9Mu9SRRtkTGhhwBKDCKyUCwGGZaABiDDOT1atpX8IzZQJRObnwqrfsrLsU4fQ6KGtG0Mr8L71pOY2kMTqVH0KFhnLs9bU16J9V81u9aGp1onCGui07wacOnL04dpaD6QtUMO3tcR7GHOWFxfNNBC1XVDHq1dw0EZ6sTXEzAyEioeEdWexuItL3VrojuuAjFHSulvcGXVD6hBhJxS8aKP7UB-poIXSmGUcTVNqQeo9x0ayIHMrCdyKrQNzzura+t2KgOvEw7zbDE4CXuVAyHLDpIR6oFpBIMKELRqga3ZMKjg6ExUZo4Bj5yQmiMZhd6agfoC1ZhvjzPSRHuC2odHNGD-66MRX0lxFIBGxOpXSgp5ASm2IaE9HoYDbx0NUeUxJygWnWh2ukwexc2Q7DqaU6JiT-AAA8iBbP2EIKZvcehjynkIOeAAKnAbY08wCSlhWJYJQQJQwDYHYH8v46y-F4ipZAMBgB73ng5v834GpZYtdoJLYwUtpfcxsDQVmchHhPIkXzAXtjAFQHeMLx0wgMCizF78uXEvKUK6l9LWH+DxZOXFhLPwCtcV6yVhzTGXOBavCAJ45HeaDqM+BqV7lPA1UC7PU9AttBtSJMgjL4ncM5FtqJFQRntO3C87QTbmKwzAnfXu5A8HhMzj1eVvodh7NyvSuko7n3Zh6BFh53432DvR3s18bj71TOwV8AiXwqXcieF+9BjMBo4OZiLbmKVvhvPVfsw1AAqmAJ0xpkNFVOgjqgEm1i7d8FB0DSHiXxIwy+joz18AQ7I1DyjRUCzAjIzh-nwYkYI+8IjnFG3Dn3ZfRUuiwNuYZeW0TxAbFVulvW7d2X23ZO+H2xjS7JnSt458GdlpUPAc5BuzQO7s88siCe4V17OOT2Out9Z-QGW0f-f647kUuwQelZN5YG44OjcSwB4FJocPYQ05mMj+9NA0dBQxzU6U2Pj1m66FVt4avzyk-J76SnwZECfnSPNEGuZqc+DhLTxipbGdcKgNyoqLPr28kMxzqoXOecsb54xrc4YWMi8Y-Duvku5Ooh11t5PhcOXxEBkhHlmFcIESImRSixFRWRVlJybkipAZumZRrNBiz-IXn3-KVYs64jX8PxgDk+IelX2VIKU-CLQGqHzDlKDD+FR3UUQwg1NW52hXFYYTkRBYZOhBcJBXFvooDhBvpYDh9XE9MkDLVXhUDwD9lapMDaocCfBXECohkTlSDNhsg4CRBXEYF8B8QsBJQTk6CGDQsqC0D9kCccAkCuCOhqDhBXFp4UhsAHR8BPEhD7ARCwhfB+CXN9lfxMCRBCA0RKBJQrgZUss2DZDXF3xFDhBlDVD1DZUvwtCOD-JzwAAqPQ3IFQxANQmsMoDQiwuw4QbQ-ZPwawgwuwowxAQIUw3A8wgAUk8NsPsNrFlUCJcMQDcPMLShKEUK8LCMcNlTiO8LMLbQAEI0oEjQifCsj0o1D0jfNHMQjDCHCNDnNhBCiAi21HN4jKBtBEifC6iqiYi20yhSjvDyjZVHDWiijzwyh6jrAmjujEBBi+iajfMMjrCNCJBaxhAMiRBJV2hYJ-82QD9AD0wocawZhp5Z5YZKAACeREJViW9LV1ib8j9LFuoHQAArTEIpHY3wPYy0co9Ai4w-E5SJN0P6YfbQI4q4mWTJNYuUR-OWR40A-yVxeyDcVgE5GExyVgWQpcAQ-ZDCMAByLkJgho9EzE2pZElEwQmISQnCDCJAiQjAUkgkpcIk4QgAUUwIpLpOpKHFcQADksA2TrCOS2TPclxTiyBW8ATF10ZrptiShdiZ5SRyiRZPVDiPjADwTgSzjhTwTWMnifAXjgAZT10U0zNVSW8WZMlzoJRpRhSIxLRyRkBaoR0gZTSn9IxVwcApQXdbisB2xuc2QakHtehhTn99JjorZEw-jfA6gbToRtBX0-FpAFss8b5bSqA0QfRBND03teksFfkBNngFTji80odKBHcJADTBSWZFsVMQzrBMzfRszQTNi804A7iHjbVCyRBizRTMAcMWSJA09YNM8hM3dC59JW809rSGz4E4yQwkNGJGRYz+zj1CBYJF8uVkI4BUI19+VN9hVhVd9ZpxJrZrBp8m5fVDEpFKxvxfkXkuYYJEB4oRtsgCo71gV2FQVAFfobyEpPR7NupepHy80QVe5EY0dzwYwHRzwYUQK9R7A4BCQa4blpVPgYpwL8FJQAAvWxJiFiVAZWTibiCeaVZPSkQwTceICwdQxsKhfiGkJCjYVCnEPqOC56AiwYB4dgEingK4T8qkR4WXObBbL8+tIzb8peYMGKVbCszUUi6iqUNCmqECruf8pBOC--DVdAMeJDbeKMKjG1RC7wKDXedSuSnea5FKePEQPS0gJDDGGitC2cNQ0yrjJi8imkBwzioi4wdDY-cNVSrVO1FUPVcSg3SSqMoGZCmS+pPpXbNqVADREMV2FQV0LAbVHPfC7oZi6kNivgcowsrAJils3ICuSdDK6scoPKkQc+AdASgqicPkvoEULilwQdKsGq3oOwB0Ry+qpqgKiS9i+yxAKXfcFGXXUkTvFUeldQZKi3IZQgMaloLBW0Ea8ALBGzOfdxWADYKUYaklVVLqzoEWGasgX40qhGfasrXq-qkYQUpfMgJDF4qy6SsDU5fiTJFtM-QZC7cau84UB1FPWsBEtgT0Za+7WUloGPd6ca6bO62i8cY2ZOc2VOK2PCqDH7dKJOd2eG4OezHSiQKDGgCy9KSGmy1GlOBWNOJWCcRGXqxi1KpyjK9QgCXG8AAiwsybJq8ohnZMKvZXO6VXDLUPVbXq24LneqwgP61incCfI4OEHavbIKhXOIAmycQ0+WS2N5aRbGs45Gz69Wks5Wz2MsqJXqnGvG9IUKhtJW1mdG9OAS8BQ89qty5y2sem0gJm24Fmoq9Q9mo4JXfWnmu6Pm76iWn4IWtykW30NcWEpqgW3oKWwsqEKSqGpXETd5YQJGn3fGzm46fWrGsys4hmpAfG024gDO0Ga26FW26mjq2mly3wPOl2joN28Wtm3oAYCw8iCwvLKDPSE0etdS2bebH2623mgOqOqob2-i8mtXDXYevLYOlilm0qnIBcpuiQFuwodulE0ezmgeie3mhejenwLuxqrW-epcHvE+6wZ6HcBckelEuEQO7IGOzoOO4Kk26yxW30PBcc58gClaA87W3iS1Y2hWwgMRdhChJyMu-+1vCAIBwu0B1kEUim3Ss4jISyuB1hchSRJBl6iKO2lih264HIJ4Z27oC1AYUUYYRtMYDiUNRIKgbCqIZAY+nIAYIKc4tgSCbELYRABst6JAaubuicC1bMraQqxukqn4SqRVERwR8GQca7cIEh2gQi-B92lsuwDIPB9K8W6W3wzlCwGQNYKh8YOiKYehjsHC5h7IVhxwdhmBV5VAAASEcdo1mGfrlqQG5wxm6lAjhpJq5kKSlSTwYmirMW0T+ibxzsuoySnNCfsVsW6Wa2zovu9V7Jujia0VaXrD0HMnrA0bxCzK8cjCNAtv8YmATE7zyVf1aS7OyCKZ8dKZVuAMIBVXCr3t7xri6Q-iSYyT+nFxEHryYkb09ulSgXNr8aadfIHGybkP8jVMDi5izomjycNlwFdlhoWdVumd6D0DJiJomb1sxuWZauQyGTOpfroUXnACV0eD6hO1GbetUDuc9xyaGW1CwOiksOuc5rYCsMoEuZYm+cOkROjmef+hcbEA8dfvusdEOWmSUrOP0vSkuWTRMuQcurhdKynIOwaYOdJrIFssDqgyBcujYBANmcwCucKh+eMExYc0NsRdgbfsJcpuGi0eIqhGrpyAdBIaTIE1d3nLpdtRJcWjJbEotRprjs6BfoVv7VbCqaTrVqiYAZwCZfuumovgUrBUgZxXZbFtIq5eyFVcZtIdmAbosGKscPIpaawBsTlbHAErYjMx0YtXcd31lZAo8CrilSgxgbcBuqlIVo+HEkgugpCC9aeH6YcorvtqrtrBGfcmUmlEciTJAagpgvud8EmouwgHTZCGau0FtCaALYkDsBFlzbDZrndFNfPuECcvaZ8CXtrCTcUG9GjgrYzb6ZvvOpwaQBbZTdDD9YOrOvjpsrwrO0YmYlYgscYZih02hahsncwoYcKzna9wfJEpSnndlfoq3fXYUHmctqmear0FlcPbKe1fUkOB1AUH2c2cve2ZtwXZkrvaPeQQGmvcikTqSSvaqFPdNuwGLt6T3cPFRlYU-oIS1ePe3YA9wQmC-v-gfb5JvdkrLgrig-fd-afdlY0ow7XdA5CZisyZA+yH-bfvSaI4cXqQSR6d1k-Z0jhZ2Q-b-efa2UY-w58BQ7fgVZ-cfdI9Y-te5kSd4+Q6-b3JI6+o9fE+Y4I4UAvM4aQ5g-I-k-+Wg69y4LblJxvHvE8clFzCwGMK-AVrvyBnEiwo2AjfAxUe0YNYA1cZxWAb-mreUbSo5dlt31Z1yT0lAhJDGCeFAgTJAvM9UGHkYl8yEGGz89Aiyx-DhBgl0ZEBHMOSk0g7nOOgS-0KnoHewArGPEKkP3UI12ZvUNFohpUBum8-KcICi+bRoPQH0Eq+AKQxQ0ce8HcjGDjHwXt2q7AH87PJbeJi4CtEieEGCd6+i9SPPAG+QCG+vJGe7JwGlEG7GGvpmEGbpxG+0CC7YnVXjC7HPAi6yxq5i76vi4tSS7HNS9TLd10YGG242DStCGEay+9By86+JFWA9pbPwEa64SQz0zdp+-YnKfvr6EJmnFkHgSGqm8W+wBm7GBOWy8kTy4++oxvoR1u8CHu+4AysMeEZK7Docn+tmFB+EHOvOo65R4ISGqwRq+lqbccPm5yBYJxldHPAGEp8h5x64Nr06DvtZcbikFWD254l++HbgiZyGU0sYiSHSh-FraOAAB1d8pANEAwuxI3BAFelfDzFinhEBT29z+A7AAByNCYkfAdcNgEcNXqQE3iMocZX+vbXl34QZXtDT+CSN4LkT+SgSVLX133wZX3t3FKa-3wPjoYPnwV5ygiPnXgj6+X3KOcPuPiQKPr62VVP+Pr3YMMz736+UG1QSVGEQPp3rP8+5XoclcXr3ARiVgZrs58v7Id3lGULnEO8RIYwDvnAP1DjUvoSW3rsRYig1QcANvpEkv-voaQflpz3ySEWMf2vtgMzBGbv3v-gfI05lQSf7QdPi6gBhIE1NfpDBfmvvbpEh3iv7wRf8-pDBGG-uvnfiPvfg1fyEWNfk85111E0Nfp-n4MvpvhvWV5rFUAhoZYOU3UqtwTe1cJ4Cb0oAm8pgcAxACbygBwAkByAsYEgJN4OhJQWAu8FyHsAm8S+LfGJG33AZgCIOMoewJzDC59996L-YaGTGgFSAng74J4NQOkzoC4+e-DoGQLX4iMKBIPBokAItRkDbw4AKgTQK7D-RteAAwAUuGAFnFxB11SEqGBN7KCsBvEEAFjFzBYDWQPUIhIkCwGvJjBOMUIEQId6KDLqwvUQpAP8gm8bBmgxkDAhrhYD9I0AQxvgCwFOAikmg-SKAK8HECG28gqwQA1wCwB2YNcOwWoPCGEh9IWAoKFgKwAWCFBu+MgcsANBmxlBkg6TEvTs5X8Q+TAjIS-nfDKC2BHAxiFwIKF9A+BnfPIBEP0jQ4FePAqoLUJ74mBXUp1V3nIPkHAgSBBsMQa6hyG0CA+3AtrijGniSgJIlcZMh0IkHsCpBdAlEi0K4yetshCw6TMIKn43BJh0w-jNWSYFlCNhlQrYb0BWEb11hFQh6o72CHWAyBMAj9JQOOHSCu2afSXL0P-6HldhMGPltWXSH+k6KQw54QuT-6R94QHwm4e5HSEhh4meQwAQwNbSEATejEJdMwCqGp9zhvgQYfMKuELlThJ9TET4DIE2DhhLwy-lf2d4QjPhUIpfm2GPAOhSRcIjEeMJiTfCZhWZEkc8KWGpCs2w0T1pyKuH4jZBhZNkfsNpZQCbB5QqQeiM6CEihwAoqQUKOz4K97hLAx4fBwITAi+mT-PfnCGcZUjrACIjWKKN+HGA2hxgGwV0OWHgiDRtwfoc+DIE1ceufXbkd0Ov5n86+SGGruSN6F78kak5dKNCNRHSCfRtbBgTPxH6h1x+MgsYSHxRFQBQxVInobaL6BgV3WAHFTgjWTr79W8wANVrRUtAyxCEP9HVinRQbqAA2s8INrCkCaB0qaLnSVgawkZpglGXgH4JaXdqGtfgNQBlM0DIAFkXeNbBXicFtSghLgXYwcRiCxA4hMxHqcABlyHAphXO+rAELU23AWs1x1gKVuynLSCJdxhAfcYeLkSxp1qFXYHs01ADlc2+SQeLKIHl4pi+gyvR0eN1DBMDEh8ArQToKgB4CCBCQxwMYJiAyjDRogZEf4KxRYDMB8A98cgIVjmCYxLvM7h8IAAMm434LuH3roSjgmEnwAmiAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARjoCYAoKOJVURNAfTQBTADbg+ggG4BDYZClJoAcwAUaeDngBKUAG9WoA6EyD4kTNB79okHACNBmVeq0GAPq-2Gvh3gPiZEJScNbVB3T28vX1tkZGFBKWhgl3DI719rYWFk0LcPNKj+GAATQXBAwWKcgG5WAF92GAQUC194KUVFSr5hXnhkgBpQeAALQT52xW09L2NTc0s+AAcpREc1ENAAMi3QMakqjZcAXlPhsYmO2oaOZu4MqRxBHN0IoxMzVv5JruKevsGoAARNBHoIgZpro1OC1QGgAJ52OJ8ZBiUFPF4zQxzT57BJVdqIbJHTSQ+rQu5fPhSNBoRCKaBPaD9EmvbEfBZtDq-f5qQFAml0hlM+AQqG3LgWQX0xmCZkCRExYnOaYRHELfYE1bZTXKQnKkKksk3JqS0DS4Vy+B8aSyZ6srHveYWXX6vXanKk8Wm2G+WCoNSJa2lWDCKSYeQtTFqjlUn7dXp8o5DIH+9DteUhsMRyVi8kS2FpwOZwSh8OR1AKpEGlyO9Uu-HuonKV0eklG70w7hFjPB0vZivQG0ySD2lVsgz1vEHJvZN3t40Us2+aQBKS2eJ8LPlyXR9nOxbxv6JlnOFOrxDrzfbnMtPMmrsWC9X8Y3wdVpV7yex6da5ut5sF0XAtuGfDdX37HcWmHO0vydXEALnNsVS9fMfXufgwzsYopHEAAPJZjFpKMHRjA8uU6BMAWTYEsNsHD8MIwRiNQe8l1hOiGJWCMnngBw0DgqccCkJZVEVZFUT4dFBCGRDPWA9CLE43CYmKeFBJ-OT5xQhTH0Wes-HkQQRQ08jvm5KikzPYEDMDPiRTYkCLAMwQCKIulUFMhDG20w1O0pRY02KRBJRkRj3JI8c6x-CieRPQE3gKLxU1QYLQuEcLmI86BHMU0AgvC5ZjEOKKyNxE8+GMcBAQYXSAoK1zCL4IsvIWCqqsBZg6rNBq3OpYRT02aKD3aspAQAZm631+CEABHUc4DHIays5czKOPajrKBOaFtgcEpu4YSAGtxh2uU9uSNBVX3cqAW2wR5vO8EhiOK7-LNM7FsM+yrQEh1DBWhsZ18rQDoscpMDUb7jKtS7ru-A9dVesH3ihuyYeZP7nCuid4IWEG3rQvTfGMpZ4HhAQHt2pb4Bx4bcQySAsjh97pp6GlrXRkzkdxqdGeZgnUIfALomEZBYCOuC8bjCyNqsjQUw3cWjtyvTjvGJWJdapS7s1lWXpVVnuD1vhVPU0jZk0nzkL8omRf4ESll6WBB21w9Zd5Qb4BTR3ncHVWAqczKWKSC2Ee84GbdBo2pUwRQseWm6NWt5sQY7O2zWgZBqTjgTkCWOnAcWTJsnzwnhbNCGofDFQy-h6Xf2UOuY9R60a7zgv66nN1m-JVgQAgRSMHAbA8CIMhKGoegmHG9iMImTBR2UPD64bvDQFOY5hkXwQW-VvgnOUbiwT4yGhjNoY5QkVep3ilKcCWZASgPxSgQGRKkoMY-eP48-kDUy+0Br4tz9LgR+z9D7gBvjFNacUATgBTP6B+T9oB-CcgHSuilljlh-pDZQUDcYN1GtVBBoBaotyDmbfB0CRp9EqmNUhXUKFYKvmsVAJkCGOiIXQjqpDJp7ykCdehzoYJLzTHxZkNDbp8iBAZW0o4375VQBIrQID+ByJHM8eRggpGrUuOtT2yhtEpg0XaDBsJTGjmaso2G2jdFAz-NkOxKNzpizpEocQQC2GymZMoK+9jhgen8RQtYUMR5gj8UAgJupgkZ1hK45AQhTbqXCU8QB19dBeDeFOFYax8E8RkqAWJDQeznHGKTcmniJDeJFBvUAJdahOVAPvVJ9pxLCDQEMbRhdLYHlyesdpnTQDdJRq0j8cQBKtOmFk3pEcqhTIoQU0RzF8lgmmQDWZ+MPQLLidwVyEi-isOwD4lkgyukyCGbYGk5SomENvnKRQowxLVhxpvUA8QlBPNtFdD+3gAD8oB+nKBaQU55SohnfM0Ofa5VTNC-K8AALneQ8p5CIXnaAADzIs+SMIxFy4Wf0MAChw2BHBAgACqxGaYkeE5o442F+nCSASwnaIEqEioEoAADUoB4WEoMGoAIShEDgHNoM7QPLFGcp5Xy-lgrAiKBFepSFBL+VIpJcgMllLkAQEEAAdzpYoBlmMmUst6Oy4E3LeX8qSvK4VoqwUTIlcCFMVrZWErtYqh1KqW5i2QEdZl4yMraMdcIdJq8mlXx6LEUS-jCFeCaWgF2ocznDPxfGtIfMrBM2JOK91BRiVAOjfnZQ+bCUJPcYoKpNTYb+NVTaxFcJ2kbzOEjPNDa0gAt1JCstBQkVJsSLOUNV0hhuh9fChoBQRWgEiRIFtW9RjlIfpUo57CrSrwKBqgZ1YUwAFVoAxBKPUsEeYCh1CKR0wQGbIilNaXUqu1pWmzrJPyqcA6khjLReC1ZTwoW9s-mM7pP6dEvrSJOww4Hw4LCjX62NUSW4WiHF+5EIbkNhrTehuNXDI1Ftg8+69g89LvuHecjpG7M0wKkjm4d9abWFokMW0S-7vAVoVdW45Jk63Mf7c2t5bb0XMYMACoQ1pu0XNI7Rht-bk1DrQyOwJzZx1nutWkads751lPEMuimq6TnkciFu0Ne6D0oOKMep4oAAC0lnzTEUtMyU9YGL1CAI14W9BT72hMfaC2Jr6fzEc-YM4Df6O1JUA5oyZBTUJnreJBhuMGY3PqhP3MATlh6jwICQcgVBaCMDoDQOeVJCKIBwCFRAEhxiQJgF3SjR5DEcBTMV0rSAKvmO4E1srFW+Aladhjdou4OA1cRinbIg3FylI6y1yrQ86nxV+XfTUijDCahtSFyId99RLYMPqVb780h336VtwFqxMC7fm3dE8R2Txnf23dfmwhFH3c-mt7wd9gpoCdlIeEij3ufdpUlF7Xg75bq21u-lgPDB32EqMaktg0Bv2hyMWHGACgQ4MHfLlR3DDLyGPCbQxwAB8oB148v+2j95d1LNY4MDj0AeON5E-XjZsne31t3QAFTU5nXhXH+PGegHZ3Tgw5O77AC57T+nhPiegDACz87MiACk4ued0759LhXQvQAi7upvLHEu1frzeXj1nr27oAEJTh65V5L-nFut7G-l-0IEGLle84Z9LrFBgHe3ZkRi441P9fu-Xn7r32uZEE9d6roPoAieh5N0Du6BP-dDG8IHqX68k9x8d8oIEZuufS68FLgwZvDAr1+WSCbARmvlem4+INGBjjwuEqJTUQxJs15fo+QmleSuddr5SFEtgABWpZaYbybyJfBMB3cHar33xRckxvk+8O3rraWK8BngICufU3rHpiDA3infI74lDKBUYoijT-lGgJUZfoWkp30INAa-IVvsp6fy-8md-78+6d4jvgpAhAW2-+gB3+P+puMi-+AAokdtAWAeAZDndAAHJSBIFc4oFIGSYIFpAb7pjb696749hBj17j4FDN74Lu66hQJt474d5EGYy4FqD4HV5db0HWjdKkFpDkHgCUEjbUJQrMF9577Fi0xkhNK+wUyr794DYwBDA1wngBISHdZDin6YDCDwhsZD5SDSBJoBBkylqhZSHdYPzxAiiuyDbx78ryF9CQjeC7IWAiaBq6YmQBL7JyiHJeIcawz-qOzuFHy0Fr5YJyZDCCYr4BHjBsH17wGGC+GoL+EEEd5BzIDD6j5DKhFeBGGREjKWGfyLpaZkw6aeFrqSJQjxBb55GKBixXIZTOFWh1KOFLDsbFH9BkgpaEaUjpa4CZYTw5b0DjR0CzxNK+CPC2CYiRDZK1YezxQ0QChmqIAuy5jaA7AqZJQPAYhByNQRSeTtjbC7DupoYohogRIbFuRZSRSGgaYCh2BAgIZ2DNQjDIDzErJhxQaxzxw1D2HmigjqEABep0IgYgkgI4kYQQLxDcs6L0kAsAe0lQQw4A2oauaAUJMJJUCsEACJCG3x8IfxUkESYJU4EJTK0JggsJ6JRIfO+xyJJJVQfqAajRBxqG7ShxuJGIJI4aORNq8J5JmJMg2J4wykwc2UUsE2OCJg-Es2IxXEopp8CcqibwpSZsEp2EKk-85shs8pm+oAtgHAdSiQvJfxygZsoGrxM6V8kJxJpJXJwgFJHqVJlQwKgi0hUY38YpZ8WpDWRSUSHJ-KVpKMepvx-xj0i0cMhCiaVMVol4WQ6kUg58+m4JZpRJKJcJCJ7u6RUghJ6RNOuExiZJwgXUDOmZhQwinwyyyg2ZmiWBP+wmdpVQ5ZdoyZRIXUhZhgSKoxCZSJFpxQDZeZ0RBQvptQXgcWTSeGD6neQwREj6MAPSFGZkVGzME5nePyHaAKo5HA-6SKeGn0SAMg6h+CXmY5zZXguoC5HAV0vZBQboJ5U50WEGGpeBp5dS5B-pfJBsGghMmyVIJcU+6A2g7q9G7uV+5+7qG5iWVB15o62y15fpWJOJYE14kEt42xpUbmmpaGdScFEEZYiFSG7SHxKFeBEgOpW8z5BpGFW4CF74qGKEA5ScFghJHZSZuZauvahFMAEJ6ReK6GVp+ZUuXC4BiGQapZaGpG4aNF2Bb6NZyggFN+XZuZTC6RdQ3phK-ZnxJFERm+xBb4u4YJpSaFW88KkRWl0EaGeFhgpSrFFgxFMFzwhlFFkoQl1FExB49FNZ3ZzFDaFl7F4BnF3ZPFROfFP+AlDJmiRmGGolh5ElnZUlqCZ+MlvlxpoWil6RKlFcsIal1IdmJywpqFvGtmQoJyQaplBg5lRFXx+pzwiGIoDltsH5ppQC5pjFvpBZBQnlZpZaPlclauOgDaA87ODA7OgmpScQfw2is2sQdJgljJO6npwCgmQVTJU1SoIlM1CVNqkVKJPlh5SUygXV3gvVzAA12BHa811YQl7SSlR1l1Bgw1yyIRV191aQvmD1SUU43FO1Ylz1BgdQq1Z6F1hgKVhWZVAZe+aULQYUmxZxSFQ04x+FTBSwpValygvUTUTEqJ0cd5TBsACN1lSNqUhULU7YH1pSUg2N5VuNqChUMgXsN5JpLlnZblzVn88NbFbVoWA8DFWUSizIgQcglcmqRS8iIJigKxNqA8i62+lQ8xRkwwOqyRhIFgqNyyzG-h3QOZ3FNp4BbQO8KtI1FZItoWAKWNLN9ViZ1J8VmZSKJNxtEgDVZtnVf1e1qW2oZgV64iPNg4EA-NQJsgQt+thKYtYwEtwUCxggAAkKHTMh2gDYmsmiiJAH2FhYOLKavGpr4J9BdDsQFcVahdjPUeGV9FzL9EVd4FmvkZUunTTEuYSgCiXPmpbSyn4e+nHQnQOJKJMvuYXb4sjOeZEE3U-C3VBAGA6UIhXQYZ9ZEAuZ3bTHDOnIOc5lelnQ3KAvviWIndpSqPmgCvFLZWvcZbhe2HXYsGRUZVDVoL2lvQCMfXZXvdWJ6L2kig0rFp8RVJJDAIhvadJNOSafdsoJ-ZWaADXTmvCkikCkCOzm-ZlZUJzkMC-WIBA-lfaW6H-V6BHQDKldwOlXrNlXgYqVvCbFQiSETZqWLC7B0vUbHf3eRbvUPUaUQ3gfAzKJUIfrA3wAwwyPaSQ-inQ0wdqdPlZWTbQ05biHTY1SmYTu6rw0kG4RTbUb4pwx0kMGwzJUMv4g7V4BzZaRiTaqpdZcWeYNDNzMhWZZqZgKTQGcoC5KcSHJ6B9QSe2a5UxYzS9RwF5R2h1ere7ho1UPvJYlojIAIerWo-9RiZ8a5KWPHeML7FLTIdAHIbnLbZo+SXcpRkYVVtAP-dWVFUoak4pN+XE-HD3QYL6cA4FGAqZp3pSN+b+QWu0fZVQoNmPfytIx4dUl4b4qEUHC6TKVU0E14O3L0-9SwkUVlWNkE4aaqfQkiQNPFamffl48oL4L4+M2pJM0zC4FtQA9LMsnviossxTERGs--ffkitJbCRs4E72sU32kUpgKSnk8CDAEdFnHquDHlOTEsFetZpalyoWUCGE7ABE9SHMQsXeNBeVUC6yiC6favLemY3yd+QPhDdY4TRjVvlbegI+ZPmpfk8nQlXYybV4wzeI1HS46zd5R6R48S5dV0G3LnGWaeXdePYYGS0yzOv07mZNE46y8y3hOE3xBC37DEwM-dey4Sxy4U6Fhcwgf2byug1KLoyMX4gRDC5qUbRi1vE+dZXIXcbAA8U8QJI1DTfGQSw401bxfCk0v4BTDfnhP0Lq48XtF-S9ZRl+fa-q0c52rmTtdxo3G6465oK40y4Sxs2kDte7la1JPskOn68xLPWBvCt3JgNa1G2q++RBjyeY-iZRkIKIOIILQoCoCSH+UDXyZTLm97bzQqjkHykimsTTB65s+ldJNW0lLW-wDva3ecWfdXSWziR24PaHBva20feGJeOBFQ529C8W+lVfdQ4OyEDW4sJVbDEWz2+lcu13UO9c8vaDagODVY0Kau5-ACulUFGVnuzUQe120c22+zMqYKde9O7owKUi4e1u2kLe6PUe0lCe7o1+-nXtAY0XQfcO6LMrC28e72xrCQ5LN+5ELe7ZP1n1hBz+1B3o0hkh4Ywu6Bw7HYChzU+u3h3B94Le1E1C-O925B+u8C67MR42oZjMfuk88gC802syFIEzjZmpW1lKHYN7Uq0sOkgk7JU1d1XYbVYjYayI3bdHXlKOWgHEPHVGIEEsPHYoXx7aEfOGEIDnt1dKjwNAKp1vpKqAHUBCMK9thcJUckeDcMyKBZzOraEMDa23ANA4KCFNmrk5xxWrqc8UH6VkAIIp23Qs4Z2p4QmUXCMFy0Ifg0qHW8EMcyO52FHhip-HaOkm9SIoKsOkwRqnWF1vm8kCBGx0DlxCK5oYCV9l4EO9ROvPRVwYCMfx9xDp0CHp1aml8Z5amZz3RUVUbZ6080QMwPE17aKbbSMrU5-Uvsv1KfB5zXl1ZmQp7IG3XUkClN8t0pwGD9Q2nzEl+YCl4lsV5l6V4EIoi57N8l55x9fyklWzWAKNzILmS7crb5zFdfpUMxjt6Z0-VEPt98Yxo0-yp1702G+a+Ab9mGOpECAPIEHN09yDt92Bniz+MYBVpDPaNF9t1CLejmtghj6dlvJytyx2gADqA3GDzRrDPBLDrIk82rk+1Ul5LCNt4faBIoADk+AkYaA5QlQ7wVPxgHP1QV15P569PJP5PTSTwfHjgIUxkQwK8mSEvaQjPtFxc1GSvKvhKavkQgDWQ2vP+uvJHPA9kGmuoWvhvhgxvevBeVvZPsqSKMv9gcv9kEFzYK8th9PYv9vn15PkXMALX-PW8DSvvBQUveUQffAeqmqVQMfmAcstY2vxvlPkA1PygJeP9gf2nt+Xv3vExgvzwzvDgLYjY2fGP-n7v2Q8fifpIoAdu9SOaefXgxvt65TNfdSuo5fQg-nIvTLxv3fwfCm2Qg-vfVvKfP48UuoNfnsAT7fsfzfCBPvYf915Pleggj8dIq3W88UHPTESwHPQwHP4Amqh-oAHP8AyAZ-5-gQZ-HPtg8Id-eqIUIwHPthEfekUf+-iS57APSwIwEYHTnT2eoT9aEfIPfsYCWCWZ-+gAwQNf2T7MYo+NfFWpv1-7yYQBiAnPlJBQTLAAB1yHaovwwHi8V+l1NfpqSzhTlZsAIDnhQOgB381AkAUoMyDv6ERUQWUU-kfwWJ38ywtIN-n3zIEEUHAcOKgeAPR62B6BpgYKMxDv7xAEALtNAHfwSC0x6B8QDfgoPf4hsV+AgpguGCQChhmIIg-oBz10HzF4gd-RdHfykB8DRegNKPnSBMLjBaBuA2AWGzE798hGbUagfYN6yWZaB0AvAUIHgHj0behKJAbHzLKYA9B8QdAe4MMJYDkBtAs8n325bL8SBR1D-gFCj5OCYB+A4ARL2N7S8vs9gfCAcl-o4CchQgPITYIKBThFW2QgIYUgQHgFhI8IYoc02UC78-BFQuASnlCwhDnq9Q2Ab0OwL9CHqX-SAT-3SjODchHYFvrFjSHgFQBuIFoW0NtZ+E7BPWTcIMJmHJCG0qQhYYsNsFYChASXYMlUJV5LDPB4Ak4RIj2hBDDeowgoFkPKENCdqww4IZgIx42ghB0woAYQIer7CDh9+DIWaCj5iDfhzwc4SkIS55QVh5SNYXEXBHdCoRIwhNj+EVZIiGh7wyXukThElC-Cu-MQf4NgH3CGemgyIJiKGHVDuW4wjfpMLBoZRuhBAr0HMMHLh0gR3gS4RYDxHtCwhCfIxEIKSEAj6gHIw4U0ij6ddQuRnFEaywH6Gcc+ZmLeJ112EkDW+qFOolvDsFWgno71fIQXzT7GAFm2aZmKPxZFND1eNwlUUCMBGiibUNxQGjSxzjvF0WKjE1vTUcZuCNk6vH+i6Iyam0P6OaNyiU11C+jA24BdmlSVpBc0FAlbbgCf1OyjBeA5oNckdQiGKAZmVLK6o6PbhDpfRDnULCy25YRjiSUYt2tYA9rxjyRaQAeMYABaQwa8+UHcjLVADZjc4VYyIGmKGRWlOWmYlXvMyBQ1wcWErcet2OHGSttQXUfMUUxCYNBWAxCDoTwjGjzjlxi46qDuSC4rcYuU+QLkH1OwypietovYawAlEFcFx4AiwUfwYFMD4AT-F-uYLGDcD5ApIyIOTw55oBVBBcO-rfyP4Xjz+PA9Qf8M+rmd2xHaAAAxjjQsk4zQVBJ-wwSCg5CIAA

Metalinguistic Abstraction 4.3.3

(args, fail3) =>

succeed(pair(arg, args),

fail3),

fail2),

fail);

}

The actual function application, which is performed by execute_application, is accom-

plished in the same way as for the ordinary evaluator, except for the need to manage the

continuations.

Ifunction execute_application(fun, args, succeed, fail) {

return is_primitive_function(fun)

? succeed(apply_primitive_function(fun, args),

fail)

: is_compound_function(fun)

? function_body(fun)(

extend_environment(

function_parameters(fun),

args,

function_environment(fun)),

(body_result, fail2) =>

succeed(is_return_value(body_result)

? return_value_content(body_result)

: undefined,

fail2),

fail)

: error(fun, "unknown function type -- " +

"execute_application");

}

Evaluating amb expressions

The amb syntactic form is the key element in the nondeterministic language. Here we see the

essence of the interpretation process and the reason for keeping track of the continuations.

The execution function for amb de�nes a loop try_next that cycles through the execution

functions for all the possible values of the amb expression. Each execution function is called

with a failure continuation that will try the next one. When there are no more alternatives to

try, the entire amb expression fails.

Ifunction analyze_amb(exp) {

const cfuns = map(analyze, amb_choices(exp));

return (env, succeed, fail) => {

function try_next(choices) {

return is_null(choices)

? fail()

462 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARjoCYAoKOJVURNAfTQBTADbg+ggG4BDYZClJoAcwAUaeDngBKUAG9WoA6EyD4kTNB79okHACNBmVeq0GAPq-2Gvh3gPiZEJScNbVB3T28vX1tkZGFBKWhgl3DI719rYWFk0LcPNKj+GAATQXBAwWKcgG5WAF92GAQUC194KUVFSr5hXnhkgBpQeAALQT52xW09L2NTc0s+AAcpREc1ENAAMi3QMakqjZcAXlPhsYmO2oaOZu4MqRxBHN0IoxMzVv5JruKevsGoAARNBHoIgZpro1OC1QGgAJ52OJ8ZBiUFPF4zQxzT57BJVdqIbJHTSQ+rQu5fPhSNBoRCKaBPaD9EmvbEfBZtDq-f5qQFAml0hlM+AQqG3LgWQX0xmCZkCRExYnOaYRHELfYE1bZTXKQnKkKksk3JqS0DS4Vy+B8aSyZ6srHveYWXX6vXanKk8Wm2G+WCoNSJa2lWDCKSYeQtTFqjlUn7dXp8o5DIH+9DteUhsMRyVi8kS2FpwOZwSh8OR1AKpEGlyO9Uu-HuonKV0eklG70w7hFjPB0vZivQG0ySD2lVsgz1vEHJvZN3t40Us2+aQBKS2eJ8LPlyXR9nOxbxv6JlnOFOrxDrzfbnMtPMmrsWC9X8Y3wdVpV7yex6da5ut5sF0XAtuGfDdX37HcWmHO0vydXEALnNsVS9fMfXufgwzsYopHEAAPJZjFpKMHRjA8uU6BMAWTYEsNsHD8MIwRiNQe8l1hOiGJWCMnngBw0DgqccCkJZVEVZFUT4dFBCGRDPWA9CLE43CYmKeFBJ-OT5xQhTH0Wes-HkQQRQ08jvm5KikzPYEDMDPiRTYkCLAMwQCKIulUFMhDG20w1O0pRY02KRBJRkRj3JI8c6x-CieRPQE3gKLxU1QYLQuEcLmI86BHMU0AgvC5ZjEOKKyNxE8+GMcBAQYXSAoK1zCL4IsvIWCqqsBZg6rNBq3OpYRT02aKD3aspAQAZm631+CEABHUc4DHIays5czKOPajrKBOaFtgcEpu4YSAGtxh2uU9uSNBVX3cqAW2wR5vO8EhiOK7-LNM7FsM+yrQEh1DBWhsZ18rQDoscpMDUb7jKtS7ru-A9dVesH3ihuyYeZP7nCuid4IWEG3rQvTfGMpZ4HhAQHt2pb4Bx4bcQySAsjh97pp6GlrXRkzkdxqdGeZgnUIfALomEZBYCOuC8bjCyNqsjQUw3cWjtyvTjvGJWJdapS7s1lWXpVVnuD1vhVPU0jZk0nzkL8omRf4ESll6WBB21w9Zd5Qb4BTR3ncHVWAqczKWKSC2Ee84GbdBo2pUwRQseWm6NWt5sQY7O2zWgZBqTjgTkCWOnAcWTJsnzwnhbNCGofDFQy-h6Xf2UOuY9R60a7zgv66nN1m-JVgQAgRSMHAbA8CIMhKGoegmHG9iMImTBR2UPD64bvDQFOY5hkXwQW-VvgnOUbiwT4yGhjNoY5QkVep3ilKcCWZASgPxSgQGRKkoMY-eP48-kDUy+0Br4tz9LgR+z9D7gBvjFNacUATgBTP6B+T9oB-CcgHSuilljlh-pDZQUDcYN1GtVBBoBaotyDmbfB0CRp9EqmNUhXUKFYKvmsVAJkCGOiIXQjqpDJp7ykCdehzoYJLzTHxZkNDbp8iBAZW0o4375VQBIrQID+ByJHM8eRggpGrUuOtT2yhtEpg0XaDBsJTGjmaso2G2jdFAz-NkOxKNzpizpEocQQC2GymZMoK+9jhgen8RQtYUMR5gj8UAgJupgkZ1hK45AQhTbqXCU8QB19dBeDeFOFYax8E8RkqAWJDQeznHGKTcmniJDeJFBvUAJdahOVAPvVJ9pxLCDQEMbRhdLYHlyesdpnTQDdJRq0j8cQBKtOmFk3pEcqhTIoQU0RzF8lgmmQDWZ+MPQLLidwVyEi-isOwD4lkgyukyCGbYGk5SomENvnKRQowxLVhxpvUA8QlBPNtFdD+3gAD8oB+nKBaQU55SohnfM0Ofa5VTNC-K8AALneQ8p5CIXnaAADzIs+SMIxFy4Wf0MAChw2BHBAgACqxGaYkeE5o442F+nCSASwnaIEqEioEoAADUoB4WEoMGoAIShEDgHNoM7QPLFGcp5Xy-lgrAiKBFepSFBL+VIpJcgMllLkAQEEAAdzpYoBlmMmUst6Oy4E3LeX8qSvK4VoqwUTIlcCFMVrZWErtYqh1KqW5i2QEdZl4yMraMdcIdJq8mlXx6LEUS-jCFeCaWgF2ocznDPxfGtIfMrBM2JOK91BRiVAOjfnZQ+bCUJPcYoKpNTYb+NVTaxFcJ2kbzOEjPNDa0gAt1JCstBQkVJsSLOUNV0hhuh9fChoBQRWgEiRIFtW9RjlIfpUo57CrSrwKBqgZ1YUwAFVoAxBKPUsEeYCh1CKR0wQGbIilNaXUqu1pWmzrJPyqcA6khjLReC1ZTwoW9s-mM7pP6dEvrSJOww4Hw4LCjX62NUSW4WiHF+5EIbkNhrTehuNXDI1Ftg8+69g89LvuHecjpG7M0wKkjm4d9abWFokMW0S-7vAVoVdW45Jk63Mf7c2t5bb0XMYMACoQ1pu0XNI7Rht-bk1DrQyOwJzZx1nutWkads751lPEMuimq6TnkciFu0Ne6D0oOKMep4oAAC0lnzTEUtMyU9YGL1CAI14W9BT72hMfaC2Jr6fzEc-YM4Df6O1JUA5oyZBTUJnreJBhuMGY3PqhP3MATlh6jwICQcgVBaCMDoDQOeVJCKIBwCFRAEhxiQJgF3SjR5DEcBTMV0rSAKvmO4E1srFW+Aladhjdou4OA1cRinbIg3FylI6y1yrQ86nxV+XfTUijDCahtSFyId99RLYMPqVb780h336VtwFqxMC7fm3dE8R2Txnf23dfmwhFH3c-mt7wd9gpoCdlIeEij3ufdpUlF7Xg75bq21u-lgPDB32EqMaktg0Bv2hyMWHGACgQ4MHfLlR3DDLyGPCbQxwAB8oB148v+2j95d1LNY4MDj0AeON5E-XjZsne31t3QAFTU5nXhXH+PGegHZ3Tgw5O77AC57T+nhPiegDACz87MiACk4ued0759LhXQvQAi7upvLHEu1frzeXj1nr27oAEJTh65V5L-nFut7G-l-0IEGLle84Z9LrFBgHe3ZkRi441P9fu-Xn7r32uZEE9d6roPoAieh5N0Du6BP-dDG8IHqX68k9x8d8oIEZuufS68FLgwZvDAr1+WSCbARmvlem4+INGBjjwuEqJTUQxJs15fo+QmleSuddr5SFEtgABWpZaYbybyJfBMB3cHar33xRckxvk+8O3rraWK8BngICufU3rHpiDA3infI74lDKBUYoijT-lGgJUZfoWkp30INAa-IVvsp6fy-8md-78+6d4jvgpAhAW2-+gB3+P+puMi-+AAokdtAWAeAZDndAAHJSBIFc4oFIGSYIFpAb7pjb696749hBj17j4FDN74Lu66hQJt474d5EGYy4FqD4HV5db0HWjdKkFpDkHgCUEjbUJQrMF9577Fi0xkhNK+wUyr794DYwBDA1wngBISHdZDin6YDCDwhsZD5SDSBJoBBkylqhZSHdYPzxAiiuyDbx78ryF9CQjeC7IWAiaBq6YmQBL7JyiHJeIcawz-qOzuFHy0Fr5YJyZDCCYr4BHjBsH17wGGC+GoL+EEEd5BzIDD6j5DKhFeBGGREjKWGfyLpaZkw6aeFrqSJQjxBb55GKBixXIZTOFWh1KOFLDsbFH9BkgpaEaUjpa4CZYTw5b0DjR0CzxNK+CPC2CYiRDZK1YezxQ0QChmqIAuy5jaA7AqZJQPAYhByNQRSeTtjbC7DupoYohogRIbFuRZSRSGgaYCh2BAgIZ2DNQjDIDzErJhxQaxzxw1D2HmigjqEABep0IgYgkgI4kYQQLxDcs6L0kAsAe0lQQw4A2oauaAUJMJJUCsEACJCG3x8IfxUkESYJU4EJTK0JggsJ6JRIfO+xyJJJVQfqAajRBxqG7ShxuJGIJI4aORNq8J5JmJMg2J4wykwc2UUsE2OCJg-Es2IxXEopp8CcqibwpSZsEp2EKk-85shs8pm+oAtgHAdSiQvJfxygZsoGrxM6V8kJxJpJXJwgFJHqVJlQwKgi0hUY38YpZ8WpDWRSUSHJ-KVpKMepvx-xj0i0cMhCiaVMVol4WQ6kUg58+m4JZpRJKJcJCJ7u6RUghJ6RNOuExiZJwgXUDOmZhQwinwyyyg2ZmiWBP+wmdpVQ5ZdoyZRIXUhZhgSKoxCZSJFpxQDZeZ0RBQvptQXgcWTSeGD6neQwREj6MAPSFGZkVGzME5nePyHaAKo5HA-6SKeGn0SAMg6h+CXmY5zZXguoC5HAV0vZBQboJ5U50WEGGpeBp5dS5B-pfJBsGghMmyVIJcU+6A2g7q9G7uV+5+7qG5iWVB15o62y15fpWJOJYE14kEt42xpUbmmpaGdScFEEZYiFSG7SHxKFeBEgOpW8z5BpGFW4CF74qGKEA5ScFghJHZSZuZauvahFMAEJ6ReK6GVp+ZUuXC4BiGQapZaGpG4aNF2Bb6NZyggFN+XZuZTC6RdQ3phK-ZnxJFERm+xBb4u4YJpSaFW88KkRWl0EaGeFhgpSrFFgxFMFzwhlFFkoQl1FExB49FNZ3ZzFDaFl7F4BnF3ZPFROfFP+AlDJmiRmGGolh5ElnZUlqCZ+MlvlxpoWil6RKlFcsIal1IdmJywpqFvGtmQoJyQaplBg5lRFXx+pzwiGIoDltsH5ppQC5pjFvpBZBQnlZpZaPlclauOgDaA87ODA7OgmpScQfw2is2sQdJgljJO6npwCgmQVTJU1SoIlM1CVNqkVKJPlh5SUygXV3gvVzAA12BHa811YQl7SSlR1l1Bgw1yyIRV191aQvmD1SUU43FO1Ylz1BgdQq1Z6F1hgKVhWZVAZe+aULQYUmxZxSFQ04x+FTBSwpValygvUTUTEqJ0cd5TBsACN1lSNqUhULU7YH1pSUg2N5VuNqChUMgXsN5JpLlnZblzVn88NbFbVoWA8DFWUSizIgQcglcmqRS8iIJigKxNqA8i62+lQ8xRkwwOqyRhIFgqNyyzG-h3QOZ3FNp4BbQO8KtI1FZItoWAKWNLN9ViZ1J8VmZSKJNxtEgDVZtnVf1e1qW2oZgV64iPNg4EA-NQJsgQt+thKYtYwEtwUCxggAAkKHTMh2gDYmsmiiJAH2FhYOLKavGpr4J9BdDsQFcVahdjPUeGV9FzL9EVd4FmvkZUunTTEuYSgCiXPmpbSyn4e+nHQnQOJKJMvuYXb4sjOeZEE3U-C3VBAGA6UIhXQYZ9ZEAuZ3bTHDOnIOc5lelnQ3KAvviWIndpSqPmgCvFLZWvcZbhe2HXYsGRUZVDVoL2lvQCMfXZXvdWJ6L2kig0rFp8RVJJDAIhvadJNOSafdsoJ-ZWaADXTmvCkikCkCOzm-ZlZUJzkMC-WIBA-lfaW6H-V6BHQDKldwOlXrNlXgYqVvCbFQiSETZqWLC7B0vUbHf3eRbvUPUaUQ3gfAzKJUIfrA3wAwwyPaSQ-inQ0wdqdPlZWTbQ05biHTY1SmYTu6rw0kG4RTbUb4pwx0kMGwzJUMv4g7V4BzZaRiTaqpdZcWeYNDNzMhWZZqZgKTQGcoC5KcSHJ6B9QSe2a5UxYzS9RwF5R2h1ere7ho1UPvJYlojIAIerWo-9RiZ8V0G3LnGWaeekrbZo+SZknYbVT-VbT+fCtWVFSXG5cA43Mk1dK4wgezVSbSFzQoLzbCOAPzaMLwOaGuUdWWXHPFU45dWEznO8W6Dkz3eAazePY7abUU27dYB7eU5gFtf7WAMYLAGYHSBVvlDuTLaAM0+3CM5-HU-HN2ZNI09094F40fCdis3IbnB0901aZNEE9gYE82dHXlOlb7FLevYnMY-eWY3yd+QPhDdY4TRjVvjk4+ZPmpfs+8R87VSI3bU1eI1HS410z-t+Q02C00yYC0wJDk3dZszNac1C+3GsxrSi4YK5KWPHeMDcwsVGA1ks8dbnDE7Jcc4c1HdqF1Giwmlozo+VdSHYH4gRKvKUkbegD86JH8+aHcbAA8U8QJI1DTfGSbV4wzbxfCk0v4BTDfnhP0IK48XtF-S9ZRl+cq8K--QWrmTtdxo3Fq6q5oHk+PZK6S6nmrnK1JPskOka8xLPWBvCt3JgPK7a1y++RBjyeY-iZRkIKIOIILQoCoCSH+UDXyZTAG97aU6CRvUlEimsTTDq0JuGzidJDkHygm-wDva3ecWfdXam+pSvQPdhRm-G0feGJeOBFQ7m6fcmwA4W8OGuNWyfaHHG32osJVbDKGwW9c5lYYyEJm4FKlGVqgODVY0KT25-ACulUFKO98YKXmzq1m+zMqYu3W2G+lQKW85O+22kCu6PVO0lDO7o4e-nXtAY0XQfeW6LMrGW9O421g0e5ECu7ZP1n1ve8e422+0ZAO-mx28May8+52o2yMZ+y+523MUSxu727o4S67MB42oZjMfukdFnHqg4fCMyFIEzjZmpW1lKHYN7Wy0sNE6bbE9afE5HSaYjaK8CxR6Mh3XEPHVGIEEsPHYoUR7aDs5DM8ECN1dKjwNAOx1vpKqAHUBCPS9thcJUckeDUUSclJzOraEMAq23ANA4KCFNmripxxWrtJbfghlkAIMx23coGxxx4QmUXCKZy0Ifg0qHW8EMcyJp2FHhhZ97NvBTB0KsNAHGancJ-HZcdaz54EBCK5oYCF4oL5+9ROvPRFwYCMcR9xEIDngJ1ah51apyhJz3RUVUfJ9Ul4cyGiwPEl7aL02gMrSp-Uvsv1KfFpzXl1ZmWgLZwGHUkCtVy17IG3T9Q2nzC5+YG54lkCFF754omp3V659px9fyklWzWAGVzILmS7crfpzFdfpUMxr1+J0-VEANwu3hv+h56czte7ovYSr9mGOpECAPIEPV0tyDtt2BglVOMYBVrx6oK1z+VCLejmtgrx6dlvJytiw2gADqA3GDzRrDPBLDrIg-8rg+1Ul5LANtgfaBIoADk+AkYaA5QlQ7wUPxgGP1QV14P568PKL4PTSTwRHjgIUxkQwK8VHFPXgiPtFxc1GTPLPn8bPkQgDWQ3P9+vP3gCb9kGmuoXPgvBgwvfPBeUvYPsqSKNP9gdP9kEFzYK8thIPZP8vz14P1nMAKX+PW8DSuvaQVPeURvfAeqmqVQNvmAcstYLPwvkPkA0PygJeP9hv4YQgxQXoFPLvVM7vyvDgLYjY3vvHfv6v2Q9vjvpIoAdu9SOaWv3gwvt6pm1vtvdSuoEfvvKfn1wvufxvCm2QRffvJP3PgftCfIuosfnsATGfsf+fCBOvZvpPrAleggj8dIbds2AIGPTESwGPQwGPQzw-oAGP8AyA4-E-gQ4-GPtg8I8-eqIUIwGPthFvekVvg-iS87YUSwIwEYqXcPevQjbU-fg-lmB-R-ggM-zvzGVvsfKt3f878mp-hhPv4wWcMAywh-1yO1zfU-uTzb5HVwepSb-tyy3jxQMeEA+fmoEgClBmQ8-QiKiCyiap5+CxDAWGFpDr8K+YAzUu9zhx98+QGPQgXANMDBRmI8-eIAgBdpoB5+CQWmHAPiBd96BG-C1vL3wF4FwwSAUMMxGIH9AMePA+YvEHn6Lp5+UgXAe3yaRW86QJhL-igl-439Tu3VTZlX2kSCC5BvWSzBAKv5-8hAd-cejL0JSP9bedTXgfEDf7dNjBTNT-pnwd6-0UEZ5CvpT3qAgDLqm-AKFbwgFKD-+J-eHsL2p5fZ7A+EA5I4J-7X9rk-g9vgUCnBgcfBkQoQCngD7pFhI8IEIdIxpL99dBiQ2-skI7Q2CHqCQ-QYUg8EcCMidgnfj3zBoZRchAA-3oYGF7AD3BBQs-hYDSEZDFWfhWQT1k3DFDlBDQ1oc0JaFC9Aasgq0E9BUG691B5-EgUIBc6LRDBlfB-nYP6F+D8hRglYbxxtAOBbAvg4-oAIeqt8RhP+TwWaCt6ED9hzwaIdi0CF5QOh5SLoXEUuG5CbhoA51j+DA4vCShGw24akOCGPCwh0AwgXoJv5LCbUhQ+6t8Jv6-DTh5QwwNv2MAv90oVw+ofnyaHh0ThrPNodSnSGAjuhdgp-oQOcFHC3BWI0YTILsEedzOgXJ3oL0L7CdP+ZmLeB5xcEgC0+qFOolvHGELCLohwgvhMUJ7PAvejIyPoMICE4j5h8ANkScOOHkiG0NxQGriwmZ8RqQUHcwrIUNRDJJWjjLhKXSMJVY-OqTcjrWTNSSFwineSkNCy1GHNfSWTUBMgggSKRvyv5XVpQlVIuix6-KTIU0SyqhEg4LpGUi6Kk4Yt-RLCBThwmqy9lDSqpehEiQGgwsicgmbZr4F8Yxi1IcYpmC4BGYApfGe+FROmIphEQsx9bKTKAAM5dkRm5zBtHaI7aGYPSQIGAGh2QAYd2iZocmEsCvTWZLUXKQskCGVH4s1RrKaDjlEXCsBiEygCcVOJ4RjQJxO5Ezt1zs5T5jORvU7DKmB7yiIRrAK3tSOgHiCR+8AxAfAGX6r8xBYwDAfIHBGRBweGPNACwILjz85+I-fcRPzLA4DxRmzSTvCIbQAAGalvfjpaktAJP+YCQUHIRAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARjoCYAoKOJVURNAfTQBTADbg+ggG4BDYZClJoAcwAUaeDngBKUAG9WoA6EyD4kTNB79okHACNBmVeq0GAPq-2Gvh3gPiZEJScNbVB3T28vX1tkZGFBKWhgl3DI719rYWFk0LcPNKj+GAATQXBAwWKcgG5WAF92GAQUC194KUVFSr5hXnhkgBpQeAALQT52xW09L2NTc0s+AAcpREc1ENAAMi3QMakqjZcAXlPhsYmO2oaOZu4MqRxBHN0IoxMzVv5JruKevsGoAARNBHoIgZpro1OC1QGgAJ52OJ8ZBiUFPF4zQxzT57BJVdqIbJHTSQ+rQu5fPhSNBoRCKaBPaD9EmvbEfBZtDq-f5qQFAml0hlM+AQqG3LgWQX0xmCZkCRExYnOaYRHELfYE1bZTXKQnKkKksk3JqS0DS4Vy+B8aSyZ6srHveYWXX6vXanKk8Wm2G+WCoNSJa2lWDCKSYeQtTFqjlUn7dXp8o5DIH+9DteUhsMRyVi8kS2FpwOZwSh8OR1AKpEGlyO9Uu-HuonKV0eklG70w7hFjPB0vZivQG0ySD2lVsgz1vEHJvZN3t40Us2+aQBKS2eJ8LPlyXR9nOxbxv6JlnOFOrxDrzfbnMtPMmrsWC9X8Y3wdVpV7yex6da5ut5sF0XAtuGfDdX37HcWmHO0vydXEALnNsVS9fMfXufgwzsYopHEAAPJZjFpKMHRjA8uU6BMAWTYEsNsHD8MIwRiNQe8l1hOiGJWCMnngBw0DgqccCkJZVEVZFUT4dFBCGRDPWA9CLE43CYmKeFBJ-OT5xQhTH0Wes-HkQQRQ08jvm5KikzPYEDMDPiRTYkCLAMwQCKIulUFMhDG20w1O0pRY02KRBJRkRj3JI8c6x-CieRPQE3gKLxU1QYLQuEcLmI86BHMU0AgvC5ZjEOKKyNxE8+GMcBAQYXSAoK1zCL4IsvIWCqqsBZg6rNBq3OpYRT02aKD3aspAQAZm631+CEABHUc4DHIays5czKOPajrKBOaFtgcEpu4YSAGtxh2uU9uSNBVX3cqAW2wR5vO8EhiOK7-LNM7FsM+yrQEh1DBWhsZ18rQDoscpMDUb7jKtS7ru-A9dVesH3ihuyYeZP7nCuid4IWEG3rQvTfGMpZ4HhAQHt2pb4Bx4bcQySAsjh97pp6GlrXRkzkdxqdGeZgnUIfALomEZBYCOuC8bjCyNqsjQUw3cWjtyvTjvGJWJdapS7s1lWXpVVnuD1vhVPU0jZk0nzkL8omRf4ESll6WBB21w9Zd5Qb4BTR3ncHVWAqczKWKSC2Ee84GbdBo2pUwRQseWm6NWt5sQY7O2zWgZBqTjgTkCWOnAcWTJsnzwnhbNCGofDFQy-h6Xf2UOuY9R60a7zgv66nN1m-JVgQAgRSMHAbA8CIMhKGoegmHG9iMImTBR2UPD64bvDQFOY5hkXwQW-VvgnOUbiwT4yGhjNoY5QkVep3ilKcCWZASgPxSgQGRKkoMY-eP48-kDUy+0Br4tz9LgR+z9D7gBvjFNacUATgBTP6B+T9oB-CcgHSuilljlh-pDZQUDcYN1GtVBBoBaotyDmbfB0CRp9EqmNUhXUKFYKvmsVAJkCGOiIXQjqpDJp7ykCdehzoYJLzTHxZkNDbp8iBAZW0o4375VQBIrQID+ByJHM8eRggpGrUuOtT2yhtEpg0XaDBsJTGjmaso2G2jdFAz-NkOxKNzpizpEocQQC2GymZMoK+9jhgen8RQtYUMR5gj8UAgJupgkZ1hK45AQhTbqXCU8QB19dBeDeFOFYax8E8RkqAWJDQeznHGKTcmniJDeJFBvUAJdahOVAPvVJ9pxLCDQEMbRhdLYHlyesdpnTQDdJRq0j8cQBKtOmFk3pEcqhTIoQU0RzF8lgmmQDWZ+MPQLLidwVyEi-isOwD4lkgyukyCGbYGk5SomENvnKRQowxLVhxpvUA8QlBPNtFdD+3gAD8oB+nKBaQU55SohnfM0Ofa5VTNC-K8AALneQ8p5CIXnaAADzIs+SMIxFy4Wf0MAChw2BHBAgACqxGaYkeE5o442F+nCSASwnaIEqEioEoAADUoB4WEoMGoAIShEDgHNoM7QPLFGcp5Xy-lgrAiKBFepSFBL+VIpJcgMllLkAQEEAAdzpYoBlmMmUst6Oy4E3LeX8qSvK4VoqwUTIlcCFMVrZWErtYqh1KqW5i2QEdZl4yMraMdcIdJq8mlXx6LEUS-jCFeCaWgF2ocznDPxfGtIfMrBM2JOK91BRiVAOjfnZQ+bCUJPcYoKpNTYb+NVTaxFcJ2kbzOEjPNDa0gAt1JCstBQkVJsSLOUNV0hhuh9fChoBQRWgEiRIFtW9RjlIfpUo57CrSrwKBqgZ1YUwAFVoAxBKPUsEeYCh1CKR0wQGbIilNaXUqu1pWmzrJPyqcA6khjLReC1ZTwoW9s-mM7pP6dEvrSJOww4Hw4LCjX62NUSW4WiHF+5EIbkNhrTehuNXDI1Ftg8+69g89LvuHecjpG7M0wKkjm4d9abWFokMW0S-7vAVoVdW45Jk63Mf7c2t5bb0XMYMACoQ1pu0XNI7Rht-bk1DrQyOwJzZx1nutWkads751lPEMuimq6TnkciFu0Ne6D0oOKMep4oAAC0lnzTEUtMyU9YGL1CAI14W9BT72hMfaC2Jr6fzEc-YM4Df6O1JUA5oyZBTUJnreJBhuMGY3PqhP3MATlh6jwICQcgVBaCMDoDQOeVJCKIBwCFRAEhxiQJgF3SjR5DEcBTMV0rSAKvmO4E1srFW+Aladhjdou4OA1cRinbIg3FylI6y1yrQ86nxV+XfTUijDCahtSFyId99RLYMPqVb780h336VtwFqxMC7fm3dE8R2Txnf23dfmwhFH3c-mt7wd9gpoCdlIeEij3ufdpUlF7Xg75bq21u-lgPDB32EqMaktg0Bv2hyMWHGACgQ4MHfLlR3DDLyGPCbQxwAB8oB148v+2j95d1LNY4MDj0AeON5E-XjZsne31t3QAFTU5nXhXH+PGegHZ3Tgw5O77AC57T+nhPiegDACz87MiACk4ued0759LhXQvQAi7upvLHEu1frzeXj1nr27oAEJTh65V5L-nFut7G-l-0IEGLle84Z9LrFBgHe3ZkRi441P9fu-Xn7r32uZEE9d6roPoAieh5N0Du6BP-dDG8IHqX68k9x8d8oIEZuufS68FLgwZvDAr1+WSCbARmvlem4+INGBjjwuEqJTUQxJs15fo+QmleSuddr5SFEtgABWpZaYbybyJfBMB3cHar33xRckxvk+8O3rraWK8BngICufU3rHpiDA3infI74lDKBUYoijT-lGgJUZfoWkp30INAa-IVvsp6fy-8md-78+6d4jvgpAhAW2-+gB3+P+puMi-+AAokdtAWAeAZDndAAHJSBIFc4oFIGSYIFpAb7pjb696749hBj17j4FDN74Lu66hQJt474d5EGYy4FqD4HV5db0HWjdKkFpDkHgCUEjbUJQrMF9577Fi0xkhNK+wUyr794DYwBDA1wngBISHdZDin6YDCDwhsZD5SDSBJoBBkylqhZSHdYPzxAiiuyDbx78ryF9CQjeC7IWAiaBq6YmQBL7JyiHJeIcawz-qOzuFHy0Fr5YJyZDCCYr4BHjBsH17wGGC+GoL+EEEd5BzIDD6j5DKhFeBGGREjKWGfyLpaZkw6aeFrqSJQjxBb55GKBixXIZTOFWh1KOFLDsbFH9BkgpaEaUjpa4CZYTw5b0DjR0CzxNK+CPC2CYiRDZK1YezxQ0QChmqIAuy5jaA7AqZJQPAYhByNQRSeTtjbC7DupoYohogRIbFuRZSRSGgaYCh2BAgIZ2DNQjDIDzErJhxQaxzxw1D2HmigjqEABep0IgYgkgI4kYQQLxDcs6L0kAsAe0lQQw4A2oauaAUJMJJUCsEACJCG3x8IfxUkESYJU4EJTK0JggsJ6JRIfO+xyJJJVQfqAajRBxqG7ShxuJGIJI4aORNq8J5JmJMg2J4wykwc2UUsE2OCJg-Es2IxXEopp8CcqibwpSZsEp2EKk-85shs8pm+oAtgHAdSiQvJfxygZsoGrxM6V8kJxJpJXJwgFJHqVJlQwKgi0hUY38YpZ8WpDWRSUSHJ-KVpKMepvx-xj0i0cMhCiaVMVol4WQ6kUg58+m4JZpRJKJcJCJ7u6RUghJ6RNOuExiZJwgXUDOmZhQwinwyyyg2ZmiWBP+wmdpVQ5ZdoyZRIXUhZhgSKoxCZSJFpxQDZeZ0RBQvptQXgcWTSeGD6neQwREj6MAPSFGZkVGzME5nePyHaAKo5HA-6SKeGn0SAMg6h+CXmY5zZXguoC5HAV0vZBQboJ5U50WEGGpeBp5dS5B-pfJBsGghMmyVIJcU+6A2g7q9G7uV+5+7qG5iWVB15o62y15fpWJOJYE14kEt42xpUbmmpaGdScFEEZYiFSG7SHxKFeBEgOpW8z5BpGFW4CF74qGKEA5ScFghJHZSZuZauvahFMAEJ6ReK6GVp+ZUuXC4BiGQapZaGpG4aNF2Bb6NZyggFN+XZuZTC6RdQ3phK-ZnxJFERm+xBb4u4YJpSaFW88KkRWl0EaGeFhgpSrFFgxFMFzwhlFFkoQl1FExB49FNZ3ZzFDaFl7F4BnF3ZPFROfFP+AlDJmiRmGGolh5ElnZUlqCZ+MlvlxpoWil6RKlFcsIal1IdmJywpqFvGtmQoJyQaplBg5lRFXx+pzwiGIoDltsH5ppQC5pjFvpBZBQnlZpZaPlclauOgDaA87ODA7OgmpScQfw2is2sQdJgljJO6npwCgmQVTJU1SoIlM1CVNqkVKJPlh5SUygXV3gvVzAA12BHa811YQl7SSlR1l1Bgw1yyIRV191aQvmD1SUU43FO1Ylz1BgdQq1Z6F1hgKVhWZVAZe+aULQYUmxZxSFQ04x+FTBSwpValygvUTUTEqJ0cd5TBsACN1lSNqUhULU7YH1pSUg2N5VuNqChUMgXsN5JpLlnZblzVn88NbFbVoWA8DFWUSizIgQcglcmqRS8iIJigKxNqA8i62+lQ8xRkwwOqyRhIFgqNyyzG-h3QOZ3FNp4BbQO8KtI1FZItoWAKWNLN9ViZ1J8VmZSKJNxtEgDVZtnVf1e1qW2oZgV64iPNg4EA-NQJsgQt+thKYtYwEtwUCxggAAkKHTMh2gDYmsmiiJAH2FhYOLKavGpr4J9BdDsQFcVahdjPUeGV9FzL9EVd4FmvkZUunTTEuYSgCiXPmpbSyn4e+nHQnQOJKJMvuYXb4sjOeZEE3U-C3VBAGA6UIhXQYZ9ZEAuZ3bTHDOnIOc5lelnQ3KAvviWIndpSqPmgCvFLZWvcZbhe2HXYsGRUZVDVoL2lvQCMfXZXvdWJ6L2kig0rFp8RVJJDAIhvadJNOSafdsoJ-ZWaADXTmvCkikCkCOzm-ZlZUJzkMC-WIBA-lfaW6H-V6BHQDKldwOlXrNlXgYqVvCbFQiSETZqWLC7B0vUbHf3eRbvUPUaUQ3gfAzKJUIfrA3wAwwyPaSQ-inQ0wdqdPlZWTbQ05biHTY1SmYTu6rw0kG4RTbUb4pwx0kMGwzJUMv4g7V4BzZaRiTaqpdZcWeYNDNzMhWZZqZgKTQGcoC5KcSHJ6B9QSe2a5UxYzS9RwF5R2h1ere7ho1UPvJYlojIAIerWo-9RiZ8V0G3LnGWaeekrbZo+SZknYbVT-VbT+fCtWVFSXG5cA43Mk1dK4wgezVSbSFzQoLzbCOAPzaMLwOaGuUdWWXHPFU45dWEznO8W6Dkz3eAazePY7abUU27dYB7eU5gFtf7WAMYLAGYHSBVvlDuTLaAM0+3CM5-HU-HN2ZNI09094F40fCdis3IbnB0901aZNEE9gYE82dHXlK5KWPHeML7FLTIdAPs6s6bbE9aXcpRkYVVtAP-WkxtUoV84pN+c8yOqEb6Vk6AsghAkC4Nn7UJu0fZVQoNmPfytIx4dUl4b4mC1gi6TKd+Yc+3Kc-9SwkUVlWNkE4aaqfQkiQNA01LoJts74L45S2pNS0zC4CMwCr43vioiyxTEROy--ffkitJbCSM+cw2uC32kUpgKSsC8CDAEdFnHquDHlOTEsFetZpalyoWUCNcxM3xNSHMQsXeNBeVUa6yia6favLemY3yd+QPhDdY4TRjVvjk4+ZPmpSCzY0IwsCI3bU1eI1HS410z-vKx40G00yYC0wJDk3dZszNUS-fis0MscxrQm4YPq7cxa37I80m1dYS687JWm-m1HdqF1KW0xdULyug1KDjfiZRkIKIOIILQoCoCSH+UDXyZTM297aU6CRvUlEimsTTEK-C+ldJDkHysO-wDva3ecWfdXV2ziXO4PaHIO9KyuOGJeOBFQ-O9a52+lVfdQ+uyENO4sJVbDB20u+lZe13Ru2kDOyDWVqgODVY0Kde5-ACulUFC+98YKQu0K0+wKU6x+w+wWsu-yZKbhKB4B+e2nfnRneB52pB5TEGRnYh6dP1n1snUB4sFg5+0lN+7owR8h42ky7GAY1e2R-8qh7ZNh4Y2e0Oxe3YFOze7oyMWx5uw7Ma67IRxB7e7x+vUx9K4ZjMfukq8gCq02syFIEzjZmpW1lKHYN7X4gRNE0Wwzd1Qk7RZB2p0sJoP6286Mh3XEPHVGIEEsPHYoSp7aDs5DM8ECN1dKjwNAFZ1vpKqAHUBCKWxUVUeDaSyKKWx1TfnhG3ANA4KCFNmrraMF2rqK8UH6VkAIGZ23coJZ9Z4QmUXCKly0Ifg0qHW8EMcyJF2FHhhl97NvBTB0KsD8wRqnW5-HZcf4NV4oLVxCK5oYC19SG14EO9ROvPZ1wYCMap9xEIDns51ahV1apyt5z3X58kQFxi80USwPCN7aL02gMrbF-Uvsv1KfFFzXl1ZmWgLlwGHUkCjt6d7IG3T9Q2nzCV+YGV4lkCN1zV4EIoqF+Fwd5GBVnd0lElWzWAOtzILmS7crfFzFdfpUMxv93FnFoED9xlHhv+hV6czte7ovYSr9mGOpECAPIj6V8IDK6So5jat9bYz+MYBVg56oGdz+VCLejmtgg56dlvJyhmw2gADqA3GDzRrDPAGfxOc-8o8+1Ul5LAAPmisfaBIoADk+AkYaA5QlQ7w-Pxgcv1bl1PP56IvCbPPTSTwKnjgIUxkQwK8wvevXgYvunP9FvVvn8NvkQgDWQDv9+Tv3gw79kGmuo9vbvBgHvzvBe-v3PsqSKRv9gJv9kEFzYK8thnPOvIfz1PP2XMAY3qvW8DSSfaQBveU6ffAeqmqVQhfmAcstYVvHvfPkAAvygJeP9af4YQgiX8fCfEx6vzwEfDgLYjYDfDniXMf2QJfZfpIoAdu9SOaLf1vrrntz8Q-dSuovfTfk-yfbwi-GfCm2Qa-iXWvFfvrOsfIuoQ-nsATpmBfRfy-4Bif2fV1PPleggj8dIbds2AIcvTESwcvQwcvQzH-oAcv8AyAP-X-oEB-5y9bA8IEAXqhCgjA5ethXPnpHz5v9Ekf7MKEsBGARhxu6yT6pXx-DxRX+xgJYJZlQHoDBAgA3foYUb7jAh+KtB-n+3kwr9yBDnKSCgmWBoDrkO1C-g9Sv7X8jqt-TUlnCnLP8+QcvfgdABAFqBIApQZkCAMIiogsomqEAQsQUFhhaQMArXrwIIoOA4cgg-oHLxp62AxBpgYKMxBAHxAEALtNACAISC0wxB8Qe-hYNgFLNs+6gpguGCQChhmI2g5QHL1cHzF4gIAxdCAKkCqCb+gNfPnSBMLjARBLA4gRj207dNsBtCIQeEN6yWYRBhA1gUIFIHj1A+hKfPlQJ8HuC6B8Q5jHkKL6-0UEZ5Hfpsy4HcCECcAgKPnyiFEC2BmAvXh70N5fZ7A+EA5OUJgDRDrkrQ+6jkJNKccmhGQwpGQJ-zCR4QXQtFsoFwFpDmhmQlPKFmGEPUxhxAlYdgTWH3UEB+ApAelH6EYCOwU-OerUPd579qUMw8pGFz8JhCesm4DYS0I4GO96g5w7YaEIoGUwSuwZQYZMJNK4ChAPwvaFkId47C0gjQ5gUsOeACF9eJQr4XoKOEwiXhIQ3Xu8J-z1CzQ+fREdCNiFu92heUaYbMNuFxEcR4wv4dr3hRThOOZIzYWCPSJEibhPQ3AXoPSHEDQRNqcEZdVpHXIthdQxwZED2H38DhYNDKLiKNCT8PedQcOuiNOG6dGR3Qu4V8KoF6DKhnAt4bKIuFNJ8+FXdLo13L74jV+bnCgWZi3gVcqh1-D3rpTqJbwwhVoJ6O9RF7YD2+6XbNMzC35eh6RtVIEfAAtHvCahmom1DcUBq3tWOjUG1pqSNroAPWokL1tL1sD3FHie0ASOGISp2MTaXjBmrxXhRNJuuX3JGg8SeJf0XqlGL8rAELHJix2QfK0jtW4yNxyxSY5iIZ1Dbj1MxAorwBjylx5j9kQ6BsUWNnpgYqRP4bsWFyRqnkEqdQZLMQnmE8Ixo04+cbOOqg7kUuN3PLlPmS7p9TsMqDnoGM5GsAdR+omcUIICGf9xBkg+ABAKgH+CxgCg+QByMiA885eaAWwQXBAHADP+J43-mWBUGejOePndsaFgAAMhzH-BW0cFgTQJd+chEAA

Metalinguistic Abstraction 4.3.3

: head(choices)(env,

succeed,

() => try_next(tail(choices)));

}

return try_next(cfuns);

};

}

Driver loop

The driver loop for the amb evaluator is complex, due to the mechanism that permits the user to

try again in evaluating an expression. The driver uses a function called internal_loop, which

takes as argument a function try_again. The intent is that calling try_again should go on to

the next untried alternative in the nondeterministic evaluation. The function internal_loop

either calls try_again in response to the user typing try_again at the driver loop, or else starts

a new evaluation by calling ambeval.

The failure continuation for this call to ambeval informs the user that there are no more

values and re-invokes the driver loop.

The success continuation for the call to ambeval is more subtle. We print the obtained value

and then invoke the internal loop again with a try_again function that will be able to try the

next alternative. This next_alternative function is the second argument that was passed to

the success continuation. Ordinarily, we think of this second argument as a failure continuation

to be used if the current evaluation branch later fails. In this case, however, we have completed

a successful evaluation, so we can invoke the “failure” alternative branch in order to search

for additional successful evaluations.

Iconst input_prompt = "amb-evaluate input:";

const output_prompt = "amb-evaluate value:";

function driver_loop() {

function internal_loop(try_again) {

const input = user_read(input_prompt);

if (input === "try_again") {

try_again();

} else {

display("Starting a new problem");

ambeval(parse(input),

the_global_environment,

// ambeval success

(val, next_alternative) => {

user_print(output_prompt, val);

return internal_loop(next_alternative);

},

463 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARjoCYAoKOJVURNAfTQBTADbg+ggG4BDYZClJoAcwAUaeDngBKUAG9WoA6EyD4kTNB79okHACNBmVeq0GAPq-2Gvh3gPiZEJScNbVB3T28vX1tkZGFBKWhgl3DI719rYWFk0LcPNKj+GAATQXBAwWKcgG5WAF92GAQUC194KUVFSr5hXnhkgBpQeAALQT52xW09L2NTc0s+AAcpREc1ENAAMi3QMakqjZcAXlPhsYmO2oaOZu4MqRxBHN0IoxMzVv5JruKevsGoAARNBHoIgZpro1OC1QGgAJ52OJ8ZBiUFPF4zQxzT57BJVdqIbJHTSQ+rQu5fPhSNBoRCKaBPaD9EmvbEfBZtDq-f5qQFAml0hlM+AQqG3LgWQX0xmCZkCRExYnOaYRHELfYE1bZTXKQnKkKksk3JqS0DS4Vy+B8aSyZ6srHveYWXX6vXanKk8Wm2G+WCoNSJa2lWDCKSYeQtTFqjlUn7dXp8o5DIH+9DteUhsMRyVi8kS2FpwOZwSh8OR1AKpEGlyO9Uu-HuonKV0eklG70w7hFjPB0vZivQG0ySD2lVsgz1vEHJvZN3t40Us2+aQBKS2eJ8LPlyXR9nOxbxv6JlnOFOrxDrzfbnMtPMmrsWC9X8Y3wdVpV7yex6da5ut5sF0XAtuGfDdX37HcWmHO0vydXEALnNsVS9fMfXufgwzsYopHEAAPJZjFpKMHRjA8uU6BMAWTYEsNsHD8MIwRiNQe8l1hOiGJWCMnngBw0DgqccCkJZVEVZFUT4dFBCGRDPWA9CLE43CYmKeFBJ-OT5xQhTH0Wes-HkQQRQ08jvm5KikzPYEDMDPiRTYkCLAMwQCKIulUFMhDG20w1O0pRY02KRBJRkRj3JI8c6x-CieRPQE3gKLxU1QYLQuEcLmI86BHMU0AgvC5ZjEOKKyNxE8+GMcBAQYXSAoK1zCL4IsvIWCqqsBZg6rNBq3OpYRT02aKD3aspAQAZm631+CEABHUc4DHIays5czKOPajrKBOaFtgcEpu4YSAGtxh2uU9uSNBVX3cqAW2wR5vO8EhiOK7-LNM7FsM+yrQEh1DBWhsZ18rQDoscpMDUb7jKtS7ru-A9dVesH3ihuyYeZP7nCuid4IWEG3rQvTfGMpZ4HhAQHt2pb4Bx4bcQySAsjh97pp6GlrXRkzkdxqdGeZgnUIfALomEZBYCOuC8bjCyNqsjQUw3cWjtyvTjvGJWJdapS7s1lWXpVVnuD1vhVPU0jZk0nzkL8omRf4ESll6WBB21w9Zd5Qb4BTR3ncHVWAqczKWKSC2Ee84GbdBo2pUwRQseWm6NWt5sQY7O2zWgZBqTjgTkCWOnAcWTJsnzwnhbNCGofDFQy-h6Xf2UOuY9R60a7zgv66nN1m-JVgQAgRSMHAbA8CIMhKGoegmHG9iMImTBR2UPD64bvDQFOY5hkXwQW-VvgnOUbiwT4yGhjNoY5QkVep3ilKcCWZASgPxSgQGRKkoMY-eP48-kDUy+0Br4tz9LgR+z9D7gBvjFNacUATgBTP6B+T9oB-CcgHSuilljlh-pDZQUDcYN1GtVBBoBaotyDmbfB0CRp9EqmNUhXUKFYKvmsVAJkCGOiIXQjqpDJp7ykCdehzoYJLzTHxZkNDbp8iBAZW0o4375VQBIrQID+ByJHM8eRggpGrUuOtT2yhtEpg0XaDBsJTGjmaso2G2jdFAz-NkOxKNzpizpEocQQC2GymZMoK+9jhgen8RQtYUMR5gj8UAgJupgkZ1hK45AQhTbqXCU8QB19dBeDeFOFYax8E8RkqAWJDQeznHGKTcmniJDeJFBvUAJdahOVAPvVJ9pxLCDQEMbRhdLYHlyesdpnTQDdJRq0j8cQBKtOmFk3pEcqhTIoQU0RzF8lgmmQDWZ+MPQLLidwVyEi-isOwD4lkgyukyCGbYGk5SomENvnKRQowxLVhxpvUA8QlBPNtFdD+3gAD8oB+nKBaQU55SohnfM0Ofa5VTNC-K8AALneQ8p5CIXnaAADzIs+SMIxFy4Wf0MAChw2BHBAgACqxGaYkeE5o442F+nCSASwnaIEqEioEoAADUoB4WEoMGoAIShEDgHNoM7QPLFGcp5Xy-lgrAiKBFepSFBL+VIpJcgMllLkAQEEAAdzpYoBlmMmUst6Oy4E3LeX8qSvK4VoqwUTIlcCFMVrZWErtYqh1KqW5i2QEdZl4yMraMdcIdJq8mlXx6LEUS-jCFeCaWgF2ocznDPxfGtIfMrBM2JOK91BRiVAOjfnZQ+bCUJPcYoKpNTYb+NVTaxFcJ2kbzOEjPNDa0gAt1JCstBQkVJsSLOUNV0hhuh9fChoBQRWgEiRIFtW9RjlIfpUo57CrSrwKBqgZ1YUwAFVoAxBKPUsEeYCh1CKR0wQGbIilNaXUqu1pWmzrJPyqcA6khjLReC1ZTwoW9s-mM7pP6dEvrSJOww4Hw4LCjX62NUSW4WiHF+5EIbkNhrTehuNXDI1Ftg8+69g89LvuHecjpG7M0wKkjm4d9abWFokMW0S-7vAVoVdW45Jk63Mf7c2t5bb0XMYMACoQ1pu0XNI7Rht-bk1DrQyOwJzZx1nutWkads751lPEMuimq6TnkciFu0Ne6D0oOKMep4oAAC0lnzTEUtMyU9YGL1CAI14W9BT72hMfaC2Jr6fzEc-YM4Df6O1JUA5oyZBTUJnreJBhuMGY3PqhP3MATlh6jwICQcgVBaCMDoDQOeVJCKIBwCFRAEhxiQJgF3SjR5DEcBTMV0rSAKvmO4E1srFW+Aladhjdou4OA1cRinbIg3FylI6y1yrQ86nxV+XfTUijDCahtSFyId99RLYMPqVb780h336VtwFqxMC7fm3dE8R2Txnf23dfmwhFH3c-mt7wd9gpoCdlIeEij3ufdpUlF7Xg75bq21u-lgPDB32EqMaktg0Bv2hyMWHGACgQ4MHfLlR3DDLyGPCbQxwAB8oB148v+2j95d1LNY4MDj0AeON5E-XjZsne31t3QAFTU5nXhXH+PGegHZ3Tgw5O77AC57T+nhPiegDACz87MiACk4ued0759LhXQvQAi7upvLHEu1frzeXj1nr27oAEJTh65V5L-nFut7G-l-0IEGLle84Z9LrFBgHe3ZkRi441P9fu-Xn7r32uZEE9d6roPoAieh5N0Du6BP-dDG8IHqX68k9x8d8oIEZuufS68FLgwZvDAr1+WSCbARmvlem4+INGBjjwuEqJTUQxJs15fo+QmleSuddr5SFEtgABWpZaYbybyJfBMB3cHar33xRckxvk+8O3rraWK8BngICufU3rHpiDA3infI74lDKBUYoijT-lGgJUZfoWkp30INAa-IVvsp6fy-8md-78+6d4jvgpAhAW2-+gB3+P+puMi-+AAokdtAWAeAZDndAAHJSBIFc4oFIGSYIFpAb7pjb696749hBj17j4FDN74Lu66hQJt474d5EGYy4FqD4HV5db0HWjdKkFpDkHgCUEjbUJQrMF9577Fi0xkhNK+wUyr794DYwBDA1wngBISHdZDin6YDCDwhsZD5SDSBJoBBkylqhZSHdYPzxAiiuyDbx78ryF9CQjeC7IWAiaBq6YmQBL7JyiHJeIcawz-qOzuFHy0Fr5YJyZDCCYr4BHjBsH17wGGC+GoL+EEEd5BzIDD6j5DKhFeBGGREjKWGfyLpaZkw6aeFrqSJQjxBb55GKBixXIZTOFWh1KOFLDsbFH9BkgpaEaUjpa4CZYTw5b0DjR0CzxNK+CPC2CYiRDZK1YezxQ0QChmqIAuy5jaA7AqZJQPAYhByNQRSeTtjbC7DupoYohogRIbFuRZSRSGgaYCh2BAgIZ2DNQjDIDzErJhxQaxzxw1D2HmigjqEABep0IgYgkgI4kYQQLxDcs6L0kAsAe0lQQw4A2oauaAUJMJJUCsEACJCG3x8IfxUkESYJU4EJTK0JggsJ6JRIfO+xyJJJVQfqAajRBxqG7ShxuJGIJI4aORNq8J5JmJMg2J4wykwc2UUsE2OCJg-Es2IxXEopp8CcqibwpSZsEp2EKk-85shs8pm+oAtgHAdSiQvJfxygZsoGrxM6V8kJxJpJXJwgFJHqVJlQwKgi0hUY38YpZ8WpDWRSUSHJ-KVpKMepvx-xj0i0cMhCiaVMVol4WQ6kUg58+m4JZpRJKJcJCJ7u6RUghJ6RNOuExiZJwgXUDOmZhQwinwyyyg2ZmiWBP+wmdpVQ5ZdoyZRIXUhZhgSKoxCZSJFpxQDZeZ0RBQvptQXgcWTSeGD6neQwREj6MAPSFGZkVGzME5nePyHaAKo5HA-6SKeGn0SAMg6h+CXmY5zZXguoC5HAV0vZBQboJ5U50WEGGpeBp5dS5B-pfJBsGghMmyVIJcU+6A2g7q9G7uV+5+7qG5iWVB15o62y15fpWJOJYE14kEt42xpUbmmpaGdScFEEZYiFSG7SHxKFeBEgOpW8z5BpGFW4CF74qGKEA5ScFghJHZSZuZauvahFMAEJ6ReK6GVp+ZUuXC4BiGQapZaGpG4aNF2Bb6NZyggFN+XZuZTC6RdQ3phK-ZnxJFERm+xBb4u4YJpSaFW88KkRWl0EaGeFhgpSrFFgxFMFzwhlFFkoQl1FExB49FNZ3ZzFDaFl7F4BnF3ZPFROfFP+AlDJmiRmGGolh5ElnZUlqCZ+MlvlxpoWil6RKlFcsIal1IdmJywpqFvGtmQoJyQaplBg5lRFXx+pzwiGIoDltsH5ppQC5pjFvpBZBQnlZpZaPlclauOgDaA87ODA7OgmpScQfw2is2sQdJgljJO6npwCgmQVTJU1SoIlM1CVNqkVKJPlh5SUygXV3gvVzAA12BHa811YQl7SSlR1l1Bgw1yyIRV191aQvmD1SUU43FO1Ylz1BgdQq1Z6F1hgKVhWZVAZe+aULQYUmxZxSFQ04x+FTBSwpValygvUTUTEqJ0cd5TBsACN1lSNqUhULU7YH1pSUg2N5VuNqChUMgXsN5JpLlnZblzVn88NbFbVoWA8DFWUSizIgQcglcmqRS8iIJigKxNqA8i62+lQ8xRkwwOqyRhIFgqNyyzG-h3QOZ3FNp4BbQO8KtI1FZItoWAKWNLN9ViZ1J8VmZSKJNxtEgDVZtnVf1e1qW2oZgV64iPNg4EA-NQJsgQt+thKYtYwEtwUCxggAAkKHTMh2gDYmsmiiJAH2FhYOLKavGpr4J9BdDsQFcVahdjPUeGV9FzL9EVd4FmvkZUunTTEuYSgCiXPmpbSyn4e+nHQnQOJKJMvuYXb4sjOeZEE3U-C3VBAGA6UIhXQYZ9ZEAuZ3bTHDOnIOc5lelnQ3KAvviWIndpSqPmgCvFLZWvcZbhe2HXYsGRUZVDVoL2lvQCMfXZXvdWJ6L2kig0rFp8RVJJDAIhvadJNOSafdsoJ-ZWaADXTmvCkikCkCOzm-ZlZUJzkMC-WIBA-lfaW6H-V6BHQDKldwOlXrNlXgYqVvCbFQiSETZqWLC7B0vUbHf3eRbvUPUaUQ3gfAzKJUIfrA3wAwwyPaSQ-inQ0wdqdPlZWTbQ05biHTY1SmYTu6rw0kG4RTbUb4pwx0kMGwzJUMv4g7V4BzZaRiTaqpdZcWeYNDNzMhWZZqZgKTQGcoC5KcSHJ6B9QSe2a5UxYzS9RwF5R2h1ere7ho1UPvJYlojIAIerWo-9RiZ8V0G3LnGWaeekrbZo+SZknYbVT-VbT+fCtWVFSXG5cA43Mk1dK4wgezVSbSFzQoLzbCOAPzaMLwOaGuUdWWXHPFU45dWEznO8W6Dkz3eAazePY7abUU27dYB7eU5gFtf7WAMYLAGYHSBVvlDuTLaAM0+3CM5-HU-HN2ZNI09094F40fCdis3IbnB0901aZNEE9gYE82dHXlK5KWPHeML7FLTIdAPs6s6bbE9aXcpRkYVVtAP-WkxtUoV84pN+c8yOqEb6Vk6AsghAkC4Nn7UJu0fZVQoNmPfytIx4dUl4b4mC1gi6TKd+Yc+3Kc-9SwkUVlWNkE4aaqfQkiQNA01LoJts74L45S2pNS0zC4CMwCr43vioiyxTEROy--ffkitJbCSM+cw2uC32kUpgKSsC8CDAEdFnHquDHlOTEsFetZpalyoWUCNcxM3xNSHMQsXeNBeVUa6yia6favLemY3yd+QPhDdY4TRjVvjk4+ZPmpSCzY0IwsCI3bU1eI1HS410z-vKx40G00yYC0wJDk3dZszNUS-fis0MscxrQm4YPq7cxa37I80m1dYS687JWm-m1HdqF1KW0xdULyug1KLoyMX4gRDa5qUbegB66JF6+aHcbAA8U8QJI1DTfGSbV4wzbxfCk0v4BTDfnhP0D248XtF-S9ZRl+XO320K52rmTtdxo3Kuwu5oHk+PSO0s5EDte7pO1JPskOru8xLPWBvCt3JgFO5e62++RBjyeY-iZRkIKIOIILQoCoCSH+UDXyZTD+97aU6CRvUlEimsTTOuwA8BzidJDkHyjB-wDva3ecWfdXYh+pSvQPdhSh9B0feGJeOBFQ5h9a0B+lVfdQ6HFB9K8MZlYYyENR-W8x7DIB8R8vaDagODVY0KVx5-ACulUFGVnxzUQJ1h0K2h+zMqYKdJ2x+awKU64Jwx2kLJ6PUJ0lCJ7o1p-nXtAY0XQfdx-wFg9pwWrh6bCQ5LBZ94LJ7ZP1n1kR8J1Z450ZCx9h4xw7HYC5zp1Zw23Z42sMca67EF-8gF6F+vax8R4ZjMfukq8gCq02syFIEzjZmpW1lKHYN7Y20sNE0Wwzd1Qk7Rbh3l-u-Y-TVW58ZAEIJgEVIEP0IRGApzP4AqkMMkSPggPXBO9nJ6k3Ckd17oKHb8qXUguAhTYfJ16PvB0SsCBiuN6ZpZk5BHvfYsIC4+AN112fag14ACs7lIct4pKt7ty2et7s9N916wKd-C0CAANrSoy1+BCoqC6iXegxWpSrXf8o8rwB9dtdBA9yDcfeSoAC6QI339ncIAPXq6k73CVcWv2YY6kQI1maP6PGPmPWPVODtzXy6z3Cqn3AAOjlFan9wT0EPD8TzlCjLVw4PQjOHj2TBT1MB830qPPoUz61y9+NpqYEEsPHUVC13UlcbYJZuB9Lfz-HQijcawENfHQL9aFz3UsCCMeL3+1etojL40nlMUAEBVvV3hhGnlI1w4N8YxnqI+9SIoKsD8wRqUlL1vlvHT-V8YDOI70L8uj9QYKndAIrxpiXHGUj19jnmjwLcCX96dqfKVqCHxGZmj1Ko5pEOeiIC5r7-728kCOex0LbxCK5oYMHyj9j8XyXzj5mR78r5KiT49479T0n0lNnzb4EO9ROvPfnwYIX6H1q4GJgP+-UvqtvskaYVZtZm-OX374L5X8CNX1arX1XzTx9QUCMbl9xEIDnt1TXxP1vpKqAHUBCESxUVUeDaSyKESwPMv7aL02gMrbaEMNO23ANGb5GBVl1ZmS7w174v3Yr572TBJovx2nzGZBP8MoeGe-v1FPix8a83vJKElTZpgAL+MgXMi7WVqv8ECnfVHqX0wHo8x+n1EEDqhwCapNeEWUAKiARQz8eUc-afgv0zJTg9eNeQ3olmgFnpoBcWOLIAIgFhQ8M-6U9mO3ALoCw+9SHVBM1lZ1Fmu4EPACPxx7Ah6+AAn8HQIN4W8mByfRcKwHkH08je1QIAA

Metalinguistic Abstraction 4.3.3

// ambeval failure

() => {

display("There are no more values of");

display(input);

return driver_loop();

});

}

}

return internal_loop(

() => {

display("There is no current problem");

return driver_loop();

});

}

The initial call to internal_loop uses a try_again function that complains that there is no

current problem and restarts the driver loop. This is the behavior that will happen if the user

types try_again when there is no evaluation in progress.

Exercise 4.50

Implement a new syntactic form ramb that is like amb except that it searches alternatives in a

random order, rather than from left to right. Show how this can help with Alyssa’s problem

in exercise 4.49.

Exercise 4.51

Implement assignment such that is not undone upon failure. For example, we can choose two

distinct elements from a list and count the number of trials required to make a successful

choice as follows:

let count = 0;

let x = an_element_of("a", "b", "c");

let y = an_element_of("a", "b", "c");

count = count + 1;

require(! x === y);

list(x, y, count);

S t a r t i n g a new problem
amb−eva lua te value :
[" a " , [" b " , [2 , nu l l]]]

amb−eva lua te input :

try_again

464 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.3.3

amb−eva lua te value :
[" a " , [" c " , [3 , nu l l]]]

What values would have been displayed if we had used the original meaning of assignment

rather than permanent assignment?

Exercise 4.52

We shall horribly abuse the syntax for conditional statements, by implementing a construct

of the following form:

if (evaluation_succeeds_take) { statement } else { alternative }

The construct permits the user to catch the failure of a statement. It evaluates the statement
as usual and returns as usual if the evaluation succeeds. If the evaluation fails, however, the

alternative is evaluated, as in the following example:

amb−eva lua te input :

if (evaluation_succeeds_take) {

const x = an_element_of(list(1, 3, 5));

require(is_even(x));

} else {

"all odd";

}

S t a r t i n g a new problem
amb−eva lua te value :
" a l l odd "

amb−eva lua te input :

if (evaluation_succeeds_take) {

const x = an_element_of(list(1, 3, 5, 8));

require(is_even(x));

x;

} else {

"all odd";

}

S t a r t i n g a new problem
amb−eva lua te value :
8

465 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.3.0

Exercise 4.53

With the new kind of assignment as described in exercise 4.51 and the construct

if (evaluation_succeeds_take) { . . . } else { . . . }

as in exercise 4.52, what will be the result of evaluating

let pairs = null;

if (evaluation_succeeds_take) {

const p = prime_sum_pair(list(1, 3, 5, 8), list(20, 35, 110));

pairs = pair(p, pairs); // using permanent assignment

amb();

} else {

pairs;

}

Exercise 4.54

If we had not realized that require could be implemented as an ordinary function that uses

amb, to be de�ned by the user as part of a nondeterministic program, we would have had to

implement it as a syntactic form. This would require syntax functions

function is_require(stmt) {

return is_tagged_list(stmt, "require");

}

function require_predicate(stmt) {

return head(tail(stmt));

}

and a new clause in the dispatch in analyze

: is_require(stmt)

? analyze_require(stmt)

as well the function analyze_require that handles require expressions. Complete the follow-

ing de�nition of analyze_require.

function analyze_require(stmt) {

const pfun = analyze(require_predicate(stmt));

return (env, succeed, fail) =>

pfun(env,

(pred_value, fail2) =>

〈??〉

? 〈??〉

: succeed("ok", fail2),

fail);

}

466 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.4

4.4 Logic Programming

In chapter 1 we stressed that computer science deals with imperative (how to) knowledge,

whereas mathematics deals with declarative (what is) knowledge. Indeed, programming lan-

guages require that the programmer express knowledge in a form that indicates the step-by-

step methods for solving particular problems. On the other hand, high-level languages provide,

as part of the language implementation, a substantial amount of methodological knowledge

that frees the user from concern with numerous details of how a speci�ed computation will

progress.

Most programming languages, including JavaScript, are organized around computing the

values of mathematical functions. Expression-oriented languages (such as Lisp, Fortran, Algol

and JavaScript) capitalize on the “pun” that an expression that describes the value of a function

may also be interpreted as a means of computing that value. Because of this, most programming

languages are strongly biased toward unidirectional computations (computations with well-

de�ned inputs and outputs). There are, however, radically di�erent programming languages

that relax this bias. We saw one such example in section 3.3.5, where the objects of computation

were arithmetic constraints. In a constraint system the direction and the order of computation

are not so well speci�ed; in carrying out a computation the system must therefore provide more

detailed “how to” knowledge than would be the case with an ordinary arithmetic computation.

This does not mean, however, that the user is released altogether from the responsibility of

providing imperative knowledge. There are many constraint networks that implement the

same set of constraints, and the user must choose from the set of mathematically equivalent

networks a suitable network to specify a particular computation.

The nondeterministic program evaluator of section 4.3 also moves away from the view that

programming is about constructing algorithms for computing unidirectional functions. In a

nondeterministic language, expressions can have more than one value, and, as a result, the

computation is dealing with relations rather than with single-valued functions. Logic program-

ming extends this idea by combining a relational vision of programming with a powerful kind

of symbolic pattern matching called uni�cation.
51

51
Logic programming has grown out of a long history of research in automatic theorem proving. Early theorem-

proving programs could accomplish very little, because they exhaustively searched the space of possible proofs.

The major breakthrough that made such a search plausible was the discovery in the early 1960s of the uni�cation
algorithm and the resolution principle (Robinson 1965). Resolution was used, for example, by Green and Raphael

(1968) (see also Green 1969) as the basis for a deductive question-answering system. During most of this period,

researchers concentrated on algorithms that are guaranteed to �nd a proof if one exists. Such algorithms were

di�cult to control and to direct toward a proof. Hewitt (1969) recognized the possibility of merging the control

structure of a programming language with the operations of a logic-manipulation system, leading to the work in

automatic search mentioned in section 4.3.1 (footnote 40). At the same time that this was being done, Colmerauer,

in Marseille, was developing rule-based systems for manipulating natural language (see Colmerauer et al. 1973). He

invented a programming language called Prolog for representing those rules. Kowalski (1973; 1979) in Edinburgh,

recognized that execution of a Prolog program could be interpreted as proving theorems (using a proof technique

467 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.4

This approach, when it works, can be a very powerful way to write programs. Part of the

power comes from the fact that a single “what is” fact can be used to solve a number of di�erent

problems that would have di�erent “how to” components. As an example, consider the append

operation, which takes two lists as arguments and combines their elements to form a single

list. In a procedural language such as JavaScript, we could de�ne append in terms of the basic

list constructor pair, as we did in section 2.2.1:

Ifunction append(x, y) {

return is_null(x)

? y

: pair(head(x), append(tail(x), y));

}

This function can be regarded as a translation into JavaScript of the following two rules, the

�rst of which covers the case where the �rst list is empty and the second of which handles

the case of a nonempty list, which is a pair of two parts:

– For any list y, the empty list and y append to form y.

– For any u, v, y, and z, pair(u, v) and y append to form pair(u, z) if v and y append to

form z.
52

Using the append function, we can answer questions such as

Find the append of list("a", "b") and list("c", "d").

But the same two rules are also su�cient for answering the following sorts of questions,

which the function can’t answer:

Find a list y that appends with list("a", "b") to produce list("a", "b", "c", "d").

Find all x and y that append to form list("a", "b", "c", "d").

In a logic programming language, the programmer writes an append “function” by stating

the two rules about append given above. “How to” knowledge is provided automatically by the

interpreter to allow this single pair of rules to be used to answer all three types of questions

about append.
53

called linear Horn-clause resolution). The merging of the last two strands led to the logic-programming movement.

Thus, in assigning credit for the development of logic programming, the French can point to Prolog’s genesis at

the University of Marseille, while the British can highlight the work at the University of Edinburgh. According

to people at MIT, logic programming was developed by these groups in an attempt to �gure out what Hewitt

was talking about in his brilliant but impenetrable Ph.D. thesis. For a history of logic programming, see Robinson

1983.

52
To see the correspondence between the rules and the function, let x in the function (where x is nonempty)

correspond to pair(u, v) in the rule. Then z in the rule corresponds to the append of tail(x) and y.

53
This certainly does not relieve the user of the entire problem of how to compute the answer. There are many

di�erent mathematically equivalent sets of rules for formulating the append relation, only some of which can be

turned into e�ective devices for computing in any direction. In addition, sometimes “what is” information gives

no clue “how to” compute an answer. For example, consider the problem of computing the y such that y2 = x .

468 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwA6oKZgCYAoAeANIgJ4CUiA3ojYgFC2IBOGUITSMAzgPpggAbAQTINGtAPykx4xAC5EqZDCa4AFhmR58ZYmkw5cUZcJ3FyZANx0AvkA

Metalinguistic Abstraction 4.4.1

Contemporary logic programming languages (including the one we implement here) have

substantial de�ciencies, in that their general “how to” methods can lead them into spurious

in�nite loops or other undesirable behavior. Logic programming is an active �eld of research

in computer science.
54

Earlier in this chapter we explored the technology of implementing interpreters and de-

scribed the elements that are essential to an interpreter for a JavaScript-like language (indeed,

to an interpreter for any conventional language). Now we will apply these ideas to discuss

an interpreter for a logic programming language. We call this language the query language,
because it is very useful for retrieving information from data bases by formulating queries, or

questions, expressed in the language. Even though the query language is very di�erent from

JavaScript, we will �nd it convenient to describe the language in terms of the same general

framework we have been using all along: as a collection of primitive elements, together with

means of combination that enable us to combine simple elements to create more complex ele-

ments and means of abstraction that enable us to regard complex elements as single conceptual

units. An interpreter for a logic programming language is considerably more complex than an

interpreter for a language like JavaScript Nevertheless, we will see that our query-language

interpreter contains many of the same elements found in the interpreter of section 4.1. In

particular, there will be an “eval” part that classi�es expressions according to type and an

“apply” part that implements the language’s abstraction mechanism (functions in the case of

JavaScript, and rules in the case of logic programming). Also, a central role is played in the

implementation by a frame data structure, which determines the correspondence between

symbols and their associated values. One additional interesting aspect of our query-language

implementation is that we make substantial use of streams, which were introduced in chapter 3.

4.4.1 Deductive Information Retrieval

Logic programming excels in providing interfaces to data bases for information retrieval. The

query language we shall implement in this chapter is designed to be used in this way.

In order to illustrate what the query system does, we will show how it can be used to manage

the data base of personnel records for Microshaft, a thriving high-technology company in the

54
Interest in logic programming peaked during the early 80s when the Japanese government began an ambitious

project aimed at building superfast computers optimized to run logic programming languages. The speed of such

computers was to be measured in LIPS (Logical Inferences Per Second) rather than the usual FLOPS (FLoating-

point Operations Per Second). Although the project succeeded in developing hardware and software as originally

planned, the international computer industry moved in a di�erent direction. See Feigenbaum and Shrobe 1993

for an overview evaluation of the Japanese project. The logic programming community has also moved on to

consider relational programming based on techniques other than simple pattern matching, such as the ability to

deal with numerical constraints such as the ones illustrated in the constraint-propagation system of section 3.3.5.

469 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.4.1

Boston area. The language provides pattern-directed access to personnel information and can

also take advantage of general rules in order to make logical deductions.

A sample data base

The personnel data base for Microshaft contains assertions about company personnel. Here is

the information about Ben Bitdiddle, the resident computer wizard:

Iaddress(list("Bitdiddle", "Ben"), list("Slumerville", "Ridge Road", 10))

job(list("Bitdiddle", "Ben"), list("computer", "wizard"))

salary(list("Bitdiddle", "Ben"), 60000)

Assertions look like function applications in JavaScript, but they represent information in the

data base. The �rst symbols—here address, job and salary—describe the kind of information
contained in the respective assertion, and the arguments are lists or primitive values such as

strings and numbers. The �rst symbols do not need to be declared, as do constants or variables

in JavaScript; their scope is global.

As resident wizard, Ben is in charge of the company’s computer division, and he supervises

two programmers and one technician. Here is the information about them:

Iaddress(list("Hacker", "Alyssa", "P"),

list("Cambridge", "Mass Ave", 78))

job(list("Hacker", "Alyssa", "P"), list("computer", "programmer"))

salary(list("Hacker", "Alyssa", "P"), 40000)

supervisor(list("Hacker", "Alyssa", "P"), list("Bitdiddle", "Ben"))

address(list("Fect", "Cy", "D"), list("Cambridge", "Ames Street", 3))

job(list("Fect", "Cy", "D"), list("computer", "programmer"))

salary(list("Fect", "Cy", "D"), 35000)

supervisor(list("Fect", "Cy", "D"), list("Bitdiddle", "Ben"))

address(list("Tweakit", "Lem", "E"),

list("Boston", "Bay State Road", 22))

job(list("Tweakit", "Lem", "E"), list("computer", "technician"))

salary(list("Tweakit", "Lem", "E"), 25000)

supervisor(list("Tweakit", "Lem", "E"), list("Bitdiddle", "Ben"))

There is also a programmer trainee, who is supervised by Alyssa:

Iaddress(list("Reasoner", "Louis"),

list("Slumerville", "Pine Tree Road", 80))

job(list("Reasoner", "Louis"),

list("computer", "programmer", "trainee"))

salary(list("Reasoner", "Louis"), 30000)

supervisor(list("Reasoner", "Louis"),

list("Hacker", "Alyssa", "P"))

470 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-FnoNFQb1tEOw6yuHQ4IZVrh40RaF-hM59BEgcIYsKJ1KZ5tpOqAOQIGwFGBtARtiacsaNqR9cxINsW0diPtFUixA6YukcOXJYjA5AHo1SJmOhEF5cx8UZkb6O96Uh9hTrHEoGIxTBimxTIUSGvUdL6BIAqRXvoSCdFItQWjorUV-gM5rCZhrncbq51yF4DeuNsAzqNyXHRdt8eQyJLGhW7OgjEGRNADjljohtWuZQCcaikviucbYbbaUaclSw-9XOygdhrEwyKucyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaATOknKsQEiLF6B6R2vIjiOOgpninRFItxnOLHEEh82yY3BBhOgBcs5xggPIImLaAI4aJDcVCSmPQCVDGRf4gCcBNAkQToJsExiYTxIlkSQ+cCAidiPDpziHhJEowBeLqyUSDouLciSMCvB9DwKwsLtkpPQmGiSoJIojn0OIiDC-qJCf4dKliqzEYxEYeMSxOQgmTY+DFckdiKwn8NwAyEwyvRLYmUSnJDab8VS2iil5zOUkAAAxn1Oo6UQ8AWFEjccJcWrYsIgDATx5IpWIGAAFOEiJTWgyU1cJMQYCPjJ0vkpKYcMwAFcTgYUx4CiORGk9UpsiTVl8jimhi4OKTN-BwTynVTewcU87uVIN7O46gzcUqTcmMBpQgokU0rlz0SktThEcU0QtsQilVTopNU+KQbE6iBCTgh4QQJGDk5wlM0UiQjsdDFBF8SpM-IAc1NmmtTVuEiKCCRwo7cIOCS0owCtIECRg5Br7F0ZRS0DLTVpSgs9hIg0FaDq2caV6bdPem+Sv8vQEIV50nCjAgBUIiwqikWn-S7pa0x7lgK2na9HuIvTknyMwaAMtO3AIOLZDGgp4uAwvS0qoNsh2JQRW-cEWQKclEz1u-qLIDQJSh0DTiXgFkRLFpJBAbp8M2fmCI37CD0Q74BeBz2XKE5xBMomMn9K4BvT7pjolGRqnlQSypZkYQgkl1HBBBWZpgLbkeSPL4y4Z703QWBzlFfC2IpIF4B1KH4FAnJ14-ASCKkgCDj+kIrGUP2v7RApY1A6Jg9267PdoAYxEsVnyKL4jf8QgmsdizcAWySRT4JNsb3ohIzJRBQXmNuQZQ9wk5Jsa2Wv3JkJ17Z5aMOc7IjJUCQR7syXgiO4QwAfZDo8frWIDmFBuZW-I6AvDrmBkdCX0hwnf0dkmNs5DY7KKIMYggzQExgNYGHKhlGFdCic5ObnP9Q+juRfogDjt09lxwkR7-cUuHP+5DjuWpc0sSkGp4Q8sxYwlUsky5HHB8WHI-eTyKdYRdG4G8wGr1hFFMF1RP-DeWLLCiGyLAxs4EKbIvkxEt5jc8UcYC2kpAuuiI5uZ8OfnYlX5xXP+YDXG6P8cqYAJOT3Fvnq8GsfjMNOdM1FXyLmJcy4r7Jd6miYh25U0b1menuAMFuEB0W21wUhzGgbbAhbWLBL7lvRx8qeSvL8iRTHAFCToEiyAI4Y2F-0TcL5Lw6oB+gI4skEDKI7GYgZX+PKRZhEWMieKSgr7kNJVmUgNWAgFaekDSwx44mTrYzPIuODANxOkdXkL5MGlD9yxDkzCaAHrHQygR05foHqmLC+SbYWgSuL1JeD9TRgQMtxNOWIV5iBxNsJON4odGmKKRhCqcrQSEVrBbFmCIGSEv8CWKjCOUwWN7MwXNi95rYvYe3FPkkoTgmLYxfQXrxQxUh9ioadaK7HaAgxLwsQN4vihMZvxnEowGBO3AAAZWWnBMjENwQpL0FyX7OmmXRPJukxkbhJIG9ACQYkvQERMElniXUvk9UPJLQZMS8g0ykrgJJujMTFl4dOpQ0uaX4BllQywkFMsikzLtJ4dfSQPQzrahJJwY6SbJNGVUSYl7gXhZFJUk7DHwLQi5RUoamUtHlqkt4ZTBwg9LDlZinSdvILz6TbhQwnTCQgcVlVZifywxSwt8mA1tJTkloV0pQmLK+lppf0axFkQ5KgljkzgfOKOZ6SdhBkkQEZNoWzloVJoE5cYNCFmBrBZw2yOpOsmiS8V5iuwtaIjF-LFlbKoFfuUNK6k+hKBLJTC1XDwt+WWEwlcNKJpWgUaUkDcTh3EDCtNweMUVXC1T7vsLFcq-cYXLC4XNgQ2K7JfyzLESqCVQqtBrKpgBQwP8V2YVoKsuHf8SJ1fLUURxVRENpx0o0JvLIlH-1v0M4vQRxy0Asr5I0dEibsk0lUSI2R8NxcMur7uTcZjQG8dFxthXKTul4+NVt0vgUM1w2YYNT2JeEu1HIby9YdlxkzuSnlLwjVe4BSBQJRupUctapLJ5nMI1cgCMdmqcU3QI1Uqg8kLMtJgdJAFRdpIlNDX4TpF2YompRJtizBBF8uDxS7OjW7KCQzqo5Y9yTWNEpIqa3CJePkmZqbFugDtT0sJWFrbIxahcdF0+XHAK1BgqtW4BrXIhS1Dyy9Y2uOhNTIprarKu2tzV5ShVPakmX2pXkSc8pFRPNeGpEmoAkWRi+NZHMpCAaWF8atBhJ3cmga0JVE8Tt0A0lgbRgUGvmAOqDXuTwRYajNeOqEi5AMNKGyJD+P-FASQJ4EyCTBO2XRA6l3E2jXxNaXNrMN76haqRrzUW4xhm4JIJYzA6wbiuY6p4oGqHWyIR1wy3JQeVz4CBOI0ym2BsqaUtKDYymrZYWLg4IqIIWVbjdMoPJjR+NiQQTUwo-hL03oMNaqHdFGEF5ZFg0YwtblmCWb2A1mhflQX2hdSJwTmpCPaxs2-TyORub-m2RErOaO89m11c41c2L5rcIWpCK5tEXubAtYHX7LFvYC+bw6AWkRqFK4B2BSwnEHJeFsZGPSstwGVADDWQADTvNaWyVUKoi18l2YVWjvI1pBzXyepfQtBk5oq3uLroFmnzdaugChaQcz01VTkuezNb+tg2h6MwCN4Yl7VLwpjHesup4s7iI2-lm-k61pQ-ajvQwOVoGmpax6NWy4XVuC07arN+2lrRcw7EcgDABU1IXUPpVuCzl6IVbWKr9iLBTtLm87Q9DNWXCVekVLKiFq61XQJwX2hoR9rHq1zTic2gwQttrX8bMAK2kVZi0ko7autW2+1OlFy2Qx7IP2+bcSpeGkrwVT224LvIcrTbbgdmpHcasx15a1VhobtnctuClKOO+a9YaaRcAzbKQzO8pWzsbn1yggRiP7cZE0JCqyYi2zcMS0R3WBSwdOt-DTtEDo6U0eyihhAIwGMj1YQArejvXxAn1784rZOma2lY7Icd0OzYYDDGigrDJxrQyKTsMjK6oE4gUAQsHAHiAO69zb7VAI7qqIdWAVRnihx4DByKFvZdDpVDJGQ8mKN4Y4r0Wm31z7l+7I3RdBpZBdudrOmYWqPWZtLxSNukXQ6rzji749q7KKFLvvCiBZdcgAvYe3-wvhL44oENlJTME2wAAnOIW22iUzBhKiQCgNb3SVCVUdVUI4DkCRr3uWA7YQmvNJdyII+gUIoFNRluB694lMQL81+alQ6Aq+m9Z3Jnm4C59hgaSo6MkB8zbg8+iHCStxCyp9JPGA6PoFvAL5NBfa9wEft72n6g0cgWvT0B31mCv8ggVReosChlxB1h2vHYyNN04AxdcOr-eJR-2v5SoL29VQBBUUQGs0MeKiE+mnZAg6dkETZlAkSKrgcgwIXmlbJlU2xi2Z4eYCG1QOHKbGGBu9eoyfA0sDYUsBCJgFwMc1QA0TQ7NyM6CPhuuR+y6jeFvDkGLF-LG7dQcajeVi6WoHg9M3QNWhPIUc+hEeSlj4aOOXHOEOhvhgyHHuwmk4MBqQ2Iau1FmDQ1twYM4HsSLBtg8CGOCcHZ9GgHg15T4NNQI12ENQ90FEN8GWoch1QFrL-UxBbD9hyPZi3Cj5iEafhm8OvsFHv7xKHe46PpPJVGRbdpxKQzktiFO7OgLussVhNbUB6IAWVJQDr26RGrXtVoY7AGLKWp77GRiYBj2rA7PYOgaAQ8LKjSh3rpVQkK0EQf5ZBtSDx7KUZQcaM6dbitBg-cqSYIUaYD8LYo-YG7Ed6KjBmzNKbhMLpdKQEuzYsaNFSCiRAfATxgvA2aitjVKRpAJtCKPoN5jB0b3dkYWq5Gxd2Aftugd+aiddk6GgUGIAOwAAhXEDiHQ3UtSozxuoC8pxb4AhA4QTAFgQbhQGZMYEuKc6lABgTkAkaN-AwBn1oRl9MmCw-5hfDkGbjdx8rVkCeP05Xj8Ad42wNBObhvj0AX4wdhbwO6EdpUQ8IgAABegwfFsAyRPsHLDJLKiOiZyW3HyJEgQQIMENAvG3jcUwk3cRJO-GAAbIFMlMInmTKJqw2fQ5PGrfmaAXk3CxxNF48TBJz4zJlFMHQ48zJlqEAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-FnoNFQb1tEOw6yuHQ4IZVrh40RaF-hM59BEgcIYsKJ1KZ5tpOqAOQIGwFGBtARtiacsaNqR9cxINsW0diPtFUixA6YukcOXJYjA5AHo1SJmOhEF5cx8UZkb6O96Uh9hTrHEoGIxTBimxTIUSGvUdL6BIAqRXvoSCdFItQWjorUV-gM5rCZhrncbq51yF4DeuNsAzqNyXHRdt8eQyJLGhW7OgjEGRNADjljohtWuZQCcaikviucbYbbaUaclSw-9XOygdhrEwyKucyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaATOknKsQEiLF6B6R2vIjiOOgpninRFItxnOLHEEh82yY3BBhOgBcs5xggPIImLaAI4aJDcVCSmPQCVDGRf4gCcBNAkQToJsExiYTxIlkSQ+cCAidiPDpziHhJEowBeLqyUSDouLciSMCvB9DwKwsLtkpPQmGiSoJIojn0OIiDC-qJCf4dKliqzEYxEYeMSxOQgmTY+DFckdiKwn8NwAyEwyvRLYmUSnJDab8VS2iil5zOUkAAAxn1Oo6UQ8AWFEjccJcWrYsIgDATx5IpWIGAAFOEiJTWgyU1cJMQYCPjJ0vkpKYcMwAFcTgYUx4CiORGk9UpsiTVl8jimhi4OKTN-BwTynVTewcU87uVIN7O46gzcUqTcmMBpQgokU0rlz0SktThEcU0QtsQilVTopNU+KQbE6iBCTgh4QQJGDk5wlM0UiQjsdDFBF8SpM-IAc1NmmtTVuEiKCCRwo7cIOCS0owCtIECRg5Br7F0ZRS0DLTVpSgs9hIg0FaDq2caV6bdPem+Sv8vQEIV50nCjAgBUIiwqikWn-S7pa0x7lgK2na9HuIvTknyMwaAMtO3AIOLZDGgp4uAwvS0qoNsh2JQRW-cEWQKclEz1u-qLIDQJSh0DTiXgFkRLFpJBAbp8M2fmCI37CD0Q74BeBz2XKE5xBMomMn9K4BvT7pjolGRqnlQSypZkYQgkl1HBBBWZpgLbkeSPL4y4Z703QWBzlFfC2IpIF4B1KH4FAnJ14-ASCKkgCDj+kIrGUP2v7RApY1A6Jg9267PdoAYxEsVnyKL4jf8QgmsdizcAWySRT4JNsb3ohIzJRBQXmNuQZQ9wk5Jsa2Wv3JkJ17Z5aMOc7IjJUCQR7syXgiO4QwAfZDo8frWIDmFBuZW-I6AvDrmBkdCX0hwnf0dkmNs5DY7KKIMYggzQExgNYGHKhlGFdCic5ObnP9Q+juRfogDjt09lxwkR7-cUuHP+5DjuWpc0sSkGp4Q8sxYwlUsky5HHB8WHI-eTyKdYRdG4G8wGr1hFFMF1RP-DeWLLCiGyLAxs4EKbIvkxEt5jc8UcYC2kpAuuiI5uZ8OfnYlX5xXP+YDXG6P8cqYAJOT3Fvnq8GsfjMNOdM1FXyLmJcy4r7Jd6miYh25U0b1menuAMFuEB0W21wUhzGgbbAhbWLBL7lvRx8qeSvL8iRTHAFCToEiyAI4Y2F-0TcL5Lw6oB+gI4skEDKI7GYgZX+PKRZhEWMieKSgr7kNJVmUgNWAgFaekDSwx44mTrYzPIuODANxOkdXkL5MGlD9yxDkzCaAHrHQygR05foHqmLC+SbYWgSuL1JeD9TRgQMtxNOWIV5iBxNsJON4odGmKKRhCqcrQSEVrBbFmCIGSEv8CWKjCOUwWN7MwXNi95rYvYe3FPkkoTgmLYxfQXrxQxUh9ioadaK7HaAgxLwsQN4vihMZvxnEowGBO3AAAZWWnBMjENwQpL0FyX7OmmXRPJukxkbhJIG9ACQYkvQERMElniXUvk9UPJLQZMS8g0ykrgJJujMTFl4dOpQ0uaX4BllQywkFMsikzLtJ4dfSQPQzrahJJwY6SbJNGVUSYl7gXhZFJUk7DHwLQi5RUoamUtHlqkt4ZTBwg9LDlZinSdvILz6TbhQwnTCQgcVlVZifywxSwt8mA1tJTkloV0pQmLK+lppf0axFkQ5KgljkzgfOKOZ6SdhBkkQEZNoWzloVJoE5cYNCFmBrBZw2yOpOsmiS8V5iuwtaIjF-LFlbKoFfuUNK6k+hKBLJTC1XDwt+WWEwlcNKJpWgUaUkDcTh3EDCtNweMUVXC1T7vsLFcq-cYXLC4XNgQ2K7JfyzLESqCVQqtBrKpgBQwP8V2YVoKsuHf8SJ1fLUURxVRENpx0o0JvLIlH-1v0M4vQRxy0Asr5I0dEibsk0lUSI2R8NxcMur7uTcZjQG8dFxthXKTul4+NVt0vgUM1w2YYNT2JeEu1HIby9YdlxkzuSnlLwjVe4BSBQJRupUctapLJ5nMI1cgCMdmqcU3QI1Uqg8kLMtJgdJAFRdpIlNDX4TpF2YompRJtizBBF8uDxS7OjW7KCQzqo5Y9yTWNEpIqa3CJePkmZqbFugDtT0sJWFrbIxahcdF0+XHAK1BgqtW4BrXIhS1Dyy9Y2uOhNTIprarKu2tzV5ShVPakmX2pXkSc8pFRPNeGpEmoAkWRi+NZHMpCAaWF8atBhJ3cmga0JVE8Tt0A0lgbRgUGvmAOqDXuTwRYajNeOqEi5AMNKGyJD+P-FASQJ4EyCTBO2XRA6l3E2jXxNaXNrMN76haqRrzUW4xhm4JIJYzA6wbiuY6p4oGqHWyIR1wy3JQeVz4CBOI0ym2BsqaUtKDYymrZYWLg4IqIIWVbjdMoPJjR+NiQQTUwo-hL03oMNaqHdFGEF5ZFg0YwtblmCWb2A1mhflQX2hdSJwTmpCPaxs2-TyORub-m2RErOaO89m11c41c2L5rcIWpCK5tEXubAtYHX7LFvYC+bw6AWkRqFK4B2BSwnEHJeFsZGPSstwGVADDWQADTvNaWyVUKoi18l2YVWjvI1pBzXyepfQtBk5oq3uLroFmnzdaugChaQcz01VTkuezNb+tg2h6MwCN4Yl7VLwpjHesup4s7iI2-lm-k61pQ-ajvQwOVoGmpax6NWy4XVuC07arN+2lrRcw7EcgDABU1IXUPpVuCzl6IVbWKr9iLBTtLm87Q9DNWXCVekVLKiFq61XQJwX2hoR9rHq1zTic2gwQttrX8bMAK2kVZi0ko7autW2+1OlFy2Qx7IP2+bcSpeGkrwVT224LvIcrTbbgdmpHcasx15a1VhobtnctuClKOO+a9YaaRcAzbKQzO8pWzsbn1yggRiP7cZE0JCqyYi2zcMS0R3WBSwdOt-DTtEDo6U0eyihhAIwGMj1YQArejvXxAn1784rZOma2lY7Icd0OzYYDDGigrDJxrQyKTsMjK6oE4gUAQsHAHiAO69zb7VAI7qqIdWAVRnihx4DByKFvZdDpVDJGQ8mKN4Y4r0Wm31z7l+7I3RdBpZBdudrOmYWqPWZtLxSNukXQ6rzji749q7KKFLvvCiBZdcgAvYe3-wvhL44oENlJTME2wAAnOIW22iUzBhKiQCgNb3SVCVUdVUI4DkCRr3uWA7YQmvNJdyII+gUIoFNRluB694lMQL81+alQ6Aq+m9Z3Jnm4C59hgaSo6MkB8zbg8+iHCStxCyp9JPGA6PoFvAL5NBfa9wEft72n6g0cgWvT0B31mCv8ggVReosChlxB1h2vHYyNN04AxdcOr-eJR-2v5SoL29VQBBUUQGs0MeKiE+mnZAg6dkETZlAkSKrgcgwIXmlbJlU2xi2Z4eYCG1QOHKbGGBu9eoyfA0sDYUsBCJgFwMc1QA0TQ7NyM6CPhuuR+y6jeFvDkGLF-LG7dQcajeVi6WoHg9M3QNWhPIUc+hEeSlj4aOOXHOEOhvhgyHHuwmk4MBqQ2Iau1FmDQ1twYM4HsSLBtg8CGOCcHZ9GgHg15T4NNQI12ENQ90FEN8GWoch1QFrL-UxBbD9hyPZi3Cj5iEafhm8OvsFHv7xKHe46PpPJVGRbdpxKQzktiFO7OgLussVhNbUB6IAWVJQDr26RGrXtVoY7AGLKWp77GRiYBj2rz3YB+26B35qJ12ToaBQYgA7AACFcQOIdDdS1KitG6gLynFvgCEDhBMAWBBuFAZkxgS4pzqUAGBOQCRo38DAGfWhGX0yYLD-mF8OQbqMNHytWQFo-TnaPwBOjbA8Y5uF6PQB+jB2FvA7oR2lRDwiAAAF6DB8WwDFY+wcsMksqImxnJfUfIkSBBAgwQ0G0Y6NxTjjdxM4-0YABsgU6E0sdeNrGrDLe+1M9g6BoBDwsqNKHeulVCQrQRB-lkG1IPHspRlBjEzp1uK0GD9ypJghRpgPwtij9gbsR3oqMGbM0puEwul0pAS7Nixo0VIKJEB8BPGC8DZqK2NUpGkAm0Io+gzZMHRvd2RharkbF01GfoWx34zx2aMHZfxZDSUDcZkyATfwQIfk6VFIAXH6cxAMIFkCeDdBnUdxAALLwhQAgEsCnIAADsAADheOlR4THxjY4qbQPfHtj0NPY0Xg1MRhVwdxXU2orQAGmZMRpg6JcdwB3rQzpUdtnYHMjDGk9cJjg16eYBfHjVPxkPn8fOCAn6cwZrU2Gb1ORm7iMZuQDQBhOwmPTmZwtDmde15ngefXeqCMcMAVFAznlEs4mZ1Plmozm4KsziwONHHujMmcE+6dWMNnkDTZuFovoaOqmFWB2AAGLw07ixATmjJgAAixpovKaeyAWmrTpUQCeEAwD4AlpFLCzlObePrHszPp4wH6d+M7Huzl1NcwgA3NbnNwu52M-TiuOqg7iyZ1M6GZvOenGzD55U-mcjOFnXzm4d81ec3Cbm7iP5uQONgACsMJ5Y-WfePgWO2kF1s6kFXBYE0AXZ1c+udKhIXSoKFkc8Ca6MnHJzWF6czhdnMQWnz+Zpc0CFgtVE0TEoXEHcUaVlg7i8tX80XlaPYkWdYJ8SgQCdgzG5j+LLfIkMUAZnmL3pvC2xeB4vmDs3FvVIkD4ulQBLOAIS3uc8r-m+zm4UQCZ29mwADg5x0CzOdUu1H1LbHAswCa4s8XdLCFgy0ZYOg8oML0Jxi7eYRP3m1LuZho22aIudmNwWl9y3pZkxeXSowl25qJdougmejfRuyypbpRznDQvzcKx2ZIsbgMqQJw4yCfHOnH0rSl0qC1CAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-FnoNFQb1tEOw6yuHQ4IZVrh40RaF-hM59BEgcIYsKJ1KZ5tpOqAOQIGwFGBtARtiacsaNqR9cxINsW0diPtFUixA6YukcOXJYjA5AHo1SJmOhEF5cx8UZkb6O96Uh9hTrHEoGIxTBimxTIUSGvUdL6BIAqRXvoSCdFItQWjorUV-gM5rCZhrncbq51yF4DeuNsAzqNyXHRdt8eQyJLGhW7OgjEGRNADjljohtWuZQCcaikviucbYbbaUaclSw-9XOygdhrEwyKucyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaATOknKsQEiLF6B6R2vIjiOOgpninRFItxnOLHEEh82yY3BBhOgBcs5xggPIImLaAI4aJDcVCSmPQCVDGRf4gCcBNAkQToJsExiYTxIlkSQ+cCAidiPDpziHhJEowBeLqyUSDouLciSMCvB9DwKwsLtkpPQmGiSoJIojn0OIiDC-qJCf4dKliqzEYxEYeMSxOQgmTY+DFckdiKwn8NwAyEwyvRLYmUSnJDab8VS2iil5zOUkAAAxn1Oo6UQ8AWFEjccJcWrYsIgDATx5IpWIGAAFOEiJTWgyU1cJMQYCPjJ0vkpKYcMwAFcTgYUx4CiORGk9UpsiTVl8jimhi4OKTN-BwTynVTewcU87uVIN7O46gzcUqTcmMBpQgokU0rlz0SktThEcU0QtsQilVTopNU+KQbE6iBCTgh4QQJGDk5wlM0UiQjsdDFBF8SpM-IAc1NmmtTVuEiKCCRwo7cIOCS0owCtIECRg5Br7F0ZRS0DLTVpSgs9hIg0FaDq2caV6bdPem+Sv8vQEIV50nCjAgBUIiwqikWn-S7pa0x7lgK2na9HuIvTknyMwaAMtO3AIOLZDGgp4uAwvS0qoNsh2JQRW-cEWQKclEz1u-qLIDQJSh0DTiXgFkRLFpJBAbp8M2fmCI37CD0Q74BeBz2XKE5xBMomMn9K4BvT7pjolGRqnlQSypZkYQgkl1HBBBWZpgLbkeSPL4y4Z703QWBzlFfC2IpIF4B1KH4FAnJ14-ASCKkgCDj+kIrGUP2v7RApY1A6Jg9267PdoAYxEsVnyKL4jf8QgmsdizcAWySRT4JNsb3ohIzJRBQXmNuQZQ9wk5Jsa2Wv3JkJ17Z5aMOc7IjJUCQR7syXgiO4QwAfZDo8frWIDmFBuZW-I6AvDrmBkdCX0hwnf0dkmNs5DY7KKIMYggzQExgNYGHKhlGFdCic5ObnP9Q+juRfogDjt09lxwkR7-cUuHP+5DjuWpc0sSkGp4Q8sxYwlUsky5HHB8WHI-eTyKdYRdG4G8wGr1hFFMF1RP-DeWLLCiGyLAxs4EKbIvkxEt5jc8UcYC2kpAuuiI5uZ8OfnYlX5xXP+YDXG6P8cqYAJOT3Fvnq8GsfjMNOdM1FXyLmJcy4r7Jd6miYh25U0b1menuAMFuEB0W21wUhzGgbbAhbWLBL7lvRx8qeSvL8iRTHAFCToEiyAI4Y2F-0TcL5Lw6oB+gI4skEDKI7GYgZX+PKRZhEWMieKSgr7kNJVmUgNWAgFaekDSwx44mTrYzPIuODANxOkdXkL5MGlD9yxDkzCaAHrHQygR05foHqmLC+SbYWgSuL1JeD9TRgQMtxNOWIV5iBxNsJON4odGmKKRhCqcrQSEVrBbFmCIGSEv8CWKjCOUwWN7MwXNi95rYvYe3FPkkoTgmLYxfQXrxQxUh9ioadaK7HaAgxLwsQN4vihMZvxnEowGBO3AAAZWWnBMjENwQpL0FyX7OmmXRPJukxkbhJIG9ACQYkvQERMElniXUvk9UPJLQZMS8g0ykrgJJujMTFl4dOpQ0uaX4BllQywkFMsikzLtJ4dfSQPQzrahJJwY6SbJNGVUSYl7gXhZFJUk7DHwLQi5RUoamUtHlqkt4ZTBwg9LDlZinSdvILz6TbhQwnTCQgcVlVZifywxSwt8mA1tJTkloV0pQmLK+lppf0axFkQ5KgljkzgfOKOZ6SdhBkkQEZNoWzloVJoE5cYNCFmBrBZw2yOpOsmiS8V5iuwtaIjF-LFlbKoFfuUNK6k+hKBLJTC1XDwt+WWEwlcNKJpWgUaUkDcTh3EDCtNweMUVXC1T7vsLFcq-cYXLC4XNgQ2K7JfyzLESqCVQqtBrKpgBQwP8V2YVoKsuHf8SJ1fLUURxVRENpx0o0JvLIlH-1v0M4vQRxy0Asr5I0dEibsk0lUSI2R8NxcMur7uTcZjQG8dFxthXKTul4+NVt0vgUM1w2YYNT2JeEu1HIby9YdlxkzuSnlLwjVe4BSBQJRupUctapLJ5nMI1cgCMdmqcU3QI1Uqg8kLMtJgdJAFRdpIlNDX4TpF2YompRJtizBBF8uDxS7OjW7KCQzqo5Y9yTWNEpIqa3CJePkmZqbFugDtT0sJWFrbIxahcdF0+XHAK1BgqtW4BrXIhS1Dyy9Y2uOhNTIprarKu2tzV5ShVPakmX2pXkSc8pFRPNeGpEmoAkWRi+NZHMpCAaWF8atBhJ3cmga0JVE8Tt0A0lgbRgUGvmAOqDXuTwRYajNeOqEi5AMNKGyJD+P-FASQJ4EyCTBO2XRA6l3E2jXxNaXNrMN76haqRrzUW4xhm4JIJYzA6wbiuY6p4oGqHWyIR1wy3JQeVz4CBOI0ym2BsqaUtKDYymrZYWLg4IqIIWVbjdMoPJjR+NiQQTUwo-hL03oMNaqHdFGEF5ZFg0YwtblmCWb2A1mhflQX2hdSJwTmpCPaxs2-TyORub-m2RErOaO89m11c41c2L5rcIWpCK5tEXubAtYHX7LFvYC+bw6AWkRqFK4B2BSwnEHJeFsZGPSstwGVADDWQADTvNaWyVUKoi18l2YVWjvI1pBzXyepfQtBk5oq3uLroFmnzdaugChaQcz01VTkuezNb+tg2h6MwCN4Yl7VLwpjHesup4s7iI2-lm-k61pQ-ajvQwOVoGmpax6NWy4XVuC07arN+2lrRcw7EcgDABU1IXUPpVuCzl6IVbWKr9iLBTtLm87Q9DNWXCVekVLKiFq61XQJwX2hoR9rHq1zTic2gwQttrX8bMAK2kVZi0ko7autW2+1OlFy2Qx7IP2+bcSpeGkrwVT224LvIcrTbbgdmpHcasx15a1VhobtnctuClKOO+a9YaaRcAzbKQzO8pWzsbn1yggRiP7cZE0JCqyYi2zcMS0R3WBSwdOt-DTtEDo6U0eyihhAIwGMj1YQArejvXxAn1784rZOma2lY7Icd0OzYYDDGigrDJxrQyKTsMjK6oE4gUAQsHAHiAO69zb7VAI7qqIdWAVRnihx4DByKFvZdDpVDJGQ8mKN4Y4r0Wm31z7l+7I3RdBpZBdudrOmYWqPWZtLxSNukXQ6rzji749q7KKFLvvCiBZdcgAvYe3-wvhL44oENlJTME2wAAnOIW22iUzBhKiQCgNb3SVCVUdVUI4DkCRr3uWA7YQmvNJdyII+gUIoFNRluB694lMQL81+alQ6Aq+m9Z3Jnm4C59hgaSo6MkB8zbg8+iHCStxCyp9JPGA6PoFvAL5NBfa9wEft72n6g0cgWvT0B31mCv8ggVReosChlxB1h2vHYyNN04AxdcOr-eJR-2v5SoL29VQBBUUQGs0MeKiE+mnZAg6dkETZlAkSKrgcgwIXmlbJlU2xi2Z4eYCG1QOHKbGGBu9eoyfA0sDYUsBCJgFwMc1QA0TQ7NyM6CPhuuR+y6jeFvDkGLF-LG7dQcajeVi6WoHg9M3QNWhPIUc+hEeSlj4aOOXHOEOhvhgyHHuwmk4MBqQ2Iau1FmDQ1twYM4HsSLBtg8CGOCcHZ9GgHg15T4NNQI12ENQ90FEN8GWoch1QFrL-UxBbD9hyPZi3Cj5iEafhm8OvsFHv7xKHe46PpPJVGRbdpxKQzktiFO7OgLussVhNbUB6IAWVJQDr26RGrXtVoY7AGLKWp77GRiYBj2rz3YB+26B35qJ12ToaBQYgA7AACFcQOIdDdS1KitG6gLynFvgCEDhBMAWBBuFAZkxgS4pzqUAGBOQCRo38DAGfWhGX0yYLD-mF8OQbqMNHytWQFo-TnaPwBOjbA8Y5uF6PQB+jB2FvA7oR2lRDwiAAAF6DB8WwDFY+wcsMksqImxnJfUfIkSBBAgwQ0G0Y6NxTjjdxM4-0YABsgU6E0sdeNrGrDGxmoz9C2O-GeOzRg7L+LIaSgbjMmQCb+CBB8A7ipAC4-TmIBhAsgTwboM6juIABZeEKAEAlgU5AAAdgAAcLx0qPCY+OImO2KJkPia2hp7Gi8mJiMKuDuJ4m1FaAQk6VGJMHRLjuAO9WKdKjts7A5kYY0nrhMcHuTzAL48ap+P8mpT5wQE-ThFPYnxT+JqU0Sf6M0AYTsJzk1qcLS6nXt+p4Hn13qgjHDAFRIU55VNNKncTFp6UzJllO3Mi8Bxo490ZkzgmOTqxh08gadNwtF9DRtEwqwOwAAxeGncWICc0ZMAAERJNF4yT2QSk9SdKiATwgGAfAEtIpYWdozbx9YzqaRNoHvj2xwU2mYzOlQszdxPM3KfpxXHVQdxFU2qbFO1muTjpxs8YGbO-HDTAJ705dXTMIBMz2ZzcN2bkDjYAArDCeWP2n3jY53k5OYNOpBVwWBNAF6bbMLmOzS5lczizDMgmIzpxvoyOdjNn14zhoF02x0aPdB0T9OKooeD1SJBcQdxRpWWDuLy0ezoZ7EizrBPiUCATsGY3MfxZb5EhigTUzuc+Pjm+TwPHY7OeqK-mJQAF0qEBZwAgX8znlPs36c3CiATO3s2AAcHOOPnULPJ2o-uddP-GEzB2H83+fwsyZCLxFg6Dyg3PQmtzMZhiw2b3N6mGjbpo856Y3DsXcL-56s5uB4ulRQLIZzyjea6MnGozQluswiafTPYOgaAX8xuDSh3rpVQkK0EQf5ZBtSDx7KUZQZMs6dbitBg-cqSYIUaYD8LYo-YG7Ed6KjBmzNKbhMLpdKQEuzYsaNFSCiRAhJ6bRs1FbGqUjSATaEUfQZBWDo3u7IwtVyNi70LzF988maBDYWwJeqE8+lBxOKX2IhgEi5dUGMtEPTYxok9ah-GvS4L8xuQKyaWPIXtz9Zl84md+NYWDsRVwEKgHIuNKKrelMC6RYVPXGBz2AVU2EHVOlRQYXcdKK-novdWcr4lqc6xeNNF5BrJVka2Nf6PjZbT2l0c2hbEvOmJLh5j0yeZkv049rw1sq6NcgCVWJrl1X02VYlMEmrTa13S6JaYt6nJLN108-deKuPW38cefyq8ZahAA

Metalinguistic Abstraction 4.4.1

All of these people are in the computer division, as indicated by the word computer as the �rst

item in their job descriptions.

Ben is a high-level employee. His supervisor is the company’s big wheel himself:

Isupervisor(list("Bitdiddle", "Ben"), list("Warbucks", "Oliver"))

address(list("Warbucks", "Oliver"), list("Swellesley", "Top Heap Road"))

job(list("Warbucks", "Oliver"), list("administration", "big", "wheel"))

salary(list("Warbucks", "Oliver"), 150000)

Besides the computer division supervised by Ben, the company has an accounting division,

consisting of a chief accountant and his assistant:

Iaddress(list("Scrooge", "Eben"),

list("Weston", "Shady Lane", 10))

job(list("Scrooge", "Eben"), list("accounting", "chief", "accountant"))

salary(list("Scrooge", "Eben"), 75000)

supervisor(list("Scrooge", "Eben"), list("Warbucks", "Oliver"))

address(list("Cratchet", "Robert"),

list("Allston", "N Harvard Street", 16))

job(list("Cratchet", "Robert"), list("accounting", "scrivener"))

salary(list("Cratchet", "Robert"), 18000)

supervisor(list("Cratchet", "Robert"), list("Scrooge", "Eben"))

There is also a secretary for the big wheel:

Iaddress(list("Aull", "DeWitt"), list("Slumerville", "Onion Square", 5))

job(list("Aull", "DeWitt"), list("administration", "secretary"))

salary(list("Aull", "DeWitt"), 25000)

supervisor(list("Aull", "DeWitt"), list("Warbucks", "Oliver"))

The data base also contains assertions about which kinds of jobs can be done by people

holding other kinds of jobs. For instance, a computer wizard can do the jobs of both a computer

programmer and a computer technician:

Ican_do_job(list("computer", "wizard"),

list("computer", "programmer"))

can_do_job(list("computer", "wizard"),

list("computer", "technician"))

A computer programmer could �ll in for a trainee:

Ican_do_job(list("computer", "programmer"),

list("computer", "programmer", "trainee"))

Also, as is well known,

Ican_do_job(list("administration", "secretary"),

471 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-FnoNFQb1tEOw6yuHQ4IZVrh40RaF-hM59BEgcIYsKJ1KZ5tpOqAOQIGwFGBtARtiacsaNqR9cxINsW0diPtFUixA6YukcOXJYjA5AHo1SJmOhEF5cx8UZkb6O96Uh9hTrHEoGIxTBimxTIUSGvUdL6BIAqRXvoSCdFItQWjorUV-gM5rCZhrncbq51yF4DeuNsAzqNyXHRdt8eQyJLGhW7OgjEGRNADjljohtWuZQCcaikviucbYbbaUaclSw-9XOygdhrEwyKucyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaATOknKsQEiLF6B6R2vIjiOOgpninRFItxnOLHEEh82yY3BBhOgBcs5xggPIImLaAI4aJDcVCSmPQCVDGRf4gCcBNAkQToJsExiYTxIlkSQ+cCAidiPDpziHhJEowBeLqyUSDouLciSMCvB9DwKwsLtkpPQmGiSoJIojn0OIiDC-qJCf4dKliqzEYxEYeMSxOQgmTY+DFckdiKwn8NwAyEwyvRLYmUSnJDab8VS2iil5zOUkAAAxn1Oo6UQ8AWFEjccJcWrYsIgDATx5IpWIGAAFOEiJTWgyU1cJMQYCPjJ0vkpKYcMwAFcTgYUx4CiORGk9UpsiTVl8jimhi4OKTN-BwTynVTewcU87uVIN7O46gzcUqTcmMBpQgokU0rlz0SktThEcU0QtsQilVTopNU+KQbE6iBCTgh4QQJGDk5wlM0UiQjsdDFBF8SpM-IAc1NmmtTVuEiKCCRwo7cIOCS0owCtIECRg5Br7F0ZRS0DLTVpSgs9hIg0FaDq2caV6bdPem+Sv8vQEIV50nCjAgBUIiwqikWn-S7pa0x7lgK2na9HuIvTknyMwaAMtO3AIOLZDGgp4uAwvS0qoNsh2JQRW-cEWQKclEz1u-qLIDQJSh0DTiXgFkRLFpJBAbp8M2fmCI37CD0Q74BeBz2XKE5xBMomMn9K4BvT7pjolGRqnlQSypZkYQgkl1HBBBWZpgLbkeSPL4y4Z703QWBzlFfC2IpIF4B1KH4FAnJ14-ASCKkgCDj+kIrGUP2v7RApY1A6Jg9267PdoAYxEsVnyKL4jf8QgmsdizcAWySRT4JNsb3ohIzJRBQXmNuQZQ9wk5Jsa2Wv3JkJ17Z5aMOc7IjJUCQR7syXgiO4QwAfZDo8frWIDmFBuZW-I6AvDrmBkdCX0hwnf0dkmNs5DY7KKIMYggzQExgNYGHKhlGFdCic5ObnP9Q+juRfogDjt09lxwkR7-cUuHP+5DjuWpc0sSkGp4Q8sxYwlUsky5HHB8WHI-eTyKdYRdG4G8wGr1hFFMF1RP-DeWLLCiGyLAxs4EKbIvkxEt5jc8UcYC2kpAuuiI5uZ8OfnYlX5xXP+YDXG6P8cqYAJOT3Fvnq8GsfjMNOdM1FXyLmJcy4r7Jd6miYh25U0b1menuAMFuEB0W21wUhzGgbbAhbWLBL7lvRx8qeSvL8iRTHAFCToEiyAI4Y2F-0TcL5Lw6oB+gI4skEDKI7GYgZX+PKRZhEWMieKSgr7kNJVmUgNWAgFaekDSwx44mTrYzPIuODANxOkdXkL5MGlD9yxDkzCaAHrHQygR05foHqmLC+SbYWgSuL1JeD9TRgQMtxNOWIV5iBxNsJON4odGmKKRhCqcrQSEVrBbFmCIGSEv8CWKjCOUwWN7MwXNi95rYvYe3FPkkoTgmLYxfQXrxQxUh9ioadaK7HaAgxLwsQN4vihMZvxnEowGBO3AAAZWWnBMjENwQpL0FyX7OmmXRPJukxkbhJIG9ACQYkvQERMElniXUvk9UPJLQZMS8g0ykrgJJujMTFl4dOpQ0uaX4BllQywkFMsikzLtJ4dfSQPQzrahJJwY6SbJNGVUSYl7gXhZFJUk7DHwLQi5RUoamUtHlqkt4ZTBwg9LDlZinSdvILz6TbhQwnTCQgcVlVZifywxSwt8mA1tJTkloV0pQmLK+lppf0axFkQ5KgljkzgfOKOZ6SdhBkkQEZNoWzloVJoE5cYNCFmBrBZw2yOpOsmiS8V5iuwtaIjF-LFlbKoFfuUNK6k+hKBLJTC1XDwt+WWEwlcNKJpWgUaUkDcTh3EDCtNweMUVXC1T7vsLFcq-cYXLC4XNgQ2K7JfyzLESqCVQqtBrKpgBQwP8V2YVoKsuHf8SJ1fLUURxVRENpx0o0JvLIlH-1v0M4vQRxy0Asr5I0dEibsk0lUSI2R8NxcMur7uTcZjQG8dFxthXKTul4+NVt0vgUM1w2YYNT2JeEu1HIby9YdlxkzuSnlLwjVe4BSBQJRupUctapLJ5nMI1cgCMdmqcU3QI1Uqg8kLMtJgdJAFRdpIlNDX4TpF2YompRJtizBBF8uDxS7OjW7KCQzqo5Y9yTWNEpIqa3CJePkmZqbFugDtT0sJWFrbIxahcdF0+XHAK1BgqtW4BrXIhS1Dyy9Y2uOhNTIprarKu2tzV5ShVPakmX2pXkSc8pFRPNeGpEmoAkWRi+NZHMpCAaWF8atBhJ3cmga0JVE8Tt0A0lgbRgUGvmAOqDXuTwRYajNeOqEi5AMNKGyJD+P-FASQJ4EyCTBO2XRA6l3E2jXxNaXNrMN76haqRrzUW4xhm4JIJYzA6wbiuY6p4oGqHWyIR1wy3JQeVz4CBOI0ym2BsqaUtKDYymrZYWLg4IqIIWVbjdMoPJjR+NiQQTUwo-hL03oMNaqHdFGEF5ZFg0YwtblmCWb2A1mhflQX2hdSJwTmpCPaxs2-TyORub-m2RErOaO89m11c41c2L5rcIWpCK5tEXubAtYHX7LFvYC+bw6AWkRqFK4B2BSwnEHJeFsZGPSstwGVADDWQADTvNaWyVUKoi18l2YVWjvI1pBzXyepfQtBk5oq3uLroFmnzdaugChaQcz01VTkuezNb+tg2h6MwCN4Yl7VLwpjHesup4s7iI2-lm-k61pQ-ajvQwOVoGmpax6NWy4XVuC07arN+2lrRcw7EcgDABU1IXUPpVuCzl6IVbWKr9iLBTtLm87Q9DNWXCVekVLKiFq61XQJwX2hoR9rHq1zTic2gwQttrX8bMAK2kVZi0ko7autW2+1OlFy2Qx7IP2+bcSpeGkrwVT224LvIcrTbbgdmpHcasx15a1VhobtnctuClKOO+a9YaaRcAzbKQzO8pWzsbn1yggRiP7cZE0JCqyYi2zcMS0R3WBSwdOt-DTtEDo6U0eyihhAIwGMj1YQArejvXxAn1784rZOma2lY7Icd0OzYYDDGigrDJxrQyKTsMjK6oE4gUAQsHAHiAO69zb7VAI7qqIdWAVRnihx4DByKFvZdDpVDJGQ8mKN4Y4r0Wm31z7l+7I3RdBpZBdudrOmYWqPWZtLxSNukXQ6rzji749q7KKFLvvCiBZdcgAvYe3-wvhL44oENlJTME2wAAnOIW22iUzBhKiQCgNb3SVCVUdVUI4DkCRr3uWA7YQmvNJdyII+gUIoFNRluB694lMQL81+alQ6Aq+m9Z3Jnm4C59hgaSo6MkB8zbg8+iHCStxCyp9JPGA6PoFvAL5NBfa9wEft72n6g0cgWvT0B31mCv8ggVReosChlxB1h2vHYyNN04AxdcOr-eJR-2v5SoL29VQBBUUQGs0MeKiE+mnZAg6dkETZlAkSKrgcgwIXmlbJlU2xi2Z4eYCG1QOHKbGGBu9eoyfA0sDYUsBCJgFwMc1QA0TQ7NyM6CPhuuR+y6jeFvDkGLF-LG7dQcajeVi6WoHg9M3QNWhPIUc+hEeSlj4aOOXHOEOhvhgyHHuwmk4MBqQ2Iau1FmDQ1twYM4HsSLBtg8CGOCcHZ9GgHg15T4NNQI12ENQ90FEN8GWoch1QFrL-UxBbD9hyPZi3Cj5iEafhm8OvsFHv7xKHe46PpPJVGRbdpxKQzktiFO7OgLussVhNbUB6IAWVJQDr26RGrXtVoY7AGLKWp77GRiYBj2rz3YB+26B35qJ12ToaBQYgA7AACFcQOIdDdS1KitG6gLynFvgCEDhBMAWBBuFAZkxgS4pzqUAGBOQCRo38DAGfWhGX0yYLD-mF8OQbqMNHytWQFo-TnaPwBOjbA8Y5uF6PQB+jB2FvA7oR2lRDwiAAAF6DB8WwDFY+wcsMksqImxnJfUfIkSBBAgwQ0G0Y6NxTjjdxM4-0YABsgU6E0sdeNrGrDGxmoz9C2O-GeOzRg7L+LIaSgbjMmQCb+CBB8A7ipAC4-TmIBhAsgTwboM6juIABZeEKAEAlgU5AAAdgAAcLx0qPCY+OImO2KJkPia2hp7Gi8mJiMKuDuJ4m1FaAQk6VGJMHRLjuAO9WKdKjts7A5kYY0nrhMcHuTzAL48ap+P8mpT5wQE-ThFPYnxT+JqU0Sf6M0AYTsJzk1qcLS6nXt+p4Hn13qgjHDAFRIU55VNNKncTFp6UzJllO3Mi8Bxo490ZkzgmOTqxh08gadNwtF9DRtEwqwOwAAxeGncWICc0ZMAAERJNF4yT2QSk9SdKiATwgGAfAEtIpYWdozbx9YzqaRNoHvj2xwU2mYzOlQszdxPM3KfpxXHVQdxFU2qbFO1muTjpxs8YGbO-HDTAJ705dXTMIBMz2ZzcN2bkDjYAArDCeWP2n3jY53k5OYNOpBVwWBNAF6bbMLmOzS5lczizDMgmIzpxvoyOdjNn14zhoF02x0aPdB0T9OKooeD1SJBcQdxRpWWDuLy0ezoZ7EizrBPiUCATsGY3MfxZb5EhigTUzuc+Pjm+TwPHY7OeqK-mJQAF0qEBZwAgX8znlPs36c3CiATO3s2AAcHOOPnULPJ2o-uddP-GEzB2H83+fwsyZCLxFg6Dyg3PQmtzMZhiw2b3N6mGjbpo856Y3DsXcL-56s5uB4ulRQLIZzyjea6MnGozQluswidEtMXxLqJpoymfpxgS9UJ59KDicUvsRDAJFy6oMZaIemxjRJ61D+NelwX5jcgVk0seQvbn6zL5xM78awsHZTLgIVAORcaXWW9KYF0iwqeuMDnsAqpsIOqdKigwu46UV-PRb8voXmL756c2xZMtmWwrlliK5ABssHRxstp7S6ObQtiXnTElw8x6ZPMyWCroViy4Bciu2XNwvpyyxKYJNWnMrul4gtbg6BoBfzG4NKHeulVCQrQRB-lkG1IPHspRlBiazp1uK0GD9ypJghRpgPwtij9gbsR3oqMGbM0puEwul0pAS7Nixo0VIKJECEnptGzUVsapSNIBNoRR9BmdYOje7sjC1XI2LuysGWDz7p486ef2PAmNLYJh86pcuoAB1QYFkEgARg9KpUKCfWEYManfLulvS8iZyvIhkzQIbC3DaYOI3EgyNmTKja-II7ordl382MbQDHAlzNRFIKAF-F6pmbsx+YwNe1P+W3zyIIK-TiJsI2kbdxCm+jepu4tugsEb2cMSlxk4QQdxQ8F6jMAY3hLWV2qwmd5t-GjThN+GyTbJubhRbw5uQAwAEuCWfLqtrGzzfxvqgMqB2fALTeOD03oub+OyubY4bPggAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-FnoNFQb1tEOw6yuHQ4IZVrh40RaF-hM59BEgcIYsKJ1KZ5tpOqAOQIGwFGBtARtiacsaNqR9cxINsW0diPtFUixA6YukcOXJYjA5AHo1SJmOhEF5cx8UZkb6O96Uh9hTrHEoGIxTBimxTIUSGvUdL6BIAqRXvoSCdFItQWjorUV-gM5rCZhrncbq51yF4DeuNsAzqNyXHRdt8eQyJLGhW7OgjEGRNADjljohtWuZQCcaikviucbYbbaUaclSw-9XOygdhrEwyKucyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaATOknKsQEiLF6B6R2vIjiOOgpninRFItxnOLHEEh82yY3BBhOgBcs5xggPIImLaAI4aJDcVCSmPQCVDGRf4gCcBNAkQToJsExiYTxIlkSQ+cCAidiPDpziHhJEowBeLqyUSDouLciSMCvB9DwKwsLtkpPQmGiSoJIojn0OIiDC-qJCf4dKliqzEYxEYeMSxOQgmTY+DFckdiKwn8NwAyEwyvRLYmUSnJDab8VS2iil5zOUkAAAxn1Oo6UQ8AWFEjccJcWrYsIgDATx5IpWIGAAFOEiJTWgyU1cJMQYCPjJ0vkpKYcMwAFcTgYUx4CiORGk9UpsiTVl8jimhi4OKTN-BwTynVTewcU87uVIN7O46gzcUqTcmMBpQgokU0rlz0SktThEcU0QtsQilVTopNU+KQbE6iBCTgh4QQJGDk5wlM0UiQjsdDFBF8SpM-IAc1NmmtTVuEiKCCRwo7cIOCS0owCtIECRg5Br7F0ZRS0DLTVpSgs9hIg0FaDq2caV6bdPem+Sv8vQEIV50nCjAgBUIiwqikWn-S7pa0x7lgK2na9HuIvTknyMwaAMtO3AIOLZDGgp4uAwvS0qoNsh2JQRW-cEWQKclEz1u-qLIDQJSh0DTiXgFkRLFpJBAbp8M2fmCI37CD0Q74BeBz2XKE5xBMomMn9K4BvT7pjolGRqnlQSypZkYQgkl1HBBBWZpgLbkeSPL4y4Z703QWBzlFfC2IpIF4B1KH4FAnJ14-ASCKkgCDj+kIrGUP2v7RApY1A6Jg9267PdoAYxEsVnyKL4jf8QgmsdizcAWySRT4JNsb3ohIzJRBQXmNuQZQ9wk5Jsa2Wv3JkJ17Z5aMOc7IjJUCQR7syXgiO4QwAfZDo8frWIDmFBuZW-I6AvDrmBkdCX0hwnf0dkmNs5DY7KKIMYggzQExgNYGHKhlGFdCic5ObnP9Q+juRfogDjt09lxwkR7-cUuHP+5DjuWpc0sSkGp4Q8sxYwlUsky5HHB8WHI-eTyKdYRdG4G8wGr1hFFMF1RP-DeWLLCiGyLAxs4EKbIvkxEt5jc8UcYC2kpAuuiI5uZ8OfnYlX5xXP+YDXG6P8cqYAJOT3Fvnq8GsfjMNOdM1FXyLmJcy4r7Jd6miYh25U0b1menuAMFuEB0W21wUhzGgbbAhbWLBL7lvRx8qeSvL8iRTHAFCToEiyAI4Y2F-0TcL5Lw6oB+gI4skEDKI7GYgZX+PKRZhEWMieKSgr7kNJVmUgNWAgFaekDSwx44mTrYzPIuODANxOkdXkL5MGlD9yxDkzCaAHrHQygR05foHqmLC+SbYWgSuL1JeD9TRgQMtxNOWIV5iBxNsJON4odGmKKRhCqcrQSEVrBbFmCIGSEv8CWKjCOUwWN7MwXNi95rYvYe3FPkkoTgmLYxfQXrxQxUh9ioadaK7HaAgxLwsQN4vihMZvxnEowGBO3AAAZWWnBMjENwQpL0FyX7OmmXRPJukxkbhJIG9ACQYkvQERMElniXUvk9UPJLQZMS8g0ykrgJJujMTFl4dOpQ0uaX4BllQywkFMsikzLtJ4dfSQPQzrahJJwY6SbJNGVUSYl7gXhZFJUk7DHwLQi5RUoamUtHlqkt4ZTBwg9LDlZinSdvILz6TbhQwnTCQgcVlVZifywxSwt8mA1tJTkloV0pQmLK+lppf0axFkQ5KgljkzgfOKOZ6SdhBkkQEZNoWzloVJoE5cYNCFmBrBZw2yOpOsmiS8V5iuwtaIjF-LFlbKoFfuUNK6k+hKBLJTC1XDwt+WWEwlcNKJpWgUaUkDcTh3EDCtNweMUVXC1T7vsLFcq-cYXLC4XNgQ2K7JfyzLESqCVQqtBrKpgBQwP8V2YVoKsuHf8SJ1fLUURxVRENpx0o0JvLIlH-1v0M4vQRxy0Asr5I0dEibsk0lUSI2R8NxcMur7uTcZjQG8dFxthXKTul4+NVt0vgUM1w2YYNT2JeEu1HIby9YdlxkzuSnlLwjVe4BSBQJRupUctapLJ5nMI1cgCMdmqcU3QI1Uqg8kLMtJgdJAFRdpIlNDX4TpF2YompRJtizBBF8uDxS7OjW7KCQzqo5Y9yTWNEpIqa3CJePkmZqbFugDtT0sJWFrbIxahcdF0+XHAK1BgqtW4BrXIhS1Dyy9Y2uOhNTIprarKu2tzV5ShVPakmX2pXkSc8pFRPNeGpEmoAkWRi+NZHMpCAaWF8atBhJ3cmga0JVE8Tt0A0lgbRgUGvmAOqDXuTwRYajNeOqEi5AMNKGyJD+P-FASQJ4EyCTBO2XRA6l3E2jXxNaXNrMN76haqRrzUW4xhm4JIJYzA6wbiuY6p4oGqHWyIR1wy3JQeVz4CBOI0ym2BsqaUtKDYymrZYWLg4IqIIWVbjdMoPJjR+NiQQTUwo-hL03oMNaqHdFGEF5ZFg0YwtblmCWb2A1mhflQX2hdSJwTmpCPaxs2-TyORub-m2RErOaO89m11c41c2L5rcIWpCK5tEXubAtYHX7LFvYC+bw6AWkRqFK4B2BSwnEHJeFsZGPSstwGVADDWQADTvNaWyVUKoi18l2YVWjvI1pBzXyepfQtBk5oq3uLroFmnzdaugChaQcz01VTkuezNb+tg2h6MwCN4Yl7VLwpjHesup4s7iI2-lm-k61pQ-ajvQwOVoGmpax6NWy4XVuC07arN+2lrRcw7EcgDABU1IXUPpVuCzl6IVbWKr9iLBTtLm87Q9DNWXCVekVLKiFq61XQJwX2hoR9rHq1zTic2gwQttrX8bMAK2kVZi0ko7autW2+1OlFy2Qx7IP2+bcSpeGkrwVT224LvIcrTbbgdmpHcasx15a1VhobtnctuClKOO+a9YaaRcAzbKQzO8pWzsbn1yggRiP7cZE0JCqyYi2zcMS0R3WBSwdOt-DTtEDo6U0eyihhAIwGMj1YQArejvXxAn1784rZOma2lY7Icd0OzYYDDGigrDJxrQyKTsMjK6oE4gUAQsHAHiAO69zb7VAI7qqIdWAVRnihx4DByKFvZdDpVDJGQ8mKN4Y4r0Wm31z7l+7I3RdBpZBdudrOmYWqPWZtLxSNukXQ6rzji749q7KKFLvvCiBZdcgAvYe3-wvhL44oENlJTME2wAAnOIW22iUzBhKiQCgNb3SVCVUdVUI4DkCRr3uWA7YQmvNJdyII+gUIoFNRluB694lMQL81+alQ6Aq+m9Z3Jnm4C59hgaSo6MkB8zbg8+iHCStxCyp9JPGA6PoFvAL5NBfa9wEft72n6g0cgWvT0B31mCv8ggVReosChlxB1h2vHYyNN04AxdcOr-eJR-2v5SoL29VQBBUUQGs0MeKiE+mnZAg6dkETZlAkSKrgcgwIXmlbJlU2xi2Z4eYCG1QOHKbGGBu9eoyfA0sDYUsBCJgFwMc1QA0TQ7NyM6CPhuuR+y6jeFvDkGLF-LG7dQcajeVi6WoHg9M3QNWhPIUc+hEeSlj4aOOXHOEOhvhgyHHuwmk4MBqQ2Iau1FmDQ1twYM4HsSLBtg8CGOCcHZ9GgHg15T4NNQI12ENQ90FEN8GWoch1QFrL-UxBbD9hyPZi3Cj5iEafhm8OvsFHv7xKHe46PpPJVGRbdpxKQzktiFO7OgLussVhNbUB6IAWVJQDr26RGrXtVoY7AGLKWp77GRiYBj2rz3YB+26B35qJ12ToaBQYgA7AACFcQOIdDdS1KitG6gLynFvgCEDhBMAWBBuFAZkxgS4pzqUAGBOQCRo38DAGfWhGX0yYLD-mF8OQbqMNHytWQFo-TnaPwBOjbA8Y5uF6PQB+jB2FvA7oR2lRDwiAAAF6DB8WwDFY+wcsMksqImxnJfUfIkSBBAgwQ0G0Y6NxTjjdxM4-0YABsgU6E0sdeNrGrDGxmoz9C2O-GeOzRg7L+LIaSgbjMmQCb+CBB8A7ipAC4-TmIBhAsgTwboM6juIABZeEKAEAlgU5AAAdgAAcLx0qPCY+OImO2KJkPia2hp7Gi8mJiMKuDuJ4m1FaAQk6VGJMHRLjuAO9WKdKjts7A5kYY0nrhMcHuTzAL48ap+P8mpT5wQE-ThFPYnxT+JqU0Sf6M0AYTsJzk1qcLS6nXt+p4Hn13qgjHDAFRIU55VNNKncTFp6UzJllO3Mi8Bxo490ZkzgmOTqxh08gadNwtF9DRtEwqwOwAAxeGncWICc0ZMAAERJNF4yT2QSk9SdKiATwgGAfAEtIpYWdozbx9YzqaRNoHvj2xwU2mYzOlQszdxPM3KfpxXHVQdxFU2qbFO1muTjpxs8YGbO-HDTAJ705dXTMIBMz2ZzcN2bkDjYAArDCeWP2n3jY53k5OYNOpBVwWBNAF6bbMLmOzS5lczizDMgmIzpxvoyOdjNn14zhoF02x0aPdB0T9OKooeD1SJBcQdxRpWWDuLy0ezoZ7EizrBPiUCATsGY3MfxZb5EhigTUzuc+Pjm+TwPHY7OeqK-mJQAF0qEBZwAgX8znlPs36c3CiATO3s2AAcHOOPnULPJ2o-uddP-GEzB2H83+fwsyZCLxFg6Dyg3PQmtzMZhiw2b3N6mGjbpo856Y3DsXcL-56s5uB4ulRQLIZzyjea6MnGozQluswidEtMXxLqJpoymfpxgS9UJ59KDicUvsRDAJFy6oMZaIemxjRJ61D+NelwX5jcgVk0seQvbn6zL5xM78awsHZTLgIVAORcaXWW9KYF0iwqeuMDnsAqpsIOqdKigwu46UV-PRb8voXmL756c2xZMtmWwrlliK5ABssHRxstp7S6ObQtiXnTElw8x6ZPMyWCroViy4Bciu2XNwvpyyxKYJNWnMrul-y2+ZzANXjzp5-Y8CY0tgmHzqly6gAHVBgWQSABGD0qlQoJ9YRgxqd8u6W9LyJnK8iGTNAhsLC1pg8tcSCrWZM61r8gjuit2XfzYxtAMcCXM1EUgoAX8XqleuzH5jA17U0NZbO7GDsJ1paytbuJXXNrt13Ft0FgjezhiUuMnCCDuKHgvUZgLa8Jayu1WEzw1v40aeOuLWzrF1zcGDeHNyAGAAlwSz5bRu6XiC1uDoGgF-Mbg0od66VUJCtBEH+WQbUg8eylGUHGbOnW4rQYP3KkmCFGmA-C2KP2BuxHeiowZszSm4TC6XSkBLs2LGjRUgokQISem0bNRWxqlI0gE2hFH0G8tg6N7uyMLVcjYu7KwZf5OHX1QB2fAFKwSAlmZMstLIDNZxZzXro2rGTPgFM4GhQAjSjoOMcWM-Xdz+luq4FdbP057b2AZAE7c3Au23bGrchv5NFR3ETOnRcAKS2TvJSFgqNnS79ctvh2DTrF400XmjuO2TjCduiyybJtVWnzu1ps1bddOjXpL2F8u7Hcruu3q77tvGyDbWsbXhzddkSw3YnNN33zNt7C8QAuAxiFLsx12x3wht4m6IkF0qKrTeuDApELhys69OrMMAITIdmq2Hcxv-XJ709r1LPehrktOrvDFO-YDuIrsEIbVg+4xb2tj2cwJd0+1SO0B3E57V9g6AwC8vk2UL6No+6+fqvumxrzVgs2fe-ulRf7C92a5uHbtx2q7ed6q8+cLuY2sLGVDgri2zupG77-lCmxw2fBAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-FnoNFQb1tEOw6yuHQ4IZVrh40RaF-hM59BEgcIYsKJ1KZ5tpOqAOQIGwFGBtARtiacsaNqR9cxINsW0diPtFUixA6YukcOXJYjA5AHo1SJmOhEF5cx8UZkb6O96Uh9hTrHEoGIxTBimxTIUSGvUdL6BIAqRXvoSCdFItQWjorUV-gM5rCZhrncbq51yF4DeuNsAzqNyXHRdt8eQyJLGhW7OgjEGRNADjljohtWuZQCcaikviucbYbbaUaclSw-9XOygdhrEwyKucyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaATOknKsQEiLF6B6R2vIjiOOgpninRFItxnOLHEEh82yY3BBhOgBcs5xggPIImLaAI4aJDcVCSmPQCVDGRf4gCcBNAkQToJsExiYTxIlkSQ+cCAidiPDpziHhJEowBeLqyUSDouLciSMCvB9DwKwsLtkpPQmGiSoJIojn0OIiDC-qJCf4dKliqzEYxEYeMSxOQgmTY+DFckdiKwn8NwAyEwyvRLYmUSnJDab8VS2iil5zOUkAAAxn1Oo6UQ8AWFEjccJcWrYsIgDATx5IpWIGAAFOEiJTWgyU1cJMQYCPjJ0vkpKYcMwAFcTgYUx4CiORGk9UpsiTVl8jimhi4OKTN-BwTynVTewcU87uVIN7O46gzcUqTcmMBpQgokU0rlz0SktThEcU0QtsQilVTopNU+KQbE6iBCTgh4QQJGDk5wlM0UiQjsdDFBF8SpM-IAc1NmmtTVuEiKCCRwo7cIOCS0owCtIECRg5Br7F0ZRS0DLTVpSgs9hIg0FaDq2caV6bdPem+Sv8vQEIV50nCjAgBUIiwqikWn-S7pa0x7lgK2na9HuIvTknyMwaAMtO3AIOLZDGgp4uAwvS0qoNsh2JQRW-cEWQKclEz1u-qLIDQJSh0DTiXgFkRLFpJBAbp8M2fmCI37CD0Q74BeBz2XKE5xBMomMn9K4BvT7pjolGRqnlQSypZkYQgkl1HBBBWZpgLbkeSPL4y4Z703QWBzlFfC2IpIF4B1KH4FAnJ14-ASCKkgCDj+kIrGUP2v7RApY1A6Jg9267PdoAYxEsVnyKL4jf8QgmsdizcAWySRT4JNsb3ohIzJRBQXmNuQZQ9wk5Jsa2Wv3JkJ17Z5aMOc7IjJUCQR7syXgiO4QwAfZDo8frWIDmFBuZW-I6AvDrmBkdCX0hwnf0dkmNs5DY7KKIMYggzQExgNYGHKhlGFdCic5ObnP9Q+juRfogDjt09lxwkR7-cUuHP+5DjuWpc0sSkGp4Q8sxYwlUsky5HHB8WHI-eTyKdYRdG4G8wGr1hFFMF1RP-DeWLLCiGyLAxs4EKbIvkxEt5jc8UcYC2kpAuuiI5uZ8OfnYlX5xXP+YDXG6P8cqYAJOT3Fvnq8GsfjMNOdM1FXyLmJcy4r7Jd6miYh25U0b1menuAMFuEB0W21wUhzGgbbAhbWLBL7lvRx8qeSvL8iRTHAFCToEiyAI4Y2F-0TcL5Lw6oB+gI4skEDKI7GYgZX+PKRZhEWMieKSgr7kNJVmUgNWAgFaekDSwx44mTrYzPIuODANxOkdXkL5MGlD9yxDkzCaAHrHQygR05foHqmLC+SbYWgSuL1JeD9TRgQMtxNOWIV5iBxNsJON4odGmKKRhCqcrQSEVrBbFmCIGSEv8CWKjCOUwWN7MwXNi95rYvYe3FPkkoTgmLYxfQXrxQxUh9ioadaK7HaAgxLwsQN4vihMZvxnEowGBO3AAAZWWnBMjENwQpL0FyX7OmmXRPJukxkbhJIG9ACQYkvQERMElniXUvk9UPJLQZMS8g0ykrgJJujMTFl4dOpQ0uaX4BllQywkFMsikzLtJ4dfSQPQzrahJJwY6SbJNGVUSYl7gXhZFJUk7DHwLQi5RUoamUtHlqkt4ZTBwg9LDlZinSdvILz6TbhQwnTCQgcVlVZifywxSwt8mA1tJTkloV0pQmLK+lppf0axFkQ5KgljkzgfOKOZ6SdhBkkQEZNoWzloVJoE5cYNCFmBrBZw2yOpOsmiS8V5iuwtaIjF-LFlbKoFfuUNK6k+hKBLJTC1XDwt+WWEwlcNKJpWgUaUkDcTh3EDCtNweMUVXC1T7vsLFcq-cYXLC4XNgQ2K7JfyzLESqCVQqtBrKpgBQwP8V2YVoKsuHf8SJ1fLUURxVRENpx0o0JvLIlH-1v0M4vQRxy0Asr5I0dEibsk0lUSI2R8NxcMur7uTcZjQG8dFxthXKTul4+NVt0vgUM1w2YYNT2JeEu1HIby9YdlxkzuSnlLwjVe4BSBQJRupUctapLJ5nMI1cgCMdmqcU3QI1Uqg8kLMtJgdJAFRdpIlNDX4TpF2YompRJtizBBF8uDxS7OjW7KCQzqo5Y9yTWNEpIqa3CJePkmZqbFugDtT0sJWFrbIxahcdF0+XHAK1BgqtW4BrXIhS1Dyy9Y2uOhNTIprarKu2tzV5ShVPakmX2pXkSc8pFRPNeGpEmoAkWRi+NZHMpCAaWF8atBhJ3cmga0JVE8Tt0A0lgbRgUGvmAOqDXuTwRYajNeOqEi5AMNKGyJD+P-FASQJ4EyCTBO2XRA6l3E2jXxNaXNrMN76haqRrzUW4xhm4JIJYzA6wbiuY6p4oGqHWyIR1wy3JQeVz4CBOI0ym2BsqaUtKDYymrZYWLg4IqIIWVbjdMoPJjR+NiQQTUwo-hL03oMNaqHdFGEF5ZFg0YwtblmCWb2A1mhflQX2hdSJwTmpCPaxs2-TyORub-m2RErOaO89m11c41c2L5rcIWpCK5tEXubAtYHX7LFvYC+bw6AWkRqFK4B2BSwnEHJeFsZGPSstwGVADDWQADTvNaWyVUKoi18l2YVWjvI1pBzXyepfQtBk5oq3uLroFmnzdaugChaQcz01VTkuezNb+tg2h6MwCN4Yl7VLwpjHesup4s7iI2-lm-k61pQ-ajvQwOVoGmpax6NWy4XVuC07arN+2lrRcw7EcgDABU1IXUPpVuCzl6IVbWKr9iLBTtLm87Q9DNWXCVekVLKiFq61XQJwX2hoR9rHq1zTic2gwQttrX8bMAK2kVZi0ko7autW2+1OlFy2Qx7IP2+bcSpeGkrwVT224LvIcrTbbgdmpHcasx15a1VhobtnctuClKOO+a9YaaRcAzbKQzO8pWzsbn1yggRiP7cZE0JCqyYi2zcMS0R3WBSwdOt-DTtEDo6U0eyihhAIwGMj1YQArejvXxAn1784rZOma2lY7Icd0OzYYDDGigrDJxrQyKTsMjK6oE4gUAQsHAHiAO69zb7VAI7qqIdWAVRnihx4DByKFvZdDpVDJGQ8mKN4Y4r0Wm31z7l+7I3RdBpZBdudrOmYWqPWZtLxSNukXQ6rzji749q7KKFLvvCiBZdcgAvYe3-wvhL44oENlJTME2wAAnOIW22iUzBhKiQCgNb3SVCVUdVUI4DkCRr3uWA7YQmvNJdyII+gUIoFNRluB694lMQL81+alQ6Aq+m9Z3Jnm4C59hgaSo6MkB8zbg8+iHCStxCyp9JPGA6PoFvAL5NBfa9wEft72n6g0cgWvT0B31mCv8ggVReosChlxB1h2vHYyNN04AxdcOr-eJR-2v5SoL29VQBBUUQGs0MeKiE+mnZAg6dkETZlAkSKrgcgwIXmlbJlU2xi2Z4eYCG1QOHKbGGBu9eoyfA0sDYUsBCJgFwMc1QA0TQ7NyM6CPhuuR+y6jeFvDkGLF-LG7dQcajeVi6WoHg9M3QNWhPIUc+hEeSlj4aOOXHOEOhvhgyHHuwmk4MBqQ2Iau1FmDQ1twYM4HsSLBtg8CGOCcHZ9GgHg15T4NNQI12ENQ90FEN8GWoch1QFrL-UxBbD9hyPZi3Cj5iEafhm8OvsFHv7xKHe46PpPJVGRbdpxKQzktiFO7OgLussVhNbUB6IAWVJQDr26RGrXtVoY7AGLKWp77GRiYBj2rz3YB+26B35qJ12ToaBQYgA7AACFcQOIdDdS1KitG6gLynFvgCEDhBMAWBBuFAZkxgS4pzqUAGBOQCRo38DAGfWhGX0yYLD-mF8OQbqMNHytWQFo-TnaPwBOjbA8Y5uF6PQB+jB2FvA7oR2lRDwiAAAF6DB8WwDFY+wcsMksqImxnJfUfIkSBBAgwQ0G0Y6NxTjjdxM4-0YABsgU6E0sdeNrGrDGxmoz9C2O-GeOzRg7L+LIaSgbjMmQCb+CBB8A7ipAC4-TmIBhAsgTwboM6juIABZeEKAEAlgU5AAAdgAAcLx0qPCY+OImO2KJkPia2hp7Gi8mJiMKuDuJ4m1FaAQk6VGJMHRLjuAO9WKdKjts7A5kYY0nrhMcHuTzAL48ap+P8mpT5wQE-ThFPYnxT+JqU0Sf6M0AYTsJzk1qcLS6nXt+p4Hn13qgjHDAFRIU55VNNKncTFp6UzJllO3Mi8Bxo490ZkzgmOTqxh08gadNwtF9DRtEwqwOwAAxeGncWICc0ZMAAERJNF4yT2QSk9SdKiATwgGAfAEtIpYWdozbx9YzqaRNoHvj2xwU2mYzOlQszdxPM3KfpxXHVQdxFU2qbFO1muTjpxs8YGbO-HDTAJ705dXTMIBMz2ZzcN2bkDjYAArDCeWP2n3jY53k5OYNOpBVwWBNAF6bbMLmOzS5lczizDMgmIzpxvoyOdjNn14zhoF02x0aPdB0T9OKooeD1SJBcQdxRpWWDuLy0ezoZ7EizrBPiUCATsGY3MfxZb5EhigTUzuc+Pjm+TwPHY7OeqK-mJQAF0qEBZwAgX8znlPs36c3CiATO3s2AAcHOOPnULPJ2o-uddP-GEzB2H83+fwsyZCLxFg6Dyg3PQmtzMZhiw2b3N6mGjbpo856Y3DsXcL-56s5uB4ulRQLIZzyjea6MnGozQluswidEtMXxLqJpoymfpxgS9UJ59KDicUvsRDAJFy6oMZaIemxjRJ61D+NelwX5jcgVk0seQvbn6zL5xM78awsHZTLgIVAORcaXWW9KYF0iwqeuMDnsAqpsIOqdKigwu46UV-PRb8voXmL756c2xZMtmWwrlliK5ABssHRxstp7S6ObQtiXnTElw8x6ZPMyWCroViy4Bciu2XNwvpyyxKYJNWnMrul-y2+ZzANXjzp5-Y8CY0tgmHzqly6gAHVBgWQSABGD0qlQoJ9YRgxqd8u6W9LyJnK8iGTNAhsLC1pg8tcSCrWZM61r8gjuit2XfzYxtAMcCXM1EUgoAX8XqleuzH5jA17U0NZbO7GDsJ1paytbuJXXNrt13Ft0FgjezhiUuMnCCDuKHgvUZgLa8Jayu1WEzw1v40aeOuLWzrF1zcGDeHNyAGAAlwSz5bRuDXsrBl-k4dfVAHZ8AUrBICWZkyy0sgM1nFnNeujasZM+AUzgaFACNKOg4xxYz9d3P6W6rgV1s-TkZvYBkALNzcGzY5satyG-k0VHcRM6dFwApLVW8lIWCo2dLv16m5LYNOsXjTReWW8zZONK26LLJsm1VafO7WmzNN106NekvYXLb8t62+zdtuc28bINtaxteHMO2RLTticy7ffN03sLxAC4DGIUuzH2bHfCG3iboiQXSoqtN64MCkQuHKzr06swwAhNi2arEtzG-9ejux2vU8d6GuS06u8M1b9gO4iuwQhtWi7jFvaxHZzBm3y7VI7QHcQTs12DoDALy+TZQvo2S7r5+q+6bGvNWCzFd3u6VH7tJ3Zrm4T2wrZtsG3qrLe+1M9g6BoBfzG4NKHeulVCQrQRB-lkG1IPHspRlBw+zp1uK0GD9ypJghRpgPwtij9gbsR3oqMGbM0puEwul0pAS7Nixo0VIKJECEnptGzUVsapSNIBNoRR9Bv-YOje7sjC1XI2LuNul3DLn54y0XkAmLQuzXAOa7iA+PL37Lwx0Y3eagnezOA+APkVoDfxrnW7YdjC++aCv058HDcQh8Q-JG12obaUXhPckbt9BUwAJje47b+tTmu7B2Th7xVKg5miHJD-o-xc3MU3Db4t9uybddtT33bMjgh-I8Ue8OIbQN-G6DaDs3WQ79Zlh82aMtHWMqeaNzoTZof6A6HwgBh4Pu0stQgAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-FnoNFQb1tEOw6yuHQ4IZVrh40RaF-hM59BEgcIYsKJ1KZ5tpOqAOQIGwFGBtARtiacsaNqR9cxINsW0diPtFUixA6YukcOXJYjA5AHo1SJmOhEF5cx8UZkb6O96Uh9hTrHEoGIxTBimxTIUSGvUdL6BIAqRXvoSCdFItQWjorUV-gM5rCZhrncbq51yF4DeuNsAzqNyXHRdt8eQyJLGhW7OgjEGRNADjljohtWuZQCcaikviucbYbbaUaclSw-9XOygdhrEwyKucyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaATOknKsQEiLF6B6R2vIjiOOgpninRFItxnOLHEEh82yY3BBhOgBcs5xggPIImLaAI4aJDcVCSmPQCVDGRf4gCcBNAkQToJsExiYTxIlkSQ+cCAidiPDpziHhJEowBeLqyUSDouLciSMCvB9DwKwsLtkpPQmGiSoJIojn0OIiDC-qJCf4dKliqzEYxEYeMSxOQgmTY+DFckdiKwn8NwAyEwyvRLYmUSnJDab8VS2iil5zOUkAAAxn1Oo6UQ8AWFEjccJcWrYsIgDATx5IpWIGAAFOEiJTWgyU1cJMQYCPjJ0vkpKYcMwAFcTgYUx4CiORGk9UpsiTVl8jimhi4OKTN-BwTynVTewcU87uVIN7O46gzcUqTcmMBpQgokU0rlz0SktThEcU0QtsQilVTopNU+KQbE6iBCTgh4QQJGDk5wlM0UiQjsdDFBF8SpM-IAc1NmmtTVuEiKCCRwo7cIOCS0owCtIECRg5Br7F0ZRS0DLTVpSgs9hIg0FaDq2caV6bdPem+Sv8vQEIV50nCjAgBUIiwqikWn-S7pa0x7lgK2na9HuIvTknyMwaAMtO3AIOLZDGgp4uAwvS0qoNsh2JQRW-cEWQKclEz1u-qLIDQJSh0DTiXgFkRLFpJBAbp8M2fmCI37CD0Q74BeBz2XKE5xBMomMn9K4BvT7pjolGRqnlQSypZkYQgkl1HBBBWZpgLbkeSPL4y4Z703QWBzlFfC2IpIF4B1KH4FAnJ14-ASCKkgCDj+kIrGUP2v7RApY1A6Jg9267PdoAYxEsVnyKL4jf8QgmsdizcAWySRT4JNsb3ohIzJRBQXmNuQZQ9wk5Jsa2Wv3JkJ17Z5aMOc7IjJUCQR7syXgiO4QwAfZDo8frWIDmFBuZW-I6AvDrmBkdCX0hwnf0dkmNs5DY7KKIMYggzQExgNYGHKhlGFdCic5ObnP9Q+juRfogDjt09lxwkR7-cUuHP+5DjuWpc0sSkGp4Q8sxYwlUsky5HHB8WHI-eTyKdYRdG4G8wGr1hFFMF1RP-DeWLLCiGyLAxs4EKbIvkxEt5jc8UcYC2kpAuuiI5uZ8OfnYlX5xXP+YDXG6P8cqYAJOT3Fvnq8GsfjMNOdM1FXyLmJcy4r7Jd6miYh25U0b1menuAMFuEB0W21wUhzGgbbAhbWLBL7lvRx8qeSvL8iRTHAFCToEiyAI4Y2F-0TcL5Lw6oB+gI4skEDKI7GYgZX+PKRZhEWMieKSgr7kNJVmUgNWAgFaekDSwx44mTrYzPIuODANxOkdXkL5MGlD9yxDkzCaAHrHQygR05foHqmLC+SbYWgSuL1JeD9TRgQMtxNOWIV5iBxNsJON4odGmKKRhCqcrQSEVrBbFmCIGSEv8CWKjCOUwWN7MwXNi95rYvYe3FPkkoTgmLYxfQXrxQxUh9ioadaK7HaAgxLwsQN4vihMZvxnEowGBO3AAAZWWnBMjENwQpL0FyX7OmmXRPJukxkbhJIG9ACQYkvQERMElniXUvk9UPJLQZMS8g0ykrgJJujMTFl4dOpQ0uaX4BllQywkFMsikzLtJ4dfSQPQzrahJJwY6SbJNGVUSYl7gXhZFJUk7DHwLQi5RUoamUtHlqkt4ZTBwg9LDlZinSdvILz6TbhQwnTCQgcVlVZifywxSwt8mA1tJTkloV0pQmLK+lppf0axFkQ5KgljkzgfOKOZ6SdhBkkQEZNoWzloVJoE5cYNCFmBrBZw2yOpOsmiS8V5iuwtaIjF-LFlbKoFfuUNK6k+hKBLJTC1XDwt+WWEwlcNKJpWgUaUkDcTh3EDCtNweMUVXC1T7vsLFcq-cYXLC4XNgQ2K7JfyzLESqCVQqtBrKpgBQwP8V2YVoKsuHf8SJ1fLUURxVRENpx0o0JvLIlH-1v0M4vQRxy0Asr5I0dEibsk0lUSI2R8NxcMur7uTcZjQG8dFxthXKTul4+NVt0vgUM1w2YYNT2JeEu1HIby9YdlxkzuSnlLwjVe4BSBQJRupUctapLJ5nMI1cgCMdmqcU3QI1Uqg8kLMtJgdJAFRdpIlNDX4TpF2YompRJtizBBF8uDxS7OjW7KCQzqo5Y9yTWNEpIqa3CJePkmZqbFugDtT0sJWFrbIxahcdF0+XHAK1BgqtW4BrXIhS1Dyy9Y2uOhNTIprarKu2tzV5ShVPakmX2pXkSc8pFRPNeGpEmoAkWRi+NZHMpCAaWF8atBhJ3cmga0JVE8Tt0A0lgbRgUGvmAOqDXuTwRYajNeOqEi5AMNKGyJD+P-FASQJ4EyCTBO2XRA6l3E2jXxNaXNrMN76haqRrzUW4xhm4JIJYzA6wbiuY6p4oGqHWyIR1wy3JQeVz4CBOI0ym2BsqaUtKDYymrZYWLg4IqIIWVbjdMoPJjR+NiQQTUwo-hL03oMNaqHdFGEF5ZFg0YwtblmCWb2A1mhflQX2hdSJwTmpCPaxs2-TyORub-m2RErOaO89m11c41c2L5rcIWpCK5tEXubAtYHX7LFvYC+bw6AWkRqFK4B2BSwnEHJeFsZGPSstwGVADDWQADTvNaWyVUKoi18l2YVWjvI1pBzXyepfQtBk5oq3uLroFmnzdaugChaQcz01VTkuezNb+tg2h6MwCN4Yl7VLwpjHesup4s7iI2-lm-k61pQ-ajvQwOVoGmpax6NWy4XVuC07arN+2lrRcw7EcgDABU1IXUPpVuCzl6IVbWKr9iLBTtLm87Q9DNWXCVekVLKiFq61XQJwX2hoR9rHq1zTic2gwQttrX8bMAK2kVZi0ko7autW2+1OlFy2Qx7IP2+bcSpeGkrwVT224LvIcrTbbgdmpHcasx15a1VhobtnctuClKOO+a9YaaRcAzbKQzO8pWzsbn1yggRiP7cZE0JCqyYi2zcMS0R3WBSwdOt-DTtEDo6U0eyihhAIwGMj1YQArejvXxAn1784rZOma2lY7Icd0OzYYDDGigrDJxrQyKTsMjK6oE4gUAQsHAHiAO69zb7VAI7qqIdWAVRnihx4DByKFvZdDpVDJGQ8mKN4Y4r0Wm31z7l+7I3RdBpZBdudrOmYWqPWZtLxSNukXQ6rzji749q7KKFLvvCiBZdcgAvYe3-wvhL44oENlJTME2wAAnOIW22iUzBhKiQCgNb3SVCVUdVUI4DkCRr3uWA7YQmvNJdyII+gUIoFNRluB694lMQL81+alQ6Aq+m9Z3Jnm4C59hgaSo6MkB8zbg8+iHCStxCyp9JPGA6PoFvAL5NBfa9wEft72n6g0cgWvT0B31mCv8ggVReosChlxB1h2vHYyNN04AxdcOr-eJR-2v5SoL29VQBBUUQGs0MeKiE+mnZAg6dkETZlAkSKrgcgwIXmlbJlU2xi2Z4eYCG1QOHKbGGBu9eoyfA0sDYUsBCJgFwMc1QA0TQ7NyM6CPhuuR+y6jeFvDkGLF-LG7dQcajeVi6WoHg9M3QNWhPIUc+hEeSlj4aOOXHOEOhvhgyHHuwmk4MBqQ2Iau1FmDQ1twYM4HsSLBtg8CGOCcHZ9GgHg15T4NNQI12ENQ90FEN8GWoch1QFrL-UxBbD9hyPZi3Cj5iEafhm8OvsFHv7xKHe46PpPJVGRbdpxKQzktiFO7OgLussVhNbUB6IAWVJQDr26RGrXtVoY7AGLKWp77GRiYBj2rz3YB+26B35qJ12ToaBQYgA7AACFcQOIdDdS1KitG6gLynFvgCEDhBMAWBBuFAZkxgS4pzqUAGBOQCRo38DAGfWhGX0yYLD-mF8OQbqMNHytWQFo-TnaPwBOjbA8Y5uF6PQB+jB2FvA7oR2lRDwiAAAF6DB8WwDFY+wcsMksqImxnJfUfIkSBBAgwQ0G0Y6NxTjjdxM4-0YABsgU6E0sdeNrGrDGxmoz9C2O-GeOzRg7L+LIaSgbjMmQCb+CBB8A7ipAC4-TmIBhAsgTwboM6juIABZeEKAEAlgU5AAAdgAAcLx0qPCY+OImO2KJkPia2hp7Gi8mJiMKuDuJ4m1FaAQk6VGJMHRLjuAO9WKdKjts7A5kYY0nrhMcHuTzAL48ap+P8mpT5wQE-ThFPYnxT+JqU0Sf6M0AYTsJzk1qcLS6nXt+p4Hn13qgjHDAFRIU55VNNKncTFp6UzJllO3Mi8Bxo490ZkzgmOTqxh08gadNwtF9DRtEwqwOwAAxeGncWICc0ZMAAERJNF4yT2QSk9SdKiATwgGAfAEtIpYWdozbx9YzqaRNoHvj2xwU2mYzOlQszdxPM3KfpxXHVQdxFU2qbFO1muTjpxs8YGbO-HDTAJ705dXTMIBMz2ZzcN2bkDjYAArDCeWP2n3jY53k5OYNOpBVwWBNAF6bbMLmOzS5lczizDMgmIzpxvoyOdjNn14zhoF02x0aPdB0T9OKooeD1SJBcQdxRpWWDuLy0ezoZ7EizrBPiUCATsGY3MfxZb5EhigTUzuc+Pjm+TwPHY7OeqK-mJQAF0qEBZwAgX8znlPs36c3CiATO3s2AAcHOOPnULPJ2o-uddP-GEzB2H83+fwsyZCLxFg6Dyg3PQmtzMZhiw2b3N6mGjbpo856Y3DsXcL-56s5uB4ulRQLIZzyjea6MnGozQluswidEtMXxLqJpoymfpxgS9UJ59KDicUvsRDAJFy6oMZaIemxjRJ61D+NelwX5jcgVk0seQvbn6zL5xM78awsHZTLgIVAORcaXWW9KYF0iwqeuMDnsAqpsIOqdKigwu46UV-PRb8voXmL756c2xZMtmWwrlliK5ABssHRxstp7S6ObQtiXnTElw8x6ZPMyWCroViy4Bciu2XNwvpyyxKYJNWnMrul-y2+ZzANXjzp5-Y8CY0tgmHzqly6gAHVBgWQSABGD0qlQoJ9YRgxqd8u6W9LyJnK8iGTNAhsLC1pg8tcSCrWZM61r8gjuit2XfzYxtAMcCXM1EUgoAX8XqleuzH5jA17U0NZbO7GDsJ1paytbuJXXNrt13Ft0FgjezhiUuMnCCDuKHgvUZgLa8Jayu1WEzw1v40aeOuLWzrF1zcGDeHNyAGAAlwSz5bRuDXsrBl-k4dfVAHZ8AUrBICWZkyy0sgM1nFnNeujasZM+AUzgaFACNKOg4xxYz9d3P6W6rgV1s-TkZvYBkALNzcGzY5satyG-k0VHcRM6dFwApLVW8lIWCo2dLv16m5LYNOsXjTReWW8zZONK26LLJsm1VafO7WmzNN106NekvYXLb8t62+zdtuc28bINtaxteHMO2RLTticy7ffN03sLxAC4DGIUuzH2bHfCG3iboiQXSoqtN64MCkQuHKzr06swwAhNi2arEtzG-9ejux2vU8d6GuS06u8M1b9gO4iuwQhtWi7jFvaxHZzBm3y7VI7QHcQTs12DoDALy+TZQvo2S7r5+q+6bGvNWCzFd3u6VH7tJ3Zrm4T2wrZtsG3qrbd52ybeB5R2DsgExaF2a4BzXcQHx5e-ZeGOjG7zUE72ZwHwB8itAb+Nc63bDsYX3zQV+nAfYbhH2T75I2u1DbSi8J7kjdvoKmABMb3Hbf1qc13f3uH3SoOZ4+6ff6P8XNzFNw2+Lfbs73crbtpq9ha-u8V4HiDv+xDaBv43QbQdm6yHfrPEFrcHQNAL+Y3BpQ710qoSFaCIP8sg2pB49lKMoNMOdOtxWgwfuVJMEKNMB+FsUfsDdiO9FRgzZmlNwmF0ulICXZsWNGipBRIgQk9No2aitjVKRpAJtCKPoMFHB0b3dkYWq5Gxdxt0u78YgTdBOOH9ovGRcst3HHjnnTq04-ivy2hzlDtB5vdfv7WoYmCOx4nWluOPYr-Z24w8aePuPwn5Fyix6mou0WIHodoa7Y-seCmMq8p1iHFf8poOWoQAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-FnoNFQb1tEOw6yuHQ4IZVrh40RaF-hM59BEgcIYsKJ1KZ5tpOqAOQIGwFGBtARtiacsaNqR9cxINsW0diPtFUixA6YukcOXJYjA5AHo1SJmOhEF5cx8UZkb6O96Uh9hTrHEoGIxTBimxTIUSGvUdL6BIAqRXvoSCdFItQWjorUV-gM5rCZhrncbq51yF4DeuNsAzqNyXHRdt8eQyJLGhW7OgjEGRNADjljohtWuZQCcaikviucbYbbaUaclSw-9XOygdhrEwyKucyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaATOknKsQEiLF6B6R2vIjiOOgpninRFItxnOLHEEh82yY3BBhOgBcs5xggPIImLaAI4aJDcVCSmPQCVDGRf4gCcBNAkQToJsExiYTxIlkSQ+cCAidiPDpziHhJEowBeLqyUSDouLciSMCvB9DwKwsLtkpPQmGiSoJIojn0OIiDC-qJCf4dKliqzEYxEYeMSxOQgmTY+DFckdiKwn8NwAyEwyvRLYmUSnJDab8VS2iil5zOUkAAAxn1Oo6UQ8AWFEjccJcWrYsIgDATx5IpWIGAAFOEiJTWgyU1cJMQYCPjJ0vkpKYcMwAFcTgYUx4CiORGk9UpsiTVl8jimhi4OKTN-BwTynVTewcU87uVIN7O46gzcUqTcmMBpQgokU0rlz0SktThEcU0QtsQilVTopNU+KQbE6iBCTgh4QQJGDk5wlM0UiQjsdDFBF8SpM-IAc1NmmtTVuEiKCCRwo7cIOCS0owCtIECRg5Br7F0ZRS0DLTVpSgs9hIg0FaDq2caV6bdPem+Sv8vQEIV50nCjAgBUIiwqikWn-S7pa0x7lgK2na9HuIvTknyMwaAMtO3AIOLZDGgp4uAwvS0qoNsh2JQRW-cEWQKclEz1u-qLIDQJSh0DTiXgFkRLFpJBAbp8M2fmCI37CD0Q74BeBz2XKE5xBMomMn9K4BvT7pjolGRqnlQSypZkYQgkl1HBBBWZpgLbkeSPL4y4Z703QWBzlFfC2IpIF4B1KH4FAnJ14-ASCKkgCDj+kIrGUP2v7RApY1A6Jg9267PdoAYxEsVnyKL4jf8QgmsdizcAWySRT4JNsb3ohIzJRBQXmNuQZQ9wk5Jsa2Wv3JkJ17Z5aMOc7IjJUCQR7syXgiO4QwAfZDo8frWIDmFBuZW-I6AvDrmBkdCX0hwnf0dkmNs5DY7KKIMYggzQExgNYGHKhlGFdCic5ObnP9Q+juRfogDjt09lxwkR7-cUuHP+5DjuWpc0sSkGp4Q8sxYwlUsky5HHB8WHI-eTyKdYRdG4G8wGr1hFFMF1RP-DeWLLCiGyLAxs4EKbIvkxEt5jc8UcYC2kpAuuiI5uZ8OfnYlX5xXP+YDXG6P8cqYAJOT3Fvnq8GsfjMNOdM1FXyLmJcy4r7Jd6miYh25U0b1menuAMFuEB0W21wUhzGgbbAhbWLBL7lvRx8qeSvL8iRTHAFCToEiyAI4Y2F-0TcL5Lw6oB+gI4skEDKI7GYgZX+PKRZhEWMieKSgr7kNJVmUgNWAgFaekDSwx44mTrYzPIuODANxOkdXkL5MGlD9yxDkzCaAHrHQygR05foHqmLC+SbYWgSuL1JeD9TRgQMtxNOWIV5iBxNsJON4odGmKKRhCqcrQSEVrBbFmCIGSEv8CWKjCOUwWN7MwXNi95rYvYe3FPkkoTgmLYxfQXrxQxUh9ioadaK7HaAgxLwsQN4vihMZvxnEowGBO3AAAZWWnBMjENwQpL0FyX7OmmXRPJukxkbhJIG9ACQYkvQERMElniXUvk9UPJLQZMS8g0ykrgJJujMTFl4dOpQ0uaX4BllQywkFMsikzLtJ4dfSQPQzrahJJwY6SbJNGVUSYl7gXhZFJUk7DHwLQi5RUoamUtHlqkt4ZTBwg9LDlZinSdvILz6TbhQwnTCQgcVlVZifywxSwt8mA1tJTkloV0pQmLK+lppf0axFkQ5KgljkzgfOKOZ6SdhBkkQEZNoWzloVJoE5cYNCFmBrBZw2yOpOsmiS8V5iuwtaIjF-LFlbKoFfuUNK6k+hKBLJTC1XDwt+WWEwlcNKJpWgUaUkDcTh3EDCtNweMUVXC1T7vsLFcq-cYXLC4XNgQ2K7JfyzLESqCVQqtBrKpgBQwP8V2YVoKsuHf8SJ1fLUURxVRENpx0o0JvLIlH-1v0M4vQRxy0Asr5I0dEibsk0lUSI2R8NxcMur7uTcZjQG8dFxthXKTul4+NVt0vgUM1w2YYNT2JeEu1HIby9YdlxkzuSnlLwjVe4BSBQJRupUctapLJ5nMI1cgCMdmqcU3QI1Uqg8kLMtJgdJAFRdpIlNDX4TpF2YompRJtizBBF8uDxS7OjW7KCQzqo5Y9yTWNEpIqa3CJePkmZqbFugDtT0sJWFrbIxahcdF0+XHAK1BgqtW4BrXIhS1Dyy9Y2uOhNTIprarKu2tzV5ShVPakmX2pXkSc8pFRPNeGpEmoAkWRi+NZHMpCAaWF8atBhJ3cmga0JVE8Tt0A0lgbRgUGvmAOqDXuTwRYajNeOqEi5AMNKGyJD+P-FASQJ4EyCTBO2XRA6l3E2jXxNaXNrMN76haqRrzUW4xhm4JIJYzA6wbiuY6p4oGqHWyIR1wy3JQeVz4CBOI0ym2BsqaUtKDYymrZYWLg4IqIIWVbjdMoPJjR+NiQQTUwo-hL03oMNaqHdFGEF5ZFg0YwtblmCWb2A1mhflQX2hdSJwTmpCPaxs2-TyORub-m2RErOaO89m11c41c2L5rcIWpCK5tEXubAtYHX7LFvYC+bw6AWkRqFK4B2BSwnEHJeFsZGPSstwGVADDWQADTvNaWyVUKoi18l2YVWjvI1pBzXyepfQtBk5oq3uLroFmnzdaugChaQcz01VTkuezNb+tg2h6MwCN4Yl7VLwpjHesup4s7iI2-lm-k61pQ-ajvQwOVoGmpax6NWy4XVuC07arN+2lrRcw7EcgDABU1IXUPpVuCzl6IVbWKr9iLBTtLm87Q9DNWXCVekVLKiFq61XQJwX2hoR9rHq1zTic2gwQttrX8bMAK2kVZi0ko7autW2+1OlFy2Qx7IP2+bcSpeGkrwVT224LvIcrTbbgdmpHcasx15a1VhobtnctuClKOO+a9YaaRcAzbKQzO8pWzsbn1yggRiP7cZE0JCqyYi2zcMS0R3WBSwdOt-DTtEDo6U0eyihhAIwGMj1YQArejvXxAn1784rZOma2lY7Icd0OzYYDDGigrDJxrQyKTsMjK6oE4gUAQsHAHiAO69zb7VAI7qqIdWAVRnihx4DByKFvZdDpVDJGQ8mKN4Y4r0Wm31z7l+7I3RdBpZBdudrOmYWqPWZtLxSNukXQ6rzji749q7KKFLvvCiBZdcgAvYe3-wvhL44oENlJTME2wAAnOIW22iUzBhKiQCgNb3SVCVUdVUI4DkCRr3uWA7YQmvNJdyII+gUIoFNRluB694lMQL81+alQ6Aq+m9Z3Jnm4C59hgaSo6MkB8zbg8+iHCStxCyp9JPGA6PoFvAL5NBfa9wEft72n6g0cgWvT0B31mCv8ggVReosChlxB1h2vHYyNN04AxdcOr-eJR-2v5SoL29VQBBUUQGs0MeKiE+mnZAg6dkETZlAkSKrgcgwIXmlbJlU2xi2Z4eYCG1QOHKbGGBu9eoyfA0sDYUsBCJgFwMc1QA0TQ7NyM6CPhuuR+y6jeFvDkGLF-LG7dQcajeVi6WoHg9M3QNWhPIUc+hEeSlj4aOOXHOEOhvhgyHHuwmk4MBqQ2Iau1FmDQ1twYM4HsSLBtg8CGOCcHZ9GgHg15T4NNQI12ENQ90FEN8GWoch1QFrL-UxBbD9hyPZi3Cj5iEafhm8OvsFHv7xKHe46PpPJVGRbdpxKQzktiFO7OgLussVhNbUB6IAWVJQDr26RGrXtVoY7AGLKWp77GRiYBj2rz3YB+26B35qJ12ToaBQYgA7AACFcQOIdDdS1KitG6gLynFvgCEDhBMAWBBuFAZkxgS4pzqUAGBOQCRo38DAGfWhGX0yYLD-mF8OQbqMNHytWQFo-TnaPwBOjbA8Y5uF6PQB+jB2FvA7oR2lRDwiAAAF6DB8WwDFY+wcsMksqImxnJfUfIkSBBAgwQ0G0Y6NxTjjdxM4-0YABsgU6E0sdeNrGrDGxmoz9C2O-GeOzRg7L+LIaSgbjMmQCb+CBB8A7ipAC4-TmIBhAsgTwboM6juIABZeEKAEAlgU5AAAdgAAcLx0qPCY+OImO2KJkPia2hp7Gi8mJiMKuDuJ4m1FaAQk6VGJMHRLjuAO9WKdKjts7A5kYY0nrhMcHuTzAL48ap+P8mpT5wQE-ThFPYnxT+JqU0Sf6M0AYTsJzk1qcLS6nXt+p4Hn13qgjHDAFRIU55VNNKncTFp6UzJllO3Mi8Bxo490ZkzgmOTqxh08gadNwtF9DRtEwqwOwAAxeGncWICc0ZMAAERJNF4yT2QSk9SdKiATwgGAfAEtIpYWdozbx9YzqaRNoHvj2xwU2mYzOlQszdxPM3KfpxXHVQdxFU2qbFO1muTjpxs8YGbO-HDTAJ705dXTMIBMz2ZzcN2bkDjYAArDCeWP2n3jY53k5OYNOpBVwWBNAF6bbMLmOzS5lczizDMgmIzpxvoyOdjNn14zhoF02x0aPdB0T9OKooeD1SJBcQdxRpWWDuLy0ezoZ7EizrBPiUCATsGY3MfxZb5EhigTUzuc+Pjm+TwPHY7OeqK-mJQAF0qEBZwAgX8znlPs36c3CiATO3s2AAcHOOPnULPJ2o-uddP-GEzB2H83+fwsyZCLxFg6Dyg3PQmtzMZhiw2b3N6mGjbpo856Y3DsXcL-56s5uB4ulRQLIZzyjea6MnGozQluswidEtMXxLqJpoymfpxgS9UJ59KDicUvsRDAJFy6oMZaIemxjRJ61D+NelwX5jcgVk0seQvbn6zL5xM78awsHZTLgIVAORcaXWW9KYF0iwqeuMDnsAqpsIOqdKigwu46UV-PRb8voXmL756c2xZMtmWwrlliK5ABssHRxstp7S6ObQtiXnTElw8x6ZPMyWCroViy4Bciu2XNwvpyyxKYJNWnMrul-y2+ZzANXjzp5-Y8CY0tgmHzqly6gAHVBgWQSABGD0qlQoJ9YRgxqd8u6W9LyJnK8iGTNAhsLC1pg8tcSCrWZM61r8gjuit2XfzYxtAMcCXM1EUgoAX8XqleuzH5jA17U0NZbO7GDsJ1paytbuJXXNrt13Ft0FgjezhiUuMnCCDuKHgvUZgLa8Jayu1WEzw1v40aeOuLWzrF1zcGDeHNyAGAAlwSz5bRuDXsrBl-k4dfVAHZ8AUrBICWZkyy0sgM1nFnNeujasZM+AUzgaFACNKOg4xxYz9d3P6W6rgV1s-TkZvYBkALNzcGzY5satyG-k0VHcRM6dFwApLVW8lIWCo2dLv16m5LYNOsXjTReWW8zZONK26LLJsm1VafO7WmzNN106NekvYXLb8t62+zdtuc28bINtaxteHMO2RLTticy7ffN03sLxAC4DGIUuzH2bHfCG3iboiQXSoqtN64MCkQuHKzr06swwAhNi2arEtzG-9ejux2vU8d6GuS06u8M1b9gO4iuwQhtWi7jFvaxHZzBm3y7VI7QHcQTs12DoDALy+TZQvo2S7r5+q+6bGvNWCzFd3u6VH7tJ3Zrm4T2wrZtsG3qrbd52ybeB5R2DsgExaF2a4BzXcQHx5e-ZeGOjG7zUE72ZwHwB8itAb+Nc63bDsYX3zQV+nAfYbhH2T75I2u1DbSi8J7kjdvoKmABMb3Hbf1qc13f3uH3SoOZ4+6ff6P8XNzFNw2+Lfbs73crbtpq9ha-u8V4HiDv+xDaBv43QbQdm6yHbHuYPS7vxiBN0E44f2i8ZFyy3cceOedOrLD+K-LaHOUO0Hm91+-tahiYIGHidaW8w9iv9nbjDxp45w8kfkXKLHqai7RYgciXiC1uDoGgF-Mbg0od66VUJCtBEH+WQbUg8eylGUHdHOnW4rQYP3KkmCFGmA-C2KP2BuxHeiowZszSm4TC6XSkBLs2LGjRUgokQISem0bNRWxqlI0gE2hFH0G3jg6N7uyMLVcjYu427Q-5P0PGH4jmK6xDivKmErvDuRzk6kcyZBzSVhR0MGtQZWqHO1oaxk7Ee7GMqHBYvIqZxN2U0HLUIAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-FnoNFQb1tEOw6yuHQ4IZVrh40RaF-hM59BEgcIYsKJ1KZ5tpOqAOQIGwFGBtARtiacsaNqR9cxINsW0diPtFUixA6YukcOXJYjA5AHo1SJmOhEF5cx8UZkb6O96Uh9hTrHEoGIxTBimxTIUSGvUdL6BIAqRXvoSCdFItQWjorUV-gM5rCZhrncbq51yF4DeuNsAzqNyXHRdt8eQyJLGhW7OgjEGRNADjljohtWuZQCcaikviucbYbbaUaclSw-9XOygdhrEwyKucyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaATOknKsQEiLF6B6R2vIjiOOgpninRFItxnOLHEEh82yY3BBhOgBcs5xggPIImLaAI4aJDcVCSmPQCVDGRf4gCcBNAkQToJsExiYTxIlkSQ+cCAidiPDpziHhJEowBeLqyUSDouLciSMCvB9DwKwsLtkpPQmGiSoJIojn0OIiDC-qJCf4dKliqzEYxEYeMSxOQgmTY+DFckdiKwn8NwAyEwyvRLYmUSnJDab8VS2iil5zOUkAAAxn1Oo6UQ8AWFEjccJcWrYsIgDATx5IpWIGAAFOEiJTWgyU1cJMQYCPjJ0vkpKYcMwAFcTgYUx4CiORGk9UpsiTVl8jimhi4OKTN-BwTynVTewcU87uVIN7O46gzcUqTcmMBpQgokU0rlz0SktThEcU0QtsQilVTopNU+KQbE6iBCTgh4QQJGDk5wlM0UiQjsdDFBF8SpM-IAc1NmmtTVuEiKCCRwo7cIOCS0owCtIECRg5Br7F0ZRS0DLTVpSgs9hIg0FaDq2caV6bdPem+Sv8vQEIV50nCjAgBUIiwqikWn-S7pa0x7lgK2na9HuIvTknyMwaAMtO3AIOLZDGgp4uAwvS0qoNsh2JQRW-cEWQKclEz1u-qLIDQJSh0DTiXgFkRLFpJBAbp8M2fmCI37CD0Q74BeBz2XKE5xBMomMn9K4BvT7pjolGRqnlQSypZkYQgkl1HBBBWZpgLbkeSPL4y4Z703QWBzlFfC2IpIF4B1KH4FAnJ14-ASCKkgCDj+kIrGUP2v7RApY1A6Jg9267PdoAYxEsVnyKL4jf8QgmsdizcAWySRT4JNsb3ohIzJRBQXmNuQZQ9wk5Jsa2Wv3JkJ17Z5aMOc7IjJUCQR7syXgiO4QwAfZDo8frWIDmFBuZW-I6AvDrmBkdCX0hwnf0dkmNs5DY7KKIMYggzQExgNYGHKhlGFdCic5ObnP9Q+juRfogDjt09lxwkR7-cUuHP+5DjuWpc0sSkGp4Q8sxYwlUsky5HHB8WHI-eTyKdYRdG4G8wGr1hFFMF1RP-DeWLLCiGyLAxs4EKbIvkxEt5jc8UcYC2kpAuuiI5uZ8OfnYlX5xXP+YDXG6P8cqYAJOT3Fvnq8GsfjMNOdM1FXyLmJcy4r7Jd6miYh25U0b1menuAMFuEB0W21wUhzGgbbAhbWLBL7lvRx8qeSvL8iRTHAFCToEiyAI4Y2F-0TcL5Lw6oB+gI4skEDKI7GYgZX+PKRZhEWMieKSgr7kNJVmUgNWAgFaekDSwx44mTrYzPIuODANxOkdXkL5MGlD9yxDkzCaAHrHQygR05foHqmLC+SbYWgSuL1JeD9TRgQMtxNOWIV5iBxNsJON4odGmKKRhCqcrQSEVrBbFmCIGSEv8CWKjCOUwWN7MwXNi95rYvYe3FPkkoTgmLYxfQXrxQxUh9ioadaK7HaAgxLwsQN4vihMZvxnEowGBO3AAAZWWnBMjENwQpL0FyX7OmmXRPJukxkbhJIG9ACQYkvQERMElniXUvk9UPJLQZMS8g0ykrgJJujMTFl4dOpQ0uaX4BllQywkFMsikzLtJ4dfSQPQzrahJJwY6SbJNGVUSYl7gXhZFJUk7DHwLQi5RUoamUtHlqkt4ZTBwg9LDlZinSdvILz6TbhQwnTCQgcVlVZifywxSwt8mA1tJTkloV0pQmLK+lppf0axFkQ5KgljkzgfOKOZ6SdhBkkQEZNoWzloVJoE5cYNCFmBrBZw2yOpOsmiS8V5iuwtaIjF-LFlbKoFfuUNK6k+hKBLJTC1XDwt+WWEwlcNKJpWgUaUkDcTh3EDCtNweMUVXC1T7vsLFcq-cYXLC4XNgQ2K7JfyzLESqCVQqtBrKpgBQwP8V2YVoKsuHf8SJ1fLUURxVRENpx0o0JvLIlH-1v0M4vQRxy0Asr5I0dEibsk0lUSI2R8NxcMur7uTcZjQG8dFxthXKTul4+NVt0vgUM1w2YYNT2JeEu1HIby9YdlxkzuSnlLwjVe4BSBQJRupUctapLJ5nMI1cgCMdmqcU3QI1Uqg8kLMtJgdJAFRdpIlNDX4TpF2YompRJtizBBF8uDxS7OjW7KCQzqo5Y9yTWNEpIqa3CJePkmZqbFugDtT0sJWFrbIxahcdF0+XHAK1BgqtW4BrXIhS1Dyy9Y2uOhNTIprarKu2tzV5ShVPakmX2pXkSc8pFRPNeGpEmoAkWRi+NZHMpCAaWF8atBhJ3cmga0JVE8Tt0A0lgbRgUGvmAOqDXuTwRYajNeOqEi5AMNKGyJD+P-FASQJ4EyCTBO2XRA6l3E2jXxNaXNrMN76haqRrzUW4xhm4JIJYzA6wbiuY6p4oGqHWyIR1wy3JQeVz4CBOI0ym2BsqaUtKDYymrZYWLg4IqIIWVbjdMoPJjR+NiQQTUwo-hL03oMNaqHdFGEF5ZFg0YwtblmCWb2A1mhflQX2hdSJwTmpCPaxs2-TyORub-m2RErOaO89m11c41c2L5rcIWpCK5tEXubAtYHX7LFvYC+bw6AWkRqFK4B2BSwnEHJeFsZGPSstwGVADDWQADTvNaWyVUKoi18l2YVWjvI1pBzXyepfQtBk5oq3uLroFmnzdaugChaQcz01VTkuezNb+tg2h6MwCN4Yl7VLwpjHesup4s7iI2-lm-k61pQ-ajvQwOVoGmpax6NWy4XVuC07arN+2lrRcw7EcgDABU1IXUPpVuCzl6IVbWKr9iLBTtLm87Q9DNWXCVekVLKiFq61XQJwX2hoR9rHq1zTic2gwQttrX8bMAK2kVZi0ko7autW2+1OlFy2Qx7IP2+bcSpeGkrwVT224LvIcrTbbgdmpHcasx15a1VhobtnctuClKOO+a9YaaRcAzbKQzO8pWzsbn1yggRiP7cZE0JCqyYi2zcMS0R3WBSwdOt-DTtEDo6U0eyihhAIwGMj1YQArejvXxAn1784rZOma2lY7Icd0OzYYDDGigrDJxrQyKTsMjK6oE4gUAQsHAHiAO69zb7VAI7qqIdWAVRnihx4DByKFvZdDpVDJGQ8mKN4Y4r0Wm31z7l+7I3RdBpZBdudrOmYWqPWZtLxSNukXQ6rzji749q7KKFLvvCiBZdcgAvYe3-wvhL44oENlJTME2wAAnOIW22iUzBhKiQCgNb3SVCVUdVUI4DkCRr3uWA7YQmvNJdyII+gUIoFNRluB694lMQL81+alQ6Aq+m9Z3Jnm4C59hgaSo6MkB8zbg8+iHCStxCyp9JPGA6PoFvAL5NBfa9wEft72n6g0cgWvT0B31mCv8ggVReosChlxB1h2vHYyNN04AxdcOr-eJR-2v5SoL29VQBBUUQGs0MeKiE+mnZAg6dkETZlAkSKrgcgwIXmlbJlU2xi2Z4eYCG1QOHKbGGBu9eoyfA0sDYUsBCJgFwMc1QA0TQ7NyM6CPhuuR+y6jeFvDkGLF-LG7dQcajeVi6WoHg9M3QNWhPIUc+hEeSlj4aOOXHOEOhvhgyHHuwmk4MBqQ2Iau1FmDQ1twYM4HsSLBtg8CGOCcHZ9GgHg15T4NNQI12ENQ90FEN8GWoch1QFrL-UxBbD9hyPZi3Cj5iEafhm8OvsFHv7xKHe46PpPJVGRbdpxKQzktiFO7OgLussVhNbUB6IAWVJQDr26RGrXtVoY7AGLKWp77GRiYBj2rz3YB+26B35qJ12ToaBQYgA7AACFcQOIdDdS1KitG6gLynFvgCEDhBMAWBBuFAZkxgS4pzqUAGBOQCRo38DAGfWhGX0yYLD-mF8OQbqMNHytWQFo-TnaPwBOjbA8Y5uF6PQB+jB2FvA7oR2lRDwiAAAF6DB8WwDFY+wcsMksqImxnJfUfIkSBBAgwQ0G0Y6NxTjjdxM4-0YABsgU6E0sdeNrGrDGxmoz9C2O-GeOzRg7L+LIaSgbjMmQCb+CBB8A7ipAC4-TmIBhAsgTwboM6juIABZeEKAEAlgU5AAAdgAAcLx0qPCY+OImO2KJkPia2hp7Gi8mJiMKuDuJ4m1FaAQk6VGJMHRLjuAO9WKdKjts7A5kYY0nrhMcHuTzAL48ap+P8mpT5wQE-ThFPYnxT+JqU0Sf6M0AYTsJzk1qcLS6nXt+p4Hn13qgjHDAFRIU55VNNKncTFp6UzJllO3Mi8Bxo490ZkzgmOTqxh08gadNwtF9DRtEwqwOwAAxeGncWICc0ZMAAERJNF4yT2QSk9SdKiATwgGAfAEtIpYWdozbx9YzqaRNoHvj2xwU2mYzOlQszdxPM3KfpxXHVQdxFU2qbFO1muTjpxs8YGbO-HDTAJ705dXTMIBMz2ZzcN2bkDjYAArDCeWP2n3jY53k5OYNOpBVwWBNAF6bbMLmOzS5lczizDMgmIzpxvoyOdjNn14zhoF02x0aPdB0T9OKooeD1SJBcQdxRpWWDuLy0ezoZ7EizrBPiUCATsGY3MfxZb5EhigTUzuc+Pjm+TwPHY7OeqK-mJQAF0qEBZwAgX8znlPs36c3CiATO3s2AAcHOOPnULPJ2o-uddP-GEzB2H83+fwsyZCLxFg6Dyg3PQmtzMZhiw2b3N6mGjbpo856Y3DsXcL-56s5uB4ulRQLIZzyjea6MnGozQluswidEtMXxLqJpoymfpxgS9UJ59KDicUvsRDAJFy6oMZaIemxjRJ61D+NelwX5jcgVk0seQvbn6zL5xM78awsHZTLgIVAORcaXWW9KYF0iwqeuMDnsAqpsIOqdKigwu46UV-PRb8voXmL756c2xZMtmWwrlliK5ABssHRxstp7S6ObQtiXnTElw8x6ZPMyWCroViy4Bciu2XNwvpyyxKYJNWnMrul-y2+ZzANXjzp5-Y8CY0tgmHzqly6gAHVBgWQSABGD0qlQoJ9YRgxqd8u6W9LyJnK8iGTNAhsLC1pg8tcSCrWZM61r8gjuit2XfzYxtAMcCXM1EUgoAX8XqleuzH5jA17U0NZbO7GDsJ1paytbuJXXNrt13Ft0FgjezhiUuMnCCDuKHgvUZgLa8Jayu1WEzw1v40aeOuLWzrF1zcGDeHNyAGAAlwSz5bRuDXsrBl-k4dfVAHZ8AUrBICWZkyy0sgM1nFnNeujasZM+AUzgaFACNKOg4xxYz9d3P6W6rgV1s-TkZvYBkALNzcGzY5satyG-k0VHcRM6dFwApLVW8lIWCo2dLv16m5LYNOsXjTReWW8zZONK26LLJsm1VafO7WmzNN106NekvYXLb8t62+zdtuc28bINtaxteHMO2RLTticy7ffN03sLxAC4DGIUuzH2bHfCG3iboiQXSoqtN64MCkQuHKzr06swwAhNi2arEtzG-9ejux2vU8d6GuS06u8M1b9gO4iuwQhtWi7jFvaxHZzBm3y7VI7QHcQTs12DoDALy+TZQvo2S7r5+q+6bGvNWCzFd3u6VH7tJ3Zrm4T2wrZtsG3qrbd52ybeB5R2DsgExaF2a4BzXcQHx5e-ZeGOjG7zUE72ZwHwB8itAb+Nc63bDsYX3zQV+nAfYbhH2T75I2u1DbSi8J7kjdvoKmABMb3Hbf1qc13f3uH3SoOZ4+6ff6P8XNzFNw2+Lfbs73crbtpq9ha-u8V4HiDv+xDaBv43QbQdm6yHbHuYPS7vxiBN0E44f2i8ZFyy3cceOedOrLD+K-LaHOUO0Hm91+-tahiYIGHidaW8w9iv9nbjDxp45w8kfkXKLHqai7RYgciWoH-J+h4w-EcxXWIcV5Uwld4dyPdHUjmTIOaSsKOhg1qDK1Q90vEFrcHQNAL+Y3BpQ710qoSFaCIP8sg2pB49lKMoMuOdOtxWgwfuVJMEKNMB+FsUfsDdiO9FRgzZmlNwmF0ulICXZsWNGipBRIgQk9No2aitjVKRpAJtCKPoMknB0b3dkYWq5Gxdxt2hxo5EdaOAb9OSNNDaAdw3VjoD7QOA4hvNPAHsNh9PDbsCI3kbvFF+4I71OaOxHjT3tBlUOwdP5g6qg6HZVeMtQgAA

Metalinguistic Abstraction 4.4.1

list("administration", "big", "wheel"))

Simple queries

The query language allows users to retrieve information from the data base by posing queries

in response to the system’s prompt. For example, to �nd all computer programmers one can

say

Query input :

Ijob(x, list("computer", "programmer"))

The system will respond with the following items:

Query r e s u l t s :
j ob (l i s t (" Hacker " , " Alyssa " , " P ") , l i s t (" computer " , " programmer "))
j ob (l i s t (" F e c t " , "Cy" , "D") , l i s t (" computer " , " programmer "))

The input query speci�es that we are looking for entries in the data base that match a

certain pattern. In this example, the pattern speci�es job as the kind of information that

we are looking for. The �rst argument can be anything, and the second is the literal list

list("computer", "programmer"). The “anything” that can be the �rst item in the match-

ing assertion is speci�ed by a pattern variable, x. A pattern variable is a symbol that looks like

a JavaScript name. We will see below why it is useful to specify names for pattern variables

rather than just putting a single symbol such as ? into patterns to represent “anything.” The

system responds to a simple query by showing all entries in the data base that match the

speci�ed pattern.

A pattern can have more than one variable. For example, the query

Iaddress(x, y)

will list all the employees’ addresses.

A pattern can have no variables, in which case the query simply determines whether that

pattern is an entry in the data base. If so, there will be one match; if not, there will be no

matches.

The same pattern variable can appear more than once in a query, specifying that the same

“anything” must appear in each position. This is why variables have names. For example,

Isupervisor(x, x)

�nds all people who supervise themselves (though there are no such assertions in our sample

data base).

The query

472 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-FnoNFQb1tEOw6yuHQ4IZVrh40RaF-hM59BEgcIYsKJ1KZ5tpOqAOQIGwFGBtARtiacsaNqR9cxINsW0diPtFUixA6YukcOXJYjA5AHo1SJmOhEF5cx8UZkb6O96Uh9hTrHEoGIxTBimxTIUSGvUdL6BIAqRXvoSCdFItQWjorUV-gM5rCZhrncbq51yF4DeuNsAzqNyXHRdt8eQyJLGhW7OgjEGRNADjljohtWuZQCcaikviucbYbbaUaclSw-9XOygdhrEwyKucyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaATOknKsQEiLF6B6R2vIjiOOgpninRFItxnOLHEEh82yY3BBhOgBcs5xggPIImLaAI4aJDcVCSmPQCVDGRf4gCcBNAkQToJsExiYTxIlkSQ+cCAidiPDpziHhJEowBeLqyUSDouLciSMCvB9DwKwsLtkpPQmGiSoJIojn0OIiDC-qJCf4dKliqzEYxEYeMSxOQgmTY+DFckdiKwn8NwAyEwyvRLYmUSnJDab8VS2iil5zOUkAAAxn1Oo6UQ8AWFEjccJcWrYsIgDATx5IpWIGAAFOEiJTWgyU1cJMQYCPjJ0vkpKYcMwAFcTgYUx4CiORGk9UpsiTVl8jimhi4OKTN-BwTynVTewcU87uVIN7O46gzcUqTcmMBpQgokU0rlz0SktThEcU0QtsQilVTopNU+KQbE6iBCTgh4QQJGDk5wlM0UiQjsdDFBF8SpM-IAc1NmmtTVuEiKCCRwo7cIOCS0owCtIECRg5Br7F0ZRS0DLTVpSgs9hIg0FaDq2caV6bdPem+Sv8vQEIV50nCjAgBUIiwqikWn-S7pa0x7lgK2na9HuIvTknyMwaAMtO3AIOLZDGgp4uAwvS0qoNsh2JQRW-cEWQKclEz1u-qLIDQJSh0DTiXgFkRLFpJBAbp8M2fmCI37CD0Q74BeBz2XKE5xBMomMn9K4BvT7pjolGRqnlQSypZkYQgkl1HBBBWZpgLbkeSPL4y4Z703QWBzlFfC2IpIF4B1KH4FAnJ14-ASCKkgCDj+kIrGUP2v7RApY1A6Jg9267PdoAYxEsVnyKL4jf8QgmsdizcAWySRT4JNsb3ohIzJRBQXmNuQZQ9wk5Jsa2Wv3JkJ17Z5aMOc7IjJUCQR7syXgiO4QwAfZDo8frWIDmFBuZW-I6AvDrmBkdCX0hwnf0dkmNs5DY7KKIMYggzQExgNYGHKhlGFdCic5ObnP9Q+juRfogDjt09lxwkR7-cUuHP+5DjuWpc0sSkGp4Q8sxYwlUsky5HHB8WHI-eTyKdYRdG4G8wGr1hFFMF1RP-DeWLLCiGyLAxs4EKbIvkxEt5jc8UcYC2kpAuuiI5uZ8OfnYlX5xXP+YDXG6P8cqYAJOT3Fvnq8GsfjMNOdM1FXyLmJcy4r7Jd6miYh25U0b1menuAMFuEB0W21wUhzGgbbAhbWLBL7lvRx8qeSvL8iRTHAFCToEiyAI4Y2F-0TcL5Lw6oB+gI4skEDKI7GYgZX+PKRZhEWMieKSgr7kNJVmUgNWAgFaekDSwx44mTrYzPIuODANxOkdXkL5MGlD9yxDkzCaAHrHQygR05foHqmLC+SbYWgSuL1JeD9TRgQMtxNOWIV5iBxNsJON4odGmKKRhCqcrQSEVrBbFmCIGSEv8CWKjCOUwWN7MwXNi95rYvYe3FPkkoTgmLYxfQXrxQxUh9ioadaK7HaAgxLwsQN4vihMZvxnEowGBO3AAAZWWnBMjENwQpL0FyX7OmmXRPJukxkbhJIG9ACQYkvQERMElniXUvk9UPJLQZMS8g0ykrgJJujMTFl4dOpQ0uaX4BllQywkFMsikzLtJ4dfSQPQzrahJJwY6SbJNGVUSYl7gXhZFJUk7DHwLQi5RUoamUtHlqkt4ZTBwg9LDlZinSdvILz6TbhQwnTCQgcVlVZifywxSwt8mA1tJTkloV0pQmLK+lppf0axFkQ5KgljkzgfOKOZ6SdhBkkQEZNoWzloVJoE5cYNCFmBrBZw2yOpOsmiS8V5iuwtaIjF-LFlbKoFfuUNK6k+hKBLJTC1XDwt+WWEwlcNKJpWgUaUkDcTh3EDCtNweMUVXC1T7vsLFcq-cYXLC4XNgQ2K7JfyzLESqCVQqtBrKpgBQwP8V2YVoKsuHf8SJ1fLUURxVRENpx0o0JvLIlH-1v0M4vQRxy0Asr5I0dEibsk0lUSI2R8NxcMur7uTcZjQG8dFxthXKTul4+NVt0vgUM1w2YYNT2JeEu1HIby9YdlxkzuSnlLwjVe4BSBQJRupUctapLJ5nMI1cgCMdmqcU3QI1Uqg8kLMtJgdJAFRdpIlNDX4TpF2YompRJtizBBF8uDxS7OjW7KCQzqo5Y9yTWNEpIqa3CJePkmZqbFugDtT0sJWFrbIxahcdF0+XHAK1BgqtW4BrXIhS1Dyy9Y2uOhNTIprarKu2tzV5ShVPakmX2pXkSc8pFRPNeGpEmoAkWRi+NZHMpCAaWF8atBhJ3cmga0JVE8Tt0A0lgbRgUGvmAOqDXuTwRYajNeOqEi5AMNKGyJD+P-FASQJ4EyCTBO2XRA6l3E2jXxNaXNrMN76haqRrzUW4xhm4JIJYzA6wbiuY6p4oGqHWyIR1wy3JQeVz4CBOI0ym2BsqaUtKDYymrZYWLg4IqIIWVbjdMoPJjR+NiQQTUwo-hL03oMNaqHdFGEF5ZFg0YwtblmCWb2A1mhflQX2hdSJwTmpCPaxs2-TyORub-m2RErOaO89m11c41c2L5rcIWpCK5tEXubAtYHX7LFvYC+bw6AWkRqFK4B2BSwnEHJeFsZGPSstwGVADDWQADTvNaWyVUKoi18l2YVWjvI1pBzXyepfQtBk5oq3uLroFmnzdaugChaQcz01VTkuezNb+tg2h6MwCN4Yl7VLwpjHesup4s7iI2-lm-k61pQ-ajvQwOVoGmpax6NWy4XVuC07arN+2lrRcw7EcgDABU1IXUPpVuCzl6IVbWKr9iLBTtLm87Q9DNWXCVekVLKiFq61XQJwX2hoR9rHq1zTic2gwQttrX8bMAK2kVZi0ko7autW2+1OlFy2Qx7IP2+bcSpeGkrwVT224LvIcrTbbgdmpHcasx15a1VhobtnctuClKOO+a9YaaRcAzbKQzO8pWzsbn1yggRiP7cZE0JCqyYi2zcMS0R3WBSwdOt-DTtEDo6U0eyihhAIwGMj1YQArejvXxAn1784rZOma2lY7Icd0OzYYDDGigrDJxrQyKTsMjK6oE4gUAQsHAHiAO69zb7VAI7qqIdWAVRnihx4DByKFvZdDpVDJGQ8mKN4Y4r0Wm31z7l+7I3RdBpZBdudrOmYWqPWZtLxSNukXQ6rzji749q7KKFLvvCiBZdcgAvYe3-wvhL44oENlJTME2wAAnOIW22iUzBhKiQCgNb3SVCVUdVUI4DkCRr3uWA7YQmvNJdyII+gUIoFNRluB694lMQL81+alQ6Aq+m9Z3Jnm4C59hgaSo6MkB8zbg8+iHCStxCyp9JPGA6PoFvAL5NBfa9wEft72n6g0cgWvT0B31mCv8ggVReosChlxB1h2vHYyNN04AxdcOr-eJR-2v5SoL29VQBBUUQGs0MeKiMwEvhpQ71crAQjbE3CYsbtd6gIIJqfSBtugTwBCLDHjLSqhIaBxvtewEKQRNmUCDA2zAPIj6TUVBnXN1yP2XUbwt4CGBUTjR2M0oeWxqN5V-Wb6U5Mqm2MWzPDzAQ207IEFKJsZ0G716jJ8DSy26cGvK3BwUSQcyl2lcDOnbgzeHX2Cj39C+6ZnTrLEH60ZEEfDRxy45wh0N8MK0GPtuDCaTgwGpDYhq7UWZnDNvbfW3oX2bhAJEa7CI4e6BxpNi-wvgB4S8J0BjDva9EBocMOR6cD8UDAMkaMOlRjD9+0w8foqUkJ9J5KoyLbtITmGclMekXnMGd2bQrQWE1tQHtABGAsqSgHXt0iNWvbajV8AMWUtT32MjEwDdnlqCIM6GyD55HtWBzkPGAclbBxIquByDAheaVsiQ1JCkOltJjChiRmwZUNqH51EEUg-MY5qgBomh2bkZ0EfAcHcjXByPZMYsX8t9D4kYQy1Gg3+Hd9ZR41b4YjlvcjyUsWw5xyyDccwjlhx7m4cnCwxPD6GvNU4hcQfGOSexuY9iUOPHHgQxwM47Po0BJHDDlY1iaEd47CHuDTxr49PJN7vcMTmJ1I-2LEjpGMjxhh-Q8OOiFHrdTKpgmZNOJvHXtsQp3Z0Bd1li6jexn3QtRaPWiYD8LY7N0ZZ0d7+jei5ecwEmMWHfmonXZOhoFBiADsAAIVxA4h0N1LUqKqbqAvKcW+AIQOEEwBYEG4UBmTGBLinOpQAYE5AJGjfwMAZ9aEZfTJmRP+YXwspnJfKfIkmtoaKp+nOqfgCam2B5pzcLqegD6mDsLeB3QjtKiHhEAAAL0GD4tgGLpk4yiZJZURPTxq70yHwkCCBBghoNUxqbikhm7i4Z-UwADZApNZp02mbdOomPT2AftnKYVM8dlTB2X8WQ0lCxmZMgE38ECD4B3FSAkZ+nMQDCBZAng3QZ1HcQACy8IUAIBLApyAAA7AAA5UzpUBs5mabMdtWzPp8rVkH9NF4uzEYVcHcX7NqK0AQ50qCOYOhRncAd6886VHbZ2BzIxppPfWdOM7mZTzZn6PubzPXnzgRZ+nKeZ7MXmBz154c-qZoC1m6zW5784WmzOvbczwPPrvVBNOGAKix5zymBefN9nILN5mTHeduZF5AzwZ7UzJgrObnXTiF5A8hbhaL62zSphVgdgABi8NO4sQE5oyYAAIqOaLzjnsgU5mc6VEAnhAMA+AJaRSws40X0z7p383ua9MKnDzOFy6hxYQBcWeLm4fi-efpzRnVQdxV8++fPNyXtzSFv80CAAtoWCzjF9i5xdKjcW7iuluQONgACstZ50whYzMWWlLOZhU+hdXBYE0A2F+y5pccvaWXLOLci6Wcothm9TZlui2fQYuGhULbHRU8QdYv04qih4PVIkFxB3FGlZYO4vLT0tkXsSLO8s+JQIBOwbTdp-FlvkSGKAvzPlrM5ZamP+WDzfpg7DlbysFXSoRVnACVYEueUDL+FzcKIBM7ezYABwCM4ldau7mWzyln00BcLNqXqiuViUP1ZkyDXhrB0HlB5ZrNeXaLC1xS0tc6uAXUgQVrCxuB6ubX8rMlzcLtdKilXSLnlGK1qdDPUXjr8lxs2df-PLW8z7ZrK0XjAl6oQr6UXs09fYiGARrl1Q0y0Uwtmnhz1qH8a9Lqv2m5Aa5p081e8sKWUrTFrq0eYOxg3AQqAca40pht6Uyro1x8zGaMvYA3zYQD86VFBhdx0or+ea-jfavWX0rq1uy-TlJsQ2KbVN-U+Njgs-XzLbVvyyhYCtXXMLIV264LfBvk2oblNyALDZpuXU8LUNy84Oegtc2-rBNtKzmHlvBXQrAZks59fLMJW3rl1AAOqDAsgkACMHpVKhQT6wpBz83jb+v-WrLgN4HsDfkMHZHbmAZ267buIe2vyCOrW5uHwC5WzTaAY4NpZqIpBQAv4vVGndtP2nDbP542ype6v05Q74dxIG7ZkxR2vbsdyNLBG9nDEpcZOEEHcUPBeozA3tk69zZluMWTb+Z4C+teLsu3S7kdz26ZbkAMBDrR13G+3aNs82A76VoO+qAOz4ApWCQUSzJllr-G5rdtzcPbeujasZM+AUzgaFACNKOg5px07nd8vnXZbRN9a0vewDIBV7m4de7bZxa8N-JoqO4iZ06LgBSW5DfyQsDbu-W87M9i6zZd7uL3l7D90M8-c3ugAVz49yW0lb9sdXr7l1jC+baVtF477K96Bxvbhvb2nbA9su5uArumXEHp15B7zeRDz31rxAC4DGMeu2n-jHfWO-2boiVXSoqtdO4MCkThGpLr0mSwwErMX3pbV9ruwXeJtjn6HXqRh9DXJb4O37yUj+1ufNYIRIbgDqW4tYBugO+btlkC4JekfaA7iTD+RwdAYDY2J7LVju2I9Sty30HN12h4Y9kfMPMzW97B1A5Kt4ORHWj-2zo+ocsXg79OQCYtGctcB7buIVxwaaNPXXkb7t72ZwHwB8itAb+Ny948oez3kQqlg7ME4bihPwn5IhR90Bru8J7kdxazqmELMaOkH+dla3o-Ws5PeKpUXi2E4if6mDrnlye0A8vvaPUHaFs2w4+ychOmnLTgp7Hf7sR33bw9mO+Q+sc9PxHPpiBN0E45ZP9LdNwy3GcTPJn8HY1qG8ZeZtkPOnmj9J346hiYIlnidQu0Xh2dN3NnnnbZ2s-GuTWPU012a1U9Os1O8ziz5Z5c9pusR6bL5xmyZZjtb3rnALh+0C7uJs3rUnNmZ9Pc7u2OFnZz755I6LzV20oJT+u66b6AVP1VVdop+i7rsPoG7dgJuy3d4ppPiC1uDoGgFysbg2DFB8SFaEkP8sg2Mh49hscd30HxItxVQwfuVJMEKNwpnk10fsDdiJTUYgzZmlNwmF0ulICXZsWNGipBRIgIc9No2aitjVnJpADUaMzfoZXB0b3RAGaNMY6Uwx6O76SWXKNryAARTuNsGAgyjBlKpYyoPm-n6zmTHs5wAfnliDKW12KvCj5j-sAQa8is5PPdnxretqC7efuduvxrnr71y4Cdc-P1LDlmTE5aacxunzuzwF-s+mdAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-FnoNFQb1tEOw6yuHQ4IZVrh40RaF-hM59BEgcIYsKJ1KZ5tpOqAOQIGwFGBtARtiacsaNqR9cxINsW0diPtFUixA6YukcOXJYjA5AHo1SJmOhEF5cx8UZkb6O96Uh9hTrHEoGIxTBimxTIUSGvUdL6BIAqRXvoSCdFItQWjorUV-gM5rCZhrncbq51yF4DeuNsAzqNyXHRdt8eQyJLGhW7OgjEGRNADjljohtWuZQCcaikviucbYbbaUaclSw-9XOygdhrEwyKucyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaATOknKsQEiLF6B6R2vIjiOOgpninRFItxnOLHEEh82yY3BBhOgBcs5xggPIImLaAI4aJDcVCSmPQCVDGRf4gCcBNAkQToJsExiYTxIlkSQ+cCAidiPDpziHhJEowBeLqyUSDouLciSMCvB9DwKwsLtkpPQmGiSoJIojn0OIiDC-qJCf4dKliqzEYxEYeMSxOQgmTY+DFckdiKwn8NwAyEwyvRLYmUSnJDab8VS2iil5zOUkAAAxn1Oo6UQ8AWFEjccJcWrYsIgDATx5IpWIGAAFOEiJTWgyU1cJMQYCPjJ0vkpKYcMwAFcTgYUx4CiORGk9UpsiTVl8jimhi4OKTN-BwTynVTewcU87uVIN7O46gzcUqTcmMBpQgokU0rlz0SktThEcU0QtsQilVTopNU+KQbE6iBCTgh4QQJGDk5wlM0UiQjsdDFBF8SpM-IAc1NmmtTVuEiKCCRwo7cIOCS0owCtIECRg5Br7F0ZRS0DLTVpSgs9hIg0FaDq2caV6bdPem+Sv8vQEIV50nCjAgBUIiwqikWn-S7pa0x7lgK2na9HuIvTknyMwaAMtO3AIOLZDGgp4uAwvS0qoNsh2JQRW-cEWQKclEz1u-qLIDQJSh0DTiXgFkRLFpJBAbp8M2fmCI37CD0Q74BeBz2XKE5xBMomMn9K4BvT7pjolGRqnlQSypZkYQgkl1HBBBWZpgLbkeSPL4y4Z703QWBzlFfC2IpIF4B1KH4FAnJ14-ASCKkgCDj+kIrGUP2v7RApY1A6Jg9267PdoAYxEsVnyKL4jf8QgmsdizcAWySRT4JNsb3ohIzJRBQXmNuQZQ9wk5Jsa2Wv3JkJ17Z5aMOc7IjJUCQR7syXgiO4QwAfZDo8frWIDmFBuZW-I6AvDrmBkdCX0hwnf0dkmNs5DY7KKIMYggzQExgNYGHKhlGFdCic5ObnP9Q+juRfogDjt09lxwkR7-cUuHP+5DjuWpc0sSkGp4Q8sxYwlUsky5HHB8WHI-eTyKdYRdG4G8wGr1hFFMF1RP-DeWLLCiGyLAxs4EKbIvkxEt5jc8UcYC2kpAuuiI5uZ8OfnYlX5xXP+YDXG6P8cqYAJOT3Fvnq8GsfjMNOdM1FXyLmJcy4r7Jd6miYh25U0b1menuAMFuEB0W21wUhzGgbbAhbWLBL7lvRx8qeSvL8iRTHAFCToEiyAI4Y2F-0TcL5Lw6oB+gI4skEDKI7GYgZX+PKRZhEWMieKSgr7kNJVmUgNWAgFaekDSwx44mTrYzPIuODANxOkdXkL5MGlD9yxDkzCaAHrHQygR05foHqmLC+SbYWgSuL1JeD9TRgQMtxNOWIV5iBxNsJON4odGmKKRhCqcrQSEVrBbFmCIGSEv8CWKjCOUwWN7MwXNi95rYvYe3FPkkoTgmLYxfQXrxQxUh9ioadaK7HaAgxLwsQN4vihMZvxnEowGBO3AAAZWWnBMjENwQpL0FyX7OmmXRPJukxkbhJIG9ACQYkvQERMElniXUvk9UPJLQZMS8g0ykrgJJujMTFl4dOpQ0uaX4BllQywkFMsikzLtJ4dfSQPQzrahJJwY6SbJNGVUSYl7gXhZFJUk7DHwLQi5RUoamUtHlqkt4ZTBwg9LDlZinSdvILz6TbhQwnTCQgcVlVZifywxSwt8mA1tJTkloV0pQmLK+lppf0axFkQ5KgljkzgfOKOZ6SdhBkkQEZNoWzloVJoE5cYNCFmBrBZw2yOpOsmiS8V5iuwtaIjF-LFlbKoFfuUNK6k+hKBLJTC1XDwt+WWEwlcNKJpWgUaUkDcTh3EDCtNweMUVXC1T7vsLFcq-cYXLC4XNgQ2K7JfyzLESqCVQqtBrKpgBQwP8V2YVoKsuHf8SJ1fLUURxVRENpx0o0JvLIlH-1v0M4vQRxy0Asr5I0dEibsk0lUSI2R8NxcMur7uTcZjQG8dFxthXKTul4+NVt0vgUM1w2YYNT2JeEu1HIby9YdlxkzuSnlLwjVe4BSBQJRupUctapLJ5nMI1cgCMdmqcU3QI1Uqg8kLMtJgdJAFRdpIlNDX4TpF2YompRJtizBBF8uDxS7OjW7KCQzqo5Y9yTWNEpIqa3CJePkmZqbFugDtT0sJWFrbIxahcdF0+XHAK1BgqtW4BrXIhS1Dyy9Y2uOhNTIprarKu2tzV5ShVPakmX2pXkSc8pFRPNeGpEmoAkWRi+NZHMpCAaWF8atBhJ3cmga0JVE8Tt0A0lgbRgUGvmAOqDXuTwRYajNeOqEi5AMNKGyJD+P-FASQJ4EyCTBO2XRA6l3E2jXxNaXNrMN76haqRrzUW4xhm4JIJYzA6wbiuY6p4oGqHWyIR1wy3JQeVz4CBOI0ym2BsqaUtKDYymrZYWLg4IqIIWVbjdMoPJjR+NiQQTUwo-hL03oMNaqHdFGEF5ZFg0YwtblmCWb2A1mhflQX2hdSJwTmpCPaxs2-TyORub-m2RErOaO89m11c41c2L5rcIWpCK5tEXubAtYHX7LFvYC+bw6AWkRqFK4B2BSwnEHJeFsZGPSstwGVADDWQADTvNaWyVUKoi18l2YVWjvI1pBzXyepfQtBk5oq3uLroFmnzdaugChaQcz01VTkuezNb+tg2h6MwCN4Yl7VLwpjHesup4s7iI2-lm-k61pQ-ajvQwOVoGmpax6NWy4XVuC07arN+2lrRcw7EcgDABU1IXUPpVuCzl6IVbWKr9iLBTtLm87Q9DNWXCVekVLKiFq61XQJwX2hoR9rHq1zTic2gwQttrX8bMAK2kVZi0ko7autW2+1OlFy2Qx7IP2+bcSpeGkrwVT224LvIcrTbbgdmpHcasx15a1VhobtnctuClKOO+a9YaaRcAzbKQzO8pWzsbn1yggRiP7cZE0JCqyYi2zcMS0R3WBSwdOt-DTtEDo6U0eyihhAIwGMj1YQArejvXxAn1784rZOma2lY7Icd0OzYYDDGigrDJxrQyKTsMjK6oE4gUAQsHAHiAO69zb7VAI7qqIdWAVRnihx4DByKFvZdDpVDJGQ8mKN4Y4r0Wm31z7l+7I3RdBpZBdudrOmYWqPWZtLxSNukXQ6rzji749q7KKFLvvCiBZdcgAvYe3-wvhL44oENlJTME2wAAnOIW22iUzBhKiQCgNb3SVCVUdVUI4DkCRr3uWA7YQmvNJdyII+gUIoFNRluB694lMQL81+alQ6Aq+m9Z3Jnm4C59hgaSo6MkB8zbg8+iHCStxCyp9JPGA6PoFvAL5NBfa9wEft72n6g0cgWvT0B31mCv8ggVReosChlxB1h2vHYyNN04AxdcOr-eJR-2v5SoL29VQBBUUQGs0MeKiMwEvhpQ71crAQjbE3CYsbtd6gIIJqfSBtugTwBCLDHjLSqhIaBxvtewEKQRNmUCDA2zAPIj6TUVBnXN1yP2XUbwt4CGBUTjR2M0oeWxqN5V-Wb6U5Mqm2MWzPDzAQ207IEFKJsZ0G716jJ8DSy26cGvK3BwUSQcyl2lcDOnbgzeHX2Cj39C+6ZnTrLEH60ZEEfDRxy45wh0N8MK0GPtuDCaTgwGpDYhq7UWZnDNvbfW3oX2bhAJEa7CI4e6BxpNi-wvgB4S8J0BjDva9EBocMOR6cD8UDAMkaMOlRjD9+0w8foqUkJ9J5KoyLbtITmGclMekXnMGd2bQrQWE1tQHtABGAsqSgHXt0iNWvbajV8AMWUtT32MjEwDdnlqCIM6GyD55HtWBzkPGAclbBxIquByDAheaVsiQ1JCkOltJjChiRmwZUNqH51EEUg-MY5qgBomh2bkZ0EfAcHcjXByPZMYsX8t9D4kYQy1Gg3+Hd9ZR41b4YjlvcjyUsWw5xyyDccwjlhx7m4cnCwxPD6GvNU4hcQfGOSexuY9iUOPHHgQxwM47Po0BJHDDlY1iaEd47CHuDTxr49PJN7vcMTmJ1I-2LEjpGMjxhh-Q8OOiFHrdTKpgmZNOJvHXtsQp3Z0Bd1li6jexn3QtRaPWiYD8LY7N0ZZ0d7+jei5ecwEmMWHfmonXZOhoFBiADsAAIVxA4h0N1LUqKqbqAvKcW+AIQOEEwBYEG4UBmTGBLinOpQAYE5AJGjfwMAZ9aEZfTJmRP+YXwspnJfKfIkmtoaKp+nOqfgCam2B5pzcLqegD6mDsLeB3QjtKiHhEAAAL0GD4tgGLpk4yiZJZURPTxq70yHwkCCBBghoNUxqbikhm7i4Z-UwADZApNZp02mbdOomPT2AftnKYVM8dlTB2X8WQ0lCxmZMgE38ECD4B3FSAkZ+nMQDCBZAng3QZ1HcQACy8IUAIBLApyAAA7AAA5UzpUBs5mabMdtWzPp8rVkH9NF4uzEYVcHcX7NqK0AQ50qCOYOhRncAd6886VHbZ2BzIxppPfWdOM7mZTzZn6PubzPXnzgRZ+nKeZ7MXmBz154c-qZoC1m6zW5784WmzOvbczwPPrvVBNOGAKix5zymBefN9nILN5mTHeduZF5AzwZ7UzJgrObnXTiF5A8hbhaL62zSphVgdgABi8NO4sQE5oyYAAIqOaLzjnsgU5mc6VEAnhAMA+AJaRSws40X0z7p383ua9MKnDzOFy6hxYQBcWeLm4fi-efpzRnVQdxV8++fPNyXtzSFv80CAAtoWCzjF9i5xdKjcW7iuluQONgACstZ50whYzMWWlLOZhU+hdXBYE0A2F+y5pccvaWXLOLci6Wcothm9TZlui2fQYuGhULbHRU8QdYv04qih4PVIkFxB3FGlZYO4vLT0tkXsSLO8s+JQIBOwbTdp-FlvkSGKAvzPlrM5ZamP+WDzfpg7DlbysFXSoRVnACVYEueUDL+FzcKIBM7ezYABwCM4ldau7mWzyln00BcLNqXqiuViUP1ZkyDXhrB0HlB5ZrNeXaLC1xS0tc6uAXUgQVrCxuB6ubX8rMlzcLtdKilXSLnlGK1qdDPUXjr8lxs2df-PLW8z7ZrK0XjAl6oQr6UXs09fYiGARrl1Q0y0Uwtmnhz1qH8a9Lqv2m5Aa5p081e8sKWUrTFrq0eYOxg3AQqAca40pht6Uyro1x8zGaMvYA3zYQD86VFBhdx0or+ea-jfavWX0rq1uy-TlJsQ2KbVN-U+Njgs-XzLbVvyyhYCtXXMLIV264LfBvk2oblNyALDZpuXU8LUNy84Oegtc2-rBNtKzmHlvBXQrAZks59fLMJW3rl1AAOqDAsgkACMHpVKhQT6wpBz83jb+v-WrLgN4HsDfkMHZHbmAZ267buIe2vyCOrW5uHwC5WzTaAY4NpZqIpBQAv4vVGndtP2nDbP542ype6v05Q74dxIG7ZkxR2vbsdyNLBG9nDEpcZOEEHcUPBeozA3tk69zZluMWTb+Z4C+teLsu3S7kdz26ZbkAMBDrR13G+3aNs82A76VoO+qAOz4ApWCQUSzJllr-G5rdtzcPbeujasZM+AUzgaFACNKOg5px07nd8vnXZbRN9a0vewDIBV7m4de7bZxa8N-JoqO4iZ06LgBSW5DfyQsDbu-W87M9i6zZd7uL3l7D90M8-c3ugAVz49yW0lb9sdXr7l1jC+baVtF477K96Bxvbhvb2nbA9su5uArumXEHp15B7zeRDz31rxAC4DGMeu2n-jHfWO-2boiVXSoqtdO4MCkThGpLr0mSwwErMX3pbV9ruwXeJtjn6HXqRh9DXJb4O37yUj+1ufNYIRIbgDqW4tYBugO+btlkC4JekfaA7iTD+RwdAYDY2J7LVju2I9Sty30HN12h4Y9kfMPMzW97B1A5Kt4ORHWj-2zo+ocsXg79OQCYtGctcB7buIVxwaaNPXXkb7t72ZwHwB8itAb+Ny948oez3kQqlg7ME4bihPwn5IhR90Bru8J7kdxazqmELMaOkH+dla3o-Ws5PeKpUXi2E4if6mDrnlye0A8vvaPUHaFs2w4+ychOmnLTgp7Hf7sR33bw9mO+Q+sc9PxHPpiBN0E45ZP9LdNwy3GcTPJn8HY1qG8ZeZtkPOnmj9J346hiYIlnidQu0Xh2dN3NnnnbZ2s-GuTWPU012a1U9Os1O8ziz5Z5c9pusR6bL5xmyZZjtb3rnALh+0C7uJs3rUnNmZ9Pc7u2OFnZz755I6LzV20oJT+u66b6AVP1VVdop+i7rsPoG7dgJuy3d4ppPiC1uDoGgFysbg2DFB8SFaEkP8sg2Mh49hscd30HxItxVQwfuVJMEKNwpnk10fsDdiJTUYgzZmlNwmF0ulICXZsWNGipBRIgIc9No2aitjVnJpADUaMzfoZXB0b3RAGaNMY6Uwx6O76SWXKNryOBtgwEGUYMoaHI1a13cbSMBBrytE7gNiuQDmCmQvzHEwKCZBAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-FnoNFQb1tEOw6yuHQ4IZVrh40RaF-hM59BEgcIYsKJ1KZ5tpOqAOQIGwFGBtARtiacsaNqR9cxINsW0diPtFUixA6YukcOXJYjA5AHo1SJmOhEF5cx8UZkb6O96Uh9hTrHEoGIxTBimxTIUSGvUdL6BIAqRXvoSCdFItQWjorUV-gM5rCZhrncbq51yF4DeuNsAzqNyXHRdt8eQyJLGhW7OgjEGRNADjljohtWuZQCcaikviucbYbbaUaclSw-9XOygdhrEwyKucyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaATOknKsQEiLF6B6R2vIjiOOgpninRFItxnOLHEEh82yY3BBhOgBcs5xggPIImLaAI4aJDcVCSmPQCVDGRf4gCcBNAkQToJsExiYTxIlkSQ+cCAidiPDpziHhJEowBeLqyUSDouLciSMCvB9DwKwsLtkpPQmGiSoJIojn0OIiDC-qJCf4dKliqzEYxEYeMSxOQgmTY+DFckdiKwn8NwAyEwyvRLYmUSnJDab8VS2iil5zOUkAAAxn1Oo6UQ8AWFEjccJcWrYsIgDATx5IpWIGAAFOEiJTWgyU1cJMQYCPjJ0vkpKYcMwAFcTgYUx4CiORGk9UpsiTVl8jimhi4OKTN-BwTynVTewcU87uVIN7O46gzcUqTcmMBpQgokU0rlz0SktThEcU0QtsQilVTopNU+KQbE6iBCTgh4QQJGDk5wlM0UiQjsdDFBF8SpM-IAc1NmmtTVuEiKCCRwo7cIOCS0owCtIECRg5Br7F0ZRS0DLTVpSgs9hIg0FaDq2caV6bdPem+Sv8vQEIV50nCjAgBUIiwqikWn-S7pa0x7lgK2na9HuIvTknyMwaAMtO3AIOLZDGgp4uAwvS0qoNsh2JQRW-cEWQKclEz1u-qLIDQJSh0DTiXgFkRLFpJBAbp8M2fmCI37CD0Q74BeBz2XKE5xBMomMn9K4BvT7pjolGRqnlQSypZkYQgkl1HBBBWZpgLbkeSPL4y4Z703QWBzlFfC2IpIF4B1KH4FAnJ14-ASCKkgCDj+kIrGUP2v7RApY1A6Jg9267PdoAYxEsVnyKL4jf8QgmsdizcAWySRT4JNsb3ohIzJRBQXmNuQZQ9wk5Jsa2Wv3JkJ17Z5aMOc7IjJUCQR7syXgiO4QwAfZDo8frWIDmFBuZW-I6AvDrmBkdCX0hwnf0dkmNs5DY7KKIMYggzQExgNYGHKhlGFdCic5ObnP9Q+juRfogDjt09lxwkR7-cUuHP+5DjuWpc0sSkGp4Q8sxYwlUsky5HHB8WHI-eTyKdYRdG4G8wGr1hFFMF1RP-DeWLLCiGyLAxs4EKbIvkxEt5jc8UcYC2kpAuuiI5uZ8OfnYlX5xXP+YDXG6P8cqYAJOT3Fvnq8GsfjMNOdM1FXyLmJcy4r7Jd6miYh25U0b1menuAMFuEB0W21wUhzGgbbAhbWLBL7lvRx8qeSvL8iRTHAFCToEiyAI4Y2F-0TcL5Lw6oB+gI4skEDKI7GYgZX+PKRZhEWMieKSgr7kNJVmUgNWAgFaekDSwx44mTrYzPIuODANxOkdXkL5MGlD9yxDkzCaAHrHQygR05foHqmLC+SbYWgSuL1JeD9TRgQMtxNOWIV5iBxNsJON4odGmKKRhCqcrQSEVrBbFmCIGSEv8CWKjCOUwWN7MwXNi95rYvYe3FPkkoTgmLYxfQXrxQxUh9ioadaK7HaAgxLwsQN4vihMZvxnEowGBO3AAAZWWnBMjENwQpL0FyX7OmmXRPJukxkbhJIG9ACQYkvQERMElniXUvk9UPJLQZMS8g0ykrgJJujMTFl4dOpQ0uaX4BllQywkFMsikzLtJ4dfSQPQzrahJJwY6SbJNGVUSYl7gXhZFJUk7DHwLQi5RUoamUtHlqkt4ZTBwg9LDlZinSdvILz6TbhQwnTCQgcVlVZifywxSwt8mA1tJTkloV0pQmLK+lppf0axFkQ5KgljkzgfOKOZ6SdhBkkQEZNoWzloVJoE5cYNCFmBrBZw2yOpOsmiS8V5iuwtaIjF-LFlbKoFfuUNK6k+hKBLJTC1XDwt+WWEwlcNKJpWgUaUkDcTh3EDCtNweMUVXC1T7vsLFcq-cYXLC4XNgQ2K7JfyzLESqCVQqtBrKpgBQwP8V2YVoKsuHf8SJ1fLUURxVRENpx0o0JvLIlH-1v0M4vQRxy0Asr5I0dEibsk0lUSI2R8NxcMur7uTcZjQG8dFxthXKTul4+NVt0vgUM1w2YYNT2JeEu1HIby9YdlxkzuSnlLwjVe4BSBQJRupUctapLJ5nMI1cgCMdmqcU3QI1Uqg8kLMtJgdJAFRdpIlNDX4TpF2YompRJtizBBF8uDxS7OjW7KCQzqo5Y9yTWNEpIqa3CJePkmZqbFugDtT0sJWFrbIxahcdF0+XHAK1BgqtW4BrXIhS1Dyy9Y2uOhNTIprarKu2tzV5ShVPakmX2pXkSc8pFRPNeGpEmoAkWRi+NZHMpCAaWF8atBhJ3cmga0JVE8Tt0A0lgbRgUGvmAOqDXuTwRYajNeOqEi5AMNKGyJD+P-FASQJ4EyCTBO2XRA6l3E2jXxNaXNrMN76haqRrzUW4xhm4JIJYzA6wbiuY6p4oGqHWyIR1wy3JQeVz4CBOI0ym2BsqaUtKDYymrZYWLg4IqIIWVbjdMoPJjR+NiQQTUwo-hL03oMNaqHdFGEF5ZFg0YwtblmCWb2A1mhflQX2hdSJwTmpCPaxs2-TyORub-m2RErOaO89m11c41c2L5rcIWpCK5tEXubAtYHX7LFvYC+bw6AWkRqFK4B2BSwnEHJeFsZGPSstwGVADDWQADTvNaWyVUKoi18l2YVWjvI1pBzXyepfQtBk5oq3uLroFmnzdaugChaQcz01VTkuezNb+tg2h6MwCN4Yl7VLwpjHesup4s7iI2-lm-k61pQ-ajvQwOVoGmpax6NWy4XVuC07arN+2lrRcw7EcgDABU1IXUPpVuCzl6IVbWKr9iLBTtLm87Q9DNWXCVekVLKiFq61XQJwX2hoR9rHq1zTic2gwQttrX8bMAK2kVZi0ko7autW2+1OlFy2Qx7IP2+bcSpeGkrwVT224LvIcrTbbgdmpHcasx15a1VhobtnctuClKOO+a9YaaRcAzbKQzO8pWzsbn1yggRiP7cZE0JCqyYi2zcMS0R3WBSwdOt-DTtEDo6U0eyihhAIwGMj1YQArejvXxAn1784rZOma2lY7Icd0OzYYDDGigrDJxrQyKTsMjK6oE4gUAQsHAHiAO69zb7VAI7qqIdWAVRnihx4DByKFvZdDpVDJGQ8mKN4Y4r0Wm31z7l+7I3RdBpZBdudrOmYWqPWZtLxSNukXQ6rzji749q7KKFLvvCiBZdcgAvYe3-wvhL44oENlJTME2wAAnOIW22iUzBhKiQCgNb3SVCVUdVUI4DkCRr3uWA7YQmvNJdyII+gUIoFNRluB694lMQL81+alQ6Aq+m9Z3Jnm4C59hgaSo6MkB8zbg8+iHCStxCyp9JPGA6PoFvAL5NBfa9wEft72n6g0cgWvT0B31mCv8ggVReosChlxB1h2vHYyNN04AxdcOr-eJR-2v5SoL29VQBBUUQGs0MeKiMwEvhpQ71crAQjbE3CYsbtd6gIIJqfSBtugTwBCLDHjLSqhIaBxvtewEKQRNmUCDA2zAPIj6TUVBnXN1yP2XUbwt4CGBUTjR2M0oeWxqN5V-Wb6U5Mqm2MWzPDzAQ207IEFKJsZ0G716jJ8DSy26cGvK3BwUSQcyl2lcDOnbgzeHX2Cj39C+6ZnTrLEH60ZEEfDRxy45wh0N8MK0GPtuDCaTgwGpDYhq7UWZnDNvbfW3oX2bhAJEa7CI4e6BxpNi-wvgB4S8J0BjDva9EBocMOR6cD8UDAMkaMOlRjD9+0w8foqUkJ9J5KoyLbtITmGclMekXnMGd2bQrQWE1tQHtABGAsqSgHXt0iNWvbajV8AMWUtT32MjEwDdnlqCIM6GyD55HtWBzkPGAclbBxIquByDAheaVsiQ1JCkOltJjChiRmwZUNqH51EEUg-MY5qgBomh2bkZ0EfAcHcjXByPZMYsX8t9D4kYQy1Gg3+Hd9ZR41b4YjlvcjyUsWw5xyyDccwjlhx7m4cnCwxPD6GvNU4hcQfGOSexuY9iUOPHHgQxwM47Po0BJHDDlY1iaEd47CHuDTxr49PJN7vcMTmJ1I-2LEjpGMjxhh-Q8OOiFHrdTKpgmZNOJvHXtsQp3Z0Bd1li6jexn3QtRaPWiYD8LY7N0ZZ0d7+jei5ecwEmMWHfmonXZOhoFBiADsAAIVxA4h0N1LUqKqbqAvKcW+AIQOEEwBYEG4UBmTGBLinOpQAYE5AJGjfwMAZ9aEZfTJmRP+YXwspnJfKfIkmtoaKp+nOqfgCam2B5pzcLqegD6mDsLeB3QjtKiHhEAAAL0GD4tgGLpk4yiZJZURPTxq70yHwkCCBBghoNUxqbikhm7i4Z-UwADZApNZp02mbdOomPT2AftnKYVM8dlTB2X8WQ0lCxmZMgE38ECD4B3FSAkZ+nMQDCBZAng3QZ1HcQACy8IUAIBLApyAAA7AAA5UzpUBs5mabMdtWzPp8rVkH9NF4uzEYVcHcX7NqK0AQ50qCOYOhRncAd6886VHbZ2BzIxppPfWdOM7mZTzZn6PubzPXnzgRZ+nKeZ7MXmBz154c-qZoC1m6zW5784WmzOvbczwPPrvVBNOGAKix5zymBefN9nILN5mTHeduZF5AzwZ7UzJgrObnXTiF5A8hbhaL62zSphVgdgABi8NO4sQE5oyYAAIqOaLzjnsgU5mc6VEAnhAMA+AJaRSws40X0z7p383ua9MKnDzOFy6hxYQBcWeLm4fi-efpzRnVQdxV8++fPNyXtzSFv80CAAtoWCzjF9i5xdKjcW7iuluQONgACstZ50whYzMWWlLOZhU+hdXBYE0A2F+y5pccvaWXLOLci6Wcothm9TZlui2fQYuGhULbHRU8QdYv04qih4PVIkFxB3FGlZYO4vLT0tkXsSLO8s+JQIBOwbTdp-FlvkSGKAvzPlrM5ZamP+WDzfpg7DlbysFXSoRVnACVYEueUDL+FzcKIBM7ezYABwCM4ldau7mWzyln00BcLNqXqiuViUP1ZkyDXhrB0HlB5ZrNeXaLC1xS0tc6uAXUgQVrCxuB6ubX8rMlzcLtdKilXSLnlGK1qdDPUXjr8lxs2df-PLW8z7ZrK0XjAl6oQr6UXs09fYiGARrl1Q0y0Uwtmnhz1qH8a9Lqv2m5Aa5p081e8sKWUrTFrq0eYOxg3AQqAca40pht6Uyro1x8zGaMvYA3zYQD86VFBhdx0or+ea-jfavWX0rq1uy-TlJsQ2KbVN-U+Njgs-XzLbVvyyhYCtXXMLIV264LfBvk2oblNyALDZpuXU8LUNy84Oegtc2-rBNtKzmHlvBXQrAZks59fLMJW3rl1AAOqDAsgkACMHpVKhQT6wpBz83jb+v-WrLgN4HsDfkMHZHbmAZ267buIe2vyCOrW5uHwC5WzTaAY4NpZqIpBQAv4vVGndtP2nDbP542ype6v05Q74dxIG7ZkxR2vbsdyNLBG9nDEpcZOEEHcUPBeozA3tk69zZluMWTb+Z4C+teLsu3S7kdz26ZbkAMBDrR13G+3aNs82A76VoO+qAOz4ApWCQUSzJllr-G5rdtzcPbeujasZM+AUzgaFACNKOg5px07nd8vnXZbRN9a0vewDIBV7m4de7bZxa8N-JoqO4iZ06LgBSW5DfyQsDbu-W87M9i6zZd7uL3l7D90M8-c3ugAVz49yW0lb9sdXr7l1jC+baVtF477K96Bxvbhvb2nbA9su5uArumXEHp15B7zeRDz31rxAC4DGMeu2n-jHfWO-2boiVXSoqtdO4MCkThGpLr0mSwwErMX3pbV9ruwXeJtjn6HXqRh9DXJb4O37yUj+1ufNYIRIbgDqW4tYBugO+btlkC4JekfaA7iTD+RwdAYDY2J7LVju2I9Sty30HN12h4Y9kfMPMzW97B1A5Kt4ORHWj-2zo+ocsXg79OQCYtGctcB7buIVxwaaNPXXkb7t72ZwHwB8itAb+Ny948oez3kQqlg7ME4bihPwn5IhR90Bru8J7kdxazqmELMaOkH+dla3o-Ws5PeKpUXi2E4if6mDrnlye0A8vvaPUHaFs2w4+ychOmnLTgp7Hf7sR33bw9mO+Q+sc9PxHPpiBN0E45ZP9LdNwy3GcTPJn8HY1qG8ZeZtkPOnmj9J346hiYIlnidQu0Xh2dN3NnnnbZ2s-GuTWPU012a1U9Os1O8ziz5Z5c9pusR6bL5xmyZZjtb3rnALh+0C7uJs3rUnNmZ9Pc7u2OFnZz755I6LzV20oJT+u66b6AVP1VVdop+i7rsPoG7dgJuy3d4ppPiC1uDoGgFysbg2DFB8SFaEkP8sg2Mh49hscd30HxItxVQwfuVJMEKNwpnk10fsDdiJTUYgzZmlNwmF0ulICXZsWNGipBRIgIc9No2aitjVnJpADUaMzfoZXB0b3RAGaNMY6Uwx6O76SWXKNryOBtgwEGUYMpArCt7CxlWeoMpyT+Y-7AEGvIHh0oQAA

Metalinguistic Abstraction 4.4.1

Ijob(x, list("computer", type))

matches all job entries whose second item is a two-element list whose �rst item is "computer":

job(list("Bitdiddle", "Ben"), list("computer", "wizard"))

job(list("Hacker", "Alyssa", "P"), list("computer", "programmer"))

job(list("Fect", "Cy", "D"), list("computer", "programmer"))

job(list("Tweakit", "Lem", "E"), list("computer", "technician"))

This same pattern does not match

job(list("Reasoner", "Louis"), list("computer", "programmer", "trainee"))

because the second argument in the assertion is a list of three elements, and the pattern’s

second argument speci�es that there should be two elements. If we wanted to change the

pattern so that the second item could be any list beginning with computer, we could specify

Ijob(x, pair("computer", type))

For example,

pair("computer", type)

matches the data

list("computer", "programmer", "trainee")

with type as the list list("programmer", "trainee"). It also matches the data

list("computer", "programmer")

with type as the list list("programmer"), and matches the data

list("computer")

with type as the empty list null.

We can describe the query language’s processing of simple queries as follows:

– The system �nds all assignments to variables in the query pattern that satisfy the pattern.

This means that the kind of information speci�ed in the pattern needs to match the kind

of information in an assertion in the database, and the assertion must result from the

pattern by instantiating the pattern variables with values.

– The system responds to the query by listing all instantiations of the query pattern with

the variable assignments that satisfy it.

Note that if the pattern has no variables, the query reduces to a determination of whether that

pattern is in the data base. If so, the empty assignment, which assigns no values to variables,

satis�es that pattern for that data base.

473 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-FnoNFQb1tEOw6yuHQ4IZVrh40RaF-hM59BEgcIYsKJ1KZ5tpOqAOQIGwFGBtARtiacsaNqR9cxINsW0diPtFUixA6YukcOXJYjA5AHo1SJmOhEF5cx8UZkb6O96Uh9hTrHEoGIxTBimxTIUSGvUdL6BIAqRXvoSCdFItQWjorUV-gM5rCZhrncbq51yF4DeuNsAzqNyXHRdt8eQyJLGhW7OgjEGRNADjljohtWuZQCcaikviucbYbbaUaclSw-9XOygdhrEwyKucyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaATOknKsQEiLF6B6R2vIjiOOgpninRFItxnOLHEEh82yY3BBhOgBcs5xggPIImLaAI4aJDcVCSmPQCVDGRf4gCcBNAkQToJsExiYTxIlkSQ+cCAidiPDpziHhJEowBeLqyUSDouLciSMCvB9DwKwsLtkpPQmGiSoJIojn0OIiDC-qJCf4dKliqzEYxEYeMSxOQgmTY+DFckdiKwn8NwAyEwyvRLYmUSnJDab8VS2iil5zOUkAAAxn1Oo6UQ8AWFEjccJcWrYsIgDATx5IpWIGAAFOEiJTWgyU1cJMQYCPjJ0vkpKYcMwAFcTgYUx4CiORGk9UpsiTVl8jimhi4OKTN-BwTynVTewcU87uVIN7O46gzcUqTcmMBpQgokU0rlz0SktThEcU0QtsQilVTopNU+KQbE6iBCTgh4QQJGDk5wlM0UiQjsdDFBF8SpM-IAc1NmmtTVuEiKCCRwo7cIOCS0owCtIECRg5Br7F0ZRS0DLTVpSgs9hIg0FaDq2caV6bdPem+Sv8vQEIV50nCjAgBUIiwqikWn-S7pa0x7lgK2na9HuIvTknyMwaAMtO3AIOLZDGgp4uAwvS0qoNsh2JQRW-cEWQKclEz1u-qLIDQJSh0DTiXgFkRLFpJBAbp8M2fmCI37CD0Q74BeBz2XKE5xBMomMn9K4BvT7pjolGRqnlQSypZkYQgkl1HBBBWZpgLbkeSPL4y4Z703QWBzlFfC2IpIF4B1KH4FAnJ14-ASCKkgCDj+kIrGUP2v7RApY1A6Jg9267PdoAYxEsVnyKL4jf8QgmsdizcAWySRT4JNsb3ohIzJRBQXmNuQZQ9wk5Jsa2Wv3JkJ17Z5aMOc7IjJUCQR7syXgiO4QwAfZDo8frWIDmFBuZW-I6AvDrmBkdCX0hwnf0dkmNs5DY7KKIMYggzQExgNYGHKhlGFdCic5ObnP9Q+juRfogDjt09lxwkR7-cUuHP+5DjuWpc0sSkGp4Q8sxYwlUsky5HHB8WHI-eTyKdYRdG4G8wGr1hFFMF1RP-DeWLLCiGyLAxs4EKbIvkxEt5jc8UcYC2kpAuuiI5uZ8OfnYlX5xXP+YDXG6P8cqYAJOT3Fvnq8GsfjMNOdM1FXyLmJcy4r7Jd6miYh25U0b1menuAMFuEB0W21wUhzGgbbAhbWLBL7lvRx8qeSvL8iRTHAFCToEiyAI4Y2F-0TcL5Lw6oB+gI4skEDKI7GYgZX+PKRZhEWMieKSgr7kNJVmUgNWAgFaekDSwx44mTrYzPIuODANxOkdXkL5MGlD9yxDkzCaAHrHQygR05foHqmLC+SbYWgSuL1JeD9TRgQMtxNOWIV5iBxNsJON4odGmKKRhCqcrQSEVrBbFmCIGSEv8CWKjCOUwWN7MwXNi95rYvYe3FPkkoTgmLYxfQXrxQxUh9ioadaK7HaAgxLwsQN4vihMZvxnEowGBO3AAAZWWnBMjENwQpL0FyX7OmmXRPJukxkbhJIG9ACQYkvQERMElniXUvk9UPJLQZMS8g0ykrgJJujMTFl4dOpQ0uaX4BllQywkFMsikzLtJ4dfSQPQzrahJJwY6SbJNGVUSYl7gXhZFJUk7DHwLQi5RUoamUtHlqkt4ZTBwg9LDlZinSdvILz6TbhQwnTCQgcVlVZifywxSwt8mA1tJTkloV0pQmLK+lppf0axFkQ5KgljkzgfOKOZ6SdhBkkQEZNoWzloVJoE5cYNCFmBrBZw2yOpOsmiS8V5iuwtaIjF-LFlbKoFfuUNK6k+hKBLJTC1XDwt+WWEwlcNKJpWgUaUkDcTh3EDCtNweMUVXC1T7vsLFcq-cYXLC4XNgQ2K7JfyzLESqCVQqtBrKpgBQwP8V2YVoKsuHf8SJ1fLUURxVRENpx0o0JvLIlH-1v0M4vQRxy0Asr5I0dEibsk0lUSI2R8NxcMur7uTcZjQG8dFxthXKTul4+NVt0vgUM1w2YYNT2JeEu1HIby9YdlxkzuSnlLwjVe4BSBQJRupUctapLJ5nMI1cgCMdmqcU3QI1Uqg8kLMtJgdJAFRdpIlNDX4TpF2YompRJtizBBF8uDxS7OjW7KCQzqo5Y9yTWNEpIqa3CJePkmZqbFugDtT0sJWFrbIxahcdF0+XHAK1BgqtW4BrXIhS1Dyy9Y2uOhNTIprarKu2tzV5ShVPakmX2pXkSc8pFRPNeGpEmoAkWRi+NZHMpCAaWF8atBhJ3cmga0JVE8Tt0A0lgbRgUGvmAOqDXuTwRYajNeOqEi5AMNKGyJD+P-FASQJ4EyCTBO2XRA6l3E2jXxNaXNrMN76haqRrzUW4xhm4JIJYzA6wbiuY6p4oGqHWyIR1wy3JQeVz4CBOI0ym2BsqaUtKDYymrZYWLg4IqIIWVbjdMoPJjR+NiQQTUwo-hL03oMNaqHdFGEF5ZFg0YwtblmCWb2A1mhflQX2hdSJwTmpCPaxs2-TyORub-m2RErOaO89m11c41c2L5rcIWpCK5tEXubAtYHX7LFvYC+bw6AWkRqFK4B2BSwnEHJeFsZGPSstwGVADDWQADTvNaWyVUKoi18l2YVWjvI1pBzXyepfQtBk5oq3uLroFmnzdaugChaQcz01VTkuezNb+tg2h6MwCN4Yl7VLwpjHesup4s7iI2-lm-k61pQ-ajvQwOVoGmpax6NWy4XVuC07arN+2lrRcw7EcgDABU1IXUPpVuCzl6IVbWKr9iLBTtLm87Q9DNWXCVekVLKiFq61XQJwX2hoR9rHq1zTic2gwQttrX8bMAK2kVZi0ko7autW2+1OlFy2Qx7IP2+bcSpeGkrwVT224LvIcrTbbgdmpHcasx15a1VhobtnctuClKOO+a9YaaRcAzbKQzO8pWzsbn1yggRiP7cZE0JCqyYi2zcMS0R3WBSwdOt-DTtEDo6U0eyihhAIwGMj1YQArejvXxAn1784rZOma2lY7Icd0OzYYDDGigrDJxrQyKTsMjK6oE4gUAQsHAHiAO69zb7VAI7qqIdWAVRnihx4DByKFvZdDpVDJGQ8mKN4Y4r0Wm31z7l+7I3RdBpZBdudrOmYWqPWZtLxSNukXQ6rzji749q7KKFLvvCiBZdcgAvYe3-wvhL44oENlJTME2wAAnOIW22iUzBhKiQCgNb3SVCVUdVUI4DkCRr3uWA7YQmvNJdyII+gUIoFNRluB694lMQL81+alQ6Aq+m9Z3Jnm4C59hgaSo6MkB8zbg8+iHCStxCyp9JPGA6PoFvAL5NBfa9wEft72n6g0cgWvT0B31mCv8ggVReosChlxB1h2vHYyNN04AxdcOr-eJR-2v5SoL29VQBBUUQGs0MeKiMwEvhpQ71crAQjbE3CYsbtd6gIIJqfSBtugTwBCLDHjLSqhIaBxvtewEKQRNmUCDA2zAPIj6TUVBnXN1yP2XUbwt4CGBUTjR2M0oeWxqN5V-Wb6U5Mqm2MWzPDzAQ207IEFKJsZ0G716jJ8DSy26cGvK3BwUSQcyl2lcDOnbgzeHX2Cj39C+6ZnTrLEH60ZEEfDRxy45wh0N8MK0GPtuDCaTgwGpDYhq7UWZnDNvbfW3oX2bhAJEa7CI4e6BxpNi-wvgB4S8J0BjDva9EBocMOR6cD8UDAMkaMOlRjD9+0w8foqUkJ9J5KoyLbtITmGclMekXnMGd2bQrQWE1tQHtABGAsqSgHXt0iNWvbajV8AMWUtT32MjEwDdnlqCIM6GyD55HtWBzkPGAclbBxIquByDAheaVsiQ1JCkOltJjChiRmwZUNqH51EEUg-MY5qgBomh2bkZ0EfAcHcjXByPZMYsX8t9D4kYQy1Gg3+Hd9ZR41b4YjlvcjyUsWw5xyyDccwjlhx7m4cnCwxPD6GvNU4hcQfGOSexuY9iUOPHHgQxwM47Po0BJHDDlY1iaEd47CHuDTxr49PJN7vcMTmJ1I-2LEjpGMjxhh-Q8OOiFHrdTKpgmZNOJvHXtsQp3Z0Bd1li6jexn3QtRaPWiYD8LY7N0ZZ0d7+jei5ecwEmMWHfmonXZOhoFBiADsAAIVxA4h0N1LUqKqbqAvKcW+AIQOEEwBYEG4UBmTGBLinOpQAYE5AJGjfwMAZ9aEZfTJmRP+YXwspnJfKfIkmtoaKp+nOqfgCam2B5pzcLqegD6mDsLeB3QjtKiHhEAAAL0GD4tgGLpk4yiZJZURPTxq70yHwkCCBBghoNUxqbikhm7i4Z-UwADZApNZp02mbdOomPT2AftnKYVM8dlTB2X8WQ0lCxmZMgE38ECD4B3FSAkZ+nMQDCBZAng3QZ1HcQACy8IUAIBLApyAAA7AAA5UzpUBs5mabMdtWzPp8rVkH9NF4uzEYVcHcX7NqK0AQ50qCOYOhRncAd6886VHbZ2BzIxppPfWdOM7mZTzZn6PubzPXnzgRZ+nKeZ7MXmBz154c-qZoC1m6zW5784WmzOvbczwPPrvVBNOGAKix5zymBefN9nILN5mTHeduZF5AzwZ7UzJgrObnXTiF5A8hbhaL62zSphVgdgABi8NO4sQE5oyYAAIqOaLzjnsgU5mc6VEAnhAMA+AJaRSws40X0z7p383ua9MKnDzOFy6hxYQBcWeLm4fi-efpzRnVQdxV8++fPNyXtzSFv80CAAtoWCzjF9i5xdKjcW7iuluQONgACstZ50whYzMWWlLOZhU+hdXBYE0A2F+y5pccvaWXLOLci6Wcothm9TZlui2fQYuGhULbHRU8QdYv04qih4PVIkFxB3FGlZYO4vLT0tkXsSLO8s+JQIBOwbTdp-FlvkSGKAvzPlrM5ZamP+WDzfpg7DlbysFXSoRVnACVYEueUDL+FzcKIBM7ezYABwCM4ldau7mWzyln00BcLNqXqiuViUP1ZkyDXhrB0HlB5ZrNeXaLC1xS0tc6uAXUgQVrCxuB6ubX8rMlzcLtdKilXSLnlGK1qdDPUXjr8lxs2df-PLW8z7ZrK0XjAl6oQr6UXs09fYiGARrl1Q0y0Uwtmnhz1qH8a9Lqv2m5Aa5p081e8sKWUrTFrq0eYOxg3AQqAca40pht6Uyro1x8zGaMvYA3zYQD86VFBhdx0or+ea-jfavWX0rq1uy-TlJsQ2KbVN-U+Njgs-XzLbVvyyhYCtXXMLIV264LfBvk2oblNyALDZpuXU8LUNy84Oegtc2-rBNtKzmHlvBXQrAZks59fLMJW3rl1AAOqDAsgkACMHpVKhQT6wpBz83jb+v-WrLgN4HsDfkMHZHbmAZ267buIe2vyCOrW5uHwC5WzTaAY4NpZqIpBQAv4vVGndtP2nDbP542ype6v05Q74dxIG7ZkxR2vbsdyNLBG9nDEpcZOEEHcUPBeozA3tk69zZluMWTb+Z4C+teLsu3S7kdz26ZbkAMBDrR13G+3aNs82A76VoO+qAOz4ApWCQUSzJllr-G5rdtzcPbeujasZM+AUzgaFACNKOg5px07nd8vnXZbRN9a0vewDIBV7m4de7bZxa8N-JoqO4iZ06LgBSW5DfyQsDbu-W87M9i6zZd7uL3l7D90M8-c3ugAVz49yW0lb9sdXr7l1jC+baVtF477K96Bxvbhvb2nbA9su5uArumXEHp15B7zeRDz31rxAC4DGMeu2n-jHfWO-2boiVXSoqtdO4MCkThGpLr0mSwwErMX3pbV9ruwXeJtjn6HXqRh9DXJb4O37yUj+1ufNYIRIbgDqW4tYBugO+btlkC4JekfaA7iTD+RwdAYDY2J7LVju2I9Sty30HN12h4Y9kfMPMzW97B1A5Kt4ORHWj-2zo+ocsXg79OQCYtGctcB7buIVxwaaNPXXkb7t72ZwHwB8itAb+Ny948oez3kQqlg7ME4bihPwn5IhR90Bru8J7kdxazqmELMaOkH+dla3o-Ws5PeKpUXi2E4if6mDrnlye0A8vvaPUHaFs2w4+ychOmnLTgp7Hf7sR33bw9mO+Q+sc9PxHPpiBN0E45ZP9LdNwy3GcTPJn8HY1qG8ZeZtkPOnmj9J346hiYIlnidQu0Xh2dN3NnnnbZ2s-GuTWPU012a1U9Os1O8ziz5Z5c9pusR6bL5xmyZZjtb3rnALh+0C7uJs3rUnNmZ9Pc7u2OFnZz755I6LzV20oJT+u66b6AVP1VVdop+i7rsPoG7dgJuy3d4ppOn0z2DoGgFysbg2DFB8SFaEkP8sg2Mh49hscd30HxItxVQwfuVJMEKNwpnk10fsDdiJTUYgzZmlNwmF0ulICXZsWNGipBRIgIc9No2aitjVnJpADUaMzfoZXB0b3RAGaNMY6Uwx6O76SWXKNryOBtgwEGUYMpVLGVB838-WeUUIOyxBlOSfzH-YAg15FZ2RattlmdTL9510+ahvxmkzdzj12AH9e4Xuz41vW1BdvP3OXX41vZzgA-PRvQAsb9Sw5ZkxOWmnKbsNwzfBf7Ppnfrn55dV6tbXHrz1te0W-+cyYnnLzjoDSyAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-FnoNFQb1tEOw6yuHQ4IZVrh40RaF-hM59BEgcIYsKJ1KZ5tpOqAOQIGwFGBtARtiacsaNqR9cxINsW0diPtFUixA6YukcOXJYjA5AHo1SJmOhEF5cx8UZkb6O96Uh9hTrHEoGIxTBimxTIUSGvUdL6BIAqRXvoSCdFItQWjorUV-gM5rCZhrncbq51yF4DeuNsAzqNyXHRdt8eQyJLGhW7OgjEGRNADjljohtWuZQCcaikviucbYbbaUaclSw-9XOygdhrEwyKucyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaATOknKsQEiLF6B6R2vIjiOOgpninRFItxnOLHEEh82yY3BBhOgBcs5xggPIImLaAI4aJDcVCSmPQCVDGRf4gCcBNAkQToJsExiYTxIlkSQ+cCAidiPDpziHhJEowBeLqyUSDouLciSMCvB9DwKwsLtkpPQmGiSoJIojn0OIiDC-qJCf4dKliqzEYxEYeMSxOQgmTY+DFckdiKwn8NwAyEwyvRLYmUSnJDab8VS2iil5zOUkAAAxn1Oo6UQ8AWFEjccJcWrYsIgDATx5IpWIGAAFOEiJTWgyU1cJMQYCPjJ0vkpKYcMwAFcTgYUx4CiORGk9UpsiTVl8jimhi4OKTN-BwTynVTewcU87uVIN7O46gzcUqTcmMBpQgokU0rlz0SktThEcU0QtsQilVTopNU+KQbE6iBCTgh4QQJGDk5wlM0UiQjsdDFBF8SpM-IAc1NmmtTVuEiKCCRwo7cIOCS0owCtIECRg5Br7F0ZRS0DLTVpSgs9hIg0FaDq2caV6bdPem+Sv8vQEIV50nCjAgBUIiwqikWn-S7pa0x7lgK2na9HuIvTknyMwaAMtO3AIOLZDGgp4uAwvS0qoNsh2JQRW-cEWQKclEz1u-qLIDQJSh0DTiXgFkRLFpJBAbp8M2fmCI37CD0Q74BeBz2XKE5xBMomMn9K4BvT7pjolGRqnlQSypZkYQgkl1HBBBWZpgLbkeSPL4y4Z703QWBzlFfC2IpIF4B1KH4FAnJ14-ASCKkgCDj+kIrGUP2v7RApY1A6Jg9267PdoAYxEsVnyKL4jf8QgmsdizcAWySRT4JNsb3ohIzJRBQXmNuQZQ9wk5Jsa2Wv3JkJ17Z5aMOc7IjJUCQR7syXgiO4QwAfZDo8frWIDmFBuZW-I6AvDrmBkdCX0hwnf0dkmNs5DY7KKIMYggzQExgNYGHKhlGFdCic5ObnP9Q+juRfogDjt09lxwkR7-cUuHP+5DjuWpc0sSkGp4Q8sxYwlUsky5HHB8WHI-eTyKdYRdG4G8wGr1hFFMF1RP-DeWLLCiGyLAxs4EKbIvkxEt5jc8UcYC2kpAuuiI5uZ8OfnYlX5xXP+YDXG6P8cqYAJOT3Fvnq8GsfjMNOdM1FXyLmJcy4r7Jd6miYh25U0b1menuAMFuEB0W21wUhzGgbbAhbWLBL7lvRx8qeSvL8iRTHAFCToEiyAI4Y2F-0TcL5Lw6oB+gI4skEDKI7GYgZX+PKRZhEWMieKSgr7kNJVmUgNWAgFaekDSwx44mTrYzPIuODANxOkdXkL5MGlD9yxDkzCaAHrHQygR05foHqmLC+SbYWgSuL1JeD9TRgQMtxNOWIV5iBxNsJON4odGmKKRhCqcrQSEVrBbFmCIGSEv8CWKjCOUwWN7MwXNi95rYvYe3FPkkoTgmLYxfQXrxQxUh9ioadaK7HaAgxLwsQN4vihMZvxnEowGBO3AAAZWWnBMjENwQpL0FyX7OmmXRPJukxkbhJIG9ACQYkvQERMElniXUvk9UPJLQZMS8g0ykrgJJujMTFl4dOpQ0uaX4BllQywkFMsikzLtJ4dfSQPQzrahJJwY6SbJNGVUSYl7gXhZFJUk7DHwLQi5RUoamUtHlqkt4ZTBwg9LDlZinSdvILz6TbhQwnTCQgcVlVZifywxSwt8mA1tJTkloV0pQmLK+lppf0axFkQ5KgljkzgfOKOZ6SdhBkkQEZNoWzloVJoE5cYNCFmBrBZw2yOpOsmiS8V5iuwtaIjF-LFlbKoFfuUNK6k+hKBLJTC1XDwt+WWEwlcNKJpWgUaUkDcTh3EDCtNweMUVXC1T7vsLFcq-cYXLC4XNgQ2K7JfyzLESqCVQqtBrKpgBQwP8V2YVoKsuHf8SJ1fLUURxVRENpx0o0JvLIlH-1v0M4vQRxy0Asr5I0dEibsk0lUSI2R8NxcMur7uTcZjQG8dFxthXKTul4+NVt0vgUM1w2YYNT2JeEu1HIby9YdlxkzuSnlLwjVe4BSBQJRupUctapLJ5nMI1cgCMdmqcU3QI1Uqg8kLMtJgdJAFRdpIlNDX4TpF2YompRJtizBBF8uDxS7OjW7KCQzqo5Y9yTWNEpIqa3CJePkmZqbFugDtT0sJWFrbIxahcdF0+XHAK1BgqtW4BrXIhS1Dyy9Y2uOhNTIprarKu2tzV5ShVPakmX2pXkSc8pFRPNeGpEmoAkWRi+NZHMpCAaWF8atBhJ3cmga0JVE8Tt0A0lgbRgUGvmAOqDXuTwRYajNeOqEi5AMNKGyJD+P-FASQJ4EyCTBO2XRA6l3E2jXxNaXNrMN76haqRrzUW4xhm4JIJYzA6wbiuY6p4oGqHWyIR1wy3JQeVz4CBOI0ym2BsqaUtKDYymrZYWLg4IqIIWVbjdMoPJjR+NiQQTUwo-hL03oMNaqHdFGEF5ZFg0YwtblmCWb2A1mhflQX2hdSJwTmpCPaxs2-TyORub-m2RErOaO89m11c41c2L5rcIWpCK5tEXubAtYHX7LFvYC+bw6AWkRqFK4B2BSwnEHJeFsZGPSstwGVADDWQADTvNaWyVUKoi18l2YVWjvI1pBzXyepfQtBk5oq3uLroFmnzdaugChaQcz01VTkuezNb+tg2h6MwCN4Yl7VLwpjHesup4s7iI2-lm-k61pQ-ajvQwOVoGmpax6NWy4XVuC07arN+2lrRcw7EcgDABU1IXUPpVuCzl6IVbWKr9iLBTtLm87Q9DNWXCVekVLKiFq61XQJwX2hoR9rHq1zTic2gwQttrX8bMAK2kVZi0ko7autW2+1OlFy2Qx7IP2+bcSpeGkrwVT224LvIcrTbbgdmpHcasx15a1VhobtnctuClKOO+a9YaaRcAzbKQzO8pWzsbn1yggRiP7cZE0JCqyYi2zcMS0R3WBSwdOt-DTtEDo6U0eyihhAIwGMj1YQArejvXxAn1784rZOma2lY7Icd0OzYYDDGigrDJxrQyKTsMjK6oE4gUAQsHAHiAO69zb7VAI7qqIdWAVRnihx4DByKFvZdDpVDJGQ8mKN4Y4r0Wm31z7l+7I3RdBpZBdudrOmYWqPWZtLxSNukXQ6rzji749q7KKFLvvCiBZdcgAvYe3-wvhL44oENlJTME2wAAnOIW22iUzBhKiQCgNb3SVCVUdVUI4DkCRr3uWA7YQmvNJdyII+gUIoFNRluB694lMQL81+alQ6Aq+m9Z3Jnm4C59hgaSo6MkB8zbg8+iHCStxCyp9JPGA6PoFvAL5NBfa9wEft72n6g0cgWvT0B31mCv8ggVReosChlxB1h2vHYyNN04AxdcOr-eJR-2v5SoL29VQBBUUQGs0MeKiMwEvhpQ71crAQjbE3CYsbtd6gIIJqfSBtugTwBCLDHjLSqhIaBxvtewEKQRNmUCDA2zAPIj6TUVBnXN1yP2XUbwt4CGBUTjR2M0oeWxqN5V-Wb6U5Mqm2MWzPDzAQ207IEFKJsZ0G716jJ8DSy26cGvK3BwUSQcyl2lcDOnbgzeHX2Cj39C+6ZnTrLEH60ZEEfDRxy45wh0N8MK0GPtuDCaTgwGpDYhq7UWZnDNvbfW3oX2bhAJEa7CI4e6BxpNi-wvgB4S8J0BjDva9EBocMOR6cD8UDAMkaMOlRjD9+0w8foqUkJ9J5KoyLbtITmGclMekXnMGd2bQrQWE1tQHtABGAsqSgHXt0iNWvbajV8AMWUtT32MjEwDdnlqCIM6GyD55HtWBzkPGAclbBxIquByDAheaVsiQ1JCkOltJjChiRmwZUNqH51EEUg-MY5qgBomh2bkZ0EfAcHcjXByPZMYsX8t9D4kYQy1Gg3+Hd9ZR41b4YjlvcjyUsWw5xyyDccwjlhx7m4cnCwxPD6GvNU4hcQfGOSexuY9iUOPHHgQxwM47Po0BJHDDlY1iaEd47CHuDTxr49PJN7vcMTmJ1I-2LEjpGMjxhh-Q8OOiFHrdTKpgmZNOJvHXtsQp3Z0Bd1li6jexn3QtRaPWiYD8LY7N0ZZ0d7+jei5ecwEmMWHfmonXZOhoFBiADsAAIVxA4h0N1LUqKqbqAvKcW+AIQOEEwBYEG4UBmTGBLinOpQAYE5AJGjfwMAZ9aEZfTJmRP+YXwspnJfKfIkmtoaKp+nOqfgCam2B5pzcLqegD6mDsLeB3QjtKiHhEAAAL0GD4tgGLpk4yiZJZURPTxq70yHwkCCBBghoNUxqbikhm7i4Z-UwADZApNZp02mbdOomPT2AftnKYVM8dlTB2X8WQ0lCxmZMgE38ECD4B3FSAkZ+nMQDCBZAng3QZ1HcQACy8IUAIBLApyAAA7AAA5UzpUBs5mabMdtWzPp8rVkH9NF4uzEYVcHcX7NqK0AQ50qCOYOhRncAd6886VHbZ2BzIxppPfWdOM7mZTzZn6PubzPXnzgRZ+nKeZ7MXmBz154c-qZoC1m6zW5784WmzOvbczwPPrvVBNOGAKix5zymBefN9nILN5mTHeduZF5AzwZ7UzJgrObnXTiF5A8hbhaL62zSphVgdgABi8NO4sQE5oyYAAIqOaLzjnsgU5mc6VEAnhAMA+AJaRSws40X0z7p383ua9MKnDzOFy6hxYQBcWeLm4fi-efpzRnVQdxV8++fPNyXtzSFv80CAAtoWCzjF9i5xdKjcW7iuluQONgACstZ50whYzMWWlLOZhU+hdXBYE0A2F+y5pccvaWXLOLci6Wcothm9TZlui2fQYuGhULbHRU8QdYv04qih4PVIkFxB3FGlZYO4vLT0tkXsSLO8s+JQIBOwbTdp-FlvkSGKAvzPlrM5ZamP+WDzfpg7DlbysFXSoRVnACVYEueUDL+FzcKIBM7ezYABwCM4ldau7mWzyln00BcLNqXqiuViUP1ZkyDXhrB0HlB5ZrNeXaLC1xS0tc6uAXUgQVrCxuB6ubX8rMlzcLtdKilXSLnlGK1qdDPUXjr8lxs2df-PLW8z7ZrK0XjAl6oQr6UXs09fYiGARrl1Q0y0Uwtmnhz1qH8a9Lqv2m5Aa5p081e8sKWUrTFrq0eYOxg3AQqAca40pht6Uyro1x8zGaMvYA3zYQD86VFBhdx0or+ea-jfavWX0rq1uy-TlJsQ2KbVN-U+Njgs-XzLbVvyyhYCtXXMLIV264LfBvk2oblNyALDZpuXU8LUNy84Oegtc2-rBNtKzmHlvBXQrAZks59fLMJW3rl1AAOqDAsgkACMHpVKhQT6wpBz83jb+v-WrLgN4HsDfkMHZHbmAZ267buIe2vyCOrW5uHwC5WzTaAY4NpZqIpBQAv4vVGndtP2nDbP542ype6v05Q74dxIG7ZkxR2vbsdyNLBG9nDEpcZOEEHcUPBeozA3tk69zZluMWTb+Z4C+teLsu3S7kdz26ZbkAMBDrR13G+3aNs82A76VoO+qAOz4ApWCQUSzJllr-G5rdtzcPbeujasZM+AUzgaFACNKOg5px07nd8vnXZbRN9a0vewDIBV7m4de7bZxa8N-JoqO4iZ06LgBSW5DfyQsDbu-W87M9i6zZd7uL3l7D90M8-c3ugAVz49yW0lb9sdXr7l1jC+baVtF477K96Bxvbhvb2nbA9su5uArumXEHp15B7zeRDz31rxAC4DGMeu2n-jHfWO-2boiVXSoqtdO4MCkThGpLr0mSwwErMX3pbV9ruwXeJtjn6HXqRh9DXJb4O37yUj+1ufNYIRIbgDqW4tYBugO+btlkC4JekfaA7iTD+RwdAYDY2J7LVju2I9Sty30HN12h4Y9kfMPMzW97B1A5Kt4ORHWj-2zo+ocsXg79OQCYtGctcB7buIVxwaaNPXXkb7t72ZwHwB8itAb+Ny948oez3kQqlg7ME4bihPwn5IhR90Bru8J7kdxazqmELMaOkH+dla3o-Ws5PeKpUXi2E4if6mDrnlye0A8vvaPUHaFs2w4+ychOmnLTgp7Hf7sR33bw9mO+Q+sc9PxHPpiBN0E45ZP9LdNwy3GcTPJn8HY1qG8ZeZtkPOnmj9J346hiYIlnidQu0Xh2dN3NnnnbZ2s-GuTWPU012a1U9Os1O8ziz5Z5c9pusR6bL5xmyZZjtb3rnALh+0C7uJs3rUnNmZ9Pc7u2OFnZz755I6LzV20oJT+u66b6AVP1VVdop+i7rsPoG7dgJuy3d4ppPiC1uDoGgFysbg2DFB8SFaEkP8sg2Mh49hscd30HxItxVQwfuVJMEKNwpnk10fsDdiJTUYgzZmlNwmF0ulICXZsWNGipBRIgIc9No2aitjVnJpADUaMzfoZXB0b3RAGaNMY6Uwx6O76SWV0oGUOBtgwEGUYMpVLGVDgsXifO9nFVyxa13cbSMBBryKzsi1bbLM6mX7D5v5+s5kzxmkzdzj12AD9e4Xuz41vW1BdvP3PQ341vZzgA-PRvQAsb9Sw5ZkxOWmnKb11wzfBf7Ppnvrn55dV6tbXHrz1te0W-+cyYnnLzjoDSwrcovPKQt1W4VdFux3QXMmdNyzabdDBoXNLIAA

Metalinguistic Abstraction 4.4.1

Exercise 4.55

Give simple queries that retrieve the following information from the data base:

a. all people supervised by Ben Bitdiddle;

b. the names and jobs of all people in the accounting division;

c. the names and addresses of all people who live in Slumerville.

Compound queries

Simple queries form the primitive operations of the query language. In order to form compound

operations, the query language provides means of combination. One thing that makes the query

language a logic programming language is that the means of combination mirror the means

of combination used in forming logical expressions: and, or, and not.

We can use and as follows to �nd the addresses of all the computer programmers:

Iand(job(person, list("computer", "programmer")),

address(person, where))

The resulting output is

and(job(list("Hacker", "Alyssa", "P"), list("computer", "programmer")),

address(list("Hacker", "Alyssa", "P"),

list("Cambridge", "Mass Ave", 78)))

and(job(list("Fect", "Cy", "D"), list("computer", "programmer")),

address(list("Fect", "Cy", "D"),

list("Cambridge", "Ames Street", 3)))

In general,

Iand(query1, query2, . . ., queryn)

is satis�ed by all sets of values for the pattern variables that simultaneously satisfy query
1
, . . . , queryn.

As for simple queries, the system processes a compound query by �nding all assignments

to the pattern variables that satisfy the query, then displaying instantiations of the query with

those values.

Another means of constructing compound queries is through or. For example,

Ior(supervisor(x, list("Bitdiddle", "Ben")),

supervisor(x, list("Hacker", "Alyssa", "P")))

will �nd all employees supervised by Ben Bitdiddle or Alyssa P. Hacker:

or(supervisor(list("Hacker", "Alyssa", "P"),

list("Bitdiddle", "Ben")),

474 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-FnoNFQb1tEOw6yuHQ4IZVrh40RaF-hM59BEgcIYsKJ1KZ5tpOqAOQIGwFGBtARtiacsaNqR9cxINsW0diPtFUixA6YukcOXJYjA5AHo1SJmOhEF5cx8UZkb6O96Uh9hTrHEoGIxTBimxTIUSGvUdL6BIAqRXvoSCdFItQWjorUV-gM5rCZhrncbq51yF4DeuNsAzqNyXHRdt8eQyJLGhW7OgjEGRNADjljohtWuZQCcaikviucbYbbaUaclSw-9XOygdhrEwyKucyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaATOknKsQEiLF6B6R2vIjiOOgpninRFItxnOLHEEh82yY3BBhOgBcs5xggPIImLaAI4aJDcVCSmPQCVDGRf4gCcBNAkQToJsExiYTxIlkSQ+cCAidiPDpziHhJEowBeLqyUSDouLciSMCvB9DwKwsLtkpPQmGiSoJIojn0OIiDC-qJCf4dKliqzEYxEYeMSxOQgmTY+DFckdiKwn8NwAyEwyvRLYmUSnJDab8VS2iil5zOUkAAAxn1Oo6UQ8AWFEjccJcWrYsIgDATx5IpWIGAAFOEiJTWgyU1cJMQYCPjJ0vkpKYcMwAFcTgYUx4CiORGk9UpsiTVl8jimhi4OKTN-BwTynVTewcU87uVIN7O46gzcUqTcmMBpQgokU0rlz0SktThEcU0QtsQilVTopNU+KQbE6iBCTgh4QQJGDk5wlM0UiQjsdDFBF8SpM-IAc1NmmtTVuEiKCCRwo7cIOCS0owCtIECRg5Br7F0ZRS0DLTVpSgs9hIg0FaDq2caV6bdPem+Sv8vQEIV50nCjAgBUIiwqikWn-S7pa0x7lgK2na9HuIvTknyMwaAMtO3AIOLZDGgp4uAwvS0qoNsh2JQRW-cEWQKclEz1u-qLIDQJSh0DTiXgFkRLFpJBAbp8M2fmCI37CD0Q74BeBz2XKE5xBMomMn9K4BvT7pjolGRqnlQSypZkYQgkl1HBBBWZpgLbkeSPL4y4Z703QWBzlFfC2IpIF4B1KH4FAnJ14-ASCKkgCDj+kIrGUP2v7RApY1A6Jg9267PdoAYxEsVnyKL4jf8QgmsdizcAWySRT4JNsb3ohIzJRBQXmNuQZQ9wk5Jsa2Wv3JkJ17Z5aMOc7IjJUCQR7syXgiO4QwAfZDo8frWIDmFBuZW-I6AvDrmBkdCX0hwnf0dkmNs5DY7KKIMYggzQExgNYGHKhlGFdCic5ObnP9Q+juRfogDjt09lxwkR7-cUuHP+5DjuWpc0sSkGp4Q8sxYwlUsky5HHB8WHI-eTyKdYRdG4G8wGr1hFFMF1RP-DeWLLCiGyLAxs4EKbIvkxEt5jc8UcYC2kpAuuiI5uZ8OfnYlX5xXP+YDXG6P8cqYAJOT3Fvnq8GsfjMNOdM1FXyLmJcy4r7Jd6miYh25U0b1menuAMFuEB0W21wUhzGgbbAhbWLBL7lvRx8qeSvL8iRTHAFCToEiyAI4Y2F-0TcL5Lw6oB+gI4skEDKI7GYgZX+PKRZhEWMieKSgr7kNJVmUgNWAgFaekDSwx44mTrYzPIuODANxOkdXkL5MGlD9yxDkzCaAHrHQygR05foHqmLC+SbYWgSuL1JeD9TRgQMtxNOWIV5iBxNsJON4odGmKKRhCqcrQSEVrBbFmCIGSEv8CWKjCOUwWN7MwXNi95rYvYe3FPkkoTgmLYxfQXrxQxUh9ioadaK7HaAgxLwsQN4vihMZvxnEowGBO3AAAZWWnBMjENwQpL0FyX7OmmXRPJukxkbhJIG9ACQYkvQERMElniXUvk9UPJLQZMS8g0ykrgJJujMTFl4dOpQ0uaX4BllQywkFMsikzLtJ4dfSQPQzrahJJwY6SbJNGVUSYl7gXhZFJUk7DHwLQi5RUoamUtHlqkt4ZTBwg9LDlZinSdvILz6TbhQwnTCQgcVlVZifywxSwt8mA1tJTkloV0pQmLK+lppf0axFkQ5KgljkzgfOKOZ6SdhBkkQEZNoWzloVJoE5cYNCFmBrBZw2yOpOsmiS8V5iuwtaIjF-LFlbKoFfuUNK6k+hKBLJTC1XDwt+WWEwlcNKJpWgUaUkDcTh3EDCtNweMUVXC1T7vsLFcq-cYXLC4XNgQ2K7JfyzLESqCVQqtBrKpgBQwP8V2YVoKsuHf8SJ1fLUURxVRENpx0o0JvLIlH-1v0M4vQRxy0Asr5I0dEibsk0lUSI2R8NxcMur7uTcZjQG8dFxthXKTul4+NVt0vgUM1w2YYNT2JeEu1HIby9YdlxkzuSnlLwjVe4BSBQJRupUctapLJ5nMI1cgCMdmqcU3QI1Uqg8kLMtJgdJAFRdpIlNDX4TpF2YompRJtizBBF8uDxS7OjW7KCQzqo5Y9yTWNEpIqa3CJePkmZqbFugDtT0sJWFrbIxahcdF0+XHAK1BgqtW4BrXIhS1Dyy9Y2uOhNTIprarKu2tzV5ShVPakmX2pXkSc8pFRPNeGpEmoAkWRi+NZHMpCAaWF8atBhJ3cmga0JVE8Tt0A0lgbRgUGvmAOqDXuTwRYajNeOqEi5AMNKGyJD+P-FASQJ4EyCTBO2XRA6l3E2jXxNaXNrMN76haqRrzUW4xhm4JIJYzA6wbiuY6p4oGqHWyIR1wy3JQeVz4CBOI0ym2BsqaUtKDYymrZYWLg4IqIIWVbjdMoPJjR+NiQQTUwo-hL03oMNaqHdFGEF5ZFg0YwtblmCWb2A1mhflQX2hdSJwTmpCPaxs2-TyORub-m2RErOaO89m11c41c2L5rcIWpCK5tEXubAtYHX7LFvYC+bw6AWkRqFK4B2BSwnEHJeFsZGPSstwGVADDWQADTvNaWyVUKoi18l2YVWjvI1pBzXyepfQtBk5oq3uLroFmnzdaugChaQcz01VTkuezNb+tg2h6MwCN4Yl7VLwpjHesup4s7iI2-lm-k61pQ-ajvQwOVoGmpax6NWy4XVuC07arN+2lrRcw7EcgDABU1IXUPpVuCzl6IVbWKr9iLBTtLm87Q9DNWXCVekVLKiFq61XQJwX2hoR9rHq1zTic2gwQttrX8bMAK2kVZi0ko7autW2+1OlFy2Qx7IP2+bcSpeGkrwVT224LvIcrTbbgdmpHcasx15a1VhobtnctuClKOO+a9YaaRcAzbKQzO8pWzsbn1yggRiP7cZE0JCqyYi2zcMS0R3WBSwdOt-DTtEDo6U0eyihhAIwGMj1YQArejvXxAn1784rZOma2lY7Icd0OzYYDDGigrDJxrQyKTsMjK6oE4gUAQsHAHiAO69zb7VAI7qqIdWAVRnihx4DByKFvZdDpVDJGQ8mKN4Y4r0Wm31z7l+7I3RdBpZBdudrOmYWqPWZtLxSNukXQ6rzji749q7KKFLvvCiBZdcgAvYe3-wvhL44oENlJTME2wAAnOIW22iUzBhKiQCgNb3SVCVUdVUI4DkCRr3uWA7YQmvNJdyII+gUIoFNRluB694lMQL81+alQ6Aq+m9Z3Jnm4C59hgaSo6MkB8zbg8+iHCStxCyp9JPGA6PoFvAL5NBfa9wEft72n6g0cgWvT0B31mCv8ggVReosChlxB1h2vHYyNN04AxdcOr-eJR-2v5SoL29VQBBUUQGs0MeKiMwEvhpQ71crAQjbE3CYsbtd6gIIJqfSBtugTwBCLDHjLSqhIaBxvtewEKQRNmUCDA2zAPIj6TUVBnXN1yP2XUbwt4CGBUTjR2M0oeWxqN5V-Wb6U5Mqm2MWzPDzAQ207IEFKJsZ0G716jJ8DSy26cGvK3BwUSQcyl2lcDOnbgzeHX2Cj39C+6ZnTrLEH60ZEEfDRxy45wh0N8MK0GPtuDCaTgwGpDYhq7UWZnDNvbfW3oX2bhAJEa7CI4e6BxpNi-wvgB4S8J0BjDva9EBocMOR6cD8UDAMkaMOlRjD9+0w8foqUkJ9J5KoyLbtITmGclMekXnMGd2bQrQWE1tQHtABGAsqSgHXt0iNWvbajV8AMWUtT32MjEwDdnlqCIM6GyD55HtWBzkPGAclbBxIquByDAheaVsiQ1JCkOltJjChiRmwZUNqH51EEUg-MY5qgBomh2bkZ0EfAcHcjXByPZMYsX8t9D4kYQy1Gg3+Hd9ZR41b4YjlvcjyUsWw5xyyDccwjlhx7m4cnCwxPD6GvNU4hcQfGOSexuY9iUOPHHgQxwM47Po0BJHDDlY1iaEd47CHuDTxr49PJN7vcMTmJ1I-2LEjpGMjxhh-Q8OOiFHrdTKpgmZNOJvHXtsQp3Z0Bd1li6jexn3QtRaPWiYD8LY7N0ZZ0d7+jei5ecwEmMWHfmonXZOhoFBiADsAAIVxA4h0N1LUqKqbqAvKcW+AIQOEEwBYEG4UBmTGBLinOpQAYE5AJGjfwMAZ9aEZfTJmRP+YXwspnJfKfIkmtoaKp+nOqfgCam2B5pzcLqegD6mDsLeB3QjtKiHhEAAAL0GD4tgGLpk4yiZJZURPTxq70yHwkCCBBghoNUxqbikhm7i4Z-UwADZApNZp02mbdOomPT2AftnKYVM8dlTB2X8WQ0lCxmZMgE38ECD4B3FSAkZ+nMQDCBZAng3QZ1HcQACy8IUAIBLApyAAA7AAA5UzpUBs5mabMdtWzPp8rVkH9NF4uzEYVcHcX7NqK0AQ50qCOYOhRncAd6886VHbZ2BzIxppPfWdOM7mZTzZn6PubzPXnzgRZ+nKeZ7MXmBz154c-qZoC1m6zW5784WmzOvbczwPPrvVBNOGAKix5zymBefN9nILN5mTHeduZF5AzwZ7UzJgrObnXTiF5A8hbhaL62zSphVgdgABi8NO4sQE5oyYAAIqOaLzjnsgU5mc6VEAnhAMA+AJaRSws40X0z7p383ua9MKnDzOFy6hxYQBcWeLm4fi-efpzRnVQdxV8++fPNyXtzSFv80CAAtoWCzjF9i5xdKjcW7iuluQONgACstZ50whYzMWWlLOZhU+hdXBYE0A2F+y5pccvaWXLOLci6Wcothm9TZlui2fQYuGhULbHRU8QdYv04qih4PVIkFxB3FGlZYO4vLT0tkXsSLO8s+JQIBOwbTdp-FlvkSGKAvzPlrM5ZamP+WDzfpg7DlbysFXSoRVnACVYEueUDL+FzcKIBM7ezYABwCM4ldau7mWzyln00BcLNqXqiuViUP1ZkyDXhrB0HlB5ZrNeXaLC1xS0tc6uAXUgQVrCxuB6ubX8rMlzcLtdKilXSLnlGK1qdDPUXjr8lxs2df-PLW8z7ZrK0XjAl6oQr6UXs09fYiGARrl1Q0y0Uwtmnhz1qH8a9Lqv2m5Aa5p081e8sKWUrTFrq0eYOxg3AQqAca40pht6Uyro1x8zGaMvYA3zYQD86VFBhdx0or+ea-jfavWX0rq1uy-TlJsQ2KbVN-U+Njgs-XzLbVvyyhYCtXXMLIV264LfBvk2oblNyALDZpuXU8LUNy84Oegtc2-rBNtKzmHlvBXQrAZks59fLMJW3rl1AAOqDAsgkACMHpVKhQT6wpBz83jb+v-WrLgN4HsDfkMHZHbmAZ267buIe2vyCOrW5uHwC5WzTaAY4NpZqIpBQAv4vVGndtP2nDbP542ype6v05Q74dxIG7ZkxR2vbsdyNLBG9nDEpcZOEEHcUPBeozA3tk69zZluMWTb+Z4C+teLsu3S7kdz26ZbkAMBDrR13G+3aNs82A76VoO+qAOz4ApWCQUSzJllr-G5rdtzcPbeujasZM+AUzgaFACNKOg5px07nd8vnXZbRN9a0vewDIBV7m4de7bZxa8N-JoqO4iZ06LgBSW5DfyQsDbu-W87M9i6zZd7uL3l7D90M8-c3ugAVz49yW0lb9sdXr7l1jC+baVtF477K96Bxvbhvb2nbA9su5uArumXEHp15B7zeRDz31rxAC4DGMeu2n-jHfWO-2boiVXSoqtdO4MCkThGpLr0mSwwErMX3pbV9ruwXeJtjn6HXqRh9DXJb4O37yUj+1ufNYIRIbgDqW4tYBugO+btlkC4JekfaA7iTD+RwdAYDY2J7LVju2I9Sty30HN12h4Y9kfMPMzW97B1A5Kt4ORHWj-2zo+ocsXg79OQCYtGctcB7buIVxwaaNPXXkb7t72ZwHwB8itAb+Ny948oez3kQqlg7ME4bihPwn5IhR90Bru8J7kdxazqmELMaOkH+dla3o-Ws5PeKpUXi2E4if6mDrnlye0A8vvaPUHaFs2w4+ychOmnLTgp7Hf7sR33bw9mO+Q+sc9PxHPpiBN0E45ZP9LdNwy3GcTPJn8HY1qG8ZeZtkPOnmj9J346hiYIlnidQu0Xh2dN3NnnnbZ2s-GuTWPU012a1U9Os1O8ziz5Z5c9pusR6bL5xmyZZjtb3rnALh+0C7uJs3rUnNmZ9Pc7u2OFnZz755I6LzV20oJT+u66b6AVP1VVdop+i7rsPoG7dgJuy3d4ppPiC1uDoGgFysbg2DFB8SFaEkP8sg2Mh49hscd30HxItxVQwfuVJMEKNwpnk10fsDdiJTUYgzZmlNwmF0ulICXZsWNGipBRIgIc9No2aitjVnJpADUaMzfoZXB0b3RAGaNMY6Uwx6O76SWV0oGUOBtgwEGUYMo8Wvpo8xhYhsguHnuzwF-s+mcAQAnMyyyKmNADN3VwKM68uSfzH-YAg15R1ys5PPdnxretqC7efud-P1nMmPZzgA-MM8GUbgGh52bje63CLBtre0JcnNWnQz85oEIueXNwONzyxB103RjeeUNLj1py00+TdPmPX4Lr1zS01DZuNAub+nM260vOX8HJbkS6GfEtMgarAjt-JNjQhAA
http://source-academy.github.io/playground#chap=4&prgrm=IYOwJgFAJAjgrgUwE4E8D6BvAjAXygGgAJZFVMAmPIqAHQBswB7AFwGcDj5l0MQcBKKEA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-FnoNFQb1tEOw6yuHQ4IZVrh40RaF-hM59BEgcIYsKJ1KZ5tpOqAOQIGwFGBtARtiacsaNqR9cxINsW0diPtFUixA6YukcOXJYjA5AHo1SJmOhEF5cx8UZkb6O96Uh9hTrHEoGIxTBimxTIUSGvUdL6BIAqRXvoSCdFItQWjorUV-gM5rCZhrncbq51yF4DeuNsAzqNyXHRdt8eQyJLGhW7OgjEGRNADjljohtWuZQCcaikviucbYbbaUaclSw-9XOygdhrEwyKucyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaATOknKsQEiLF6B6R2vIjiOOgpninRFItxnOLHEEh82yY3BBhOgBcs5xggPIImLaAI4aJDcVCSmPQCVDGRf4gCcBNAkQToJsExiYTxIlkSQ+cCAidiPDpziHhJEowBeLqyUSDouLciSMCvB9DwKwsLtkpPQmGiSoJIojn0OIiDC-qJCf4dKliqzEYxEYeMSxOQgmTY+DFckdiKwn8NwAyEwyvRLYmUSnJDab8VS2iil5zOUkAAAxn1Oo6UQ8AWFEjccJcWrYsIgDATx5IpWIGAAFOEiJTWgyU1cJMQYCPjJ0vkpKYcMwAFcTgYUx4CiORGk9UpsiTVl8jimhi4OKTN-BwTynVTewcU87uVIN7O46gzcUqTcmMBpQgokU0rlz0SktThEcU0QtsQilVTopNU+KQbE6iBCTgh4QQJGDk5wlM0UiQjsdDFBF8SpM-IAc1NmmtTVuEiKCCRwo7cIOCS0owCtIECRg5Br7F0ZRS0DLTVpSgs9hIg0FaDq2caV6bdPem+Sv8vQEIV50nCjAgBUIiwqikWn-S7pa0x7lgK2na9HuIvTknyMwaAMtO3AIOLZDGgp4uAwvS0qoNsh2JQRW-cEWQKclEz1u-qLIDQJSh0DTiXgFkRLFpJBAbp8M2fmCI37CD0Q74BeBz2XKE5xBMomMn9K4BvT7pjolGRqnlQSypZkYQgkl1HBBBWZpgLbkeSPL4y4Z703QWBzlFfC2IpIF4B1KH4FAnJ14-ASCKkgCDj+kIrGUP2v7RApY1A6Jg9267PdoAYxEsVnyKL4jf8QgmsdizcAWySRT4JNsb3ohIzJRBQXmNuQZQ9wk5Jsa2Wv3JkJ17Z5aMOc7IjJUCQR7syXgiO4QwAfZDo8frWIDmFBuZW-I6AvDrmBkdCX0hwnf0dkmNs5DY7KKIMYggzQExgNYGHKhlGFdCic5ObnP9Q+juRfogDjt09lxwkR7-cUuHP+5DjuWpc0sSkGp4Q8sxYwlUsky5HHB8WHI-eTyKdYRdG4G8wGr1hFFMF1RP-DeWLLCiGyLAxs4EKbIvkxEt5jc8UcYC2kpAuuiI5uZ8OfnYlX5xXP+YDXG6P8cqYAJOT3Fvnq8GsfjMNOdM1FXyLmJcy4r7Jd6miYh25U0b1menuAMFuEB0W21wUhzGgbbAhbWLBL7lvRx8qeSvL8iRTHAFCToEiyAI4Y2F-0TcL5Lw6oB+gI4skEDKI7GYgZX+PKRZhEWMieKSgr7kNJVmUgNWAgFaekDSwx44mTrYzPIuODANxOkdXkL5MGlD9yxDkzCaAHrHQygR05foHqmLC+SbYWgSuL1JeD9TRgQMtxNOWIV5iBxNsJON4odGmKKRhCqcrQSEVrBbFmCIGSEv8CWKjCOUwWN7MwXNi95rYvYe3FPkkoTgmLYxfQXrxQxUh9ioadaK7HaAgxLwsQN4vihMZvxnEowGBO3AAAZWWnBMjENwQpL0FyX7OmmXRPJukxkbhJIG9ACQYkvQERMElniXUvk9UPJLQZMS8g0ykrgJJujMTFl4dOpQ0uaX4BllQywkFMsikzLtJ4dfSQPQzrahJJwY6SbJNGVUSYl7gXhZFJUk7DHwLQi5RUoamUtHlqkt4ZTBwg9LDlZinSdvILz6TbhQwnTCQgcVlVZifywxSwt8mA1tJTkloV0pQmLK+lppf0axFkQ5KgljkzgfOKOZ6SdhBkkQEZNoWzloVJoE5cYNCFmBrBZw2yOpOsmiS8V5iuwtaIjF-LFlbKoFfuUNK6k+hKBLJTC1XDwt+WWEwlcNKJpWgUaUkDcTh3EDCtNweMUVXC1T7vsLFcq-cYXLC4XNgQ2K7JfyzLESqCVQqtBrKpgBQwP8V2YVoKsuHf8SJ1fLUURxVRENpx0o0JvLIlH-1v0M4vQRxy0Asr5I0dEibsk0lUSI2R8NxcMur7uTcZjQG8dFxthXKTul4+NVt0vgUM1w2YYNT2JeEu1HIby9YdlxkzuSnlLwjVe4BSBQJRupUctapLJ5nMI1cgCMdmqcU3QI1Uqg8kLMtJgdJAFRdpIlNDX4TpF2YompRJtizBBF8uDxS7OjW7KCQzqo5Y9yTWNEpIqa3CJePkmZqbFugDtT0sJWFrbIxahcdF0+XHAK1BgqtW4BrXIhS1Dyy9Y2uOhNTIprarKu2tzV5ShVPakmX2pXkSc8pFRPNeGpEmoAkWRi+NZHMpCAaWF8atBhJ3cmga0JVE8Tt0A0lgbRgUGvmAOqDXuTwRYajNeOqEi5AMNKGyJD+P-FASQJ4EyCTBO2XRA6l3E2jXxNaXNrMN76haqRrzUW4xhm4JIJYzA6wbiuY6p4oGqHWyIR1wy3JQeVz4CBOI0ym2BsqaUtKDYymrZYWLg4IqIIWVbjdMoPJjR+NiQQTUwo-hL03oMNaqHdFGEF5ZFg0YwtblmCWb2A1mhflQX2hdSJwTmpCPaxs2-TyORub-m2RErOaO89m11c41c2L5rcIWpCK5tEXubAtYHX7LFvYC+bw6AWkRqFK4B2BSwnEHJeFsZGPSstwGVADDWQADTvNaWyVUKoi18l2YVWjvI1pBzXyepfQtBk5oq3uLroFmnzdaugChaQcz01VTkuezNb+tg2h6MwCN4Yl7VLwpjHesup4s7iI2-lm-k61pQ-ajvQwOVoGmpax6NWy4XVuC07arN+2lrRcw7EcgDABU1IXUPpVuCzl6IVbWKr9iLBTtLm87Q9DNWXCVekVLKiFq61XQJwX2hoR9rHq1zTic2gwQttrX8bMAK2kVZi0ko7autW2+1OlFy2Qx7IP2+bcSpeGkrwVT224LvIcrTbbgdmpHcasx15a1VhobtnctuClKOO+a9YaaRcAzbKQzO8pWzsbn1yggRiP7cZE0JCqyYi2zcMS0R3WBSwdOt-DTtEDo6U0eyihhAIwGMj1YQArejvXxAn1784rZOma2lY7Icd0OzYYDDGigrDJxrQyKTsMjK6oE4gUAQsHAHiAO69zb7VAI7qqIdWAVRnihx4DByKFvZdDpVDJGQ8mKN4Y4r0Wm31z7l+7I3RdBpZBdudrOmYWqPWZtLxSNukXQ6rzji749q7KKFLvvCiBZdcgAvYe3-wvhL44oENlJTME2wAAnOIW22iUzBhKiQCgNb3SVCVUdVUI4DkCRr3uWA7YQmvNJdyII+gUIoFNRluB694lMQL81+alQ6Aq+m9Z3Jnm4C59hgaSo6MkB8zbg8+iHCStxCyp9JPGA6PoFvAL5NBfa9wEft72n6g0cgWvT0B31mCv8ggVReosChlxB1h2vHYyNN04AxdcOr-eJR-2v5SoL29VQBBUUQGs0MeKiMwEvhpQ71crAQjbE3CYsbtd6gIIJqfSBtugTwBCLDHjLSqhIaBxvtewEKQRNmUCDA2zAPIj6TUVBnXN1yP2XUbwt4CGBUTjR2M0oeWxqN5V-Wb6U5Mqm2MWzPDzAQ207IEFKJsZ0G716jJ8DSy26cGvK3BwUSQcyl2lcDOnbgzeHX2Cj39C+6ZnTrLEH60ZEEfDRxy45wh0N8MK0GPtuDCaTgwGpDYhq7UWZnDNvbfW3oX2bhAJEa7CI4e6BxpNi-wvgB4S8J0BjDva9EBocMOR6cD8UDAMkaMOlRjD9+0w8foqUkJ9J5KoyLbtITmGclMekXnMGd2bQrQWE1tQHtABGAsqSgHXt0iNWvbajV8AMWUtT32MjEwDdnlqCIM6GyD55HtWBzkPGAclbBxIquByDAheaVsiQ1JCkOltJjChiRmwZUNqH51EEUg-MY5qgBomh2bkZ0EfAcHcjXByPZMYsX8t9D4kYQy1Gg3+Hd9ZR41b4YjlvcjyUsWw5xyyDccwjlhx7m4cnCwxPD6GvNU4hcQfGOSexuY9iUOPHHgQxwM47Po0BJHDDlY1iaEd47CHuDTxr49PJN7vcMTmJ1I-2LEjpGMjxhh-Q8OOiFHrdTKpgmZNOJvHXtsQp3Z0Bd1li6jexn3QtRaPWiYD8LY7N0ZZ0d7+jei5ecwEmMWHfmonXZOhoFBiADsAAIVxA4h0N1LUqKqbqAvKcW+AIQOEEwBYEG4UBmTGBLinOpQAYE5AJGjfwMAZ9aEZfTJmRP+YXwspnJfKfIkmtoaKp+nOqfgCam2B5pzcLqegD6mDsLeB3QjtKiHhEAAAL0GD4tgGLpk4yiZJZURPTxq70yHwkCCBBghoNUxqbikhm7i4Z-UwADZApNZp02mbdOomPT2AftnKYVM8dlTB2X8WQ0lCxmZMgE38ECD4B3FSAkZ+nMQDCBZAng3QZ1HcQACy8IUAIBLApyAAA7AAA5UzpUBs5mabMdtWzPp8rVkH9NF4uzEYVcHcX7NqK0AQ50qCOYOhRncAd6886VHbZ2BzIxppPfWdOM7mZTzZn6PubzPXnzgRZ+nKeZ7MXmBz154c-qZoC1m6zW5784WmzOvbczwPPrvVBNOGAKix5zymBefN9nILN5mTHeduZF5AzwZ7UzJgrObnXTiF5A8hbhaL62zSphVgdgABi8NO4sQE5oyYAAIqOaLzjnsgU5mc6VEAnhAMA+AJaRSws40X0z7p383ua9MKnDzOFy6hxYQBcWeLm4fi-efpzRnVQdxV8++fPNyXtzSFv80CAAtoWCzjF9i5xdKjcW7iuluQONgACstZ50whYzMWWlLOZhU+hdXBYE0A2F+y5pccvaWXLOLci6Wcothm9TZlui2fQYuGhULbHRU8QdYv04qih4PVIkFxB3FGlZYO4vLT0tkXsSLO8s+JQIBOwbTdp-FlvkSGKAvzPlrM5ZamP+WDzfpg7DlbysFXSoRVnACVYEueUDL+FzcKIBM7ezYABwCM4ldau7mWzyln00BcLNqXqiuViUP1ZkyDXhrB0HlB5ZrNeXaLC1xS0tc6uAXUgQVrCxuB6ubX8rMlzcLtdKilXSLnlGK1qdDPUXjr8lxs2df-PLW8z7ZrK0XjAl6oQr6UXs09fYiGARrl1Q0y0Uwtmnhz1qH8a9Lqv2m5Aa5p081e8sKWUrTFrq0eYOxg3AQqAca40pht6Uyro1x8zGaMvYA3zYQD86VFBhdx0or+ea-jfavWX0rq1uy-TlJsQ2KbVN-U+Njgs-XzLbVvyyhYCtXXMLIV264LfBvk2oblNyALDZpuXU8LUNy84Oegtc2-rBNtKzmHlvBXQrAZks59fLMJW3rl1AAOqDAsgkACMHpVKhQT6wpBz83jb+v-WrLgN4HsDfkMHZHbmAZ267buIe2vyCOrW5uHwC5WzTaAY4NpZqIpBQAv4vVGndtP2nDbP542ype6v05Q74dxIG7ZkxR2vbsdyNLBG9nDEpcZOEEHcUPBeozA3tk69zZluMWTb+Z4C+teLsu3S7kdz26ZbkAMBDrR13G+3aNs82A76VoO+qAOz4ApWCQUSzJllr-G5rdtzcPbeujasZM+AUzgaFACNKOg5px07nd8vnXZbRN9a0vewDIBV7m4de7bZxa8N-JoqO4iZ06LgBSW5DfyQsDbu-W87M9i6zZd7uL3l7D90M8-c3ugAVz49yW0lb9sdXr7l1jC+baVtF477K96Bxvbhvb2nbA9su5uArumXEHp15B7zeRDz31rxAC4DGMeu2n-jHfWO-2boiVXSoqtdO4MCkThGpLr0mSwwErMX3pbV9ruwXeJtjn6HXqRh9DXJb4O37yUj+1ufNYIRIbgDqW4tYBugO+btlkC4JekfaA7iTD+RwdAYDY2J7LVju2I9Sty30HN12h4Y9kfMPMzW97B1A5Kt4ORHWj-2zo+ocsXg79OQCYtGctcB7buIVxwaaNPXXkb7t72ZwHwB8itAb+Ny948oez3kQqlg7ME4bihPwn5IhR90Bru8J7kdxazqmELMaOkH+dla3o-Ws5PeKpUXi2E4if6mDrnlye0A8vvaPUHaFs2w4+ychOmnLTgp7Hf7sR33bw9mO+Q+sc9PxHPpiBN0E45ZP9LdNwy3GcTPJn8HY1qG8ZeZtkPOnmj9J346hiYIlnidQu0Xh2dN3NnnnbZ2s-GuTWPU012a1U9Os1O8ziz5Z5c9pusR6bL5xmyZZjtb3rnALh+0C7uJs3rUnNmZ9Pc7u2OFnZz755I6LzV20oJT+u66b6AVP1VVdop+i7rsPoG7dgJuy3d4ppPiC1uDoGgFysbg2DFB8SFaEkP8sg2Mh49hscd30HxItxVQwfuVJMEKNwpnk10fsDdiJTUYgzZmlNwmF0ulICXZsWNGipBRIgIc9No2aitjVnJpADUaMzfoZXB0b3RAGaNMY6Uwx6O76SWV0oGUOBtgwEGUaqcg0-TxW1FWLNBnYrX1hKwdECsK3sLGVTs92fGt62oLt5pPdeXJP5j-sAQa8the9cYP1rOtiC1eaIubgSL0Vq22WZ1OevNQDKIYk64tsnmA3utwiwba3sJuxLxbkN6gwdcY97HzrsK49actNP8HH1jN1RazfXlc3tb-N55Q0sNvIr+DstwRaTcG3li1b2NwM+yv3XtrT14qy9ebfpu4r317N2AE7fXW63k7vq49eetr2B3hbxN-rcrejuwAMbvN5g88pC3VbhV0W7HZbeLv23Ob7wKe-WsXv1HA1696W73flvh3h7xQEAA

Metalinguistic Abstraction 4.4.1

supervisor(list("Hacker", "Alyssa", "P"),

list("Hacker", "Alyssa", "P")))

or(supervisor(list("Fect", "Cy", "D"),

list("Bitdiddle", "Ben")),

supervisor(list("Fect", "Cy", "D"),

list("Hacker", "Alyssa", "P")))

or(supervisor(list("Tweakit", "Lem", "E"),

list("Bitdiddle", "Ben")),

supervisor(list("Tweakit", "Lem", "E"),

list("Hacker", "Alyssa", "P")))

or(supervisor(list("Reasoner", "Louis"),

list("Bitdiddle", "Ben")),

supervisor(list("Reasoner", "Louis"),

list("Hacker", "Alyssa", "P")))

In general,

Ior(query1, query2, . . ., queryn)

is satis�ed by all sets of values for the pattern variables that satisfy at least one of query
1
. . . queryn.

Compound queries can also be formed with not. For example,

Iand(supervisor(x, list("Bitdiddle", "Ben")),

not(job(x, list("computer", "programmer"))))

�nds all people supervised by Ben Bitdiddle who are not computer programmers. In general,

not(query1)

is satis�ed by all assignments to the pattern variables that do not satisfy query
1
.
55

The �nal combining form starts with the symbol javascript_value, and the argument is a

JavaScript predicate. In general,

javascript_value(predicate)

will be satis�ed by assignments to the pattern variables in the predicate for which the instan-

tiated predicate is true. For example, to �nd all people whose salary is greater than $30,000 we

could write
56

Iand(salary(person, amount), javascript_value(amount > 30000))

55
Actually, this description of not is valid only for simple cases. The real behavior of not is more complex. We

will examine not’s peculiarities in sections 4.4.2 and 4.4.3.

56
Such javascript_value queries should be used only to perform an operation not provided in the query

language. In particular, it should not be used to test equality (since that is what the matching in the query

language is designed to do) or inequality (since that can be done with the same rule shown below).

475 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PYJwFAJAjgrgpiAngfQN4EYC+EA0ACaeJNAJm3wgB0AbAE2ABcBnXA2BFVAO2wEog
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-FnoNFQb1tEOw6yuHQ4IZVrh40RaF-hM59BEgcIYsKJ1KZ5tpOqAOQIGwFGBtARtiacsaNqR9cxINsW0diPtFUixA6YukcOXJYjA5AHo1SJmOhEF5cx8UZkb6O96Uh9hTrHEoGIxTBimxTIUSGvUdL6BIAqRXvoSCdFItQWjorUV-gM5rCZhrncbq51yF4DeuNsAzqNyXHRdt8eQyJLGhW7OgjEGRNADjljohtWuZQCcaikviucbYbbaUaclSw-9XOygdhrEwyKucyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaATOknKsQEiLF6B6R2vIjiOOgpninRFItxnOLHEEh82yY3BBhOgBcs5xggPIImLaAI4aJDcVCSmPQCVDGRf4gCcBNAkQToJsExiYTxIlkSQ+cCAidiPDpziHhJEowBeLqyUSDouLciSMCvB9DwKwsLtkpPQmGiSoJIojn0OIiDC-qJCf4dKliqzEYxEYeMSxOQgmTY+DFckdiKwn8NwAyEwyvRLYmUSnJDab8VS2iil5zOUkAAAxn1Oo6UQ8AWFEjccJcWrYsIgDATx5IpWIGAAFOEiJTWgyU1cJMQYCPjJ0vkpKYcMwAFcTgYUx4CiORGk9UpsiTVl8jimhi4OKTN-BwTynVTewcU87uVIN7O46gzcUqTcmMBpQgokU0rlz0SktThEcU0QtsQilVTopNU+KQbE6iBCTgh4QQJGDk5wlM0UiQjsdDFBF8SpM-IAc1NmmtTVuEiKCCRwo7cIOCS0owCtIECRg5Br7F0ZRS0DLTVpSgs9hIg0FaDq2caV6bdPem+Sv8vQEIV50nCjAgBUIiwqikWn-S7pa0x7lgK2na9HuIvTknyMwaAMtO3AIOLZDGgp4uAwvS0qoNsh2JQRW-cEWQKclEz1u-qLIDQJSh0DTiXgFkRLFpJBAbp8M2fmCI37CD0Q74BeBz2XKE5xBMomMn9K4BvT7pjolGRqnlQSypZkYQgkl1HBBBWZpgLbkeSPL4y4Z703QWBzlFfC2IpIF4B1KH4FAnJ14-ASCKkgCDj+kIrGUP2v7RApY1A6Jg9267PdoAYxEsVnyKL4jf8QgmsdizcAWySRT4JNsb3ohIzJRBQXmNuQZQ9wk5Jsa2Wv3JkJ17Z5aMOc7IjJUCQR7syXgiO4QwAfZDo8frWIDmFBuZW-I6AvDrmBkdCX0hwnf0dkmNs5DY7KKIMYggzQExgNYGHKhlGFdCic5ObnP9Q+juRfogDjt09lxwkR7-cUuHP+5DjuWpc0sSkGp4Q8sxYwlUsky5HHB8WHI-eTyKdYRdG4G8wGr1hFFMF1RP-DeWLLCiGyLAxs4EKbIvkxEt5jc8UcYC2kpAuuiI5uZ8OfnYlX5xXP+YDXG6P8cqYAJOT3Fvnq8GsfjMNOdM1FXyLmJcy4r7Jd6miYh25U0b1menuAMFuEB0W21wUhzGgbbAhbWLBL7lvRx8qeSvL8iRTHAFCToEiyAI4Y2F-0TcL5Lw6oB+gI4skEDKI7GYgZX+PKRZhEWMieKSgr7kNJVmUgNWAgFaekDSwx44mTrYzPIuODANxOkdXkL5MGlD9yxDkzCaAHrHQygR05foHqmLC+SbYWgSuL1JeD9TRgQMtxNOWIV5iBxNsJON4odGmKKRhCqcrQSEVrBbFmCIGSEv8CWKjCOUwWN7MwXNi95rYvYe3FPkkoTgmLYxfQXrxQxUh9ioadaK7HaAgxLwsQN4vihMZvxnEowGBO3AAAZWWnBMjENwQpL0FyX7OmmXRPJukxkbhJIG9ACQYkvQERMElniXUvk9UPJLQZMS8g0ykrgJJujMTFl4dOpQ0uaX4BllQywkFMsikzLtJ4dfSQPQzrahJJwY6SbJNGVUSYl7gXhZFJUk7DHwLQi5RUoamUtHlqkt4ZTBwg9LDlZinSdvILz6TbhQwnTCQgcVlVZifywxSwt8mA1tJTkloV0pQmLK+lppf0axFkQ5KgljkzgfOKOZ6SdhBkkQEZNoWzloVJoE5cYNCFmBrBZw2yOpOsmiS8V5iuwtaIjF-LFlbKoFfuUNK6k+hKBLJTC1XDwt+WWEwlcNKJpWgUaUkDcTh3EDCtNweMUVXC1T7vsLFcq-cYXLC4XNgQ2K7JfyzLESqCVQqtBrKpgBQwP8V2YVoKsuHf8SJ1fLUURxVRENpx0o0JvLIlH-1v0M4vQRxy0Asr5I0dEibsk0lUSI2R8NxcMur7uTcZjQG8dFxthXKTul4+NVt0vgUM1w2YYNT2JeEu1HIby9YdlxkzuSnlLwjVe4BSBQJRupUctapLJ5nMI1cgCMdmqcU3QI1Uqg8kLMtJgdJAFRdpIlNDX4TpF2YompRJtizBBF8uDxS7OjW7KCQzqo5Y9yTWNEpIqa3CJePkmZqbFugDtT0sJWFrbIxahcdF0+XHAK1BgqtW4BrXIhS1Dyy9Y2uOhNTIprarKu2tzV5ShVPakmX2pXkSc8pFRPNeGpEmoAkWRi+NZHMpCAaWF8atBhJ3cmga0JVE8Tt0A0lgbRgUGvmAOqDXuTwRYajNeOqEi5AMNKGyJD+P-FASQJ4EyCTBO2XRA6l3E2jXxNaXNrMN76haqRrzUW4xhm4JIJYzA6wbiuY6p4oGqHWyIR1wy3JQeVz4CBOI0ym2BsqaUtKDYymrZYWLg4IqIIWVbjdMoPJjR+NiQQTUwo-hL03oMNaqHdFGEF5ZFg0YwtblmCWb2A1mhflQX2hdSJwTmpCPaxs2-TyORub-m2RErOaO89m11c41c2L5rcIWpCK5tEXubAtYHX7LFvYC+bw6AWkRqFK4B2BSwnEHJeFsZGPSstwGVADDWQADTvNaWyVUKoi18l2YVWjvI1pBzXyepfQtBk5oq3uLroFmnzdaugChaQcz01VTkuezNb+tg2h6MwCN4Yl7VLwpjHesup4s7iI2-lm-k61pQ-ajvQwOVoGmpax6NWy4XVuC07arN+2lrRcw7EcgDABU1IXUPpVuCzl6IVbWKr9iLBTtLm87Q9DNWXCVekVLKiFq61XQJwX2hoR9rHq1zTic2gwQttrX8bMAK2kVZi0ko7autW2+1OlFy2Qx7IP2+bcSpeGkrwVT224LvIcrTbbgdmpHcasx15a1VhobtnctuClKOO+a9YaaRcAzbKQzO8pWzsbn1yggRiP7cZE0JCqyYi2zcMS0R3WBSwdOt-DTtEDo6U0eyihhAIwGMj1YQArejvXxAn1784rZOma2lY7Icd0OzYYDDGigrDJxrQyKTsMjK6oE4gUAQsHAHiAO69zb7VAI7qqIdWAVRnihx4DByKFvZdDpVDJGQ8mKN4Y4r0Wm31z7l+7I3RdBpZBdudrOmYWqPWZtLxSNukXQ6rzji749q7KKFLvvCiBZdcgAvYe3-wvhL44oENlJTME2wAAnOIW22iUzBhKiQCgNb3SVCVUdVUI4DkCRr3uWA7YQmvNJdyII+gUIoFNRluB694lMQL81+alQ6Aq+m9Z3Jnm4C59hgaSo6MkB8zbg8+iHCStxCyp9JPGA6PoFvAL5NBfa9wEft72n6g0cgWvT0B31mCv8ggVReosChlxB1h2vHYyNN04AxdcOr-eJR-2v5SoL29VQBBUUQGs0MeKiMwEvhpQ71crAQjbE3CYsbtd6gIIJqfSBtugTwBCLDHjLSqhIaBxvtewEKQRNmUCDA2zAPIj6TUVBnXN1yP2XUbwt4CGBUTjR2M0oeWxqN5V-Wb6U5Mqm2MWzPDzAQ207IEFKJsZ0G716jJ8DSy26cGvK3BwUSQcyl2lcDOnbgzeHX2Cj39C+6ZnTrLEH60ZEEfDRxy45wh0N8MK0GPtuDCaTgwGpDYhq7UWZnDNvbfW3oX2bhAJEa7CI4e6BxpNi-wvgB4S8J0BjDva9EBocMOR6cD8UDAMkaMOlRjD9+0w8foqUkJ9J5KoyLbtITmGclMekXnMGd2bQrQWE1tQHtABGAsqSgHXt0iNWvbajV8AMWUtT32MjEwDdnlqCIM6GyD55HtWBzkPGAclbBxIquByDAheaVsiQ1JCkOltJjChiRmwZUNqH51EEUg-MY5qgBomh2bkZ0EfAcHcjXByPZMYsX8t9D4kYQy1Gg3+Hd9ZR41b4YjlvcjyUsWw5xyyDccwjlhx7m4cnCwxPD6GvNU4hcQfGOSexuY9iUOPHHgQxwM47Po0BJHDDlY1iaEd47CHuDTxr49PJN7vcMTmJ1I-2LEjpGMjxhh-Q8OOiFHrdTKpgmZNOJvHXtsQp3Z0Bd1li6jexn3QtRaPWiYD8LY7N0ZZ0d7+jei5ecwEmMWHfmonXZOhoFBiADsAAIVxA4h0N1LUqKqbqAvKcW+AIQOEEwBYEG4UBmTGBLinOpQAYE5AJGjfwMAZ9aEZfTJmRP+YXwspnJfKfIkmtoaKp+nOqfgCam2B5pzcLqegD6mDsLeB3QjtKiHhEAAAL0GD4tgGLpk4yiZJZURPTxq70yHwkCCBBghoNUxqbikhm7i4Z-UwADZApNZp02mbdOomPT2AftnKYVM8dlTB2X8WQ0lCxmZMgE38ECD4B3FSAkZ+nMQDCBZAng3QZ1HcQACy8IUAIBLApyAAA7AAA5UzpUBs5mabMdtWzPp8rVkH9NF4uzEYVcHcX7NqK0AQ50qCOYOhRncAd6886VHbZ2BzIxppPfWdOM7mZTzZn6PubzPXnzgRZ+nKeZ7MXmBz154c-qZoC1m6zW5784WmzOvbczwPPrvVBNOGAKix5zymBefN9nILN5mTHeduZF5AzwZ7UzJgrObnXTiF5A8hbhaL62zSphVgdgABi8NO4sQE5oyYAAIqOaLzjnsgU5mc6VEAnhAMA+AJaRSws40X0z7p383ua9MKnDzOFy6hxYQBcWeLm4fi-efpzRnVQdxV8++fPNyXtzSFv80CAAtoWCzjF9i5xdKjcW7iuluQONgACstZ50whYzMWWlLOZhU+hdXBYE0A2F+y5pccvaWXLOLci6Wcothm9TZlui2fQYuGhULbHRU8QdYv04qih4PVIkFxB3FGlZYO4vLT0tkXsSLO8s+JQIBOwbTdp-FlvkSGKAvzPlrM5ZamP+WDzfpg7DlbysFXSoRVnACVYEueUDL+FzcKIBM7ezYABwCM4ldau7mWzyln00BcLNqXqiuViUP1ZkyDXhrB0HlB5ZrNeXaLC1xS0tc6uAXUgQVrCxuB6ubX8rMlzcLtdKilXSLnlGK1qdDPUXjr8lxs2df-PLW8z7ZrK0XjAl6oQr6UXs09fYiGARrl1Q0y0Uwtmnhz1qH8a9Lqv2m5Aa5p081e8sKWUrTFrq0eYOxg3AQqAca40pht6Uyro1x8zGaMvYA3zYQD86VFBhdx0or+ea-jfavWX0rq1uy-TlJsQ2KbVN-U+Njgs-XzLbVvyyhYCtXXMLIV264LfBvk2oblNyALDZpuXU8LUNy84Oegtc2-rBNtKzmHlvBXQrAZks59fLMJW3rl1AAOqDAsgkACMHpVKhQT6wpBz83jb+v-WrLgN4HsDfkMHZHbmAZ267buIe2vyCOrW5uHwC5WzTaAY4NpZqIpBQAv4vVGndtP2nDbP542ype6v05Q74dxIG7ZkxR2vbsdyNLBG9nDEpcZOEEHcUPBeozA3tk69zZluMWTb+Z4C+teLsu3S7kdz26ZbkAMBDrR13G+3aNs82A76VoO+qAOz4ApWCQUSzJllr-G5rdtzcPbeujasZM+AUzgaFACNKOg5px07nd8vnXZbRN9a0vewDIBV7m4de7bZxa8N-JoqO4iZ06LgBSW5DfyQsDbu-W87M9i6zZd7uL3l7D90M8-c3ugAVz49yW0lb9sdXr7l1jC+baVtF477K96Bxvbhvb2nbA9su5uArumXEHp15B7zeRDz31rxAC4DGMeu2n-jHfWO-2boiVXSoqtdO4MCkThGpLr0mSwwErMX3pbV9ruwXeJtjn6HXqRh9DXJb4O37yUj+1ufNYIRIbgDqW4tYBugO+btlkC4JekfaA7iTD+RwdAYDY2J7LVju2I9Sty30HN12h4Y9kfMPMzW97B1A5Kt4ORHWj-2zo+ocsXg79OQCYtGctcB7buIVxwaaNPXXkb7t72ZwHwB8itAb+Ny948oez3kQqlg7ME4bihPwn5IhR90Bru8J7kdxazqmELMaOkH+dla3o-Ws5PeKpUXi2E4if6mDrnlye0A8vvaPUHaFs2w4+ychOmnLTgp7Hf7sR33bw9mO+Q+sc9PxHPpiBN0E45ZP9LdNwy3GcTPJn8HY1qG8ZeZtkPOnmj9J346hiYIlnidQu0Xh2dN3NnnnbZ2s-GuTWPU012a1U9Os1O8ziz5Z5c9pusR6bL5xmyZZjtb3rnALh+0C7uJs3rUnNmZ9Pc7u2OFnZz755I6LzV20oJT+u66b6AVP1VVdop+i7rsPoG7dgJuy3d4ppPiC1uDoGgFysbg2DFB8SFaEkP8sg2Mh49hscd30HxItxVQwfuVJMEKNwpnk10fsDdiJTUYgzZmlNwmF0ulICXZsWNGipBRIgIc9No2aitjVnJpADUaMzfoZXB0b3RAGaNMY6Uwx6O76SWV0oGUOBtgwEGUYMo8WGPex4rairFmgzsVr6wlcv3IBMnfpjKg+b+frOZMeznAB+YGPXlyT+Y-7AEGvK0SYiXAQ3McAOLXXO2HhRouGdAAfWQzoAZu5sUGANRiW7+QN5lJDfGm0AQAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-FnoNFQb1tEOw6yuHQ4IZVrh40RaF-hM59BEgcIYsKJ1KZ5tpOqAOQIGwFGBtARtiacsaNqR9cxINsW0diPtFUixA6YukcOXJYjA5AHo1SJmOhEF5cx8UZkb6O96Uh9hTrHEoGIxTBimxTIUSGvUdL6BIAqRXvoSCdFItQWjorUV-gM5rCZhrncbq51yF4DeuNsAzqNyXHRdt8eQyJLGhW7OgjEGRNADjljohtWuZQCcaikviucbYbbaUaclSw-9XOygdhrEwyKucyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaATOknKsQEiLF6B6R2vIjiOOgpninRFItxnOLHEEh82yY3BBhOgBcs5xggPIImLaAI4aJDcVCSmPQCVDGRf4gCcBNAkQToJsExiYTxIlkSQ+cCAidiPDpziHhJEowBeLqyUSDouLciSMCvB9DwKwsLtkpPQmGiSoJIojn0OIiDC-qJCf4dKliqzEYxEYeMSxOQgmTY+DFckdiKwn8NwAyEwyvRLYmUSnJDab8VS2iil5zOUkAAAxn1Oo6UQ8AWFEjccJcWrYsIgDATx5IpWIGAAFOEiJTWgyU1cJMQYCPjJ0vkpKYcMwAFcTgYUx4CiORGk9UpsiTVl8jimhi4OKTN-BwTynVTewcU87uVIN7O46gzcUqTcmMBpQgokU0rlz0SktThEcU0QtsQilVTopNU+KQbE6iBCTgh4QQJGDk5wlM0UiQjsdDFBF8SpM-IAc1NmmtTVuEiKCCRwo7cIOCS0owCtIECRg5Br7F0ZRS0DLTVpSgs9hIg0FaDq2caV6bdPem+Sv8vQEIV50nCjAgBUIiwqikWn-S7pa0x7lgK2na9HuIvTknyMwaAMtO3AIOLZDGgp4uAwvS0qoNsh2JQRW-cEWQKclEz1u-qLIDQJSh0DTiXgFkRLFpJBAbp8M2fmCI37CD0Q74BeBz2XKE5xBMomMn9K4BvT7pjolGRqnlQSypZkYQgkl1HBBBWZpgLbkeSPL4y4Z703QWBzlFfC2IpIF4B1KH4FAnJ14-ASCKkgCDj+kIrGUP2v7RApY1A6Jg9267PdoAYxEsVnyKL4jf8QgmsdizcAWySRT4JNsb3ohIzJRBQXmNuQZQ9wk5Jsa2Wv3JkJ17Z5aMOc7IjJUCQR7syXgiO4QwAfZDo8frWIDmFBuZW-I6AvDrmBkdCX0hwnf0dkmNs5DY7KKIMYggzQExgNYGHKhlGFdCic5ObnP9Q+juRfogDjt09lxwkR7-cUuHP+5DjuWpc0sSkGp4Q8sxYwlUsky5HHB8WHI-eTyKdYRdG4G8wGr1hFFMF1RP-DeWLLCiGyLAxs4EKbIvkxEt5jc8UcYC2kpAuuiI5uZ8OfnYlX5xXP+YDXG6P8cqYAJOT3Fvnq8GsfjMNOdM1FXyLmJcy4r7Jd6miYh25U0b1menuAMFuEB0W21wUhzGgbbAhbWLBL7lvRx8qeSvL8iRTHAFCToEiyAI4Y2F-0TcL5Lw6oB+gI4skEDKI7GYgZX+PKRZhEWMieKSgr7kNJVmUgNWAgFaekDSwx44mTrYzPIuODANxOkdXkL5MGlD9yxDkzCaAHrHQygR05foHqmLC+SbYWgSuL1JeD9TRgQMtxNOWIV5iBxNsJON4odGmKKRhCqcrQSEVrBbFmCIGSEv8CWKjCOUwWN7MwXNi95rYvYe3FPkkoTgmLYxfQXrxQxUh9ioadaK7HaAgxLwsQN4vihMZvxnEowGBO3AAAZWWnBMjENwQpL0FyX7OmmXRPJukxkbhJIG9ACQYkvQERMElniXUvk9UPJLQZMS8g0ykrgJJujMTFl4dOpQ0uaX4BllQywkFMsikzLtJ4dfSQPQzrahJJwY6SbJNGVUSYl7gXhZFJUk7DHwLQi5RUoamUtHlqkt4ZTBwg9LDlZinSdvILz6TbhQwnTCQgcVlVZifywxSwt8mA1tJTkloV0pQmLK+lppf0axFkQ5KgljkzgfOKOZ6SdhBkkQEZNoWzloVJoE5cYNCFmBrBZw2yOpOsmiS8V5iuwtaIjF-LFlbKoFfuUNK6k+hKBLJTC1XDwt+WWEwlcNKJpWgUaUkDcTh3EDCtNweMUVXC1T7vsLFcq-cYXLC4XNgQ2K7JfyzLESqCVQqtBrKpgBQwP8V2YVoKsuHf8SJ1fLUURxVRENpx0o0JvLIlH-1v0M4vQRxy0Asr5I0dEibsk0lUSI2R8NxcMur7uTcZjQG8dFxthXKTul4+NVt0vgUM1w2YYNT2JeEu1HIby9YdlxkzuSnlLwjVe4BSBQJRupUctapLJ5nMI1cgCMdmqcU3QI1Uqg8kLMtJgdJAFRdpIlNDX4TpF2YompRJtizBBF8uDxS7OjW7KCQzqo5Y9yTWNEpIqa3CJePkmZqbFugDtT0sJWFrbIxahcdF0+XHAK1BgqtW4BrXIhS1Dyy9Y2uOhNTIprarKu2tzV5ShVPakmX2pXkSc8pFRPNeGpEmoAkWRi+NZHMpCAaWF8atBhJ3cmga0JVE8Tt0A0lgbRgUGvmAOqDXuTwRYajNeOqEi5AMNKGyJD+P-FASQJ4EyCTBO2XRA6l3E2jXxNaXNrMN76haqRrzUW4xhm4JIJYzA6wbiuY6p4oGqHWyIR1wy3JQeVz4CBOI0ym2BsqaUtKDYymrZYWLg4IqIIWVbjdMoPJjR+NiQQTUwo-hL03oMNaqHdFGEF5ZFg0YwtblmCWb2A1mhflQX2hdSJwTmpCPaxs2-TyORub-m2RErOaO89m11c41c2L5rcIWpCK5tEXubAtYHX7LFvYC+bw6AWkRqFK4B2BSwnEHJeFsZGPSstwGVADDWQADTvNaWyVUKoi18l2YVWjvI1pBzXyepfQtBk5oq3uLroFmnzdaugChaQcz01VTkuezNb+tg2h6MwCN4Yl7VLwpjHesup4s7iI2-lm-k61pQ-ajvQwOVoGmpax6NWy4XVuC07arN+2lrRcw7EcgDABU1IXUPpVuCzl6IVbWKr9iLBTtLm87Q9DNWXCVekVLKiFq61XQJwX2hoR9rHq1zTic2gwQttrX8bMAK2kVZi0ko7autW2+1OlFy2Qx7IP2+bcSpeGkrwVT224LvIcrTbbgdmpHcasx15a1VhobtnctuClKOO+a9YaaRcAzbKQzO8pWzsbn1yggRiP7cZE0JCqyYi2zcMS0R3WBSwdOt-DTtEDo6U0eyihhAIwGMj1YQArejvXxAn1784rZOma2lY7Icd0OzYYDDGigrDJxrQyKTsMjK6oE4gUAQsHAHiAO69zb7VAI7qqIdWAVRnihx4DByKFvZdDpVDJGQ8mKN4Y4r0Wm31z7l+7I3RdBpZBdudrOmYWqPWZtLxSNukXQ6rzji749q7KKFLvvCiBZdcgAvYe3-wvhL44oENlJTME2wAAnOIW22iUzBhKiQCgNb3SVCVUdVUI4DkCRr3uWA7YQmvNJdyII+gUIoFNRluB694lMQL81+alQ6Aq+m9Z3Jnm4C59hgaSo6MkB8zbg8+iHCStxCyp9JPGA6PoFvAL5NBfa9wEft72n6g0cgWvT0B31mCv8ggVReosChlxB1h2vHYyNN04AxdcOr-eJR-2v5SoL29VQBBUUQGs0MeKiMwEvhpQ71crAQjbE3CYsbtd6gIIJqfSBtugTwBCLDHjLSqhIaBxvtewEKQRNmUCDA2zAPIj6TUVBnXN1yP2XUbwt4CGBUTjR2M0oeWxqN5V-Wb6U5Mqm2MWzPDzAQ207IEFKJsZ0G716jJ8DSy26cGvK3BwUSQcyl2lcDOnbgzeHX2Cj39C+6ZnTrLEH60ZEEfDRxy45wh0N8MK0GPtuDCaTgwGpDYhq7UWZnDNvbfW3oX2bhAJEa7CI4e6BxpNi-wvgB4S8J0BjDva9EBocMOR6cD8UDAMkaMOlRjD9+0w8foqUkJ9J5KoyLbtITmGclMekXnMGd2bQrQWE1tQHtABGAsqSgHXt0iNWvbajV8AMWUtT32MjEwDdnlqCIM6GyD55HtWBzkPGAclbBxIquByDAheaVsiQ1JCkOltJjChiRmwZUNqH51EEUg-MY5qgBomh2bkZ0EfAcHcjXByPZMYsX8t9D4kYQy1Gg3+Hd9ZR41b4YjlvcjyUsWw5xyyDccwjlhx7m4cnCwxPD6GvNU4hcQfGOSexuY9iUOPHHgQxwM47Po0BJHDDlY1iaEd47CHuDTxr49PJN7vcMTmJ1I-2LEjpGMjxhh-Q8OOiFHrdTKpgmZNOJvHXtsQp3Z0Bd1li6jexn3QtRaPWiYD8LY7N0ZZ0d7+jei5ecwEmMWHfmonXZOhoFBiADsAAIVxA4h0N1LUqKqbqAvKcW+AIQOEEwBYEG4UBmTGBLinOpQAYE5AJGjfwMAZ9aEZfTJmRP+YXwspnJfKfIkmtoaKp+nOqfgCam2B5pzcLqegD6mDsLeB3QjtKiHhEAAAL0GD4tgGLpk4yiZJZURPTxq70yHwkCCBBghoNUxqbikhm7i4Z-UwADZApNZp02mbdOomPT2AftnKYVM8dlTB2X8WQ0lCxmZMgE38ECD4B3FSAkZ+nMQDCBZAng3QZ1HcQACy8IUAIBLApyAAA7AAA5UzpUBs5mabMdtWzPp8rVkH9NF4uzEYVcHcX7NqK0AQ50qCOYOhRncAd6886VHbZ2BzIxppPfWdOM7mZTzZn6PubzPXnzgRZ+nKeZ7MXmBz154c-qZoC1m6zW5784WmzOvbczwPPrvVBNOGAKix5zymBefN9nILN5mTHeduZF5AzwZ7UzJgrObnXTiF5A8hbhaL62zSphVgdgABi8NO4sQE5oyYAAIqOaLzjnsgU5mc6VEAnhAMA+AJaRSws40X0z7p383ua9MKnDzOFy6hxYQBcWeLm4fi-efpzRnVQdxV8++fPNyXtzSFv80CAAtoWCzjF9i5xdKjcW7iuluQONgACstZ50whYzMWWlLOZhU+hdXBYE0A2F+y5pccvaWXLOLci6Wcothm9TZlui2fQYuGhULbHRU8QdYv04qih4PVIkFxB3FGlZYO4vLT0tkXsSLO8s+JQIBOwbTdp-FlvkSGKAvzPlrM5ZamP+WDzfpg7DlbysFXSoRVnACVYEueUDL+FzcKIBM7ezYABwCM4ldau7mWzyln00BcLNqXqiuViUP1ZkyDXhrB0HlB5ZrNeXaLC1xS0tc6uAXUgQVrCxuB6ubX8rMlzcLtdKilXSLnlGK1qdDPUXjr8lxs2df-PLW8z7ZrK0XjAl6oQr6UXs09fYiGARrl1Q0y0Uwtmnhz1qH8a9Lqv2m5Aa5p081e8sKWUrTFrq0eYOxg3AQqAca40pht6Uyro1x8zGaMvYA3zYQD86VFBhdx0or+ea-jfavWX0rq1uy-TlJsQ2KbVN-U+Njgs-XzLbVvyyhYCtXXMLIV264LfBvk2oblNyALDZpuXU8LUNy84Oegtc2-rBNtKzmHlvBXQrAZks59fLMJW3rl1AAOqDAsgkACMHpVKhQT6wpBz83jb+v-WrLgN4HsDfkMHZHbmAZ267buIe2vyCOrW5uHwC5WzTaAY4NpZqIpBQAv4vVGndtP2nDbP542ype6v05Q74dxIG7ZkxR2vbsdyNLBG9nDEpcZOEEHcUPBeozA3tk69zZluMWTb+Z4C+teLsu3S7kdz26ZbkAMBDrR13G+3aNs82A76VoO+qAOz4ApWCQUSzJllr-G5rdtzcPbeujasZM+AUzgaFACNKOg5px07nd8vnXZbRN9a0vewDIBV7m4de7bZxa8N-JoqO4iZ06LgBSW5DfyQsDbu-W87M9i6zZd7uL3l7D90M8-c3ugAVz49yW0lb9sdXr7l1jC+baVtF477K96Bxvbhvb2nbA9su5uArumXEHp15B7zeRDz31rxAC4DGMeu2n-jHfWO-2boiVXSoqtdO4MCkThGpLr0mSwwErMX3pbV9ruwXeJtjn6HXqRh9DXJb4O37yUj+1ufNYIRIbgDqW4tYBugO+btlkC4JekfaA7iTD+RwdAYDY2J7LVju2I9Sty30HN12h4Y9kfMPMzW97B1A5Kt4ORHWj-2zo+ocsXg79OQCYtGctcB7buIVxwaaNPXXkb7t72ZwHwB8itAb+Ny948oez3kQqlg7ME4bihPwn5IhR90Bru8J7kdxazqmELMaOkH+dla3o-Ws5PeKpUXi2E4if6mDrnlye0A8vvaPUHaFs2w4+ychOmnLTgp7Hf7sR33bw9mO+Q+sc9PxHPpiBN0E45ZP9LdNwy3GcTPJn8HY1qG8ZeZtkPOnmj9J346hiYIlnidQu0Xh2dN3NnnnbZ2s-GuTWPU012a1U9Os1O8ziz5Z5c9pusR6bL5xmyZZjtb3rnALh+0C7uJs3rUnNmZ9Pc7u2OFnZz755I6LzV20oJT+u66b6AVP1VVdop+i7rsPoG7dgJuy3d4ppPiC1uDoGgFysbg2DFB8SFaEkP8sg2Mh49hscd30HxItxVQwfuVJMEKNwpnk10fsDdiJTUYgzZmlNwmF0ulICXZsWNGipBRIgIc9No2aitjVnJpADUaMzfoZXB0b3RAGaNMY6Uwx6O76SWV0oGUOBtgwEGUYMo8WPdtaxhYhsAQcA-kg6BXrXaBQwg-k0AE5XFsdPry5J-Mf9gCDXl6ohuY4KAGbvYkGo-NxooYH07TDzOnqDoBZzgtAA

Metalinguistic Abstraction 4.4.1

Exercise 4.56

Formulate compound queries that retrieve the following information:

a. the names of all people who are supervised by Ben Bitdiddle, together with their ad-

dresses;

b. all people whose salary is less than Ben Bitdiddle’s, together with their salary and Ben

Bitdiddle’s salary;

c. all people who are supervised by someone who is not in the computer division, together

with the supervisor’s name and job.

Rules

In addition to primitive queries and compound queries, the query language provides means

for abstracting queries. These are given by rules. The rule

Irule(lives_near(person_1, person_2),

and(address(person_1, pair(town, rest_1)),

address(person_2, pair(town, rest_2)),

not(same(person_1, person_2))))

speci�es that two people live near each other if they live in the same town. The �nal not clause

prevents the rule from saying that all people live near themselves. The same relation is de�ned

by a very simple rule:
57

Irule(same(x, x))

The following rule declares that a person is a “wheel” in an organization if he supervises

someone who is in turn a supervisor:

Irule(wheel(person),

and(supervisor(middle_manager, person),

supervisor(x, middle_manager)))

The general form of a rule is

Irule(conclusion, body)

where conclusion is a pattern and body is any query.
58

We can think of a rule as representing

57
Notice that we do not need same in order to make two things be the same: We just use the same pattern

variable for each—in e�ect, we have one thing instead of two things in the �rst place. For example, see town in the

lives_near rule and middle_manager in the wheel rule below. The same relation is useful when we want to force

two things to be di�erent, such as person_1 and person_2 in the "lives-near" rule. Although using the same

pattern variable in two parts of a query forces the same value to appear in both places, using di�erent pattern

variables does not force di�erent values to appear. (The values assigned to di�erent pattern variables may be the

same or di�erent.)

58
We will also allow rules without bodies, as in same, and we will interpret such a rule to mean that the rule

conclusion is satis�ed by any values of the variables.

476 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-FnoNFQb1tEOw6yuHQ4IZVrh40RaF-hM59BEgcIYsKJ1KZ5tpOqAOQIGwFGBtARtiacsaNqR9cxINsW0diPtFUixA6YukcOXJYjA5AHo1SJmOhEF5cx8UZkb6O96Uh9hTrHEoGIxTBimxTIUSGvUdL6BIAqRXvoSCdFItQWjorUV-gM5rCZhrncbq51yF4DeuNsAzqNyXHRdt8eQyJLGhW7OgjEGRNADjljohtWuZQCcaikviucbYbbaUaclSw-9XOygdhrEwyKucyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaATOknKsQEiLF6B6R2vIjiOOgpninRFItxnOLHEEh82yY3BBhOgBcs5xggPIImLaAI4aJDcVCSmPQCVDGRf4gCcBNAkQToJsExiYTxIlkSQ+cCAidiPDpziHhJEowBeLqyUSDouLciSMCvB9DwKwsLtkpPQmGiSoJIojn0OIiDC-qJCf4dKliqzEYxEYeMSxOQgmTY+DFckdiKwn8NwAyEwyvRLYmUSnJDab8VS2iil5zOUkAAAxn1Oo6UQ8AWFEjccJcWrYsIgDATx5IpWIGAAFOEiJTWgyU1cJMQYCPjJ0vkpKYcMwAFcTgYUx4CiORGk9UpsiTVl8jimhi4OKTN-BwTynVTewcU87uVIN7O46gzcUqTcmMBpQgokU0rlz0SktThEcU0QtsQilVTopNU+KQbE6iBCTgh4QQJGDk5wlM0UiQjsdDFBF8SpM-IAc1NmmtTVuEiKCCRwo7cIOCS0owCtIECRg5Br7F0ZRS0DLTVpSgs9hIg0FaDq2caV6bdPem+Sv8vQEIV50nCjAgBUIiwqikWn-S7pa0x7lgK2na9HuIvTknyMwaAMtO3AIOLZDGgp4uAwvS0qoNsh2JQRW-cEWQKclEz1u-qLIDQJSh0DTiXgFkRLFpJBAbp8M2fmCI37CD0Q74BeBz2XKE5xBMomMn9K4BvT7pjolGRqnlQSypZkYQgkl1HBBBWZpgLbkeSPL4y4Z703QWBzlFfC2IpIF4B1KH4FAnJ14-ASCKkgCDj+kIrGUP2v7RApY1A6Jg9267PdoAYxEsVnyKL4jf8QgmsdizcAWySRT4JNsb3ohIzJRBQXmNuQZQ9wk5Jsa2Wv3JkJ17Z5aMOc7IjJUCQR7syXgiO4QwAfZDo8frWIDmFBuZW-I6AvDrmBkdCX0hwnf0dkmNs5DY7KKIMYggzQExgNYGHKhlGFdCic5ObnP9Q+juRfogDjt09lxwkR7-cUuHP+5DjuWpc0sSkGp4Q8sxYwlUsky5HHB8WHI-eTyKdYRdG4G8wGr1hFFMF1RP-DeWLLCiGyLAxs4EKbIvkxEt5jc8UcYC2kpAuuiI5uZ8OfnYlX5xXP+YDXG6P8cqYAJOT3Fvnq8GsfjMNOdM1FXyLmJcy4r7Jd6miYh25U0b1menuAMFuEB0W21wUhzGgbbAhbWLBL7lvRx8qeSvL8iRTHAFCToEiyAI4Y2F-0TcL5Lw6oB+gI4skEDKI7GYgZX+PKRZhEWMieKSgr7kNJVmUgNWAgFaekDSwx44mTrYzPIuODANxOkdXkL5MGlD9yxDkzCaAHrHQygR05foHqmLC+SbYWgSuL1JeD9TRgQMtxNOWIV5iBxNsJON4odGmKKRhCqcrQSEVrBbFmCIGSEv8CWKjCOUwWN7MwXNi95rYvYe3FPkkoTgmLYxfQXrxQxUh9ioadaK7HaAgxLwsQN4vihMZvxnEowGBO3AAAZWWnBMjENwQpL0FyX7OmmXRPJukxkbhJIG9ACQYkvQERMElniXUvk9UPJLQZMS8g0ykrgJJujMTFl4dOpQ0uaX4BllQywkFMsikzLtJ4dfSQPQzrahJJwY6SbJNGVUSYl7gXhZFJUk7DHwLQi5RUoamUtHlqkt4ZTBwg9LDlZinSdvILz6TbhQwnTCQgcVlVZifywxSwt8mA1tJTkloV0pQmLK+lppf0axFkQ5KgljkzgfOKOZ6SdhBkkQEZNoWzloVJoE5cYNCFmBrBZw2yOpOsmiS8V5iuwtaIjF-LFlbKoFfuUNK6k+hKBLJTC1XDwt+WWEwlcNKJpWgUaUkDcTh3EDCtNweMUVXC1T7vsLFcq-cYXLC4XNgQ2K7JfyzLESqCVQqtBrKpgBQwP8V2YVoKsuHf8SJ1fLUURxVRENpx0o0JvLIlH-1v0M4vQRxy0Asr5I0dEibsk0lUSI2R8NxcMur7uTcZjQG8dFxthXKTul4+NVt0vgUM1w2YYNT2JeEu1HIby9YdlxkzuSnlLwjVe4BSBQJRupUctapLJ5nMI1cgCMdmqcU3QI1Uqg8kLMtJgdJAFRdpIlNDX4TpF2YompRJtizBBF8uDxS7OjW7KCQzqo5Y9yTWNEpIqa3CJePkmZqbFugDtT0sJWFrbIxahcdF0+XHAK1BgqtW4BrXIhS1Dyy9Y2uOhNTIprarKu2tzV5ShVPakmX2pXkSc8pFRPNeGpEmoAkWRi+NZHMpCAaWF8atBhJ3cmga0JVE8Tt0A0lgbRgUGvmAOqDXuTwRYajNeOqEi5AMNKGyJD+P-FASQJ4EyCTBO2XRA6l3E2jXxNaXNrMN76haqRrzUW4xhm4JIJYzA6wbiuY6p4oGqHWyIR1wy3JQeVz4CBOI0ym2BsqaUtKDYymrZYWLg4IqIIWVbjdMoPJjR+NiQQTUwo-hL03oMNaqHdFGEF5ZFg0YwtblmCWb2A1mhflQX2hdSJwTmpCPaxs2-TyORub-m2RErOaO89m11c41c2L5rcIWpCK5tEXubAtYHX7LFvYC+bw6AWkRqFK4B2BSwnEHJeFsZGPSstwGVADDWQADTvNaWyVUKoi18l2YVWjvI1pBzXyepfQtBk5oq3uLroFmnzdaugChaQcz01VTkuezNb+tg2h6MwCN4Yl7VLwpjHesup4s7iI2-lm-k61pQ-ajvQwOVoGmpax6NWy4XVuC07arN+2lrRcw7EcgDABU1IXUPpVuCzl6IVbWKr9iLBTtLm87Q9DNWXCVekVLKiFq61XQJwX2hoR9rHq1zTic2gwQttrX8bMAK2kVZi0ko7autW2+1OlFy2Qx7IP2+bcSpeGkrwVT224LvIcrTbbgdmpHcasx15a1VhobtnctuClKOO+a9YaaRcAzbKQzO8pWzsbn1yggRiP7cZE0JCqyYi2zcMS0R3WBSwdOt-DTtEDo6U0eyihhAIwGMj1YQArejvXxAn1784rZOma2lY7Icd0OzYYDDGigrDJxrQyKTsMjK6oE4gUAQsHAHiAO69zb7VAI7qqIdWAVRnihx4DByKFvZdDpVDJGQ8mKN4Y4r0Wm31z7l+7I3RdBpZBdudrOmYWqPWZtLxSNukXQ6rzji749q7KKFLvvCiBZdcgAvYe3-wvhL44oENlJTME2wAAnOIW22iUzBhKiQCgNb3SVCVUdVUI4DkCRr3uWA7YQmvNJdyII+gUIoFNRluB694lMQL81+alQ6Aq+m9Z3Jnm4C59hgaSo6MkB8zbg8+iHCStxCyp9JPGA6PoFvAL5NBfa9wEft72n6g0cgWvT0B31mCv8ggVReosChlxB1h2vHYyNN04AxdcOr-eJR-2v5SoL29VQBBUUQGs0MeKiE+mnZAg6dkETZlAkSKrgcgwIXmlbJlU2xi2Z4eYCG1QOHKbGGBu9eoyfA0sDYUsBCJgFwMc1QA0TQ7NyM6CPhuuR+y6jeFvDkGLF-LG7dQcajeVi6WoHg9M3QNWhPIUc+hEeSlj4aOOXHOEOhvhgyHHuwmk4MBqQ2Iau1FmDQ1twYM4HsSLBtg8CGOCcHZ9GgHg15T4NNQI12ENQ90FEN8GWoch1QFrL-UxBbD9hyPZi3Cj5iEafhm8OvsFHv7xKHe46PpPJVGRbdpxKQzktiFO7OgLussVhNbUB6IAWVJQDr26RGrXtVoY7AGLKWp77GRiYBj2rz3YB+26B35qJ12ToaBQYgA7AACFcQOIdDdS1KitG6gLynFvgCEDhBMAWBBuFAZkxgS4pzqUAGBOQCRo38DAGfWhGX0yYLD-mF8OQbqMNHytWQFo-TnaPwBOjbA8Y5uF6PQB+jB2FvA7oR2lRDwiAAAF6DB8WwDFY+wcsMksqImxnJfUfIkSBBAgwQ0G0Y6NxTjjdxM4-0YABsgU6E0sdeNrGrDGxmoz9C2O-GeOzRg7L+LIaSgbjMmQCb+CBB8A7ipAC4-TmIBhAsgTwboM6juIABZeEKAEAlgU5AAAdgAAcLx0qPCY+OImO2KJkPia2hp7Gi8mJiMKuDuJ4m1FaAQk6VGJMHRLjuAO9WKdKjts7A5kYY0nrhMcHuTzAL48ap+P8mpT5wQE-ThFPYnxT+JqU0Sf6M0AYTsJzk1qcLS6nXt+p4Hn13qgjHDAFRIU55VNNKncTFp6UzJllO3Mi8Bxo490ZkzgmOTqxh08gadNwtF9DRtEwqwOwAAxeGncWICc0ZMAAERJNF4yT2QSk9SdKiATwgGAfAEtIpYWdozbx9YzqaRNoHvj2xwU2mYzOlQszdxPM3KfpxXHVQdxFU2qbFO1muTjpxs8YGbO-HDTAJ705dXTMIBMz2ZzcN2bkDjYAArDCeWP2n3jY53k5OYNOpBVwWBNAF6bbMLmOzS5lczizDMgmIzpxvoyOdjNn14zhoF02x0aPdB0T9OKooeD1SJBcQdxRpWWDuLy0ezoZ7EizrBPiUCATsGY3MfxZb5EhigTUzuc+Pjm+TwPHY7OeqK-mJQAF0qEBZwAgX8znlPs36c3CiATO3s2AAcHOOPnULPJ2o-uddP-GEzB2H83+fwsyZCLxFg6Dyg3PQmtzMZhiw2b3N6mGjbpo856Y3DsXcL-56s5uB4ulRQLIZzyjea6MnGozQluswidEtMXxLqJpoymfpxgS9UJ59KDicUvsRDAJFy6oMZaIemxjRJ61D+NelwX5jcgVk0seQvbn6zL5xM78awsHZTLgIVAORcaXWW9KYF0iwqeuMDnsAqpsIOqdKigwu46UV-PRb8voXmL756c2xZMtmWwrlliK5ABssHRxstp7S6ObQtiXnTElw8x6ZPMyWCroViy4Bciu2XNwvpyyxKYJNWnMrul-y2+ZzANXjzp5-Y8CY0tgmHzqly6gAHVBgWQSABGD0qlQoJ9YRgxqd8u6W9LyJnK8iGTNAhsLC1pg8tcSCrWZM61r8gjuit2XfzYxtAMcCXM1EUgoAX8XqleuzH5jA17U0NZbO7GDsJ1paytbuJXXNrt13Ft0FgjezhiUuMnCCDuKHgvUZgLa8Jayu1WEzw1v40aeOuLWzrF1zcGDeHNyAGAAlwSz5bRuDXsrBl-k4dfVAHZ8AUrBICWZkyy0sgM1nFnNeujasZM+AUzgaFACNKOg4xxYz9d3P6W6rgV1s-TkZvYBkALNzcGzY5satyG-k0VHcRM6dFwApLVW8lIWCo2dLv16m5LYNOsXjTReWW8zZONK26LLJsm1VafO7WmzNN106NekvYXLb8t62+zdtuc28bINtaxteHMO2RLTticy7ffN03sLxAC4DGIUuzH2bHfCG3iboiQXSoqtN64MCkQuHKzr06swwAhNi2arEtzG-9ejux2vU8d6GuS06u8M1b9gO4iuwQhtWi7jFvaxHZzBm3y7VI7QHcQTs12DoDALy+TZQvo2S7r5+q+6bGvNWCzFd3u6VH7tJ3Zrm4T2wrZtsG3qrbd52ybeB5R2DsgExaF2a4BzXcQHx5e-ZeGOjG7zUE72ZwHwB8itAb+Nc63bDsYX3zQV+nAfYbhH2T75I2u1DbSi8J7kjdvoKmABMb3Hbf1qc13f3uH3SoOZ4+6ff6P8XNzFNw2+Lfbs73crbtpq9ha-u8V4HiDv+xDaBv43QbQdm6yHbHuYPS7vxiBN0E44f2i8ZFyy3cceOedOrLD+K-LaHOUO0Hm91+-tahiYIGHidaW8w9iv9nbjDxp45w8kfkXKLHqai7RYgciWoH-J+h4w-EcxXWIcV5Uwld4dyPdHUjmTIOaSsKOhg1qDK1Q6psY2J7dDkR1o4Bv05I00NoB3DdWOgPtA4DiG648Aew2H08NuwIjeRu8UX76j4HkYqlOVAMqceGx9qeILW4OgaAX8xuDSh3rpVQkK0EQf5ZBtSDx7KUZQfSc6dbitBg-cqSYIUaYD8LYo-YG7Ed6KjBmzNKbhMLpdKQEuzYsaNFSCiRAhJ6bRs1FbGqUjSATaEUfQatODo3u7IwtVyNi7jbtD-kyHIAA6zAIxUHZCB6oNw7p8y6DxiKWR5IBCk0Cs-8B4sPzzR7Z-JGp5wcOOx4OQL9m6FyBjnEwKOxc+LAQ9rpGHO5z1sSGPPjQxLP45UFee7OgXSFviDEFHs7Whr6zgzJs+wshXzL4VjqwdCRvIB+HT5oAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-FnoNFQb1tEOw6yuHQ4IZVrh40RaF-hM59BEgcIYsKJ1KZ5tpOqAOQIGwFGBtARtiacsaNqR9cxINsW0diPtFUixA6YukcOXJYjA5AHo1SJmOhEF5cx8UZkb6O96Uh9hTrHEoGIxTBimxTIUSGvUdL6BIAqRXvoSCdFItQWjorUV-gM5rCZhrncbq51yF4DeuNsAzqNyXHRdt8eQyJLGhW7OgjEGRNADjljohtWuZQCcaikviucbYbbaUaclSw-9XOygdhrEwyKucyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaATOknKsQEiLF6B6R2vIjiOOgpninRFItxnOLHEEh82yY3BBhOgBcs5xggPIImLaAI4aJDcVCSmPQCVDGRf4gCcBNAkQToJsExiYTxIlkSQ+cCAidiPDpziHhJEowBeLqyUSDouLciSMCvB9DwKwsLtkpPQmGiSoJIojn0OIiDC-qJCf4dKliqzEYxEYeMSxOQgmTY+DFckdiKwn8NwAyEwyvRLYmUSnJDab8VS2iil5zOUkAAAxn1Oo6UQ8AWFEjccJcWrYsIgDATx5IpWIGAAFOEiJTWgyU1cJMQYCPjJ0vkpKYcMwAFcTgYUx4CiORGk9UpsiTVl8jimhi4OKTN-BwTynVTewcU87uVIN7O46gzcUqTcmMBpQgokU0rlz0SktThEcU0QtsQilVTopNU+KQbE6iBCTgh4QQJGDk5wlM0UiQjsdDFBF8SpM-IAc1NmmtTVuEiKCCRwo7cIOCS0owCtIECRg5Br7F0ZRS0DLTVpSgs9hIg0FaDq2caV6bdPem+Sv8vQEIV50nCjAgBUIiwqikWn-S7pa0x7lgK2na9HuIvTknyMwaAMtO3AIOLZDGgp4uAwvS0qoNsh2JQRW-cEWQKclEz1u-qLIDQJSh0DTiXgFkRLFpJBAbp8M2fmCI37CD0Q74BeBz2XKE5xBMomMn9K4BvT7pjolGRqnlQSypZkYQgkl1HBBBWZpgLbkeSPL4y4Z703QWBzlFfC2IpIF4B1KH4FAnJ14-ASCKkgCDj+kIrGUP2v7RApY1A6Jg9267PdoAYxEsVnyKL4jf8QgmsdizcAWySRT4JNsb3ohIzJRBQXmNuQZQ9wk5Jsa2Wv3JkJ17Z5aMOc7IjJUCQR7syXgiO4QwAfZDo8frWIDmFBuZW-I6AvDrmBkdCX0hwnf0dkmNs5DY7KKIMYggzQExgNYGHKhlGFdCic5ObnP9Q+juRfogDjt09lxwkR7-cUuHP+5DjuWpc0sSkGp4Q8sxYwlUsky5HHB8WHI-eTyKdYRdG4G8wGr1hFFMF1RP-DeWLLCiGyLAxs4EKbIvkxEt5jc8UcYC2kpAuuiI5uZ8OfnYlX5xXP+YDXG6P8cqYAJOT3Fvnq8GsfjMNOdM1FXyLmJcy4r7Jd6miYh25U0b1menuAMFuEB0W21wUhzGgbbAhbWLBL7lvRx8qeSvL8iRTHAFCToEiyAI4Y2F-0TcL5Lw6oB+gI4skEDKI7GYgZX+PKRZhEWMieKSgr7kNJVmUgNWAgFaekDSwx44mTrYzPIuODANxOkdXkL5MGlD9yxDkzCaAHrHQygR05foHqmLC+SbYWgSuL1JeD9TRgQMtxNOWIV5iBxNsJON4odGmKKRhCqcrQSEVrBbFmCIGSEv8CWKjCOUwWN7MwXNi95rYvYe3FPkkoTgmLYxfQXrxQxUh9ioadaK7HaAgxLwsQN4vihMZvxnEowGBO3AAAZWWnBMjENwQpL0FyX7OmmXRPJukxkbhJIG9ACQYkvQERMElniXUvk9UPJLQZMS8g0ykrgJJujMTFl4dOpQ0uaX4BllQywkFMsikzLtJ4dfSQPQzrahJJwY6SbJNGVUSYl7gXhZFJUk7DHwLQi5RUoamUtHlqkt4ZTBwg9LDlZinSdvILz6TbhQwnTCQgcVlVZifywxSwt8mA1tJTkloV0pQmLK+lppf0axFkQ5KgljkzgfOKOZ6SdhBkkQEZNoWzloVJoE5cYNCFmBrBZw2yOpOsmiS8V5iuwtaIjF-LFlbKoFfuUNK6k+hKBLJTC1XDwt+WWEwlcNKJpWgUaUkDcTh3EDCtNweMUVXC1T7vsLFcq-cYXLC4XNgQ2K7JfyzLESqCVQqtBrKpgBQwP8V2YVoKsuHf8SJ1fLUURxVRENpx0o0JvLIlH-1v0M4vQRxy0Asr5I0dEibsk0lUSI2R8NxcMur7uTcZjQG8dFxthXKTul4+NVt0vgUM1w2YYNT2JeEu1HIby9YdlxkzuSnlLwjVe4BSBQJRupUctapLJ5nMI1cgCMdmqcU3QI1Uqg8kLMtJgdJAFRdpIlNDX4TpF2YompRJtizBBF8uDxS7OjW7KCQzqo5Y9yTWNEpIqa3CJePkmZqbFugDtT0sJWFrbIxahcdF0+XHAK1BgqtW4BrXIhS1Dyy9Y2uOhNTIprarKu2tzV5ShVPakmX2pXkSc8pFRPNeGpEmoAkWRi+NZHMpCAaWF8atBhJ3cmga0JVE8Tt0A0lgbRgUGvmAOqDXuTwRYajNeOqEi5AMNKGyJD+P-FASQJ4EyCTBO2XRA6l3E2jXxNaXNrMN76haqRrzUW4xhm4JIJYzA6wbiuY6p4oGqHWyIR1wy3JQeVz4CBOI0ym2BsqaUtKDYymrZYWLg4IqIIWVbjdMoPJjR+NiQQTUwo-hL03oMNaqHdFGEF5ZFg0YwtblmCWb2A1mhflQX2hdSJwTmpCPaxs2-TyORub-m2RErOaO89m11c41c2L5rcIWpCK5tEXubAtYHX7LFvYC+bw6AWkRqFK4B2BSwnEHJeFsZGPSstwGVADDWQADTvNaWyVUKoi18l2YVWjvI1pBzXyepfQtBk5oq3uLroFmnzdaugChaQcz01VTkuezNb+tg2h6MwCN4Yl7VLwpjHesup4s7iI2-lm-k61pQ-ajvQwOVoGmpax6NWy4XVuC07arN+2lrRcw7EcgDABU1IXUPpVuCzl6IVbWKr9iLBTtLm87Q9DNWXCVekVLKiFq61XQJwX2hoR9rHq1zTic2gwQttrX8bMAK2kVZi0ko7autW2+1OlFy2Qx7IP2+bcSpeGkrwVT224LvIcrTbbgdmpHcasx15a1VhobtnctuClKOO+a9YaaRcAzbKQzO8pWzsbn1yggRiP7cZE0JCqyYi2zcMS0R3WBSwdOt-DTtEDo6U0eyihhAIwGMj1YQArejvXxAn1784rZOma2lY7Icd0OzYYDDGigrDJxrQyKTsMjK6oE4gUAQsHAHiAO69zb7VAI7qqIdWAVRnihx4DByKFvZdDpVDJGQ8mKN4Y4r0Wm31z7l+7I3RdBpZBdudrOmYWqPWZtLxSNukXQ6rzji749q7KKFLvvCiBZdcgAvYe3-wvhL44oENlJTME2wAAnOIW22iUzBhKiQCgNb3SVCVUdVUI4DkCRr3uWA7YQmvNJdyII+gUIoFNRluB694lMQL81+alQ6Aq+m9Z3Jnm4C59hgaSo6MkB8zbg8+iHCStxCyp9JPGA6PoFvAL5NBfa9wEft72n6g0cgWvT0B31mCv8ggVReosChlxB1h2vHYyNN04AxdcOr-eJR-2v5SoL29VQBBUUQGs0MeKiE+mnZAg6dkETZlAkSKrgcgwIXmlbJlU2xi2Z4eYCG1QOHKbGGBu9eoyfA0sDYUsBCJgFwMc1QA0TQ7NyM6CPhuuR+y6jeFvDkGLF-LG7dQcajeVi6WoHg9M3QNWhPIUc+hEeSlj4aOOXHOEOhvhgyHHuwmk4MBqQ2Iau1FmDQ1twYM4HsSLBtg8CGOCcHZ9GgHg15T4NNQI12ENQ90FEN8GWoch1QFrL-UxBbD9hyPZi3Cj5iEafhm8OvsFHv7xKHe46PpPJVGRbdpxKQzktiFO7OgLussVhNbUB6IAWVJQDr26RGrXtVoY7AGLKWp77GRiYBj2rz3YB+26B35qJ12ToaBQYgA7AACFcQOIdDdS1KitG6gLynFvgCEDhBMAWBBuFAZkxgS4pzqUAGBOQCRo38DAGfWhGX0yYLD-mF8OQbqMNHytWQFo-TnaPwBOjbA8Y5uF6PQB+jB2FvA7oR2lRDwiAAAF6DB8WwDFY+wcsMksqImxnJfUfIkSBBAgwQ0G0Y6NxTjjdxM4-0YABsgU6E0sdeNrGrDGxmoz9C2O-GeOzRg7L+LIaSgbjMmQCb+CBB8A7ipAC4-TmIBhAsgTwboM6juIABZeEKAEAlgU5AAAdgAAcLx0qPCY+OImO2KJkPia2hp7Gi8mJiMKuDuJ4m1FaAQk6VGJMHRLjuAO9WKdKjts7A5kYY0nrhMcHuTzAL48ap+P8mpT5wQE-ThFPYnxT+JqU0Sf6M0AYTsJzk1qcLS6nXt+p4Hn13qgjHDAFRIU55VNNKncTFp6UzJllO3Mi8Bxo490ZkzgmOTqxh08gadNwtF9DRtEwqwOwAAxeGncWICc0ZMAAERJNF4yT2QSk9SdKiATwgGAfAEtIpYWdozbx9YzqaRNoHvj2xwU2mYzOlQszdxPM3KfpxXHVQdxFU2qbFO1muTjpxs8YGbO-HDTAJ705dXTMIBMz2ZzcN2bkDjYAArDCeWP2n3jY53k5OYNOpBVwWBNAF6bbMLmOzS5lczizDMgmIzpxvoyOdjNn14zhoF02x0aPdB0T9OKooeD1SJBcQdxRpWWDuLy0ezoZ7EizrBPiUCATsGY3MfxZb5EhigTUzuc+Pjm+TwPHY7OeqK-mJQAF0qEBZwAgX8znlPs36c3CiATO3s2AAcHOOPnULPJ2o-uddP-GEzB2H83+fwsyZCLxFg6Dyg3PQmtzMZhiw2b3N6mGjbpo856Y3DsXcL-56s5uB4ulRQLIZzyjea6MnGozQluswidEtMXxLqJpoymfpxgS9UJ59KDicUvsRDAJFy6oMZaIemxjRJ61D+NelwX5jcgVk0seQvbn6zL5xM78awsHZTLgIVAORcaXWW9KYF0iwqeuMDnsAqpsIOqdKigwu46UV-PRb8voXmL756c2xZMtmWwrlliK5ABssHRxstp7S6ObQtiXnTElw8x6ZPMyWCroViy4Bciu2XNwvpyyxKYJNWnMrul-y2+ZzANXjzp5-Y8CY0tgmHzqly6gAHVBgWQSABGD0qlQoJ9YRgxqd8u6W9LyJnK8iGTNAhsLC1pg8tcSCrWZM61r8gjuit2XfzYxtAMcCXM1EUgoAX8XqleuzH5jA17U0NZbO7GDsJ1paytbuJXXNrt13Ft0FgjezhiUuMnCCDuKHgvUZgLa8Jayu1WEzw1v40aeOuLWzrF1zcGDeHNyAGAAlwSz5bRuDXsrBl-k4dfVAHZ8AUrBICWZkyy0sgM1nFnNeujasZM+AUzgaFACNKOg4xxYz9d3P6W6rgV1s-TkZvYBkALNzcGzY5satyG-k0VHcRM6dFwApLVW8lIWCo2dLv16m5LYNOsXjTReWW8zZONK26LLJsm1VafO7WmzNN106NekvYXLb8t62+zdtuc28bINtaxteHMO2RLTticy7ffN03sLxAC4DGIUuzH2bHfCG3iboiQXSoqtN64MCkQuHKzr06swwAhNi2arEtzG-9ejux2vU8d6GuS06u8M1b9gO4iuwQhtWi7jFvaxHZzBm3y7VI7QHcQTs12DoDALy+TZQvo2S7r5+q+6bGvNWCzFd3u6VH7tJ3Zrm4T2wrZtsG3qrbd52ybeB5R2DsgExaF2a4BzXcQHx5e-ZeGOjG7zUE72ZwHwB8itAb+Nc63bDsYX3zQV+nAfYbhH2T75I2u1DbSi8J7kjdvoKmABMb3Hbf1qc13f3uH3SoOZ4+6ff6P8XNzFNw2+Lfbs73crbtpq9ha-u8V4HiDv+xDaBv43QbQdm6yHbHuYPS7vxiBN0E44f2i8ZFyy3cceOedOrLD+K-LaHOUO0Hm91+-tahiYIGHidaW8w9iv9nbjDxp45w8kfkXKLHqai7RYgciWoH-J+h4w-EcxXWIcV5Uwld4dyPdHUjmTIOaSsKOhg1qDK1Q6psY2J7dDkR1o4Bv05I00NoB3DdWOgPtA4DiG648Aew2H08NuwIjeRu8UX7xBa3B0DQC-mNwaUO9dKqEhWgiD-LINqQePZSjKDcTnTrcVoMH7lSTBCjTAfhbFH7A3YjvRUYM2ZpTcJhdLpSAl2bFjRoqQUSIEJPTaNmorY1SkaQCbQij6DGpwdG93ZGFquRsXcbdof8mjFUpyoBlTjw2PtTgjvU1M-EDBXCrbVnVtbkri3W+usMQzNxY6tzOWoQAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-FnoNFQb1tEOw6yuHQ4IZVrh40RaF-hM59BEgcIYsKJ1KZ5tpOqAOQIGwFGBtARtiacsaNqR9cxINsW0diPtFUixA6YukcOXJYjA5AHo1SJmOhEF5cx8UZkb6O96Uh9hTrHEoGIxTBimxTIUSGvUdL6BIAqRXvoSCdFItQWjorUV-gM5rCZhrncbq51yF4DeuNsAzqNyXHRdt8eQyJLGhW7OgjEGRNADjljohtWuZQCcaikviucbYbbaUaclSw-9XOygdhrEwyKucyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaATOknKsQEiLF6B6R2vIjiOOgpninRFItxnOLHEEh82yY3BBhOgBcs5xggPIImLaAI4aJDcVCSmPQCVDGRf4gCcBNAkQToJsExiYTxIlkSQ+cCAidiPDpziHhJEowBeLqyUSDouLciSMCvB9DwKwsLtkpPQmGiSoJIojn0OIiDC-qJCf4dKliqzEYxEYeMSxOQgmTY+DFckdiKwn8NwAyEwyvRLYmUSnJDab8VS2iil5zOUkAAAxn1Oo6UQ8AWFEjccJcWrYsIgDATx5IpWIGAAFOEiJTWgyU1cJMQYCPjJ0vkpKYcMwAFcTgYUx4CiORGk9UpsiTVl8jimhi4OKTN-BwTynVTewcU87uVIN7O46gzcUqTcmMBpQgokU0rlz0SktThEcU0QtsQilVTopNU+KQbE6iBCTgh4QQJGDk5wlM0UiQjsdDFBF8SpM-IAc1NmmtTVuEiKCCRwo7cIOCS0owCtIECRg5Br7F0ZRS0DLTVpSgs9hIg0FaDq2caV6bdPem+Sv8vQEIV50nCjAgBUIiwqikWn-S7pa0x7lgK2na9HuIvTknyMwaAMtO3AIOLZDGgp4uAwvS0qoNsh2JQRW-cEWQKclEz1u-qLIDQJSh0DTiXgFkRLFpJBAbp8M2fmCI37CD0Q74BeBz2XKE5xBMomMn9K4BvT7pjolGRqnlQSypZkYQgkl1HBBBWZpgLbkeSPL4y4Z703QWBzlFfC2IpIF4B1KH4FAnJ14-ASCKkgCDj+kIrGUP2v7RApY1A6Jg9267PdoAYxEsVnyKL4jf8QgmsdizcAWySRT4JNsb3ohIzJRBQXmNuQZQ9wk5Jsa2Wv3JkJ17Z5aMOc7IjJUCQR7syXgiO4QwAfZDo8frWIDmFBuZW-I6AvDrmBkdCX0hwnf0dkmNs5DY7KKIMYggzQExgNYGHKhlGFdCic5ObnP9Q+juRfogDjt09lxwkR7-cUuHP+5DjuWpc0sSkGp4Q8sxYwlUsky5HHB8WHI-eTyKdYRdG4G8wGr1hFFMF1RP-DeWLLCiGyLAxs4EKbIvkxEt5jc8UcYC2kpAuuiI5uZ8OfnYlX5xXP+YDXG6P8cqYAJOT3Fvnq8GsfjMNOdM1FXyLmJcy4r7Jd6miYh25U0b1menuAMFuEB0W21wUhzGgbbAhbWLBL7lvRx8qeSvL8iRTHAFCToEiyAI4Y2F-0TcL5Lw6oB+gI4skEDKI7GYgZX+PKRZhEWMieKSgr7kNJVmUgNWAgFaekDSwx44mTrYzPIuODANxOkdXkL5MGlD9yxDkzCaAHrHQygR05foHqmLC+SbYWgSuL1JeD9TRgQMtxNOWIV5iBxNsJON4odGmKKRhCqcrQSEVrBbFmCIGSEv8CWKjCOUwWN7MwXNi95rYvYe3FPkkoTgmLYxfQXrxQxUh9ioadaK7HaAgxLwsQN4vihMZvxnEowGBO3AAAZWWnBMjENwQpL0FyX7OmmXRPJukxkbhJIG9ACQYkvQERMElniXUvk9UPJLQZMS8g0ykrgJJujMTFl4dOpQ0uaX4BllQywkFMsikzLtJ4dfSQPQzrahJJwY6SbJNGVUSYl7gXhZFJUk7DHwLQi5RUoamUtHlqkt4ZTBwg9LDlZinSdvILz6TbhQwnTCQgcVlVZifywxSwt8mA1tJTkloV0pQmLK+lppf0axFkQ5KgljkzgfOKOZ6SdhBkkQEZNoWzloVJoE5cYNCFmBrBZw2yOpOsmiS8V5iuwtaIjF-LFlbKoFfuUNK6k+hKBLJTC1XDwt+WWEwlcNKJpWgUaUkDcTh3EDCtNweMUVXC1T7vsLFcq-cYXLC4XNgQ2K7JfyzLESqCVQqtBrKpgBQwP8V2YVoKsuHf8SJ1fLUURxVRENpx0o0JvLIlH-1v0M4vQRxy0Asr5I0dEibsk0lUSI2R8NxcMur7uTcZjQG8dFxthXKTul4+NVt0vgUM1w2YYNT2JeEu1HIby9YdlxkzuSnlLwjVe4BSBQJRupUctapLJ5nMI1cgCMdmqcU3QI1Uqg8kLMtJgdJAFRdpIlNDX4TpF2YompRJtizBBF8uDxS7OjW7KCQzqo5Y9yTWNEpIqa3CJePkmZqbFugDtT0sJWFrbIxahcdF0+XHAK1BgqtW4BrXIhS1Dyy9Y2uOhNTIprarKu2tzV5ShVPakmX2pXkSc8pFRPNeGpEmoAkWRi+NZHMpCAaWF8atBhJ3cmga0JVE8Tt0A0lgbRgUGvmAOqDXuTwRYajNeOqEi5AMNKGyJD+P-FASQJ4EyCTBO2XRA6l3E2jXxNaXNrMN76haqRrzUW4xhm4JIJYzA6wbiuY6p4oGqHWyIR1wy3JQeVz4CBOI0ym2BsqaUtKDYymrZYWLg4IqIIWVbjdMoPJjR+NiQQTUwo-hL03oMNaqHdFGEF5ZFg0YwtblmCWb2A1mhflQX2hdSJwTmpCPaxs2-TyORub-m2RErOaO89m11c41c2L5rcIWpCK5tEXubAtYHX7LFvYC+bw6AWkRqFK4B2BSwnEHJeFsZGPSstwGVADDWQADTvNaWyVUKoi18l2YVWjvI1pBzXyepfQtBk5oq3uLroFmnzdaugChaQcz01VTkuezNb+tg2h6MwCN4Yl7VLwpjHesup4s7iI2-lm-k61pQ-ajvQwOVoGmpax6NWy4XVuC07arN+2lrRcw7EcgDABU1IXUPpVuCzl6IVbWKr9iLBTtLm87Q9DNWXCVekVLKiFq61XQJwX2hoR9rHq1zTic2gwQttrX8bMAK2kVZi0ko7autW2+1OlFy2Qx7IP2+bcSpeGkrwVT224LvIcrTbbgdmpHcasx15a1VhobtnctuClKOO+a9YaaRcAzbKQzO8pWzsbn1yggRiP7cZE0JCqyYi2zcMS0R3WBSwdOt-DTtEDo6U0eyihhAIwGMj1YQArejvXxAn1784rZOma2lY7Icd0OzYYDDGigrDJxrQyKTsMjK6oE4gUAQsHAHiAO69zb7VAI7qqIdWAVRnihx4DByKFvZdDpVDJGQ8mKN4Y4r0Wm31z7l+7I3RdBpZBdudrOmYWqPWZtLxSNukXQ6rzji749q7KKFLvvCiBZdcgAvYe3-wvhL44oENlJTME2wAAnOIW22iUzBhKiQCgNb3SVCVUdVUI4DkCRr3uWA7YQmvNJdyII+gUIoFNRluB694lMQL81+alQ6Aq+m9Z3Jnm4C59hgaSo6MkB8zbg8+iHCStxCyp9JPGA6PoFvAL5NBfa9wEft72n6g0cgWvT0B31mCv8ggVReosChlxB1h2vHYyNN04AxdcOr-eJR-2v5SoL29VQBBUUQGs0MeKiE+mnZAg6dkETZlAkSKrgcgwIXmlbJlU2xi2Z4eYCG1QOHKbGGBu9eoyfA0sDYUsBCJgFwMc1QA0TQ7NyM6CPhuuR+y6jeFvDkGLF-LG7dQcajeVi6WoHg9M3QNWhPIUc+hEeSlj4aOOXHOEOhvhgyHHuwmk4MBqQ2Iau1FmDQ1twYM4HsSLBtg8CGOCcHZ9GgHg15T4NNQI12ENQ90FEN8GWoch1QFrL-UxBbD9hyPZi3Cj5iEafhm8OvsFHv7xKHe46PpPJVGRbdpxKQzktiFO7OgLussVhNbUB6IAWVJQDr26RGrXtVoY7AGLKWp77GRiYBj2rz3YB+26B35qJ12ToaBQYgA7AACFcQOIdDdS1KitG6gLynFvgCEDhBMAWBBuFAZkxgS4pzqUAGBOQCRo38DAGfWhGX0yYLD-mF8OQbqMNHytWQFo-TnaPwBOjbA8Y5uF6PQB+jB2FvA7oR2lRDwiAAAF6DB8WwDFY+wcsMksqImxnJfUfIkSBBAgwQ0G0Y6NxTjjdxM4-0YABsgU6E0sdeNrGrDGxmoz9C2O-GeOzRg7L+LIaSgbjMmQCb+CBB8A7ipAC4-TmIBhAsgTwboM6juIABZeEKAEAlgU5AAAdgAAcLx0qPCY+OImO2KJkPia2hp7Gi8mJiMKuDuJ4m1FaAQk6VGJMHRLjuAO9WKdKjts7A5kYY0nrhMcHuTzAL48ap+P8mpT5wQE-ThFPYnxT+JqU0Sf6M0AYTsJzk1qcLS6nXt+p4Hn13qgjHDAFRIU55VNNKncTFp6UzJllO3Mi8Bxo490ZkzgmOTqxh08gadNwtF9DRtEwqwOwAAxeGncWICc0ZMAAERJNF4yT2QSk9SdKiATwgGAfAEtIpYWdozbx9YzqaRNoHvj2xwU2mYzOlQszdxPM3KfpxXHVQdxFU2qbFO1muTjpxs8YGbO-HDTAJ705dXTMIBMz2ZzcN2bkDjYAArDCeWP2n3jY53k5OYNOpBVwWBNAF6bbMLmOzS5lczizDMgmIzpxvoyOdjNn14zhoF02x0aPdB0T9OKooeD1SJBcQdxRpWWDuLy0ezoZ7EizrBPiUCATsGY3MfxZb5EhigTUzuc+Pjm+TwPHY7OeqK-mJQAF0qEBZwAgX8znlPs36c3CiATO3s2AAcHOOPnULPJ2o-uddP-GEzB2H83+fwsyZCLxFg6Dyg3PQmtzMZhiw2b3N6mGjbpo856Y3DsXcL-56s5uB4ulRQLIZzyjea6MnGozQluswidEtMXxLqJpoymfpxgS9UJ59KDicUvsRDAJFy6oMZaIemxjRJ61D+NelwX5jcgVk0seQvbn6zL5xM78awsHZTLgIVAORcaXWW9KYF0iwqeuMDnsAqpsIOqdKigwu46UV-PRb8voXmL756c2xZMtmWwrlliK5ABssHRxstp7S6ObQtiXnTElw8x6ZPMyWCroViy4Bciu2XNwvpyyxKYJNWnMrul-y2+ZzANXjzp5-Y8CY0tgmHzqly6gAHVBgWQSABGD0qlQoJ9YRgxqd8u6W9LyJnK8iGTNAhsLC1pg8tcSCrWZM61r8gjuit2XfzYxtAMcCXM1EUgoAX8XqleuzH5jA17U0NZbO7GDsJ1paytbuJXXNrt13Ft0FgjezhiUuMnCCDuKHgvUZgLa8Jayu1WEzw1v40aeOuLWzrF1zcGDeHNyAGAAlwSz5bRuDXsrBl-k4dfVAHZ8AUrBICWZkyy0sgM1nFnNeujasZM+AUzgaFACNKOg4xxYz9d3P6W6rgV1s-TkZvYBkALNzcGzY5satyG-k0VHcRM6dFwApLVW8lIWCo2dLv16m5LYNOsXjTReWW8zZONK26LLJsm1VafO7WmzNN106NekvYXLb8t62+zdtuc28bINtaxteHMO2RLTticy7ffN03sLxAC4DGIUuzH2bHfCG3iboiQXSoqtN64MCkQuHKzr06swwAhNi2arEtzG-9ejux2vU8d6GuS06u8M1b9gO4iuwQhtWi7jFvaxHZzBm3y7VI7QHcQTs12DoDALy+TZQvo2S7r5+q+6bGvNWCzFd3u6VH7tJ3Zrm4T2wrZtsG3qrbd52ybeB5R2DsgExaF2a4BzXcQHx5e-ZeGOjG7zUE72ZwHwB8itAb+Nc63bDsYX3zQV+nAfYbhH2T75I2u1DbSi8J7kjdvoKmABMb3Hbf1qc13f3uH3SoOZ4+6ff6P8XNzFNw2+Lfbs73crbtpq9ha-u8V4HiDv+xDaBv43QbQdm6yHbHuYPS7vxiBN0E44f2i8ZFyy3cceOedOrLD+K-LaHOUO0Hm91+-tahiYIGHidaW8w9iv9nbjDxp45w8kfkXKLHqai7RYgciWoH-J+h4w-EcxXWIcV5Uwld4dyPdHUjmTIOaSsKOhg1qDK1Q6psY2J7dDkR1o4Bv05I00NoB3DdWOgPtA4DiG648Aew2H08NuwIjeRu8UX76j4HkYqlOVAMqceGx9qeILW4OgaAX8xuDSh3rpVQkK0EQf5ZBtSDx7KUZQfSc6dbitBg-cqSYIUaYD8LYo-YG7Ed6KjBmzNKbhMLpdKQEuzYsaNFSCiRAhJ6bRs1FbGqUjSATaEUfQatODo3u7IwtVyNi7jbtD-k0zQAA6zAIxUjclnnzLI4Gw6ss62B4sMeU9927BA0sljQgzqTAIDS2e3LQAKzpnTg69MZVjnxx054mlXCVH3Ao9na0NfWdmAxASN5APw6fNAA
http://source-academy.github.io/playground#chap=4&prgrm=E4VwNgpgFAJAxgewHZzCAzgS2TANAAhgCMEATATxgEog

Metalinguistic Abstraction 4.4.1

a large (even in�nite) set of assertions, namely all instantiations of the rule conclusion with

variable assignments that satisfy the rule body. When we described simple queries (patterns),

we said that an assignment to variables satis�es a pattern if the instantiated pattern is in the

data base. But the pattern needn’t be explicitly in the data base as an assertion. It can be an

implicit assertion implied by a rule. For example, the query

Ilives_near(x, list("Bitdiddle", "Ben"))

results in

lives_near(list("Reasoner", "Louis"),

list("Bitdiddle", "Ben"))

lives_near(list("Aull", "DeWitt"), list("Bitdiddle", "Ben"))

To �nd all computer programmers who live near Ben Bitdiddle, we can ask

Iand(job(x, pair("computer", something)),

lives_near(x, list("Bitdiddle", "Ben")))

As in the case of compound functions, rules can be used as parts of other rules (as we saw

with the lives_near rule above) or even be de�ned recursively. For instance, the rule

Irule(outranked_by(staff_person, boss),

or(supervisor(staff_person, boss),

and(supervisor(staff_person, middle_manager),

outranked_by(middle_manager, boss))))

says that a sta� person is outranked by a boss in the organization if the boss is the person’s

supervisor or (recursively) if the person’s supervisor is outranked by the boss.

Exercise 4.57

De�ne a rule that says that person 1 can replace person 2 if either person 1 does the same job

as person 2 or someone who does person 1’s job can also do person 2’s job, and if person 1

and person 2 are not the same person. Using your rule, give queries that �nd the following:

a. all people who can replace Cy D. Fect;

b. all people who can replace someone who is being paid more than they are, together with

the two salaries.

Exercise 4.58

De�ne a rule that says that a person is a “big shot” in a division if the person works in the

division but does not have a supervisor who works in the division.

477 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-FnoNFQb1tEOw6yuHQ4IZVrh40RaF-hM59BEgcIYsKJ1KZ5tpOqAOQIGwFGBtARtiacsaNqR9cxINsW0diPtFUixA6YukcOXJYjA5AHo1SJmOhEF5cx8UZkb6O96Uh9hTrHEoGIxTBimxTIUSGvUdL6BIAqRXvoSCdFItQWjorUV-gM5rCZhrncbq51yF4DeuNsAzqNyXHRdt8eQyJLGhW7OgjEGRNADjljohtWuZQCcaikviucbYbbaUaclSw-9XOygdhrEwyKucyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaATOknKsQEiLF6B6R2vIjiOOgpninRFItxnOLHEEh82yY3BBhOgBcs5xggPIImLaAI4aJDcVCSmPQCVDGRf4gCcBNAkQToJsExiYTxIlkSQ+cCAidiPDpziHhJEowBeLqyUSDouLciSMCvB9DwKwsLtkpPQmGiSoJIojn0OIiDC-qJCf4dKliqzEYxEYeMSxOQgmTY+DFckdiKwn8NwAyEwyvRLYmUSnJDab8VS2iil5zOUkAAAxn1Oo6UQ8AWFEjccJcWrYsIgDATx5IpWIGAAFOEiJTWgyU1cJMQYCPjJ0vkpKYcMwAFcTgYUx4CiORGk9UpsiTVl8jimhi4OKTN-BwTynVTewcU87uVIN7O46gzcUqTcmMBpQgokU0rlz0SktThEcU0QtsQilVTopNU+KQbE6iBCTgh4QQJGDk5wlM0UiQjsdDFBF8SpM-IAc1NmmtTVuEiKCCRwo7cIOCS0owCtIECRg5Br7F0ZRS0DLTVpSgs9hIg0FaDq2caV6bdPem+Sv8vQEIV50nCjAgBUIiwqikWn-S7pa0x7lgK2na9HuIvTknyMwaAMtO3AIOLZDGgp4uAwvS0qoNsh2JQRW-cEWQKclEz1u-qLIDQJSh0DTiXgFkRLFpJBAbp8M2fmCI37CD0Q74BeBz2XKE5xBMomMn9K4BvT7pjolGRqnlQSypZkYQgkl1HBBBWZpgLbkeSPL4y4Z703QWBzlFfC2IpIF4B1KH4FAnJ14-ASCKkgCDj+kIrGUP2v7RApY1A6Jg9267PdoAYxEsVnyKL4jf8QgmsdizcAWySRT4JNsb3ohIzJRBQXmNuQZQ9wk5Jsa2Wv3JkJ17Z5aMOc7IjJUCQR7syXgiO4QwAfZDo8frWIDmFBuZW-I6AvDrmBkdCX0hwnf0dkmNs5DY7KKIMYggzQExgNYGHKhlGFdCic5ObnP9Q+juRfogDjt09lxwkR7-cUuHP+5DjuWpc0sSkGp4Q8sxYwlUsky5HHB8WHI-eTyKdYRdG4G8wGr1hFFMF1RP-DeWLLCiGyLAxs4EKbIvkxEt5jc8UcYC2kpAuuiI5uZ8OfnYlX5xXP+YDXG6P8cqYAJOT3Fvnq8GsfjMNOdM1FXyLmJcy4r7Jd6miYh25U0b1menuAMFuEB0W21wUhzGgbbAhbWLBL7lvRx8qeSvL8iRTHAFCToEiyAI4Y2F-0TcL5Lw6oB+gI4skEDKI7GYgZX+PKRZhEWMieKSgr7kNJVmUgNWAgFaekDSwx44mTrYzPIuODANxOkdXkL5MGlD9yxDkzCaAHrHQygR05foHqmLC+SbYWgSuL1JeD9TRgQMtxNOWIV5iBxNsJON4odGmKKRhCqcrQSEVrBbFmCIGSEv8CWKjCOUwWN7MwXNi95rYvYe3FPkkoTgmLYxfQXrxQxUh9ioadaK7HaAgxLwsQN4vihMZvxnEowGBO3AAAZWWnBMjENwQpL0FyX7OmmXRPJukxkbhJIG9ACQYkvQERMElniXUvk9UPJLQZMS8g0ykrgJJujMTFl4dOpQ0uaX4BllQywkFMsikzLtJ4dfSQPQzrahJJwY6SbJNGVUSYl7gXhZFJUk7DHwLQi5RUoamUtHlqkt4ZTBwg9LDlZinSdvILz6TbhQwnTCQgcVlVZifywxSwt8mA1tJTkloV0pQmLK+lppf0axFkQ5KgljkzgfOKOZ6SdhBkkQEZNoWzloVJoE5cYNCFmBrBZw2yOpOsmiS8V5iuwtaIjF-LFlbKoFfuUNK6k+hKBLJTC1XDwt+WWEwlcNKJpWgUaUkDcTh3EDCtNweMUVXC1T7vsLFcq-cYXLC4XNgQ2K7JfyzLESqCVQqtBrKpgBQwP8V2YVoKsuHf8SJ1fLUURxVRENpx0o0JvLIlH-1v0M4vQRxy0Asr5I0dEibsk0lUSI2R8NxcMur7uTcZjQG8dFxthXKTul4+NVt0vgUM1w2YYNT2JeEu1HIby9YdlxkzuSnlLwjVe4BSBQJRupUctapLJ5nMI1cgCMdmqcU3QI1Uqg8kLMtJgdJAFRdpIlNDX4TpF2YompRJtizBBF8uDxS7OjW7KCQzqo5Y9yTWNEpIqa3CJePkmZqbFugDtT0sJWFrbIxahcdF0+XHAK1BgqtW4BrXIhS1Dyy9Y2uOhNTIprarKu2tzV5ShVPakmX2pXkSc8pFRPNeGpEmoAkWRi+NZHMpCAaWF8atBhJ3cmga0JVE8Tt0A0lgbRgUGvmAOqDXuTwRYajNeOqEi5AMNKGyJD+P-FASQJ4EyCTBO2XRA6l3E2jXxNaXNrMN76haqRrzUW4xhm4JIJYzA6wbiuY6p4oGqHWyIR1wy3JQeVz4CBOI0ym2BsqaUtKDYymrZYWLg4IqIIWVbjdMoPJjR+NiQQTUwo-hL03oMNaqHdFGEF5ZFg0YwtblmCWb2A1mhflQX2hdSJwTmpCPaxs2-TyORub-m2RErOaO89m11c41c2L5rcIWpCK5tEXubAtYHX7LFvYC+bw6AWkRqFK4B2BSwnEHJeFsZGPSstwGVADDWQADTvNaWyVUKoi18l2YVWjvI1pBzXyepfQtBk5oq3uLroFmnzdaugChaQcz01VTkuezNb+tg2h6MwCN4Yl7VLwpjHesup4s7iI2-lm-k61pQ-ajvQwOVoGmpax6NWy4XVuC07arN+2lrRcw7EcgDABU1IXUPpVuCzl6IVbWKr9iLBTtLm87Q9DNWXCVekVLKiFq61XQJwX2hoR9rHq1zTic2gwQttrX8bMAK2kVZi0ko7autW2+1OlFy2Qx7IP2+bcSpeGkrwVT224LvIcrTbbgdmpHcasx15a1VhobtnctuClKOO+a9YaaRcAzbKQzO8pWzsbn1yggRiP7cZE0JCqyYi2zcMS0R3WBSwdOt-DTtEDo6U0eyihhAIwGMj1YQArejvXxAn1784rZOma2lY7Icd0OzYYDDGigrDJxrQyKTsMjK6oE4gUAQsHAHiAO69zb7VAI7qqIdWAVRnihx4DByKFvZdDpVDJGQ8mKN4Y4r0Wm31z7l+7I3RdBpZBdudrOmYWqPWZtLxSNukXQ6rzji749q7KKFLvvCiBZdcgAvYe3-wvhL44oENlJTME2wAAnOIW22iUzBhKiQCgNb3SVCVUdVUI4DkCRr3uWA7YQmvNJdyII+gUIoFNRluB694lMQL81+alQ6Aq+m9Z3Jnm4C59hgaSo6MkB8zbg8+iHCStxCyp9JPGA6PoFvAL5NBfa9wEft72n6g0cgWvT0B31mCv8ggVReosChlxB1h2vHYyNN04AxdcOr-eJR-2v5SoL29VQBBUUQGs0MeKiMwEvhpQ71crAQjbE3CYsbtd6gIIJqfSBtugTwBCLDHjLSqhIaBxvtewEKQRNmUCDA2zAPIj6TUVBnXN1yP2XUbwt4CGBUTjR2M0oeWxqN5V-Wb6U5Mqm2MWzPDzAQ207IEFKJsZ0G716jJ8DSy26cGvK3BwUSQcyl2lcDOnbgzeHX2Cj39C+6ZnTrLEH60ZEEfDRxy45wh0N8MK0GPtuDCaTgwGpDYhq7UWZnDNvbfW3oX2bhAJEa7CI4e6BxpNi-wvgB4S8J0BjDva9EBocMOR6cD8UDAMkaMOlRjD9+0w8foqUkJ9J5KoyLbtITmGclMekXnMGd2bQrQWE1tQHtABGAsqSgHXt0iNWvbajV8AMWUtT32MjEwDdnlqCIM6GyD55HtWBzkPGAclbBxIquByDAheaVsiQ1JCkOltJjChiRmwZUNqH51EEUg-MY5qgBomh2bkZ0EfAcHcjXByPZMYsX8t9D4kYQy1Gg3+Hd9ZR41b4YjlvcjyUsWw5xyyDccwjlhx7m4cnCwxPD6GvNU4hcQfGOSexuY9iUOPHHgQxwM47Po0BJHDDlY1iaEd47CHuDTxr49PJN7vcMTmJ1I-2LEjpGMjxhh-Q8OOiFHrdTKpgmZNOJvHXtsQp3Z0Bd1li6jexn3QtRaPWiYD8LY7N0ZZ0d7+jei5ecwEmMWHfmonXZOhoFBiADsAAIVxA4h0N1LUqKqbqAvKcW+AIQOEEwBYEG4UBmTGBLinOpQAYE5AJGjfwMAZ9aEZfTJmRP+YXwspnJfKfIkmtoaKp+nOqfgCam2B5pzcLqegD6mDsLeB3QjtKiHhEAAAL0GD4tgGLpk4yiZJZURPTxq70yHwkCCBBghoNUxqbikhm7i4Z-UwADZApNZp02mbdOomPT2AftnKYVM8dlTB2X8WQ0lCxmZMgE38ECD4B3FSAkZ+nMQDCBZAng3QZ1HcQACy8IUAIBLApyAAA7AAA5UzpUBs5mabMdtWzPp8rVkH9NF4uzEYVcHcX7NqK0AQ50qCOYOhRncAd6886VHbZ2BzIxppPfWdOM7mZTzZn6PubzPXnzgRZ+nKeZ7MXmBz154c-qZoC1m6zW5784WmzOvbczwPPrvVBNOGAKix5zymBefN9nILN5mTHeduZF5AzwZ7UzJgrObnXTiF5A8hbhaL62zSphVgdgABi8NO4sQE5oyYAAIqOaLzjnsgU5mc6VEAnhAMA+AJaRSws40X0z7p383ua9MKnDzOFy6hxYQBcWeLm4fi-efpzRnVQdxV8++fPNyXtzSFv80CAAtoWCzjF9i5xdKjcW7iuluQONgACstZ50whYzMWWlLOZhU+hdXBYE0A2F+y5pccvaWXLOLci6Wcothm9TZlui2fQYuGhULbHRU8QdYv04qih4PVIkFxB3FGlZYO4vLT0tkXsSLO8s+JQIBOwbTdp-FlvkSGKAvzPlrM5ZamP+WDzfpg7DlbysFXSoRVnACVYEueUDL+FzcKIBM7ezYABwCM4ldau7mWzyln00BcLNqXqiuViUP1ZkyDXhrB0HlB5ZrNeXaLC1xS0tc6uAXUgQVrCxuB6ubX8rMlzcLtdKilXSLnlGK1qdDPUXjr8lxs2df-PLW8z7ZrK0XjAl6oQr6UXs09fYiGARrl1Q0y0Uwtmnhz1qH8a9Lqv2m5Aa5p081e8sKWUrTFrq0eYOxg3AQqAca40pht6Uyro1x8zGaMvYA3zYQD86VFBhdx0or+ea-jfavWX0rq1uy-TlJsQ2KbVN-U+Njgs-XzLbVvyyhYCtXXMLIV264LfBvk2oblNyALDZpuXU8LUNy84Oegtc2-rBNtKzmHlvBXQrAZks59fLMJW3rl1AAOqDAsgkACMHpVKhQT6wpBz83jb+v-WrLgN4HsDfkMHZHbmAZ267buIe2vyCOrW5uHwC5WzTaAY4NpZqIpBQAv4vVGndtP2nDbP542ype6v05Q74dxIG7ZkxR2vbsdyNLBG9nDEpcZOEEHcUPBeozA3tk69zZluMWTb+Z4C+teLsu3S7kdz26ZbkAMBDrR13G+3aNs82A76VoO+qAOz4ApWCQUSzJllr-G5rdtzcPbeujasZM+AUzgaFACNKOg5px07nd8vnXZbRN9a0vewDIBV7m4de7bZxa8N-JoqO4iZ06LgBSW5DfyQsDbu-W87M9i6zZd7uL3l7D90M8-c3ugAVz49yW0lb9sdXr7l1jC+baVtF477K96Bxvbhvb2nbA9su5uArumXEHp15B7zeRDz31rxAC4DGMeu2n-jHfWO-2boiVXSoqtdO4MCkThGpLr0mSwwErMX3pbV9ruwXeJtjn6HXqRh9DXJb4O37yUj+1ufNYIRIbgDqW4tYBugO+btlkC4JekfaA7iTD+RwdAYDY2J7LVju2I9Sty30HN12h4Y9kfMPMzW97B1A5Kt4ORHWj-2zo+ocsXg79OQCYtGctcB7buIVxwaaNPXXkb7t72ZwHwB8itAb+Ny948oez3kQqlg7ME4bihPwn5IhR90Bru8J7kdxazqmELMaOkH+dla3o-Ws5PeKpUXi2E4if6mDrnlye0A8vvaPUHaFs2w4+ychOmnLTgp7Hf7sR33bw9mO+Q+sc9PxHPpiBN0E45ZP9LdNwy3GcTPJn8HY1qG8ZeZtkPOnmj9J346hiYIlnidQu0Xh2dN3NnnnbZ2s-GuTWPU012a1U9Os1O8ziz5Z5c9pusR6bL5xmyZZjtb3rnALh+0C7uJs3rUnNmZ9Pc7u2OFnZz755I6LzV20oJT+u66b6AVP1VVdop+i7rsPoG7dgJuy3d4ppOPnwPIxdecqAZU48sL4B-C8Jt5mQ5AAHWYBGLh7IQPVBuAwsQ3QeMRSyPJAIUmh2X-gPFhleVN8v5I1PODhx2PByBfs3QuQGK4mA0PpXxYCHtdIw6KuetiQlV8aGJb5nKgGrgV6a6at8QYgVjv68QWtwdA0AuVjcGwYoPiQrQkh-lkGxkPHsNjju+g+JFuKqGD9ypJghRuFM8muj9gbsRKajEGbM0puEwul0pAS7Nixo0VIKJEBDnptGzUVsas5NIAajRmb9Am4Oje6IAzRpjMMeju+klldKBlDgbYMBBlGDKLlwZh5dRVizQZ2K19YSsuA63dxtIwEGvItv0okokmyrfUcDXRbsdj62WZ1M9uTQQ7r8ty9HdBOhnfFkZ5E47cUXu3c1xQEAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-FnoNFQb1tEOw6yuHQ4IZVrh40RaF-hM59BEgcIYsKJ1KZ5tpOqAOQIGwFGBtARtiacsaNqR9cxINsW0diPtFUixA6YukcOXJYjA5AHo1SJmOhEF5cx8UZkb6O96Uh9hTrHEoGIxTBimxTIUSGvUdL6BIAqRXvoSCdFItQWjorUV-gM5rCZhrncbq51yF4DeuNsAzqNyXHRdt8eQyJLGhW7OgjEGRNADjljohtWuZQCcaikviucbYbbaUaclSw-9XOygdhrEwyKucyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaATOknKsQEiLF6B6R2vIjiOOgpninRFItxnOLHEEh82yY3BBhOgBcs5xggPIImLaAI4aJDcVCSmPQCVDGRf4gCcBNAkQToJsExiYTxIlkSQ+cCAidiPDpziHhJEowBeLqyUSDouLciSMCvB9DwKwsLtkpPQmGiSoJIojn0OIiDC-qJCf4dKliqzEYxEYeMSxOQgmTY+DFckdiKwn8NwAyEwyvRLYmUSnJDab8VS2iil5zOUkAAAxn1Oo6UQ8AWFEjccJcWrYsIgDATx5IpWIGAAFOEiJTWgyU1cJMQYCPjJ0vkpKYcMwAFcTgYUx4CiORGk9UpsiTVl8jimhi4OKTN-BwTynVTewcU87uVIN7O46gzcUqTcmMBpQgokU0rlz0SktThEcU0QtsQilVTopNU+KQbE6iBCTgh4QQJGDk5wlM0UiQjsdDFBF8SpM-IAc1NmmtTVuEiKCCRwo7cIOCS0owCtIECRg5Br7F0ZRS0DLTVpSgs9hIg0FaDq2caV6bdPem+Sv8vQEIV50nCjAgBUIiwqikWn-S7pa0x7lgK2na9HuIvTknyMwaAMtO3AIOLZDGgp4uAwvS0qoNsh2JQRW-cEWQKclEz1u-qLIDQJSh0DTiXgFkRLFpJBAbp8M2fmCI37CD0Q74BeBz2XKE5xBMomMn9K4BvT7pjolGRqnlQSypZkYQgkl1HBBBWZpgLbkeSPL4y4Z703QWBzlFfC2IpIF4B1KH4FAnJ14-ASCKkgCDj+kIrGUP2v7RApY1A6Jg9267PdoAYxEsVnyKL4jf8QgmsdizcAWySRT4JNsb3ohIzJRBQXmNuQZQ9wk5Jsa2Wv3JkJ17Z5aMOc7IjJUCQR7syXgiO4QwAfZDo8frWIDmFBuZW-I6AvDrmBkdCX0hwnf0dkmNs5DY7KKIMYggzQExgNYGHKhlGFdCic5ObnP9Q+juRfogDjt09lxwkR7-cUuHP+5DjuWpc0sSkGp4Q8sxYwlUsky5HHB8WHI-eTyKdYRdG4G8wGr1hFFMF1RP-DeWLLCiGyLAxs4EKbIvkxEt5jc8UcYC2kpAuuiI5uZ8OfnYlX5xXP+YDXG6P8cqYAJOT3Fvnq8GsfjMNOdM1FXyLmJcy4r7Jd6miYh25U0b1menuAMFuEB0W21wUhzGgbbAhbWLBL7lvRx8qeSvL8iRTHAFCToEiyAI4Y2F-0TcL5Lw6oB+gI4skEDKI7GYgZX+PKRZhEWMieKSgr7kNJVmUgNWAgFaekDSwx44mTrYzPIuODANxOkdXkL5MGlD9yxDkzCaAHrHQygR05foHqmLC+SbYWgSuL1JeD9TRgQMtxNOWIV5iBxNsJON4odGmKKRhCqcrQSEVrBbFmCIGSEv8CWKjCOUwWN7MwXNi95rYvYe3FPkkoTgmLYxfQXrxQxUh9ioadaK7HaAgxLwsQN4vihMZvxnEowGBO3AAAZWWnBMjENwQpL0FyX7OmmXRPJukxkbhJIG9ACQYkvQERMElniXUvk9UPJLQZMS8g0ykrgJJujMTFl4dOpQ0uaX4BllQywkFMsikzLtJ4dfSQPQzrahJJwY6SbJNGVUSYl7gXhZFJUk7DHwLQi5RUoamUtHlqkt4ZTBwg9LDlZinSdvILz6TbhQwnTCQgcVlVZifywxSwt8mA1tJTkloV0pQmLK+lppf0axFkQ5KgljkzgfOKOZ6SdhBkkQEZNoWzloVJoE5cYNCFmBrBZw2yOpOsmiS8V5iuwtaIjF-LFlbKoFfuUNK6k+hKBLJTC1XDwt+WWEwlcNKJpWgUaUkDcTh3EDCtNweMUVXC1T7vsLFcq-cYXLC4XNgQ2K7JfyzLESqCVQqtBrKpgBQwP8V2YVoKsuHf8SJ1fLUURxVRENpx0o0JvLIlH-1v0M4vQRxy0Asr5I0dEibsk0lUSI2R8NxcMur7uTcZjQG8dFxthXKTul4+NVt0vgUM1w2YYNT2JeEu1HIby9YdlxkzuSnlLwjVe4BSBQJRupUctapLJ5nMI1cgCMdmqcU3QI1Uqg8kLMtJgdJAFRdpIlNDX4TpF2YompRJtizBBF8uDxS7OjW7KCQzqo5Y9yTWNEpIqa3CJePkmZqbFugDtT0sJWFrbIxahcdF0+XHAK1BgqtW4BrXIhS1Dyy9Y2uOhNTIprarKu2tzV5ShVPakmX2pXkSc8pFRPNeGpEmoAkWRi+NZHMpCAaWF8atBhJ3cmga0JVE8Tt0A0lgbRgUGvmAOqDXuTwRYajNeOqEi5AMNKGyJD+P-FASQJ4EyCTBO2XRA6l3E2jXxNaXNrMN76haqRrzUW4xhm4JIJYzA6wbiuY6p4oGqHWyIR1wy3JQeVz4CBOI0ym2BsqaUtKDYymrZYWLg4IqIIWVbjdMoPJjR+NiQQTUwo-hL03oMNaqHdFGEF5ZFg0YwtblmCWb2A1mhflQX2hdSJwTmpCPaxs2-TyORub-m2RErOaO89m11c41c2L5rcIWpCK5tEXubAtYHX7LFvYC+bw6AWkRqFK4B2BSwnEHJeFsZGPSstwGVADDWQADTvNaWyVUKoi18l2YVWjvI1pBzXyepfQtBk5oq3uLroFmnzdaugChaQcz01VTkuezNb+tg2h6MwCN4Yl7VLwpjHesup4s7iI2-lm-k61pQ-ajvQwOVoGmpax6NWy4XVuC07arN+2lrRcw7EcgDABU1IXUPpVuCzl6IVbWKr9iLBTtLm87Q9DNWXCVekVLKiFq61XQJwX2hoR9rHq1zTic2gwQttrX8bMAK2kVZi0ko7autW2+1OlFy2Qx7IP2+bcSpeGkrwVT224LvIcrTbbgdmpHcasx15a1VhobtnctuClKOO+a9YaaRcAzbKQzO8pWzsbn1yggRiP7cZE0JCqyYi2zcMS0R3WBSwdOt-DTtEDo6U0eyihhAIwGMj1YQArejvXxAn1784rZOma2lY7Icd0OzYYDDGigrDJxrQyKTsMjK6oE4gUAQsHAHiAO69zb7VAI7qqIdWAVRnihx4DByKFvZdDpVDJGQ8mKN4Y4r0Wm31z7l+7I3RdBpZBdudrOmYWqPWZtLxSNukXQ6rzji749q7KKFLvvCiBZdcgAvYe3-wvhL44oENlJTME2wAAnOIW22iUzBhKiQCgNb3SVCVUdVUI4DkCRr3uWA7YQmvNJdyII+gUIoFNRluB694lMQL81+alQ6Aq+m9Z3Jnm4C59hgaSo6MkB8zbg8+iHCStxCyp9JPGA6PoFvAL5NBfa9wEft72n6g0cgWvT0B31mCv8ggVReosChlxB1h2vHYyNN04AxdcOr-eJR-2v5SoL29VQBBUUQGs0MeKiMwEvhpQ71crAQjbE3CYsbtd6gIIJqfSBtugTwBCLDHjLSqhIaBxvtewEKQRNmUCDA2zAPIj6TUVBnXN1yP2XUbwt4CGBUTjR2M0oeWxqN5V-Wb6U5Mqm2MWzPDzAQ207IEFKJsZ0G716jJ8DSy26cGvK3BwUSQcyl2lcDOnbgzeHX2Cj39C+6ZnTrLEH60ZEEfDRxy45wh0N8MK0GPtuDCaTgwGpDYhq7UWZnDNvbfW3oX2bhAJEa7CI4e6BxpNi-wvgB4S8J0BjDva9EBocMOR6cD8UDAMkaMOlRjD9+0w8foqUkJ9J5KoyLbtITmGclMekXnMGd2bQrQWE1tQHtABGAsqSgHXt0iNWvbajV8AMWUtT32MjEwDdnlqCIM6GyD55HtWBzkPGAclbBxIquByDAheaVsiQ1JCkOltJjChiRmwZUNqH51EEUg-MY5qgBomh2bkZ0EfAcHcjXByPZMYsX8t9D4kYQy1Gg3+Hd9ZR41b4YjlvcjyUsWw5xyyDccwjlhx7m4cnCwxPD6GvNU4hcQfGOSexuY9iUOPHHgQxwM47Po0BJHDDlY1iaEd47CHuDTxr49PJN7vcMTmJ1I-2LEjpGMjxhh-Q8OOiFHrdTKpgmZNOJvHXtsQp3Z0Bd1li6jexn3QtRaPWiYD8LY7N0ZZ0d7+jei5ecwEmMWHfmonXZOhoFBiADsAAIVxA4h0N1LUqKqbqAvKcW+AIQOEEwBYEG4UBmTGBLinOpQAYE5AJGjfwMAZ9aEZfTJmRP+YXwspnJfKfIkmtoaKp+nOqfgCam2B5pzcLqegD6mDsLeB3QjtKiHhEAAAL0GD4tgGLpk4yiZJZURPTxq70yHwkCCBBghoNUxqbikhm7i4Z-UwADZApNZp02mbdOomPT2AftnKYVM8dlTB2X8WQ0lCxmZMgE38ECD4B3FSAkZ+nMQDCBZAng3QZ1HcQACy8IUAIBLApyAAA7AAA5UzpUBs5mabMdtWzPp8rVkH9NF4uzEYVcHcX7NqK0AQ50qCOYOhRncAd6886VHbZ2BzIxppPfWdOM7mZTzZn6PubzPXnzgRZ+nKeZ7MXmBz154c-qZoC1m6zW5784WmzOvbczwPPrvVBNOGAKix5zymBefN9nILN5mTHeduZF5AzwZ7UzJgrObnXTiF5A8hbhaL62zSphVgdgABi8NO4sQE5oyYAAIqOaLzjnsgU5mc6VEAnhAMA+AJaRSws40X0z7p383ua9MKnDzOFy6hxYQBcWeLm4fi-efpzRnVQdxV8++fPNyXtzSFv80CAAtoWCzjF9i5xdKjcW7iuluQONgACstZ50whYzMWWlLOZhU+hdXBYE0A2F+y5pccvaWXLOLci6Wcothm9TZlui2fQYuGhULbHRU8QdYv04qih4PVIkFxB3FGlZYO4vLT0tkXsSLO8s+JQIBOwbTdp-FlvkSGKAvzPlrM5ZamP+WDzfpg7DlbysFXSoRVnACVYEueUDL+FzcKIBM7ezYABwCM4ldau7mWzyln00BcLNqXqiuViUP1ZkyDXhrB0HlB5ZrNeXaLC1xS0tc6uAXUgQVrCxuB6ubX8rMlzcLtdKilXSLnlGK1qdDPUXjr8lxs2df-PLW8z7ZrK0XjAl6oQr6UXs09fYiGARrl1Q0y0Uwtmnhz1qH8a9Lqv2m5Aa5p081e8sKWUrTFrq0eYOxg3AQqAca40pht6Uyro1x8zGaMvYA3zYQD86VFBhdx0or+ea-jfavWX0rq1uy-TlJsQ2KbVN-U+Njgs-XzLbVvyyhYCtXXMLIV264LfBvk2oblNyALDZpuXU8LUNy84Oegtc2-rBNtKzmHlvBXQrAZks59fLMJW3rl1AAOqDAsgkACMHpVKhQT6wpBz83jb+v-WrLgN4HsDfkMHZHbmAZ267buIe2vyCOrW5uHwC5WzTaAY4NpZqIpBQAv4vVGndtP2nDbP542ype6v05Q74dxIG7ZkxR2vbsdyNLBG9nDEpcZOEEHcUPBeozA3tk69zZluMWTb+Z4C+teLsu3S7kdz26ZbkAMBDrR13G+3aNs82A76VoO+qAOz4ApWCQUSzJllr-G5rdtzcPbeujasZM+AUzgaFACNKOg5px07nd8vnXZbRN9a0vewDIBV7m4de7bZxa8N-JoqO4iZ06LgBSW5DfyQsDbu-W87M9i6zZd7uL3l7D90M8-c3ugAVz49yW0lb9sdXr7l1jC+baVtF477K96Bxvbhvb2nbA9su5uArumXEHp15B7zeRDz31rxAC4DGMeu2n-jHfWO-2boiVXSoqtdO4MCkThGpLr0mSwwErMX3pbV9ruwXeJtjn6HXqRh9DXJb4O37yUj+1ufNYIRIbgDqW4tYBugO+btlkC4JekfaA7iTD+RwdAYDY2J7LVju2I9Sty30HN12h4Y9kfMPMzW97B1A5Kt4ORHWj-2zo+ocsXg79OQCYtGctcB7buIVxwaaNPXXkb7t72ZwHwB8itAb+Ny948oez3kQqlg7ME4bihPwn5IhR90Bru8J7kdxazqmELMaOkH+dla3o-Ws5PeKpUXi2E4if6mDrnlye0A8vvaPUHaFs2w4+ychOmnLTgp7Hf7sR33bw9mO+Q+sc9PxHPpiBN0E45ZP9LdNwy3GcTPJn8HY1qG8ZeZtkPOnmj9J346hiYIlnidQu0Xh2dN3NnnnbZ2s-GuTWPU012a1U9Os1O8ziz5Z5c9pusR6bL5xmyZZjtb3rnALh+0C7uJs3rUnNmZ9Pc7u2OFnZz755I6LzV20oJT+u66b6AVP1VVdop+i7rsPoG7dgJuy3d4ppOPnwPIxdecqAZU48sL4B-C8Jt5mQ5AAHWYBGLh7IQPVBuAwsQ3QeMRSyPJAIUmh2X-gPFhleVN8v5I1PODhx2PByBfs3QuQGK4mA0PpXxYCHtdIw6KuetiQlV8aGJb5nKgGrgV6a6at8QYgVjv68QWtwdA0AuVjcGwYoPiQrQkh-lkGxkPHsNjju+g+JFuKqGD9ypJghRuFM8muj9gbsRKajEGbM0puEwul0pAS7Nixo0VIKJEBDnptGzUVsas5NIAajRmb9Am4Oje6IAzRpjMMeju+klldKBlDgbYMBBlGDKCV6pYyocFi8T53syFZVAep9+elhCNy8lEZVizQZ2K19YSvLE63dxtIwEGvItufnl1IW6rcKui3Y7oLmTHs5wA12SXrNoYNC5paagGU8lL8oO8weeUl36jga6u63sfWyzOpid4oCAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-FnoNFQb1tEOw6yuHQ4IZVrh40RaF-hM59BEgcIYsKJ1KZ5tpOqAOQIGwFGBtARtiacsaNqR9cxINsW0diPtFUixA6YukcOXJYjA5AHo1SJmOhEF5cx8UZkb6O96Uh9hTrHEoGIxTBimxTIUSGvUdL6BIAqRXvoSCdFItQWjorUV-gM5rCZhrncbq51yF4DeuNsAzqNyXHRdt8eQyJLGhW7OgjEGRNADjljohtWuZQCcaikviucbYbbaUaclSw-9XOygdhrEwyKucyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaATOknKsQEiLF6B6R2vIjiOOgpninRFItxnOLHEEh82yY3BBhOgBcs5xggPIImLaAI4aJDcVCSmPQCVDGRf4gCcBNAkQToJsExiYTxIlkSQ+cCAidiPDpziHhJEowBeLqyUSDouLciSMCvB9DwKwsLtkpPQmGiSoJIojn0OIiDC-qJCf4dKliqzEYxEYeMSxOQgmTY+DFckdiKwn8NwAyEwyvRLYmUSnJDab8VS2iil5zOUkAAAxn1Oo6UQ8AWFEjccJcWrYsIgDATx5IpWIGAAFOEiJTWgyU1cJMQYCPjJ0vkpKYcMwAFcTgYUx4CiORGk9UpsiTVl8jimhi4OKTN-BwTynVTewcU87uVIN7O46gzcUqTcmMBpQgokU0rlz0SktThEcU0QtsQilVTopNU+KQbE6iBCTgh4QQJGDk5wlM0UiQjsdDFBF8SpM-IAc1NmmtTVuEiKCCRwo7cIOCS0owCtIECRg5Br7F0ZRS0DLTVpSgs9hIg0FaDq2caV6bdPem+Sv8vQEIV50nCjAgBUIiwqikWn-S7pa0x7lgK2na9HuIvTknyMwaAMtO3AIOLZDGgp4uAwvS0qoNsh2JQRW-cEWQKclEz1u-qLIDQJSh0DTiXgFkRLFpJBAbp8M2fmCI37CD0Q74BeBz2XKE5xBMomMn9K4BvT7pjolGRqnlQSypZkYQgkl1HBBBWZpgLbkeSPL4y4Z703QWBzlFfC2IpIF4B1KH4FAnJ14-ASCKkgCDj+kIrGUP2v7RApY1A6Jg9267PdoAYxEsVnyKL4jf8QgmsdizcAWySRT4JNsb3ohIzJRBQXmNuQZQ9wk5Jsa2Wv3JkJ17Z5aMOc7IjJUCQR7syXgiO4QwAfZDo8frWIDmFBuZW-I6AvDrmBkdCX0hwnf0dkmNs5DY7KKIMYggzQExgNYGHKhlGFdCic5ObnP9Q+juRfogDjt09lxwkR7-cUuHP+5DjuWpc0sSkGp4Q8sxYwlUsky5HHB8WHI-eTyKdYRdG4G8wGr1hFFMF1RP-DeWLLCiGyLAxs4EKbIvkxEt5jc8UcYC2kpAuuiI5uZ8OfnYlX5xXP+YDXG6P8cqYAJOT3Fvnq8GsfjMNOdM1FXyLmJcy4r7Jd6miYh25U0b1menuAMFuEB0W21wUhzGgbbAhbWLBL7lvRx8qeSvL8iRTHAFCToEiyAI4Y2F-0TcL5Lw6oB+gI4skEDKI7GYgZX+PKRZhEWMieKSgr7kNJVmUgNWAgFaekDSwx44mTrYzPIuODANxOkdXkL5MGlD9yxDkzCaAHrHQygR05foHqmLC+SbYWgSuL1JeD9TRgQMtxNOWIV5iBxNsJON4odGmKKRhCqcrQSEVrBbFmCIGSEv8CWKjCOUwWN7MwXNi95rYvYe3FPkkoTgmLYxfQXrxQxUh9ioadaK7HaAgxLwsQN4vihMZvxnEowGBO3AAAZWWnBMjENwQpL0FyX7OmmXRPJukxkbhJIG9ACQYkvQERMElniXUvk9UPJLQZMS8g0ykrgJJujMTFl4dOpQ0uaX4BllQywkFMsikzLtJ4dfSQPQzrahJJwY6SbJNGVUSYl7gXhZFJUk7DHwLQi5RUoamUtHlqkt4ZTBwg9LDlZinSdvILz6TbhQwnTCQgcVlVZifywxSwt8mA1tJTkloV0pQmLK+lppf0axFkQ5KgljkzgfOKOZ6SdhBkkQEZNoWzloVJoE5cYNCFmBrBZw2yOpOsmiS8V5iuwtaIjF-LFlbKoFfuUNK6k+hKBLJTC1XDwt+WWEwlcNKJpWgUaUkDcTh3EDCtNweMUVXC1T7vsLFcq-cYXLC4XNgQ2K7JfyzLESqCVQqtBrKpgBQwP8V2YVoKsuHf8SJ1fLUURxVRENpx0o0JvLIlH-1v0M4vQRxy0Asr5I0dEibsk0lUSI2R8NxcMur7uTcZjQG8dFxthXKTul4+NVt0vgUM1w2YYNT2JeEu1HIby9YdlxkzuSnlLwjVe4BSBQJRupUctapLJ5nMI1cgCMdmqcU3QI1Uqg8kLMtJgdJAFRdpIlNDX4TpF2YompRJtizBBF8uDxS7OjW7KCQzqo5Y9yTWNEpIqa3CJePkmZqbFugDtT0sJWFrbIxahcdF0+XHAK1BgqtW4BrXIhS1Dyy9Y2uOhNTIprarKu2tzV5ShVPakmX2pXkSc8pFRPNeGpEmoAkWRi+NZHMpCAaWF8atBhJ3cmga0JVE8Tt0A0lgbRgUGvmAOqDXuTwRYajNeOqEi5AMNKGyJD+P-FASQJ4EyCTBO2XRA6l3E2jXxNaXNrMN76haqRrzUW4xhm4JIJYzA6wbiuY6p4oGqHWyIR1wy3JQeVz4CBOI0ym2BsqaUtKDYymrZYWLg4IqIIWVbjdMoPJjR+NiQQTUwo-hL03oMNaqHdFGEF5ZFg0YwtblmCWb2A1mhflQX2hdSJwTmpCPaxs2-TyORub-m2RErOaO89m11c41c2L5rcIWpCK5tEXubAtYHX7LFvYC+bw6AWkRqFK4B2BSwnEHJeFsZGPSstwGVADDWQADTvNaWyVUKoi18l2YVWjvI1pBzXyepfQtBk5oq3uLroFmnzdaugChaQcz01VTkuezNb+tg2h6MwCN4Yl7VLwpjHesup4s7iI2-lm-k61pQ-ajvQwOVoGmpax6NWy4XVuC07arN+2lrRcw7EcgDABU1IXUPpVuCzl6IVbWKr9iLBTtLm87Q9DNWXCVekVLKiFq61XQJwX2hoR9rHq1zTic2gwQttrX8bMAK2kVZi0ko7autW2+1OlFy2Qx7IP2+bcSpeGkrwVT224LvIcrTbbgdmpHcasx15a1VhobtnctuClKOO+a9YaaRcAzbKQzO8pWzsbn1yggRiP7cZE0JCqyYi2zcMS0R3WBSwdOt-DTtEDo6U0eyihhAIwGMj1YQArejvXxAn1784rZOma2lY7Icd0OzYYDDGigrDJxrQyKTsMjK6oE4gUAQsHAHiAO69zb7VAI7qqIdWAVRnihx4DByKFvZdDpVDJGQ8mKN4Y4r0Wm31z7l+7I3RdBpZBdudrOmYWqPWZtLxSNukXQ6rzji749q7KKFLvvCiBZdcgAvYe3-wvhL44oENlJTME2wAAnOIW22iUzBhKiQCgNb3SVCVUdVUI4DkCRr3uWA7YQmvNJdyII+gUIoFNRluB694lMQL81+alQ6Aq+m9Z3Jnm4C59hgaSo6MkB8zbg8+iHCStxCyp9JPGA6PoFvAL5NBfa9wEft72n6g0cgWvT0B31mCv8ggVReosChlxB1h2vHYyNN04AxdcOr-eJR-2v5SoL29VQBBUUQGs0MeKiMwEvhpQ71crAQjbE3CYsbtd6gIIJqfSBtugTwBCLDHjLSqhIaBxvtewEKQRNmUCDA2zAPIj6TUVBnXN1yP2XUbwt4CGBUTjR2M0oeWxqN5V-Wb6U5Mqm2MWzPDzAQ207IEFKJsZ0G716jJ8DSy26cGvK3BwUSQcyl2lcDOnbgzeHX2Cj39C+6ZnTrLEH60ZEEfDRxy45wh0N8MK0GPtuDCaTgwGpDYhq7UWZnDNvbfW3oX2bhAJEa7CI4e6BxpNi-wvgB4S8J0BjDva9EBocMOR6cD8UDAMkaMOlRjD9+0w8foqUkJ9J5KoyLbtITmGclMekXnMGd2bQrQWE1tQHtABGAsqSgHXt0iNWvbajV8AMWUtT32MjEwDdnlqCIM6GyD55HtWBzkPGAclbBxIquByDAheaVsiQ1JCkOltJjChiRmwZUNqH51EEUg-MY5qgBomh2bkZ0EfAcHcjXByPZMYsX8t9D4kYQy1Gg3+Hd9ZR41b4YjlvcjyUsWw5xyyDccwjlhx7m4cnCwxPD6GvNU4hcQfGOSexuY9iUOPHHgQxwM47Po0BJHDDlY1iaEd47CHuDTxr49PJN7vcMTmJ1I-2LEjpGMjxhh-Q8OOiFHrdTKpgmZNOJvHXtsQp3Z0Bd1li6jexn3QtRaPWiYD8LY7N0ZZ0d7+jei5ecwEmMWHfmonXZOhoFBiADsAAIVxA4h0N1LUqKqbqAvKcW+AIQOEEwBYEG4UBmTGBLinOpQAYE5AJGjfwMAZ9aEZfTJmRP+YXwspnJfKfIkmtoaKp+nOqfgCam2B5pzcLqegD6mDsLeB3QjtKiHhEAAAL0GD4tgGLpk4yiZJZURPTxq70yHwkCCBBghoNUxqbikhm7i4Z-UwADZApNZp02mbdOomPT2AftnKYVM8dlTB2X8WQ0lCxmZMgE38ECD4B3FSAkZ+nMQDCBZAng3QZ1HcQACy8IUAIBLApyAAA7AAA5UzpUBs5mabMdtWzPp8rVkH9NF4uzEYVcHcX7NqK0AQ50qCOYOhRncAd6886VHbZ2BzIxppPfWdOM7mZTzZn6PubzPXnzgRZ+nKeZ7MXmBz154c-qZoC1m6zW5784WmzOvbczwPPrvVBNOGAKix5zymBefN9nILN5mTHeduZF5AzwZ7UzJgrObnXTiF5A8hbhaL62zSphVgdgABi8NO4sQE5oyYAAIqOaLzjnsgU5mc6VEAnhAMA+AJaRSws40X0z7p383ua9MKnDzOFy6hxYQBcWeLm4fi-efpzRnVQdxV8++fPNyXtzSFv80CAAtoWCzjF9i5xdKjcW7iuluQONgACstZ50whYzMWWlLOZhU+hdXBYE0A2F+y5pccvaWXLOLci6Wcothm9TZlui2fQYuGhULbHRU8QdYv04qih4PVIkFxB3FGlZYO4vLT0tkXsSLO8s+JQIBOwbTdp-FlvkSGKAvzPlrM5ZamP+WDzfpg7DlbysFXSoRVnACVYEueUDL+FzcKIBM7ezYABwCM4ldau7mWzyln00BcLNqXqiuViUP1ZkyDXhrB0HlB5ZrNeXaLC1xS0tc6uAXUgQVrCxuB6ubX8rMlzcLtdKilXSLnlGK1qdDPUXjr8lxs2df-PLW8z7ZrK0XjAl6oQr6UXs09fYiGARrl1Q0y0Uwtmnhz1qH8a9Lqv2m5Aa5p081e8sKWUrTFrq0eYOxg3AQqAca40pht6Uyro1x8zGaMvYA3zYQD86VFBhdx0or+ea-jfavWX0rq1uy-TlJsQ2KbVN-U+Njgs-XzLbVvyyhYCtXXMLIV264LfBvk2oblNyALDZpuXU8LUNy84Oegtc2-rBNtKzmHlvBXQrAZks59fLMJW3rl1AAOqDAsgkACMHpVKhQT6wpBz83jb+v-WrLgN4HsDfkMHZHbmAZ267buIe2vyCOrW5uHwC5WzTaAY4NpZqIpBQAv4vVGndtP2nDbP542ype6v05Q74dxIG7ZkxR2vbsdyNLBG9nDEpcZOEEHcUPBeozA3tk69zZluMWTb+Z4C+teLsu3S7kdz26ZbkAMBDrR13G+3aNs82A76VoO+qAOz4ApWCQUSzJllr-G5rdtzcPbeujasZM+AUzgaFACNKOg5px07nd8vnXZbRN9a0vewDIBV7m4de7bZxa8N-JoqO4iZ06LgBSW5DfyQsDbu-W87M9i6zZd7uL3l7D90M8-c3ugAVz49yW0lb9sdXr7l1jC+baVtF477K96Bxvbhvb2nbA9su5uArumXEHp15B7zeRDz31rxAC4DGMeu2n-jHfWO-2boiVXSoqtdO4MCkThGpLr0mSwwErMX3pbV9ruwXeJtjn6HXqRh9DXJb4O37yUj+1ufNYIRIbgDqW4tYBugO+btlkC4JekfaA7iTD+RwdAYDY2J7LVju2I9Sty30HN12h4Y9kfMPMzW97B1A5Kt4ORHWj-2zo+ocsXg79OQCYtGctcB7buIVxwaaNPXXkb7t72ZwHwB8itAb+Ny948oez3kQqlg7ME4bihPwn5IhR90Bru8J7kdxazqmELMaOkH+dla3o-Ws5PeKpUXi2E4if6mDrnlye0A8vvaPUHaFs2w4+ychOmnLTgp7Hf7sR33bw9mO+Q+sc9PxHPpiBN0E45ZP9LdNwy3GcTPJn8HY1qG8ZeZtkPOnmj9J346hiYIlnidQu0Xh2dN3NnnnbZ2s-GuTWPU012a1U9Os1O8ziz5Z5c9pusR6bL5xmyZZjtb3rnALh+0C7uJs3rUnNmZ9Pc7u2OFnZz755I6LzV20oJT+u66b6AVP1VVdop+i7rsPoG7dgJuy3d4ppPiC1uDoGgFysbg2DFB8SFaEkP8sg2Mh49hscd30HxItxVQwfuVJMEKNwpnk10fsDdiJTUYgzZmlNwmF0ulICXZsWNGipBRIgIc9No2aitjVnJpADUaMzfoZXB0b3RAGaMLaQHvT9K0HvcAAAdZgEYs3hDA9wLqBgqwvADPzLIqYjwiAoOhGRrX-gbC4FYVt+v5gLrxUG650nzHvtqkH1-3Sbr+uMHzr112qHdewRPrJY0IM6mQFyAo36IO1x0ElCcQnXybkM6m8TSrg68QIAY8oDcBWPfbwx6O76SWV0oGUOBtgwEGUaqcoE9rvNwpH0fIhm7yAHUy-b4LhuXATbu42kYCDXkfcQAA

Metalinguistic Abstraction 4.4.1

Exercise 4.59

Ben Bitdiddle has missed one meeting too many. Fearing that his habit of forgetting meetings

could cost him his job, Ben decides to do something about it. He adds all the weekly meetings

of the �rm to the Microshaft data base by asserting the following:

meeting("accounting", list("Monday", "9am"))

meeting("administration", list("Monday", "10am"))

meeting("computer", list("Wednesday", "3pm"))

meeting("administration", list("Friday", "1pm"))

Each of the above assertions is for a meeting of an entire division. Ben also adds an entry for

the company-wide meeting that spans all the divisions. All of the company’s employees attend

this meeting.

meeting("whole-company", list("Wednesday", "4pm"))

a. On Friday morning, Ben wants to query the data base for all the meetings that occur

that day. What query should he use?

b. Alyssa P. Hacker is unimpressed. She thinks it would be much more useful to be able

to ask for her meetings by specifying her name. So she designs a rule that says that

a person’s meetings include all "whole-company" meetings plus all meetings of that

person’s division. Fill in the body of Alyssa’s rule.

rule(meeting_time(person, day_and_time),

rule-body)

c. Alyssa arrives at work on Wednesday morning and wonders what meetings she has to

attend that day. Having de�ned the above rule, what query should she make to �nd this

out?

Exercise 4.60

By giving the query

lives_near(person, list("Hacker", "Alyssa", "P"))

Alyssa P. Hacker is able to �nd people who live near her, with whom she can ride to work. On

the other hand, when she tries to �nd all pairs of people who live near each other by querying

lives_near(person_1, person_2)

she notices that each pair of people who live near each other is listed twice; for example,

lives_near(list("Hacker", "Alyssa", "P"),

list("Fect", "Cy", "D"))

lives_near(list("Fect", "Cy", "D"),

list("Hacker", "Alyssa", "P"))

478 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.4.1

Why does this happen? Is there a way to �nd a list of people who live near each other, in which

each pair appears only once? Explain.

Logic as programs

We can regard a rule as a kind of logical implication: If an assignment of values to pattern

variables satis�es the body, then it satis�es the conclusion. Consequently, we can regard the

query language as having the ability to perform logical deductions based upon the rules. As an

example, consider the append operation described at the beginning of section 4.4. As we said,

append can be characterized by the following two rules:

– For any list y, the empty list and y append to form y.

– For any u, v, y, and z, pair(u, v) and y append to form pair(u, z) if v and y append to

form z.

To express this in our query language, we de�ne two rules for a relation

append_to_form(x, y, z)

which we can interpret to mean “x and y append to form z”:

Irule(append_to_form(null, y, y))

rule(append_to_form(pair(u, v), y, pair(u, z)),

append_to_form(v, y, z))

The �rst rule has no body, which means that the conclusion holds for any value of y. Note

how the second rule makes use of pair, head and tail of a list.

Given these two rules, we can formulate queries that compute the append of two lists:

Query input :

Iappend_to_form(list("a", "b"), list("c", "d"), z)

Query r e s u l t s :
append_to_form (l i s t (" a " , " b ") , l i s t (" c " , " d ") , l i s t (" a " , " b " , " c " , " d "))

What is more striking, we can use the same rules to ask the question “Which list, when

appended to list("a", "b"), yields list("a", "b", "c", "d")? ” This is done as follows:

Query input :

Iappend_to_form(list("a", "b"), y, list("a", "b", "c", "d"))

Query r e s u l t s :
append_to_form (l i s t (" a " , " b ") , l i s t (" c " , " d ") , l i s t (" a " , " b " , " c " , " d "))

We can also ask for all pairs of lists that append to form list("a", "b", "c", "d"):

479 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-FnoNFQb1tEOw6yuHQ4IZVrh40RaF-hM59BEgcIYsKJ1KZ5tpOqAOQIGwFGBtARtiacsaNqR9cxINsW0diPtFUixA6YukcOXJYjA5AHo1SJmOhEF5cx8UZkb6O96Uh9hTrHEoGIxTBimxTIUSGvUdL6BIAqRXvoSCdFItQWjorUV-gM5rCZhrncbq51yF4DeuNsAzqNyXHRdt8eQyJLGhW7OgjEGRNADjljohtWuZQCcaikviucbYbbaUaclSw-9XOygdhrEwyKucyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaATOknKsQEiLF6B6R2vIjiOOgpninRFItxnOLHEEh82yY3BBhOgBcs5xggPIImLaAI4aJDcVCSmPQCVDGRf4gCcBNAkQToJsExiYTxIlkSQ+cCAidiPDpziHhJEowBeLqyUSDouLciSMCvB9DwKwsLtkpPQmGiSoJIojn0OIiDC-qJCf4dKliqzEYxEYeMSxOQgmTY+DFckdiKwn8NwAyEwyvRLYmUSnJDab8VS2iil5zOUkAAAxn1Oo6UQ8AWFEjccJcWrYsIgDATx5IpWIGAAFOEiJTWgyU1cJMQYCPjJ0vkpKYcMwAFcTgYUx4CiORGk9UpsiTVl8jimhi4OKTN-BwTynVTewcU87uVIN7O46gzcUqTcmMBpQgokU0rlz0SktThEcU0QtsQilVTopNU+KQbE6iBCTgh4QQJGDk5wlM0UiQjsdDFBF8SpM-IAc1NmmtTVuEiKCCRwo7cIOCS0owCtIECRg5Br7F0ZRS0DLTVpSgs9hIg0FaDq2caV6bdPem+Sv8vQEIV50nCjAgBUIiwqikWn-S7pa0x7lgK2na9HuIvTknyMwaAMtO3AIOLZDGgp4uAwvS0qoNsh2JQRW-cEWQKclEz1u-qLIDQJSh0DTiXgFkRLFpJBAbp8M2fmCI37CD0Q74BeBz2XKE5xBMomMn9K4BvT7pjolGRqnlQSypZkYQgkl1HBBBWZpgLbkeSPL4y4Z703QWBzlFfC2IpIF4B1KH4FAnJ14-ASCKkgCDj+kIrGUP2v7RApY1A6Jg9267PdoAYxEsVnyKL4jf8QgmsdizcAWySRT4JNsb3ohIzJRBQXmNuQZQ9wk5Jsa2Wv3JkJ17Z5aMOc7IjJUCQR7syXgiO4QwAfZDo8frWIDmFBuZW-I6AvDrmBkdCX0hwnf0dkmNs5DY7KKIMYggzQExgNYGHKhlGFdCic5ObnP9Q+juRfogDjt09lxwkR7-cUuHP+5DjuWpc0sSkGp4Q8sxYwlUsky5HHB8WHI-eTyKdYRdG4G8wGr1hFFMF1RP-DeWLLCiGyLAxs4EKbIvkxEt5jc8UcYC2kpAuuiI5uZ8OfnYlX5xXP+YDXG6P8cqYAJOT3Fvnq8GsfjMNOdM1FXyLmJcy4r7Jd6miYh25U0b1menuAMFuEB0W21wUhzGgbbAhbWLBL7lvRx8qeSvL8iRTHAFCToEiyAI4Y2F-0TcL5Lw6oB+gI4skEDKI7GYgZX+PKRZhEWMieKSgr7kNJVmUgNWAgFaekDSwx44mTrYzPIuODANxOkdXkL5MGlD9yxDkzCaAHrHQygR05foHqmLC+SbYWgSuL1JeD9TRgQMtxNOWIV5iBxNsJON4odGmKKRhCqcrQSEVrBbFmCIGSEv8CWKjCOUwWN7MwXNi95rYvYe3FPkkoTgmLYxfQXrxQxUh9ioadaK7HaAgxLwsQN4vihMZvxnEowGBO3AAAZWWnBMjENwQpL0FyX7OmmXRPJukxkbhJIG9ACQYkvQERMElniXUvk9UPJLQZMS8g0ykrgJJujMTFl4dOpQ0uaX4BllQywkFMsikzLtJ4dfSQPQzrahJJwY6SbJNGVUSYl7gXhZFJUk7DHwLQi5RUoamUtHlqkt4ZTBwg9LDlZinSdvILz6TbhQwnTCQgcVlVZifywxSwt8mA1tJTkloV0pQmLK+lppf0axFkQ5KgljkzgfOKOZ6SdhBkkQEZNoWzloVJoE5cYNCFmBrBZw2yOpOsmiS8V5iuwtaIjF-LFlbKoFfuUNK6k+hKBLJTC1XDwt+WWEwlcNKJpWgUaUkDcTh3EDCtNweMUVXC1T7vsLFcq-cYXLC4XNgQ2K7JfyzLESqCVQqtBrKpgBQwP8V2YVoKsuHf8SJ1fLUURxVRENpx0o0JvLIlH-1v0M4vQRxy0Asr5I0dEibsk0lUSI2R8NxcMur7uTcZjQG8dFxthXKTul4+NVt0vgUM1w2YYNT2JeEu1HIby9YdlxkzuSnlLwjVe4BSBQJRupUctapLJ5nMI1cgCMdmqcU3QI1Uqg8kLMtJgdJAFRdpIlNDX4TpF2YompRJtizBBF8uDxS7OjW7KCQzqo5Y9yTWNEpIqa3CJePkmZqbFugDtT0sJWFrbIxahcdF0+XHAK1BgqtW4BrXIhS1Dyy9Y2uOhNTIprarKu2tzV5ShVPakmX2pXkSc8pFRPNeGpEmoAkWRi+NZHMpCAaWF8atBhJ3cmga0JVE8Tt0A0lgbRgUGvmAOqDXuTwRYajNeOqEi5AMNKGyJD+P-FASQJ4EyCTBO2XRA6l3E2jXxNaXNrMN76haqRrzUW4xhm4JIJYzA6wbiuY6p4oGqHWyIR1wy3JQeVz4CBOI0ym2BsqaUtKDYymrZYWLg4IqIIWVbjdMoPJjR+NiQQTUwo-hL03oMNaqHdFGEF5ZFg0YwtblmCWb2A1mhflQX2hdSJwTmpCPaxs2-TyORub-m2RErOaO89m11c41c2L5rcIWpCK5tEXubAtYHX7LFvYC+bw6AWkRqFK4B2BSwnEHJeFsZGPSstwGVADDWQADTvNaWyVUKoi18l2YVWjvI1pBzXyepfQtBk5oq3uLroFmnzdaugChaQcz01VTkuezNb+tg2h6MwCN4Yl7VLwpjHesup4s7iI2-lm-k61pQ-ajvQwOVoGmpax6NWy4XVuC07arN+2lrRcw7EcgDABU1IXUPpVuCzl6IVbWKr9iLBTtLm87Q9DNWXCVekVLKiFq61XQJwX2hoR9rHq1zTic2gwQttrX8bMAK2kVZi0ko7autW2+1OlFy2Qx7IP2+bcSpeGkrwVT224LvIcrTbbgdmpHcasx15a1VhobtnctuClKOO+a9YaaRcAzbKQzO8pWzsbn1yggRiP7cZE0JCqyYi2zcMS0R3WBSwdOt-DTtEDo6U0eyihhAIwGMj1YQArejvXxAn1784rZOma2lY7Icd0OzYYDDGigrDJxrQyKTsMjK6oE4gUAQsHAHiAO69zb7VAI7qqIdWAVRnihx4DByKFvZdDpVDJGQ8mKN4Y4r0Wm31z7l+7I3RdBpZBdudrOmYWqPWZtLxSNukXQ6rzji749q7KKFLvvCiBZdcgAvYe3-wvhL44oENlJTME2wAAnOIW22iUzBhKiQCgNb3SVCVUdVUI4DkCRr3uWA7YQmvNJdyII+gUIoFNRluB694lMQL81+alQ6Aq+m9Z3Jnm4C59hgaSo6MkB8zbg8+iHCStxCyp9JPGA6PoFvAL5NBfa9wEft72n6g0cgWvT0B31mCv8ggVReosChlxB1h2vHYyNN04AxdcOr-eJR-2v5SoL29VQBBUUQGs0MeKiE+mnZAg6dkETZlAkSKrgcgwIXmlbJlU2xi2Z4eYCG1QOHKbGGBu9eoyfA0sDYUsBCJgFwMc1QA0TQ7NyM6CPhuuR+y6jeFvDkGLF-LG7dQcajeVi6WoHg9M3QNWhPIUc+hEeSlj4aOOXHOEOhvhgyHHuwmk4MBqQ2Iau1FmDQ1twYM4HsSLBtg8CGOCcHZ9GgHg15T4NNQI12ENQ90FEN8GWoch1QFrL-UxBbD9hyPZi3Cj5iEafhm8OvsFHv7xKHe46PpPJVGRbdpxKQzktiFO7OgLussVhNbUB6IAWVJQDr26RGrXtVoY7AGLKWp77GRiYBj2rziXw0od6uVgIRtibgAjtRqBAEEE1PpA23QJ4Iwd9LsTiN4kFo+JCkjtsBCVBqBPUbZgHkR9JqQY2Pv8C+HI9EMConGjsZpQ8tohjVb2tCVCQrQRB-lkG1IPHspRlBwYzQboMSGIjhoOw5Hq6NfkmKdpYQzpz8NhHJDPLAo3CzLEH60ZEEJQ5xyyDcdnDnx6w04YU2JSdDEa3ZOhrzVOIXEhh46LYcAmOGeOGUONJsX+F8APCXhOgGEa2OH7LjvBvw4IbFWBGBxGAEI95VKhhH79lxqI6pBiPW6mVTBMyaQkSPGqY9IvOYM7s2hFHOBmRuQEYByMM9bIMB+FsUfsDdiO9FRvRbfpiCdHujq4Xo1UZXnPYOgaAQ8LKlmMEGdjexsVQcYvBHGtmpx24rQYP3KkmCFGkU+kavglGWdkpqMQZszSm4TC6XSkBLs2LGjRUgokQHwE8YLwNmorY1SkaQDcmjM36Z0wdG93ZGFquRsXdgH7boHfmonMQBQoAA6zASDbSs4jKHwAFRco4tFsr+U+IRkZfTJgsP+YXw5BhM0mdTPpm4NmZrNJxxzOzMpRa0SAIkQOhucOCbZ0AAAC9PaGgNM-4AHoNniIuZyM25z7NFnHIJZ9g5YZJbIG5TdxxU2fQZTNHMD8AAIMowZTDnszY5vNONwIUC1xscgGgAdAJCzRVzQh+KGgACDXkdzjZvcyogPMHQ80x52gC+afNb45Ab5084oCAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-FnoNFQb1tEOw6yuHQ4IZVrh40RaF-hM59BEgcIYsKJ1KZ5tpOqAOQIGwFGBtARtiacsaNqR9cxINsW0diPtFUixA6YukcOXJYjA5AHo1SJmOhEF5cx8UZkb6O96Uh9hTrHEoGIxTBimxTIUSGvUdL6BIAqRXvoSCdFItQWjorUV-gM5rCZhrncbq51yF4DeuNsAzqNyXHRdt8eQyJLGhW7OgjEGRNADjljohtWuZQCcaikviucbYbbaUaclSw-9XOygdhrEwyKucyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaATOknKsQEiLF6B6R2vIjiOOgpninRFItxnOLHEEh82yY3BBhOgBcs5xggPIImLaAI4aJDcVCSmPQCVDGRf4gCcBNAkQToJsExiYTxIlkSQ+cCAidiPDpziHhJEowBeLqyUSDouLciSMCvB9DwKwsLtkpPQmGiSoJIojn0OIiDC-qJCf4dKliqzEYxEYeMSxOQgmTY+DFckdiKwn8NwAyEwyvRLYmUSnJDab8VS2iil5zOUkAAAxn1Oo6UQ8AWFEjccJcWrYsIgDATx5IpWIGAAFOEiJTWgyU1cJMQYCPjJ0vkpKYcMwAFcTgYUx4CiORGk9UpsiTVl8jimhi4OKTN-BwTynVTewcU87uVIN7O46gzcUqTcmMBpQgokU0rlz0SktThEcU0QtsQilVTopNU+KQbE6iBCTgh4QQJGDk5wlM0UiQjsdDFBF8SpM-IAc1NmmtTVuEiKCCRwo7cIOCS0owCtIECRg5Br7F0ZRS0DLTVpSgs9hIg0FaDq2caV6bdPem+Sv8vQEIV50nCjAgBUIiwqikWn-S7pa0x7lgK2na9HuIvTknyMwaAMtO3AIOLZDGgp4uAwvS0qoNsh2JQRW-cEWQKclEz1u-qLIDQJSh0DTiXgFkRLFpJBAbp8M2fmCI37CD0Q74BeBz2XKE5xBMomMn9K4BvT7pjolGRqnlQSypZkYQgkl1HBBBWZpgLbkeSPL4y4Z703QWBzlFfC2IpIF4B1KH4FAnJ14-ASCKkgCDj+kIrGUP2v7RApY1A6Jg9267PdoAYxEsVnyKL4jf8QgmsdizcAWySRT4JNsb3ohIzJRBQXmNuQZQ9wk5Jsa2Wv3JkJ17Z5aMOc7IjJUCQR7syXgiO4QwAfZDo8frWIDmFBuZW-I6AvDrmBkdCX0hwnf0dkmNs5DY7KKIMYggzQExgNYGHKhlGFdCic5ObnP9Q+juRfogDjt09lxwkR7-cUuHP+5DjuWpc0sSkGp4Q8sxYwlUsky5HHB8WHI-eTyKdYRdG4G8wGr1hFFMF1RP-DeWLLCiGyLAxs4EKbIvkxEt5jc8UcYC2kpAuuiI5uZ8OfnYlX5xXP+YDXG6P8cqYAJOT3Fvnq8GsfjMNOdM1FXyLmJcy4r7Jd6miYh25U0b1menuAMFuEB0W21wUhzGgbbAhbWLBL7lvRx8qeSvL8iRTHAFCToEiyAI4Y2F-0TcL5Lw6oB+gI4skEDKI7GYgZX+PKRZhEWMieKSgr7kNJVmUgNWAgFaekDSwx44mTrYzPIuODANxOkdXkL5MGlD9yxDkzCaAHrHQygR05foHqmLC+SbYWgSuL1JeD9TRgQMtxNOWIV5iBxNsJON4odGmKKRhCqcrQSEVrBbFmCIGSEv8CWKjCOUwWN7MwXNi95rYvYe3FPkkoTgmLYxfQXrxQxUh9ioadaK7HaAgxLwsQN4vihMZvxnEowGBO3AAAZWWnBMjENwQpL0FyX7OmmXRPJukxkbhJIG9ACQYkvQERMElniXUvk9UPJLQZMS8g0ykrgJJujMTFl4dOpQ0uaX4BllQywkFMsikzLtJ4dfSQPQzrahJJwY6SbJNGVUSYl7gXhZFJUk7DHwLQi5RUoamUtHlqkt4ZTBwg9LDlZinSdvILz6TbhQwnTCQgcVlVZifywxSwt8mA1tJTkloV0pQmLK+lppf0axFkQ5KgljkzgfOKOZ6SdhBkkQEZNoWzloVJoE5cYNCFmBrBZw2yOpOsmiS8V5iuwtaIjF-LFlbKoFfuUNK6k+hKBLJTC1XDwt+WWEwlcNKJpWgUaUkDcTh3EDCtNweMUVXC1T7vsLFcq-cYXLC4XNgQ2K7JfyzLESqCVQqtBrKpgBQwP8V2YVoKsuHf8SJ1fLUURxVRENpx0o0JvLIlH-1v0M4vQRxy0Asr5I0dEibsk0lUSI2R8NxcMur7uTcZjQG8dFxthXKTul4+NVt0vgUM1w2YYNT2JeEu1HIby9YdlxkzuSnlLwjVe4BSBQJRupUctapLJ5nMI1cgCMdmqcU3QI1Uqg8kLMtJgdJAFRdpIlNDX4TpF2YompRJtizBBF8uDxS7OjW7KCQzqo5Y9yTWNEpIqa3CJePkmZqbFugDtT0sJWFrbIxahcdF0+XHAK1BgqtW4BrXIhS1Dyy9Y2uOhNTIprarKu2tzV5ShVPakmX2pXkSc8pFRPNeGpEmoAkWRi+NZHMpCAaWF8atBhJ3cmga0JVE8Tt0A0lgbRgUGvmAOqDXuTwRYajNeOqEi5AMNKGyJD+P-FASQJ4EyCTBO2XRA6l3E2jXxNaXNrMN76haqRrzUW4xhm4JIJYzA6wbiuY6p4oGqHWyIR1wy3JQeVz4CBOI0ym2BsqaUtKDYymrZYWLg4IqIIWVbjdMoPJjR+NiQQTUwo-hL03oMNaqHdFGEF5ZFg0YwtblmCWb2A1mhflQX2hdSJwTmpCPaxs2-TyORub-m2RErOaO89m11c41c2L5rcIWpCK5tEXubAtYHX7LFvYC+bw6AWkRqFK4B2BSwnEHJeFsZGPSstwGVADDWQADTvNaWyVUKoi18l2YVWjvI1pBzXyepfQtBk5oq3uLroFmnzdaugChaQcz01VTkuezNb+tg2h6MwCN4Yl7VLwpjHesup4s7iI2-lm-k61pQ-ajvQwOVoGmpax6NWy4XVuC07arN+2lrRcw7EcgDABU1IXUPpVuCzl6IVbWKr9iLBTtLm87Q9DNWXCVekVLKiFq61XQJwX2hoR9rHq1zTic2gwQttrX8bMAK2kVZi0ko7autW2+1OlFy2Qx7IP2+bcSpeGkrwVT224LvIcrTbbgdmpHcasx15a1VhobtnctuClKOO+a9YaaRcAzbKQzO8pWzsbn1yggRiP7cZE0JCqyYi2zcMS0R3WBSwdOt-DTtEDo6U0eyihhAIwGMj1YQArejvXxAn1784rZOma2lY7Icd0OzYYDDGigrDJxrQyKTsMjK6oE4gUAQsHAHiAO69zb7VAI7qqIdWAVRnihx4DByKFvZdDpVDJGQ8mKN4Y4r0Wm31z7l+7I3RdBpZBdudrOmYWqPWZtLxSNukXQ6rzji749q7KKFLvvCiBZdcgAvYe3-wvhL44oENlJTME2wAAnOIW22iUzBhKiQCgNb3SVCVUdVUI4DkCRr3uWA7YQmvNJdyII+gUIoFNRluB694lMQL81+alQ6Aq+m9Z3Jnm4C59hgaSo6MkB8zbg8+iHCStxCyp9JPGA6PoFvAL5NBfa9wEft72n6g0cgWvT0B31mCv8ggVReosChlxB1h2vHYyNN04AxdcOr-eJR-2v5SoL29VQBBUUQGs0MeKiMwEvhpQ71crAQjbE3CYsbtd6gIIJqfSBtugTwBCLDHjLSqhIaBxvtewEKQRNmUCDA2zAPIj6TUVBnXN1yP2XUbwt4CGBUTjR2M0oeWxqN5V-Wb6U5Mqm2MWzPDzAQ207IEFKJsZ0G716jJ8DSy26cGvK3BwUSQcyl2lcDOnbgzeHX2Cj39C+6ZnTrLEH60ZEEfDRxy45wh0N8MK0GPtuDCaTgwGpDYhq7UWZnDNvbfW3oX2bhAJEa7CI4e6BxpNi-wvgB4S8J0BjDva9EBocMOR6cD8UDAMkaMOlRjD9+0w8foqUkJ9J5KoyLbtITmGclMekXnMGd2bQrQWE1tQHtABGAsqSgHXt0iNWvbajV8AMWUtT32MjEwDdnlqCIM6GyD55HtWBzkPGAclbBxIquByDAheaVsiQ1JCkOltJjChiRmwZUNqH51EEUg-MY5qgBomh2bkZ0EfAcHcjXByPZMYsX8t9D4kYQy1Gg3+Hd9ZR41b4YjlvcjyUsWw5xyyDccwjlhx7m4cnCwxPD6GvNU4hcQfGOSexuY9iUOPHHgQxwM47Po0BJHDDlY1iaEd47CHuDTxr49PJN7vcMTmJ1I-2LEjpGMjxhh-Q8OOiFHrdTKpgmZNOJvHXtsQp3Z0Bd1li6jexn3QtRaPWiYD8LY7N0ZZ0d7+jei5ecwEmMWHfmonMQBQoAA6zASDbSs4h2HwAFRPo4tFsr+U+IRkZfTJmRP+YXwspnJfKfImKmQ5KptU6DKzScctTszKUWtEgCJEDobnDgm6dAAAAvT2hoBVP+AB6Dp4iNqe93RU5Afpg045CNMnGUTJLRXeYmewdA0Ah4WVGwYoPiQrQkh-lkGxkPHsNjju+g+JFuKqGD9ypJghRuFM8muj9gbsRKajEGbM0puEwul0pAS7Nixo0VIKJEB8BPGC8DZqK2NWcmkANRozN+lbMHRwzR+Mqi0bJjDGvyoxtEsgYZQ4G2DAQZRgymDOamwzGrO4lkBeU4tYAdxfFgdD9PXlyT+Y-7AEGvLbnHTu5+nH2bJyHmDsx50qKeduZF4nzMmA8-3hPM0sgAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-FnoNFQb1tEOw6yuHQ4IZVrh40RaF-hM59BEgcIYsKJ1KZ5tpOqAOQIGwFGBtARtiacsaNqR9cxINsW0diPtFUixA6YukcOXJYjA5AHo1SJmOhEF5cx8UZkb6O96Uh9hTrHEoGIxTBimxTIUSGvUdL6BIAqRXvoSCdFItQWjorUV-gM5rCZhrncbq51yF4DeuNsAzqNyXHRdt8eQyJLGhW7OgjEGRNADjljohtWuZQCcaikviucbYbbaUaclSw-9XOygdhrEwyKucyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaATOknKsQEiLF6B6R2vIjiOOgpninRFItxnOLHEEh82yY3BBhOgBcs5xggPIImLaAI4aJDcVCSmPQCVDGRf4gCcBNAkQToJsExiYTxIlkSQ+cCAidiPDpziHhJEowBeLqyUSDouLciSMCvB9DwKwsLtkpPQmGiSoJIojn0OIiDC-qJCf4dKliqzEYxEYeMSxOQgmTY+DFckdiKwn8NwAyEwyvRLYmUSnJDab8VS2iil5zOUkAAAxn1Oo6UQ8AWFEjccJcWrYsIgDATx5IpWIGAAFOEiJTWgyU1cJMQYCPjJ0vkpKYcMwAFcTgYUx4CiORGk9UpsiTVl8jimhi4OKTN-BwTynVTewcU87uVIN7O46gzcUqTcmMBpQgokU0rlz0SktThEcU0QtsQilVTopNU+KQbE6iBCTgh4QQJGDk5wlM0UiQjsdDFBF8SpM-IAc1NmmtTVuEiKCCRwo7cIOCS0owCtIECRg5Br7F0ZRS0DLTVpSgs9hIg0FaDq2caV6bdPem+Sv8vQEIV50nCjAgBUIiwqikWn-S7pa0x7lgK2na9HuIvTknyMwaAMtO3AIOLZDGgp4uAwvS0qoNsh2JQRW-cEWQKclEz1u-qLIDQJSh0DTiXgFkRLFpJBAbp8M2fmCI37CD0Q74BeBz2XKE5xBMomMn9K4BvT7pjolGRqnlQSypZkYQgkl1HBBBWZpgLbkeSPL4y4Z703QWBzlFfC2IpIF4B1KH4FAnJ14-ASCKkgCDj+kIrGUP2v7RApY1A6Jg9267PdoAYxEsVnyKL4jf8QgmsdizcAWySRT4JNsb3ohIzJRBQXmNuQZQ9wk5Jsa2Wv3JkJ17Z5aMOc7IjJUCQR7syXgiO4QwAfZDo8frWIDmFBuZW-I6AvDrmBkdCX0hwnf0dkmNs5DY7KKIMYggzQExgNYGHKhlGFdCic5ObnP9Q+juRfogDjt09lxwkR7-cUuHP+5DjuWpc0sSkGp4Q8sxYwlUsky5HHB8WHI-eTyKdYRdG4G8wGr1hFFMF1RP-DeWLLCiGyLAxs4EKbIvkxEt5jc8UcYC2kpAuuiI5uZ8OfnYlX5xXP+YDXG6P8cqYAJOT3Fvnq8GsfjMNOdM1FXyLmJcy4r7Jd6miYh25U0b1menuAMFuEB0W21wUhzGgbbAhbWLBL7lvRx8qeSvL8iRTHAFCToEiyAI4Y2F-0TcL5Lw6oB+gI4skEDKI7GYgZX+PKRZhEWMieKSgr7kNJVmUgNWAgFaekDSwx44mTrYzPIuODANxOkdXkL5MGlD9yxDkzCaAHrHQygR05foHqmLC+SbYWgSuL1JeD9TRgQMtxNOWIV5iBxNsJON4odGmKKRhCqcrQSEVrBbFmCIGSEv8CWKjCOUwWN7MwXNi95rYvYe3FPkkoTgmLYxfQXrxQxUh9ioadaK7HaAgxLwsQN4vihMZvxnEowGBO3AAAZWWnBMjENwQpL0FyX7OmmXRPJukxkbhJIG9ACQYkvQERMElniXUvk9UPJLQZMS8g0ykrgJJujMTFl4dOpQ0uaX4BllQywkFMsikzLtJ4dfSQPQzrahJJwY6SbJNGVUSYl7gXhZFJUk7DHwLQi5RUoamUtHlqkt4ZTBwg9LDlZinSdvILz6TbhQwnTCQgcVlVZifywxSwt8mA1tJTkloV0pQmLK+lppf0axFkQ5KgljkzgfOKOZ6SdhBkkQEZNoWzloVJoE5cYNCFmBrBZw2yOpOsmiS8V5iuwtaIjF-LFlbKoFfuUNK6k+hKBLJTC1XDwt+WWEwlcNKJpWgUaUkDcTh3EDCtNweMUVXC1T7vsLFcq-cYXLC4XNgQ2K7JfyzLESqCVQqtBrKpgBQwP8V2YVoKsuHf8SJ1fLUURxVRENpx0o0JvLIlH-1v0M4vQRxy0Asr5I0dEibsk0lUSI2R8NxcMur7uTcZjQG8dFxthXKTul4+NVt0vgUM1w2YYNT2JeEu1HIby9YdlxkzuSnlLwjVe4BSBQJRupUctapLJ5nMI1cgCMdmqcU3QI1Uqg8kLMtJgdJAFRdpIlNDX4TpF2YompRJtizBBF8uDxS7OjW7KCQzqo5Y9yTWNEpIqa3CJePkmZqbFugDtT0sJWFrbIxahcdF0+XHAK1BgqtW4BrXIhS1Dyy9Y2uOhNTIprarKu2tzV5ShVPakmX2pXkSc8pFRPNeGpEmoAkWRi+NZHMpCAaWF8atBhJ3cmga0JVE8Tt0A0lgbRgUGvmAOqDXuTwRYajNeOqEi5AMNKGyJD+P-FASQJ4EyCTBO2XRA6l3E2jXxNaXNrMN76haqRrzUW4xhm4JIJYzA6wbiuY6p4oGqHWyIR1wy3JQeVz4CBOI0ym2BsqaUtKDYymrZYWLg4IqIIWVbjdMoPJjR+NiQQTUwo-hL03oMNaqHdFGEF5ZFg0YwtblmCWb2A1mhflQX2hdSJwTmpCPaxs2-TyORub-m2RErOaO89m11c41c2L5rcIWpCK5tEXubAtYHX7LFvYC+bw6AWkRqFK4B2BSwnEHJeFsZGPSstwGVADDWQADTvNaWyVUKoi18l2YVWjvI1pBzXyepfQtBk5oq3uLroFmnzdaugChaQcz01VTkuezNb+tg2h6MwCN4Yl7VLwpjHesup4s7iI2-lm-k61pQ-ajvQwOVoGmpax6NWy4XVuC07arN+2lrRcw7EcgDABU1IXUPpVuCzl6IVbWKr9iLBTtLm87Q9DNWXCVekVLKiFq61XQJwX2hoR9rHq1zTic2gwQttrX8bMAK2kVZi0ko7autW2+1OlFy2Qx7IP2+bcSpeGkrwVT224LvIcrTbbgdmpHcasx15a1VhobtnctuClKOO+a9YaaRcAzbKQzO8pWzsbn1yggRiP7cZE0JCqyYi2zcMS0R3WBSwdOt-DTtEDo6U0eyihhAIwGMj1YQArejvXxAn1784rZOma2lY7Icd0OzYYDDGigrDJxrQyKTsMjK6oE4gUAQsHAHiAO69zb7VAI7qqIdWAVRnihx4DByKFvZdDpVDJGQ8mKN4Y4r0Wm31z7l+7I3RdBpZBdudrOmYWqPWZtLxSNukXQ6rzji749q7KKFLvvCiBZdcgAvYe3-wvhL44oENlJTME2wAAnOIW22iUzBhKiQCgNb3SVCVUdVUI4DkCRr3uWA7YQmvNJdyII+gUIoFNRluB694lMQL81+alQ6Aq+m9Z3Jnm4C59hgaSo6MkB8zbg8+iHCStxCyp9JPGA6PoFvAL5NBfa9wEft72n6g0cgWvT0B31mCv8ggVReosChlxB1h2vHYyNN04AxdcOr-eJR-2v5SoL29VQBBUUQGs0MeKiMwEvhpQ71crAQjbE3CYsbtd6gIIJqfSBtugTwBCLDHjLSqhIaBxvtewEKQRNmUCDA2zAPIj6TUVBnXN1yP2XUbwt4CGBUTjR2M0oeWxqN5V-Wb6U5Mqm2MWzPDzAQ207IEFKJsZ0G716jJ8DSy26cGvK3BwUSQcyl2lcDOnbgzeHX2Cj39C+6ZnTrLEH60ZEEfDRxy45wh0N8MK0GPtuDCaTgwGpDYhq7UWZnDNvbfW3oX2bhAJEa7CI4e6BxpNi-wvgB4S8J0BjDva9EBocMOR6cD8UDAMkaMOlRjD9+0w8foqUkJ9J5KoyLbtITmGclMekXnMGd2bQrQWE1tQHtABGAsqSgHXt0iNWvbajV8AMWUtT32MjEwDdnlqCIM6GyD55HtWBzkPGAclbBxIquByDAheaVsiQ1JCkOltJjChiRmwZUNqH51EEUg-MY5qgBomh2bkZ0EfAcHcjXByPZMYsX8t9D4kYQy1Gg3+Hd9ZR41b4YjlvcjyUsWw5xyyDccwjlhx7m4cnCwxPD6GvNU4hcQfGOSexuY9iUOPHHgQxwM47Po0BJHDDlY1iaEd47CHuDTxr49PJN7vcMTmJ1I-2LEjpGMjxhh-Q8OOiFHrdTKpgmZNOJvHXtsQp3Z0Bd1li6jexn3QtRaPWiYD8LY7N0ZZ0d7+jei5ecwEmMWHfmonMQBQoAA6zASDbSs4h2HwAFRPo4tFsr+U+IRkZfTJmRP+YXwspnJfKfImKmQ5KptU6DKzScctTszKUWtEgCJEDobnDgm6dAAAAvT2hoBVP+AB6Dp4iNqe93RU5Afpg045CNMnGUTJLRXeYmewdA0Ah4WVGwYoPiQrQkh-lkGxkPHsNjju+g+JFuKqGD9ypJghRuFM8muj9gbsRKajEGbM0puEwul0pAS7Nixo0VIKJEB8BPGC8DZqK2NWcmkANRozN+lbMHRwzR+Mqi0bJjDGvyoxtEsgYZQ4G2DAQZRgymDOamwzGrO4lkBeURmcWfZsnHcVgB3F8WyxVc3cbSMBBry25x07ufpwnmZMB5g6AdnPOlRLztzIvC+YZxnmLzNLIAA

Metalinguistic Abstraction 4.4.1

Query input :

Iappend_to_form(x, y, list("a", "b", "c", "d"))

Query r e s u l t s :
append_to_form (nul l , l i s t (" a " , " b " , " c " , " d ") , l i s t (" a " , " b " , " c " , " d "))
append_to_form (l i s t (" a ") , l i s t (" b " , " c " , " d ") , l i s t (" a " , " b " , " c " , " d "))
append_to_form (l i s t (" a " , " b ") , l i s t (" c " , " d ") , l i s t (" a " , " b " , " c " , " d "))
append_to_form (l i s t (" a " , " b " , " c ") , l i s t (" d ") , l i s t (" a " , " b " , " c " , " d "))
append_to_form (l i s t (" a " , " b " , " c " , " d ") , nul l , l i s t (" a " , " b " , " c " , " d "))

The query system may seem to exhibit quite a bit of intelligence in using the rules to deduce

the answers to the queries above. Actually, as we will see in the next section, the system is

following a well-determined algorithm in unraveling the rules. Unfortunately, although the

system works impressively in the append case, the general methods may break down in more

complex cases, as we will see in section 4.4.3.

Exercise 4.61

The following rules implement a next_to_in relation that �nds adjacent elements of a list:

rule(next_to_in(x, y, pair(x, pair(y, u))),

and(next_to_in(x, y, pair(v, z)),

next_to_in(x, y, z))

What will the response be to the following queries?

next_to_in(x, y, list(1, list(2, 3), 4))

next_to_in(x, 1, list(2, 1, 3, 1))

Exercise 4.62

De�ne rules to implement the last_pair operation of exercise 2.17, which returns a list con-

taining the last element of a nonempty list. Check your rules on queries such as last_pair(list(3), x),

last_pair(list(1, 2, 3), x), and last_pair(list(2, x), list(3)). Do your rules work

correctly on queries such as last_pair(x, list(3))?

Exercise 4.63

The following data base (see Genesis 4) traces the genealogy of the descendants of Ada back

to Adam, by way of Cain:

son("Adam", "Cain")

son("Cain", "Enoch")

480 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-FnoNFQb1tEOw6yuHQ4IZVrh40RaF-hM59BEgcIYsKJ1KZ5tpOqAOQIGwFGBtARtiacsaNqR9cxINsW0diPtFUixA6YukcOXJYjA5AHo1SJmOhEF5cx8UZkb6O96Uh9hTrHEoGIxTBimxTIUSGvUdL6BIAqRXvoSCdFItQWjorUV-gM5rCZhrncbq51yF4DeuNsAzqNyXHRdt8eQyJLGhW7OgjEGRNADjljohtWuZQCcaikviucbYbbaUaclSw-9XOygdhrEwyKucyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaATOknKsQEiLF6B6R2vIjiOOgpninRFItxnOLHEEh82yY3BBhOgBcs5xggPIImLaAI4aJDcVCSmPQCVDGRf4gCcBNAkQToJsExiYTxIlkSQ+cCAidiPDpziHhJEowBeLqyUSDouLciSMCvB9DwKwsLtkpPQmGiSoJIojn0OIiDC-qJCf4dKliqzEYxEYeMSxOQgmTY+DFckdiKwn8NwAyEwyvRLYmUSnJDab8VS2iil5zOUkAAAxn1Oo6UQ8AWFEjccJcWrYsIgDATx5IpWIGAAFOEiJTWgyU1cJMQYCPjJ0vkpKYcMwAFcTgYUx4CiORGk9UpsiTVl8jimhi4OKTN-BwTynVTewcU87uVIN7O46gzcUqTcmMBpQgokU0rlz0SktThEcU0QtsQilVTopNU+KQbE6iBCTgh4QQJGDk5wlM0UiQjsdDFBF8SpM-IAc1NmmtTVuEiKCCRwo7cIOCS0owCtIECRg5Br7F0ZRS0DLTVpSgs9hIg0FaDq2caV6bdPem+Sv8vQEIV50nCjAgBUIiwqikWn-S7pa0x7lgK2na9HuIvTknyMwaAMtO3AIOLZDGgp4uAwvS0qoNsh2JQRW-cEWQKclEz1u-qLIDQJSh0DTiXgFkRLFpJBAbp8M2fmCI37CD0Q74BeBz2XKE5xBMomMn9K4BvT7pjolGRqnlQSypZkYQgkl1HBBBWZpgLbkeSPL4y4Z703QWBzlFfC2IpIF4B1KH4FAnJ14-ASCKkgCDj+kIrGUP2v7RApY1A6Jg9267PdoAYxEsVnyKL4jf8QgmsdizcAWySRT4JNsb3ohIzJRBQXmNuQZQ9wk5Jsa2Wv3JkJ17Z5aMOc7IjJUCQR7syXgiO4QwAfZDo8frWIDmFBuZW-I6AvDrmBkdCX0hwnf0dkmNs5DY7KKIMYggzQExgNYGHKhlGFdCic5ObnP9Q+juRfogDjt09lxwkR7-cUuHP+5DjuWpc0sSkGp4Q8sxYwlUsky5HHB8WHI-eTyKdYRdG4G8wGr1hFFMF1RP-DeWLLCiGyLAxs4EKbIvkxEt5jc8UcYC2kpAuuiI5uZ8OfnYlX5xXP+YDXG6P8cqYAJOT3Fvnq8GsfjMNOdM1FXyLmJcy4r7Jd6miYh25U0b1menuAMFuEB0W21wUhzGgbbAhbWLBL7lvRx8qeSvL8iRTHAFCToEiyAI4Y2F-0TcL5Lw6oB+gI4skEDKI7GYgZX+PKRZhEWMieKSgr7kNJVmUgNWAgFaekDSwx44mTrYzPIuODANxOkdXkL5MGlD9yxDkzCaAHrHQygR05foHqmLC+SbYWgSuL1JeD9TRgQMtxNOWIV5iBxNsJON4odGmKKRhCqcrQSEVrBbFmCIGSEv8CWKjCOUwWN7MwXNi95rYvYe3FPkkoTgmLYxfQXrxQxUh9ioadaK7HaAgxLwsQN4vihMZvxnEowGBO3AAAZWWnBMjENwQpL0FyX7OmmXRPJukxkbhJIG9ACQYkvQERMElniXUvk9UPJLQZMS8g0ykrgJJujMTFl4dOpQ0uaX4BllQywkFMsikzLtJ4dfSQPQzrahJJwY6SbJNGVUSYl7gXhZFJUk7DHwLQi5RUoamUtHlqkt4ZTBwg9LDlZinSdvILz6TbhQwnTCQgcVlVZifywxSwt8mA1tJTkloV0pQmLK+lppf0axFkQ5KgljkzgfOKOZ6SdhBkkQEZNoWzloVJoE5cYNCFmBrBZw2yOpOsmiS8V5iuwtaIjF-LFlbKoFfuUNK6k+hKBLJTC1XDwt+WWEwlcNKJpWgUaUkDcTh3EDCtNweMUVXC1T7vsLFcq-cYXLC4XNgQ2K7JfyzLESqCVQqtBrKpgBQwP8V2YVoKsuHf8SJ1fLUURxVRENpx0o0JvLIlH-1v0M4vQRxy0Asr5I0dEibsk0lUSI2R8NxcMur7uTcZjQG8dFxthXKTul4+NVt0vgUM1w2YYNT2JeEu1HIby9YdlxkzuSnlLwjVe4BSBQJRupUctapLJ5nMI1cgCMdmqcU3QI1Uqg8kLMtJgdJAFRdpIlNDX4TpF2YompRJtizBBF8uDxS7OjW7KCQzqo5Y9yTWNEpIqa3CJePkmZqbFugDtT0sJWFrbIxahcdF0+XHAK1BgqtW4BrXIhS1Dyy9Y2uOhNTIprarKu2tzV5ShVPakmX2pXkSc8pFRPNeGpEmoAkWRi+NZHMpCAaWF8atBhJ3cmga0JVE8Tt0A0lgbRgUGvmAOqDXuTwRYajNeOqEi5AMNKGyJD+P-FASQJ4EyCTBO2XRA6l3E2jXxNaXNrMN76haqRrzUW4xhm4JIJYzA6wbiuY6p4oGqHWyIR1wy3JQeVz4CBOI0ym2BsqaUtKDYymrZYWLg4IqIIWVbjdMoPJjR+NiQQTUwo-hL03oMNaqHdFGEF5ZFg0YwtblmCWb2A1mhflQX2hdSJwTmpCPaxs2-TyORub-m2RErOaO89m11c41c2L5rcIWpCK5tEXubAtYHX7LFvYC+bw6AWkRqFK4B2BSwnEHJeFsZGPSstwGVADDWQADTvNaWyVUKoi18l2YVWjvI1pBzXyepfQtBk5oq3uLroFmnzdaugChaQcz01VTkuezNb+tg2h6MwCN4Yl7VLwpjHesup4s7iI2-lm-k61pQ-ajvQwOVoGmpax6NWy4XVuC07arN+2lrRcw7EcgDABU1IXUPpVuCzl6IVbWKr9iLBTtLm87Q9DNWXCVekVLKiFq61XQJwX2hoR9rHq1zTic2gwQttrX8bMAK2kVZi0ko7autW2+1OlFy2Qx7IP2+bcSpeGkrwVT224LvIcrTbbgdmpHcasx15a1VhobtnctuClKOO+a9YaaRcAzbKQzO8pWzsbn1yggRiP7cZE0JCqyYi2zcMS0R3WBSwdOt-DTtEDo6U0eyihhAIwGMj1YQArejvXxAn1784rZOma2lY7Icd0OzYYDDGigrDJxrQyKTsMjK6oE4gUAQsHAHiAO69zb7VAI7qqIdWAVRnihx4DByKFvZdDpVDJGQ8mKN4Y4r0Wm31z7l+7I3RdBpZBdudrOmYWqPWZtLxSNukXQ6rzji749q7KKFLvvCiBZdcgAvYe3-wvhL44oENlJTME2wAAnOIW22iUzBhKiQCgNb3SVCVUdVUI4DkCRr3uWA7YQmvNJdyII+gUIoFNRluB694lMQL81+alQ6Aq+m9Z3Jnm4C59hgaSo6MkB8zbg8+iHCStxCyp9JPGA6PoFvAL5NBfa9wEft72n6g0cgWvT0B31mCv8ggVReosChlxB1h2vHYyNN04AxdcOr-eJR-2v5SoL29VQBBUUQGs0MeKiE+mnZAg6dkETZlAkSKrgcgwIXmlbJlU2xi2Z4eYCG1QOHKbGGBu9eoyfA0sDYUsBCJgFwMc1QA0TQ7NyM6CPhuuR+y6jeFvDkGLF-LG7dQcajeVi6WoHg9M3QNWhPIUc+hEeSlj4aOOXHOEOhvhgyHHuwmk4MBqQ2Iau1FmDQ1twYM4HsSLBtg8CGOCcHZ9GgHg15T4NNQI12ENQ90FEN8GWoch1QFrL-UxBbD9hyPZi3Cj5iEafhm8OvsFHv7xKHe46PpPJVGRbdpxKQzktiFO7OgLussVhNbUB6IAWVJQDr26RGrXtVoY7AGLKWp77GRiYBj2rz3YB+26B35qJzEAUKAAOswEg20rOIyh8ABUXKOLRbK-lPiEZGX0yYLD-mF8OQbqMNHmjrRuDe0azSccujszKUWtEgCJEDobnDgisdAAAAvT2hoBaP+AB6cx4iN0e93RU5AOxgY45CGPsHLDJLUvsIagRysBCNsTcAEbSh3qAggmp9IG26BPBGDvpdicRvEjvHG+17AQlQcePtsBCB5EfSahBM65uDERw0HYdvAQwKicaOxmlDy2iGNVva0JUJCtBEH+WQbUg8eylGUH4TNBugxIaRO8G+Dgov45lLtIPHxIfhsI5IZ5YFG4WZYg-WjIghKHOOWQbjs4Z5PWGnDCmxKToYjW7J0NeapxC4kMPHRbDgExwzxwyhxpNi-wvgB4S8J0AwjeJw-bSZRP0mAj8UDACEe8qlQwj9+pE1EdUgxHrdTKpgmZNISJHjVMekXnMGd2bQijnAzI3ICMA5GGetkGA-C2KP2BuxHeio3otv0xAfjjJ2GPGSqMrznsHQNAIeFlTwnpVBJok2KpJMXgyTWzSk7cVoMH7lSTBCjaGfSNXwSjLOqM1GIM2ZpTcJhdLpSAl2bFjRoqQUSID4CeMF4GzUVsapSNIAfTRmb9C2YOinGj8ZVXI2THjNflEz55ZAwyjeOYH4AAQZRgykOOdGTjXVW5kXl7Nk47isAO4vi2WIrmhDZpgINeW3PzGTjgunFoeZkxZBjzp5l5Y+buIvn+8b5882AFvPHHFjGrd8wdi-MyYTzpUM8-uc8pPmGcr5iCzSxvOzGdzgF+nDBZfMHQDs4FmTJBY-NHnvz8F38xHVBlHGFj9jIC3hbAvAXhKVFg85+bgvYWELW5pC3eZQu0WKLt6H84Pt6O4Xnz9FzcGecUBAA

Metalinguistic Abstraction 4.4.2

son("Enoch", "Irad")

son("Irad", "Mehujael")

son("Mehujael", "Methushael")

son("Methushael", "Lamech")

wife("Lamech", "Ada")

son("Ada", "Jabal")

son("Ada", "Jubal")

Formulate rules such as “If S is the son of F, and F is the son of G, then S is the grandson of G”

and “If W is the wife of M, and S is the son of W, then S is the son of M” (which was supposedly

more true in biblical times than today) that will enable the query system to �nd the grandson

of Cain; the sons of Lamech; the grandsons of Methushael. (See exercise 4.69 for some rules

to deduce more complicated relationships.)

4.4.2 How the �ery System Works

In section 4.4.4 we will present an implementation of the query interpreter as a collection

of functions. In this section we give an overview that explains the general structure of the

system independent of low-level implementation details. After describing the implementation

of the interpreter, we will be in a position to understand some of its limitations and some of

the subtle ways in which the query language’s logical operations di�er from the operations

of mathematical logic.

It should be apparent that the query evaluator must perform some kind of search in order to

match queries against facts and rules in the data base. One way to do this would be to imple-

ment the query system as a nondeterministic program, using the amb evaluator of section 4.3

(see exercise 4.78). Another possibility is to manage the search with the aid of streams. Our

implementation follows this second approach.

The query system is organized around two central operations called pattern matching and

uni�cation. We �rst describe pattern matching and explain how this operation, together with

the organization of information in terms of streams of frames, enables us to implement both

simple and compound queries. We next discuss uni�cation, a generalization of pattern match-

ing needed to implement rules. Finally, we show how the entire query interpreter �ts together

through a function that classi�es expressions in a manner analogous to the way evaluate

classi�es expressions for the interpreter described in section 4.1.

481 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.4.2

Pa�ern matching

A pattern matcher is a program that tests whether some datum �ts a speci�ed pattern. For

example, the data list list(list("a", "b"), "c", list("a", "b")) matches the pattern

list(x, "c", x) with the pattern variable x bound to list("a", "b"). The same data list

matches the pattern list(x, y, z) with x and z both bound to list("a", "b") and y bound

to "c". It also matches the pattern list(list(x, y), "c", list(x, y)) with x bound to

"a" and y bound to "b". However, it does not match the pattern list(x, "a", y), since that

pattern speci�es a list whose second element is the string "a".

The pattern matcher used by the query system takes as inputs a pattern, a datum, and a frame
that speci�es bindings for various pattern variables. It checks whether the datum matches the

pattern in a way that is consistent with the bindings already in the frame. If so, it returns

the given frame augmented by any bindings that may have been determined by the match.

Otherwise, it indicates that the match has failed.

For example, using the pattern list(x, y, z) to match list("a", "b", "c") given an

empty frame will return a frame specifying that x is bound to "a" and y is bound to "b".

Trying the match with the same pattern, the same datum, and a frame specifying that y is

bound to "a" will fail. Trying the match with the same pattern, the same datum, and a frame

in which y is bound to b and x is unbound will return the given frame augmented by a binding

of x to "a".

The pattern matcher is all the mechanism that is needed to process simple queries that don’t

involve rules. For instance, to process the query

job(x, list("computer", "programmer"))

we scan through all assertions in the data base and select those that match the pattern with

respect to an initially empty frame. For each match we �nd, we use the frame returned by the

match to instantiate the pattern with a value for x.

Streams of frames

The testing of patterns against frames is organized through the use of streams. Given a single

frame, the matching process runs through the data-base entries one by one. For each data-base

entry, the matcher generates either a special symbol indicating that the match has failed or

an extension to the frame. The results for all the data-base entries are collected into a stream,

which is passed through a �lter to weed out the failures. The result is a stream of all the frames

that extend the given frame via a match to some assertion in the data base.
59

59
Because matching is generally very expensive, we would like to avoid applying the full matcher to every

element of the data base. This is usually arranged by breaking up the process into a fast, coarse match and the

482 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.4.2

In our system, a query takes an input stream of frames and performs the above matching

operation for every frame in the stream, as indicated in �gure 4.4. That is, for each frame in

the input stream, the query generates a new stream consisting of all extensions to that frame

by matches to assertions in the data base. All these streams are then combined to form one

huge stream, which contains all possible extensions of every frame in the input stream. This

stream is the output of the query.

input stream
of frames

output stream of frames,
filtered and extendedquery

job(x, y)

stream of assertions
from data base

Figure 4.4: A query processes a stream of frames.

To answer a simple query, we use the query with an input stream consisting of a single

empty frame. The resulting output stream contains all extensions to the empty frame (that is,

all answers to our query). This stream of frames is then used to generate a stream of copies

of the original query pattern with the variables instantiated by the values in each frame, and

this is the stream that is �nally printed.

Compound queries

The real elegance of the stream-of-frames implementation is evident when we deal with com-

pound queries. The processing of compound queries makes use of the ability of our matcher

to demand that a match be consistent with a speci�ed frame. For example, to handle the and

of two queries, such as

and(can_do_job(x, list("computer", "programmer", "trainee")),

job(person, x))

(informally, “Find all people who can do the job of a computer programmer trainee”), we �rst

�nd all entries that match the pattern

�nal match. The coarse match �lters the data base to produce a small set of candidates for the �nal match. With

care, we can arrange our data base so that some of the work of coarse matching can be done when the data base

is constructed rather then when we want to select the candidates. This is called indexing the data base. There

is a vast technology built around data-base-indexing schemes. Our implementation, described in section 4.4.4,

contains a simple-minded form of such an optimization.

483 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.4.2

can_do_job(x, list("computer", "programmer", "trainee"))

This produces a stream of frames, each of which contains a binding for x. Then for each

frame in the stream we �nd all entries that match

job(person, x)

in a way that is consistent with the given binding for x. Each such match will produce a

frame containing bindings for x and person. The and of two queries can be viewed as a series

combination of the two component queries, as shown in �gure 4.5. The frames that pass

through the �rst query �lter are �ltered and further extended by the second query.

and(A, B)

data base

input stream
of frames

output stream
of frames

A B

Figure 4.5: The and combination of two queries is produced by operating on the stream of

frames in series.

Figure 4.6 shows the analogous method for computing the or of two queries as a parallel

combination of the two component queries. The input stream of frames is extended separately

by each query. The two resulting streams are then merged to produce the �nal output stream.

484 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.4.2

merge

A

B

or(A, B)

data base

input
stream

of frames

output
stream
of frames

Figure 4.6: The or combination of two queries is produced by operating on the stream of frames

in parallel and merging the results.

Even from this high-level description, it is apparent that the processing of compound queries

can be slow. For example, since a query may produce more than one output frame for each

input frame, and each query in an and gets its input frames from the previous query, an and

query could, in the worst case, have to perform a number of matches that is exponential in

the number of queries (see exercise 4.76).
60

Though systems for handling only simple queries

are quite practical, dealing with complex queries is extremely di�cult.
61

From the stream-of-frames viewpoint, the not of some query acts as a �lter that removes all

frames for which the query can be satis�ed. For instance, given the pattern

not(job(x, list("computer", "programmer")))

we attempt, for each frame in the input stream, to produce extension frames that satisfy

job(x, list("computer", "programmer")). We remove from the input stream all frames for

which such extensions exist. The result is a stream consisting of only those frames in which

the binding for x does not satisfy job(x, list("computer", "programmer")). For example,

in processing the query

and(supervisor(x, y),

not(job(x, list("computer", "programmer"))))

60
But this kind of exponential explosion is not common in and queries because the added conditions tend to

reduce rather than expand the number of frames produced.

61
There is a large literature on data-base-management systems that is concerned with how to handle complex

queries e�ciently.

485 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.4.2

the �rst clause will generate frames with bindings for x and y. The not clause will then �lter

these by removing all frames in which the binding for x satis�es the restriction that x is a

computer programmer.
62

The javascript_value expression is implemented as a similar �lter on frame streams. We

use each frame in the stream to instantiate any variables in the pattern, then apply the

JavaScript predicate. We remove from the input stream all frames for which the predicate

fails.

Unification

In order to handle rules in the query language, we must be able to �nd the rules whose conclu-

sions match a given query pattern. Rule conclusions are like assertions except that they can

contain variables, so we will need a generalization of pattern matching—called uni�cation—in

which both the “pattern” and the “datum” may contain variables.

A uni�er takes two patterns, each containing constants and variables, and determines whether

it is possible to assign values to the variables that will make the two patterns equal. If so,

it returns a frame containing these bindings. For example, unifying list(x, "a", y) and

list(y, z, "a") will specify a frame in which x, y, and z must all be bound to "a". On the

other hand, unifying list(x, y, "a") and list(x, "b", y) will fail, because there is no

value for y that can make the two patterns equal. (For the second elements of the patterns to

be equal, y would have to be "b"; however, for the third elements to be equal, y would have to

be "a".) The uni�er used in the query system, like the pattern matcher, takes a frame as input

and performs uni�cations that are consistent with this frame.

The uni�cation algorithm is the most technically di�cult part of the query system. With

complex patterns, performing uni�cation may seem to require deduction. To unify list(x, x)

and list(list("a", y, "c"), list("a", "b", z)), for example, the algorithm must infer

that x should be list("a", "b", "c"), y should be "b", and z should be "c". We may think of

this process as solving a set of equations among the pattern components. In general, these are

simultaneous equations, which may require substantial manipulation to solve.
63

For example,

unifying list(x, x) and list(list("a", y, "c"), list("a", "b", z)) may be thought of

62
There is a subtle di�erence between this �lter implementation of not and the usual meaning of not in

mathematical logic. See section 4.4.3.

63
In one-sided pattern matching, all the equations that contain pattern variables are explicit and already solved

for the unknown (the pattern variable).

486 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.4.2

as specifying the simultaneous equations

x = list("a", y, "c")

x = list("a", "b", z)

These equations imply that

list("a", y, "c") = list("a", "b", z)

which in turn implies that

"a" = "a", y = "b", "c" = z

and hence that

x = list("a", "b", "c")

In a successful pattern match, all pattern variables become bound, and the values to which

they are bound contain only constants. This is also true of all the examples of uni�cation we

have seen so far. In general, however, a successful uni�cation may not completely determine

the variable values; some variables may remain unbound and others may be bound to values

that contain variables.

Consider the uni�cation of list(x, "a") and list(list("b", y), z). We can deduce that

x = list("b", y) and "a" = z, but we cannot further solve for x or y. The uni�cation doesn’t

fail, since it is certainly possible to make the two patterns equal by assigning values to x and y.

Since this match in no way restricts the values y can take on, no binding for y is put into the

result frame. The match does, however, restrict the value of x. Whatever value y has, x must

be list("b", y). A binding of x to the pattern list("b", y) is thus put into the frame. If a

value for y is later determined and added to the frame (by a pattern match or uni�cation that

is required to be consistent with this frame), the previously bound x will refer to this value.
64

64
Another way to think of uni�cation is that it generates the most general pattern that is a special-

ization of the two input patterns. That is, the uni�cation of list(x, "a") and list(list("b", y), z) is

list(list("b", y), "a") , and the uni�cation of list(x, "a", y) and list(y, z, "a"), discussed above, is

list("a", "a", "a"). For our implementation, it is more convenient to think of the result of uni�cation as a

frame rather than a pattern.

487 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.4.2

Applying rules

Uni�cation is the key to the component of the query system that makes inferences from rules.

To see how this is accomplished, consider processing a query that involves applying a rule,

such as

lives_near(x, list("Hacker", "Alyssa", "P"))

To process this query, we �rst use the ordinary pattern-match function described above to

see if there are any assertions in the data base that match this pattern. (There will not be any

in this case, since our data base includes no direct assertions about who lives near whom.) The

next step is to attempt to unify the query pattern with the conclusion of each rule. We �nd

that the pattern uni�es with the conclusion of the rule

rule(lives_near(person_1, person_2),

and(address(person_1, pair(town, rest_1)),

address(person_2, list(town, rest_2)),

not(same(person_1, person_2))))

resulting in a frame specifying that person_2 is bound to list("Hacker", "Alyssa", "P")

and that x should be bound to (have the same value as) person_1. Now, relative to this frame,

we evaluate the compound query given by the body of the rule. Successful matches will extend

this frame by providing a binding for person_1, and consequently a value for x, which we can

use to instantiate the original query pattern.

In general, the query evaluator uses the following method to apply a rule when trying to

establish a query pattern in a frame that speci�es bindings for some of the pattern variables:

– Unify the query with the conclusion of the rule to form, if successful, an extension of

the original frame.

– Relative to the extended frame, evaluate the query formed by the body of the rule.

Notice how similar this is to the method for applying a function in the evaluate/apply

evaluator for JavaScript:

– Bind the function’s parameters to its arguments to form a frame that extends the original

function environment.

– Relative to the extended environment, evaluate the expression formed by the body of

the function.

The similarity between the two evaluators should come as no surprise. Just as function

de�nitions are the means of abstraction in JavaScript, rule de�nitions are the means of abstrac-

tion in the query language. In each case, we unwind the abstraction by creating appropriate

bindings and evaluating the rule or function body relative to these.

488 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.4.2

Simple queries

We saw earlier in this section how to evaluate simple queries in the absence of rules. Now that

we have seen how to apply rules, we can describe how to evaluate simple queries by using

both rules and assertions.

Given the query pattern and a stream of frames, we produce, for each frame in the input

stream, two streams:

– a stream of extended frames obtained by matching the pattern against all assertions in

the data base (using the pattern matcher), and

– a stream of extended frames obtained by applying all possible rules (using the uni�er).
65

Appending these two streams produces a stream that consists of all the ways that the given

pattern can be satis�ed consistent with the original frame. These streams (one for each frame

in the input stream) are now all combined to form one large stream, which therefore consists

of all the ways that any of the frames in the original input stream can be extended to produce

a match with the given pattern.

The query evaluator and the driver loop

Despite the complexity of the underlying matching operations, the system is organized much

like an evaluator for any language. The function that coordinates the matching operations

is called evaluate_query, and it plays a role analogous to that of the evaluate function for

JavaScript. The function evaluate_query takes as inputs a query and a stream of frames. Its

output is a stream of frames, corresponding to successful matches to the query pattern, that ex-

tend some frame in the input stream, as indicated in �gure 4.4. Like evaluate, evaluate_query

classi�es the di�erent types of expressions (queries) and dispatches to an appropriate function

for each. There is a function for each special form (and, or, not, and javascript_value) and

one for simple queries.

The driver loop, which is analogous to the driver_loop function for the other evaluators in

this chapter, reads queries from the terminal. For each query, it calls evaluate_query with the

query and a stream that consists of a single empty frame. This will produce the stream of all

possible matches (all possible extensions to the empty frame). For each frame in the resulting

stream, it instantiates the original query using the values of the variables found in the frame.

This stream of instantiated queries is then printed.
66

65
Since uni�cation is a generalization of matching, we could simplify the system by using the uni�er to produce

both streams. Treating the easy case with the simple matcher, however, illustrates how matching (as opposed to

full-blown uni�cation) can be useful in its own right.

66
The reason we use streams (rather than lists) of frames is that the recursive application of rules can generate

in�nite numbers of values that satisfy a query. The delayed evaluation embodied in streams is crucial here: The

system will print responses one by one as they are generated, regardless of whether there are a �nite or in�nite

489 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.4.3

The driver also checks for the special command assert, which signals that the input is not

a query but rather an assertion or rule to be added to the data base. For instance,

assert(job(list("Bitdiddle", "Ben"), list("computer", "wizard")))

assert(rule(wheel(person),

and(supervisor(middle_manager, person),

supervisor(x, middle_manager))))

4.4.3 Is Logic Programming Mathematical Logic?

The means of combination used in the query language may at �rst seem identical to the

operations and, or, and not of mathematical logic, and the application of query-language rules

is in fact accomplished through a legitimate method of inference.
67

This identi�cation of

the query language with mathematical logic is not really valid, though, because the query

language provides a control structure that interprets the logical statements procedurally. We

can often take advantage of this control structure. For example, to �nd all of the supervisors

of programmers we could formulate a query in either of two logically equivalent forms:

and(job(x, list("computer", "programmer")),

supervisor(x, y))

or

and(supervisor(x, y),

job(x, list("computer", "programmer")))

If a company has many more supervisors than programmers (the usual case), it is better

to use the �rst form rather than the second because the data base must be scanned for each

intermediate result (frame) produced by the �rst clause of the and.

The aim of logic programming is to provide the programmer with techniques for decom-

posing a computational problem into two separate problems: “what” is to be computed, and

“how” this should be computed. This is accomplished by selecting a subset of the statements

of mathematical logic that is powerful enough to be able to describe anything one might want

to compute, yet weak enough to have a controllable procedural interpretation. The intention

here is that, on the one hand, a program speci�ed in a logic programming language should

be an e�ective program that can be carried out by a computer. Control (“how” to compute) is

e�ected by using the order of evaluation of the language. We should be able to arrange the

number of responses.

67
That a particular method of inference is legitimate is not a trivial assertion. One must prove that if one

starts with true premises, only true conclusions can be derived. The method of inference represented by rule

applications is modus ponens, the familiar method of inference that says that if A is true and A implies B is true,

then we may conclude that B is true.

490 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.4.3

order of clauses and the order of subgoals within each clause so that the computation is done

in an order deemed to be e�ective and e�cient. At the same time, we should be able to view

the result of the computation (“what” to compute) as a simple consequence of the laws of logic.

Our query language can be regarded as just such a procedurally interpretable subset of math-

ematical logic. An assertion represents a simple fact (an atomic proposition). A rule represents

the implication that the rule conclusion holds for those cases where the rule body holds. A

rule has a natural procedural interpretation: To establish the conclusion of the rule, establish

the body of the rule. Rules, therefore, specify computations. However, because rules can also

be regarded as statements of mathematical logic, we can justify any “inference” accomplished

by a logic program by asserting that the same result could be obtained by working entirely

within mathematical logic.
68

Infinite loops

A consequence of the procedural interpretation of logic programs is that it is possible to

construct hopelessly ine�cient programs for solving certain problems. An extreme case of

ine�ciency occurs when the system falls into in�nite loops in making deductions. As a simple

example, suppose we are setting up a data base of famous marriages, including

assert(married("Minnie", "Mickey"))

If we now ask

married("Mickey", who)

we will get no response, because the system doesn’t know that if A is married to B, then B is

married to A. So we assert the rule

assert(rule(married(x, y), married(y, x)))

and again query

married("Mickey", who)

Unfortunately, this will drive the system into an in�nite loop, as follows:

68
We must qualify this statement by agreeing that, in speaking of the “inference” accomplished by a logic

program, we assume that the computation terminates. Unfortunately, even this quali�ed statement is false for our

implementation of the query language (and also false for programs in Prolog and most other current logic pro-

gramming languages) because of our use of not and javascript_value. As we will describe below, the not imple-

mented in the query language is not always consistent with the not of mathematical logic, and javascript_value
introduces additional complications. We could implement a language consistent with mathematical logic by sim-

ply removing not and javascript_value from the language and agreeing to write programs using only simple

queries, and, and or. However, this would greatly restrict the expressive power of the language. One of the major

concerns of research in logic programming is to �nd ways to achieve more consistency with mathematical logic

without unduly sacri�cing expressive power.

491 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.4.3

– The system �nds that the married rule is applicable; that is, the rule conclusion married(x, y)

successfully uni�es with the query pattern married("Mickey", who) to produce a frame

in which x is bound to "Mickey" and y is bound to who. So the interpreter proceeds to

evaluate the rule body married(x, y) in this frame—in e�ect, to process the query

married(who, "Mickey").

– One answer appears directly as an assertion in the data base: married("Minnie", "Mickey").

– The married rule is also applicable, so the interpreter again evaluates the rule body,

which this time is equivalent to married("Mickey", who).

The system is now in an in�nite loop. Indeed, whether the system will �nd the simple answer

married("Minnie", "Mickey") before it goes into the loop depends on implementation details

concerning the order in which the system checks the items in the data base. This is a very

simple example of the kinds of loops that can occur. Collections of interrelated rules can lead

to loops that are much harder to anticipate, and the appearance of a loop can depend on the

order of clauses in an and (see exercise 4.64) or on low-level details concerning the order in

which the system processes queries.
69

Problems with not

Another quirk in the query system concerns not. Given the data base of section 4.4.1, consider

the following two queries:

and(supervisor(x, y),

not(job(x, list("computer", "programmer"))))

and(not(job(x, list("computer", "programmer"))),

supervisor(x, y))

These two queries do not produce the same result. The �rst query begins by �nding all entries

in the data base that match supervisor(x, y), and then �lters the resulting frames by remov-

ing the ones in which the value of x satis�es job(x, list("computer", "programmer")).

The second query begins by �ltering the incoming frames to remove those that can sat-

isfy job(x, list("computer", "programmer")). Since the only incoming frame is empty, it

checks the data base to see if there are any patterns that satisfy job(x, list("computer", "programmer")).

Since there generally are entries of this form, the not clause �lters out the empty frame and re-

69
This is not a problem of the logic but one of the procedural interpretation of the logic provided by our

interpreter. We could write an interpreter that would not fall into a loop here. For example, we could enumerate

all the proofs derivable from our assertions and our rules in a breadth-�rst rather than a depth-�rst order. However,

such a system makes it more di�cult to take advantage of the order of deductions in our programs. One attempt

to build sophisticated control into such a program is described in deKleer et al. 1977. Another technique, which

does not lead to such serious control problems, is to put in special knowledge, such as detectors for particular

kinds of loops (exercise 4.67). However, there can be no general scheme for reliably preventing a system from

going down in�nite paths in performing deductions. Imagine a diabolical rule of the form “To show P(x) is true,

show that P(f (x)) is true,” for some suitably chosen function f .

492 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.4.3

turns an empty stream of frames. Consequently, the entire compound query returns an empty

stream.

The trouble is that our implementation of not really is meant to serve as a �lter on values for

the variables. If a not clause is processed with a frame in which some of the variables remain

unbound (as does x in the example above), the system will produce unexpected results. Similar

problems occur with the use of javascript_value—the JavaScript predicate can’t work if some

of its arguments are unbound. See exercise 4.77.

There is also a much more serious way in which the not of the query language di�ers from

the not of mathematical logic. In logic, we interpret the statement “not P” to mean that P is not

true. In the query system, however, “not P” means that P is not deducible from the knowledge

in the data base. For example, given the personnel data base of section 4.4.1, the system would

happily deduce all sorts of not statements, such as that Ben Bitdiddle is not a baseball fan, that

it is not raining outside, and that 2+ 2 is not 4.
70

In other words, the not of logic programming

languages re�ects the so-called closed world assumption that all relevant information has been

included in the data base.
71

Exercise 4.64

Louis Reasoner mistakenly deletes the outranked_by rule (section 4.4.1) from the data base.

When he realizes this, he quickly reinstalls it. Unfortunately, he makes a slight change in the

rule, and types it in as

rule(outranked_by(staff_person, boss),

or(supervisor(staff_person, boss),

and(outranked_by(middle_manager, boss),

supervisor(staff_person, middle_manager))))

Just after Louis types this information into the system, DeWitt Aull comes by to �nd out who

outranks Ben Bitdiddle. He issues the query

outanked_by(list("Bitdiddle", "Ben"), who)

After answering, the system goes into an in�nite loop. Explain why.

70
Consider the query not(baseball_fan(list("Bitdiddle", "Ben"))). The system �nds that

baseball_fan(list("Bitdiddle", "Ben")) is not in the data base, so the empty frame does not satisfy

the pattern and is not �ltered out of the initial stream of frames. The result of the query is thus the empty frame,

which is used to instantiate the input query to produce not(baseball_fan(list("Bitdiddle", "Ben"))).

71
A discussion and justi�cation of this treatment of not can be found in the article by Clark (1978).

493 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.4.3

Exercise 4.65

Cy D. Fect, looking forward to the day when he will rise in the organization, gives a query to

�nd all the wheels (using the wheel rule of section 4.4.1):

wheel(who)

To his surprise, the system responds

Query r e s u l t s :
wheel (l i s t ("Warbucks " , " O l i v e r "))
wheel (l i s t (" B i t d i d d l e " , " Ben "))
wheel (l i s t ("Warbucks " , " O l i v e r "))
wheel (l i s t ("Warbucks " , " O l i v e r "))
wheel (l i s t ("Warbucks " , " O l i v e r "))

Why is Oliver Warbucks listed four times?

Exercise 4.66

Ben has been generalizing the query system to provide statistics about the company. For

example, to �nd the total salaries of all the computer programmers one will be able to say

sum(amount,

and(job(x, list("computer", "programmer")),

salary(x, amount)))

In general, Ben’s new system allows expressions of the form

accumulation_function(variable,
query − pattern)

where accumulation_function can be things like sum, average, or maximum. Ben reasons that it

should be a cinch to implement this. He will simply feed the query pattern to evaluate_query.

This will produce a stream of frames. He will then pass this stream through a mapping func-

tion that extracts the value of the designated variable from each frame in the stream and feed

the resulting stream of values to the accumulation function. Just as Ben completes the imple-

mentation and is about to try it out, Cy walks by, still puzzling over the wheel query result

in exercise 4.65. When Cy shows Ben the system’s response, Ben groans, “Oh, no, my simple

accumulation scheme won’t work!”

What has Ben just realized? Outline a method he can use to salvage the situation.

494 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.4.4

Exercise 4.67

Devise a way to install a loop detector in the query system so as to avoid the kinds of simple

loops illustrated in the text and in exercise 4.64. The general idea is that the system should

maintain some sort of history of its current chain of deductions and should not begin processing

a query that it is already working on. Describe what kind of information (patterns and frames)

is included in this history, and how the check should be made. (After you study the details

of the query-system implementation in section 4.4.4, you may want to modify the system to

include your loop detector.)

Exercise 4.68

De�ne rules to implement the reverse operation of exercise 2.18, which returns a list con-

taining the same elements as a given list in reverse order. (Hint: Use append_to_form.) Can

your rules answer both reverse(list(1, 2, 3), x) and reverse(x, list(1, 2, 3)?

Exercise 4.69

Let us modify the data base and the rules of exercise 4.63 to add “great” to a grandson

relationship. This should enable the system to deduce that Irad is the great-grandson of Adam,

or that Jabal and Jubal are the great-great-great-great-great-grandsons of Adam.

a. Change the assertions in the database such that there is only one kind of information,

namely related. The �rst argument then describes the relationship. Thus instead of

son("Adam", "Cain"), you would write related("son", "Adam", "Cain").

b. Represent the fact about Irad, for example, as

related(list("great", "grandson"), "Adam", "Irad")

c. Write rules that determine if a list ends in the word "grandson".

d. Use this to express a rule that allows one to derive the relationship

list(pair("great", rel), x, y)

where rel is a list ending in "grandson".

e. Check your rules on queries such as related(list("great", "grandson"), g, ggs)

and related(relationship, "Adam", "Irad").

495 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.4.4

4.4.4 Implementing the �ery System

Section 4.4.2 described how the query system works. Now we �ll in the details by presenting

a complete implementation of the system.

4.4.4.1 The Driver Loop and Instantiation

The driver loop for the query system repeatedly reads input expressions. If the expression is a

rule or assertion to be added to the data base, then the information is added. Otherwise the ex-

pression is assumed to be a query. The driver passes this query to the evaluator evaluate_query

together with an initial frame stream consisting of a single empty frame. The result of the eval-

uation is a stream of frames generated by satisfying the query with variable values found in

the data base. These frames are used to form a new stream consisting of copies of the original

query in which the variables are instantiated with values supplied by the stream of frames,

and this �nal stream is printed at the terminal:

Iconst input_prompt = "query input:";

const output_prompt = "query results:";

function query_driver_loop() {

const input = prompt(input_prompt);

const q = query_syntax_process(parse(input + ";"));

if (assertion_to_be_added(q)) {

add_rule_or_assertion(add_assertion_body(q));

display("Assertion added to data base.");

} else {

display(output_prompt);

display_stream(

stream_map(

frame =>

unparse_query(

instantiate(q, frame, (v, _) => v)),

evaluate_query(q, singleton_stream(null))));

}

query_driver_loop();

}

Here, as in the other evaluators in this chapter, we use an abstract syntax for the expressions

of the query language. The implementation of the expression syntax, including the predicate

assertion_to_be_added and the selector add_assertion_body, is given in section 4.4.4.7. The

function add_rule_or_assertion is de�ned in section 4.4.4.5.

Before doing any processing on an input expression, the driver loop transforms it syntacti-

cally into a form that makes the processing more convenient. This involves changing the rep-

496 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-FnoNFQb1tEOw6yuHQ4IZVrh40RaF-hM59BEgcIYsKJ1KZ5tpOqAOQIGwFGBtARtiacsaNqR9cxINsW0diPtFUixA6YukcOXJYjA5AHo1SJmOhEF5cx8UZkb6O96Uh9hTrHEoGIxTBimxTIUSGvUdL6BIAqRXvoSCdFItQWjorUV-gM5rCZhrncbq51yF4DeuNsAzqNyXHRdt8eQyJLGhW7OgjEGRNADjljohtWuZQCcaikviucbYbbaUaclSw-9XOygdhrEwyKucyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaATOknKsQEiLF6B6R2vIjiOOgpninRFItxnOLHEEh82yY3BBhOgBcs5xggPIImLaAI4aJDcVCSmPQCVDGRf4gCcBNAkQToJsExiYTxIlkSQ+cCAidiPDpziHhJEowBeLqyUSDouLciSMCvB9DwKwsLtkpPQmGiSoJIojn0OIiDC-qJCf4dKliqzEYxEYeMSxOQgmTY+DFckdiKwn8NwAyEwyvRLYmUSnJDab8VS2iil5zOUkAAAxn1Oo6UQ8AWFEjccJcWrYsIgDATx5IpWIGAAFOEiJTWgyU1cJMQYCPjJ0vkpKYcMwAFcTgYUx4CiORGk9UpsiTVl8jimhi4OKTN-BwTynVTewcU87uVIN7O46gzcUqTcmMBpQgokU0rlz0SktThEcU0QtsQilVTopNU+KQbE6iBCTgh4QQJGDk5wlM0UiQjsdDFBF8SpM-IAc1NmmtTVuEiKCCRwo7cIOCS0owCtIECRg5Br7F0ZRS0DLTVpSgs9hIg0FaDq2caV6bdPem+Sv8vQEIV50nCjAgBUIiwqikWn-S7pa0x7lgK2na9HuIvTknyMwaAMtO3AIOLZDGgp4uAwvS0qoNsh2JQRW-cEWQKclEz1u-qLIDQJSh0DTiXgFkRLFpJBAbp8M2fmCI37CD0Q74BeBz2XKE5xBMomMn9K4BvT7pjolGRqnlQSypZkYQgkl1HBBBWZpgLbkeSPL4y4Z703QWBzlFfC2IpIF4B1KH4FAnJ14-ASCKkgCDj+kIrGUP2v7RApY1A6Jg9267PdoAYxEsVnyKL4jf8QgmsdizcAWySRT4JNsb3ohIzJRBQXmNuQZQ9wk5Jsa2Wv3JkJ17Z5aMOc7IjJUCQR7syXgiO4QwAfZDo8frWIDmFBuZW-I6AvDrmBkdCX0hwnf0dkmNs5DY7KKIMYggzQExgNYGHKhlGFdCic5ObnP9Q+juRfogDjt09lxwkR7-cUuHP+5DjuWpc0sSkGp4Q8sxYwlUsky5HHB8WHI-eTyKdYRdG4G8wGr1hFFMF1RP-DeWLLCiGyLAxs4EKbIvkxEt5jc8UcYC2kpAuuiI5uZ8OfnYlX5xXP+YDXG6P8cqYAJOT3Fvnq8GsfjMNOdM1FXyLmJcy4r7Jd6miYh25U0b1menuAMFuEB0W21wUhzGgbbAhbWLBL7lvRx8qeSvL8iRTHAFCToEiyAI4Y2F-0TcL5Lw6oB+gI4skEDKI7GYgZX+PKRZhEWMieKSgr7kNJVmUgNWAgFaekDSwx44mTrYzPIuODANxOkdXkL5MGlD9yxDkzCaAHrHQygR05foHqmLC+SbYWgSuL1JeD9TRgQMtxNOWIV5iBxNsJON4odGmKKRhCqcrQSEVrBbFmCIGSEv8CWKjCOUwWN7MwXNi95rYvYe3FPkkoTgmLYxfQXrxQxUh9ioadaK7HaAgxLwsQN4vihMZvxnEowGBO3AAAZWWnBMjENwQpL0FyX7OmmXRPJukxkbhJIG9ACQYkvQERMElniXUvk9UPJLQZMS8g0ykrgJJujMTFl4dOpQ0uaX4BllQywkFMsikzLtJ4dfSQPQzrahJJwY6SbJNGVUSYl7gXhZFJUk7DHwLQi5RUoamUtHlqkt4ZTBwg9LDlZinSdvILz6TbhQwnTCQgcVlVZifywxSwt8mA1tJTkloV0pQmLK+lppf0axFkQ5KgljkzgfOKOZ6SdhBkkQEZNoWzloVJoE5cYNCFmBrBZw2yOpOsmiS8V5iuwtaIjF-LFlbKoFfuUNK6k+hKBLJTC1XDwt+WWEwlcNKJpWgUaUkDcTh3EDCtNweMUVXC1T7vsLFcq-cYXLC4XNgQ2K7JfyzLESqCVQqtBrKpgBQwP8V2YVoKsuHf8SJ1fLUURxVRENpx0o0JvLIlH-1v0M4vQRxy0Asr5I0dEibsk0lUSI2R8NxcMur7uTcZjQG8dFxthXKTul4+NVt0vgUM1w2YYNT2JeEu1HIby9YdlxkzuSnlLwjVe4BSBQJRupUctapLJ5nMI1cgCMdmqcU3QI1Uqg8kLMtJgdJAFRdpIlNDX4TpF2YompRJtizBBF8uDxS7OjW7KCQzqo5Y9yTWNEpIqa3CJePkmZqbFugDtT0sJWFrbIxahcdF0+XHAK1BgqtW4BrXIhS1Dyy9Y2uOhNTIprarKu2tzV5ShVPakmX2pXkSc8pFRPNeGpEmoAkWRi+NZHMpCAaWF8atBhJ3cmga0JVE8Tt0A0lgbRgUGvmAOqDXuTwRYajNeOqEi5AMNKGyJD+P-FASQJ4EyCTBO2XRA6l3E2jXxNaXNrMN76haqRrzUW4xhm4JIJYzA6wbiuY6p4oGqHWyIR1wy3JQeVz4CBOI0ym2BsqaUtKDYymrZYWLg4IqIIWVbjdMoPJjR+NiQQTUwo-hL03oMNaqHdFGEF5ZFg0YwtblmCWb2A1mhflQX2hdSJwTmpCPaxs2-TyORub-m2RErOaO89m11c41c2L5rcIWpCK5tEXubAtYHX7LFvYC+bw6AWkRqFK4B2BSwnEHJeFsZGPSstwGVADDWQADTvNaWyVUKoi18l2YVWjvI1pBzXyepfQtBk5oq3uLroFmnzdaugChaQcz01VTkuezNb+tg2h6MwCN4Yl7VLwpjHesup4s7iI2-lm-k61pQ-ajvQwOVoGmpax6NWy4XVuC07arN+2lrRcw7EcgDABU1IXUPpVuCzl6IVbWKr9iLBTtLm87Q9DNWXCVekVLKiFq61XQJwX2hoR9rHq1zTic2gwQttrX8bMAK2kVZi0ko7autW2+1OlFy2Qx7IP2+bcSpeGkrwVT224LvIcrTbbgdmpHcasx15a1VhobtnctuClKOO+a9YaaRcAzbKQzO8pWzsbn1yggRiP7cZE0JCqyYi2zcMS0R3WBSwdOt-DTtEDo6U0eyihhAIwGMj1YQArejvXxAn1784rZOma2lY7Icd0OzYYDDGigrDJxrQyKTsMjK6oE4gUAQsHAHiAO69zb7VAI7qqIdWAVRnihx4DByKFvZdDpVDJGQ8mKN4Y4r0Wm31z7l+7I3RdBpZBdudrOmYWqPWZtLxSNukXQ6rzji749q7KKFLvvCiBZdcgAvYe3-wvhL44oENlJTME2wAAnOIW22iUzBhKiQCgNb3SVCVUdVUI4DkCRr3uWA7YQmvNJdyII+gUIoFNRluB694lMQL81+alQ6Aq+m9Z3Jnm4C59hgaSo6MkB8zbg8+iHCStxCyp9JPGA6PoFvAL5NBfa9wEft72n6g0cgWvT0B31mCv8ggVReosChlxB1h2vHYyNN04AxdcOr-eJR-2v5SoL29VQBBUUQGs0MeKiE+mnZAg6dkETZlAkSKrgcgwIXmlbJlU2xi2Z4eYCG1QOHKbGGBu9eoyfA0sDYUsBCJgFwMc1QA0TQ7NyM6CPhuuR+y6jeFvDkGLF-LG7dQcajeVi6WoHg9M3QNWhPIUc+hEeSlj4aOOXHOEOhvhgyHHuwmk4MBqQ2Iau1FmDQ1twYM4HsSLBtg8CGOCcHZ9GgHg15T4NNQI12ENQ90FEN8GWoch1QFrL-UxBbD9hyPZi3Cj5iEafhm8OvsFHv7xKHe46PpPJVGRbdpxKQzktiFO7OgLussVhNbUB6IAWVJQDr26RGrXtVoY7AGLKWp77GRiYBj2rz3YB+26B35qJzEAUKAAOswEg20rOIyh8ABUXKOLRbK-lPiEZGX0yYLD-mF8OQbqMNHmjrRuDe0azSccujszKUWtEgCJEDobnDgisdAAAAvT2hoBaP+AB6cx4iN0e93RU5AOxgY45CGPsHLDJLRXeYmewdA0Ah4WVGlDvXSqhIVoIg-yyDakHj2Uoyg28Z063FaDB+5UkwQo0wH4WxR+wN2I70VGDNmaU3CYXS6UgJdmxY0aKkFEiA+AnjBeBs1FbGqUjSATaEUfQYomDopxo-GVVyM59pyQJroO2wEI2xNwARhkwEEE1PpA23QJ4Iwd9LsTiN4kBk4WMDzp0GTcrAQgeRH0moGTY+-wL4cj0QwKicaOxmlDy2iGNVva0JZ8e+NirfjF4f41s2FMgm6DEhiI4aDsOR6eTX5JinaWEM6c-DYRyQzywKNwsyxB+tGRBCUOccsg3HZw+6esNOGFNiUnQxGt2Toa81TiFxIYeOi2HAJjhnjhlDjSbF-hfADwl4ToBhGtTh+807wb8OCGxVgRgcRgBCPeVSoYR+-eaaiOqQYj1uplUwTMmkJEjxqmPSLzmDO7STGRiCFkaMA5GGetkKE+kavglGWd8JqMXotv0xBuTvJ1cPyaqPvhmA05m03ObPoMo2TmB+AAEGUYMpDjnRk411VuZF5cTZOO4rADuL4tlia5oQ-FDQABBryu5+YyccF04tjzMmLIKefPMvKXzdxd8-3k-OXmwAD5444sY1ZfmDsv5mTGedKgXnDznlV8wzg-PQWaW952Y3uZAv054L75g6AdigsyYYL35k83+aQsAWI6oMo4wsfsagXCLkFsC8JVotHmfziFvC8hZ3OoXHz6Fhi9RdvT-nB9vRgi2+aYubgLzigIAA

Metalinguistic Abstraction 4.4.4

resentation of pattern variables. When the query is instantiated, any variables that remain un-

bound are transformed back to the input representation before being printed. These transforma-

tions are performed by the two functions query_syntax_process and contract_question_mark

(section 4.4.4.7).

To instantiate an expression, we copy it, replacing any variables in the expression by their

values in a given frame. The values are themselves instantiated, since they could contain

variables (for example, if x in exp is bound to y as the result of uni�cation and y is in turn

bound to 5). The action to take if a variable cannot be instantiated is given by a functional

argument to instantiate.

Ifunction instantiate(exp, frame, unbound_var_handler) {

function copy(exp) {

if (is_var(exp)) {

const binding = binding_in_frame(exp, frame);

return binding === undefined

? unbound_var_handler(exp, frame)

: copy(binding_value(binding));

} else if (is_pair(exp)) {

return pair(copy(head(exp)), copy(tail(exp)));

} else {

return exp;

}

}

return copy(exp);

}

The functions that manipulate bindings are de�ned in section 4.4.4.8.

4.4.4.2 The Evaluator

The evaluate_query function, called by the query_driver_loop, is the basic evaluator of the

query system. It takes as inputs a query and a stream of frames, and it returns a stream of

extended frames. It identi�es special forms by a data-directed dispatch using get and put, just

as we did in implementing generic operations in chapter 2. Any query that is not identi�ed as

a special form is assumed to be a simple query, to be processed by simple_query.

Ifunction evaluate_query(query, frame_stream) {

const qfun = get(type(query), "evaluate_query");

return qfun === undefined

? simple_query(query, frame_stream)

: qfun(contents(query), frame_stream);

}

The functions type and contents, de�ned in section 4.4.4.7, implement the abstract syntax of

497 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEHsAcFMCcEMAuBLcA7A+o+AjANtADSiQCuio8aAJqAObSIBQIoAZrOALagDGAFvEiI4oAMygAFAGdovFOnEA6MSoCUTNqTTzUaStOnhekgNbQAnsVhzwsatLWgA3k1DvQNxKVj7k0jDRSPDxJG147Bw0PGJiAflBtamg2ZDRoajdY2IAuUGgAR1J4UPMrUH5oeGpJSuqw23tHNWjs7IS6mvDIxyy2mLz4Q2MzS2JsZFDuppaAbiYAX01tXUUueHMsXAJJJ1cYiLRpCjxjEq38aFAAXlA8f0RJACIAKmxLl6e1eZitHQV9KdwKZSJBRhYMABGYhlDAAJj2fVih2OoGkpBw7wINwMRhMsOhoAmoVOvHOWOgcyRMWQbCk6Mx2yu1xZiRoKTSGUR-RiXh8+iSHPS1B+bQW+Twshc1LaKIo01otyGePB8PG8EmMgxFKpPI8tKkCpurMFqWF3L1sT5vjZyTNGVFevF0ElV32lt5jH5RI1U0a1G+MuyS36IY8Yfcf1WfiOcEeBJhljVoAAbiVSJTpf05WjtUyccqRgmfZrSeSmbq2gatYzLsbbqbOQGs5bZIgtqWzngLgRCEGPe5IBrYJJ7sdVYSh8gR7C4cQ03gMy0+wOB8TR12e5TK8GJVL3Xqc0alcN8Um5yXQgydYGPdXjyb2fbmwePABIfptjtXvOXPsf1d+inEdgNVC8FyXFdANXddrwrKkAPcZ1XRbVcv3XBV53TSlHR5CNYnw-CowBUBqH8IdEAESQuAtbJrX0HgWVuJ4gRBSAnn7NoElY0FOOyPJGNZJ40lkWBEA46DQASES4z4to8jgTgRy4YgngAVTQUw0HAAB3fQoDgJA9FAABaEyfUuL5cPw+jSPIpABHmJYcwMhAAS3HF1k2CldnmHMGAoW5XKM9At2eHj2MDHMyECiAYDcvQwuE2MxKs5Z-mMrzoAwHA0jItA6EkNNYGQJksMXTNX1s0DitKv9U2wwMlmI4zcpoNI6AwWqmUkNr8roWjPC9G1Ol6vKOqa9Lo1APqOq67CxvagrBts9dZuWpyppI9bOrSDAOHgLhoCK+ASrK9gECOlbhv0QsTG6+qDquzaWsUaAAA8RBoE6zvqiCiAuw7KqRarh2ojZsp2n66t7BqKrUYgnpwxYWDAV6jgu7hQAAZQASQAYQABVAAApbHQAAFiUSElDhLbjP8DBZDwNgMGgCCjIKmREC4RBru8G1GaCLgcDgbneacUAAB8pbkxnjhKrnjgl9wZblgIcHAcACCocW+el2XLSF4Irx5-WPDVo2AkbYU9cm9HQEZ7A6AYagMDHR5lcQcZKi2AbUKGgW-ACUCvacAAycOKiqGow-rIlfedl6VhIoWgbtgPbKd+AXYyd2Hj11S0CBtLmpT4zpAsEXtYwcBWeLo6M6qm7o-qWCzapMuMsURnlWQOg0COtBPY71Cs4CZ3Xfz8cvdUvuB6H8T7fLxR58H6Bh6ZqvNdNlWD1s0b10P307ZaZfu9uwx+-Xzf-qbvoD5jyR13biXO-pnuAjlKh22SXg8FOiFNA98PDjz9lPD2hdQBPG-pvP+ACEroFLh-fQsDf5yAQUAre1dd7633i3Y+mpCG4LPufaaaCMDwMAe5O+cd8FB1bjUF+J8w7vwdozB6BBKEYOoXoEB7gwGTzzpA2e0DOHZSoYgtAyCHbiO4f-XhoVK44P4YHb0xDahP1fnzM+ycL4NV+lwyRWDaGj3oeorRJ9tG6JRuwgIACRbUHgGzd6kAbBX3QKowROcIEF1ESxQ6OAnEuLcdADx0iyEkQcUE5xQ5LqMDgNILxLd1hgmUTvWu9cgbEA0awyJxlonBM1tQCwySGEaOsWwlewcMD0SZtgEQi8ynemzrnN2IizaqTqccJA0BF4yOqWo3wIT3HSD4XQh+BDLGalYXo6ajNDhkQBOcD6oTwnNMFhPHxwi-GdNAHJWIMD0BLL0Cs1xoy9ADP0YskZGBQmxzMZMhhHtakpCgZCfJigbmrNgBgFEGzAQPFeWwKBCI5kkW+ecjAJQR57yed6F5NgQWiLEJ8mpsgigb14MdCZoCW6tN8TPPZTwMUZh0NAK500spM0KGS7FetHBjxbpAkltKsUUuIF7Rw4KK5svJfU3pi8kl0I8PCka0ySFovYNOY4ArGkb1hYgRl5jxX1C5VK9x7YenyuHsKs2yqxX6G0dy2xgzGZ9OEBCUl7KGW0TAUEEItqeWf3dkMLVDS+kKttUyhhxtHXGqqfoxm+BjCmFUUMmpQj2m7N5qpENvBTCUpItS+NYbcUCOZQXJ4qanico7s6-QqacrgBKeGx+bcWEdylb3SAkB7hkgBACx2Wy2nT0VXPWt9agFJuMujEZYSxmePTRGxhz9K1vwLZQWAdA9VwrxeUiVY6ZlVqldpaF06klQANfOlpAQHWhC3VK1IsBZWnUKoen1Fj6iHsnZq9dM7JAXpVUak+N6UYoObfNEcqz+a7vATs8cqzVJxGQawdG0hMY8DxkTUm5MqY00hB+9m6ZelQI3imO1+KAjM1ZshxcnNCphz4gkNEZs+J5DTo3IjepuJazYtgjJtDt41zroEdOYdiDodaP0CjX90A9LgTwqRdtiP5AXH8-j2BBMKOE6Irj5HP1yOMY26jPIEh4a-TDCRQmgFobQBhhTvcr4Ly9ap-o6nxNryaXJ-T3H5KfsWcgZZ3YfkDvGR3UTGnHPOf7esmzBm9S8ddY45xrm-MeZo6Aal6NRyBOCXEoGIgT12ygpJNohTnHFNKRxg5q55OBc-da8lInIsaaK-S8r2VtWet1Sl-ItnDMa1JGmiLamxPnFTXpgLPIgvdI9dZ1r5n2vdj64K0zez8s9c-UIOtyAG3uYlqJmbeBSl4eKCISQfawuDuARx+rGHUuAReax-6SSz2zr5px2zdn+L5FgEpKB6lNLaT0miCww94DvVMuZNbvSe2r07aUv4xBzu0WrIzNxyAuBOeQCmbKMW-gtADhmhhy2ISQ+hygOH+1qmbe0CDjdt4kJ7iuODvjXBIDgCSDji+eO0BI9fO4I8YTgixV+xtvtWW6cI1yx6D6X03boenOgJpvPAJ9oS0dJLSTEeHbS20c7cv5exC2-p4XN9HiI53DuzZryg7zQqg0dEeA+a5YSHU-6Enh5evcazm7PHbRCgdH0ZC+4ZSKTsHT1SGktK6X0A7RAFgYDfcoIDtK4ZTX6OO6zU7khVnSCuxh5Htk13nbj643obX92cTyKBdnx1j2nunenyAjhE88+gtHg3GYkl3rT-HhG+3A3TS88cmH6AzlrJ21139uvECwAzHHjmG3IVuLuTYB5Ety-29iBZlDI-jm3P+XtybU38+SFH78mFdWuOTrK3yir+ry8BzJ2zCngeaWYuK+qwanoGE22dzEV3pO6SSEZgA2V1WBu82aMjtotl19C93Uxth5bVCBd8kRn8-8mdJNpUT13VeZq9mR9k+dh8C8ZVgCdVFUy8ID+hT8LcFogD6lED-oGcDlbIiCvYkDcIn8SdoCrQW598r96UxchpP9+sFULscDbMaCI8n9I9poq9tA14MhJAG4wle8al90xCgZM8uJQBs8HdQJXhhDjNhRPhiAhDi41DRD1xxDmhvhEJ9ku5pppAyRMAqd0EZMgELtBpT9KtT56CcwuUcRKs5UaslU7ZeCUc-0LUL8HD1UDkEhFDLRBha0N5Y5zDa5yB5FMEAQZcMD3Dv8lVlxWDYgzCqBoirC4i9AklqUHC0i0s70v9ODbUbFaCXQ3d+gwEKFlMFtTcPRuIC5aidN3J0ltZT4DkgslNWj6iZ95DIEejrC2jmNJVec8h91rIBCSINNOt-NBocwsscQi0ucw5cIcwyxJRXCojLDYjFEjheoS0LAicYCjgKBVCxkB4MgINbgtCRCahNiTU79vR18sslc9R+cIi2Y1dOANcNwyRJRiALjr5rjp899xNRssCe9M4UkIY9d+QkDJAxd186lts+j3jJIuMpUNMrNxtY0m8A4cx-ocR19cTb4FoV8eCkQ14GMa474yStVRi6t-py9cJbJ-pwTzghicih0JtbMA4aT2juw75uT9jaSSEMT19RSpFETKSDt+wIDxR3AkNxMWjhj6jj9XxBTRjES1SeTMAhSUsFS0CN9JMf49iZTTEp8m9JSqSlhUZ2BqkIMOAsZoNiYyZKZqYVAP0nYB9jp3pJDQAvsmIiQ-TJ1otcdJcEkT1iA3iCTm5nks0IgKcqcaAadoxc1WCozpdYyjjWTpiGZydKdqcEdAyCUANNdVJkziy0z0Z-t-dqk7lAEpdElNtAzEU3k2BiAPlJ1Ocji2yYTEzZUkVNtiAwUCzFBVcUx1cmk2B2ygURyuzxApVqUCDDdDgvo8EQZM1xwng1yMxc0+B0BNzq0Ah9zjpSDBy-0o020ToKoukbokD6yI0kCrdNy7ylwrzVUmET5SDsSdBTgxkCpvjpzfimkuMvyX1NRFSP0iCkY49+SEyr0agYKHYsVALIYgd4lNSYhtyGFQIkZ8znJYDEBfY-CIQhcwKFUcRJiP1ot4kZBRiE84Ya9AzQ4mLypWLez4lxSZd4k9hcLnjvzNt+LuKgYkC+KgYBLRUhKoLQgkZsTPovjKKRdTMOK4ZmKcAhhsoIKkKbQCACpSLGKcFGUQyDK6AjKFw5C2tQJ6L2N1KrLG8tLZAQL+iPA8hzKjKhTGUAAeO4DeCy-gO86y0re7T3J4AAFS1iiyoAsCnToFICFVzE7WQAyDyCeFAAAGoUDlcFYOpaRssmKnBsrDyMrsrCiPA8qCoCrgqWhcsFIwqRxIroq2BoAdJ4rErODkrZs0roEsqcr5cqq6AarvLiroFVJ+qKr3AhqarHKpUIpxTZTRjNSkQ0L9N3YtYwRdL+wHYMjdsHKSht1LR7UTZjKd4QrAJ1N1qgQwQpqPB0LwAgLOoVK-isSKq8ghT45RpRq7qOgn5HK7qPrzCl0rwir1RNQ5rvDQB8IaRX90N45SKdLz8KKfjVLh5b82gPcRwhTvc0BNYkgFCS4TiCI6DGdZRYCkYcQ4KGLcDjqW49qRLxLvLGaroMToIkYJKWbtwobCI8KXjrrNqEKMNJ1tScElqcFyoVrfhBl0MNqoAhaMbIxBkGbvLyojq9QTrHUfroIrqUw5bbrlcHqnqQKZyvU3roIPrRivqn5tbJIEgvxRorLyo3KpsGbYIwbLxaribaD+xqx4aQzEaz9LUTaqL0b6CYgsazrtZcb8aaBCajoQ8GTw8xRSaDkcxKbbhqb05aaNb6bgaObmaFK2bxceLY8FLva+DK6fCbRZabqFbNoHTwNIMcYCZ3S4MvSKYfSQ4SpMdYd4dcdEdL0+9tlo1xxgdoEMcYc4dnzJ6sdsooc60PDdNB7n1R11wtdNpooe6p7+6L4bi7gC4gwWVOhDyPBOgBwK9sgWViRT73BiQL73iWVgJb6SBhwH6j6s0PYX6PZ370ss0-U8BDyAG9RL7YgWUyJpA614ALBDyIGoG4qeRQGYgWUsbb6saPQkGPAWV1hSLoUcBpBc0cH+A8GIN+hMH3AWVMqX6PBJB3piBjibgAA+IM-qhB8hg+3ckyah9wWh+hpwa4Zhr7cyNhx+rNDQtoXh0ABhgRlhl4KR9wdhllYAbhqQOhqR-hwR0AMAERj+3cgAUhUckekc0b0fkdAEUazSYmoaMY0ZYZDOONEd3IAEIWRrG1HjGWGXHbgHHdHHgngfLDH3HbGvs-L3AfG-7dyfLrhuGbGmGWGomwmLHdzGHAm+G4mvtmHEnHG-HGHoniBYhYmZGMnbh1HsnngnGVGWGYgZH3AnGPAAygwopYDZ6+70yRiTKbh+xUlNFqhiAWnsdwMmmziSBt6562nEpwAcAAArOQJVTp-obpv4OJp+0Zvuw8jRLXdh2Ifp3e6ME1LeqHHeq3ATOZ24guFlB-agQ8y5rZ5XMBrNXGNAM0JzGB-Jx555wPW5u5rBrNIhjAQmXGW+v5gFr575jhvxv5gAURfqhdBe+ZZQADl4AEWVGkWEWXbvmhnUQdnjmpNGSOnrgumhBNs4nRo5y+nVnsc0F9nmnKXsoKFTt5m2hFnSXF05zG8cXqXAwHY0dx9DmxmEd8d4qPZAzeW9pBRYAVs5opn4A0wzCSphAkToIcWF6CBF5l7tA4WYgz0RXZhYgJz9A2xQQQ60bHhAzPi0yXrRdAIZsIjJAcW+1VaBr5dOWzTN5Rri7YhbXvoHXGzJmZn5BmK7qRn+XWmGXsIy8xdA7yKTWNdJoCAKBA66BTgtKXNUaNdXCvRIBY2mlAxG6nTm63TYNPSqZO6HYNyEB5AMBMVjhEp1hYAw1xEyy91ErRYRwNEm26qhsKlfzTotMz5+qngMAyrSNFZhq2BSkO2+34J+i8gp3DFuaDWjyuB1gaUEsRAHkx31aR14BeBeBErghUMZAQc93bGINsrJBd3eB44ngMqEhb3QB0qJrsqr2tWeRb280t2pVtA4lZBuYx2CcZ1AOMAf3TpZA9g3w+abQhrB3nh+rkzV3ZB13RDumz0QO0Bf2AZQcxqvgnhJ1QOT1soksuBL3p1m3AhTqz1+j7390JJ7N38C4qPQBI4+I38W3-UT4qOnAZY17OOyOnAvHoEQNqOpBRomOQyngQM5IEgK3d32wa33J62w0qO5I8g2PoUUr5tPEmOWOBxKMC9Gy0TtP+OMX724PsqCOXLiOemag08uOxrcsMqR2hTMk2NG4ttzk3NjOBoHOBwnP+rLOiO4ASONE7OTPirHO1A6OptAvwoHhDyz0gSMOwOgvYAaJZ3P1QIVOhtYunhn7NCC4xOyPwbQguOkvMOsBguMv5Z+8OpSOBp+x72AByEds9Qdlr-sD62r6qid+r795Lwj6tjMWAUpTFEb8j6Qo6EWMWUaMb8JsFihrNKgK51SOwUq7ScSOeQwOMUqgfAgL4Lt+Q2L2b4bhxz2ubxvQLyrtLjL47p+C7kryQB7tkCri7ydGVuV3gBV9sS3NxYwAdEvcj5bObXTH9Rr8F54YHrT6RRGQzzz9ZH9T1mIbpj7oYL75AYQV8v77FQwQDpJH9Q727fTwH8HllEDTlHU1jcQwHjL1ZSdObreD7d6cff7wwQHk-V-GtWbaHmnv-dOxsz624fsFzqn9ODzrvPhAn3gre1n2QN2c7TyYlhnyuJnlnnH5i+vVxbXauhsi+cUm95+8H0CUabHgdPOUHHJRdU37b+XwnQn3IR0vXwXoSL+o3zgdX83jdTrx36MfXiT1H+VjHn77CaL2fV+6cOnX3nGsXFH2VtH77rH93gdPHmnjLgigX5akZ2Xz3mdYmqA0-angnv-WyMnw8kXrJRuKXyA1OuiRg1xKYkwkiQPGAdnvSmpPPLX8H0aMHh3SOoDaBH3F7fQIzo1IPClKVDc0on9SCzLsGHv+Q9cef27Pv1xXG33V7Efo863XVZ85UOMRKRAcAHKbKaoZIFCrXmf5v46afiTvf1KEW6geX7bsSRKLnaftv0dSf2rKvxviufvKoLgBpxgBplkgACCwKIWkCEhQB0DPONIARAz8AGMgD5OD2gHgC3YcA3YN72N420PkSPGhme3-6HQgBXxVARAMIGADYIuA4Nnc1IHoCEQ1aa3JKyqDY5aBSA4gLQKZjwCP+iAyASJw4EYC0+YMb6lQMAi7A4maQJLDrBYEugYBNQfgXCF2B4CPQYgmRgrAAHfgkBNiX-ooDUFEC2AACHmMS3HrbsKCBgr6PUhsCHR-26gxZkK2aC9kzBG8CwQAOsGHQJup1XQTRHB4hEiejAqQdpjAGiEDk31cgXCxUHMN9BSAcwZ4NcEUDK0lg9LopQFwYBaQxzB4F6nETsCkAiMfioSVgI7Rli40YCntHgqZDAYz0KDoWiKF0B44lzcHhaxqBlCnE3scoZSCwFRC4AmAHBlRB2iIkdojeZoTkKkqToKISWLoQ5CCoUQshLQhSjPwzpCQ2AvoDIBlXB5PBFhkwZYd71pQlB7W2Q0iEgCcDg9KaypB3BwlOi7D9Y9QpSmmVSEoh0hoBKYfsJmH8VveEOMGBRAjhRw3hEfZoSJ1GGdCMA3QoKuuA+FKC9Q64X4WCJ5D-DhkQImzhcLfYLdRokI6gSXSkoZc1hSwq5pOieoJslE5A2hmxTBhqNwhChE2BP0qAJpoUmAO-o2lpF6BiADPR4Qz1mGvgcwQI15MbligwjxhlEIKkyL2H0j0AxAVEYBBZGiVKhMVPkZyNZw3t1hBAK5t4JNje9cRjAfEQkPBjSjbcJub9i5TygfQERCA7DN10Kgm8DhUqAKM4KsFlBCQZQLgUiGcI4gAo4IW0ZYHHKyU0QtQp8E2CkhkiQgj7NEJOn1HM9YQdcQ0WyNgJlAcQZovmGySwxfpwQTge9iBgDFlBNoCbUABFQAASkLDAAAEFsY2MSFgACUIquMAAPIItyYtwWirBUYACBoUz-eIhcLGFDCroM-UgHqPZDvQWxnQkTpaODHm8mxuRXsb4Ay6WiSg3YIUUcEnQTiQgjY0SM2MDLZjcxBYosaWIrFVjZxjAFId2KHGLiRxPIwMpaJiHBiMAoYkFEeK24Hj0AJkTwc+TNBP8bxBxHkW2OBgejPB+0Awd015zNDEqTDNIgIDkCmBqRC4-fp4j-EqRX6iAVsa0LfatVpR04pJK+LgnxtGAngYIPS1TJJYcQAABnmAfp0gOkWpJhKAFdp3IyAGoCtFIkRBtAOE24Htywl0TRA2VSEHGIYSMSJMzE2AOGThJETNMPUMoZxKh5YJKJRIiPpJ0PKgRhJmnUSdQEe6dsNUG8cSuIgCBpAwgmEhYrARknc85JNFNqiRK4QiSKJVE3CAHhsDZQdIJQMNO-37BgJio7PIIjFU2D8TxEJeawKROMmJQxJXRWfhHyX42UwY--SydZPhEE8oRHgYKRgCsl4Aw0i-LXvb17719ICkoqKTFLDSMSpUyQYAQ4FrjAJ++ZQ1katUGRpTQp74qsJzwCAOTtw4dfUHDSKA7CyhNUsmrnQYT94MwUNCoihBak8hFihQpaLtEwDwUAYClTqf-hbg4AvRdoJsFNQSCLDXQU1PIKVNimLR+ofQ7XmKCYBvgoCPUj0d8O-SHCdaoZaACFJWnd8kcPHZaXFJPjbhWCeQeabIB5opSPRV0wHnvmuFuxUhlOK+JcGhjnQFwb4rScMwKG3BehJQhioVIlGw0pABQwTjc3oK2RtABVQERMNWlzQ74-QkUQtxiAAy4JeravpURfxSAzhI4BcAzm+asAXgVM-sIsWqH9S1p4M9OLjNGl2SJpdMuGd6OFBOSkZE7FGXyL+l-hRRM0aoX0OqE843wEsyMC8I9AKQPpAs2GMzKhnhg6C1YbKREQCCeJcZkM9ES4C0ZgAqZLwVmQwkxEbDsRBM7qUbJeJyyyhis4YSlO0ECg0AyMuEZAEnAXgipHo+YcxHlGbChsJshUaHwGD5AGpoQV2X0wRBHD4krwqqecNdmHT5CDQlIazG+ljJfpYckgO7Oln0cY5IEeAVcOSFfTHqqcnYJAAvDpzZhes0AAbOjlNkI+cc5jl8JDjvCI5OXJ2bzLhEgiRBdzEEQiAimxAeZEIOESby7nYy2gJvXuULP6Dl1ve-s5YUGLPKYTuYIBLcntJbSEoR4y8rpJhOfKHB-4nYvhJlJn4aJMpGqUiVzkPncD2OoQZhJqBPkicWUJQKyRYAnh+kvg3vHtrfM0nN4SIvLZxIxI0mwwBRMEzoYyNO77RchEY4Zv-CqCYBGJOIGwOIQEmXA1JwCTKesVgIDyZRJuHELlkwVwigFrY0UbvMXDd5oFmRTKX3LaDii7ZHozBdqMCgLCsRgcjwMEWVG980CQ3OAKUk4lc4yFsCzSVCNVGH8DSBIuhSzh1FoSKAK4jAMWLUgAAZSFtWL9F4ACJDsBCQ2MYnISOhvgQGR2K7HJAexR48HgOL3FuxNFo4+nN7znEjZMJSSC0TuMnGGSwkYgj-tItkUKLsY249sIOLMW2KLFgZT8d6xqC84TxBIs8ReP8WULsge5TCXePIFfAlBoSjUZJK3kEA4lCQg7iLUBxOKtFwCnRXBJn6fjIhhgg2gODgUyM0iv8pxQAoBgoSi6vOdRcQ3MV1L+KUqMZBTi4RzcnuYClpUzVCGFLyBX4pAD+KnnxI4mByQJeERAEyC0BSrcXHlDAkv9+M3SrhU2TyVoBAZUI0kby3MUEKQFqEjEgXVCGcl8MIgThSNxWUjc3xVomiHkOGYFAlmtwZ0Vf0uVncng+ec5TA2Jq2QHl2gKaU7kyBDZ2li9T5a8uuWeCMuvy4BF-08LPcjlCQ08ruIMU9QPhRoiwXVxjEXSpYimc4ZiraWH8bAiyiiZgGDGXthx6AOwpVKRUfQeo04sgtmEjGWAcQ4SpMGGLpVQ0cw+7e7AqiJWJRPBTLNLEkpcFlBrx4EtAOkoAHJ1sgMUcEKKqWXir7xSPLLuSo2VSBbGXKhBe2GnE3LtcO0+2R+mOB2BsonEvaKSovkOjmm2i-QLcGIX7zPEaCpEKfmDEoqrV9K8msMyjG3AWVEIMMUeI5WwENVPKzifysJbK4hV1osYNAkYkSrDoUq7ZuQFlVRrYliqg5NJMwnEBSRgazeMGtCF58a+EeB2ZQEf5OLa4W+FVWSufHkd-5dK51vECLW+KdgdK73qf15XacVVUqFtdOIrVirBohqwldqtNXdju18q4mi5DwBPixV+9aRWuJLFljKxnipENOsLGzrNxSi5Vc+IzW2NtYE6+VU8R1z6AngwIPDkuxbX-zzVMQPtcatImDqDFNS0dbAW3U5KcQbi+RYotwgvqPFOINNbDFJGPrNF3yluIesTTzyg6F+Q4FM1xwN40V0hBvL2USLgaU4JeEwVMnqCwal2d6BDf8Hx4Z5Ay8U0vIipjYQMINtOKDZfIo6Oo0NhaogkRsQ2kbJR3fHDbejCS-x-AxGwNkhtw03TGNS7dIHQF6RuwuldGj0Qxvw2TpwN4AdSZhsDbgr+lZGmNlJsbQKaLqLC1oTcu97ib1JGG9AGxs8JKbER91DhV0qIIKbTSaAHTZGyMJ3N4VAA9+DKqeDLdSqHyuboeQ03055gDsIjRJuAQ0asNMmhFWisI2sbccPmwNiJx8EO8JBcAfwdwkCHBK8shm07ptkSIhbHgKWsvKpohX-hsgpIzzZpuY2UIgtWGyQGlvFnK5rNbgyaHZrW6qQnNp3WBqxq83ctBkvG1DIrgy2ybJRRS78cSwaVjKBGW0nkIgNq1cKxC0APjRu1BUW9J5F6jqHiJEUajy6GgSzXWqEXqiXBClLaR+AmImwstKuHihCs2h2aNujmhLVwsPItaRATW-RB9DkDkBr+F-D-uvn75JsU2KydNovClQB90emPekhuj802aWwtkLrcMp62WgM6jDOSDdv3YbYRIeLUqBtjupFdc+b4qJVIBTCIwNG1AyOujtrULcns6-fQBRAMQh4yqm2yzU8C+0J9-oB3UzmiFm1qj5t62rOVNn3SetytNEQ7Qmop1x9A+P2kPjVtO0jdDylOoPkgSxYUB1gzPOBmAJxAABOdzYMml3QMblMgQaB5vIhgCblKQpLNzGID056CBfDwTonoL59X81q1kLhMVqxAldpSJrk11UhKBHdcarqVUUtA274RxwDadkBt1a6nMYsT8e3Ebz6BzIPZfsLzRiA+7Pxfu7GsQEl0FbIGYAjtXgCfkvzB818I1f9rcFzD9t5AznX40fnQNU9HKaBMNqF0g5k9herAH6TzYOxreAQLpWkBijzg4AmsMZJ8zuWogCgOIZXu9mwDM869uwwjm-gw7kBB2swTJY6tfxw5YArel5qAEE4koNhw8L4PQXd1PAzI5kOvaADm6OwR9FAb7Fw2+C473A7uq7l0oKBzBoapNfCNWG1WH9j+0KR-qIQv1W7T1pEuwK2uASdqVVxaUtC-qhrVhp9s+wPPPqEhjIDKS8WqSfo13QNngG+syLiDFX1qMgB+jfVZCv2EyXAhEfNd7pgOlJ198B8yDvvoUQZCDZkZ3R4Ej0EiJlgykZWiITr9blcZ+xLaiNh0-x4dx0AoCjrR0Y64mGGfTaXtG6cp6dwilXfulIQN9YKiRKgNIB0hixG95AIGZ3u71gKVefetXgD0w7D6YoY+ifQcAprxJ96ghp7sIYKhzaxD5IgDb6ivlc1lN7gGjuAClECAOoTw+ABxDfB5BmDI2tg8PA4MmHR0SMdLUVF4MyN+DQYs4uwdQz99CKbIWOm7GKgYBBANAAgLADV2DIIgkAVbA9t9pUrqpCUqA1v1RAgzhZA03ceAuzqr88Z5BNmQNP+XPhWCCQbQHEa-SJHluKR9yXBLulHlMjaM4ChjLFkV1icmB0-B30gBurWp3oUCBkcnZPxwp3R0pHhvKIp1MDu0-dfkGSmhhnpax6Y29PfR17QVTXWkZIFHmgAAAOkwGrVTK3Y9+tgHYBI6s6pGfDJHIBHt1iIW9j1cfvMH2NdLDjTY446PPOOXGcpWAI-rcbS67CI+pAecI3nKCgQoToAAAF7Lh3A5xr1lcZBP7Q7jwRx44iYHZpZXjTwIAx8bSgARNA0ho4HIZHCHH0TNxrE+4wK67k3DcaUqrwFKpXMWgTXQMKwG+OJbqTwJ2k+CfpMQ97NpVHACybZMHcCTVkIAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEHsAcFMCcEMAuBLcA7A+o+AjANtADSiQCuio8aAJqAObSIBQIoAZrOALagDGAFvEiI4oAMygAFAGdovFOnEA6MSoCUTNqTTzUaStOnhekgNbQAnsVhzwsatLWgA3k1DvQNxKVj7k0jDRSPDxJG147Bw0PGJiAflBtamg2ZDRoajdY2IAuUGgAR1J4UPMrUH5oeGpJSuqw23tHNWjs7IS6mvDIxyy2mLz4Q2MzS2JsZFDuppaAbiYAX01tXUUueHMsXAJJJ1cYiLRpCjxjEq38aFAAXlA8f0RJACIAKmxLl6e1eZitHQV9KdwKZSJBRhYMABGYhlDAAJj2fVih2OoGkpBw7wINwMRhMsOhoAmoVOvHOWOgcyRMWQbCk6Mx2yu1xZiRoKTSGUR-RiXh8+iSHPS1B+bQW+Twshc1LaKIo01otyGePB8PG8EmMgxFKpPI8tKkCpurMFqWF3L1sT5vjZyTNGVFevF0ElV32lt5jH5RI1U0a1G+MuyS36IY8Yfcf1WfiOcEeBJhljVoAAbiVSJTpf05WjtUyccqRgmfZrSeSmbq2gatYzLsbbqbOQGs5bZIgtqWzngLgRCEGPe5IBrYJJ7sdVYSh8gR7C4cQ03gMy0+wOB8TR12e5TK8GJVL3Xqc0alcN8Um5yXQgydYGPdXjyb2fbmwePABIfptjtXvOXPsf1d+inEdgNVC8FyXFdANXddrwrKkAPcZ1XRbVcv3XBV53TSlHR5CNYnw-CowBUBqH8IdEAESQuAtbJrX0HgWVuJ4gRBSAnn7NoElY0FOOyPJGNZJ40lkWBEA46DQASES4z4to8jgTgRy4YgngAVTQUw0HAAB3fQoDgJA9FAABaEyfUuL5cPw+jSPIpABHmJYcwMhAAS3HF1k2CldnmHMGAoW5XKM9At2eHj2MDHMyECiAYDcvQwuE2MxKs5Z-mM44bHgLgMCEGAaAwZI8HgCwMhkQlitKjIMGkBFUM8L0bX8QJgivSFWnaUiXWq6harhXZ+zyUDOgqtQoIHXYbgAPjRRBsty-LoEKqqypqLKqly2COomyS9tiVaarqqklmI4y0hEWACHgFNoCKnq1oq4hDr646GtslqghCMb+wSF7+sG-phuHWoqnWna5JiKbrlmi64Gu277pKx7-rq3Zdv29xodmjacu-MaTvS6M5oWjA2BKxB1jBP5iEcd6mv0cmkBETBca4GR5s2jAqckGm0UJs7FCZxAWdqzmco5hbaMa7xmoCL6r3FmjftABWhtAOGrqqRGXskSHRrZ8bIex9gKdFtnJa52ClZaQNTpWEivLunA0jItA6EkNNYGQJksMXTNX1s0CvZ9v9U2wu2iZIl2aDSOgMBDplJBjt26Gl2zRpTuPI8F-Qs-dhPsOT13s-p2X9HXfO06cqPjKrjA0jJhAuGgT34G9332GbgOkVswsTETsOOBynDFlrxRoAADxZmpB97cP-eIYeW-ThmSBBp2MCrtuO7DiDKSX7uc4d4yp5nhu2AwFEHmWx456IUikEPkfpZzKucXrxvl9b+-n5X3DbLvyYraIUGQVZn2WrPduod57UCfl3F+6sKKXUwOsSi-Bi6xwLvvTBqdxqP0QH-UeSxWC52kF3bgoAADKABJAAwgABVAAAKSoaAAALEoSESg4Tjz8AEWQeBL7QAgkZd2HMuCIFXuXDW8tSBcBwHACRUj3AAB9VFyRallOOyinCgHUZogIOBwDgGumgXR+iNGWk+m1CxHgDHWICI2YUuia651kVsOgDA+pjkeMcSR4xKieOkd6FqoF-EqIAGSRIqGDCxwDEBBOwHQNxJ9FCfRHhYwOa8WrJO8RgXxyjVJoBHmle2GVFDSAsAo0xGBwCXxKS3LJvc16jWtpIgWaT+F5UMMgOgaAW5oD8ZTFRB4PoBDyTVQpETVLKj6QM2+ZS+G4nmYM9sVSamKw6ahDOcT1xtN9Lo22qSKn6Dmf0tZhd-bNI8Ls+o652lSM6acjxcoqDtmSLwEqCV0A3PcOMzx+TpkjNUm8oZ90vntxCmgJZ7iwUfLkN86FtVqnGK2aMvodyaj7L2YciJttj4vPhRCpF7kcH4p2a03FmpHnHLHu4lq98SVQoBH8mWoSJnwC8VMh4RTQBPCZZ80lehYVdPDrvAgzKfms1RaYtlWLJA4vuXikZBKTnE0FYilliVyWqspTIg5NKVUdOecTFqJUFFwIwFPSANhem-IpWMnJnLuU+N5TM-lFqcBWptXa6QIrCXEy9Vaoc3dLrSHlWvHmGy0V1IaSPYghr0V0vKUGnK3r4Bb3ANQCwkaDXUtCLS01JEWr0TFkgaAay80csBTy8cHqnhluOBWtZoqXllt9dAe15jHWYqpcqzU+LA0loCIcMiAJzidu7dWuWta3X1pBaASGMQnhjuQBO7sU7-XoDbcTMd1rJ62owLa8qvbblr18RgGwbA+UdXVSRfdvqr7oAjWe-5F6HhXpSHyhE97jKPsPbAPKeBhnbKdTIy916+ViGHedARhQMw6Fbm+9ls7JnztA4Q-lsgijLV4NAXdjsNh3Rw4h-Dyi6bge9IUp4pG8MEdpiMxwf7KkIfo+WkQazX16ucB4Pt+aB3Jtg0LacxwOOVtvhR2iCqInMfpWKu16zsCcdvtxyRlH+PekeXJ1NI7rVcGEBCOjSGpP6prQrKTLHuklTE82lTQzTNUdnRZ7Txa4Nb1JKYNlqHunoYKe6xdTx8DGFMIR4ym9gu8C8yh2yNHIuhcYx0qzoB4tZpzd5hVRbkstXyvcMkrKYvOrnf5hdAT+W5eQPlgNyXc4HpPdOwrAnsXGqecl9udA1MYvPU1xVhyi3Cf0NpPKsAOuSCgBp7r5nbHjYG+wUT7Z2tjcgBN99PWZvJcU8N0bM2zM2nXOtseyzGXt0kDakJaGuVAt5Ta1ScQwuKGQXAVBDkMEUWevA7+53Gbd3rPytgvoMhPCXf0BITx-uTEB+rBDJRJBvYIU4FW38+NAw8V7WHSAEcg-yNPSBF9n1HBvg5uHcCsOffVmEkGFEnDRI8aBEnnVYgJEe74bmL3euaipxjfa656dc72sz576DQb1E58uzGsRRq87F+Ljwn2GcDD+wD6gTxkv+vdgQRAoULaTy++vackhJ7EBNgrWbAg5CmDypgZUcY9CSGt2JPQxBcOwAhHD53EJPsNRzGggQX70QgZxAL1nQv3fHvgfbgExBpcy-cKHz7ACo0vb98EQKQlwcEGVyrNWKO1d0A11rpW1Ek92pT7N0gsgG7sknujrrk3Z3aPEaNKns2ApiwWuCQkZR6qvhzOQ24AUO+JgsL+lpMi++PjtE2KSqs2qgDyNIbLVeMCwnqTX1+L6KBlBxE3jHCeZHHZnJYJwoO7tz9AGUGuGvQAABUAASABRDAABBKhVD78ACVr80IAPIADk2G3AKzzDLJsCMC+4R56ARoC5EK67l53SuxTw14oLy4eAJCt4IGTw1QQEvpIFPYoHuB5Ct4lDdjYFHDJZEEhA9KiQAgRq6536P4v5v6f4-7-7kGMCV7JCYF9SkFQHMx4Flzeit4WwYHL5Jir4C74JPCkEmRsz3aMyuxUE244HQEIIrwCE2hsxkwUw8xi4k7yIzTR58CVBRaW6KEO6-J6EqTrwixPYwF85tCgHoJmE0G4G+AwGRxX6wDBB3QRDaCXQ4gAAMwB7i6QOkV63heUkAkAeWyKyANQ6cERvhQyogtwXhkqSR-hAA1KAJCHvt6GkT4eAH4XAMlpvKEYXBKj-NAp3AUZEdEZVrES+KPt6KBE8HdsQKBLURVlVqFHEeqJqPfCmssjYI0ndPfAEGkGEN4evkcPKBEd0Y0TiOUV0VETEe5HEb5EiO4pzHdDpCUF5mdg1J6PvgEGjocZDAkGUdAGEffKdoetYPMasQ0esQGJDHkBTvrmdhcXriODsRgHsXgF5qNGdkbNzjYLsfsezqECCfgbkNjpANZM0XtuCf8ZCQUbNskAVA4HUuYjduKjAg-J7q+NsSiQCQcdLDSHSJIAfqdi0EcVWFSdDqEL-PkHSa+B6LZPNBmLhKGHuG6NHm-B-CXAXF-N3KdjATyZaIAr9s4mApjAkP9q6IYR4HkH8WSbgnHFchmMnDuHhEwG+MhPuJDACqBJmNHgkGqZCcCXSeokSKSZCeuNuNHnkIqbIJKUhEiDZGvJaYCXcZALNhAoVLSMeuAL0pcDvASX7DAV7hvilsKXQEKVgvHKKZkiyfHkiNWO-AAIQT6gJNH9C2TaC0gQg+4YL1w4JVz4LKl6gLgSnA7hh8kaxUk0kLhsky6sAvCdn9hvzxmJmpyV5NypklASn9iAK9k5kNhPhNjfFFlsAlls6-zVltDllFyVn-hvgARk4egKQ440ARmdy1mqGjwxCGlXDViYmQIBC-KHlplHx7CgAdldkFlrxg5K4q6emNnsl176CBlQKVFRlHm3jhjyYvKznzlC6QCTgXhElInfYjy-avkQ6Z5Y6IUZ4STyT5BFAw6QUdEIiI7dzk6nEnaQWY5cTY7nzBmQChn+rhk4UkDQVHyEUVGw71TgK7l9SUXUXIC0UXh0We4PlgCdkvBMWgQkWgA04fEgR4VY5gXB5UTrgkX2EwSHKQAIhKUDiyWlnC41CKVLmrhN5qV6UDhy7qyoWA7ZYBAFEcwtq3y665KXZ1rDI2VDKqQFFyF8DoBfLl627onqH6BJpTEEBuaKC1HGLpa+XZInGtTfQPKHLoktAqw0YlB7EWATJeEEawl5ABUYTTHBVnKrEQiZpWUFFO4Zgu5h42FuGgBx5HwxmzF8BmLhHYipHLQjwVEEkTHmLom4Q5iyUl4B63DLqaVs6h7QFGUeCHBeXbrmJfJVCYDonqWAQ1Uvx5E2h9Vdop4IXp6Q5Y7Z4YUiLpgVoYDu6BXOzZq5qzVUBNUHzR65756syF7rX+6tZjxX70EYDv5qQAAy9+ABM+IQwRYqjhvuBRvBlVaA0ZkV3ocBHBiBEhKs6BVeNUoNrhaAmV9A7BxB11tBbBC2lBKNdBD+H131v1uNsNXB2NqNuumhS0e5YuQhheIhK+N6Ehi1q4ja3hMhSsXwbN7gDN7ebRTwrlnNsheVlABVlNKhMFxx3omhwsOhq4BRM09ZgEuWhV11p1HRfBVVn2vN7AYB-Akt2tENgFs2-qBmkqJ1o1xtRCbem01NSsWhSACtDhP2MMKtPINNURuOus0eZo3BhgShRwkg1t4Ndh0eJsatlNodKC7h9h38dtOUs2iAFgMAfpdlAQpph6sJHQcSXxKOikdgfpqkGkWkukP5gGXa01RIqdGVyWhwLMiAEahxUNs6Wd-pKsjp2dUOsASkxd-Kpd2kek8Jfq-66Ajd0gSypCXS5CHAlCtCjCLCbCnC3CkIyyB1i4FafKy0KY0mRWgiwioiKA4i+KfECQc0kifE7x8smSp9eo3EJibEKKmyWpyGsq3Y9SgQt9qqxAO9sJBBryG+7yUq0KuiZ9+QC4+Oza4KQq2qDqi6f9V9qO1RlwIDBWqq4DG97VTIaDtuHqiDeo19VBqykmd9PICQWD5yCyDm+DaAu9SDLUa6G6dWo98DHSmDkDTDegk6ldDWCDdD-9Z+5q6aPqvD01YD99oAm8uco4IjmaoaI84auietHowamaYVua+KKjloBDPIRDxm5GZDWOWDBjyGbGSG4mXGyj+QAjDDRinmEj5DED5w8W29tjhDHiTaymEmNDGDkjWDXjzlmGv97jejHiCx6D7Dkjatp2R9rctWW6eDP9Nju92j7gl6n9+8Ea7WnW+Cf9gjCkvdRdDag95daIFgQy8Ak8pk5kG9xQIg7lMTfMOTtE1YYS3sXA66yAiMMjfwbJMofcEttqyAnTKAPTXSvM2gxALTjop5TZUgjD3AVFSQZMEzfTFJHl9V-VsUdTW9tWGjkzaNaT-Qv51qdD046AVa412QtWCjLcSjfTxzloOTTzeoCT5znA1Djw6zQFMts6ZaOC2zgjqBPmr9+OjdDQz1wLADspIofQczX5hdI4fM6kmkQ9jMYqKdMANT4t0RFgaUwFumxkGTl8WTfp0gITu9RxtkQ2OT5L-9CQe1GFppcTvM82W29LlLoJgEJLr9Eam2dLNqjgXLAZnD6A463Dm6YjSTZWf9flHiXJrcuzIgkgAGR6J660yT+TckFDrLarQGKI1jujYTyrrc+rwGmGeTAjyWJj5jhjTGXLDUbTAQlahmtUdryGTG-Tz5MisL1kjZzrBSQwSmQTUmGzdEa8prbLsAtm3jVasm40f9-rLoRp2YsZqQMbSmkir9OIkMUbGbsbobCbhASb-YgbALRcBbWb7Y+83rUpa8VbYs2b+87poACLxpkbkDpjes0Em2dmPjTdUmJb1r-YhEIFQan6n92gVD5UoxK2q2U230c7Od-1eASCIMrw07vS-SGQnwxAvLW7-qO7zWmoy7cwiES6RLlSZImARRCKkK0quTTrzZ8GuGJmQ69J7gveTGOIpjljqmrio5RWrrKd7rb79r6m0LjLbUbxuLkCMgN7dS5AuDOBjb-b8bXr3L+00giHd7KHwdm83b1z9bhb9mg7CbdKJ5n5QHUVxKsD0qjjkjhSdHWq0qz9aKRysHB+BJ+HjHlo3EvKmqD7yKMacqQ6YueQQBnp47JEWDrjtDVLPesZGjH8nmaWmjqqPVsZZYkov7uHyH9H0KEaGjvzmzqIh78yGQfedwk7l8Fnx7G4ZIkopntkUbGj2jpzO9FzXzjnJQFLbIM7DgIrNrkDgTZHbjinsFUjxGX65cr9Pbq4UbHa0rbDUirzMQ+TIX5wVDGHsrAjdVqI+8OIUbOXt88XWjKTpnVD7HtSOCpX4KonyafsGYXLq1+gLbMnp8kDQnwqqXjrr41XjX8XPXcDMqmyyj-YUbI3bHuqHSXL9hpb4o7g69YrsxwDhnkTWGcrA327Y3saOCLHwn7kjXE3JzerQDMDrHyKs3aXlXC3I7SwLAYAZCFCPAC9TCrCHCXCKgR2aV2pOu8r1TCS6VpRMXMjdzjAcA-n7nlX8rNGEQBmRRhUucQt0eEP4axAMPi3v3z6iPKzvTGdxWhSbAoKSzSPfUKPs2tzUK9zUPvMuukG36JPORVPXS6n9PcPn6UGzPI+V7GLpyZzKY3nVabADPXPTPxAMGoPmwFb1yDdtlnP44jaDMr9Qtmzjds2paKvOCtb8r9lrqJWd82Erl2v2E7lsvGY4Lkmuvrd-lBabc-sYteGpwuegvwvkm23UXjpD3IB7L38p2+XtvsS9Q2P7izvoZzsua38-XMQUXoE0flXNcOYiSd0IHEIXnnzaySxbU8w7i0jYpjX-nWTuu4S79Rf2EOmIB3cNXkovMtVvGyO35wfNQ6ZfPR5fLdfL8LgsffzFchyrf697FbvmfpDZffs0PQwqfgfUXBA7siSMgZfTgwCs-dA8-C4vQ-HPxRemw-vhf4-+COAk-gvwLeQK-8-hfTgAAPHcMtKvxguv9C9Pki88NfiYtF2gBYJQCNvIqprmE8RkHkCBzZE9KDeOgMWQX6bI6Y2RNXkAI9qSRQB4Ah-o-0KZ90ngr-cAPrR0hf86AP-IZOQnRD-9qAgA0AMAPFwIC5yEAtFFAP5SqQSBcA6COQNzRIDksEUGvuV3fr9ctiYqHegUhMRghPe-QdxDhyoCUDTE5fZzp+ytBFYLMF-ashQzoa8CoACXcXOH1d4Z9LmHvARo-34jlNNkv2A2Ivz0q516gD-PSvPhvZQlRBznfosyT866kTyZbRknQ1+wp99MbrdQV83DaxBn+jXEumgGMRJBVYpSUzlRxTb8kPQOYJHLcEbb+9S2HJNeMIPMQJ1C+nfFeOl1lzV8yWcuVtmO174pNFB-An3u4kG7v12BmyACgINlzcCFBQIQoZF0EFipEhVg8QfOx5AAoZBhg6CPIJTAFDlBkkVQZqQ8FVptW0EefO-X0FxJZBe0BIF+FGjr8-Y2ghXE0NgiL8bBDvZoDkPoHuBqwO9FwUEjT7D8NBQyLwRlyKYjhfBA9fweTyCEtwcW9XcSCEIbJhDJBBwdNm7TmyZtByTSOIfWzHwWDkhZfVITdRjzt8shd5HIdJzyE8DahAfXejXCe7sAZ6r3ahPQg+7L1vu7CHHsM1GbdM7ovTbQHvSip+ZieUzflNiK6a3R3K5IsZvAQtoDtQGfTXbHb0EyHNCY0UDphSLxFIjbghSIMDRk6Bq8PAnQAcFhxiA0ZiQgo9wMSBFF84aMwESUT8RlF8jeULEB4AqN8RKi2gNGGxCEDV46i8AeoUUR4BoxkRpA0RUqGr1NHmjP+PII0ekxVFItJRSLD0HaJs5K80EhtXAJPUIAei8oOAchP0FdE0ZMiCojwAbmIAWAl+s0aptkRtFBiVRJkUMVjENygBIxytapuZDjGyiVRe7NoOGNTFRjQA1TF4KmPcDxilewAJMVIBTFpj3a1TMAFmOVFK8AApFWPzG1joxoAZsaWNADljHgTwJiKGPbGFigerISMdmKV4TkhxNYkcaAAnIFiJx-Yy-m2JnHpjQA1-dwOOKbFLjrgSY4cWuMv63AFx2454NNBXERjZxs0TcX2NPG7jiAsQfcXWNADTQjxW4rUSqKzJViixsQd2u4CzIeAdcQYKKLGWpG4jVmAvQvjcH7A8xOgHRDkTSPAnRg5M7IkZpyMQnuRwAOAAAFZyAm6UE-oDzD+DK05R8E3EWrwCo-M2aoE8ZqcmQkgTSJiMeFNZ0KQ0ZYWavWFq6JBH2ileNCNAGaHXT4t7xvE-iSnU4lcSaMvohhDQklGSSaEYkkERJKQCG178Co30ffnkkx4aMv+eAL-irHaTf8iwySMBPqrUTCia3BrmX3wltBCJytUaKLzgmoSEJTE4yaiFMlQNsA4KLJlZOyA2T3aFE5cCQAYlmToGTdQMMUKGZBT0JtuZpiNl8S64o6jcQUFdAsCaksJN0IYLwG9jCA+hHoNySM2iL0jWUjzaPO1jimzBYgnXVjN4EgCHCfOuuTzh8yOGPBpctNHSpFNqx78thgENycSgv4qNWpsOdqWz0wk4T5A-nIyj1Iu41sK+GkmIK4IOFDDbKl+RgESCCR55MJk6RqV81-Zegapi0hzIGAREvc56b3VEUvS+6cJMRcKceggHkDHUMwxwRKOsFgBeZBievORAoiUQBVBiCVLHNlUOQ-SnA0AjALAMYHaVLBgM9WN9JQZBVTc3AdYO6wUYiBNW3sd2K0L7i8BeA8iYIFvRkDTNMZhY8hNkTtyYyEKQOUHEDkAG0Dsi8AAmekKeBq9QBlfdxNoFDSyBJYccaZiNn87tYMArM9uLID2BvgouoAugU8GeB0CEeCM2QEjPKg8xeZ-MmNg-BaZAz+Uagd8m30VkV5Lo7MdrITwsx6yVYTwBWOhR0HmpeUes8SpEj4jUk5EMVQ5HrKcC2kAqjsucUJDuwrtwZls4BILR1bq9bp7YXDI9NCjPSvMhsy0HkFtl1E1ituS2dEmXQZImkCTFLuYkdnAtQcEs7IlrLug6yvZ3Mu3CNlth0Dl0QOUGaUM-qjFDm0YFhlXVjmFzVZJc-lHQOzlYA4A7MF2fnLTlAyS56suSHkGznhQ1RXMugMQBbk6zfpGFSSgXLTgqwB5TweUfu15SjQ9Zawx2aPLQBsyc5bc9Glonmg6Jw5ZFJ4AAHJYB7WMWSfPVhgy9ZyWFuVbTKppig++o6iJWkUQjhRo7uWaauCSo0AYBdgGAdpHEizJA6qUYWgQC+ATyuoA89+ffPwTrgP568zea3NgDKwUcUCuJPAsvAh0YFCCgWXdA-nJY0paYHDllOmn+xj0nAfDIYHTrvTo5zxW3PnTIpJUniPRGFEvDZ6JNfkZ2FRjzEIUZSSFYLW1MYCrrDzm62dCBXCUTlKtu6WOGjO0V0GxoK5mSEElDkPTJZQ8VSSppPHIVCKqFLdDMi+1oUsL06GzSIWz0a65tPw5c+NEnPYUpzjFkpdkTotkDcFuZnkIQFgrgBGYKm2ALRYIsoU8z85IJSUrZA6njCfZ8olWCNDiR+Kq6WBbmfggCoxLA6LijrLbHVihK9BPs3xKbMZyBSnFcSjrOkrMVhKhIvC4hcgGECq9IlIMDJWim4XuKylmUipaQst5JKAlo2GEuu31y1LTEcE-JSkrkyhCUIgbSuSCXpKxYVRcioboou+FiLk2KEL8q51UXSc2+pBLAOAC3h3RqgyQGoHoryFYspF-pBChHg1nLJtlzhRKAcz2VN9Ro8vPAfYsqkxgQpPsFVniQT7aAAhhUL2BgEEA0ACAsAaWNdMgC5prl2QQNmcTEUvCJqynXsrcE-iYBYh9xQCq2zyFAJcyz4c0myE+V9Rvlvy6gP8v7pblAIeQCIMCo1LYJVy8ZewU8OGUGL26dbPUEHBBikrc0wJMRcQBZWWCYSmw54V+QjYyIbUEIhwXkM5VnYLK5NJOFThoWgDwZzeSxMgzfnRKMcZtTXDYAuW9FMAGBO3MAoBDSxA2GBJOKQQZXIhYyW+W4EzTEI3ojVrbHMFjN7plc1lbMbyZJH5qbRwQQC6gnoC5oLQCWbQGKO6vKw6qvVshKiSDFIJG5CxdqkYgtiDUF4pYpndtg4Lb7HA7Ad0Woo3C1URUkQ0UY2jiEmqLhxG3VfRQs06qcFJVxtY1a8PqpmqNYS+ZmlTRtWxko1ZXWok6uuBLlXVEsMoKAugDerNovq7IP6u7X8oCifanKKj1ykgwSqUgSNT4GjXXVE6NEBNdRyTVnLqAfUWonYHVWpzY1aNGhVZSNVdSEg5yg9buvRrnLSC2qz1egFmwXrd1V6oOtLBTVqq1lGaqvA+vMJo0tO9VUxAHWvVHAcQ71Rgh-i-x-4qEuEIDa-hA0sE-qoEcNTOuVq-rt1gypvk8GBCnLih66jWlmpiDPq01ERN9ZwVOqmcXIeADdd4Ws7vVPqP1cDUiCo0k1YNU67whGsQ1kbsaLnF8uhvFUHDDgWEiZkK31m2IBNNWdlrxodj0t5WbK5bLNk2xib-goi6TfKy7rSbuNBmUDqaL42nIJNj8u2dCUPTMyga7LDTeJoE2Sa86+mmTV2g+T+BNNY07TV70OTCbHlqsaAHQArR9QTqpmoPlJoM1Ep0AWE8AJMTk1jTbahsGhTxv80TNgtoU-Cm1TZjqxeNgWrqlZvxy2bB20W4VsqVNb3TPF0bMTNFtVaRb5NRsC9uLmSE2xI4-qqQj-NUjZb3cavRLWkDClioNNSWyQMZvk2habY4WtTRCA63Rh2tNmh2BvzIpMsJFyRLWDdDui+1EucTHLS7jy3WbpAaWwbctuG34JytUsf8NkBNitbJim2frYO0O2ZbStgETbfbUq3kBngf82rXNvq3PQbNSW5rS8nSBuaVWLzdvmFqD5y1tC7isXFEOmj6keQT8urffMkCvb3N823NC03SGe04491RdUCLSWnaQWd1RgHGrdVk4NyZ+BWNttiDnak6NcKrQApgGg7PFavCHSIGe3Ewp4cgcgIcvqmss8Srg9aYf03RbS1ks2Rpfwrq7cyutUsFsLZB+3O0-tloAHXJFp1YyVWIkDySgC3p6Vl58SohOl09hLwox41Z-imCjxcSV0pTYehRHFQ4sgB+pbHSum53NLVeaSzfmjs1wPV28RKsJrjrkgE6aIROq7U8HN2VL94pOu7ffLV6e6Wlo8b3FUyKjkRkYOIAAJy58WtYe0qIjtaHuIrRyMRdQ3EugcxiAe6vlfMyjkyCnkkguZtWH0DAIAiJwjwEntKiSAj5R81SEoFr0DqCIK6y0OXtZWTCXqHoZvSnvXRKJNC1sfBPoHMh3pR2kIsvbHqMyO0u95w4gOsC0XN7b1eAFKn91bjzJU1-O+2vKxd1u7+xyVUqIvp92HURAUOtXtvtSpYB0qh09xG0qh3UkN55AecHAGMT+pRJBXCgAUBxDqLvFIetpejiVnX6YoYs2YOAtwjVhbosAB-QJLdnMR-Us-B4ZIOb3PAzI5kNpdVXvm1q-9NTRMd8C6lwHb5YOgoHMDbafl8I1YNZZrk2V5R115UPA14JPUREt1l6u9f+vZ5UHW2wB+-aGXAPzjaMEOIZF8ChXuA4DTwBA2ZFxBB1KAFB2gEIbMhWQCDvKwiI3uyACHJD5kd3I1GerkIlDGB1th3otiQxNCLtVcOLsxg4Hct1zGXe8heWtwCgyuqQFrvYCFjd6n8jwGToW1WG0Q8O9HXbrdUm5KOhLX3p8KoDSAdISiNIDFBmKohX9twd-Zou0X+Lv97MkI+QH-2AHs1bwkeNZ2cO5pXDNujHRLG8NtcPEFmb+CNq6jGyMBpZOOAQngAcQ3w-cjebgqv1mGhkFhkOomjiRFH8Equuw8rQcNZdN6B+u+Z4tX1J1n91VIif3kYCKpa6Hil3JIQyP17bIBQMY+iunJY5zaBUq-e7iGMoKMKix7QIVuSL3KMFLuyOEwEv0nUj5EeSQDrtAAAAdJgAeu9qFRSDbAOwOzFx2piLxdJQCNXv5QgGH9ddU4xQqrpX6LjOqq4zrruMPGsS6ysmK8fRz65SA84fBOUFAiInQAAALwCm3HqQrUmEy8eQWdHygmJr45JB+MCo2DsgNKABE0DssAjQRkcBcceN9RnjcJmsYvKV5VHVIOAGAbwBgHK4WgR8wMKwDONg7GT0JlkwSbZNuit9MA7k6Cj5PgKyTVkIAA

Metalinguistic Abstraction 4.4.4

the expressions.

Simple queries

The simple_query function handles simple queries. It takes as arguments a simple query (a

pattern) together with a stream of frames, and it returns the stream formed by extending each

frame by all data-base matches of the query.

Ifunction simple_query(query_pattern, frame_stream) {

return stream_flatmap(

frame =>

stream_append_delayed(

find_assertions(query_pattern, frame),

() => apply_rules(query_pattern, frame)),

frame_stream);

}

For each frame in the input stream, we use find_assertions (section 4.4.4.3) to match the

pattern against all assertions in the data base, producing a stream of extended frames, and

we use apply_rules (section 4.4.4.4) to apply all possible rules, producing another stream

of extended frames. These two streams are combined (using stream_append_delayed, sec-

tion 4.4.4.6) to make a stream of all the ways that the given pattern can be satis�ed consistent

with the original frame (see exercise 4.71). The streams for the individual input frames are

combined using stream_flatmap (section 4.4.4.6) to form one large stream of all the ways that

any of the frames in the original input stream can be extended to produce a match with the

given pattern.

Compound queries

And queries are handled as illustrated in �gure 4.5 by the conjoin function, which takes as

inputs the conjuncts and the frame stream and returns the stream of extended frames. First,

conjoin processes the stream of frames to �nd the stream of all possible frame extensions

that satisfy the �rst query in the conjunction. Then, using this as the new frame stream, it

recursively applies conjoin to the rest of the queries.

function conjoin(conjuncts, frame_stream) {

return is_empty_conjunction(conjuncts)

? frame_stream

: conjoin(rest_conjuncts(conjuncts),

evaluate_query(first_conjunct(conjuncts),

frame_stream));

}

The statement

498 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZygJwKYEMC2B9LAB0IzABM8yMAbLATwzIApkBGAGkStoYuQCYAlIgDeAKESTEmKCDRIYyPGBDVqLVoIlSdAfi416jPAKZadOgFyJCWGGiYALbMzaD22i18lnEAXgA+FHRsfCISckpDXhYQ3DwoO3U3D2809Iz07iM+IUEAbjEAXzFQSFgERBgwKAw0amwANwwonkYNTmzeEyFRT2kMWXkqpRU1DXNvfS7jU0mva1t7JxcJ1MypX0CqmrqGrGbWnKYZ3LN1jcytoNRMeMSYZM1BAuLS8Gh4JFvQvGBaKA4IhMMqcZDCcQ6GRyJD-LBQWpgExxHCxO74IGEEHgMEvQolMqfSpwhGkZHotGhCH9aHDRTKVTJFHzCz6MbUfpWHa1epNFqnJic7zOLCuZkXdLXRAkxHk0KU+5JBU4F6vEoAenViDgJDQ8K+CSwACMGpxCCAoIgsOREABzQZiTXStBwHCICCOIg8xAAZkQLAwRKQPoAdKGfVpCRUkFhkMg4BAmABrDB0TiYCBwNBkcF9KGDGEjBnjDNZnMsqaIcBUYDVRhCizWDAARxAWHUKbTiBFzB7TFL2fBLwbXn0fYH5ZHjatcYTydTnAe6gnQ-x73KX0QQJThpNGF8kKkmbAqEQ1AT7d3DX8Z8UUCYACIAFSJPdPh+vHRRzfnuBJkBYp2eAcIgQG9IeXjHqeyAgEar7Xn4M7xomQEgUuTDnhAl7wRgeIjjAwD+jBcHGghfiIdWGC1mAjDUhstJIJR1GMIUaRFIgNDIBgeaZFBloTjesbIfOdB4Pwi5KsROF4RsBH+gJ5EUeQVF1mQdGXJIDFVspzFkKxmTsZx3EQZcWnoROn4GSOJQ6DZUjfpU1RcWg96oZwYGcI07YgLhPGQQg0GwThgmzihqbARJjwYRe1BXrhlleHJLBBaR3GKdpNaqepGRcVAhpRZh2GpRKGlSEsDjUHeIkRTYdgOB5iBedQPkvCVpVeOhhWxdJMneIZ1BcX56R8QMmbZiFwkNehUmpb1GRJQp5EZSpNFqUNkgAJBpLl+XJCle4eFt7VeOVTCnQ1TUtW1x3eNN+0NKqhRHZI-WDSZGw7eZgZlp53m4fpGR2V4QOICDDlIGQii2FAHpMCq61SFpbrpQ+v7-oQD5TqOZ5wH+AFY9OyNLQ+Tl1FAmPHfopMuQTCwcWgLoODgnAPgAqmASZgHAADuSA6nU+qVAAtELiA4R+AOgzSBbDJDyDQx6a4jfzerRnFN7bi0OFmIUI32paiEq4LSLa6juPoxLYgjeaBvarqxtxY+1Pk684NblgO5GtUkNgLaTBeWgMDFY1f3ZQMQxIKdAdBwdIfNf9bxu175DVLaeDR6lTDJz7tph1pfbZ6narrkGiCF776d-Vn3tF0NZlKuXudrknNcV9Ufx6jg+4Z7HwCd75JlaUJc496azq4AnBIfNGHEAB6Iswo8YL98ecH3E95zLkd1XDHstI3-tYIHweXbha-98XbsYPPpAUAReBQXepD3kvnTwufG9DSNjc3o3eDt+vLuh9j69wvpLLSP90pMVUiOfQ18F7AJjmPMg79x5dwrFIRY8IeRIiBDDRw1cU4V1PoQnO7guCoMAZPR0WpwbIGdK6RAABlAAkgAYQAAqIAAFJMMQAAFhDKwEM-AS4z3pFxagwA8AYEuvqX2sQcBQE3hHIsKgcBGjqIo5RkgAA+uiCYSPQKnbRwhED6MMUoI0uN9hgFMeYgxmR6TsnsVICxTilDQNWqY5u09Nz0kSLae0FBKqoG0YuZwhpc51y3kWU6qAlHCAAGRJO7KsBJOj0pQEiYE3xG5HKjAnvYwesSAlYCCcYUJ94MkszABPS2U98nfDoBouAsU4DSLqUAjJKjCx9mmoCZRl8-EFIIHGGAtowBdxqMUzwWkykVJCVVGpiAHxCQmVM5+DSxGbnWZM6ZeVkAtOsUyRJfl86rHQv0ySgzVTDKaUhDZBzK7x1mYjWJ1yooDMSXhRppd6R8WtHlKgEBaCqy+G8zSpSlCBOCXgKp4TVmApqFEUFR9jbbLdsi4FgYwUOyOa005OiIIXNFEwK5lybk-N+Tsyo2LUV4rViQnp5yPmUq+VSoZ9z-lKCXgy9F0ZIXh0LAsuFCKVkPj5SCxlXxMUjKQFK3FAqDQEpOUK0lzAKVku+Vy7lM9FVovBQgF5Pl1Vsu1UqHVj1E7yqLLQDRKCZGz0IJgcZCAzWqNFZU5ZgyWb2qNI66+LqMBurAHKh5-rHW2H7jyZAHrCyYhYMctpeAOnKAnpwT5RLrV-JnpGrAeBrFkDoPG4YWbyWcpzbShQSgGLInhBgA5paa1RLFT6pRLM62oAbQc8Npc61BtdcgCFLKSXms1ZWvV-ilDHkhtGS8g6Q3DvdaOuZ0LW3erCSs2mOgHyzpgPO2Ki7Q19pnrOp1Lq8DBrFGcsdqiql4EwMARFmg8ml3PYOh+AVm23lQI+qiiKhBvrPQgCgn72zVNuay+9d5-3PpWRGYD06TAth8pAfcq73mepheUttW7fWrK4q2UgEAMCns3JrFDxH0PaNzHewsCKHxEbQ6Rh8YJBngiQ5UZjJGWjdtqAcuNo6pBrtUeWnpU7iT2D-fxxtz9aPZQ1QprjSBXWHMSAJ5+QmOOKdiTqzjNqHn0kbYQKAokeM0YyXR0TIrRiMmU4Znl8LYzqZ7fJqzunsPFnUPpmlbt6QmgTEmIVwq6Q4cWfC9tUAWaBYgEmcjlRKOxeC5hqFMGwkPmS2x4IiSVNl0wkmQtcBi0haU1ayTLbwiVSwoK1LoWW2ws3ZBjtqyqswBq7Kir0p5UXqHSOqD9Gy3suzV1o+tptO3ps0Ni1HKooSa61zAgaBxtMB1NZrDtnvOrcIAZ3Nm5axoD-WN7b620t9NWGtrramlsrcu9Bws6FLtrmrUWAOTAg29LCxupZYSg0s10Al7epJ5B4DwbDaGb9otoIHtLVRVD-DE2AEkRgD5ECwNWUjx4KORxNlbO2M6qCUE6PR-DyQOPXtHwJ8TtIcCb6RHvo-VA8mIcUKh1QjBkhrD0lOtDZJqTuc7yJxzxA+hoY4NB-CWG6FefXWOuhIXsv2pi7qLgyXBC+wy53TdYUqwFda+1xYdnwvrAPkxw0MgD48vDt9g0KAxqfi4CYLPT729liz04FKdkXWPSBkK9aMZzlBVCTJl8TgxG0CiRZ+H0S7Ov4BUtGDxw-6YLUFtsrkHiemDR6vag4PLlQ9o4N9r7P7PwGxMT8n1QBtEfI4t+j9k5Pre2lt-blEu98GV9T11kAXF-7KVnlTl3RZbgmI1-CPztr9Zykd52ECnZwL9BGvQxC+sRJz9TEB2HhZl9LS8YwEXiB2SIGsMgPL3tr54CAh0wfceTyWk7DeMfyiy9ebe52YQ+gHwA+P6BVMa5beIAAAqAAEgAKJ4AACCTCTCoBAASoASwgAPIAByfCiE7IhQL2wAgwHoAeIe366eYAH86CMSqiPeLQ5+A+hBwu+gU+lBxgee0Yca1B5OU+7YsUjBXwp+jmM8bBageB+e36Q+IB4BUBMB8BSBqBeWdB-eDBcY+BJ4VOOCQ+U+DuqIlBl+4U1+1BLMnBCAQsahgO0o3sAhTBShKuxBMO+YqiahfwAIiaWuROIAyMAQ+ukgPucWBASIehdiThzMtUwORB0O7gWu2BHePhzB2CFhwRxcABaAqgLQmY4A3oiEAADJgW7DRNzI+gkQQMQNVg7DAMwHnLkUkbsGgDePEQ0F+skXUIgAANSICsAv6FhVGJFwC1FoB5aUZZGVwgINCILBxtF5GEAFFqxFFD6nRf7ZanTDFtYdbGpFGRTqBLxVpuyYBdItBLxKDVD9gJFhwjRzH5HtaFFkA3i9FHGjEnHjHFGSxuwhAtDcztjBYfYIxnZfZvavG0z6A9EYDZFLzvbOrpi5HzGnHC5cgC7LAfbfG1TLAPF4BPHUDBZ9gfYhHa7wmInBboSongmYJzyECSwgxmSYCPHPF7EPR5ZUARA5ipp2J-Yhz9HLzBFDT3EkkIlklWHeBJT0ifEvBvEWBJSob46vwcR8nvSZDEk+SSxsQcQDTGRuHfy-ytxpwAL9zvaWEJSmSxJGgI5KSZSrRuF6DSjthcSGl4kYlkl-wkJGhzTpAlAbSvTyn0TrqnS+RuH6AWlIkrBkrxQOJixsmYkVpRTxRuHWBI5ynSlSAgxEl6YBkcnOpdbwK3z-zSKEBwDjJ7iDGxxNQam36niQJlzKl94dxFIiml79BJQ-wACEu+OkWU-JWk4ABEokmeVpVcjc5CZpGQOZwR+QheUZspg03JvKlOTUYpReiAToT405I438ypSpRCKpSIVCh81AGpkZ7xSA1ZtZ+p9YGw+gTZwALZauWZpoXZ3gbZryHZh0G0R07OtMTYdOi8R8SCTJPZ5Ztkg53ESUVJt8Sg7qPZZZF8EIk5Wo05T4I4Wkputelu-QjpDZsSSZ5Ap5b57Y65cFPBm4h5x5+CZ0IEhA4kzJJScO-cupGOMF6O0FWOdeaQuObY6ghA+FQgJO-c5OPJlOjFwg6OSFd8qZ6Zw6mZjFZohF95tFFODgBFXFNOc8C8KZV6-FMAglhFQlzJoFiA4FbFSgPOmgiAKScSO8kl6O2FEuuF0umgiulw0uQgFlGwxlmeGu5l55GkGu1lTllwRu5OVF5usFe2oybRsQbmNQQ+XqP2kGgVUOD4bRRhx4oKPeEKbRQ+5aCVV2uRRaJaCVpBm2Li6E5k+xw40ljG7YTxdAMK8RZGxuaSM2PmSoyVo2+RokBa-lbRYePkEeOegRLVdQMeF8eZlooK2ASIbRlRpAE8fRr5OxdiCVksI0xlrqVeN4O6dlJ52ehBNlGkMVzUy6di-V-uCVa1lwJeYCW+wws1Ia81KMZu2O0lDeYlsi3kDaeA0e5J+8xWJaO1g1+x+1UgTeLeSIahTAp1KeQy-+gwQBYBeAsBrMAAMqAWgYfoyBkbamEbgW0ZER1URcdYxL3pQeYfIDQXaIMH3lQLPMYKjbjWABVXwbFGTV1lTTkQ0HGsIeDZDTDUwtIYTfQRQGTdQZlcMLYeELfIKBpKoW3hoVfs+joW5VIJFQkQYSiB+F9SLRSNMZ2rLYYRPg8lVqJNzVEfILmcRdviiHYfCA4RpENdsIaVrQQPTfuM1QETghqV9cjUnjrejUbmuE6HQgwm6KwpwjwnwoIsIqwC9ndc1A2oiqQI0J5ptpItIqHW2LAAoj0ljPoDllAFjFzoUt0rcinTjHjIQCYMmrFMykXamp0kUj0pwJHbiZnV+nfkCvykanYsnRkHAk1HXd2iitKsqiugRtXRneJa+Y3cbKYrnaHWNalMPbVn3WAFHQPfSHspsjMi3ekG3ZeIvU2isv3RkLXfuoer1kuv1okmPe3XvV8Aus6n1r3S1tvekLXfmgfaGqPa3e7DuODBhLgAGgWtGhPLGqYl9RsA-Wlf-VLVILfWJRIqhrxs-avRxO3RZqRgGNRqRvWppjUBNsolXbPTXUWMljA9JePXg1vdg-PbWlvKg3JsvTnS-ePV2hppQ81lDuA94LXaCdPcfS-Vre9nIrUNiE0o-Vtf-RxNgwA1IA+mmqfHGmNhg+QtXTg3UIzIimzBzFzLzCgHQDUFgLPIgCLHA-dbUEYVw6CFaMtqdlUIREwNzoHDgAejAIcO-WUGKUKEPPVVetY7Y-Y-Knw5wNIwlPBcOV+jgGmdWH8F4442HO4fHgMEDTePHeHeDEViVo46I+kDxTIrPfYAgE2qA4bj1j-V3H-ckzkzoNIykxsAk5HZk0vfeOE5qZuUWHWiQnNV3juvoI039HXYiPeM08ojutYHvnpJ4PBeKQo1mN46suzJzDzLCLamZiQDo6LFrZbFGZhZUOI9IpI4CTtlg1HetFpIttI1s+CFOGyIyFOFglCTw-uAdkdstkc7IyI24esyaiGv2CGnlIc0GuCDsxraXOPWfQgBfcGk-cQ7swbV9ugKanE7wx+pfW4+0JXcI1HbiQftC-uLC5elBEI8wyw3o2HTC6Br1gQKnti9g3luPQgxhhxj80NAEyZmZlRixlS0okOAhWQXWatISV+eY-6PSLQDJvQ5vTphE94FpGiyCNJq5mg4w989XVy0ZPySNDc+pkoi8wtRsOK8qxQ0Kyy+4HK-hBY-SO068lqxki80486XDpK8iKq6fBuaDNy+KV4GK-A1AzRm4ddrJoJgpuwPq2xBhb5UgM8+AIve0JsWY-VmovZuG-jTdbi1MU+CG+MpMowO+JwMG3Usm94uhDG3iM9GjoGygFhEiB0TioasbDI7S4a0oJS6YiK5E3fmncvigG6yg161pj4pBeuvS+Zq28y1AMc-ufDWoA+VaMQILcgMW6mhaFPVwRK4dlKwwwpmiQbpO-7qW7O9+pRrW8U+kJ64Kx2x5tap+Qq065GwCvHg3d3U3fg7AwivSte-ikXXW6O+xYyZu83dQ5cPoAigajKvbs+xJlrtYBgQGyHe3UQzPWC4vlE2lb-AVokyWj0tNVE11M22uyWzO4+2YWlZqTNZm8OimzmDeBm6G8wGh5qS6-o-uGlaI2k5Uy6NU9FFhANJwEm4R6tMgD84me3XQ+FRHdg7zUgJRsa6avruKwOpfYfdfZg6A3I+S+3Rve5lBwcVE6fLE1c0wEpyisyrcj85LIvYXYSi81p1m88qqm0kI6fPp5jXHFKas0gOPX+z3Z+zfYJyZIZxZ8XVXM503UZ2qpXSOOK75w7Lp4kj87Lvq+xGTlfKfZe13Uqje6C2HJ56XSQg+4l0+4SiA2kOKxl+W0ylXIi9XZF2S28DQt1k0vQn3Iwr7VwrwgIkImGC9gEmVU7kPto1kmVd0XvKE00gTjGnUFx2XK9TS+C0G1VHuq6ME5EODGxm4fk4MEN5wLR0i11he0Ex0bN2E8FeFnhjUyzJmJtyE3N11gk4t4U0Pg+k+iCJwK+g55V0GIhyCFd7Bjd8AJwJvoWxUxk4x02sAK93+u95wIhg9yJ+Q+lwgF04D-eJFRD39NlseND2fmQxHCZ6fLt99pFmEtZ6sqJ+VXlvj50-Jhj0J5VROlFBj4mZAOeE3uk40FU02tXWT9iWV999ayucz+N+T+9mzyHTT+mfvCWlQmNzoLZ6dCL2t0rFE9ki0D2-T4z8-OcQjS9pRiuV58N5I5MTvBryvD5Ltlgf3P520nGrHiIGL9YedmSuWd90b5s2bxbxtsMOhDbyHU+Qr39+5kXZryaSt7GHL+57Zw0L7NkkmoSrmOlMH7aKH01IOy-adGr2qbr3HN82XP7-Tyi9YFH6Hxr8IAADxnikDR8EKx8ouSBwIMxjMPiAG4zuxgB0AmO2jOFaYoAARXGMAm4NH9na4j6+zNlh8nK5iNHZao6NFOW9+2j9+l9l8-6jMODV+1-YHcyN-N-oOt-HEd+rJd-j-GJ99HkD8m-CDD8szb9F4T9T8mm-N5rmwATG-eevJedjf9BXyz3wq4xYhc8jhuwYcH+scp-1sWB5kdmcYLny7JwJX+v4LEFLRIy09U4HvLJvJjkZdkT8RdMin2FAFF4xwqwUvk5RPzFsgyyQb3uQnQjT97WIMHQIKVnpkVZeMiIJgywY4ICgq-JHQHP1-4sx2Y1iasIfnqR1MByp7WmEq1IqIQtWnPMrpa23z4CqEd-U3hfDKZeApB9vYCmQIwqW9hgkdN-jqF55R08sqXYziXUJQrwn+X4W1OoMgFaCAB3-fAcn1L7MCneLaFxBgNKjgDGgGgqAQbhgHpk4BDApjkgPagoDCUaA9JEQLNL6AdofYWPivBn7Tgf+00IgcsVXKrhrI3fAUhY0jrUDIk8vbwQcgAEsDK+DgR-hMzACcCbQmxBZo8n2RbJeBL0R1gIKibw5hBHPNUn6wlKxIf+UgjXiCFkGgMFBf0GQRvCqFSxbItnUwe-3MHPZPa8qari6B9rsJ6uAdJrvwha5aV3GsATxv10cb3YIWuGJrOMwfAuoYANjVYQTwe77DDhdjCgkEwaAHIR6GwwbEgHLThNpejbU4R4xaBe1EICKBsIxh7DZYpAPYS4CuwsCMYlwvwyQEuABHXRGM5UUEbCQqIbBAROgRjFUhhFVIIRXwybs4kZDZZMRagDIAiLEaTc5YoxegNliJE8A8RkIybnP1BFz94RlIjLHgiTzGhkAbGRkQQCND0I0g+IyQIxnqIwjNg7uRAHQGEDbBtGjRBvogG5G-pYeQsfkT4EFHCj-AQQbRqLAlFSjGMabbwE7k4CKjRR6lIUZIHVGTd1Qco-0AqJFHKjJyBoyUfSNh4ABSU0dqKFEWjEA2jO0daKNEZZFI-Ip0bqMtHpRhRtox8DWT8A+jzRSo10YgBDHOigxD4PPo6PDF6iC+kgQMeiIyx59QxnACwL6JdHaMMxKYz0bDwCAJidRuYxAEEALGxiAgmYrwDmIjHaNqxlYtMbDyrKmjIxOgbYJICrJSBncDYV4NbBWHnC+uT3DXv4BHCJoewZoQcWsKDAGYBxBw14cOLVhwAjQAAK0DADsxxaQRNGUAjFQjpxZGTNMNj4aqg1qLwo4UuK4L9iom54ocdimbYIpGMAzbLAMylETlERk3FhGAGogHo6Avwr8T+LMxvj3xPIybmyI4QsJQR4ElhMBJAmMY2RoBGEQhNgnvjGMyBLAMgVNHoTkCUQm6NeOeEHiO6iQFFKOL8DjjgQhEbYH2AB5TiFxF4+8fhNPC3jDg9KSRluO8A7iIxDw1qDYEIkMTCgbsK2sxLeFhMcQjfKpEPitrtxKI9QOgHANXEHBYwEAQOKZiFqlRhJ-8S4QwxuHgAUJFgMbBJL7Ji9C2uUW-lkPkxD56Ov3RgfeH1wC1kKGkhJsnzcoaT6UufABvZOYCOSesK49cdAGG4uS+J8XPKFrwAY0DMh1k6prEVBo0Dm8K4hdJFIOQ3hTJBdcyTMleAVcvaNXGYX7Qa6CJ8pL2JHnqGgCPV9easIEGgGCyrEyemIjRFonLSrF8qlYctCQJfKzQ+Sw-PAKP2CCBw9+JaBqW1L3CqhycA0xklf03BHcgQKGH+rUDFC9TxskkiABAGcKqBw6LAHxktJdH0JGiWnJaWRQfCo5P8qOE3Cf0aJYBNpcg6Wtlgn4G83Y4AaNFxDRCpwfGpjF6WnHulHwuIEIDaLZwn5d8Hwj4LvpNILRcQZp7QRNGNjwAfTDsTJXxkf1WSCAfKL2aGb3h5CogxsmPFxBjMorsgKYuLPllVAxm6UkkWMSxsAOqpRQMZwgfRDz3QhUyoxxMAHPjW9LMAiZKMAHATH0BFTzpeUYjKgANAVTgs2MzINYDJkjExiEKImSkh3TOIikFTKTk-SpkotP8gMxoijK1h1BUQfYQ5krNP4bBUc3UrzmXXTRAJ5ZwLQRvTLH6XADZXfdWQkE1ksyCBWnUxs7NziqgGiO6D8HjLvraQHp+4VGHeGyxjY2OYAP2fbLQAqgKqkJBwMLMrDqzHw0I9NlVG1nLZiBSoKmSHLDloyo5NbXfn7FjnYwHwAAcm6ljZ-pJcxvHnP74Yy8sdsp6tHkxn2Yu4dUhwH2AbmXSvAhVcgCPyzAj8uY5MXQvIRcgj8oqw06SvHLbmtVAxYsJUO3N9mfSNZEciqhPNWBzz0Ic8uuVPK6wKSvIk7FSSFI6YuoEwS6LZpjzYYQpoSBVSbufIQDZYzZV9OkgmQAaJod5Sk-eS8zcbHy4wb0uNDiU0omz9wl8ysIxgBxghS6aaTYqfIqpBo8s2eI5Jo1nifzSMcYU+VW15ZKAb5j8wgBawsBKsesXndVt4CNkQK5ZPWY9II1RKRkBxX8riBQGkYaxgQcCjRokEQVHzkFw3T5gmV4FaQnJqAlGNCPRynQNcLodhQwVMbkJy0bCpdGIoWlNS6YvCgISjGRGCKRF0iuhaY3JwKKTk+01+XvJgCmYXm3s1kLCL4Yjii6z84ELouUn6KD58cJBUuh-lQKKqEvfBeYt4k0KZFBmE9nKR5ZizIFqJBGFpBAXXTwF5dIBJQrgo1DnWiFZ1ISQe5zNAFCZGqVpR3hALsYKJBMuTlYH0llGUzNRuQs3AJLoqUPDtq8W57RzT56ObEpktup5Ctm7AlRtM3xIPz3QJS9BoYyHlqw7chaFoKKCoDMAyltnBJagpRiMEkZgksgHQs6UGhgGgy1QfcNWBI9SlXCs-PXRqBBxeG9JSXuAGKEUAA4eAT0OQAaBoAw4WKHUCWjmVclq2fRKBbYIbb5l5yiEP+KqSKRbKjq4g4YJAh3IrQ9yTg7SLsr6IHLrQZAY5fUuCKhlWlhAEtJeVNQdkBh-ja5a6S4V3LI2p0TMFCsdmolOA6KktNUuwW2lvFb0WmGK1iXWQVBdgyFRcoTIKdqOpUrqlninmWFp88MEyCNGbC7iV8gwclHQBIAMquq5CB8GizpUR5lmFK9leADIoDN0cw6LScKpLTR4mVahCquKu2ptKB2fKiPOQnaHMgUeRNa+JnF5zJLyQo+VYLzmpm6JxKjss1VbjtyYBTCBoduDjR8JhwAmlBTOM6oAEjQH8iEMWloWfTOr7WI0ZaQzGfj2rW86IdiTdCVryhOwg8wPF8DlrohRVJ0C0CJDjUKFE1oQebhsFOg+EPcLo4NRsQ+bTLw1VITUsMzA7f9bVLQYYo6v7zPVVOzw3WkgEQgbU4q7qKahWWuVurBKzanBf5EbbeqdgxNTQqJG0J9rA1UTQtaGuGJqFI1x0aNTPgXB481a8tAYTbDTUrqGgma3ANmsyCzEEi+aiMdOpRSzrmQ5aqJSs0LZ9KbaqaNAGGrsTOqjV-lJ9ejhvUvqS1FNcnDep8Kmd41CAUbJMofV-qFCYcVAFmF6WfriyTqz9XhyiZtIpl-6k8DeBEKQFoCcBBAigTZr9BUNYhDDZIThq5rP1R67YAhofVeKKVD4P8OMttTvqEiDaoaOBrtW1qkQONTtToGVjUAuaCRZtqhpZqw1JYfG6GrDRvAHqx4UoMjajUo6xIqN8WXVfL2PCrivGXzRueMBU15YtWim6ePczJ4ZKdsV2d5nXSU3lBf5zqCNvXGDJmb1uSgeXnLGM1BgdN5S8mfcw03Ws7N2mlTbptWDqaHu12dzSZsc1DKlQPmwtjRFtANoKAT1Tzdzz023TbUimuALsS00mbFVzII1QpoQD2bBUyW-yfjW1XohycCW3Ytdhy3qrSt3zM0kKqeqabMt2m8rSEXzZF58tZatcBurWTdyWYVWqeYj0y2JaKaAk21HZr60nBFAWW4bs1twCY9bNo2rxv5ty314zmEDcovsEOACgtcXW+lVqzm33httqfCbSqEOi1iXRQ24rYZt20jbkAY2hrQbn200o2tvczrVczlWkjRtfW12LajC3h1Sm0OZlUPlsIkhTa7lIQa4Ua0UDnNG2iPEwE+2zS5VrsirSBKIWpxfqzKzof0K0Cg6pAoQpHYMFLWO57yt5H-OyEO2G4jeSq1ramofD9yR+EOv8ZwGh0Jwr4JNZaZsqSXc9xW9JWKeeCNAJSGenvIKnlisXvySE3227TxC0j-b7CwIAmPUNcKZBr4gYC0PuCcjETYA4dJyinIWmWEO5-sNeBaOgF1LGgnAXdpIFyWqMgcDJMoaPzEC3lGtD4QXTYsMVjyX6P1HHX9TbyiUd6w7NctLtJ06q3gbW+3QYtPjU6nt0ebLIHtsUtRdYUTIEIgrJH0AbwAATgG0PJ495mNvBGzdhp7mV-8HkLEDp0ACAmDgoZPyQRX+gW1S0VIjkKkBp6mARcouSzBDBN7k1FgCtRsFr3oDgatMbPbYQPRaJbCAychEgFFj3d-WQwnQD3qNp978hnAWPZQChg8BRs1AYqqVVNQbIINqW9EEPn23k7YeRVegKvsPGrIadQc5fQfoSBlUMpbsKRXGFh3VAbYnkOoNYmHRATeqiAZsDeCYUIL7FKCv2ZY1DkWh-p+QD8JqSSjNA0Az+38QzMQhMYscNQD8PyVr0PgRYosG-fQmjw7AbYkgFAxLGSET6F99AAGqHIXmw7mweIB1qexBhJQfCCQOAD0oICTL2gZBgAXRuqJZhgNP6qDcA2YP2swDT+zwWZmgOEY4DLsFFUgZQO6MfCVoRg2cQkMixcDwzaMpeq8DiG5D7+qedEyrz0I5D8hgYZPopC0xbCgOjSDLvPKbz6VoDZXUCg2X7hmwWu-0IbulAujkWdHUPVPKzxghsdduN3RSC9zHsr1WBa1taGQDcwtE9+i0I2tPAf7EIX+lhT-siIwz-9WB4fsAdtKCCJ4zbGnR4ZQBeHcdqIPwy0S+wuIqEcfQuVzHdj4JU4rOLAJjA2j9NiDMMu-WstV28M7DPPEo+Qh11OGIxyLK3AcNGItB65U89qg7R+1KqyeEuk2lLrSAy68DRCo2p5KOAxA3C1ERDQoTjQrVm1jtNwlKCtpk1NjbtYCrLlu3PY0DsOouYwSYAI7JAAAHTEAvrx2kQbpcACzD5HGQOo0sXyVKgN7Vk4B5-ccLONPULjnSq49cbuMPHqStBv4K8YJzLAQAnkchF2FOjwnEAAALx4mIA7j+kx4xQGeMwnHDXYdE18eOg-HJU-BriJbCOilAgjJ4UIw4AuM4moTLxiOb6KTkZYajMWEfhABH4W4XgRc14E6EBPuGGTkJvEyyYVFsm99I-I0FyZ5MgHSTEsIAA

Metalinguistic Abstraction 4.4.4

Iput("and", "evaluate_query", conjoin);

sets up evaluate_query to dispatch to conjoin when an and is encountered.

We handle or queries similarly, as shown in �gure 4.6. The output streams for the various dis-

juncts of the or are computed separately and merged using the interleave_delayed function

from section 4.4.4.6. (See exercises 4.71 and 4.72.)

Ifunction disjoin(disjuncts, frame_stream) {

return is_empty_disjunction(disjuncts)

? null

: interleave_delayed(

evaluate_query(first_disjunct(disjuncts), frame_stream),

() => disjoin(rest_disjuncts(disjuncts),

frame_stream));

}

put("or", "evaluate_query", disjoin);

The predicates and selectors for the syntax of conjuncts and disjuncts are given in sec-

tion 4.4.4.7.

Filters

Queries formed with not are handled by the method outlined in section 4.4.2. We attempt to

extend each frame in the input stream to satisfy the query being negated, and we include a

given frame in the output stream only if it cannot be extended.

Ifunction negate(args, frame_stream) {

return stream_flatmap(

frame =>

is_null(evaluate_query(negated_query(args),

singleton_stream(frame)))

? singleton_stream(frame)

: null,

frame_stream);

}

put("not", "evaluate_query", negate);

The function javascript_value is a �lter similar to not. Each frame in the stream is used

to instantiate the variables in the pattern, the indicated predicate is applied, and the frames

for which the predicate returns false are �ltered out of the input stream. An error results if

there are unbound pattern variables.

Ifunction javascript_value(args, frame_stream) {

return stream_flatmap(

frame =>

execute(instantiate(

499 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEHsAcFMCcEMAuBLcA7A+o+AjANtADSiQCuio8aAJqAObSIBQIoAZrOALagDGAFvEiI4oAMygAFAGdovFOnEA6MSoCUTNqTTzUaStOnhekgNbQAnsVhzwsatLWgA3k1DvQNxKVj7k0jDRSPDxJG147Bw0PGJiAflBtamg2ZDRoajdY2IAuUGgAR1J4UPMrUH5oeGpJSuqw23tHNWjs7IS6mvDIxyy2mLz4Q2MzS2JsZFDuppaAbiYAX01tXUUueHMsXAJJJ1cYiLRpCjxjEq38aFAAXlA8f0RJACIAKmxLl6e1eZitHQV9KdwKZSJBRhYMABGYhlDAAJj2fVih2OoGkpBw7wINwMRhMsOhoAmoVOvHOWOgcyRMWQbCk6Mx2yu1xZiRoKTSGUR-RiXh8+iSHPS1B+bQW+Twshc1LaKIo01otyGePB8PG8EmMgxFKpPI8tKkCpurMFqWF3L1sT5vjZyTNGVFevF0ElV32lt5jH5RI1U0a1G+MuyS36IY8Yfcf1WfiOcEeBJhljVoAAbiVSJTpf05WjtUyccqRgmfZrSeSmbq2gatYzLsbbqbOQGs5bZIgtqWzngLgRCEGPe5IBrYJJ7sdVYSh8gR7C4cQ03gMy0+wOB8TR12e5TK8GJVL3Xqc0alcN8Um5yXQgydYGPdXjyb2fbmwePABIfptjtXvOXPsf1d+inEdgNVC8FyXFdANXddrwrKkAPcZ1XRbVcv3XBV53TSlHR5CNYnw-CowBUBqH8IdEAESQuAtbJrX0HgWVuJ4gRBSAnn7NoElY0FOOyPJGNZJ40lkWBEA46DQASES4z4to8jgTgRy4YgngAVTQUw0HAAB3fQoDgJA9FAABaEyfUuL5cPw+jSPIpABHmJYcwMhAAS3HF1k2CldnmHMGAoW5XKM9At2eHj2MDHMyECiAYDcvQwuE2MxKs5Z-mM-wMGgLhhAhQ4ACsVgBSRoAAD0gRxUM8L0bSyoIQlKirHCc9Lo3YadjgwQriqayraJq7wbU6PqWsWNqSJsLqev+aRRoG2z13K-rWuIzKAhyvKMDI6Qioy9B5uq2z6uCUJlrGpY1sUVJYC6na9vkQ7X1skbzsDS7iuMqb23u4q5reo7av0JbmveibjPSOgkAyDAijgCwnqRF6qhqN7Vs+xRCvANJJBm+RpGIDh4C4aAMGOGxiYWoHQCyzbEHy9AHpKvHEF6foEiJkmycQCmuH7PIsZx77usZv7cdF2a1Cg6DoAg6HYYzWAEZu6aJcelnHH-ST+k50nyaqGiwdYK6jnYTgeAAZQASQAYQABVAAApC3QAAFiUSEPfBxRZfTaGZEQLhEGIaA0BTWjjoCWQ8DYbK5ZQNA6ADoPWnZ9xjiDvi8nq4noGTxBU64u5wGBUEyYsLgcHAbsILz6QK6r7twFjtBc-zqX8jDwv+JpgI5SoH65DweAEoOjOC74hJfe7fu0EH3hh9HtB85Drus97jA01gZAmW2oeR5C5fx+72Ip4XTeR53y494Xg+SvH1fw-XrLlWQOg0BJuf28n-Jz9f9-P6PAfp3J+eps593QGRAE5xlpTWkHob+eoz7nEOFAvQMCKpwIQcA0OoCeTgIwMPSu1B4DZUwdAQw2DA4TyQaALypMTajmJjgEhGAhwIBJiIW67dpba1iEQlhpCq7UARsfXhfCPC4JPgMDesg4Y6DrtQ6RHhkHdjkRmBRMhCgaN4HrbAIhAFzTESA5R7gCH4GMKYRBPJVEYAsbwKxOC15gI3vRbm0NAHWLTtPDAbjjgeNDkA6hj9TGgAIUISA9wyT3yUT-CJeAEbT2KCISQJsyGQCwWPJRITxEDjHO2ZuF9FwUMkCPOgRjskmNCQpWASkV6gHUppbSek0QWDnvAMqplzJJOhmlD6+19DxOVtoYgZSqoHmrFlDJyAuDIBQCmBhGNl5-BaNVdwtkhlsO3rM+ZiyBmpJGZQWA5TbxIT3FcSZEDcrgCSBgRhKyBruCPBQ4IsUekpLScI4ZaApZyVXOVEQNBsph2nOgTxfzJJpPYbnLhc0Vm5IkR4MZCLEXsCWcClMoKP6BIOT8ncHhI6+KBkUjMDR0R4BoR6BIbja4iznjiqarzQkeDyI2YUjpkL7hlIpOwuLVIaS0rpfQJsiQWBgF0ygkBIkWDSuGcaIr8kYEKbXf6zUQlrNstpDAYz5qcQSA1PAnE8igXeXnFW7YynzRyRCjwirlXYTmsLHVb0QlgxFT41Bcz0HdlgRQ+BWSg7quetTLKPNSWmvFkC2BWyMg8KqXJVRyS86oPSbAOlFSU4hLkgpeOybIGpu1RSuNUj0YDN-ucdRoddH5wJiY6qlzsq5XpmTbRVbFFB2aGsgl1M2UOiRJyi5dJJBZWHl1fxBicXj07a+fotkI3mvcROr+U6pYlv7ecrtTz0CogXePElzJQB-PnZ1ds46cqTuoZrNd-QG00uwqkk93Mg77tWTOtotld3UP3bhGIA7N1Wmpj4ytmibXrIoae-R5654ZtZquruP65W-vlUsu4DwlWx20P-YUkhW4k3GUjENAQDU4dzmzIuBr+YkGHM8F4mHKHvwyJ8YgdqMOt3o9h9cuGKEtG+IhQ9-T2rSDJJgG589F6HxgwNBtwHq3H0eR4HMU6cQyb0QE6D7cENgaGn4DaTaIQqZrcyqSoAKMekGFK0ONQhNUCVeQG+4mARwsfWezxK7fmIusyJuzyRb5LzmvQlt8jq2gYkcLFzgSYPNHxX+t9WnvRZVnmJu+VCU5-O4g8SN-i572eS6Feuldq7tyMwQreV8CA5aXl4y06Xxyld3j5hziV8uNyKzavIBrrLIbLT4+xjjgl1tfDmL5OJet2PACIjTSIcxlklMp4Ttmkt+ckF805W6jgUDo-AhjDgcQsYwJtt+2GZtjU9Np8ti5-ZfJRf0AFlmMVYs8cd4gB3tu1qkW6lDPi-GQdc-1qRgMzsBbvcUyQoGI1uN9ZQgNBdruAXe6W9qPisO-cDQNqb26KC1xxBG5HgT93Fvg0iLD5cCs13vbj7LzXCvGNriE3Ctla4I5Ij4ur18Gu5aPn9ru1VidU7JyD1n5X2dLxJy1sR-YI2C9JsLw++PjFSJRWu8U7hvb6A9RjgeFXD71P+6+XnDdq748S1r9yfOeES9zZl7A2WZfuVrgT8OivCdLBYGAE20gzbcFANbe2TsXbu09nCVXsiXSx3eWkJOx8AfxaI6QSucB27uAAD5J7kllcmEfE+gBT2ngIVdq5VE5ynbPqfLQnUalHjwOey8BF7VZpRTP1pbDoAwaghCMvAMQJUZvVMztTOo1HgAZIPioKNE9MSJN37AdBG+KBziTRPwa+8BGn639v45gFPC4304PfP0OBDblHpf3oRqwSUR9stL92Mo4LqhQlq+Yb5PqU8Cn4kL-tVf6L6nSi7-U1P76WoMfM-FOHjWfQZa-PHe3I-PoZGeodcYAguKkATEiBLDXG3feSraA7tZfZvNfJ-TfY3W3PQHfEVQgjA2XM3LAuLYaIAgA--TUOTJA4PMg3zWXKAn-A8WAmoeAgAxgsAjeKXE3FLW-TgwjXAx-DvfrJ4QQog9AEglDGQ8g03A3K8DgmAv-WgzUeg1QkApgkVRQ1gu3e9KgwaE-TQ0IBA0ArrdqEdZhVhSHf1IvEQ9QnAh-NvfAqQgRew8hKHNAeQstLw0haFThOASTX-QHIQGQFQ-fLjYgbQord-EiQIsbCbEwrgyQHghg8-RIpvb7NTIJYvUQ1w+AFvCQjfKQvIpdN-fgiHHwxwxfFwswuA3g8-fg1AmgL1dADBDJP1YQiOMQtw9fAo4OQ9aCJ4T1aBH1Oo4gnIzGfNaNHo+vQoxom0RVGwNgepSEWY-QFNaNFEBo7A70NYlIepBEfg3YzBQtYY-os7Y4jY4BMQbYkPILdtZww4uqFfEovAyQ1HJ4FTfw9qALAzFdcIo4jLP41tBRJ4YgFdfglTRdKDVmRfDwFY-QeIuTfgz9fIwzUEmg+oWE6wyacDBEwxHEoo70BAi6YPWmPTQLHRV4-Dd4nTQIU6QzNogIUdCDbEkE8kj4lkxqSkvQlDLKXrA4pkjeQYjw343rAEkiALUUtI6mJ-J4GUmEhvQk4yUbL5MU6gtE8wordk7VKVKJbXRU4o0o9wn4kYl-Y05AaJGYzE9FBwvo3EvU5orIkA-gnVM0po7ggAywoUstLVHVKARk3UjeYjUMp4hdS1KM100feoKMmo4kkM-qeM9cJM8aV3NFAZD3DgL3H3B2Z2N2D2FQaklfWAUlMqXvb0TpCfMNaAfggLRhYIxgUI4gK7NHU7ME8ccY7gSAG5IFE2aEkLVs2FDs8bcoJXcskWa5W5e5GsvkyUjLNgVSCIOcocpZWU4yKFA+EI7hNgRcwENDdY1JYgLYx0gZFI5WI81DLqU81c0AM4jU66J0kFTgbFL+Q86PVYk8k4x8x4psjYUmYHUlQ4QFN48U5U0C6AaEvgdACCp4rKGCyQWuW80NL4sox4WnBpGC7cxQGCulCC1C7CW8+ItCp4qtU4eBROe7D8zxXXAjM7JaZ3YPBdXWUqbnY-PE1GVi91HQai0mHAZWDhIgAbGIJi70UCXWOncaHMLvUmOmCEXBB7QJHEDrYPZs0SqI0nWtFVW80CPnPSh1aM0Sr-SUVJUSvYCS7sniyy3OUy3OfdOFKylwGy8U9cXWSisqQFNvFS+iydFQ4yyUDsoYRSriyS1Y0OOgLvHSxuKqCfAgROWKhcMjGxKjacaiYCu5bSoyrCSUDuHAMKjFZlPIJKmK-gOK6uKqAAHjuGipSpKDStoR5RHCeAABUS46EqALAjk6A48ItcxbSMg8gnhQAABqUYiRDPROWkURIKpwSauCsayakLWIGaugOakigqozMJfIWpXlDqrqtgaAHSPqga6DIayJZAEahpCaqavhDaraoyxahpVSe6tamIJ6tgBGVKwM9qCKcyuXFQoNJEfilMQhEuMERinWFDTzKqkK1MJq+TOiMQ4jF6z64zXBSGqAUHVFTuBecAGiugOisFHFd7TGvIPnesBMqzBazG9wDoMfP6hmva+G2CBa9UTUP61bAifsasXBGmhSxtLafysmueFG2IVqhG-lNAKuJIEzXOWVMUDdWLZEDHM2XOHEdi7S69S0WyeG3Wcylyhy2HVcI2lVeykmfFJDW28U7GoEaGvilDfXUnYG0nfK0G34T7MOHGp28Of9EVeGvKpGgq-9Wy5k9G+m6CKeX2x2vGvhKiomiPUmz8x4Cm6CKmlQmmkaDG7WBIL8EaVK-K3a3INEYTDI3gzmy8ba5oTTUAcUfmodQW+s7vJS1OwBSWmIaWvnWW+WmgRWkmCVV-ZW3cF0LlD0HMXWbWx9DivWvUA2iuo2oyq2ykM2gcC2h1Vem2xDXe8Mh2qGzi8OVqbM93T3S2W2Is-3Us12Gc6ZHZZABZO5JZXFG4mPcQy08cP4VSe+r1BZfC-QX+3ZDAGZSJRE7XFZeM+Ih5VqaKbZP+vZaMD3W4J-IMZUzoOCjwToAcdzbIZU4kTB9wYkHBhFZU4CQhjK2AEhtB8E-JCh-JahtoZU8vPAOClhvUXB-hcEnaSJeAGVYgHh4eXqnkThmIZU1qwh1qj0UR21cE9YLvbVHAaQaE+R-gRRj3foGR9wZU8aihjwSQMqYgCwJwa4AAPlAE6UmuEa0bvMeCeBMj0fcAMaMZMfMc6XMmsdIfBKYzaGcdAGMZuDcdABeH8fcBseVOAEcakEMf8dcYsdADAE8Zod7IAFIom-GAmzH4mUnQnQBwnwSmI9GMm4m6zWRjGvHeyABCFkIpmJzJoJ6p24cp5Juxmq9Jupkp0AOq9wZpph8Emq64Rx4pwJ+JgZnp-J3s0x9plxkZzpcx8Zipux0xwZ4gWIYZrJuZ24WJxZ54SpqJ+JmILJ9wSpjwasoMKKDWoBx+xB5Q3Sm4fsdYMEToYgK5p+93C59bEgeB4BtJcAHAAqOQVme5-oR53FEZsh7565uC6B7QHjde15m5vQMaOBmZBB9Na3IFlBjLZUuvOCuvGx-G2R3sq2NAM0OZfh9wElsl+mAlwl2x54VRjAO2K2Qhxl5l2lwl5UxlgAUQoZ5Y5fxuVIADl4AhWomRWhXS7tYPnUQEX0XNcjLgW2hQW6QsmRpDyXnIWn7EtkXLmtXSZjcVUlXsgVWRnoHlwvnUXgGdXAwRVNk5X7lDkyl8lbzNk0h9t2RYAEkU6Cp4A0whNt5hAE7Vw5XQGCBAEIHYX16YhnWHhvhYgXz9A2wy4xa07dgfy1cfK7tU3wVAIIlLNJAHX0UQ7WbLWH7tW0DT1ObQN82aBC39Xn6ry-mAX8ZiBS25XDWTLo2iG27aSc3AkwYCAKBha6BTgiqfV3zxbYpk3IAO6cVAxT6lk8zzZvdL6-cSz3Zb7SCEKEB5AFZwNEp1hYArEpd0LY948RxyLL54JlEmb3SLCADT3VklqMAVq0QeYI8tqr3t4b3KNv2yttxzjuB1gW1oURB69t5E4wzwz4BeBeA49gh-YZBRk4O4mPdJrSk4OaangxqEgcO9rlr7rYPeABXLQcO1TIOTl+DtB2FZAA5KPRljla0ykPXaPMxnA3xIqk2P3E57qnhnh7r1yQPZAwPY1QWWOaOR5ZBGOTlXqvgnhqO0A2OsA4AuBSljkz3+TQgylb2GkDUJJ5IN4n8dPQBh8+Jh1Y8BSACdOnAU9abK7NQbPQBGmGk4gvh+wEhAD6gTOJ8ng3OE14K55d32w4ZjhD2R4rEdPs0pAX5bT7SDoTOzOBx58zUnTpiEuNOWgAv+O33JPbpSYuE1ORodUbPXqIUxq3299CkuNcVoxU1eiMu6Bn2Hq9QKv7q8vZAVPYAiv9SSvMvn3yu1ADP8E2Q2PwoHg4KylnslOpOCvVOsv+gCFQIou04Ou84nhyHmMMtiuNOubtPMvpvlPCvlECENr1OmuPOGkAByN9spPjm7yjb6hGHTxT5TuGJWSQd7gJ7iyO1kkmC9rzmoL70j1cZUqgagZauwZa7ScSVSZUOMZaysggL4BbouNbwHz7xWcpmu4Hw72brrmiSjdHkaXHnHrHjuNb-dpWJ431-13gQN9sWlDJYwP1PqTT+JO07XZaXTsHuLw+OCtJZ0g6bn7t7qsEWnoYen5AYQfdLZFnwwGT1VSAHjSjFLtny75UtzmE6I6rtubnk7-ICqfgr78udpMqOX3RQwNn+tIdWL66+L5efXrtKe4t7O24fsKrluNuQX9Lx3iqHeuB+X2QNvMZTySIk3+uM3i3v1RXtn3m8MtJam3z8hy70CEaZny34P7VJjjueIjPv1GGMZFXxbnMurpPoSOh1PzgTPwvpjyjRPt3oSCXgN6Xxn7CYb0+Sh2r25xuUX0F5vqXmXpn6vmPvqpX4vwz6S13j2r5oP2vqj9dcewdGLojPX-3+TWyTXuCz3g-BffX6yVWmUOdI3-tRN0VGAa3n7jeE1f3y716W-kv6W5aWWwVFpIX4GMVWCp48CiLS-rj6-6jNz0u4gxlelGJ-hVBf7NJM2PRXwoFwgrKMni8PMSIlEQDgA7EpMaoMkFRj+8M25-PONz2w5IDxIXpagCH0MBxhEo2pAgVfxGg-91M+-M-vKTSBkRE4JFH9n+FDpLhcBoEKXPlSXD8EcAzAlOlLmWxCDE4ZFMfIII6LiCBBYgkmvbikEsCmuuA9cIoIjxPE1BtFd1hxV4Ga1rauAwsCYF0FeV+Ct2OtroJwpeVuB1GJgdIKTgWDSKhMKyoaS3h-8I6EpTCp-XToQDXOADGmOtgHg7wUkz-PQWJW0D9028W8DAIIBoAEBYAA0bdpAESQ4C1aDaVwU7zVoHANamgugCNjkEgNMAc9HwSYL+S2QchNNOvCFgSDhDBykQkeNEPB5xC+oTghyiFgFhQAEYOQ-HDkJ3pnIl+NMW3gEBv7K8u64pUCBECSEY99exACYQjBAFWFQwh-D0Mf0gD11CI--WYWzzhI8wDYRpGAECmSBCNY00gQkIcL4YwxpACIXASwxkBbFLuZwiwBcLhC7BKMafMfCcJB5OM0OOw4mHsLuwPDjhPwrgN+FuGfC6WMQAEW3kuH-UUC9KL1lUCfqQjbhAjF0OcKhFXCr+Nwj4fcNRGPD0RLwkvm8PxJbFRe6bLJmkC4QEA-W0uXEbGkhFkxnhYIvUGSPMb6xfhsELYjCOMhsjgRbAYeIHEiLf00Qt5PkUgEBTcxeY9HXYSq0OR10z+ooxAOKJ5FSjKY1wyzqoV5i6dTMhnCkXACpGIjaRNQP5LnSBGkcWR7AfkUqKBEqjgRZ+TUVyJ9hZsgUtIdNA8BxS6CSEIxKwYNmyFyC8hdggoTlTbjGDnB--coRPkqHeInRNQD0UgBaHW1XhYouAJgHkZUQuhCguQR3E9HxicIZ-CiFwhTEORKqFEARnGNCEijRK2HNgL6AyBjVLuTwasZMFrFgCigJQQtmWM9FOBLu09FXCXyyiuCKIXYqMb5RAaxwUQbor+CWNIhlivKqvIYdRkHGmcR8-eTKp2NT5JjfAGAVMZVXXCDjRePIdcJ2P3FAQNxhYyiJVXT5IAmRqKEaEeNLbQQvKBvBsTWIh5wkI8Q7PLNaOrLWDMqMTc0Qam-6VAHE2qTAEQIQRgT0AxAE3lOJN7ej0cnzbcUSnJSxR8xyYrcUWMx7ww2EZYiCWgDbbgiBwsE0Me4MQmMoKUVYl8R33iAmZToj3d8YwE-GSjSJLyClE8VICddmB5UdsZBXDLp4eOScS8YgX4IBQJRBscEISDKAYj4JqIZBvQEYDiTEwFgZ8u4OQaPg7QTYYzAajZptF2Q5vWEM3G4kDQcwZQHEIJN5qEpXBZQJwHhzc57UygrUIdqAHaoAAJblhgAACCFsC2NywABK7VK2AAHkhWLsW4BpTYqMABA2qcgcgO3TcSCxOY28uxNJicSyocU5MbpxEkpTC+0UxzGlN8AG8RJJQbsLhOkDCTGAhaYqTlKRbpsr+LktyZ5O8l+TApwUsqe2CylkDRIuU1CflNwEiTlRKUjAPpI2LdSfkcPKqegBMg8i-BZoDqRQNikjSEpuAnkXcn5GgsbUnouPIEzWoCA5ApgECVFM6kIINpKkKjIqOTEJTu2J1c8QdLmlHA8peE8sYO0YCeBggBrQclwhxAAAGeYMHnSA6RfEr0vYSaXcjIAagC0QGREG0AfTbgSPN6VDNECTVIQ9OamLDJFjwzYAQFTYH9IvjsCdgug1GRzwd4gMXw--UCH5zgqgQCZfPEGdQD25sCAOVhZAl9FDhOUpcAQIWK9KMka0qZ9vWXKDPUqnUAZ5WQmXzLBm4QRUOw0mDpBKBWJqB-YCySPGt5pZuqWMwWSIJCE8zgZiUUGcVgAGZUgBVKLvpLIwDSy8AVie-iMOPFEMbAUsmWQ5zOjr9dZy0TrO4ONmmyrEsMp4skH2EOAlUfvSAFhFxliU4J3tMtG7Ltnscm6K-HGaVFfR-IBarY0ILoO3Dh1301MBsvXV-RLDAIQ2f0UoMDFz0EpmctOWdhwAVCnwTYBmhzCarQAGaeQcOWbNEEBiFBvQvmm+BiylCxCJqIcYBASANzzZY+FOXZ37n2zY5UrPatWNdBrDT+rsm2SbIjn+9TB0Y0cWwiJrwJLg9MpkJ7XLHVQhsfo24F0O0HaUQxDlXCNWHKEud8W-6WyNoDmroTzxTc-ORmLsEdx7xsQBcEXJa5-o0hishcK+lRSsAXgQC-sHvLsF5yU6R84MSUCLnyzqYF8tSUKAyDKzb5P1e+VRF4Fvz3A6Y+9D0P-BvgAIs4szIb18qbyOBH88sQf36HVhvZlmAIAdHIUnzra1lQBcAtnTUxnxTY18YvxQhq1j+JChwXgBgVIYmZigFBRCG3GFtJwF4EOeKWnq+dGxBACHvWIUXNjH+icyRS8wRDdjRKc4mOZAC2ItdqJZgtvC6IHKUIN5+izRQlN0UDirhl3YxSvLMXrydgkAC8JYp3kJMwAQCl4LotAj6KnAw+PWSBC0Wrc0Ad8iRbuJJGltdxCIK2TEDEVoKLxY+fxXEsAjp9YlmCnkI+MowcLFFCnM-shVekBx8imnZcuUXyKqRYZfgw4AvHYkIJPZuA+Ip7KeKoztSDSzEeqNHkYROZqPdoPSxfx4BpZFgCshmHc4l94i3SggIzODybJSEsMsIK9KglY9sJZ03wEsqwkyK1sqIBeIXiFkHobAXGHGQB3ZnLxPZuEHMAkrImxQIUCSiRdBNPGpL1aAlOpQdB2U2ZPZjymIERNPn-9LlLEwKEJBUVKK042onuKaip4IxWlk5XGFSMwAfKQsxND8ZgGVF-LkJTBRyXVIwA+S1IAAGW5YhSaJIQH6SKiumRTYZc0BaTvKv5JSChyQVKSNIynlT2peyilaeIKnlSipLK3yGf0KkhAuVt5TFdirxUWxWptK8qDDHJX3Tbyy02tkaNXB9TrRA0oaVKs+UeAngsMyaUCK+DdsFVko8mZUtemareYKPL0saQhCSrKVmy0wjaGWkKi1pq4WGSMzWqzK9lCy3sKdPinljLpEUtRhaoeWPS3xuUcrF90wlKwVlnq5eqaKWlAiVpSAe1W0DkXmM-kMqizAcMNHBsN6zAm6TFLun3LVlD0ryvuPNGbJJVeaiNVZQJaRrNRpg3NBCtDXlAq1BsLmZ8wKB-AcQAUDIp-3rUdwng4Kr7qPWtX6BW12gcuepOFCXd4EQa0mCGq+45jRJlMSjMOuXh0CkSpPRtZTENIpSmQhktURKMzxmTbOSeAQorIPXbC7AGA8aZgHdYpTSkl6qTIMLFVlRt1uEuOdmA1omTbgSqpMAZJfX10cw8HWpHjlwnzrGIDNXVWJLKBjTDpE0qafHw8AxRwQUG26UaoNgjkPQy3S9cQHNEAaDlFqS9SBuizZykIZ-Y4Oer2WBib17S6SRQBGk4gali4eomcqRANot1FitlZLWMmWAcQX6iEAZIZV-qNaOGvHKjJ5HGtJI4G4mIhtwqGrYN9dBDZBuk0EAUNxMNDZaEpmLKpAcTITdlhE2mjeaHc4RTMtIHka7A2akqC+t3XzKLNl3TAa6pfWUZbNuE29dBp+QkDZpOa5zbdIGikabAZm7WVet0meac1vNFyHgHc2OYcQmKhqb5P8lBSRVSIKLV5Ji3NSCVGGlzVhribVxwtSLcyewuBD5KRFgyYzfMqo1fVUBvm1GdesC1MashnzLLSysi2uSsVuK-FbhEFUtbUt1GWGRlpGb1byVuWs7E8Hy38F7o2MZeL9FmhzqeRmnduhNujCSA5tsGS7qCrLq6j4R1IveEcLlUDg+1WPB9LdB+j+AmYC2o7X9A7jrqaIWsNZnE1G1CxiSi2uaA9t+R8YHxZlabWDAQ1DbYAy1XbfDDgq3bXNv06AFDBSTIpQhBG6NbzFjUCiwQNqRNUwBe00hOlv2j7pDGhht4Q1RfVVZ+HomoDkV1ox8RoER0qI0QuOxiWJNnH4K9qBqK7b8De2mjWon2mHj9trX9riAaOkQLa0+xlQ5A5AfASkP-4RoQhI7MdjAknZp0aefrSXgz3xxg6LtFoA2jGrtWRE5I8Oy0OKvg4pIRIGLIIXnFZo7cTkOYx5ahUJiuN7x0tFMPhIIkNIBUUA06UjSoZmQ7q41BHVTpiBPAB+Mu2uCj2ZQF0yd+OyUYQpcQ07Vd9O6teNE+2e7W++6FnX7BEAQq4KUeofqRT8ga11g5vQRnwxxAABOeYCKkz36ZrR0HUviRAL0gaQGXCAOOzsloNp0aiBf9N-KHT6AJ8n00Ye4AL2SAruV3VSEoF70Dqs5-QzIR4A70mjW5EI8iEI3L1zIE8y0s-B3H0DmQLy-YdYePukC8NC9UO6fSOFrTp7toE+vhogMGV8MRlecQ7Oeqm1Rqr+F2xneQGeAlAhlJ+2PRdnj1s7KAR+4ZVgErK5jg8+fQwHWrSAxR5wcAKuPAhpa7yNaBQHEBHzaTYBzev+1lfl2HRKdyAfHWYCauY1DoFksAEA+S2c5CR4ESVN-P+g732Mnd8B0AF938ExR3AZkBxvG37Ad7KeM6uYA3VVr4RqwwG1AegO1SkDY0BQV9W0Fs2ozTNTmxzfhu1L8G4N7gasFgZwP0w8DzEAg4Ei+Cpz29++hGKQdoO4hbplAXg7QFoO0GrIrBwfYRCI2xASDBhp3ZQauUe5LDZkfvcPvUMgaM1n4GNfGvNqVizGDNJg3trfna7Ah-sAoEbqkCW72AcTcOEyJR0IwgjpOxOEiucMASFhcqQrR1AO0gTpAOkBPAAfIDNrUQkB24NAaj7wH2xiB7IxQCWpoH8UU9USrJKiOfcYS-uhI6dHxSEpiMusZqtRK3zgBuq54iPNOOwAcQ3wrKGbvl3-0BC54uu+o-Z3aMdwTdYRkZhEZv12NweT+pNAnpmGMwxtC7eA3Wqu5EDJABEgADpMArNqatvFwbYB2A1ONO-xi41WSARu9DSWQ0TS-7zAdjIavYzlIOPgjjjpxn2VgDQGXHuu7YzKqQHnAdxygoEME6AAABeFrUAMcdiCyqATdyK43MfKBwn7jkkR49IWAMvG0oAETQI+ioAZGE8exs4yiaBNqc6mW3XsvAGWo4BlqvAZahDxaBXdAwrAd43tvJP-GLjaJmk-0vpOqRGTa5FkyjxxNWQgAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEHsAcFMCcEMAuBLcA7A+o+AjANtADSiQCuio8aAJqAObSIBQIoAZrOALagDGAFvEiI4oAMygAFAGdovFOnEA6MSoCUTNqTTzUaStOnhekgNbQAnsVhzwsatLWgA3k1DvQNxKVj7k0jDRSPDxJG147Bw0PGJiAflBtamg2ZDRoajdY2IAuUGgAR1J4UPMrUH5oeGpJSuqw23tHNWjs7IS6mvDIxyy2mLz4Q2MzS2JsZFDuppaAbiYAX01tXUUueHMsXAJJJ1cYiLRpCjxjEq38aFAAXlA8f0RJACIAKmxLl6e1eZitHQV9KdwKZSJBRhYMABGYhlDAAJj2fVih2OoGkpBw7wINwMRhMsOhoAmoVOvHOWOgcyRMWQbCk6Mx2yu1xZiRoKTSGUR-RiXh8+iSHPS1B+bQW+Twshc1LaKIo01otyGePB8PG8EmMgxFKpPI8tKkCpurMFqWF3L1sT5vjZyTNGVFevF0ElV32lt5jH5RI1U0a1G+MuyS36IY8Yfcf1WfiOcEeBJhljVoAAbiVSJTpf05WjtUyccqRgmfZrSeSmbq2gatYzLsbbqbOQGs5bZIgtqWzngLgRCEGPe5IBrYJJ7sdVYSh8gR7C4cQ03gMy0+wOB8TR12e5TK8GJVL3Xqc0alcN8Um5yXQgydYGPdXjyb2fbmwePABIfptjtXvOXPsf1d+inEdgNVC8FyXFdANXddrwrKkAPcZ1XRbVcv3XBV53TSlHR5CNYnw-CowBUBqH8IdEAESQuAtbJrX0HgWVuJ4gRBSAnn7NoElY0FOOyPJGNZJ40lkWBEA46DQASES4z4to8jgTgRy4YgngAVTQUw0HAAB3fQoDgJA9FAABaEyfUuL5cPw+jSPIpABHmJYcwMhAAS3HF1k2CldnmHMGAoW5XKM9At2eHj2MDHMyECiAYDcvQwuE2MxKs5Z-mM-wMGgLhhAhQ4ACsVgBSRoAAD0gRxUM8L0bSyoIQlKirHCc9Lo3YadjgwQriqayraJq7wbU6PqWsWNqSJsLqev+aRRoG2z13K-rWuIzKAhyvKMDI6Qioy9B5uq2z6uCUJlrGpY1sUVJYC6na9vkQ7X1skbzsDS7iuMqb23u4q5reo7av0JbmveibjPSOgkAyDAijgCwnqRF6qhqN7Vs+xRjhseAuAwIQYBobaXXgCwMhkQlkjwEmYekBFAaGvwAgaq9IVadpSOJ0nqAwWndn7PJQJG6RWaggddhuAA+NFEGx3H8egQnKepmosaqXHYJFuTJMApWuZ5hEwaumMRFgAh4BTaAiaprnyeIXWabp56gdAE7GuFtnYgSe3ud5j2BhIYdahR8m1FFj1xeuKW0hNs2Lat5XJG9-XdjD7WPAjqXVZx78Q6pJZWCN6R2E4HgAGUAEkAGEAAVQAAKVL0AABYlEhVvwcUaAIOhmREC4RBiAVlNaOOgJZDwNhsu7lA0DoXv+79z33GOfu+LyeqcegefEEX+I7nAYFQR5iwuBwcBuwgrfpBPs-u3ASe0E37fQ-yNBh7Xl2AjlKgfrkKmEoOivHefEEhd3ON-NAv9eD-xCmgbeg8367w8OvAIaZYDICZETaB8AAFwKAUg9woCFwYDQRgy4WCYElSAQg9+eoUF40MMgOgaAuAK0ePgkB+RiHKiYSwth8DX60J5PQw4ZEATnGWlNaQehn6cLAd2URyBxHdkkdARhgC+4D0EQQ0A9Cqan2oPAbKFUpEyI4XqBIXlLZG1HDjHAhiMBDgQKwk2c18GpzTu4fR9ijFn2oAjdxWtVxDx0fQ2QcMdBX00Tooh5xwkZkiTIQoCTeCW2ONDVhkC3HRJoaEz+GB8DGFMLIixXDziFN4MU6h2iP5ZXojzbAIhMnsOiXI4h9T0lNP4dUkJtSAj43uGSKhrTSkDIRvI4oIhJBG2MZAUxGiF65I8R6Mc7Z74kOwnNHBdBsmLO0XkxSdgBHqU0tpPSaILCQPgGVUy5kJnQzSh9fa+gxnTO0MQbZVUDzViynM5AXAlHIDjjYv4LRqruFsmMxx6CAUoGBRjOBfwPmwB2beJCe4rg-K-twSA4AkgYBBdoMFr53BHjUcEWK9ypkzL8QjUFyztblREITIe050DNMkEE6CMynGb1cW8tAocuWAU+Qyzx7AEXZTfmyvhkCBUtDRZ6Bm+T6mXwaOiPAwCBwJFVdhbq6BmWPCmhSnRyDbRCgdH0ZC+4ZSHJHEi0AJytK6X0EbIkFgYC3MoJASAeALBpXDONN1qyMDrMvv9ZquTwW2W0njFFEb+qcQSMzTiAtA5Uq3jdLq2z5pLOFXcB4obJ7hvVe2T5ub9no2eWUhR6AxF6AkSYtR0iFlaJCfTb0WUZYZlKtPLeojZmwGhWTdx+y5KxMXD3Adkj9VHGfrkuSCk+2SGnSYvGmr53aKre1eRPNkkK1SdvaQUbXxYuyrlRAEJ4kHqif3Zo4KPC2UbMKayGKXZ0kkFlKmXVOk5W6Zo+9JK2i2QzdMzq7Zf0cqAY4QgITX0uhtdmdAqIs0Qc0RsxczJQBa1A6hhpGT-13tDnB-sZ7dWYbA7dND-cMNLgGv0WyeGgG0egLhGI1q3RaxA8Q69iT83fXw10rJR7iOILY4G9jQaEUFq6us7QPDmFk0fqwr5SNnau1CMptRSDk2nX5gHaczwXjycYYp6gnxiAhrk4-UzwpJDri080b4iFsNPPatIMkmA8VQMoXoXZO9qpnt44e-B9GPA5mgziYLaTGl-uE-g8TEL1MbQvVe-diToOmqkqAFNHpBg+oVirTzobyAUJwbAuaTHYtQYA8ufNsQPNUBKz58rAI5pWL3REw99XtYCcg2w-zTnFWgA4w+pLyqsoQJa7gkplpuIPBXch7AkCyu4OPqfc+z8sv0NIZg5I2CZvmO1TJx4u3yH7d86Fa+G2rzRKy+4PIzNrJSerbuipVTNEnqRDmWlOJ3sFPAP45+uEcxlklFF4r3nVsVckLS4bOYTPSLM0XW4VnJ6I94WTMHY0lXelA7SsVbQmWFalSmGVHLsfEAx8j3JhtpO7o6dVwjbbEEdptB18jPbhWgfqao9ReCck9eyCEunr3uG2Zq-3L7BwlupmwjiUDCnZXtjVaOkjMQlfrdvixyQSvmla826Oy+uTcK2Uvtukiu6zsEGh8MqX2jqqa+u9rtV1vLYXda4lZ3hvBf9FA2723iVVc5O0Qykj4p3Ad30LuqbgfW3S48E7m+58dex492t73t3Fn9lA2nv+nvQrB72SEsPYnxosDAIXYu3BQAVxrvXRuLc25wij-k8ek8qVpDnvgtnjNAikFPnAZ+7gAA+I+5JZSxl34foAx8T4CGfc+VQBcL1n+Py0GmZ+j-X3qLKz6R3RIt+tLYdAGDc1WQIxAlQT8LWS44wOPeABkj+KjBx70xIk1-sB0CP4oDerDh8nYJsAhv8z8MAL9qkngtNHlW9M8i1Agn4e8gDvQRpYI7tf8+89dmcR479QCYYIDPtHUsDIEYC3ViCINk8s8AsDxkZ6h1xUDfQts85W9yCdckC+haCah1w0CF5mC3VJslsf448V9qCODcD4BT98CFtIC88DtYFSDpNZDLtMBM9ACxDlUGDNRNCqCFVRd2olCC9MAi9RDH1nZtD7NGDQs9CSIsoA909YE1DTDgCT8wCCD7cng7D89cEFDq1PC5D3JVD2CnCUDg56DQjLC7s+DpM-DlC2DolUJOCLDNQeCd4ojq0v07EHE+cW0RCcDnC8Dz9pDCCWJMijFsi9AfD2pvEHFeUXE4B-M8jvR1gwQ4D1ktNiBzCrCMC7hSiAcgcgjxsQi6DGCUiFVui6kgZBM4sWlV8aDxDJDCjxxIDGcCMSDrCvpJjyjW1GjhpwjNRQtxjsUaBAV0BG05lm0zF4i5j8iJDXCij7d80nhFFlFB0Lj0BKiSJV05lh0VYrj1DvQQ0bA2ABFWZuivih0URHDBibRASUgBEEQwS61B110ZiTDoTARC0gSBExB1i-8x50sQs-jgi6oQDbipCljijosPjjIOtosRMEjnYL8ngqTiBMtujospjmkGiXAPB-jdjhj9j0CXt2oqtVjUTVNiT9AhZatui+smd4tasGTlUUiLpW8spNpL1OsUlb1EAJT0T8lmYRNDjwChg0MxT6TrjO0mZTokiqDmhjT3soT9Su0yTFjUTVJ3tqS1gNhLZHSBjBoASFsnhPTWTD9hSSJ-taUnSAz+SuCIjeDjSBlkAhlLjZi+S+8CjwD7itEngkyUz3jcTXVJUtjcilShi4zBSEzwzjJy1-TEjuD4zUjCyctwA40dlJAoA9SYy+9DTOzmy8Mc0+yyzYyOyVpqzFABNy0hzLSbR1w+zWoK8JVnki4OAa869a4G5m5W4VA1SQDYAe0ypb9lUbkP9u1WNxyGIfSCUEVJBajGB6jiACcHdkCYSgyIhco8VCYjYnhCdsg7zXFHzAdyhw9dz9UPz8UQUjyrSXDyTHg2BVJ3zcUIKEUvSiznl79nF7zbppkoLXyuosT4LQBQSLylzow+i6VcKMT8K4TCKESSKZlWVOBlccLe8TsMACLiAcTuiOdJi1VDhDVKKTtnhOdoAfy+ADU2FmyJiGYddL5BKXSFiszxxjdHURLULuyWNZ1DVJA5LWLzC5LmyD1ThpFZ5Sdyd+F20XzgZGCQK3U8MOAn5LK1MNDg5bL6cdBjLfS6VMKT0YhnLvRQIHLWETdxocwr9LYNSIRGL2U2EcQntW8Osgqr5KDj05dMMuzuyDMRxM9Urw1+zMKDdJRplMK9g-LccRykr8rN4WNKsSqeTeTyrrLNRKrujicWVpUmKoMUqsJJRHyhgIrWcrK7gFY6Ar8ZAUqnAP8CBZ4xqFxeg5ssrqIrykrxqbtcqSgYNQAcB+rSdTU8hprRr+BVrb4qoAAeYamao6ua+7UBWAJSZ4AAFQPlAHWDQAsEoBRQHwG1zB9XuAyDyCeFAAAGpsNxUp9Z5aQAkJrgbHVVIYahdl4ZYu9IadKNqWggkFI7qjkngnrwB2BoAdIPq6AvqskfrfVkB-rHV4awakaIa2Aoa1qnAQaxLAaQaEbpZ0E6aEZrrmyIpCq2DKCE9Ix3KUxwCD4wQnL+g3VGs8Fuq0qMqGM79DScr7t2Yh4xaoBOVxV3AjLwATK6AzLOqLLEFVbcgLkbt6xX96gVb2aOhg5rr2a8gZbbTjrz5Nr1webEsRtSMP0h5Lbwrz0tporlcwthcsbsrBbHUNIz4kgctN4A0xQ30gNsgcwkqcR7LMLSoy8PRbJnakrCrarN4hVtbIwCqS1KrhtJMq7JTBENaJay83MSIk8bsBabseqhbSLLc3466s7h4xtO7jJnacqeqFbgMlabSbboJQFu6gQwQEbdb9bDaYq5URd80nbKDLahYJqesEgvwRo5qerTazVnbYIJr1RNRPb+xxQfapA-bTzr9Iql6Q7+6Yg7VXa8BVJo7PzaAtMvVyCE7dwENOMPRU7ML07wMCVM71dLRc7PNirqqcr4HWFi6S787y6SrK6JMsH9T1bZ7e6wZFyq9Vyy4q4NzG9tym5QK-lYUgVrEbzQVhyMzXSlK4L3lHVqHAULZ1KOG4VLZ-lfVpiHCGGZypS9jQhQUwZooYVOG6HlycQL8gwmTOgxKPBOgBwUHYgmTiQVH3BiR1HlkmTgIdGsr9HFGgzVljHVlTG2gmSNMxKNM9QNGYgmSdpfUSYxLXHrZHGDGgy7UdG7UPQnGPAmT1gr88YcBpAfzQn+Bwmi5+ggmvEgygbjH04ypiALBJqpYbkQb3rQAEmhKngTIUn3BJA0nQAMnJZQAblzJcn8mmSLM2hSn0nMmqnQAXhyn3A6mgzgBimpAymKnI5WmwBamfHxwngABSXppp8plpm5cZjpvJ0Zx4J4JiFJ6ZgZrJy2jJpZ54AAQhZDWf6dmdAH2duG2bMbGdOqmaOcqZuXOvcHOZsaDNOuuGKfWeOZeYea6bGYlmueadudACli+Z2aeAlleeIFiHeYBbBeBYueWd2d6daZiEGfcF2Y8EPKDCillx4doevPQpypuH7GaKDmqGIBxfhWXKxaOAoHJdkbIvABwAKjkF1MJf6GJb+EqcMekd4bEvMIkfydiFpbxejDGikf+RkdnXSVJtRwWyZP32oDEvlYFZLsSbGfLjQDNCUX9QhfVc1cvWVZVZCaQBiernLh0eiYwFNYNZLqNbCYAFFjGLW7XrXtamSAA5eAN13pj1t1o+6CKl1EIV2PAl64IloQaZSpkaNgF+INwQrJANml7l3F2PcNVltodlyNsRnCmNpNuOKbMaMg36iEIVwlNAZFOgVZQSqFNIDAQUU2CwLvDAAqc2IYXgdBYQLWwCIV-hggZpIRolX82IbZSt2YWIEitsI+YOjlQStq7mKd-hYVeWGgW83NulgIuW9mkgVdyV5bCgxmwdxPArZdktyVBlpl+QVKzd2N6loQvKg93Rh+1LJ+5pMGAgCgAOithliRDq5e2KCdyAZ9-hQMQhhFFckuWvUhhvLcluSht1fihAeQWGDMY4RKdYWAYpN3eS60wfEcfSnBMhAgBVfsO2gU0ID2-D+CJmx1DAVmjm5G+mklis0ITD9G-oPIPD9BeCRErgdYPdXlEQX4zm1FVi+AXgXgAfYIHuGQD5MTlpouEG3XMTy2p4QGhIFT3RWGqmkG0T3gF1vUFT0MoT1Ut1bQJxWQXuIT8t1K7ZWttAMzzMZwN8fym0cGugGGp4Z4GG983j2QfjsmYlmz0znBWQKzsFZmtQJ4booL26S2E2LgXXFFLD-vRqbZHTR1ZmCSeSfJC-VL0AZ-PiT9a0xqdcVLpwMfK2pjhLugMFU5x1OIL4YjqQEaXLj-J4er8dcSyBBD9sOGFD0KND4pVLxdKQLKPMhw3L-Lgcf-TNYsptfnKrojhajz2j6L2QLAOAeL5r+NBbsL0Gj0QG2j1oh+J+BiubnInb6m-brTtkez9b2ATbrN8tUrsLoJL4TL4RG74LreFiB4MS7ZKnOzr7u7miJBehUCIb-oBIVb77oxyzBbLb6r8+0IUrgH27uL0HtvWmueCHriR1AAclo+2Xc4J-01c5RtS6i8B5i6Q-hkkDhlgAqaGs31YRw8Y7p4zAZ704HCZKoAVdUjsBZu0nElUmVDjBZv3IIC+FY9x+h7Z-p+2cvHZ-hhfmh+B4x9l5Gnl5fnXC19R6B61+6ObbTA83bZVz1TmWMGbT6iS7G5KmWjS559+uTPkOIFO-OPm-t-vZevDaN9bdN80ot9SUMCs+t+l-4gNMcoqgd6DPq9ZMoPgK01D-02Wm6Pl+PiuTKmhUt8MGt8Cw-VG6d-zLgXt7C1TslUzxxH7CO4QIALd-mWL6j8wakez9kG5k+U8nDbT+vgz6z6D+s+25L-E0Y3L43ta6Mca8FmDkD+bRhk+RfnMOn8MFn-jUW6y5mQr9a4sYn84D7+X52X03X9H6El95N+QGEBY3e6XkCpH7buFWJZP7bbP7N8w17+bRD5L4x+v-xcjsX9b7bJx3DBvoz0ifEvg+lshMlY+5tbXG0Uj6QAdwI2JOjKBAwVRnsjdYyJehgC58meAQUCPb0a6vQo+yfcOn1E-qnIXU+QM7ugI9SiVmy-FAbFgOc595cBhAyHorzwFsd8gxA5aKQOdTnISynXQ1JE2bKi8xIiURAK2RwCWxqgyQVGFH1YoYCt49vZTiIPEjdFpBDCUSO5CjJKChqI0OgcJkH4kUOsOANIGRFnio1OOf4NKkuFYqgQ3cPVJcN0RMHHFTKbuWHKYK7yCURozgswdVycEeDXB2EdwS4Oq7yDGCPgzwf4JCEYAa2K1ewcXCLoidTwFggjkQASHINWqZUZlDUHiEqVKqtgwOMYICFzxch2EF+C1RIq2EcEDAxqvkkzIX5uBdXdSiJF3YYIpkjQpKgDxjqEw0EGAQQDQAICwABocHKAOMjkHJ130I3VBNUNAETCZc1LLasUL+zFCYhmAFah0JKpe1ahEQ2eJbXlb5ooeaAbodzF6H9DqAgwkgekMpBr1xKkABGDsINpqoHh8A9jEAPz44D00jfF+jXVAgRA7hbPEvsQD+EIwQYcAl4YAKAbfCcGKAq+kiBsjOxgR1vdkjLDVgEoqYfccNg6gyqMZ0RzKBpLLAs6oj2WbDe0vRVxEKx8RasQkTjCS7K0URNIxrrliy7Rw4Ascd3JzDJhaxpSssF1hnHYDkiVC9I+LlnHVgREeRaRHdFkJJy0hJWDwfhPEMMRaJ8hr4H7EsNuAPDVhkDJ+PEIqHbC1Rj4O0E2Ea6zsUhTIO2EgFd4lV9MFEE2JgFCZUQNRTw4oS-EVGWii63RG0XADtEOQjqFEc0UqLqpDU06rXNgL6AyCA1GuTwUMZMHDHJ8igJQW8haNIhIAnAjXNOpHg4FVCQIKYvbmrSlGEwZRKIOUXKj9HJiAxRdfTL8kDgUQnAz+fJKBEVFpdPRvgDAPaKOrrgaxXvHkOuEbFdigISAW0a2J9Fs9Oxm7aCCNF7FjjAIFdfTFGLDEKt2SXeN9ldiFGlNBKoEMpnyOZi0DKglSPGJgBUEyJDx6AYgGn1LFp9lR32WXG2PYrkpNUOIZsd6MohHUzxSY48WW1zEqsPQF4zYYwO97PjbxGqQKEJGjEEAFWjIvTBwP1rLjBRBIm8cak1TNlSAa3UweVETFolnSY8LHiOJTHNkAolInGOCEJBlBHYV4hYSjnoCMAiJiYCwHRVqEo4DRFqWgLphCAadpA4xdkJn1hD3x0JA0HMGUBxAjQaxpuO-GgnBBOA1O9XDTmUFahvtQAD1AABJ2sMAAAQVLilw7WAAJQerlwAA8m60bi3B4qreNgIwAEAaC4wfmdCbaLdHINWKyEvhpxOslei0u+E1CWVFn5L9RByGZyb4Ax74SSg3Yd8exJIoBSQgFk7yXOkEqKTlJakjSdpL0kGTuibkziZ5M0FWTHxglfCSKM-ScSMA3E4EplJF5eSAQJkEUepTNBt8SpGUgcV6NskOc-xIotEUgGJZcpFRA+SWPVgEByBTA+4iKSVHakqQA4iAGyVcK56mSAJwU3yR+IrqyTGAngYIJbAiDaATYOIAAAzzBW86QHSOxUWl4xC+sCGITUAWh7TlpkCUQLcAl5LTPyq0kGpCBEnKorp+qFaXAG4pXltpGySwTsHiFPTbeiUZAC+D-GgQ2uYlUCL9IOnuQAZSPU0ZcDGIkUbAWmT6akICBpAwgi0vibLnBnk0i+R0uKgTV2k24-poUAGb5CRBuoURlsHSCUGKQ6D+wo8T6bny1iWJ3p+MtwY0KxmDJDpAM7bPWM+FwCmZi1CmRgCpl4BikBAsEX2N0Y2BKZ1Ml2h-y1gKQYR1dfUkLJFnFIrpzZZIATAcChoG+kALCF9LSGXjfg0mVWbLIan9Az0Yk7cFCMmGlR4xzHCjlYJtlzCx6ypfcueQ9CjZXZKdWXDgGWHRDYhUDeqZgz1C2R-ZH+fYZ4gSChjXQCNPIGbNFnBDfBOuHAOCODBMA3w3srjHflwGpip6RIaWcLNlmvQwU5XROcUiWhh8BweQWObIC9qEQ-xFcpESRVnYxDJ4uKRhJcBhm9g0qIc6qKqJCEByU5Qc7UU7N7m6j9QH6B4Sc0YnPhQ6mVbQJDSHHPjk5jbJ0SEJfhTiYgC4EOaOzhFvCphDMhcMSm1qsAXgF8-sIPN8HDzG2o8gArvLGle1w5Sw2rlHIWpLz6aK8qiPYO3mLDohG83wUKjfAgLS6FYvLBQOyE9y0hj8yeeikhHVgtZhWAIAdEfk6iMGPJc+ZfMVrKo5xMYhcQfMhETDkBUC0oR-SflwiSKn8iEG2NvKTgLwxsmusGJAnzjL+e8PBWBLYVmpkkCYyAPQrS5JVKx0wkCKzE-F7w25MozudIm7l8KyWDCq0ZmOEW3k6Yxo-MdzEkV61pFOwSABeFkVjT3AWCl4EIvvyGY+FtYl-FWNMUIhGu1C7+e2MYJmLJZMQDsQiCcUeBbFtCoSZrC-E8ghJriv+VLQwazjQJ4Y40ldN7hikku9QoomKVUhXT1KhwaBMhJkQay9KWbDWc2SelRlUl2A5LmRxGKMEMl0fMZiUCpkWA9yGYBrhwPMIYR0ZEopukWzxgEyt4V008Rz2La1TfAbS+GFqLskqjZc0CZfM0pxAIzqqbuFGXAg1kg5ZctihCbFCCQeLhxr4kaXVO3mJLFw53QZU1g1luLYgP490X+NmV3jgJzEEJeBNYFMjw+GaGngzzRk24oyWyzADsvzTQTGAK4gkUcqAnME5JMUjAJpLUgAAZO1oZJyynRNpdlMyTEyulzRHx-coag5NWHJAyo001yYwERXlQYY0KlFfpjCndgsVeEtFYFOaVzRopSkv5YCuBXJS0V7kzFYtJhWdLBUrFJqUuxqBcpspq49yflKTA8Sip28p4FdLKlCivg97dlQSJBlxLFpgq2WFLzUGNKsVsK-RUNSalsB0RrU1cFdMqb1YoURicJa0uGmjTKq97CaeZPlUMqQ5zZaRLlBtzy8leDPe-Csq6VXCCJNEJlUKOakYi56gSzeJqo9DMqj23Mb2J21XCVT+pVk5ZQapKpdi+RUKLFeGrqljSBW+dEUYZT7Q3KEY8veqc6oxkLCCgHLW4AFHszUDbVCvJ4Ncvl4ANMqua7QHsKfBGjWBlqgRmmuLWZrk1+mKtXAn0G6li15QgqsmuNLuSmQvE1ipPmwlCTcJa+fJGJLHWpFkRdgKQdVOJmYB3JuuBdYytPTvD0VZUQde+OJRXzZcAk24JyoKkrr0p6AUOZ11RDic7qbCUNe8rVhpttYoqqkWUGKmnq0AUqtWBWpiAxRwQr6yyegA-U4wfyWscHquuIB8ir1CMstKuqzXDZs5kmNAZjHEE2Bmlmo5dTkrImBsGVOIdZckoOhTKkQZ6AdTIoZW7qkMCwg9S7DynHrMpXtHMJBpvVPSRRD6ySE+sIkvrVKkq8qeep-Ucb+VXGoVYOzBmLTwNLTBjStiY1Cj4B8GwNIhpeTUBuYT0uwLergQ7rh1AQcJWpsa7qDNNq6jHuoPfEnr-1gqNQQppU1GbIpA0Y4HOpU1oanJO66ZQsPPhVS31FE35XFK0k6T9JpcXCO5vUmebEpIK0DW+tE2VNnNKmgAfqSeDAhIuJFHTYtLuUWyPA1mlDU9Jrbob0Zjm1EOFuhU4hfl-yoFT5qRD5aKVQWwOHqr5E5a6Vw2WyNFtMCxa5NnXAqOAFRkzQL2LaqTepsDqak2tJUXrfNVx5JqhR+mQqC1smVqJ2w-WxbGgAei6kuer9VNTarwy9bpts2mDJnK-FDbxRrUH9bmRoAs0y17SsSqNrSCBg3UkMHuKKidXJrXVssd1WqoHDBiJYG2y2UVzOiLb2lkgC7QJybVz9dleoV5eINglUiK6GgFzEvEB13rCJlVTOR+EeynR-w2QLbWrDBi7aheB2j7fDDErfacIreDFeJ3aHjC-xoGRoR+1ODbUVEP7EOobxban9z+aqK7cjppEthc6bqlVS1PDZyQntckfHeQC3gtCf4bQreOzQR6bVOh7NHSq70yZji36KYYgAEvcBOozk+gCiHLlgBepWasO8HU8Af7+9L4UvU1LvSXFvLgd0OhRXQlBUhBfyTOmiDtvIDPBddT-C-qpEO1Y7iAju+nWUL8jXjrk20ciF41uAABOeYG6k8YkxnVMgYYdJjD1Xo3VSiIfMcGIBrqb6hXPJb3DI2J0EFH6fQB-jWkLyYgMeyQHjzx6qQlAZer9RCJQg+y7I0gNxgjGlLpzYgMe51TEJNjUjRRgpF+PoHMjEVQwlCgvf7vD1NT492VYgOsEz4x7hBeAMpRUv53MI51HWnkaxRt127lmpSkmLPox3phoYaav7tPo31YAPZwHN1L-ybVpAYo84OAGfGkT6sB5suAoDiC76XJsAmfX-omJi65SYo7nWYDKsI0foLYsAa-Vq1nnMRpE01cSAvML2FMzIW7FvqAHl5Uav9tyIpt8DEUeBC9qvG1QUDmAICiF+EasO+KwASCpBCmsmNgYXnxabcymwzQZpg1RlyDXtasAAaAOXoQDjqMA2wi+C2yoDZkXg7iGM2UBSDtAXg7wasi4Gq9hERAf0B4MiHzICBuZUXFkNmQK97gZvTlK1hNSHtwasBpHARqYHPtU4gXZAiF1096p4GuXewBabDx5tNaSZJbCwOsljdQOiPduLhkIaTJEDKgNIB0hD5z95AbNaiAf23An9PfN-fZ0-3kBv9v++YShkwoUTXdtygoI4dngwSXDp0eAfTMNJJUBt7MKAnjTbFd4yx8ADiG+DyD6HaeRhlAD3CSMVckG2mcw1LsqbWHui90MbYnH8BrbF9KOrrY-V+jPJ2ju0P6Gl0uVm0WRpsKoHHEDVcoEjdKCBn0cejzG5tXRmkYjshYtNWjqMgTIsbmjbHgFniG3cwV20C8XdmOhnh4w6NjbgOp+m1XjxUGSAfFoAAADpMBNN-qogwSjsDxdmY6TZpmCkAgl7HUzBvWjQPmDXHPttxkqfcZ8XPHXj2s942wE+OJjDMpAecC-HKCgQUToAAAF7Lh3Azxodm8fEEfH7uku8psQBxN-HJIAJjwlfuBNpQAImgTw0cB8MjhbjhJ1sgiZJP9M4eJSlmjgBZq8AWaCrFoHj0DCsAwTtPNk3CaJOcn4u3JgpsUY9ICmhTUvak1ZCAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEHsAcFMCcEMAuBLcA7A+o+AjANtADSiQCuio8aAJqAObSIBQIoAZrOALagDGAFvEiI4oAMygAFAGdovFOnEA6MSoCUTNqTTzUaStOnhekgNbQAnsVhzwsatLWgA3k1DvQNxKVj7k0jDRSPDxJG147Bw0PGJiAflBtamg2ZDRoajdY2IAuUGgAR1J4UPMrUH5oeGpJSuqw23tHNWjs7IS6mvDIxyy2mLz4Q2MzS2JsZFDuppaAbiYAX01tXUUueHMsXAJJJ1cYiLRpCjxjEq38aFAAXlA8f0RJACIAKmxLl6e1eZitHQV9KdwKZSJBRhYMABGYhlDAAJj2fVih2OoGkpBw7wINwMRhMsOhoAmoVOvHOWOgcyRMWQbCk6Mx2yu1xZiRoKTSGUR-RiXh8+iSHPS1B+bQW+Twshc1LaKIo01otyGePB8PG8EmMgxFKpPI8tKkCpurMFqWF3L1sT5vjZyTNGVFevF0ElV32lt5jH5RI1U0a1G+MuyS36IY8Yfcf1WfiOcEeBJhljVoAAbiVSJTpf05WjtUyccqRgmfZrSeSmbq2gatYzLsbbqbOQGs5bZIgtqWzngLgRCEGPe5IBrYJJ7sdVYSh8gR7C4cQ03gMy0+wOB8TR12e5TK8GJVL3Xqc0alcN8Um5yXQgydYGPdXjyb2fbmwePABIfptjtXvOXPsf1d+inEdgNVC8FyXFdANXddrwrKkAPcZ1XRbVcv3XBV53TSlHR5CNYnw-CowBUBqH8IdEAESQuAtbJrX0HgWVuJ4gRBSAnn7NoElY0FOOyPJGNZJ40lkWBEA46DQASES4z4to8jgTgRy4YgngAVTQUw0HAAB3fQoDgJA9FAABaEyfUuL5cPw+jSPIpABHmJYcwMhAAS3HF1k2CldnmHMGAoW5XKM9At2eHj2MDHMyECiAYDcvQwuE2MxKs5Z-mM44bHgLgMCEGAaAwZI8HgCwMhkQlitKjIMGkBFUM8L0bX8QJgivSFWnaUiXWq6harhXZ+zyUDOgqtQoIHXYbgAPjRRBsty-LoEKqqypqLKqly2COomyS9tiVaarqqklmI4y0hEWACHgFNoCKnq1oq4hDr646GtslqghCMb+wSF7+sG-phuHWoqnWna5JiKbrlmi64Gu277pKx7-rq3Zdv29xodmjacu-MaTvS6M5oWjA2BKxB1jBP5iEcd6mv0cmkBETBca4GR5s2jAqckGm0UJs7FCZxAWdqzmco5hbaMa7xmoCL6r3FmjftABWhtAOGrqqRGXskSHRrZ8bIex9gKdFtnJa52ClZaQNTpWEjpDSOgCEQUKLYAD2l2zQI94gTYVu2WDAQWjnYTgeAAZQASQAYQABVAAApSPQAAFiUSFM6JkjoAgpBoA5rhEGIZaU1oj6AlkPA2AwPP0yMtA6CLxBOq49xjmLvi8k+nLC871u+O48BgVBWqLC4HBwG7CD+4nqfu3AWu0D7lvxvyNBy+7jWAjlKh22SXgSoS9A16H-IFwwPe0APuRj5CtAW9Lze2-4neMDTWBkCZe6j-gE-H4D1frEBI9cZ7-2-pcX+98ARPw3lvPUPcAjKmQHQNAXBlqPCAefMBeVDCoPQZguBZdgEDHfocMiAJzjQA9pAGw+DT7YL1KAy+FDkBUO7DQuh0AGGAMpiXeBpCPBIIwCVSe1B4B11ofQp2jD+FCPcAkLyd1Q6jhyjgCRGAhwIAwZdaQa8MaYzuOozRU9qAWAMZDVcJDt4tVkEUZavB+7yJwZfexGYdD90KB4pxYsC4YJvvooBz8EE8hEfgYwpgz7MIvucCJvAokDxCQo0AIj6J+JEAErBLiYm4PSccfxRCkmCNscgyAkB7hklgUwnkCR8p4AsWA4oIheYO0SlwmRegDGCMMR6Mc7Yl4f2wvo-+dAgnyOSSkhSsAlJwPUppbSek0QWBvvAD2plzJNILmle2GVFD1IsXzUZdMDzVhanQ5AXB2HIERqov4LQGruFsgcrRX8rkoFuW00+RzYBjNvEhPcVwzm724JAcASQyZfMfvc6W7gjw8OCLFLZLTQ4YDMYc7QRsjExBoSzPqZdpzoCyXrbFbRUXaL7no1paAsWktiMc3p2LUUEs4IQm+1Lba4SeQzd+6TZ4NHRHgQeA4Eh8uwlfdALNHj0MRSk4RtohQOj6MhfcMpFJ2GpapDSWldKMyhUSCwMANmUHKQ0tK4ZFg52Mv0jAgzZ76K4dIZJjzbLaTyr8h1tDei1NVm1TiwNpySGRYXVIsBjjuubo69eJDGX9BtXa4ZAr2zHKDV66NL8g6h1id2NhHCpHcN4cQl+9NZZ+ACPNDMQb84tIofm2ArzyrBMEXKlhDca3oHxdIiVRxuk2MtApathda0dLykK3tL8nJWsULg9xjjnHFydYIhqwK65cGEBCWdniW7NEeR4WyjZhTWUBRrOkkgWolXDQUzJRT+E7tfP0WywbebTkvdga97KB6OEICQo9LpVXZnQKiUNr7i5DMXMyUAkMn3AfbFe6AxLP3jR-f2FdYrwPPrDbB-hYGlywraLZGDYtQOzy5eGY9978M8pnd4udJLAL0Kw4UwJ26kMTv7IRS1Wb42120CgtB5UV4YJOUiSurVvqCZ4UIhIasgYkBBq8Xj+D+PUE+MQbjGBFNO2U5IdcEnmjfEQpB3ZxNpBkkwOC2+f8AHjOLtLFdm6nFrzw3CwDFBP04gc3dODWSbOt1I9y0t794PrtqjRrdiHIbSb9R6QY5TlrrTM7a8g0D-4P30YR7zN6F3LisZ+RLFmUvWeohsLzYXHO5aMQxjJ8HMG+f0-8gFf63T9lE9fSzMCuk1Jif0yQbXCsP3HpPaeTnIYiM-pAgg-Xqk5JFXcB4khxs-0Ph19289htALlfKhW1lOP6twfExJ-DnWvhzOinEB20XgHMWvXCOYyySg8-l5Ly3UsAn0eihrfBXNsj48KaQOJ1OaYIeVe7jhcKPsHZIdFsa2i4vi3XTehK2WPFB8QIHynF0kMzXty++S301Y-Udpdr5bLKIwGhytFWn3pI6Tw2RfDbMw+sRmydWbcG-YQ0TkhDUcyzxxE+jnmCcPztbsk3Cv3BsL2F5IQXN9JfrYmambCYuRM8pI7tvZ+hcGLagS9gBRby4NQl9INb4D0M68m3rgbJuhuK0Z-2J9Fu7pW-cvyptMaHdsfFO4KdWvWGuf3lNzrXPi2vmN6b6XfWXeJRtwvSx-Qn1R7vq9xKbvFce4T17pgwd2BQv+xwbgoAY4J2TqnDOWc4S+-ftXWuyLnZrxLd6T6pBJ5wAb6AAAPh3uSdj5r16Ae4LvPeAhT2nlUBnrdO-d8tM376A+PBD5nwEA9jb5Gs-1S1bAdAGB9R68UxAlQth0G9jy85IMB8ADIL8VDBg3piRJD9b-X5r9+EmG8k9P+W+A2+ap76J08CTHZKvWPaeW1ZeVeAfD-QLUaa2WzbHF-FqWXbJWzVCUTLfHfURebYpJ4JAoArNJA+XO3SfA8WyGA30UGeoWA1uTlDXYmAgtPFAkgnlMgzUKgmg4zEiFqJPKzB+d-PoNA7-DAv-YuVSbglbNAPA-VMQlPVbW3PgvdZg2-dcFgog22eA4maQgBaXSA-gxQyg8gtggWDfAIJ3IPORRg3QwLTfQQ3-LA--Uw6PdASQl-Bw5PLQkA1Q1AvQmoZQpQ8gjbIwlwiBJbNwgbBg4gyw70FQnTfw+RQI4mc9ExSRWnQtHQhQqwr-H-XfOwkQ0AFiJIutOnPQZw4mMRDRSRClXROAXzCuHlHmDwsAwIPuYgaIgI5-Uogo9FeQgLKIvw1g2IuA9QzggIPHJjZAiI9IpvTIoQnIgRJ4UY99cSIY4yGnaRIo8wiYnom0VouI9o4Y7tShPQahNY1I+RLwjIo-GY8cYpCrPI3NI4zhE4+nEokiYdLtbhdaM4pgwLG1GwNgOBDqPY4yN4uhbtGo8470X4lIOBBEIExQEE+tEocY2on4h4cnaE4pMQZYxQOxMrEXFEqYy42w64--TzF44yMnTzFjCEm0HrJ4Mk2mW9bE-QTzarHzd-DwSI7Yvo1Q5k9gF9RjRY6k743o+oRDOE-QKrTLZjRDGk-QKgsHWg-Y4LRADdPE4UrkstMTIgxUjg86AIC9QUgncY4TSYuWbUmIzURDPklqA7borYrU9A4k8Y1SA7cktYErNFUkQ7Cws0wEebJ4N0xk2zCU0AC7LotIv0m-fQq03YpU-UvKU1ZAKpYPX0h09+J07Ikk3InApMlMpwvk5lJ41MzYmWUUnwgY6g0MlNSMss7kmM0IQwvkt1FNKAU09M2fUINswsgUiNSQbsuU6Mmobs0MqrVsyAdsus+U8gkcy1HPUOfPCOIvOOROFOdOTOFQKvTfWAStL2RvG0dZe-CtaAUMsnVRSoxgao4gaHYnVXVE8cJ4CINdcFQqUOJ4JnWIC8vRa8q7coZDPUnEkFZ8iFO5E-C4zMzA8cNgUQ0FF8vqN8wsqFLRVLKosNXmMCyEtEv43mYgQE+MoWJCrotgDC2krC6E6C0AWE-CvVTXBHFMJHYlYi-c-08NbCiirE08z0inIdSVTBEilix4eYhmYXd8r7G+Pi0MlqbihbbCfijMmwrMx4WeVSbi90yU4S2ebtKVGS8DOS6I2eeI3OHQU4J2JuOihiohbnKA70dcf8qvQjDgVeKyu88soNLPNnYy8AWQNFQ5HRIgYnGIFym0UCRyjBFXZyb7A-O6FUiEFlIlTBHEbbKvM8vymQU3Rde1OS0CDwjK4ZQsvywg9LPyvYQKz0aA2-UKnCai8OPuYXIqvuEqzksqmy8gyqvkuHQqOK5HNK23XKyUa8oYaK0PIKwEZaOgA-HqheOme-AgJuCahcb1GJUCFKiA9KrCSUdeHAQauiuVPIWa8a-gSa6eOmAAHjuDGvmpKEWstFARmQ1SeAABUR5QB1g0ALBKBfkW9atcwkyMg8gnhQAABqSDIxLKZ2WkCxHKpwYG0SgG4G242IMGpuCGnS5oKxaZWZR656tgaAHSD6ugL6wJH6ipZAP6vIoGkGzGJGugFGqGim2GimhGmIamlGhawy61EeNiQg7Q03Y7JEDylMUREeMEZy-oLNUzKgI6-qpXDa3dOiT-C0qGpmqSeBIWqAOjIxRxEy52cy1lYlLHZWvIDw+sIcqW66vaDoW-Nm5W9wI2szS0q8dK9edcNmz7GIfCGkU9MuE2qK1dELLqrJZzWIdVEcDwrVNAKeJIVWPuc1MUcjSGHMSqnEBy1K5DD0WyCW6FAqnK3mYqj8j0Squq3Ohqt2i1d2ka1WoEEW9y-VcPW3Hm23davm34PbTeNW6uw3CjSMfVTOs29aycnkUTBWM2zbeISu4WjWySLWrynWgOyyjNW4o203E2g2J2pmhIL8UaBa9a0e3INEe22CJ29UTUV2-zUAcUFDL2zeH2w-GK3W+Km+IOnFO60O3mvIjSSOmgaOjBY1XA0uxrFCLu5Eb7JO24FOpytjdOnlXuwunOtq-Oy0Qu+1YujBHcAiJEGyKjNuquty8uSdecvPcOQvYvVcsvDctOLcgIC5d5G5FRKFDlQc6wrIyCx4PmJ4ah65W6NSkgN5Thu6S5CpY03g+5Qc6ImFSdaKXhj5OhzXf7W4HrIMOkzoUSjwToAcWlWIOk4kFR9wYkdR3pOk4CHRuTacfRxRgM-pYx-pMxtoOkzs0SzsvUDRmIOksiaQCpUqUStxjx96nkZxjwOkkOnRkOj0fx9wOk9YA-PKHAaQd8yJ-gaJ-7foMJubB8wG4xjwSQP2UACwJwGGUAdZYG3xlJukkyDJrGbJ3JmaAp0yHJ9wEpgM1TNoLJ4gKp-J9ZF4Op0ABph84AcpqQSpvJ2adZMAYpgxgMgAUn6ZaZyaGZqYma6Z6cEqYgyZmbaeGZNtyfGYfIAEIWRVnBnqn1k9nbgtnzGHyTrpnDn2nQAzr3AznbGAyTrrhym1m5n1lnn7mlnnhpornWn3nQBZovntnBLpoXniBYg3mjnAXbhZmQXngdn+mamYh8n3AdmPAvYgwopvsOHpHIVaKcqbh+weZOhiBcXaH8XoxFTJHLk+HKX3JwAcAAArOQRAOR4loQalapwxqR2h0SsRzFHLD0clz5WR7Fo4CgEVu6NrOR1JlHAMlfagUSxVlJulcJgM6ONAM0dhCwFRzV7V1U1VtViJpABJ+OaOHR+JjAc1o1ulE1qJgAUWMatYddtdJTpIADl4APX+mvWPXd69pxXUQpWwTsA5dCXrgOXqZqnRpiKyXeXEYZWg3JWE3pWA85d7UiX+geY6R8mxHlweHaW8Wk35h8DTUIQQ27ltBiBRl+k5KXk0gNN2QroLAdamWbohheAv5hBJ7hXU2MABGCAslhHMUEH3Ba2HhvhYhqq2wx4572U5KOr8VEc9aiEKsloaBJBK2kKcriAbbBx+2+soax2N2aht3aLGWWX5BF193C2aHE3032xMqx3fa7752-NLVXYH87oXZGXqEV2H7YpZ3IB77urAwCHZGiGo4VzS91yM4KGs1Dh5p4B5AMAHFjhEp1hYAoknc5Lm9W8Rx9LgjLhbYVZoiXbiOCBbZ6aMA4aSZwa2ALEiOv54IhE8hmOJttxQynz1hQsKURBPiv4m4B7nleBeAW9ggC5JAZAa2xO5n-tgaZcxOTangAaEhVPUk8jVIKaUPeA3XLRVPGShO-lQztBtFZBJZnYa2PVrO6Am3zPMxnA3wK7qb6bngKaePJFZB+PyoeZRl7P-5ZBbOd0Ya1AnhTO0AHOsA4B2ZRk8P5Y2oZdfkpM8iFYJJ5J34es4vQAr8+Iz0Evvp1w4unAu9TaivkunATm8i4gvgVYKCahsv78ngau5IEgkOEBUP0P3IsOok4u5I8h8vEySb8zH5svcuBxe4MFqVoxCjC1iuW08j3PgazPAu7pLp2ZRoU15vGaBwAa6OGjBk38iyC16ckvj9obKaDPyblvIvVvovYANueSzuRkKuHlAarEvh0uwk2QHPwoHhRLRk0dbuw01uYuWh1Yz9A0+v+gEgVuQfngjG1N5tNvkvj7Qhiugeov1u2Pq8+8m4zuUungAByOj0Zemkn9WFmxjgniLqLhxWACxenqp6y804ejBAj+ryQJn-T1cOkqgJV1SOwWG7ScSVSZUOMWGncggL4cHmHn71bzn7ntHrnjMBn9eOH7y7H9WDXwuUaJXy8FXuALZ+XkHtD1X3J0M9ttMUzbtp98VOhYwOnVNSAeLobypXgrhFLvnvMh+US47zpU+T3sdnmK3zt234XV5R3wwYL530j2TSbwuT3lWOkmr2mCPQ7py2hWXjLrhUMpn8eVZD2SPpxQwWP5dU9RAn32BT3vDROnd5e24fsA78Aqb-39Yx+Gv0jSRqP2QPqY5TyTl-Pk3Qv4vunGPzvmUAjev23FToxlWEaW-B3kv3viNL9Mr8gpfunGqY5OPjL1FY2pryx+fzgZf7fj1dWffhvoSUPm35AYQES+fkGS-xuirEPjt2-+-zSzf6P-Gz1F37Pt+CFWn4Lx42PfM-iZwwbHoV0b+Gvrulsgp9RKzfJolNwn7u1468tQLLnwwbVVVSMAMvizy1KgQk+cvUaMQJz4v1ne4dHVEshSL04DUMAbhkh1qz4CK6kPEcGQK6i2Us+6sEOpQPfoLJdU+QYsvCV4qBJuG4vMSIlDdhoo7o1QZIDUE97MV6BifLPipwkHiRqy1APvoYDjCJQuiigggabSYHMYJ+AFBiJ6RwBpAyI+PJ3OtSXBKDQItgmWkuFDKWCaAOtJ3FDisHOw9Kt+NwdYOPyuDvBZlflP4J8FKD1wYQpuHySiF2dG2lVGSixz-A1VUGSgwsCYCcFtVQyS7RIZxzsH+U2qDgkGGTliG5CmQ+Q9eFkOqotRP4LA5quaQgo9YuEqkGrjaQlb7xv4LSZoSkP8raBP6fUT+BgEEA0ACAsAaWIhygCNJVBQDFdLUNgFAMDg32WIedmCFxDMACQ7oVUKgaBZlh9+RVrcVh4R04KQyetMMOoCjC+BbVRel9kgAWJYh0uWIWgzQFNYT0UgNgbHyfpRlQIEQW4Zzxr7EAfhFiLgf-3-rn10BloR9LQjPocZ6h+gQEbH2yEew8UA7WuCiAeBEInBEiARIUJOxLDVhKw9wWZXiGpVMhxVcHDyl2GPg7QTYFWDkMxFIBiAVw2TBREuiYBImVEe4aENWHrwsRjIskdVRZFwA2RDkQ6hRGegMiehclUBkJDYC+gMgANFWE8FlGTB5RPAooCUC3YSisRTgFWEnR9zx8TC-8TUZPlpFIj4ctIMEuiPZRijSIEopkRl3eEUQnAV+d+KBG1GP8RYQo7mCKIdrGieelodcNqLHY8hBRvgb0ZREOqjQnRwY7FKNCDG3toIbVHHkqLlFKtuOlQBJHlEwDqCukOY9AMQHz42j8+OIpEDmHZEJMZUQqHEKGOFERjDeDPZCgIjzFoA92arVcMWP5GwiXqIo9EoKkCgyjUxX3EBL6hCCU9nYrsd2ErGKwRjexsqUzt5SsE0I-RSg3vMZ055Oi+SAUMWAtHBCEgyg9UXERKzRA4gAou4xMBYCopdi5GVIxVLQCiwhBNO0gSSuyCL6wgl4y4w8aiDKA4goxSAT7KJlqFlAnA6nGrppzKCTov2D1AABIOsMAAAQUjiRwHWAAJQerRwAA8h61Ti3Akq9lRgAIDwSiQ3sxo1kXyIapKDSAC4l8SRKFEpctxi4j2Nvx0GSDAMNE3wDjy3ElBuwzYp8dVU4khBCJug1iXJWgmwSEJSE1CRhKwmhl6JL4piURL0D6IaxclLcRbAYkYA3x-xZSWL2YkAgTIbMbhmaG0EKTWJNYsiakMMFswyYFMHmLlixEt4ZoCNAQHIFMBZjBJLEx+PZJUhyZPRvgcyZSAQY40ZxPEtiS2MlFBwv2UvNNtoEug4gAADPMCrzpAdI5OYILIKr6JRkANQb2GlIlQxTRAtwKKXlPEqwAKakIckYFiKkRB8psATipsGSknDOOZQ5IUVPqTJkBsWUrKvJlT4mMRwrUjKaFCynK9cO7NRQDYAkyNSmQAQNIGEDSnSwjwuUtqSNwHaKhVYuNVKZNiWkdTspuELNJzDug6QSgUSAwS1gVpzDVBkWbsfVPWmeDuh-U4bttM2wiIiB3Aj0AkFAj7SMAh0vAFElIFZ9-RsQT6d9KiTAjd+iCIQZAB2xdigZR02aVR1DLJACoDgW1B31oRYQkhvYSUQ1D2k2ADpsMxzpfTeGGj2BDyBYfqC9rqjQgTg7cHLUHo8pjyZ9Z4YA1uKnYCRAQgdusNTr+TQRD6CkSbX2GYwEgso10DbTyAwyfpXgwkXZ1CFPCxQTAN8CqmazbDCSRAnUdBASDizfpt+GmaV01m+jtw1w4WbIGhHYDoZuMr6fjKz6IjkRFosFPgkuDNTMZC4bmTzjxFSy2ZOtYkavFJENVcI1YZYVVxVa0z90aACGuGI5GrCHh3I1sW2JlrczZgl3MES8NmFGiFwpM7FKwBeBZz+wp2fEbcHuFeypuzsyUWfVsgBybxz4S6doDDnljHZRABMR4E5HYRJZAQo2G+HbmRhiqo2IQXijrlN0S5kA5OaekRnxYAgp8YuT7NQYlVM52c3mYFhTEqi0xg85mXPO9B0jKO-lYuVsItRmC2QNcn0ZAEnAXgSxXY6UcxGVEEAlWioi+aqNkzeINRh8slgiF1F+UIexMrdh1ETlj0l2KIrRF5SdgOzH5JAY+V3INEnCt29UU0TbNrh2yAFOwSABeCAWFDQAM8l4G-OQqBpD5zo6-I6Ofly9q5jHcOYdXXBYKYxgMjfgiDIUxACFEIWuVGIhixy2gUYyhQ3L1BJj1YC8y+eF2qEjE0pHMMYq70aF2ExiKlNKYwPQBHxKJXSKKb4IbJwyuO1VIqV0RkUriCujZAwuQRkUADhxfPPAIdIsDlody0AWrrJnI6aK5po0-QC8kkRRT5FBY83o2NImgAOx5Ez8RQCPjj4NpEGcabVSdzTTH4Mi27N9hoWziqxjfAcCEtrmFjmYQoqhdkEOCSLTuHiqgF4oBl6gXFqDCqd6BCWVj+x58wcSrBkw59B0ZvI3vIsuzXZklmAGRcGNMouxGAk4ncTkoRRCpCYkEmCRgGQlqQAAMg62wkji8AiUrNEFIIlRSlJMSvyVjMMGUT+G1E5SSrFknJBGJfUMZaFI4mMBR03YVZZuI2VcSvF+iESR0q6W9LI4MkjZQxJqirLlJSgqyae17Y8hVJU49SZpLWVxLYg8xNKfpKVhfAEGjyncc10l6fKDJlik1BUghBXKJlYUk+VGSsnCxbJq4KKdUwRrWKvFdinyU4vga5YRlFYtKeMt8lQriqfJJ2GukmxM96xFbSFf5O3GbQ5KsKmyZy37CgNZokMW5XFhWgPRyotxIye5OInRL8V3M4MSbBeSrK+VGKwlYylgY2xshJSslUzypWGxXZR4goH8BPGMAdMhqQuPryeDBpSlDPWOumWVXaB+ZT4GkXL2JWCNdVjPc3vKptjqxDVj8YwWy3JWVDs6UqnhRzKWVMgPxrAquHj2bi-jqCU+d+LUIDUgrjgdgWQbpMymYAGJMuKNegDswV9-Fnqh2c2NJk5zvs3424M8qTDvi01Z9HMOJxmRC5mx1KnKFm32h-LNo4IHSSZLQBfKFo+qz8uQBrV5FmxDazaO+UhigRmx-sOZkWvGnJp41rMG2J9kVkNQlgu88NTYC8UcyPVS4lRW4vRVCicQCSxcKd0CVIgV0DEr1cpKDo5gs1GsF8RpNzVaTIVoIwtT4EHWzq2YFavaFWolhlBRFBADtTlCbUxAYoraj5S+oMkflQIUUvtdUwHVC4iphsMdeCKQjVU5Bs6uwDytzHDrXetitNV-I8B1ItBqKtNerGg3Ni41davkthuHW4ahJNKBqNOsjV1q51sa-NaWO+zTxjJxG2VqJPgmISUJaEzCacqRBMbxJrGqSf0p7XDrAN+TOjXBsAz-ieUTwYENwt3nQbbFi6pEGRtnWNtY1m6xYUeOE1jKcQTG45X0twhaaelfS6sSDAA1SA5m6m3FWJvnmSbJKAQO+ocCZb0Mo0qii0lGlDKEY7NDsZ3iJ28Kea+SVWdzf8D-5ebAswI3UpQz9qqkio-gezZrh81Obh6Lm6qoRjcbRb5AsWwwX9InK+aeEB8KLQ7EC1yUQtzZaAHQALh9QyVjm9LdrLTTcd0ATLcADNP83XsbVUsJzbZtq30NGtbLFLpKoWjqw7N9WgJdlu7QpanVnWr9EzR1Vkq3N7W-4L1hm3Xs25arHrTSqDifqcCNAWGpNvN6iV+taQQMFmmS0DbJAyWvLc1ppWta10EWk7TFuu0LbCl0WB0SVIRjO4OVNQXLFtrKVJbcts227V1rO05RFtkLOZodpmlVZft+icHYDr2jLaAdq2ltRJtgCbaZV2256FFoG37a9sjE8Tl0OmEV0n03Q32r+y2qcIAOyOPkjfy7Z387e6GBlD0LLU0QWwGdJWNZKQDwq2FflRyZaBoRyByAhcESGGxQBSd92KPP5P5LeULZGRQzBMbwJTAxzY58yagfoAohK5SpZka7vLI7kxAngFO8PrPBl4Lc6lE4kdTuPtHfcFYTOGHTREnRraddVOkSqpA+16riAtuz-rJT8jfZ1gRfbxsjBxAABOUtvqm92lR6dMgcYYHvIjIx6dA7S6BzGIAkaZhSaxWoGqAbjrqw+ge-HFM+HuAg9FiInkT1UhKBC976sjC8LJnZ6I9pUTnscFlnZAc9Ue9hG3isnWx14+gcyHhVDCmyPAdeqyQ3tDrEBPdkW9xsjHw16LSohiytAQgjX-aGdhgy3dbvh0lB9F4+4xQ7uR1G8Aeo+gxVgCMXgcs03-AIGSrSAxR5wcAKeE7ENaKrUQBQHEEPxWTYAi+++zUfDyP3kB6aswGXn7NPS3RYAZ+nVqACq70kVRN8L4LTJz3PAzI5kffc4vN5HqYo7gCA1ZBQ3l6h9lenXpaq55zAk5gDfCNWFLXSCcAsgrQeVAKDpr+gMm3KbBpw0EaKNXREg6COrDf7f9qpf-UJCdizUlitMmIGAaeAQG1dzYygEQdoC8GzIiB8dc4EIgQaDoFeixDweEPQGjejUPsf9mEMiHQR3eqcSyuZ1s7VwTKm2mgbJUNz+dHQqTgUDF1SBZd7AOZuXDSWO7GetMccQ0uN3VrA4NBcurvMIxUBpAOkNvC-tLJiUr9N+hxcP3v2j9S+v3Xw2-o-00ajxlVWVrYa572Gm4RukPS4ayWs9EusRwntpG7ERjnYto7ABxDfB5B9D5vM9O0JvidDNVLRCqn5TX4S7LD1Taw6GXSAlaWktOy3bSuZ1wqGVOhjnTDHlk8hOyVaNtHdDJUtHSt6Bnfm8r1CG7HDIepMRoEMzDjZjbsJwxLCuEdy8g5ugY7EA6Pz7BKIvJHSMctWiVxjIgcDvvvQNE91BkgWOQAB0mASGtlX1GkFsA7A7Mc3Tk3+YPJAI+evIowa8rGLAwlxsldcd0m3G2xDxp40jKwDgAyY7xzUYGlIDzh145QUCMidAAAAvAtqAAeP0pnjsJ+Ew93qPlBsTPxySH8aeAAnZAaUACJoF7KeHvDI4a4wSdeMInKmSPB8vAFho4BYavAWGkqxaBE9AwrAEE6UZZMwm2TxJjk3K2eDcnXSfJgUzL0pNWQgAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEHsAcFMCcEMAuBLcA7A+o+AjANtADSiQCuio8aAJqAObSIBQIoAZrOALagDGAFvEiI4oAMygAFAGdovFOnEA6MSoCUTNqTTzUaStOnhekgNbQAnsVhzwsatLWgA3k1DvQNxKVj7k0jDRSPDxJG147Bw0PGJiAflBtamg2ZDRoajdY2IAuUGgAR1J4UPMrUH5oeGpJSuqw23tHNWjs7IS6mvDIxyy2mLz4Q2MzS2JsZFDuppaAbiYAX01tXUUueHMsXAJJJ1cYiLRpCjxjEq38aFAAXlA8f0RJACIAKmxLl6e1eZitHQV9KdwKZSJBRhYMABGYhlDAAJj2fVih2OoGkpBw7wINwMRhMsOhoAmoVOvHOWOgcyRMWQbCk6Mx2yu1xZiRoKTSGUR-RiXh8+iSHPS1B+bQW+Twshc1LaKIo01otyGePB8PG8EmMgxFKpPI8tKkCpurMFqWF3L1sT5vjZyTNGVFevF0ElV32lt5jH5RI1U0a1G+MuyS36IY8Yfcf1WfiOcEeBJhljVoAAbiVSJTpf05WjtUyccqRgmfZrSeSmbq2gatYzLsbbqbOQGs5bZIgtqWzngLgRCEGPe5IBrYJJ7sdVYSh8gR7C4cQ03gMy0+wOB8TR12e5TK8GJVL3Xqc0alcN8Um5yXQgydYGPdXjyb2fbmwePABIfptjtXvOXPsf1d+inEdgNVC8FyXFdANXddrwrKkAPcZ1XRbVcv3XBV53TSlHR5CNYnw-CowBUBqH8IdEAESQuAtbJrX0HgWVuJ4gRBSAnn7NoElY0FOOyPJGNZJ40lkWBEA46DQASES4z4to8jgTgRy4YgngAVTQUw0HAAB3fQoDgJA9FAABaEyfUuL5cPw+jSPIpABHmJYcwMhAAS3HF1k2CldnmHMGAoW5XKM9At2eHj2MDHMyECiAYDcvQwuE2MxKs5Z-mM44bHgLgMCEGAaAwZI8HgCwMhkQlitKjIMGkBFUM8L0bX8QJgivSFWnaUiXWq6harhXZ+zyUDOgqtQoIHXYbgAPjRRBsty-LoEKqqypqLKqly2COomyS9tiVaarqqklmI4y0hEWACHgFNoCKnq1oq4hDr646GtslqghCMb+wSF7+sG-phuHWoqnWna5JiKbrlmi64Gu277pKx7-rq3Zdv29xodmjacu-MaTvS6M5oWjA2BKxB1jBP5iEcd6mv0cmkBETBca4GR5s2jAqckGm0UJs7FCZxAWdqzmco5hbaMa7xmoCL6r3FmjftABWhtAOGrqqRGXskSHRrZ8bIex9gKdFtnJa52ClZaQMllYQWjnYTgeAAZQASQAYQABVAAApV3QAAFiUSFQ6JkjoAgpBoA5rhEGIZaU1oj6AlkPA2AwKP0yMtA6DjxBOq49xjnjvi8k+nLY9Lwu+O48BgVBWqLC4HBwG7CDq5btvu3ATO0CrgvxvyNBk-LjWAjlKh22SXgSoS9Ah7r-IFwwKe0BnuR55CtAC8T0ei-4ieMDTWBkCZe65-gBfd5rw-YgSbOO+v8-Lkv7eAT3kex71CuAmVZAdA0BcGWo8O+y8n55UMIA4BoCv5J3vgMY+hwyIAnONAAAHpAGw0DF7gL1I-VeKDkBoO7Jg7B0BcG30pgnb+iCPB-wwCVVu1B4BZywTg6Qegl4ENAF5O6jtRw5RwKwjAQ4EAgMutIIeGNMZ3GEaItu1ALAyMhquBB48WqyCKMtXg1caH0PcIQ842iMw6GroUMxeixYxxARvaRd994-x5Iw-AxhTA8J5MY7sbjeAeJrk4wxoBGH0RsSIOxYCDEQNXqE44ti4EBLoZo-+kBID3DJJ-fBXjKCpLwCop+xQRC8xWO5chnDuGOLobIj0Y52x9xPthaR186AOIMYEoJClYBKS-upTS2k9JogsBveAGDTLmQKTHNKp0SnGXynk4paBiDNLpgeasLVsHIC4CQ5AiNBF-BaA1dwtk5kQg2VslAuyZmLz5ss28SE9xXDWZPbgkBwBJDJlc3e+zpbuCPJQ4IsUJlFMdhgJRKj9nVL2pglmfUk7TnQBEvWcj+ggvEVXKRCyjbIraMsyFciQVws4LAjemKdweFThgUJncGjojwLXAcCQqXYTXugFmjwcEAqCQw20QoHR9GQvuGUik7ALNUhpLSulGafKJBYGAYyclpIsGlcMiwI7GVqRgepndpHkOkIEw5tltJ5VgC0yQurDEJDVi4kgIMgWx1SLAY4xr87msCXitoGqtWNJpe2ZZZqsGOHaU5NVihIHENIewihVD4EH3prLPwAR5oZjNdHIpKDI2wDETYdabS6Fcu8YU2O6ayksqODIpJloFKpqLegWFHC8p0vLQg4NjsV4mMsbo-R8c9V0Iak8rOXBhAQlMZ2guzRDnkoZjy581kHkazpJIFqJUnVxPCQkmh47Xz9Fsna3m04V3YDXSSmugbm1IgFW6fsOYHUHvjg0xczJQCQ13Te9sq7oCIpPeNM9-R+1MofXux1b6aH3qXD8totlX1izvZ3XCMQL0TrolOyBI7zFIsAjg4D8T7Fju-QfODKr4OqtbZ6zO2gAFAPKgPEBKykQUoVpIajlD6GWraurUCrxyPQMo9QT4xBSMYC41wnjkh1xMeaN8RCT7pkZUUNIMkmA3mbyvjfVp8dpb9tQ3ooe4HfnoFRCenEWm7rvoiWpwuBGjlTpah+odtUO1oa-ZDVjIRIaDFSctdaCnNXkHftfHe0ioOmfXd25cajPzeaU351T1ENgmYc9p8LcjMNhI-aA8zEm7n3JdIK7d1nnlHGwBvaLO9PG8NqZIdeymP6JWkN3duOm3PH1Pq-AgJXMlRNXNxB4kgWsX1njV0KdXW4Nbvly7lCtrLEelZA3x-iaH6tfDmMFOI5ugvAMooeuEcxlklEZyLvmBv+YBNIsFWW+D6YoEJmBGRpA4gE9dkTu3HC4R3dWyQYL3XZGhZ5rOo94XEseM94gj3hQ9oQXbEN+hIGxMPWl49C3e2vlsvwylDNQOxyS7u0JZTKFcLwW0pLPIIctpm6vCjgOY3JwajmTuOJd0U4iRjpt+GkQU+biN5+AHGegI5z3ctndAmvanbB6bsnoerz62-I7N8qfS3Z8NnuzOpdtZlzvPno3Cf9F3Sru6av3LUsqQgyFZ7xTuCh227sVX2sVMRwghqCv6tc+Tdb-XtWneqO1+913W9juJUN7m43-ZTdMBYGAR2d2ODcFAB7H2-tA4hzDnCC3WiXSZyBWkfOd843ek+qQVucAh7uAAD7F7klo+amei+gFL+XgIbd25VGoepmvZfLR5++tnjwtf28BEbMKLbYviYtWwHQBgfUKuJMQJULYdBpYUtAtngAZEvioYMi9MSJDP0fpPxfHyY0X5H+XZ-j6YT1xJTwmNTIt4r9umr+6D2z0f+Na-6jW3U5D1tLUecI5bweClo+p+k+iOTwP+4kn+0qYBGuisf+fQtko064CBvoOmAskB3GgOzOT+cBU6SBmo7+hcqBe+LUPuKmpWWBk6L+I+8AY+NUwB8cqkJBg2aA1+rajBfuQ2Hu5BVmL+uBoQvBKBEBe+bBN8mBBiqE8B6+64+Btsu+w+AQuuNuBOsBFBueia1BQB5+IBChbu6ALB0q2hvuIht+MBhc4hOBkhyB-BY2hBxMBhpBBu2Eh+2BPBFheByB1hshJES6CibCuO0aXBMsqhJ+tBmh9BoALEPhGaeOegehe+zCIibCaKkicA5mKcU6PMxh9+gQVcxAVhBiNhJE8RiiG2KiAREhb+yB0hBR50AQsO2GkSyh3BQRgBIR44F+dRR64BnhxkOOHC0RShph-+5hFRmoY23RigxBta2y6A6CfR-hYhQxlBahNBE+oRtCROTw4aegsxUa+OzBghxMxa9aFCOajRgRNoGqNgbAX8HU4x+gRx2CpaqRZhL+lxKQX8CIdxF2hUJaJQDRgxzh3obx1xiSYgBxXhacCWXaAJKhcswRqxbRIBxmsRxMqOxmuGLxQJPWTwyJtMG64JmUUJqWZmh+HggJNoeRH+XxQWcOn6+JmJFJ6+X6XxKWwWOGX6DJ+g+BL2Q+EJA6dm6JHJixQRDGzJvJNRTCQwWGnRGJwpcJDG3J1REx9epI82Zx5xCa8JZ+iJYRTwc2KJJEqOc2ThsJgI2J+peJ6mXxa2YKJpppr+NQVRXx3+uSyAGStuZxAB6hrR-xqkcybpO8BpxkBKcxexdpGpDpom7h+RXxfqZRwxjplR0ZH+BJigRqfqUAtG9pHeoQmZqZjM+6vqJqkgeZnJkZeZLJlCRZpqpZcpXJyBFZqqYe7AnykeLsMeXsvsAcwcocKgKeiasAyaGC8+U6oym+Sa0AXxqOgiSRjAKRxAn2SOdGU6FWmxLybyhUjsTwX2sQs5UiC5JRQu4pypLKg6G5fUeyI5SxWpFWbADB657yW5+ZLZ4uYi-myRjqvMV5WJTqVxvMxAtxx5Uqr5tpbA35FxDwaO1xd5oAnxQFL50Yf2KYAOiKYFOeEFv57xMFYJU5cWaO8azOhwbK4FZp44Tw-6GY253xxFzptR6O1KncJFx8LRCJjwgu4RFF0AQZignFpabKvW2ETF-BjFz5uipwXCecSFKFcC9uz+3o64IeraUGHAg8sly5Lh9QilM2Og4ld0OA4KEiRASOMQ6l3ooEKlICR5zkl2W+d0tmiAEIhKCKoCOIk2Fu05hlMgTuPa2qTFi+3lWED6PJMmxMFlJm3lvMhlewJlnoGlNQYVz5YVGOgWUVLgMV9p64CVXxP2Px-2RKn6AVqYJQPaOAQwdlsaclFxy0dA0+XlnOdMm+BAectVC4vQloCQoEHlj+hVrVw8pVsgSFXKeQTVNV-AdVPcdMAAPHcNVS1cVeNlJPkF0iKk8AACoNx8JUAWCUAmr57pa5iukZB5BPCgAADUT6ciWUmetIpR3lTg51VFJ151ROsQV1ecN1AlkoLQainS3Sa1G1bA0AOkO1dAe19iB1aSyAR14RZ1F1mMb1dAH1xhdMD1qksNL1MQCNH1vVz5EU0BmBTui2SIraScTCDcYIalKK0q8mVA417cPl81iGVox+opd1GNi1pNQIYI7NMQYl4AEldAUl+VMlB8C1R8xh9YkZyNYtxco0vVPNwSaICmUZoxd16omoONlmoA+ENIC6Sckt0+dlg6DlQtzlG8umsQwqI4xhYqaAbcSQqsVcyqYoc6W6soNlYVOIylnlP6lotkNNXyhl0BKVVcWK2KSV2qkVod52RGsd9pnN5NZqrOIVJEjunOBNnOgVRNvw2lKYZNUASd1ObtkY1NytyNgVWZftLNbUdNX1ROj8o8+d3NmMfNAtptlOEOROeQEtm+BsbNe0CQX4ctxVgVMt3KAdKtV4atl4n1zQWt4o-Y1Y+t45M+9ljleVZtMJloVttdtt9tNAjtIC8qYBztu4OWl6Ho16hlXthZZMPtrOHo-tytSVyNUdICYdyKEd3qCVMdhGf9TRNoCdBdIezZEezs0eseXZCevZQc-ZWamy2yly4umKZZVBKx2pjwfMTwZyiDXFz5ODFyd0myaS8Oh63C+yZZ-B3ywa0UZ85yOyAirZ92PWQYq5nQVFHgnQA4H9MQq5xIHD7gxI3D1Sq5wEAjNq04wjrD2JtS4jtSUjHq2JOZVFOZeoPDHgq5ZE0gaSpUVFWjOj21PI6j7gq5VtAjVtHoxjdw2J6w0+eUOA0g25tj-A9jd2-QVjq5p14jHgkgGCxAFgTgMMoAoy51hjHj2JJk3jWMfjoAATM0wTpksT7g4TZFfGbQvj-jgTs0oyLwSToAKTjwTwwAUTUgMTcTQToyYAYTIj2JAApCUxk7E1kwk7U3kwU88ExN440+U9k5LQEzU2RQAIQshdNlPNOjLDO3D9PSNkWTUNNjPxOjLTXuDTOKOzPXBRPdPjOgCTW3BNMDOFPTTzOZOLOgCzQrPtNPDTQbPECxBbOnPXMXMHPPCDMlMJMxBBPuCDMeDDlBhRQ2UEMMMfKvnI03D9g8ydDECAtIPRg8m0MIOEPAuIXgA4AABWcgiAd21w4LQgCy8TojdDuDVFVD2gtsO50LjD4ucLALhLiLVWWL1j44q5-eGQVFLLAYO5ciq57saAZoJCSqtzPLfLDlVj2KGjNjSALj3s7sAjzjGA0rorYrjLhTcrAAouI2q4q2K6uQAHLwA6slN6s6tj3QT-OFYkC0tAvW6gvYv9A8x0hBOjRgVQuWuIz0tmuogUtPFFbtjapgt2u4sOuzRUPLgWsItWuXbTw8mtonLwP0Mwufw3Imq1JMWxtpCCbshXQWCZ4YCos3RDC8BnzCDoarhevEMEARKlYQpE7NIpuzCxDwVthNxOWU5MU5Wwob2U5JZLQ0CSBesgrl1w2YxevWtq3dsea9v9ufKaposYs9oK1hvxt3TW6+WcuCOr3G3r3IXC3m3BoEAUCG0YB0CnClVkKdsRJGZeiQDt2IqBhwNr2lqoufL+qQCV0AOakMbmrUm32HBPv-AvtvsRmjRfvwUpa-slI6oBpMUKVQe0X8km1aN-vRgAdMU5kofftAZFT+BIePDmroX6DAewegdVlYfSA4eQevvQfIEgcp3GTpB0Axx9Q6KwD5JQf4eRk0cW6YJyDkCxzkJtvvbkLjAz7HsovoLnugLPkC37tDZKy+N+UgwxMmwKyQ4OxMNR5uydnx49khywOsGsoIDyAYA6LHCJTrCwAeK66ofyz544CF7CUvzwQsaRlSHIFWcHIPUYBPUkzXVsAqIOdnxOfqwBetbbhfERBcDrD2ZooiA5pnx5yAfHK8C8D57BAxySAyBLLJfNN3bnWSDwDJeS1PAnUJDFeK2PWw0Fe8BasejFd4nxctLPnaDiKyCSyZ5LImo9rNIZsteZjOBvimU2gI2w1PDPCw0RdReyAxflQ8zdfNfXyyAdeNf3XhFqBPBfHzeOp3SXTszNLWetTfR7cqyX5tQSTyTHwVZ7egAr58SLo2ffTrh7dOCl4ufIFPegCTPhFxBfAqygz1BXeb5PDfdyQJBEWGftgmfuTmceJHeVpSAumQ3umLxXc3cDiVwgILKIV+FhlPf5rhFjfnWbcDU7d-c1B+q4-o0DgnXeeZH1IH4hm7HcLvfPVU8w2E9oC9dYBwDsz8Hk8mq2z3VqJfBnfWpE+xwsQPBUXNIg4c8Lfbfc-fVAzHygSw-Fxi-PBiP8Y9ajR7fq2hBPcy+c87f0KMII35f8-HcADk3nzSI31v6sWNfn5vc+G3svW3xnGYLHkgzHcTlVH7NdICBeI4o0PvNXgEq5VA1Aj1dgj12k4kfphgcYj1g5BAXwivavbvrXIfnv-TM9ofhvcvXPsAysSv6v2fcAuf64+fbInPofXxebaY8mRbvrzK2CxgeOL7+3-pSPu8-HKsEfrpPfVFDP5Si8-Ha7m1YIDfBbzfGOWa7fhgS3FHts6s6PfHWCznq533tMTuWRB+-HJv+QWCXxPvzcwyGC8-eihgnffaC6CP6SpWB-E61607PdQ7r1u-dPg8I--RvfG-v9tDBfrID6jLJPIuLU-nVnP6X88cS-Tvr-Ugyv8ncRXMRirBGjr42+V-YAc6kDSvdNQGAvHDVFuTp8j4A7JAYD1kaoDOAmAwgZ13VikDOcRXafk32QDCAMcIvB+BIxHD0Ce4E-HmEwMLYsCW+D6aAYvxBrL9iBuQTgZj3cg20LWQAmgY11nTn1508PeWKpX-4TpbIW-KirTwfwY8D+SglCG7R3TH9z08FByjABv5+9letqDfirEI6QBD+O9ITuEXFT9JocoZYyBYLwbhdWU6WKwYN01KgQ++-QBIDB0cHqxnBWCW2hKgGTY9jIRFdLNxX0DKg4wiURAOAFBR3RqgyQGoPx3Y7eCb+gPVIalFjLUAQBifMSIlFtL5DrBo0RIThgMHwUjSaQMiHnAEqBc-wRVB9Ap2nAdDQugVJcNaVaE5tdcH2EYXnCErr4cAEwl3vBRmE0BRhjhBYW0LnwFDkCKwzPM+U2GSV02YVfoUyGIAJV2OhYEwLriOFRVsqGCGFAcK6HsVjh1gzqnhR2H5xzh3QyCM7FDpwdT4AQ2Ks0W9KsUX2qkb7s+REg+tz4RSFwWFRl770+op8DAIIBoAEBYA0sfTpAFY6OCma-aH4U-2LrIgbKLw1bLMIwB7Cfa0Qz4e-S1p-CbQhIzfOy3rpshYRDSTNIiOoDIigRFIykF3QuzojxhiwyStSheFkp4Mc6ftMEI0F4jqR+gUCBEF5EODQ2solROEJkL9gEMko+OqYNDBmCpRPIjEaJWuG-ZaQTxB4HAjeGsJaEDwpEMtlmFEj+RgtUkYPDeFZVAhoAWkY+DtBNgVY7bW4b2FIhIALhoddjMzDgCYBbGVEF4cziFHPR-RnI-BsGN8DcwHIY1CiNGItGpVrBntQHmwF9Cst3+8QcItmMmCstIhRQEoH2xjHminAKsT2ubiV4tQfhFEKsaEKP4woSRmcFECaJJQpi-RaYwMXWICCgRGx13VfOshBiVjUB8Y0MUmMnrljC4E-HkOuErHzigIk4xMZRDGqjRGxy4uRKNCXELtoIP9dWE8ELEEAo+4XSoH4jyiYAShn8G8XoGICn9uxp-S0QcBsphiXGHKOlDiAoiXQpx6473jnzfK0I7x6AYgPuOgjPjLhLo98WjlpSBQhIJ44sc2KtTndpOjAWTgtFizrjYJnKDbgNVaGYJZx+3M3puKQBKl9AAUMWJhLKCEgyg9UJbDZQZYBRwQtEywHBR1FYt3RvKWgC5jwCK1pAzpdkBf1hB9wiJNOGymUBxCkSLMLo+sdfHBBOBSu33RWmUD3aMBQAq1AABKqsMAAAQVdiuxVWAAJVWruwAA8jq0Di3A3KFuQGthJAllofxIYgMe-XY6kB8JQk2cb+Oc6USCJGCQgZUJOxeSQxh-SiSUG7AOSBJ8FMKSECgSiQgpTFLSTpP0mGSTJ5kyyV8V8lCSAp8UvQNIicm+AmKlEi2H5IwAiTriBUtAMPFAKBS9AJkNmMkPYCtC4paQ-TMFN8AuS+uLotmGTApg8xws5o-PDNBeoCA5ApgK8S1KqGLxBpKkG1CLGcmxi12dkgQJNKCmVTOphMfdp4GCDLsNyl0HEAAAZ5gFudIDpEpQ7S8og-dXMgBqDz4LpEQbQPtNuAp9dpj00QOdUhDC4X8L0llG9NgC4VNgp05kaFx9FGUfp3fa6S+BdEcZt+Ug8GVdPcg3S9eoMlUbRx4rLQq4wMpkAEDSBhAdp0sI8BdIhmIzFQqsIGudLazEzEoN03yMTWlScw7oOkEoB4lqH9gKUOIjfnmOLio4gZYwlwfDMR6QzxsjCcUREI9AdUQYDMjAEzLwAeJ5RYfNoFLJlkeJlREgpXuQimw6ilZzMvGQQGfLJACoDgTVH-0gBYROhvol8R4FbTazZZZqC2tiPknbgmautKQJYjLFvCnZ6opDC-gnJUjwwrtInMtltGrCSRmAfYUZWdHQRbIOASWvSMxgJBsxroHmnkBtkeIIxgo4UWKCYBvg1RkMBfLaibGAQwhNgRmTrOA4HIXuqcmcduG5GJzZA89bURlRLnSydZ-HK4a2KNGvJoElwUGVnVjHiTzWtI10cSIdEY8nRUEl2XyNWEfcuJz4C2rZG0A3U1x4Y4kYKNmHDxwJMQBcBtPrbnpRRd-eQvJIXAHJnAyKVgC8AvlXoCRNo24BGNHmxxt5sYrWtHJtGfc457VNkEvPfG9zN5w8u0ZGPXn-g3wAEBKk1m9FvDH5kc-2coOrAGzPMAQReI-PHnR00q58y+XlhfzHicxZ4vecoLxEmCbhECkoDvLMFoyBQaAL+dOMgCTgLwls99pyKK6ISo+x3JhewKQRuzQg1CqFgiGrGGVV+h8kCB1C5lGIWxhozOF3K4Q9yuFJAWhVFX4XMi+29UL0QaMKidz+akinYJAAvDSLjhoANBS8HkWDihFK+GwX0K0XOdF5fnZeWNXXDUKFZC45AuYu3ExBLFEIb+ZuIhhKseQm4hEM4sAiHileWCosTgrIXHwXpHMeovtxYoYMIlnRVSC9MamHA547k7hC9KmEjEpg+M58j9NtJpL2OaHVzpqDSVqyPA3WMiiUCZkWABylFQ-vwQwhZLnysbNhOEpekPjAJ600AJBNDoDzUQc8JvBTMfQ2AmMWMy4DjN3hpLtsNlVxThK-G3A1E0y7+Y+MnF+L8ROlFJYvD6VUABl9iy0F0spEujpln4+CcxFYUqwUJR8O1B7wr66y9KJRSrNdEwBpL5xaEjIazDk6HL-kdKTaepKSkYAjJakAADKqsrJqsNqMdKUqMAVpL0-Kcsv7nWD3JRDTyZVJ8mMBQ5yQfyX1GhXtSqp6sGKd2CxXPk8VAy6RIlO0l-LAVwKzKair8k1QsVyK9jj1J7Y1BwsxUuTqVPKnYqdleocijtPqlKwvga7VlZhKB7J9eVDU8iQqjyTErsVG0hlUrF6lIB+pq4F6fExepNKBlNyqFrCoSpLTIVH4naTCvmkdTYxUnctndB94ASK+QE38Z1KombQmKPU4WEqraCZjZokMRlROz6i6wicZoCoblLalLKjViyRaUThNixssVgam1SashQv0bY2VatFcq94+9bVhsHpRQAKB-AcQzEwodXyeCXKfep9CMhmu0Cxynwno5sVwkHRtYLVyazkXapyiH9i1u8BoZi0tUsdh4saqWHBz8lMgxJ1givA11J5ETnuxeZrPJOkkSrjgdgbIbVNCjps-J+XWdVVNv6qC0VmCXtQ5JPlXzzWkk24OyqTCiTN1WtHMCly6S84HJ9axiDzSFWbRwQCff1WgD5ULRC1MQGKHevCIOSn1m0bcpDBV5LriAJsU9UMt9RLrL1ZKXOURlCVTqbAAy0OWuowQ3KCZALScTiCSWLgwyEypEP2h7VSLJxW67MBJMsA4h91EIUSciuPU2UgNvOH6WzH9b7Qb1EsMoPErFX8rf6g4cgO+p5UEAv1OUH9R6FAitKpAzTKjcVho02xzsEGlVKEpyGwa7Aq0pnkuv27hLN1wixajJuU2Kb1YMmhyYuofWNLyh8m5HopoajQaZ1D6uDQuqPVWibK7cP1a1Kdi3BflKU4yaZIsmuxcITmgyS5vSkgq-1D6gDc01s2Gajg52WyE8GBDrd4K6mnaYhpM0ZCYNP0+dZ5Mw2vjzWQW6FTiF+X-KgV7mpEFlopW+aQYgmk2OloNWhap04W0wJFtCW-twAuM8Dv8B7Sdr7V+SgIA+wa3IcOtmLZzs1pyjqxatuMsDugHI6VZhtEHLle4HzU59AMTqLraNrQDkcjYUmfFEHUNiQ431oBGgI9Sm0V8qKA2qqfMFbSIc6tu8RDhBxTU2xWt8HCEGduQa3b5AbVYuOcskGawEYeuB6OVHCw7aveUGe7Y8D+04DetNEf8NkBNjHbBtJHAHZIAB1LbMYQOwmBtpj6qRvtArOyGRxO2BhW09HdLrijrWprrBjqvqbi3Cyurs5PINDijsYzQAGOsXRNSoluQrK9QLyjCbep-oaBlt+Y5nW8swmgLgFitBWCDtiDw7g0G2uPttoTUFriA2OkQB6woDrAL++jZGDiAACch26VIrtKiXqZAqI9XeRGRiXqSRl0DmFLvtkHyDuisfDS7RgULp9Am+A6RbRiAa6VElvS3qpCUDu6X10CowZDCd1Drjgmc7IE7oN0kJC8PU62MPH0DmRAKWouOu4CD09SQ91tYgPLtI4GNGleASpdUtjgwJp1F2qWOxyB0i6ONoBDPaVCz3i6c4IgOnVL1L1VKsAg5HCKHhzBpAYo8-Y2jiCeA+8NYHPcgDkEi0W5T+1AM+LdEzRc0poDE81i3vIDfiXYxbKfe2Db7G1zs-aBjPPst2B69dpUZ4GZHGSpo7ARIbnmkEY5jJImEmgOQRvNYFAcQEAoZNgAv74Dr+vXRdD3ooAPVZgafLWr7qeA77zIQ+hhrADuDk1u9MUE-WZE91x7N9KiMXnTu94B6VBum+zVgEyF2c8o5Q8qAUHX08hotbWOTTpu02gbbSGBtjQdEgPPBdJS6ygGgdoAZCex8AV0WVSUDgHta5+y0F-p-1mROlOfRqHBLuzsGwDqkJg47sgNa7wsPU51auFJ17RoDFq7OVJjBHTwIRscAoJ1IA0phiAGAZpsnC5WU7lDaITPDJ2523qVOKomPW0EH3D64ATdWmZBotwP6AgFq+ffODgBtwuEIrNNZ0uv2ATIBd+kQTCq27P6QDb+j-VhoXQj6XD-LGecxC4RNVwCTNNgxwbsOcGK+wB6fSfqsiqbfd0h6bUQfrZqj8I1YC9RkKyGoHchsBi2tgbui4Gl1+XAzResINwHqwYR-mhEc+44kixG8L4M7I8DxGd9uIezZQdyGgGwD3wZg3gsIgsGN92jZGNvvYNJGWO3BgFLwb4NMH49cnd1fKvEMDhJD+0LI9cvAnyGN4ih73ioakBqH2AmhsLNBB0O0x9D6EwwxLGMPgbVUdhmA5bxvE1Gh9HfVcgACESEZEcoan1UjfHloAq5Vs8FdiLgQEsAZCiEC4qqQjJN0hgKACMngBqgVFSEPbpaCu7wi0R0BGlBeMWq3jgUyQKixRajhsSvxxAP8bZFwnwiwJ-YlrzIoRcYocAR6jpGQAAAva+FH1tjYm2jMR-E1QLxyvH3j0gEoNfBUQ-G-jN0mk49XpOgmAAbAdOVOYm+TuJjo4GAJPTaiT8Uj45wnJNkVNJBXcwLAEeq6S8khgeAI9W9ignVynsYRGfGoAMBHqAAWWVCgBdJt0KigAHYAAHLydUjqmuiTALU9cp1NxgSTZJ1ckab8SsnVI5pqpWKetO2nsSzJ3jqadUht86AEiKE2nzUBqn2jwZ0M173DNiQZA4pr3tGeNNxnwiCZy08meHhBwVTqpwM4WcFNACRTxJ9EPFGQpGARwVZ2MxmdrMWmkzqkG08PClNUmZTgJukyCYDM4m2zd7Ys87veM5D9Tq5AAGIYtHqnsVHU8AAAiKZsivadbiOnnT8ZmjDHgZnx9xA85-k3ic1NCnDAnZ3U6SZwAGnCmW5+QDub3OHmJzqZl5OmcepZmczrJu80GfbOYCXzEZsU-PElPYkvzN5p4Lucep-niAYgAAKwqmsTrZgU4+Y7OEnRToIOAL2ZFSbntzqkFC6pDQtgmnglJ6kzObotzmcLC5vC8dOXOSBSzjwNc18exKrUdIVQUwCQkeoAqP0j1dVv+bIrfH+aryuU6VCvMxxkTqJqPsQDhAIgWL95jU-MA4tcXIz751cvxcEvCXVIolrgOJaPOFM0zl0R6iIAEAULeA58fYhpYgv4WoLhFrsxWfgtkVDLGwYy+EVMvmXh4cILC8qecuLntLT5+w9qaIs9n-AZFviwJd8tIWArqkCS4ycKb0XpztJpi05fzO4WHzEVgi9FeJM8Xr+q5IyVUCMDpAhzTwAFW8n8AWXwTkJki5MEYvexOQGkkuUpbRPEBfTmJvK6xYKshnIr0Fss2+Y-PPAKrQwdADWdqv1XHGklyy4BesuZnOA2ZnKLmdUjzQNQ6QPBmFbYvDWirYZ0U55YmtPAprVV2a3VdIANXh4YgZs-taGs6WYrLVvs2dYuszWar1126+leeAxmTTZpkc1abHN5mCzB15612eIvQm4r-Zik9KYBPZX5Ti154AAHVr4OAUgH4kcaqQzJ9wEfaDfytaXQ8EN3U6VekSrk0bsADG1jceq43-9jVp4K7AEuwnpABAPc+tUgCgBNJVQTmyibRPgXwrh1ty8VdfNRnsSlN6m6YGxvhE6b+N5G6AWoBbIKFWUQMqpBmF0A2TlQF0ATcGtE2SbMF06xTfRuY2pbtNvG2BYAohXQrA1zS0WZGvuXSb5Q9c9iVdiFsG4558Iqqzs4MnaLKNqsroVUiuxBAyiUAACqoC0mMTAt8G-bZFsRnxrq5V25wHAAe2ngXtuc79dALJc9pmeR6gIChpsBHqVXPadPB1u23ILwph2wbbgtnXE77t7K2nZ9vemrbj1vWzHeOuQ3Yrb1hO27eTv13vbDNiWybeltPBZbYFlu8GaFsV3Y7ZZsm2dc9huRRpSFlE3Z1Sjy3zTkoWS6pB1Zc3r4p8WgK7GvPomFTUdp623ZLPvH472Jee0mMYCPVl7SfeW0Xcek53AzAg26NVdLsuXCrwt9u7qdgsSm57C9yoEvZRYP2AKfV622DdPtHXz7Hd16-FePNAPb78J0B6vYzu13e74l-uyfdbswOVzJVp27xbIq6TTu1F6ACjZITgF0HzV6G7CdpsULFArsUsTYCooYWcHdtvB5xYvti3iHpD8IvufIeUOGb1QJWw8BviPVZAhbRgBKc-uC39bZZ-+5WexIkOQgqFwRyLFBPBXsLNtr+5PefOV2FHUN0i7Dd4eqOyHFDjR-LcHs02cb5t00+w-Lv6Pp7jwbzNQEyGX2mTy12a+ya5P2AGbVl2ayBY2tj2dHcjs+-g91OuP3HPDpa4OiAuqQfH3J-x145qu2X+A9lxy7I+jucPdLUT3NjE+eABOarQTyLhbdotFPgLa10C6k4QCcg9roT7Jz-dgeROtlbj-J-pexIiO0gYj1WzibkBeAZHj9xW905VsAhHq6tzW9AG1sOO72SlW+lQGkACWRwa+9w1ftuA36oBdh8sf4fn0jd39ZKK+lXAZbXG9DecAw1ruMNfSRSNdMKo9q6iX5wAm1dcZnloMcQ3weQXY17wOMoB0uuhp1oZRwG9YjhFx58vwNn7Upcd8OlsP7XlVOridlobY8Tn8kpcik3zo4wrR16dcO1hlFZUC-OPDTsUO9M47-I8C9JYh0opAEVQAMcGnqsh5bU8DBeCC2BK-D+Vzq12gK4eAuuSMLuePF7GXrAzuBXsXAxxq9xAfl0IKGGh4oMCzpZ1w97aKOVE8UKq0si4B7Th44r5nDlD2lnNxAD1-M4GFYDPX5Xp1pV6BMoCqvHp6r-NswIFeOEtXj0nV-de0d8mmjsgKyEAA

Metalinguistic Abstraction 4.4.4

head(args), frame,

(v, f) =>

error(v,

"Unknown pat var -- " +

"javascript_value")))

? singleton_stream(frame)

: null,

frame_stream);

}

put("javascript_value", "evaluate_query", javascript_value);

The function execute uses evaluate from section 4.1 and thus can apply primitive functions

to constants and instantiated variables.

Ifunction execute(exp) {

return evaluate(exp, the_global_environment);

}

The "always_true" expression provides for a query that is always satis�ed. It ignores its

contents (normally empty) and simply passes through all the frames in the input stream. The

"always_true" expression is used by the rule_body selector (section 4.4.4.7) to provide bodies

for rules that were de�ned without bodies (that is, rules whose bodies are always satis�ed).

Ifunction always_true(ignore, frame_stream) {

return frame_stream;

}

put("always_true", "evaluate_query", always_true);

The selectors that de�ne the syntax of not and javascript_value are given in section 4.4.4.7.

4.4.4.3 Finding Assertions by Pa�ern Matching

The function find_assertions, called by simple_query (section 4.4.4.2), takes as input a pat-

tern and a frame. It returns a stream of frames, each extending the given one by a data-base

match of the given pattern. It uses fetch_assertions (section 4.4.4.5) to get a stream of all

the assertions in the data base that should be checked for a match against the pattern and the

frame. The reason for fetch_assertions here is that we can often apply simple tests that will

eliminate many of the entries in the data base from the pool of candidates for a successful

match. The system would still work if we eliminated fetch_assertions and simply checked

a stream of all assertions in the data base, but the computation would be less e�cient because

we would need to make many more calls to the matcher.

Ifunction find_assertions(pattern, frame) {

return stream_flatmap(

500 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+G+XyezLMDDdVHdDCSeYthjo3INMYdblfUhLfeHfOs-c7tdG9NfewNNG7hQTYbRt-aXc0G2SJf-R3s-QoSbiamA46foM9lA+-bA8A3dlQftD-ROKgwAx-XAzWaA9g+A+lHYKWJxN6JgB2PtIQ1-SQ++Ayn7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRmI3xLcUYPcVfOcXYIsdI9Ii8HIx3EhZFo3CowjixOKBzKpqIBViMZRIQ3wLALANKqJJtBIABI41lRgP0bso49yTJj0V4JuD0d0dMf0Q47APPbcEE0zrY2oU+jAGZKYI4LYwBFNKk7iQk4MKYMBAvPfVhM8XYJMZuJdZMeY7yKYFY-DH9XODHYk8wU0crEU4oJuAjpk2qN6quDgLshROI4-d03YPIzJkYpuIYwJionOMoKGk6NLKbouhM8oIqkY3Mz08oL1TJh4I+K3BBPOhM345uBs4ZF4Dww410AI72MI5GBMzjMzHzh0YLmSLs1M6OHXOWrLsJvLvM+kYEyU-0W06kaqF0zs1NP03IycSaD0RoyWvpmmm84Vg8ys2C9qBC5MX8x05gIC4o-07OCs6o0nI+CM9qElNAHU5dWxek8UsS1k2izgMsRMJiBwVc9CKAKi5dXRaPCokCwM8yb+vMxS3U1mp06FJaFoyC1s5uAAOQaNzhFOSuGMFOLETOtOUvtP8O2jUNiBUMxUYPwNw7hCSP-VgKauRMmgHYdDdB3FKWlQHjwB3Hwirg2ulRgzHCPi0uNBeAsvzpGvcu0ZevMvKv-OCuGMevfq+uLq+uouqurh2UI5J0p2wBp3rov54Thg-R3S9NwgS73NrAMiDOmuZtS5yCwv9jy45t92u01hiCxuAjxuIBsxRTJv2hAjpOAMGN0uppkFEi5v04bPHZ6ZThpo5tCvcBEgI6asZDngEgNups5uoqey3MC5NiDudnKm75ZkNkxBQv9uvO77vNkiDsvxvUptAguqAQ2x-VjungTtTtNsNNpsHnWnIOrvkZ7N0VbMcHzrEhHumCcSAQHTGafuNvfs27zyGOy5Zmxqya8IEtusQVfsntTSgdPu6J7NVup21uJvgFvuMXFQFzfJlv+B-Woc1t1sXTXt0y3SDtDscFgdumweAfweUQmJ0IMQ3MGYdspBBzeTT7dtv6btlqVD7tizMewlqwjtizgO1T1RpuENQTYc5tbP0MceGMqV3QSnlRHj6C7ucCSev5f536PzSfasBpyedtbOEGmdtsqcMhqf7gafDvFv9Yf6ULgV2uYC9jwDIAKQnCRq9BgIztGc6fSehGbiuc2sI4+fNqmBufCIWb+d5OIHfr6f-Z3tkwMqG6rhfLzAvCA1QLYSaSgDOrwDXkB6sqwAeo1iqigDjYQSmAprjZ0D1eTZPrwjhhiCSgN7hStCYDdB33WGE6m5aBdc9dfN+u9DCwZTXOcyCBtdcAdfzrzqDcVHDeuulFGOLfdclFVjDmtftfeuNzrfLeX4EJZfHBiC+ruLhiwgncNSU1F49zXfDwHmdQfHJA6btdGAMByDve9aTnv5E1oCQBZDXc2wtewAze4SfdEONyFKdr6P3ugSMQA9A83J+P03dDClwlxxo9smGy5SKkmiXwHcg9Ag7ezdGA8p7cSCA-XfLomhSxE+hFo8Y-ohjTY-HQTkBm3BjSLoHfw-mnZzif-EvRpRRfIjveQ-fclm2jM9-dCRI-A9SSg-g8feU8w80988sdU-I8vCo+x3jfo+-dPHaCdq0Zq83L4fogcF5ri+A3YeS+hn-7GvaiLpm9w8a8c9KnTkM-bdg-297rU+yMa-uD099BLe69jfWoG+wlLyNAFkm96IB-ZfMAx8YkcEcH2+BwW+kL+-a-HByMvgp+48SyG+x-G88+h-ddS9cBB+WkC+5xC-2pSUiBld4Iy+tJ7MvepDQdKJdQJCvddJBB4DBci-2vd+qReAj9uezGrFFQ4A2cVT6Dpf3JDnXdjnsl9f6BN-wBldkyXxL+Zco9SRbbXdncviXyFc2z7-uc3Kkt99d-63iQpC5dSRX-CIn+biT82t+0vRU5pQ4j2B-49GxwKvuHQ4JIYQBLOP-gnSQyBIoB9gT+t+iyBwCBmkA96BgV9hIC0BAzQhoukwH-8UB4DPAQnWjoLlwBM5IwvYxJ5g8yBdhBHDXSbpkCQCdhQhrESvwKRkBgA9RPU0z7kDq+vOR4IZ3i4Ooe8eaazus3Aoi9jaBwSGGIJMIUspSZeKREYHK6aRjgmAX1Nw0Nw0MOOv3OdgIKXac9Zk05IgfYAcTICo6xYBcrIJ0I48N+HhZAeHxSiR8hk7raAAoM4hKCVB3QNQap14G606S7+FIIaBMG4kMByA2nuOWY56COCBg4OHHA4KtAghBrO9nIESGGhzOHHCIeaWE5xDTyYneUoLwLxpC02COYYnqhwAZt6oZeXoAMHSA2pIeNQ8Si6jQA-cjOPFCQA1i2aNC6hnEFoWd0Mbvtv0aABrFn18qeNQY5QyoY4W6E2oJhYQePh0Kd7803AMw3ob1i-xpRVQxwZOrclqH1C5AqwkwK0KEHtDhhgzQ4X0Ko7YdySIwrpGdwWqbC46eqIiKsLEAXCeUZ3UYdqHuFlUyh8wvdA1l1z2o-hFQ8AAMCkAVsyIvXAvGCJEAaQMwWgMIMk0mHI0YAx2IEU9nBHwiQRyIsIOmwRJzCaWWzIxKM06BPCdhpwPYWAmOjklCRytH4U5VhHwBsRhI3ERUJ4yIiaWGI8xPQM4hgQyavCfSGQJ5D-RmBfMOxA4KkghCLBxEKQjQJsFCCQhjg-Xls15GcDzeoAEUYWx0IDC4Rq4YsFpRb7SiwhWAg6FqL8EI4lQzI-UUYENFFErRBwkQNqIsKEMVSwXcALOgyg9ExWHomeF6OU42hpuDozUSIGUBbMVS0KNtohkGCZ5Qx67fwFMAcJl5+RgkQURCGDHmi7Cozd8thytGTMw0snNaCKMGZWjVQBo5vkUUXR5ivhtwRdMWJrETBSxNou0ckOrET1bI86ese2KMimlDGm4X0ccHNalDRUG9bRKyLjwsDsOGVBkeNEWh6cvUEYOEMWFC4PNj20XVAHIDHbBix2Yo2xNOTtG1IAeYkG2E2PTAtitxTo4cvaxGByBuxRkHcQqLsEHj4oezAcf6KZYki22OJUcRilZHPimQokNekg2ZapE-+hIWMfNjsEqpbGrY0MV-kK4Ijyh4PCXrN2OFGD-uNsQrshK+6oSDyY0SJLGjR7OgjEGRNADjljqTt3uZQCCed2nLtcbYH7UMaclSwCD2uygQJhswyLtcyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaAyukXa8QElPElQ-BhDSAKBIokQSyxgzBCWBIJAns1xuCLSUOwQmCA8gK4toAjhskNx1J649APcKM4CShJok8SVJNknyTHJxvUyeZNF5wJDJ+o8OghJxGmSjAVEurFZNKj2ToAV4EEeBWFg-sLJoUrSc6IoFGcQRxEcEX9RIQijpUsVWYmVz6CJAlxLk5CMVLn4MVrRegbKdX1GHgBVJhlRKeqCyl+CG0vEp1tFFLyVcpIAABjPqdR0oh4AsKJG875tewiAMBPHimlYgYAg04SItNaDLTVwkxBgMxMnR9SlpZIzAEdxODjTHgXA9Udl1WmyIfwkuWaVHyEEcF9mb+DgntOulZtiwc0ynioy-xaBK4p0m5MYDShBQpptEomi9JmnCI5pohbYpNKungz5Ic00-tEE6gTCTgh4QQJGDi4RlM0UiaTsdDFBsCTpMAsQWDLuZfI5pGZeliZyU7cIOCKMowGjIECRhFOntJEnTIZmRgMhrbQlvZxMRCC2Z6MoGXnwRy9AqhPXScKMDEHyiXRfMZGVoFRkCzq+ugo+MYBxnV8ZewfTkoGJMYyMLpaskvlx39Qp4uAtgy0jkNsh2IzBWAmUVYKak18DZk6LIMqOcGnEvAHoiWLSSCD8zGZsAq2RgKyG3B3wC8D3suUJwxCwxtkLwF7KZlUE+IizKOcY3WgrdRwQQN2aYBx5Hkjy3POWfTIVmds6BSYvkRYDYikgXg504AQ73FI6TxRxgyUfYKtkkC5ROs8ubQOiBSwlRazJnr91Z7QAxitoisT7PwE7IQhB0O8W4AKC2ynw8YicnoJxkFBeY25BlD3CXkmwa5WAy2YPIbnlpx5ForUGNHbmES9ezs1bjAF7ktjwBo840b-mHmagF4t8wMjqMSjDtskZc7gR6R3m0I8emvEWaAmMBrBt5UsowroUXnLysZ-qfsZ6KHFCdP5nPUTs-MYFvyW5ucYCSfMuJ9zt+9oyHikAp5VyhBboiDm+PNY+iIFY-FcFrMzyYLes4YpgtmIEEpAGs8YykLyKjpFzsSwIUuXQsBrYKsxUYlWTGKwXhyYOTC-kcXLYWncsFgNSHswJypgAl5PcGhWn3oWhpjOa0fhVsxQW4QWxVY24duSrG9YGx-gdRWgpb4fttFywiYB+z0WjywS+5PsQQpabgM-IU0xwBQk6DpsgCOGFxf9E3B9TwKswfoHpLJB9SEBSuX9EEu+mLSLMQSmTn02gy0YwlXbIvIIDRnpA0sMeTZm22Mw89gZ3IymDhDhAwzxAfUzcWq0Dp6jGpoAB8dLL3FE1+geqYsH1Jtg-Tm4f0l4ADNGBBK3E05QxS+KkhJxDF54kpYqDKUlQ7xfioQPLlqWYIgl+ixoJUqMI7TBYPc1BT0vwXELiR7cSziShOCatBZ9BevFDG2H1LgZNY78doDHGcixA3SgCSFB6naA+JgkowBJO3AAAZWWgpNnENxRpL0VqegoKWdThlts3SfpN6AEgwpegYyYFIokuo+p-yhqdAGsnG9bJfyxGcBKcl5AYV7koQZ5MeUvK3lAUroEFM4gYqrJhDPKQPQzrahIprI6KbFLBXwqZlMQbxVNOSmEjHwowqlRcsemOtmVKUnJd+EjrEqAVOCuwXlKZGFTVIDSsqrMTyW8g+puy23nCttktS2pyKrqaaWHGsRZEOyi8Yqt4GIS8RpKwkflJEDirGgbopysdDJW1hphZgJodSNshpTqpoUnVWWKVVDIZxeSjFS6v1G2ycaupEESgS2WRt1WmrJqfqppaopL4VoFGlJCwmBdfWm4PGMGokp4S440amAE7JFhbNgQmq7ZSUo1YlKw1AawxumtGBJd1Qvrf1XSP4GmSb+eY6JQiLVSMSdcGqeVJIhjHNq+VJ4DzloCdXwz3pBkxKb6j0G1rS5Q6mXpfHolSQaVZPaiUOpx6XwnGa4bMH2t-GciXajkDlUhN24yZEpLKzkWv1xpQJweCUjKagH3XlDK8JoBlmeu0kzil1P0m6LevDX+zg5tfYCZIAqLtJFp0dUybspBkG1hlNsMZQErWAdLW5ysiwSCrrXDLOOjQSdbNxtgzrcI1EqyQuunIPqV1e0kERutshbqkRO6plccAvVhBD17gJ-mL1m7criNKUi3s9KmlyB71ugR9QUpfUHk317JYCRFz2kVFV1uyW9emzlVDqGFyMbjU4qHWGMIuiU-jSFNQBf4pNt6mTRpPhWopP1vaxKTKL-XzrqlQkXIOlNk3MopI2K7yZJOklyT8ABsYzWJNM1+T3lN6gzYxqyp6bV1FuOwZuCSD2KuN3QIlU4qiV8w1N362RL+oMngb0JumgQD5uOCRJ7lQkp5a8os3RBsVcWt5SeOw5FKIITmiLX8tTVgKPNZjVADDWQCAy36ADItXSIbVtkStHeKrSDioXNKQRhjK+kVvaW-0at6oNrUsO6R5qo2fsLoDVqhgFakID0ZPssKrWcimMFGy6mazuJJrNWb+JrWlG-6N9DAhWwGXgzHplbxtFWpej0BW0311ttWj8Rso5AGADp2wl4bap6EUr0Qs2-NSgz23sA3hD2segdDG3lCjohfMYQtSgbNarouDZ7clwO3DbPtPYzQgGobSTb3NmAGbUGrm0HCVtzWpbSmjIabR7IeqgNYas5HGqIROmEhOapG0TB2ht2nrSjusbJqsWnW0cKco85rqkJppFwCDuRjU7zldOnUXfKCBGIb5MQN7XiLJiQ7rWMO6wKWGTVv5SdfAp9ERwTY7I0dPOiNflHwlGqxVFbQyPjsyR9AoE4gSQQsGkHiAO6nLB6LwIZUQQeAhbAKu2JU4m6RNTNMqLZ0qhWiHeTFG8McV6LJ8757gTcJLvQ5RQXWI3ZnbTqRHcKtunOlXWDurV5xIdnukji-kF33hRAIuuQJHow7S8z++4i8LttEq1CbYAATnEIvQpKtQ8NRIA0F57DA0lcNVHVVCOA5AKmznnoIJFwbshn8qWPoFCJDT1ZKw0vbULEDitxWpUOgP3rI2mzoFx0fPeJWSGSB-ZEwUfRDiNW4hZUeUnjAdH0C3gF8dfWvu4Gn3l659QaOQOKEnbT75NAgZJaksChlwv1m297a6ND2ci+dx6kLkfvEon7X8pUYndQzfxJLH9WaGPFRGYCXw0oFG5NgIRtibhNWp2ijQEHsVPox23QJ4AhFhjxkAN4kf-c-1g4CFIIxLKBIAbZgHk69JqZAy2s57T7LqN4W8BDAqJxpOmaUCho1G8rsazZ8G6claBtgXszw8wSdgB1TYkt8DRTJ8C6xx5EGvKJBzUbAc2l2kwDuXEgzeEH0aAiDEbbVZPoR4QQNNHnLznCG83wwrQDe24GJtkS8bpNCmgzU4hcSaG7ZmozvWPs3DCTb12EdQ90DjSbERRfADwl4ToDSGi+McbUAIckNO7QD8UDAN4akOlQ3DG+8wzPouUkI8ppq1SKrschyH81ru4PnMG12bQrQTUxjZbqMBZUlATvV-YaFSNXwRxZy-3V0yMRyN3eWoaAyIfgPnl2N4DDg0CHJ34HEiq4HIMCF5qRrGDzBwZZezYNkdYx7TdAxRp4N8GINxulo9iQ5qgA1mh2P0Z0EfC-cvDTu+oxgFAPcGaDLUK3WYYz1j64jPWkw5PI55HkpYyhzzlkG862GNWWh9wDoZOB6HFNBh5TUYbyMKHD4YxzAK0cmPTHgQxwOY+3pkOhHiDkhq8a5JsO+caDJBjY4cagXF9CDAJwQ0Cd8PXKEaAR2g-wdCOF7LVRqqI6OBiOkJdj6rbsVrs6A66NWaR43aboWrZGaxuR0kwUfsA-jC9pR-PuJ3fDLHyd4rULrsm80CgxAB2AAEK4gcQ3m51qVD5N1A2VAtTcPgCEDhBMAWBBuM-pkwSS5pzqUABJOQCRo38DANvWhF70yZvj-mF8GyZ2UcmLJlbaGryfpwCn4AQp7wYqc3BinoAEpg7C3g13Q7Soh4RAAAC9Bg5rORnqZmM-Gv+Rp7AIB3ZOcm0AggQYIaH5OCm5pdpu4o6YlMAA2IaWmZ1MBmDTvxkM1+3DNmmfOPJg7PxIcaSh3TMmYSb+CBB8A7ipAZ0-TmIBhAsgTwboM6juIABZeEKAGElgU5AAAdgAAc-p0qFmeDPMBjT+a006L3NNZBLTReYsxGFXB3EKzKSyMzWbrNF5XTqoO4p+zsDmRZTPuzM7MdHPjmetk5+1hICjPqsizJZxc6VGXNVm1zB0GgOmYzPDmjzhaE8+qzPNucqe9UOU4YAqKznPK850s0ucrOrnSotZg6LGZtPxmRTMmJM0Of1Pvmf9n5w0N+eRAFnU2B2AAGLw07ixATmjJgAAi65zyg2eyDNnWzd58IBgHwAoyHWVXJC4GcNNjnQzP0PM1OcK0zncL+F0qIRbuKkXoL9OTc7eZkw7m9zi55iyOY-PsWGjJpiM5eZjP048LCAAi0Rc3BCW5A42AAKzpndTb5oM7JdzMKWzTAPP81gTQCAXeLal-ixpa0uSnrTtp+Cw6fFPSWULZ9NC93s5NYWgQQFy6lUUPB6pEguIO4s8rLB3F5awlovHyexI07Ez4lAgE7DVManzWW+dYYoEPNGWqIXljC9Of8vVEgrEoUK6VHCs4BIrZFy6qJbLObhRAZXHubAAOBOn3L2VnM2GdMtTnIz5wZS0XkCvBWSrMmMqxVYOg8o9LaZgy8hdatsWTLE5iM6kFXCWXrL9OPq8VcYubghrpUKK+yxitxnhT9pxCxNZYvZnpr7V2a-me5PYX6cEkvVFZfSg1Xnl7EQwJValMymFrM8Fy6QGtR8S5ZKVzU3IH7M6nMrhl1i7lc5PcWCr11wEKgDEvrXHrelaK55WqvbnsAu5sIPudKigwu46UXTodZks5W5LxgDq+ea6vRmIbN16G-dbhsSnxsL53Gx5ZOscWibP58y29assbgDskN26zDYeuQAnrCNy6iBZhv3mILMmKC3Tamug2zL81-82zYKtOW4L+1ty9tc8oAB1QYFkEgARg9KpUGSfWDgMHngbx1hm-JbOtTnfL6oA7GrfeOa3Eg2tmTLra-LQ7+bUpoKwqbQDHANLNRFIKAH4l6pvb6pzUy1ZBsE3OL558G5bfVs227bm4B2-reduRpYIPc4YgWxkxIC7AdxQ8F6jMAG3Jrwdma6ecUvdWCrVtjW1rbuKx2pLcgBgGNfGtA3c7x1yW2bYut+WDs+AeNgkGosyZZaZx5q8rcuoq3roimUqPgHK4GhQAzyjoIqe1NB2G7Idpm8iHDv04272AZAJ3c3Dd2lbkp8JgNNFR3EyunRcALa0cYDSFgOdo68ebnum3ibSlgq8vY7v2mN7vd0AL2Zrvi287p1gu1LYssAX2bS99u6vYfs93nrJdqO+Xb1tSW37Rtxu+efNsFXiAFwcqWtfVNnG3Oz1is3RHiulRVaPtwYFIjsP0W5ZjFhgMmZnsX387X5sGxaYOzwOKx2gO4sg9H7x3j7y03e8OZrYIQ7rZ9vG21cZtX3mbN96hwg69RIPoajDquwDdrtZX37vDz+51eluLXf7ReGh+groelQGHqD523fYAeRWgHpD4yx-YofnWYDl1ovMJMWiCWuAKt3EF-z7svWWi-5hU+XZ7mcB8AgYrQG-h0t6P8b5D9C5Q54v04zHDcCx1Y+ZHPWE7aUXhPcjuK1dUw0Zrh-Tegf8Oi7B2QJ7xVKjEXLH1jiU6Nf0t13z7+jmR4Y7kff3ZbKT8x+k8yehPnbIDsuzrfAdO3IHZDgx747NMQJugnnRexudwAUaYbnpn0912etI3SoEltGxA7yfcPjbhNvh3wkwTtPE6VDkS907dMZ3vTvpwZ0s63MY2+gHqBq01ficS3L7sj882046cLOunrEZZ8M5RuSWnbtjoZ+JeuejOarmN61DjfGcJPDnRT457M9Of+PEl3QRO5E5TuHY+gsTt-fHYBcRPk7D6MnCCAztZ3eKXjr5famewdA0AQVjcPgcQMVKujUbcdr0eWP9Gkm3B24rwf9nKkmC0Wmk-kb92Mm5xOWh+gZhNQmFNulITcAeDqIVjRUIY+YCMwXhEt+WOyok0gBSNGZv0LLg6KogpNlVsj+c9XTIM7aEN1YYgrejvXxAn178V5VF+gAxfeWm6JN9Vn+dusAQcAA0g6Inul2mvlpoAJyjTdyfisqIDKUG-q5vtGuNx2EK164oT3J1q2Uu32GEAGk2uqutNvJ3AdaO6cnwQAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEHsAcFMCcEMAuBLcA7A+o+AjANtADSiQCuio8aAJqAObSIBQIoAZrOALagDGAFvEiI4oAMygAFAGdovFOnEA6MSoCUTNqTTzUaStOnhekgNbQAnsVhzwsatLWgA3k1DvQNxKVj7k0jDRSPDxJG147Bw0PGJiAflBtamg2ZDRoajdY2IAuUGgAR1J4UPMrUH5oeGpJSuqw23tHNWjs7IS6mvDIxyy2mLz4Q2MzS2JsZFDuppaAbiYAX01tXUUueHMsXAJJJ1cYiLRpCjxjEq38aFAAXlA8f0RJACIAKmxLl6e1eZitHQV9KdwKZSJBRhYMABGYhlDAAJj2fVih2OoGkpBw7wINwMRhMsOhoAmoVOvHOWOgcyRMWQbCk6Mx2yu1xZiRoKTSGUR-RiXh8+iSHPS1B+bQW+Twshc1LaKIo01otyGePB8PG8EmMgxFKpPI8tKkCpurMFqWF3L1sT5vjZyTNGVFevF0ElV32lt5jH5RI1U0a1G+MuyS36IY8Yfcf1WfiOcEeBJhljVoAAbiVSJTpf05WjtUyccqRgmfZrSeSmbq2gatYzLsbbqbOQGs5bZIgtqWzngLgRCEGPe5IBrYJJ7sdVYSh8gR7C4cQ03gMy0+wOB8TR12e5TK8GJVL3Xqc0alcN8Um5yXQgydYGPdXjyb2fbmwePABIfptjtXvOXPsf1d+inEdgNVC8FyXFdANXddrwrKkAPcZ1XRbVcv3XBV53TSlHR5CNYnw-CowBUBqH8IdEAESQuAtbJrX0HgWVuJ4gRBSAnn7NoElY0FOOyPJGNZJ40lkWBEA46DQASES4z4to8jgTgRy4YgngAVTQUw0HAAB3fQoDgJA9FAABaEyfUuL5cPw+jSPIpABHmJYcwMhAAS3HF1k2CldnmHMGAoW5XKM9At2eHj2MDHMyECiAYDcvQwuE2MxKslgwGIvRpHYTgeAAZQASQAYQABVAAApPLQAAFiUSE6uWf5jOgCCkGgGREC4RBiGgNAU1o2z-AwWQ8DYDAWvTIy0DoDqutafoEjRTrmD1PIhrQeAuHa445r47jwGBUFhosLgcHAbsIO2k6zu7cAxo2rbZsQNQer6+b5NAIa5Sodtkl4PB4AS9Anve9p8gXDBvrQX65ABoG0Ce17+r4taAjTWBkCZDA-rhkKEZ2569vB850cxy5sdhwG8cR-I3pRz6AmVZA6DQLboZBomJu7JmWbZx4CaR0HcgZyH0DIgFzmgAAPSAbEMPQOb1BIudFmhkAl7tpdl6B5eBgXaeR1aRYB07qHgcaZbl6QFYJoX4lALzoAwTLgZNnAzYwIcEC2kRYGkEGoMkto3Y9s7qAsAO5MA3rDZ5VHhsKDMdG25a7Y8ZWIdkIpet4bbE5zp3jjavn-dtwX6aG-BjFMRWeQz84q94Gv9ZjtP3Hj+jhuwEQ+drhbie7Tui573r+eW8ujaGoRIHuMkAT7rjKEgGeI654oREkF3MC1q2bdTwXA8Asd2zujBLv9wG6FL-eDZaenFLsGn1M07S9LRCxofgKXTPMte2rSpYW8l4r03toYgl9HCoWrENWWyAuDq2QCmJ2W9QFoBaKhDwtlp54AhLA+BKAkHOxWPPP44DYBX1vEhPcVxoEBAiFwSA4AkhEKasDP46DXzuCPDrYIsU-4by3hgMOEd2GHyDh4aWIgaDjT6tOdAvco6SUEV7TajA4D+1EYo6CECxHiNiIImOcjWaj1QS0ShnpvA2iGp3S6DR0R4EJgOBINjsKqykY8OWvC24DFtEKB0fRkL7hlA-EcpDQDPy0rpfQQDEAWBgD-YBOC0rhkWI1aMdwHgYFPufSQWtpCCwwZ4L0NptIYAgbkmWvQ66gCCCETieRQL8PaqkP27ZL4VMgI4A+Wj3DHyyWNHJcs2nkP9nkl6t9AyAOIc1CGhxxZ6ElpbHW1s9bj1vhgwaARECwAzLk1qG85kW1lp7GwNQy4TLkvXRcbVJCHJ3qra+c0J5GyabcsWRzYBlIcQHW+Tk0kkRVlnJOucnr5PWa+Wh40GGxITtnZOoKOH9lso2YU1lqGfTpJIIaANjhd2LiYgmzRCltFsq8lpuLh7QF7oSl6rc0UuiCdmdAqJyXtgJmfbCOIo5kunBS7uVKCXLS6XS-skKXGLmabytly0OUSsRR6WyrKu5dVlRmXCMRAluijqSzO+d4U9KKXy-F0NHmIGFW9dVKSNWpKAX00+2gebCkkA9HWtEimWL8AEWpoQXVVMXt6-sDThzPBeA6+WLMMifGIHasaYbrYRpqOuX1ZjZiIVADa6ZihpBkkwEwmG-0qYAlNW6yFQKC4gzdQcZlFBCU4jLcnPFI8TUg0te4TZULhAQnrSCmlUcEgBo9IMZevUzk5qyeQCmBb4YaKlY2gV7MaUvQNbEbNVBx35txkW6iGxC56pBcuoOQy50lwRSmpEmriVtuKZ6h52BoaTs3XvXaHpuIPDeUcO9G7C2JWkNdc6Fao7x1JljHG37VnPqcRk8cwHyagfhsdU6-7bbeJ8d66yGbWH6BVo3ZuazW4YJzMInEOGhHgHDi2pEOYyySjrWOvND6wNHEkMI8xfBq1skdRkbKtwY0YDjczJ11HHC4R1ZNDewjdF6kkSOmRKYjG9yE8QfjCawWt0mf8mZ5wh78upXht6Gzr0Ox3RgcVuyemvM7jvZZT7nqSckmpv5QCVaOt011Apr4cyXRxK8lzo9VUpyeb8pEjqEM3X85IXz97f2IavDfS6gsROGcuo5zNWGIYwYIAx+GNN8OvhC9FsLtiMtOzg3jULSH979lecVrLZXbHnNbnZkV4p3AacUCrKGX7sst303l8NmACvnXC512r7lBuxaeVV-Z7URulfcvVm+jWqsWtSeldgqXsocG4KAQqpUKpVVqvVOEbWb0jTGvwtIM1bYGY9SLIIp04Ag3cAAH2e3JIaxwMbTSe6AV772AhnXOlUfGqdftvctOtYIE3noxD+xDgIKKMgUamZhkW2A6AMGoBgY+NNECVC2HQN17bQLXYAGSk4qFUM5oOmJEnx+jlLqP1qqKe6+dt6PMfY7ffrJ4LqAEnffjF-pgQWfXbZ4ZzokhYKp3U0Aqe-XXMw4POz+AGOMhc-HDzyL4lZepdxAJvm5XocDQl1TqXvpahm+l3NM9KP0na-C2LvotlJfrmt89KkduSJfWrT9UbNmTe3aGhz9XOOeezcpvDfnQCI9TrK+N1nzvTf1HXK7i3yHPcC9j4+0KC25qoRd1bi37vbcC6GjVubAeC+GeD6rznYe1lPAr5HvG0e9fN7j2Nv9xvq+3bT5qfvxvS9AI7znzAeeldJ770XzUJfM9y4CCHc2VndYg-z8rmvWy6+h+543pfHzrPoDb6j-fKifbqMT5gwz6wwTjeFy64gg+K265P5td25thGX6vdPlPxf08y5f3SWsWvWPUFXXyn29FrzVyxwbzc3CW02NR10Z3SUsyWVXy-3dW9Cf2Q2QO9zoTFgQXQEWW1nQKdyvyDy32gI1zHjgINSeDmUII2k1jQJWTQGP3STuUthOSRzIO-29D6RsDYBpkhEAJIk4OORRAwNsgEJSBpgRFwOMnEM+RKBoMn3IP4MyUEJpjEFEOMg+z3QCzUL4KsUoPr13zgKeG7WgHYJIkdlhWBUMMgQ31uxx0sIMKeGIBpQUKzQMNAObTFw8AgJtGwJl28OiVnUpUVycKCP0Ely8IwxQJ1mlUQNNWiPUJtHd2EwSLwI7RhSsIRV70gK9ShwRTCONiGGSKbVULSOMJvW9XN01EXTKMrlJFw3AIsSKIJzMM10bxwxsOMjsJwykMM1cL6M8NTjKJI0-14NqMp1-0aNCOyL0MZmXlnmphmJVyoNgO6nCWwWQDnj0H6MUAMRYKr2cKwJnyHzKPKQ2OT0TT-wWJt10MUFKXKSgBqMwJMMCBKPeOePCNaTKXIUkF+MKOCLN1+LKKPTeM6UD29HXAhNW1YC3k21yh22KjKkqhqjqhUDLy2R2XailiJ0M2-lp22TVSWLWGMxQTPzUT9mIAk3BSRGkLfXoO4EYWYS3g8INRpN9jBQZOa1xNFgYSYWkRQTYCJIoK6J33HDYFUnoXZNFNSyOOiVS09ipnPz9k3glI0NxS0NlNABELKMEU-3FJux1PbD1OIHkIpJVMw1k3kxMVNPFxcM0NkP1J0LKLsNMxm3QHcW1JtFcO9I8LY2hlHj+JFm9MkEun9JvRDxgLfXi3gJAMumVM+PH1cUOHcSjOwhjLmPuM1GjPDJzlOGtmmntM4GMXZlyyZMM3XAFKASVQ4BZ2rI6LBPqHrL12LPAFkCEREW9iIHBRiBrNu1AibK2gS1SRzDxydipU7XLPkVHhxDQwFzsLHKuhizBXPlzJJ2703OwiyK92MjXKNw0X7L2CHNbNiLNzXPDOPJyRvJcAvPSP0HXBvLKOk2kUMQrOpV3KwklHpKGBnN62HP4N6joDxxkF3KcFpwIGmggoXD9WqVAlXP7Mgo3L-K6VABwEAtkxQzyFgvAv4DQpukgQAB47gwL4KShEKlZ8hYAlJngAAVA6IzNACwSgchUgEuXMVY5ADIPIJ4UAAAanTT0SWi+zoFpAjnG0gREuDMEpEoPQ8E+0uykuzMlDvgHAUnosfieGYvAHYGgB0g4roC4tHmynRF4v4vCWEtEr0RUumjUpkqcDktUlsqUvcAcskrYAjgQvnz1wiiN0d273cyRCcz6mxwOjBBbLaCAVXXxl-NTGosrRJU32+JCGIvOhosAmVgiqBDBA8okR0BLMu3nMrMeDUyUryHG3rDzMyo0sKo6DNz8sKuqpzQaKvCgvVALOStY2tX6GrBjlqunNyIhC-IXOhhSuyBCXqtUg0jOiSBqVUWSTFHRU4VlHYzXJxEbNQpFQVUM3is3n7JPKOtUSXTEo8DvP3NOq2h3AInPRAptBjkiqgFyRW0PMUHy272Cpiz-NCt+E7Lyqirev6kvXW1R0OpkowqmqtDSvqOcoNVypTBeoKr0S7NLLoDKt7kqugmqu71qriKgoPQSC-ElwQr-JQw+kOtgi6svHUuaFbVAHFFFUxSGtJPx1nJhXGvKphpiBmvGzmrQAWpoCWq2gSW1xWt3AZS1Q9BzC2tuB2ubJW32tu0OuPJkpuspDs2giuolVPLOr6qtSNtmOevypBvUzW2RJym212wxIO2xOqkFLwQQUITFO0FhK+LjOoNQVUmdoIWsPDL9sQSdjgRnnnW7gVnYVBKvPmNCHYXU2igxnwWDpYWjG4yg0eCDFcM6GDI8E6AHHOuyFcOJFzvcGJALsk1cOAlLpIGHArqzpZOPhruPnruDhZMhxCGDI7rwD1ELtiFcLImkBnngAsGDMHuHvYp5D7piFcJCVLpCQ9Gno8FcPWDxzKRwGkA8NXv4HXuyn6CXt6RZKEpro8EkClmIAsGgoAD5QBv4RLJ6D6M7ngTIT73Az6L7r7b7TJQAH7K6WSo02h36f7P7v4Xgf73BH7XDgBX6pBz7gGbgb7v4wBf6G7xwngABSGBoBy+hBr+9B8B0ASBlkpiE+7BkB2qy+v+tBgAQhZFIbgZweuEQdAFoduEodQceCeFIqwYYfIfIvcHYbbrQdIuuFfrIdwe-hEYEaIbQavp4Y-okdABvukaoc4avtEeIFiHEaYa-vUZUY4eeGoZga-piB0fcGoY8EJKDCinYyDtdtVJkpuH7Bv0t2qGIDseQQ2xsY-RICTpds8btPABwAACs5AzUnH+gXG-hcGq6-H-bgyn947H7YgPHU6i1vHURUnOt06cdXDEdqBgz8nkmLrl6WSCo0AzR1ZR7NHynKnYlimSmn6nht6MASoCpS6Wm2mGmSmV6kAd6ABRGulp-p7pi61wgAOXgHGZgcmfGcpr0QyYoCyd9yi13IibaCidwcl3FPcbiZTuycWd8bgX8dvT93PnWeyE2Z0cSeXCOeTsIQOfmCAWwVwT2fscwx9pMuPlzJeYwDSD43ZFgBwVKuCfgDTGzQxmEEkG5LeZDoYQID5mpk0W0XIW+dmFiBtLRC9EgCxpMVzI-Kx25oUUAmnhHUkFScEShrsr0WWY-T92cu1uyFJZoHJdhbScSiCdCfkDBUKruZOZGy3MZdiBGs5rGtkW-LDL+QIAoBGroFOGws1nFYmtijbCOiJbxfmEto22tvynRP2yxNqkdpj19IQHkAwGzmOESnWFgBrmK1zMhwexHCfztc0sXif3XBdZcvCQwAUvEtUp8tcfzNCE9cDTqo9cBjJgIH8tR3oXWAThUREGpwko+LTMoF4F4C4uCBuRkHAXTc-uyhEoi3TdqqeEEoSFLdAAErcpEvgDzaFctFLfGOTfDO0C9lkA6gkrISvi7YBbbczGcDfEev0C8tsqeGeFstjfNlkATaRxccvl7cBlkC7aJTkrUCeDKNbcXadl9i4Ai3IXteKIysvjTnLe9Qkg+mxTfWPdAHJz4ixUPdCHXGPacFezDYt2fZYaEjiC+H7ASEDb3cJxLe-cuRDO2VrfbAtfcmtZrmPbkjyHvbKV4oOOBmvdvYHGZ0ehOJINYIA7MRA7Hd9c3b9m3bgF3cl3KWfa9cUUEt9bv1PhdVQWjAP3QI-cUoHBo9sqI57J3f-afZGVw7MWEuo7Xbg7ZD7fCgeGDMviUzQD7awFI9df4hFlAlg-7i4-aieGrujTfXI-3e6tCGfZk7k53bTnji8tw9-fCQAHJfXL5R2bPQ2vK1Lj2N3ZOt3zWMxYAI5s4vOD30rQgtpHX-2fPBHGmmmqACnVI7B5LtJxJVJlQ4x5KdkCAvhFPYgEh1PgvPPKG6aQvxl1P5PYAaJQ3MvJc8v9PJByuxP3O8uyjQXwXeBIX2xLoTljBlkOk-O9jkOEYtYT3wukPW9iAsPd5gZev62PAXH6uhhGvkBhB-NWvc5DBl2Ou0ufEMP2pevLPXDv3PDvr6PmyZZVuPAFIZYyiQvjpP4pYFv2veuMFIUuvqZeuUq5aHH8bbh+w6P7oWdhvD8evDvDbE62vDB1cIFPIhBKvsuLvsArvZYgewVyknvLVFVXuYsS3q7LPQJJdYfFvZAscIFxkn9sflkQeRk8P+g8hKW3uhIm6MfOAceSer5Q3KfUfacngpuIXZvmvsJz2wZRyUebpxv3BJuwXpumv5uieluTLRl-vTPa7pxGOu9frfG4eGesiNV0VIUGOnviVmS0GdvBcwt9vHpEfz01qZRSVTuHqPqXy4kNvDuzSvjGlDvLPJdNvye6KGKtZBbIk34V9WCiRbfUzMzzKOuHeb0nfIA+u6znf3eZqvfwkNIfesNTjFBg+TVUyEuxJEpEBwAhEnZqhkgahbvnS4TbfQ-WfM-xJrjqA8fges-QpP9i+h26q0+zUVvPTjMcA0gyJvtis-ylww+5eRw++kq5VJju-SritmMJ-ppczJcu+1ZZ-x-F-MbbEF+e-AOS+MiLd1-Ltwzd+yz-m1zsyMYmQhuzzB-CwTAR+3zMWCWT-I2BzEyHyt-9BkLO+Z+ZoR-ozz+zrmi0ZAYofV-mjm3zxlxw8fJ4N+3DIiRP0mMDePHzXIydhaWOdGBgEEA0ACAsAN1Ma0gCrx7e61dwJCnRgrcwaVaHxgfzoDEZP+fzTAMfwQFnlGal5LCp-1qr5NEabIZARyk+ToDqAmAjpL-1uoGo8gEQXAdPxX7hYKBd1dXtLQxRSAYEwabXgQNhojlg0IgiOK73+7EA1BHVFbobSoQyClBTArWIzUIjN9tBvXMop9iqBcBEOMAaRMkABgWAeChIBwSPXVzSAEQg-bujIBEKWdXBTgrHB4N2ChtMeZuaQCIUF5SB822yawbYJkz+CeCMQzaN+B8GjMwu2QBIYEIRDQDQyQLKoIQkyE+DiAmQ4aJ4OAHeDwhfXEoUENl6hD6glQyIbsFwZpBfYBAMFiVhdBuCag1QuELsEiF6gmhOjKwckNggiFo26SYYTYLYAAxOo4PMJCm0VQzCpEXcGwJtA7axComYCNEOMJIjTCkAywyYesM2h+d4aSQ4rv3AHQXtchbQgoZ0ICHQsPQcRM4aM0GE309hiAA4WcKOE2DpcqwmiDsOahSwpEWOWkA8geAmIR+ZsHYi-0ozsYKBVA8QUf1Qo38GBzfeEbTjYH9x7+kIpAAIMpAhD9hcATAKvSogUCJBn-cZFCLxGB1CRvgDACSKIoURihuInKGdUH7y0hIbAX0BkEEqWcngXIyYDyNDaJwSg5LFkVCKcCWctqrWd3uXkAEURJRWIoETJlBEohwR7MJkaRBZE3lQ28g+XgqJvYU49RI4CURj1pHEiHIRFdcAqP6H9B1wEo20W0Aoi+wLRlEIiljyQBpCwukuB0byx1pnlZe-I7kQU0sGXZpWoUQ4YSUH6gQ4GrwmpFDnDICA5ApgMpJgEr4Kx0x6AYgOd01HncYRZA1EAyJMw8IHEOIZ0USPpGWiIecAXBCyMzFoBiAfo6CHmNRFMCixniUsazwFEEACmlnS4UpwxrhiBsXw9sSWOegbsey3faWGKKMKzEPs2yS7P+wVHhkAoKw6weCEJBlAyhsInxunQCgbjEwFga0kwO4yPg7QTYKSPGJCCVs0QzRdkFd1hB3QZxbqHMGUBxAejxxzfOUTOEsBOBy237G8WUClaMBQAjFAABL9MMAAAQTyh5R+mAAJUYoFQAA8uMyqi3BlyAuNgIwAEBlI6+W6csb4GpGD9SAk4+8TOJdF9dVxU4qWCD3wlZQKJRI2XquJKDcx6JzKMoixJCB4TRIW6XMuBMgkwS4JiElCWhM4mMAaByQWibX14kMTCJaCQfquMOE0SMAj4oQvJPGRPB6xJkSYamTNAyS4wck80cROAGTDnYMwlxloihFcUEGy6JMU3FTE8TDJwMaySpFrofCiR1IwXthLdFOT6+TGeSdSPUzStPAwQJ2BEG0C+wcQAABk1ZAJ0gOkEzGFNsFrF3IyAGoETmSkRTchOIZLuFJFJRSRKkIRLLdjymixIpcADvpsASlcDH+D-M-qFMywPc0pL4ZvqBEgHBlQIZU5qYlHSkVdPWkJXqKolqlMgAgaQMIGFJfHsZupA3FqUuSMpJSmps03qRlNwgxIbATsHSCUBrhN9+g7aYgbdz7RGZqpC0qfvHxmkzx9iZWdKZTXjgR9KaCQUCDEM2nbT-2T3R0USA2kYAtpeAGuNH0j5HclOxgh6kwOenfTXpeU8MskDsEOAskf3SAFhFP5-hWRt1DBOtOgAvTfpuSGGkQMAHbhSB+oVmkUFFEj98Zhg1KrdjJLQBGB4YM3tBEIwIiN+NA52LtWpE0y6IhmHAKwKfBNgPKCQLka6A8p5AwZP0muGSLX5SCxQTAN8BenJlziAgjSRUTlU+kYzwZWM13uglfYizXpdZQGXHHYDUVqZ-YUwaDK+miyOu75ZUdIlBGMJ5YlweqcjIXAmSdxqIdEcwMRG0DkREbBqbfxpCYp4RrDXxM+BhrIo0AUlSsW6LEFMy1+FIxsekPcBOyUZOEalkzQ16Ypvx6lDhBdVYAvBc5-YQjCwNuBkikRLOROb7IpnegA5Z4vxJkBfRshw5DIh2b2CbHuBxZ2EKOXv3-BvgAIOowdPkCtk1Bv+JQNmabxkHVhoZI6AIMDETkoiDaj5HOXnL2mGYgxgokMaPJQhKCLewIpuU-2HlJzWMSwa3vXJ8oRyqIkAScBeHzHPkk5JbbsUKP7gryexPPYWCKNCDnz3GCIKUf2V1EACQIIhFOfbAJZ-Mxots62PbPfkkBL5Z5H+VwPJaeDLOQCm2d2TAU7BIAF4CBQ+VAALyXgMC0COfKcDk5lOwaNBX120ANyqx1oiIby2tEIgPpHgMhSfMblY8qF8ctoFj1oUtyeQN5QMXfLXlHzrEYUjqIgT85e0G8iBVSHlKD7oB-opEhWJDMH5P5IZ4ZMqZ-nkXlCH2OgjCJNL1mvo0GJQLaRYDxIZgf27vd1hbiUXhlfm5sPKRNN7CgAcxxk+xZDyvlcJ2M-0YHItOZBFIXUI0y4GNIRiQzcIOYBhRCA7GxRFEIS0+URQcUeSiJLcw4DIpw7uK10kMuhbEBbF-9m+kSsJbfODHPz7Y-Yl+dNg841jbFTsT-MkswCpKDUg4xgBGK+HZKxxmeEKQJIwDwS1IAAGX6boSrxeAOKXrh8m4S8p-sQKfvJIlkSpJjE3wFRIkk0T1cwyqZWglDZcTB4YU-2CuIkmsTPF6ywfq0vaVdK8o4k9sHMqxwLKNJg-MycyxqBaIlJXwlSWpMWVeiG2eUnSWcK+CC9blfw54PryeAvLdJAIz6qsVCVrLFlzsk8WcPMlIBLJq4PKbg2XRWLPFZS9xo4pvLeScJO9M5SioDGhj4WTsELtWK85qlYlDYpOWuOOEXKIV7w6FbFX7JwqPQly4dPYLuFI4DU+kvyVuhiUuivJBqOMb8wWWcrPJ+85JurWeHvlil+KkLniLJU0QCM7GAoNE1uD7jYkMAAlTlyeBNISlXnSWqm3lXaBuZ544UJZ2ti4rNV3nbLlKsmGy9dVCMVvv7Cq4iq-h0A-xVJKZDPivBAQczh+M1nPYRYxAr1eGWOB2B8+7EzAP8xokRYQ1JadOc6uliur6x8qDaj4zfG3B7lSYJ8fGsZo5gM29FPzPWOlUXNJIny9cWUHi4hrXlfw7VTEBijghS1sk9AOWusFckPQKnENcQDjHZqbA96PNZaoPl0yUkR8wNTYE8XMzw1ail2Us3NE4gEli4HDoEqRCQoaJrqjSTDVfGWAcQqaiEE+I0mZq3FPgTtRaWSmTCC10EItWsJLXwEwpDazaJWo8DVrz1vyy9bpPrZdSwpbaz+h2r8xlSe19KDeVbwFwF9h1dgdlRmMjXurEV8agBenEoA19wNka0NgBvrERq61aCavgZP8lIbnJCk18IOuDXIaR15EjNeOogB4A0NRaHEK0qEkISkJqEw5UiAo2wSqNoknpS2uQ1vrcG50UjVlFYy2QngwIddpiwA02Kx1MQHDcOrDXkS51BYigBxu2XkaIJbSzpd0twh7LFNzG4NHlLY06MZNwy7jcvL43-9RqqsYJqlg6QLC4aJRMZEaVnSHBjN-wUzXPzNyWbMWR6GzcQml4wlB+-0g8oKVFbYx-Atm6MPZrA31EnNR8pVIPQC0VVKkDm9stFsGm4oItbmoLcAK83hl0gdANqFjnxVjIFFjmuLZixs3gBxprm-4GCgdXWC-OvmkrYFuq1mo+u5WzaKG0K3jSXN6ASLf7Fq1dID0Gq-FUqlq3vp2tS6NNGJQa3-C-k1arSTQHko9bsuwZZrShoFwRaitCMRLaVotXPCwNvm1bYFu211a+xUOXUdcPyEdDHBLK1cDNtKXhb-NxCSQLtswqjaht2QOMUtpa1JE-N0gdrbduu2lbHt4iB7epgm3RdVIF2rVcUP83LbAw8U6ABlo3g6JSVlqilX8MhWzDUaA4eWlfWlk8hvBIOiOOlsy2mqAOXW1hcpTDF1LhxXy7hRoGG32xalOfcneuJ1Hdybx3qf8NkAe3jbyAzwWLtNvFWzbiAeOkQJDs7K0SM28A-Ac31eTx9ZW8rSWEqx5p1cReHPObrYjh0PaWwtkMyVSvB5yR0dckaWHIHIDtQYBP0OAe1EKq6cKEeItJVGSG7X0-RM1FMHHNYURJX4b-JAElVgAJIFK0spnTEDZ6K6Zuyu7nmT1oq076lFO6BZaDyAs6ddx1S1Rzs4bs9A9XPCVDzrEx4q+doAJPWL2jJ+R2M6wK7uPUcE4gAAnE8z1xF6R60qmQNgIr3kRHB0qv5r7A6j86cZ0a-zh1ATVS0UI1YfQLTmim80PAleiOFZys6qQlAE+m9foN-Uehh9-7Y4JLIyH16q9Zk9WI9jMnS5xk+gcyIaWNkgyh9y+rtBCrX0jgwUBe97RPQtpAIJeAQfFWkBijzg4AZ0a2PU1lU+MCgOIc7r+ku7XdDAYo4jlilk7kBR2swVLrhGrBIJYAz+qpp+2YjWxYKOuMGnPqeBmRzIN+pxTWM+hAGKAP8F+t8Eg3uA59BXCVXMFTkGD8I1YPNTnzz5lIa+SOAoF3tiCCbkpQGxDQhpDWkZyMDBvQbIKjJP7uyMBwOZYUFHQwvgBMwg4fufqoHzI9Y6DYX1wOoGrIZBjeYRD7VL6h6jgqQ9IYwNedDUvCbKNIcUM8Hh91eqOGZOpWrhddeiYg9lweElNjd0MU3ZVyt1SBHd7AT+v1CeUDx14Ge0pQUE8Kk66d1e71GYgPmYslUVAaQDpEez37yAU09-Z-sh7f7oev+kZVu0AMxQQDYBojWuXTo47nDaIQI+HvXEhHdNkpeorkb6684DKDIy7FqOwAcQ3weQGw6UocMoAbk-huqpUbbVuHTSOjTw9cTwAGKjFRulmEGvW2Or2Rces4QnueD6KR6IxtPdchECmqpOQxhY1gHxKBgmAN+gnVZ0r6SB45AAHSYA2KrlWAXPmwDsC7sWdP9D+ugkAhj7wkkB5-QHXmC7H8V+x-CYcfSEnGzjjKrHNQauNFcxR8vUgPOHGTlBQI4J0AAAC9bmoAE40wYBMXHnY1xm3XcbhOCcg4TxpvPwdkBpQAImgWdJEeiMjh9jKJoE+iYYbac9F8lHAPJV4DyUCmLQKzoGFYAfHbDFJmGaieBO7saT4Xek4yeZOpdcTVkIAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZygJwKYEMC2B9LAB0IzABM8yMAbLATwzIApkBGAGkStoYuQCYAlIgDeAKESTEmKCDRIYyPGBDVqLVoIlSdAfi416jPAKZadOgFyJCWGGiYALbMzaD22i18lnEAXgA+FHRsfCISckpDXhYQ3DwoO3U3D2809Iz07iM+IUEAbjEAXzFQSFgERBgwKAw0amwANwwonkYNTmzeEyFRT2kMWXkqpRU1DXNvfS7jU0mva1t7JxcJ1MypX0CqmrqGrGbWnKYZ3LN1jcytoNRMeMSYZM1BAuLS8Gh4JFvQvGBaKA4IhMMqcZDCcQ6GRyJD-LBQWpgExxHCxO74IGEEHgMEvQolMqfSpwhGkZHotGhCH9aHDRTKVTJFHzCz6MbUfpWHa1epNFqnJic7zOLCuZkXdLXRAkxHk0KU+5JBU4F6vEoAenViDgJDQ8K+CSwACMGpxCCAoIgsOREABzQZiTXStBwHCICCOIg8xAAZkQLAwRKQPoAdKGfVpCRUkFhkMg4BAmABrDB0TiYCBwNBkcF9KGDGEjBnjDNZnMsqaIcBUYDVRhCizWDAARxAWHUKbTiBFzB7TFL2fBLwbXn0fYH5ZHjatcYTydTnAe6gnQ-x73KX0QQJThpNGF8kKkmbAqEQ1AT7d3DX8Z8UUCYACIAFSJPdPh+vHRRzfnuBJkBYp2eAcIgQG9IeXjHqeyAgEar7Xn4M7xomQEgUuTDnhAl7wRgeIjjAwD+jBcHGghfiIdWGC1mAjDUhstJIJR1GMIUaRFIgNDIBgeaZFBloTjesbIfOdB4Pwi5KsROF4RsBH+gJ5EUeQVF1mQdGXJIDFVspzFkKxmTsZx3EQZcWnoROn4GSOJQ6DZUjfpU1RcWg96oZwYGcI07YgLhPGQQg0GwThgmzihqbARJjwYRe1BXrhlleHJLBBaR3GKdpNaqepGRcVAhpRZh2GpRKGlSEsDjUHeIkRTYdgOB5iBedQPkvCVpVeOhhWxdJMneIZ1BcX56R8QMmbZiFwkNehUmpb1GRJQp5EZSpNFqUNkgAJBpLl+XJCle4eFt7VeOVTCnQ1TUtW1x3eNN+0NKqhRHZI-WDSZGw7eZgZlp53m4fpGR2V4QOICDDlIGQii2FAHpMCq61SFpbrpQ+v7-oQD5TqOZ5wH+AFY9OyNLQ+Tl1FAmPHfopMuQTCwcWgLoODgnAPgAqmASZgHAADuSA6nU+qVAAtELiA4R+AOgzSBbDJDyDQx6a4jfzerRnFN7bi0OFmIUI32paiEq4LSLa6juPoxLYgjeaBvarqxtxY+1Pk684NblgO5GtUkNgLaTBeWgMDFY1f3ZQMQxIKdAdBwdIfNf9bxu175DVLaeDR6lTDJz7tph1pfbZ6narrkGiCF776d-Vn3tF0NZlKuXudrknNcV9Ufx6jg+4Z7HwCd75JlaUJc496azq4AnBIfNGHEAB6Iswo8YL98ecH3E95zLkd1XDHstI3-tYIHweXbha-98XbsYPPpAUAReBQXepD3kvnTwufG9DSNjc3o3eDt+vLuh9j69wvpLLSP90pMVUiOfQ18F7AJjmPMg79x5dwrFIRY8IeRIiBDDRw1cU4V1PoQnO7guCoMAZPR0WpwbIGdK6RAABlAAkgAYQAAqIAAFJMMQAAFhDKwEM-AS4z3pFxagwA8AYEuvqX2sQcBQE3hHIsKgcBGjqIo5RkgAA+uiCYSPQKnbRwhED6MMUoI0uN9hgFMeYgxmR6TsnsVICxTilDQNWqY5u09Nz0kSLae0FBKqoG0YuZwhpc51y3kWU6qAlHCAAGRJO7KsBJOj0pQEiYE3xG5HKjAnvYwesSAlYCCcYUJ94MkszABPS2U98nfDoBouAsU4DSLqUAjJKjCx9mmoCZRl8-EFIIHGGAtowBdxqMUzwWkykVJCVVGpiAHxCQmVM5+DSxGbnWZM6ZeVkAtOsUyRJfl86rHQv0ySgzVTDKaUhDZBzK7x1mYjWJ1yooDMSXhRppd6R8WtHlKgEBaCqy+G8zSpSlCBOCXgKp4TVmApqFEUFR9jbbLdsi4FgYwUOyOa005OiIIXNFEwK5lybk-N+Tsyo2LUV4rViQnp5yPmUq+VSoZ9z-lKCXgy9F0ZIXh0LAsuFCKVkPj5SCxlXxMUjKQFK3FAqDQEpOUK0lzAKVku+Vy7lM9FVovBQgF5Pl1Vsu1UqHVj1E7yqLLQDRKCZGz0IJgcZCAzWqNFZU5ZgyWb2qNI66+LqMBurAHKh5-rHW2H7jyZAHrCyYhYMctpeAOnKAnpwT5RLrV-JnpGrAeBrFkDoPG4YWbyWcpzbShQSgGLInhBgA5paa1RLFT6pRLM62oAbQc8Npc61BtdcgCFLKSXms1ZWvV-ilDHkhtGS8g6Q3DvdaOuZ0LW3erCSs2mOgHyzpgPO2Ki7Q19pnrOp1Lq8DBrFGcsdqiql4EwMARFmg8ml3PYOh+AVm23lQI+qiiKhBvrPQgCgn72zVNuay+9d5-3PpWRGYD06TAth8pAfcq73mepheUttW7fWrK4q2UgEAMCns3JrFDxH0PaNzHewsCKHxEbQ6Rh8YJBngiQ5UZjJGWjdtqAcuNo6pBrtUeWnpU7iT2D-fxxtz9aPZQ1QprjSBXWHMSAJ5+QmOOKdiTqzjNqHn0kbYQKAokeM0YyXR0TIrRiMmU4Znl8LYzqZ7fJqzunsPFnUPpmlbt6QmgTEmIVwq6Q4cWfC9tUAWaBYgEmcjlRKOxeC5hqFMGwkPmS2x4IiSVNl0wkmQtcBi0haU1ayTLbwiVSwoK1LoWW2ws3ZBjtqyqswBq7Kir0p5UXqHSOqD9Gy3suzV1o+tptO3ps0Ni1HKooSa61zAgaBxtMB1NZrDtnvOrcIAZ3Nm5axoD-WN7b620t9NWGtrramlsrcu9Bws6FLtrmrUWAOTAg29LCxupZYSg0s10Al7epJ5B4DwbDaGb9otoIHtLVRVD-DE2AEkRgD5ECwNWUjx4KORxNlbO2M6qCUE6PR-DyQOPXtHwJ8TtIcCb6RHvo-VA8mIcUKh1QjBkhrD0lOtDZJqTuc7yJxzxA+hoY4NB-CWG6FefXWOuhIXsv2pi7qLgyXBC+wy53TdYUqwFda+1xYdnwvrAPkxw0MgD48vDt9g0KAxqfi4CYLPT729liz04FKdkXWPSBkK9aMZzlBVCTJl8TgxG0CiRZ+H0S7Ov4BUtGDxw-6YLUFtsrkHiemDR6vag4PLlQ9o4N9r7P7PwGxMT8n1QBtEfI4t+j9k5Pre2lt-blEu98GV9T11kAXF-7KVnlTl3RZbgmI1-CPztr9Zykd52ECnZwL9BGvQxC+sRJz9TEB2HhZl9LS8YwEXiB2SIGsMgPL3tr54CAh0wfceTyWk7DeMfyiy9ebe52YQ+gHwA+P6BVMa5beIAAAqAAEgAKJ4AACCTCTCoBAASoASwgAPIAByfCiE7IhQL2wAgwHoAeIe366eYAH86CMSqiPeLQ5+A+hBwu+gU+lBxgee0Yca1B5OU+7YsUjBXwp+jmM8bBageB+e36Q+IB4BUBMB8BSBqBeWdB-eDBcY+BJ4VOOCQ+U+DuqIlBl+4U1+1BLMnBCAQsah2yTodCDCborCnCPCfCgiwirAL2si3kDaiKpAjQnmm2ki0i9hzU8ifsPSWM+gOWUAWMXOhS3StyfhOMeMhAJgyasUzKMRqanSRSPSnAzhwunORY9K0qyqK6YRGQcCTUX6d+QK-KRqdiKyqRQRFOICDQJRxspi4Rnhlc1R-ISqpRThYALhlR9IeymyMyvheRHEBRPRTa5RHRaRP+AKoGB6XwC6zqfWORiSDRBR+6h6vWS6-WLWFRGQwRzmDqBax6y6ZRuR6Q+glG4MGEuAAaBa0aE8sapiiux0+aRWJWyR+umQWx6QOxFmpG9RAxjR3xGGqGvG9ammNQE2yiKRYxXRViBWvxJxgxl4yW7RnR2xRYXaGmcmfRxxNOCJsU6JbmWJmxUJqJ3RxA1WdR-R8JVWJanhbYtQ2ITSaxoa9xHEYxDxaQD6aap8caY24J5CqR4xTYDMWYiKbMHMXMvMKAdANQWAs8iAIsuJdJZGo2ZJJaoIVoy2p2VQhETA3OgcOA0xhw5xZQLwCMQ8qpV6+phpLQxpOIGp42CUr03ESUkxOAhAcA1Yfw8qDJpp707o8eAwKetstJjh4Mzxap4A7gbx6Q8Ct8MiHR9gCATa0ZGwYZNxXcdxJp7JN0vJ2Zx0YZzhiZvR94Jpc0G2X2daJCrqVe4xUg+glZf0hRiI941ZXeO61ge+ekngTpCMdQjMDJLM7MnMPMsItqZmJA8pos1JlsUgJQe2lQnJ0i3J72zqyAkJLh60Wki2vJK5O2aRbIjIU4WCywIZ9JB2R2y2u54I65UZ7Ui5JqIa-YIaeUO5Qa15rJLhXWjRKxMxR6cx6xCxUOqRpBm26Apqp5+4H6cxlp7QyRH5w4mQ+RDh9JUFl6UELJHxnxipjhqFaABAqeGFYxeW-xQJlmHGN5Q0LpSgJmZmVGLGGGOmYc+YZBOkqkksPZVFzmMmGJIxjFCMXgWkEFII0mrmoJzWUA15qR7FHEA0xkI4I0556mSiD5N4tMQlilIJmJ4lklRF+EOp9IDZryGlGSD5vptMWkxlgyD5kstkMlb05lsSJF1GPxbx12smgmCm7AUl1k-Qc5L2954APR7QXSIaQ+zi9mIV4I9eh5aQx5Dgz4gV4ykyjA74nAAVdSSV3i6EkVj0z0aO853wWESIHpOKhqxsfJlF+lSgAJpiTFR4AZVmN4AJmlHlPSNl5ZLaNF5mpFPxHmtMB5agtM1g4Qt8LARVqaFotRTBwlh2olWlCmt5BuyA41JVU1XBu8O4NVKZx0blPFWmC1ZZPZfpZ2X2mRrRFJ2J8JCKZ1ZVasqqbStVQ1VRSCLRt1GxyiWu+gCKBqMq9uMRj1Gk1gGBvlPBm4jRSJoxG5Jk38xWdAv8BW4ZPii+AZXUy+KAK1k1WRpRcaRadACU-pd+2kQVOYN46VxN0UWEA0+Nglci9JuNeZUgsZkQhZLoxZFN7Ya5RNmVjAnNApxFBR+JYlyJQ+lGhlpq+uQlA6-5zJrxRejNYxX5QxmVvFRJUNyNhNp8N4Qlwxz8D5hFLhksPR0RhKetOtKK912aK8PkN5L+hYp8-Nl4P12RRxqtYcRtFtetTtpRxtaqst3gQlXtDszKtyN5su3l7EZOV8yx8exRWNF1rtQ07t8RJCN1v1SIFt9xI4QlqdztetcFqRYdulJQNC3WTS9CfcjC5hXCvCAiQiYYL2ASaApqzuIFwwcpWSTdGAeWZx3p6ZgwdQnN9N8FrdSAjGmYbpHpkQ4MbGbxfdsanAQ94dDdM6ro7pnpxpYV4WeGJZLM49a9U98qgOpdQYOeMaA9IIQ+D6T6IInAr6oNxIPWuNF9I9v6eU19wAnAm+BVx9asLNSZ8mwAl9sG79nAiG99SAotW8etx4zZQDGWYtZGnAMDz8XWBlUDJCp8m932kWYSp8na6Df0R9CDTZ8mmDL95amDX5kA54Te8ZjQRZTawFJSqi6ES9bsGlVC72Yx5DqwbDtqJGND+8ap-cFFIgOgW+wwp0VCNtbwI02SLQXVdDDDz8N4wNbsZx-cSahKnN3JQ+8SMROjf0u2WB-cPtbScaseYjImzF52ZKpe4D0OD5FjF8og4jNjww6E9j39TNYGCZrNIxBjK8g9sYCj3DzDDGpAto2SWjJyuY6UDQvs0TTUUViFtUywGjSRgTcc75RoITdDtZ1gCTUTBCFtuYAAPGeJE0kxzbWZIHAsKfFYAbjO7GAHDWNiAIJigABIQJVIwCbogAANSF5LXGK+wEQlqlPCBDPZao5DPbWSAj5jPAAlrJMIUbBCn9kPhNNwDSgYDcz2kdNaZdNkkwB9OrKDPDPa6LO2jjMxPmNTOrIswXPzPBCBxLMrM1NdZowARmOxFVwW2iP9BXwdHwq4xYhMMjhuzLXWh3MDRBN1UCXrouKTPbVwIgu-hYgvOSACNwC0N-1s0CnbUn4xEI6IR9gotF5jirCrMvMn5FUVpzYGPkLoSrP422R6X+jOGktiyRKKP4sHIIsWB9kikAurLszWLViH71Jsuzl2VyUbAKX9w3gcOaPeX0SxLQt2JUK-POMbwM0ZDavLlG7tUvQg3uNIDOGgs6hcMG0ONJ0m1xGEoryAtfj8Potgs2uCtQv0ulPwv8UWDzJ2bjAUulRouNBWuYsG44t4t+P-0zKEvtTEuErcvktMspn6A7R9jJMry1N0yasMvJBMuRTqCssmugyXMWBJRctZK8tum0X8soP+s6DCsOCitikSs2ghWTmPL7JbIysvRytNv1WE3w6IQqtFJquZBaT5vaulMggXz6vpCGtGPzsbz9tSzsvmsfkRuevPbGHyrl0uhmHsLV1WF138LL2WkwAGmwBGnekmn3ZfaNY-Yll2kPgurXvWlH0fs3swCHDXs9NaV1EPuDZIDlqllKwBk-vWlell2k1VQNiMY9jZZSA9iXCLUWCMZLgoeSBLjofXSMblQ4dpNoD4eIdVSox3jEdVJkfeCMbhVqDZYMfUAZAYc6CMZyw9P0DZacc8CscEcUcts4ctsbBsdSCMZ4JJ7GjIBsaScEBGj0JpBieSCMYDPEebDu6IB43+BBBylDNw2IDKev2PhCzqc+CafafbBymiwGdGeMapXeBO6cCWe6eIBPhaeSB2cUfqhmf+gWfCBWeIBai2cCcZYACkvnTnWnAXrnYXHnhnoX94D4ik6nUXLniA7dS0eNiXj4AAhORKl-5zpxl4gPl4hNl+RxlmU5F0V4FxU5IBV3RxR2U34GZ2lzFyVy1w115xlgEDV85x13KUEN1zlw+AEK15wBYO18V0N4hNF6N7l75yVzoNsJILl1IM7g2K8NbFabezaT1qU-4COImj2GaLt3+-t2Xdt1B+d3e4yXAEaAAFaBgSVHdpCJplDFeEe3eINpIzbqCllGcWDQd7ewdBgGY7efug-Ypo0IqMadnZadlA9y3icUcsJgDUQHp0Aofo+Y9mbI8o-GcPhyccIsI4ck8sIE8o8SfwhJ6gHEdyegFU9y2MbIFYDIG+ds-IG5va7XeE0g8XeFHdrm0GNvfeAffFd9iANndQ+C8w98+ngC+HD0rcli9eAS-bDgetQ2A-dC+JBgmuy2rUlXu-t3dBgDn2lVJD7G-tyUT1B0Cpx4CPcHCxgQCBymaChK668AcNAHLAeRmLtjZW-5AWAOO5Q-MNszJD4+NKP+Pyb64jXkBnS69hm+sVs3RK8tD0qTP6uJ-MCZ9g9qwPfPfQCc1YsF8q9GPM9SDyMyJ1uiSR-P5vAAG1-N4PcLqxvFlNUFhRGN86xiAl0mEV3HsWE12CLj8vYwN6jQB4DEaoAGhAhoDBZLxYPqKaIOAUNHwvWqjo7lostb+zSmnTN4CzOvOpy3Ob-NE7+xV-cTpRQr-e6uhAgoY3G1BihvMOkv1YAQAQAdOqCOEsBOA3-CAB13oRDMmAwA7lg+FRyf5UcJuJ5kM2AHV90g0A9jB-2MZuxwA0aLiGiFThADNS+AtOFgKPhcQIQG0CRt8FGa2gLmD4R8Bc3HrP8uIr-doImjGx4BiBh2ZePaSHA0DBAluBxhwN7w8hUQY2VfvZlEHo4Hw7ICmN4B2IIpRBiAFJFjF1JBsfMSoUQcIH0S38C2EA5bKaTK6rIAcNBf0H2AUEowAcBMfQFP2-55Q5+asRfsFgkGZBrAKgggCcw6zuoFBSgy4M4iKQFlpahxXQbnDWbwlaBp-QQVrDqCohTBmpIIaqGeaXBUcp-D2mmhCoMkT6BxCFBoISEbAkhFzCIQkCiErB-uQQnknoPiEDMd0H4GQVhQiGPgqk2WMbJwAKHCCQh04AXMsCcGVg6h77OqNlgRQxDc4xbOIeQhaFRDjcw+KgXEMkEAByU-mNhoFzDG8VA25qILywFDo8WeHyBHjEHjAu4GiLRH2GjzICNgjGa0BbhZhZgZmXMcmLoXkIuQZmTdBoB+DaF6BtI2A-cEcO2HZcxYSoY4c0LAAfDChaAFUOTjqFfC6gPw9CP8PeEkCWgxwvLM7y8jLV3eeUU+JaQTBLpdyWDNrB4LsQfZ0cZw9wRijXg9ZMh7qD7Pq0TRIjXeqIh8hiNIxxhCBcaD7K8MwRqIJ2zqYwYxgBxgh4iqQzkYQDZHpEg0eWbPEchlKzwGRWIj7JVX9Ckkem7WOoqyIRgKUDuJLRCCOBSGJEgE-g4NMyVZHtUdumI+QhQF5IaxgQ4o6UokClEuoTRnNV8lyJlYWV1RybFGER3RynQNcLoRkVxDNGalyE5aO0b6IYIBjhRP+VPhqOJgNDPRPopdKGPGzk5Ixbo4mDSJREwBTMD5GoayBI7pC7qMRKkcCDTFu8MxaIxssGKXTMjsR4YuKnmJVQFide9ohMQZlspGRtS8okIvuBVF+ktIPI7LNqPTRAJDRvlQdj2McrOp2KDjccl2K5Ev0OhDgAkTiT7CLjZB9Mfsn9jFbikRyc8fUYcTFh0ASAR9ZBmCWxFzilAp0FcdjFYZcjycLbXcoOS3GSlyRSAY8RJSPp6ETYcAQtC0FFBUBmAso8Jh4wPEzihRUAxgvwO-q-iBCasJ+gBIoHaDXxLIp0WfiKI1Ag49JDcdI20gdsKAAcPAJ6HIANA0AYcLFDqBpKzjjq7Y1wW9m7G0xv4rcagYhD-gAJVWzqYggnHVaqJIEu+ViqtDeL6BwAOEpovhPOFET7x0OHnukUzCEAS0f8EhI3DLKtjZKVE+cdWKHYnVXcDgaSSWmXFOikGZEnQayPXZHUHKqiUUT5U3YdV-SMk7Ef-kGDSBVAWfSet6EQgAAGTAm7BojcxH0jktwYqLxH-xmAecXyZmHAAuSHJNRUKbsFI5DNWAttYYE8KclhS6g3dPeMoD2ZNEXqiCYOIlL8nkk1YMANaIBM0mPheRuY3KbiIdiFThhD-K7KQAniZTUoSgaoP2EclhwRoFU4kQVLICqMMpnU-yVVKCmSw3YIQFoNzHbDBY4JaQQNk0VPH9V3YO4LyY1L3DiT+p+Ug0IVNqY7ELxN4jYKLh3ijS8A406gMFl0lCiThOgQ6cdOCzXjzpW0ncZOK3ZXSJprUh6HlioARAcwqafEWxJDjNF2JJEscpgDGkvSYcaQTijRLMqyQdSqGfHK-A4hQzSoZkTumWyUn2V2o38X+AxL7wdwJ2AM1Gd4AgTctOy8zfQEjlkrzNrAz0k6aQkd7yTFJfUMQBtBMmcTNsF44QPxLFjAyjpL05caaS0HUybpSoeKG8WsDkyuIZbEGCDGRkYAQZNMj7MRTpx3xpE7pcZCtPhlNQAZt+U8JAjLjYyWJRSeGfYx0BJQf4BgpHv6y0jgBxmEufBLTOIRVwFJnALFl4E1kSSQ+I4tsRDMpxNRfSctJ0E+EDnyUAyus5iUiE4ZuzjZhM2JGbJ4mZQ+Je07SDbMzyvwXZUgOSY7IYlRkNoOcyQOzieo+NspscSOWAk9nKSkoH02+EoHdRuyjZF8CEEFy1CBynwI4LSKblrz8C0Z8raOWZKVlFyx4JcjeJOO-rWzlmts8HCBEIDiQJJL9UdjXixx14cS7chedmK5Cwz1AhASeUIBJz9xyc9IN7JvI5k4kY+98VWcOhWmbyzQ08-OTf33mU4p5R8ysCfJVm4tz5DQM6NPMvkzzG5bnIObfPPE7xD5ig-nAAuWAPz0co80SJnmlyaBF2HUJUA-LgUWBIF489XKsEPlIL2oGuIQJgtKhG5ycy883BBMvaJTYgBJYlPBK9QvsyFYlTtI5KPEIBQUPeCFIlKHzlpWFV2XyU-VYVnits6EcyG1PDFfUKO7YcaXQBhSd0Pw5OPfkqA4UqkemokAtKQsSlh5vhOeYHEQUQAl4XG0NAMqCmwBIhEpN4TACFWWkNBmpdiVhZLBGgoLWytsHdCgszzZ5CCuCiwMeCYWBD9F-uVha4p0DaKh58E2xSGirxQCzc2OHEg3hv4QVZ+3w16fvFhpMAvFhitqYuybwt506beIJUGRpQAERCeAWAqzAAAyoBNAofkZAeTbU2BDvIlOYLYIVcWs4qVWF7yUElCKuYwTISoCzxjANS1pfIAmF8E8SjkuNF1gGU+TzFB4eCXkoKXFKmE0hQYH3k6XdKhlvSsAEPjUJ+TRqWuVQm3g0JX5n0OhNOaskSkGEUQH4BmtsopBf5Hhjkk5eiBeF5ZjePSlxTPMaXrKSQiaLXEYu2DRljeSixyXErNB1L5AAMhmlUtwJPKgVmi41mHx97wjYlziyFexOnzwxXlKIP4ACA+VpBR2QQWmOsrz5HAYgbxaiGaPuHTUEVGikFW8SlCPLll5KnBADKB6ztmQDtLwrUBiWQithkIpFWoXakBlmwn3FfIMHJTATOVOwlmNEujwzkrJ-K8AMTN4n1gcSw6N0jUU2HR5uVzIcnDKrsSITRVPwpleiFQYWLOlmcXnLwuubFD8+4+TQboiqIWrB8XWVAFmB-GkqNpSIFpR+LDicVKCmcD1YKxGgP5EIuyrQs+g9VlsRov-BmLrQ-HIq1ex0C5fKE7B3DA8XwW5aEClUnQLQIkJNQoVTW4AZ6GwU6B+I9wdcI1Jil8i6tbwGr8aLM2cmHztyYAxlFBN1f3jiW8r+ekKm8O4uaiBCrF-QL1f3hNWQrEZ-kQmgGp2CdLNCokbQkOrDV6K5AZaxtTGr8DzN41M+BcEcpuWGF12NsLNRuoaC5qcA+azIKdBUX+gS1863WrlJ5XVrRxINSCWQAoC5Ssw0ErIRWtWW8LSFHq9PnWStAPrG1EAt9RMKgkfiANyahAKNj-Ugav1JkR1Q2ujXtx3VgG6xQGTaQkqwNJ4G8HkrEJwEECKBWZf0Cw3QEcNkhUpYWrfXFriuqGl9QFGpqxIHwf4YhW7CgnKK2pQ0WDS0FykIaW1vanQMrGoCPqhlmGsAvkqKUlLJYUy0TaRp3inqpQVGmpbRtUT0b4sZ+aivX0KKPdvSb5XYeoC015YNKx4DTeUCvJsLeGq5OqX+gM3TwkJe5F+rdIwG2pjMamuWIZvN5abeFLiXTQ4w0rObp4xmnhmSk83f1rsPm8oNZq1L1ZfhUUQLS9hoi2gG0FATYW5saVnT7NDyAzXABamWbQt6qg1bwsUZZbzeBWiSsYP1WhByc6WlqddiK1xpqtF07FrTThUcr9NCAFzfeFq2HRCejja9WuB3VrJyAMzCVd8OywVbVlhQN2M5oy12IQtpfHLVSDy1ObFArWiFNNuK3RVBqt86KfsEOACgtcg2prSJUoCLbfNK298qVtwDZyvAUoCbZVufKHbkArWuNCdou3a4ztKoYuL1quHiqGt7KiPDx0W2TbDeDyWLY4VzJdbmQL9N5RiuBBa5sVTM9IMx3ezfbNhwOt-j9pLS8k6tGkNJYMErXygjcWgPKjmOx124MlFIfObnKBqMgOthuUxjyp62ZqpBcAW4asj22-bOAKOhOFfC6W-8MJFE+CUJQ3Gt9zwuTI9J3wFaIiXe6YzMSQlB2vb1I07NFe8uh2ZBYd7xbnRaH3BOR9esARwi80GGnaRGLzf2GvBi4uy7xjQZ2Z1t3RDkJSQOP6d21mZMzc5u6YsXSNPgvDayGbVOOkuRWrt0EBMSnWoHZJy76dSXV3aWKzFfbkKjWtnYgHD3S7Q4usAMkCClG8d6AN4AAJxjbbUae8zG3nC3jaoYPAZFf-B5CxB2dgrTisiyGT+sOKOpJAOlFcmCsdAuepgDMJmEswQwXe9NRYBrUZBW95LIZATMkC56S9B6LROsoGTkIkAosO+mxDNZSBR96y8fa204Ap67tXHPGg8uoBiKJFpqDZE6tm3nbZ5tOlEKHsfCiL6Ae+37g+FZ3Y8gBO+q-QkE7qvAXsFYuMGjt1KAiLQnkOoNYmHT49tZloZsDeCtGSjpRcYAnJwK-02waB+Qe5X2p1LNA0A-+rHqV2JjDoEmLsf1q3ofAixRY7++hNHh2CwHJypnAoN+pH1F76ATADYfCrxDls2xIgEGElGjV25vxBAB9e0GbDDqLAzG3yc+qg2Qa31iNHg+uySjIHUDZmdA4hCYxY4agH4dSVwGoMlo8D+Bqcm+t-V-iyD+BiWIweUnMGy56M7wLgfUMKliDdi+hGYZFg96W9Kh33birRWYq8FSrQIPMzoMcq05WuoFOhP3DNh2JHuC3dKA66flF2d+rPGCG9047Sd8oL3NanZbf0NK1oZANzC0TVAbYba08CAcQhgGbREB2pdAfSMWg4DCB3jQGSoRo1wj-hlAFEZJ2+64j8UltC4gqPGDGd7sfBKnFZxYBMYG0DsoCLhGf7vDaExwtUal79x3yxu4I8V0-J6bvY1GxQs8ssbwTId8IZwxsCJwdMdO0ZH3HFgIBIgQNGx5mLVApUSTQVOBKTm+tqUnHoVxdQg5-pmGMEmAVuxAAAB0xAn64gHGXYPAAswqIdkM5wG6mlSoHe1ZJIdxbKlCgdxzYQ8dJVPGrdbxj459ISBfifjIIgnMsBACeRyEXYU6JicQAAAvbXq8c5D4rvjvxyY12EJNAnjoIJyVH-vBOWwjopQA7ckdSMOAHjnxyIGSbRMWc0qIimZkaBmYQAZmFuF4DMNeBOgoTsSjk0ie5OoheTRPbozFiFMimXhtJiWEAA

Metalinguistic Abstraction 4.4.4

datum =>

check_an_assertion(datum, pattern, frame),

fetch_assertions(pattern, frame));

}

The function check_an_assertion takes as arguments a pattern, a data object (assertion),

and a frame and returns either a one-element stream containing the extended frame or null

if the match fails.

Ifunction check_an_assertion(assertion, query_pat, query_frame) {

const match_result = pattern_match(query_pat, assertion,

query_frame);

return match_result === "failed"

? null

: singleton_stream(match_result);

}

The basic pattern matcher returns either the string "failed" or an extension of the given

frame. The basic idea of the matcher is to check the pattern against the data, element by

element, accumulating bindings for the pattern variables. If the pattern and the data object

are the same, the match succeeds and we return the frame of bindings accumulated so far.

Otherwise, if the pattern is a variable we extend the current frame by binding the variable to

the data, so long as this is consistent with the bindings already in the frame. If the pattern

and the data are both pairs, we (recursively) match the head of the pattern against the head of

the data to produce a frame; in this frame we then match the tail of the pattern against the

tail of the data. If none of these cases are applicable, the match fails and we return the string

"failed".

Ifunction pattern_match(pat, dat, frame) {

return frame === "failed"

? "failed"

: equal(pat, dat)

? frame

: is_var(pat)

? extend_if_consistent(pat, dat, frame)

: is_pair(pat) && is_pair(dat)

? pattern_match(tail(pat),

tail(dat),

pattern_match(head(pat),

head(dat),

frame))

: "failed";

}

Here is the function that extends a frame by adding a new binding, if this is consistent with

the bindings already in the frame:

501 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEHsAcFMCcEMAuBLcA7A+o+AjANtADSiQCuio8aAJqAObSIBQIoAZrOALagDGAFvEiI4oAMygAFAGdovFOnEA6MSoCUTNqTTzUaStOnhekgNbQAnsVhzwsatLWgA3k1DvQNxKVj7k0jDRSPDxJG147Bw0PGJiAflBtamg2ZDRoajdY2IAuUGgAR1J4UPMrUH5oeGpJSuqw23tHNWjs7IS6mvDIxyy2mLz4Q2MzS2JsZFDuppaAbiYAX01tXUUueHMsXAJJJ1cYiLRpCjxjEq38aFAAXlA8f0RJACIAKmxLl6e1eZitHQV9KdwKZSJBRhYMABGYhlDAAJj2fVih2OoGkpBw7wINwMRhMsOhoAmoVOvHOWOgcyRMWQbCk6Mx2yu1xZiRoKTSGUR-RiXh8+iSHPS1B+bQW+Twshc1LaKIo01otyGePB8PG8EmMgxFKpPI8tKkCpurMFqWF3L1sT5vjZyTNGVFevF0ElV32lt5jH5RI1U0a1G+MuyS36IY8Yfcf1WfiOcEeBJhljVoAAbiVSJTpf05WjtUyccqRgmfZrSeSmbq2gatYzLsbbqbOQGs5bZIgtqWzngLgRCEGPe5IBrYJJ7sdVYSh8gR7C4cQ03gMy0+wOB8TR12e5TK8GJVL3Xqc0alcN8Um5yXQgydYGPdXjyb2fbmwePABIfptjtXvOXPsf1d+inEdgNVC8FyXFdANXddrwrKkAPcZ1XRbVcv3XBV53TSlHR5CNYnw-CowBUBqH8IdEAESQuAtbJrX0HgWVuJ4gRBSAnn7NoElY0FOOyPJGNZJ40lkWBEA46DQASES4z4to8jgTgRy4YgngAVTQUw0HAAB3fQoDgJA9FAABaEyfUuL5cPw+jSPIpABHmJYcwMhAAS3HF1k2CldnmHMGAoW5XKM9At2eHj2MDHMyECiAYDcvQwuE2MxKs5Z-mMrzoAwHA0jItA6EkNNYGQJksMXTNX1s0DitKv9U2wwMlmI4zcpoNI6AwWqmUkNr8roWjPC9G1Ol6vKOqa9Lo1APqOq67CxvagrBts9dZuWpyppI9bOrSDAOHgLhoCK+ASrK9gECOlbhv0QsTG6+qDquzaWsUaAAA8RBoE6zvqiCiAuw7KqRarh2ojZsp2n66t7BqKrUYgnpwxYtuMj6vuoDBaQwFEHmgNBHge2HqCQRHLuBg50FRHacR2rHMCR6HzqR28PFsmmmNtIUMn7BJ0fxmoiYBknEDJoHWn4kgkBEXwMHWSj+EW-r5oqpWJuIEWxeelHWFeo4Lu4UAAGUAEkAGEAAVQAAKSN0AABYlEhJQ4VRxR-AwWQ8DYDBoAgoyCpkRAuEQa7vBtD2gi4HA4CDkOnFAAAfRO5I944SsD454-cZPU4CHBwHAAgqDj0Ok5Ty1I+CK9g7Ljxc8rgJG2FUvJr10APewOgGExsdHiz0WiUqLYBtQobw78AJQIHpwADJZ4qKoahn+sh+yruXpWEjI6B1ux9szv4G7jIMD70vVLQIG0uarfjOkCxo6LjBwB9y+jr3qqbsX+pYNrqkb4yu7AIypkB0DQEdAmH8+gHwCF3Hup8Hjn1AE8EBYCIHiTbrfRQqDwH43bPfR+Nds4HlsqNdcZDfStxaJgwBt1DCgNwQTFWGYoFsy-hQzUv947-zdpPHGVNsBMOSLwPAp0QpoFYe4GBI94FnwHqpOUVB2zCNEQldA19eF8AEUojAKixHuQIQXIhZcSHsKXpIch5iuGh2oZvWhWijiCOUXIVR4jmHHRXqYie38ajrmsbYlG7cPZC10S4-RehJHj29IfY+vdEHyOQSEvRai0AaPbkksJKTPYPyMZE0hVjKEcOMdQmh00MkiPCaFf6eSzE-0of4nhQSAiiOjiTX271IA2HoegGp3iYmyPibXVSLScBtI+p06A3TUmlJIiMtpQ5yYy2kL0706wwSGKfi-QIQNiBFKoTM4ycz4A5XANQCwKyRoFM4ZQmejSsF8Pop7bAIh0EXL4XAk+cihnIMeccJA0B0FpPuVE2W4yunSAiZ46BtTfE3L-gcoB-D2oAnOGCyZEKelQrYX02BR8BnjgSXJWITxDhkRRd2NFUygX2NJe0zpGAJnLz-qhWyfcMA2DYEgyECL9C0rBUi5ZWKpFfzZRypBCI7HTT5R02AGASj92ZV470oqUhILEDyjuARZBFHxrwDxiroU4pkZ8wZIdVLaozDoaA1LppZU9oUS1erS6OBZSKxBTwLW6utcQAejhJUkU9Vap5-z0GCsVR4Q13o9m3P9cZVIsBjjBpeXg51tF8n1F9Rqrp+DnkArwWGkOLqlU2msX6wJwKPYAuEBCQNTrM2uqNUEEIqbY2ItEYmv5ybIH1uLXwptoRS13PsR7fAxhTCRJBe8vFJqCXfKeKO3gpgbUkTtQu8dQrJ13HdWup4Pq-6tv0Guk5ZyJ3pthZqGN5bh3AMgJAe4ZIARvM1cauJs6zXIKEHe5AD69DLrjfcul4LIUGuxVGq5xSNWnToAWkxkbLl1OuRe+FGrtJytgNByQUAi1wb7dXTDkAy0AOmvGxNUH8PYdA-BmoWGs2TPbFB5ZNGG3enXDRzamjgmnUkOMsO0TcWxIQeOcZqk4h-sUBRGWmB5ZUQohrUmgMrr7y-kjVeTw2C+gyE8UAvNkHqcmJp-sCkiglEkLJ0iSAnA6ZU+4Qzz7iqmYs9p-ofNPoCyxj7XGxwU1mc1gpyktmPagQonPBegWwYiwlrEBIEm4BSYcordcwWoKSViOuCLyWUseBi7LaTitRpJaJZltoo10uFaK7EFmkWBi6Y09QJ4B60QdQIIgUK6cqhcEkO9XjNpQLvWILsG4AA+UA-bJq63udIA2PBTaWxtnbR2ztISaL9umf5SD8YpjTV-NOLofYrcXAHQqM8+IJDRLXPieQd7v2O3qbihc2LZMIe4mQOTNmv13jPYgG2qu5GfYooRmTxGtxO-kBcAqnGhIqSk9baBNsXbs6dGG2VklA5uzyPmYPymuMfQk778OPY4NeWj5zoPziE5Tbj2HP3qse1JcgclgH0XAfjiD-bSKyV6FRTKpnmLvl471Jd5ph1RnHMpRiiRxOuKgDtXrUcwv5liKOks1uGXyt3Hl8cguJ7PtlY9Pznkgv7U6qtcD27pPuy1o8Q6r1Sa80ExgwjfIVP8f51JOuv+rOwdrph3DgXz7fm5qJx7s3bOA8hop3z53fuCe3vvaj4P6PKCx-Oft4oIhJB60Z1MlXTvNuq4HGyrZ-1lkMZz996nHgFKwCUkg9SmltJ6TRBYAm8B3qmXMqn-5YnbrJ4z9oYgDHaLVkCyVLg9PkApmyrLv4LQx7Cu8Z+vAEJOnIDHygSf+17l97QAP9DZbwx7iuMPgIEQuCQHAEkTftDt+z9fO4I8kzgixU7+nzPWvzkz-z5l-mNBfaw+nOgK8rrquJngskDMrp-sAQOAxl-mrpnhtgAYwo8DPjuJRg8jdM9l0k-hXlFpOu4kil9I8FgXgKHIVnkM3A6H0MhPuDKIpHYNvqpBpFpLpPoO3IgBYDAO3knnehYGlOGFetNIXj7MXtxh0tIF9lTnPrZKhqXuMr0Inv2pxHkKBC-sdCRvRuhqIQRo7t9rAf0EIe4sstmmhhhnIToVThqmznTgzmLszoPN9kpkaogLACwqoZINKvSoymXhYXJBjqtunh4bKiiN4b7n7m4YEXKiQSEZYWDpbs6hIZtmPMfr7GfuwUbo6vqoWrfv2LZBQSKEiNQUfnSJIB7O2jmuHt2rXM0HPm0LZG4eobbkHlkYQN9tZIfjUffgIuwNOB2rXO4jiESvUT0eUV2gqs0a0f2MkY8tUg0QPO4tkR6LZLMX0f9LhDEIUR0VaF-GznEcAcYZ2nbogDBo4C0VTmsfwesQIbMg8M-D7NoDghkJIG-JMt1rhs2s8fIVLoof0MoWDK8PcfQmAhkJ8MQAYQCRCkCeeqEB8bYohNpkRgGmSJgBfs4lDuIg7kkcUTtsbnWvCpsTmL6jiJbo0fmq3OcfPnxikdWukV6qmkSgkN8ZaIMLegLDIEic-OQJDtjnoMsssRUWMUccuFATENIOySiVyZUkcODJsLsWrgOPsYHqSZmgEuse0XfmgX9togDmiTjgnmbmfP9qidya1q9hBkSobljpKabgONxIgpaVkhsmaauHkP2tZFcWjF7m7j7oNDmO-rTG7seucjPLhDmGWJKESWKZySjgCMsu-qzJ0Y4myA8Q4DiGCZfICS3GGfvhqW4e-noW0D-pjAgZwEgRuGSJKMQOCQwhkOIbnkOtNKHhgQcU0fYZIZ-N4natMQtLrm4Y8rYbzvHPmauOXg1mzuTpUe+g4a+DmP9DiG4eOe2NUp9nWbhDgo9kYs9gueuUXDnv9AkfGZuqse6W9JjojkyBKdDpToka+GuY6c9vaW4o6Srv2G4Q+e5EuX-PubARMeKDZu3FYVqUaVaVeYNLeaac9oaReY+aac+f0OEYBVBe+QtMuboS+WcSjCwGAHrJNhwIbDNlbLbA7E7CoBxrAi4cdF1o4d6G3pzM4RmA1jLlvmAUrnALWXmXWVRTaGfCStwOfpfnrLusAcxYwKxcQOxT+aRfwmfhfr-tPq8c+h8q+sgQorxTJZjAJRqqAYriJQmhnvJSqpymwMQNyg1m-qch-vpTcWKkZaABKseawQBsWYASmmwJZYmtZcQOqgxRDOyhgdUocIQW5Y8E8F2RVLug4oFQ1h7KFSwv9PJf0jOoTNhKpDFdarRhPPgQFSmnFZxfoHsnFZYToKcBCgVH-imIga8lOSDF-OuBJe3A0YzFVZ6N4qNHVcCrqsVZDB-uTPuS4DENVd4qBEjPuZtDmIgMPFWmkU5UgTiK6ZojLuTC9oQrWcXvJdPKaStdhIRpokjNuZKBnuTHsP1c1WBvUCzKZeTIYQdeLH1RGidSWpQudfZfkK5r-tNUThteVGxUMNlE1RqQQAVONUtUYi6pzADXQEDQuJ8YnqBAtR9p9XDCcTND9WVTge4HkODUDY6S6gADx3D4wQ2KxQ1o0eB8zV70FPAAAqhc0uVAFglA6GpAoauYseyAGQeQWmAA1E5kVunB1LSEGRtU4NzeFVzTzZlnzQVALSdJKC0GQfkOTSOFTTTWwNADpAzXQEzfmizV+uzcgqANzcKR4JLXQNLdjcLcgqpAbeLSlibdLcTRqhFHtc9o6b1a+P+bDqfIXGCH9dkO3KKSXNjV9YNP0NIv2sDUXNDdBHzJ7UCGCEbTEB1eACVZ1O9SmuXkbXkI6avKNObQnVJD4jLVHZJFnUiRYjckLeqJqA7eSaAPhDSMURtqvONb9akRCGnQTCHQWYrRHXgIwWgAXEkCNlfAeaqS6DQR6DmCprcA1YtRMYsV-AHRIrtdjddVdEOQOLtSIZVrXYRANd6Btl7VANxuhQicZGBU9kuaaeVG7UiB7SmEfT7W2f2P7WXUHYjV3XRNtgEOHXndHbno-ZIAnUnSnWVRVenT4dBFnaaTneYn-ZJAkF+KNFDeVCTfJGiGXbBJXZeEXagaqZMY3bDs3RNW3WAyWegp-bEHQSOK7cghpIPTQMPUdFwQuXwWKGqUSlPeTDiLPbvPPZaLZEvWvdlKvSzBvR6FvVtcI3gxcbIxSTaIfXHSfZtuxuNrQjhZwNNubARfNsRfbJJSvmvhPlPlvjPsxhHPxvisgf3sgoY+PpPt3iQKPvY9lKvneocUDmY72oXeuCgaNV0XY+viY+o6mYgkGNxZ0OFR4J0AOAjOE+6sSFE+4MSLE1-txcBEk1LNOKk-E+OCxA8Jk33Dk20NxVXCEOFWU3gHqHEyU+6mRNIHevALwRrORKIvTTyDU9kNxdQ0k9Qx6J07ENxfLPwHKjgNILusM6M5Nv0AMzENxZzZkx4J1sQBYE4NcMNm3tze07Mx4NxSZIs+4Ms6AKs0NqAG3uZNs2k+6iCW0Ecyc+s2c6AC8Mc+4Ds+4NxcAAc1IH1sc2sxs6AGAJc7k8FQAKRfN3N-OPMgsvOgBvNbp5NMSLMQunM0WsirNXN5MACELISLPz9z-z2Ltw6LwLzwON4LeLkLbeeN7gxLtTeTON1wBzyLDzVLtwvzGLwVg25LKzlLoAw2NLcL3Fg2jLxAsQzL-zwrArHLzwmLXzjzMQDz7gmLHgXWQYUUATzjQTV+0Ye1k21w-YaytQS8xAgTxj2rMZ6riZprG+me4AOAAAVnIEcTcAa0INvqc+k5q8Y+FXsigXC7ENa8E9GGWtFF6xvoaXq-C48NxXkeFXkf63Ke8+6ibGgGaPTs0+4Cm2m+wQm4m0M0gCMxbCbEk5M0W7m3Kfm+NRgAAKKZOTPVvltq7cUABy8AzbXzrbzbaDRWlrqIgb4OOi2NLr-QhrdIDzo0rlJrYb2UEbvbFA-bkFxew7bQo7pzvry4Tjq+LjA79ugY7ci+y+075rESfwu+dAfc8lB79MGAgosAS+c09r8AaYopJUwgQD0E-bbjBA6Cnj2gjbMQUGF7swsQz1bYoIZDzlkC8lhZEHpZuun6rJ-bme79+dm7Rj4bCF5t4j7gCH30SHAGdrjr8gtZqHC7CFq12Ha8VJU1-+5DeCk0zWVH57drqKtHkHsUYHkAsHrygYmF7AE2U2xs2jc2RFjs+j7cAVCA8gGAOqxwiU6wsA46Qs8VP9TNMcI4+VZ5lw1COmey64yns+ItGAYtdtbA5ymnv0BAOnPxPjlCBnDWp+6w9qYBIgTKGc0Gl7vAvATNwQa2MgA+XnkLk23Nkg8AXnqmWmCQTwWmHNVt3NYXvA-7PI0Xe67n217c2gCysgQc7nZ7tZUGN7aAWXlUb4+9NoJt1tTwzw1tjnxysgLnjxhrBXmXp0sgeXhnyCag9Wz1LXCa68cAHWUGKngQeGQ3OmTw-aEk6DpRiCQ3oA88fEJRqnza64Q3Tgyctnmoa3oAhLyComFeCQRr9Qc3nMTwomvhEVUn7Ysn7kCn46Y3TJUgMeX6P6PSc3C3A4V2ahjl3O2ea3JNUX1X3NvXsgWAA3R3NQpe-31thWWmJn4FWyzx2+Or-ZEi23htA4cP1tIP-XsAHWeyUP6GJSBtsPXXck5BRXrXx0+Txw4VUGlZlPfXYPePctNnYW04oXRPOmOPzwGToJiCo0Q3VdoQa3DPxXzPNEAWWqzhHUnPA043AA5GLVBpV0r7ZqZ+ckNw1jjzJxmLAOcjqvr8N+HUdNHLHKNIb7S4m1G88FQHVqpHYKLdpOJKpMqHGKLS4QQF8Kz1Ljzxb3r+izg5b47jrzLJLzZ37+YsH8L5INH2yOL8Hw1o+8+7wK+4udhAypwHqoYFocN4vt+kDjxjptxfn696kojD9xMtnjxpR4a8n0MKn8gMIPgZ0sYOinl7nz75LF97n8X+6qJj6gj+9u-DxhXgpB0g1pb9ki3u9Jn23znzxpiU9zei94Xx0gsciF0chzA7cP2HeYj7vPAb9+Lp3+caG-P7IJjAxp5G61P-fDP3P9n-l3vqfzKEsQBtnadxkzpqBPlln+iifEHy7JwMpmf-oYEAF75rO6DbfoQlUx9wpu7QJxhfwgHQZbMMAoxKpnr4vsm+6fMKj-zBjoCi4tfN1lgMb7N9-oj-dvhrWWSj8x+WTEcIQL7pICn+KA7MkhHaLJEkeo-Goqyn77hV9+w-Y6KPzaLj03Qb-bYhPwKLPV2CMAXPrlWfQqF1+uncxEXxs7UMtC-dZgo3lR5EgOCaVBzugEII0D1+8g9niOFUFS5aqSgtQT3WEx0N68LBF6lX3FwRV80jjN3mJESgtYco2UaoMkBqCL92yLGPQXINO4eDxIDWPwXKnAGeDQo7+OQUEKozuFDBpJYQc9REhOJSo6eOwcNTZAMNMYxUDAIIBoAEBYAg0CTlABTwmD1S7gZIvZm4E1DN+iZDmDNHGilU9ojVDpFrGRgL1vEHMR8HaCbDAEEg2gfIfNFlTFDqApQjQX5m7aV4tEkAc5HTGqQ7QZG7A0QR3CxJTwwYDQolKDA54RBFhEPTvsQEOHnIrBkAFUuww2GND7q+gcZLvSkF3CFhVQy4Q1jayHQ5ULJX-MkDaaPFpAhIX4U0xPjSAEQpg5bleG5Q6YgRFgEEXCF2C2Zf+cDblJRwGwPMPhXAL4TAB+EuhgRbndrN+BkAojUO5WGEXCPrLbwCYcAYuBvjJHLxARuI2EZjFBHG88MAIg7qREZFwiERNnJERmmJGAQ0Rw2NIDLBpHI4uRNQOkZ7HhFJdLQQos7DYE+GwRuUFIu+M4QJFsBREwcN1qezRDyVNR0sfGE8kVEdYMRcsHUTY2aCmUtRX0Y0e1hy7tZWRzaDERyMZLd8qRd7KoLSIlHvtLQuddUYdEbbyiDRiAW0RiIdFKi4UJogJGfUUCkBQeeUD6A5lgzPC04MvQOPlgswaoAodow6OCEJBlAwR05LopGwCj5jEwFgOys8L1YDDuYtABktXFABZ0oq7IWfrCBfjJifSXRMoDiEzGhxcI0iezGUCcBRdRMTY0AGUE2iMdKaAACWrYYAAAgkbCNjVsAASpTRNgAB5ZtnbFuBzUdqjAAQNENEgxlkxkmbofJXjGuNWxZ42LByJzGJj3ogAmIaeOyxoA6BOYkoN2HCE8kGsn4kIMeLjA8kBsiQ-QLOPnFLiVx64rcTuL-GMB6YyQJ8VfxfHAS3x8lHMeGMfEYB2xnKNCa7xQnoATIGIxxmaGQknjUJho3wBePkFmiQxhrMrCLCZpDYoCAgOQKYDlSYAfxPSRiSpClihjYsF47DqrQViATYhUpN8ReIY6MBPAwQGdjJRlg4gAADPME0TpAdI7KWSViLjzuRkANQFaJpIiDaAFJtwT3nJKMmiBuakIAcV-FMn8JzJsAbypsDUnjCkcTMeqLZNL5uJdJa1P4gP3oFhBNJnknSdQBj4GdaMzxFyUyACBpAApVnMeEeECms0y+WMRUCNjVoaSCAWkgvsFN8h31gU6o7KDpBKDjpAhORb+uMLkH0laaTk9KULBmEeSkpXkgMOaQUE7DrBloaLGDAKkYAipeAcdK1XX6yiYg3U3qeOguFQCwikgy4s8JGnFTYpyMWMfoGSDYiHAz8CRHYKFjUT3a+UmwIVLmkUwqwWwiqduE2IN0pADqEzJtPyAb9Vwq0cirXTHooRbhsoLojgFphtDdoDMOeheIem1Ev4b0zmHkQToJB1MroBOnkFml9S1YpVFYWsIIhMA3wGxZ6fIz4QqFLM-9SGf1JUGz4NumM8upqG3DAE8goM2QI8Omkak8ZPGUcq9UxjYxz89CS4G5NhgLgtpSIX0h9PelLRPp+0RaldKepnToZdAHbrWOfCUNciaAAWuaIViCznsqw4gCSNiAszZhwHAohwKOn2YFwt+NXKwBeC6z+w7MrmZzOVgdDeZJQH6WVL6EczduQMj0CMIllmcpZVETaQrPcDLCFocshGW+AAgswWphZJmQDCVn8yD8Gw6sMtIFgBAekSsvmYdSOo6y9ZodL+GplqzddHpE9P6d4j9lXTA5h1N0otLZCSzcspmScBeBZjyDp6QkPTAQDqzjdK5BmNQcZlCCQBi5HIpGFLwqlNz0ZUuGDnTOToQpGZTck1iXMOptz7MkAMETpm7k+x6ZfcnYGPJNaEhS5ALMALrJeBtygs3KebqFm2Ec8x5HI7QAXPiz4zG5Ao8rIlgRCUc2g+8h2YXPywnzrexWcxLvIvkpZKstmJOfpjqxRUAgpkoOPyWG6KVBMCqfkilVkmONDgIieMRElMnyU9k0CrNJpPiHQLwRI3FbvUkoRwKORJfPAEVIsBkUMwXwWzHp3QWySYxmiK9sch-mmTiAU-CSaACn6lzixiZERFUEwCmScQNgCKULGikSJoFIZLolfIhDEFYohWARY7MVg0LKJO+F2eAsXAn9mFVADKZSGfn9B6FOcsrgKHtmCLH8JBVTLXOrkk43Rv2VQrrzgDnJbJ8Q+RawpIUXyU6zWVrAGI6yiKhFPCacXOIwCri1IAAGWra7iRs1cFSfVUPEjNTJyyWhQwvUWJAExN4tCTpgfGtiT4IS28b4A-HwSvxii5ZNmNSUATEl8lcCe4q8U+K4J7YR8QktkmhLJF8lM0bhxqBlYMJDikoq2OwlJgOxeEl2SFVklESHFXwbDnUpNHPA-J7SggJ0pNHe9IhyedJUkp3yzCaJDi-aFqPom3TZJpzKAuQsUXzSTWkiwSWVmElHjElYSmOe8K-bZRLesfAPgyk2V+ZcxNEGZSaLmVIAFlbQaesNiJRVLvhmMOkb6JAJ5RRJp4iRfxKomzCL58oq9okr+XnjZh-rFeg4piL+FjlAfU5aYu6FXKuxiZAoH8BxBliZBx0OPk8GMWW82GKMuheisBlPghhJOCFGfkyknLLeSKl0bZjRXaBkhVI+3AiqN60roVX8hCR9B6jBZkFJtY4cFnW6JwEcGnR+VmPeEtYbAPyxKHtEfGhcCJ74pfkty5XvQeoXE98ZQxzA9jbgWEnCfKvInoBR6HgHMN52rx4JpV9ik0cuxSy9L7RZQfCQarQDDL2sBKgNuQHBAOqgJhE4iRvVAjqr+skLU1RwvowKrkVB5JGVILznHA7A2UWybKpvFILGFfbSRTiBkWQKekvCpEMkUfE8qKlmq7sZYBxC6rmluEipbXRNU+Bg1iiq5daski2q8x9qn5B0uIlGrBw7qxtYMugDOrDoglD0KBCoVSBA1la81bZJdHhqOGlxPOVENsl2ALVaPBVcNx-nqrO5iA6dbJP1Ver3xtmKIeqo3ViTIM1AMiZur3UAhBo0aqVequvZyrl1fCxMkXCPViTI2eSyCWuI3HbijYuEZ9cuNfUwTfFfqhVQGtOb3q51bAzdE8GBDdcp1h6tZYmqRDnrY1mk+NYhPmkHkXIeATGCEpxB5KPF3ij9UiGw0FK-1YMAdfKOA0hKDytkcDUuk5WTUIQhwe1lvjMLILw6ZhUysMSRQMb-gWhCjBqQGnaEGsxhejVvGMHaF5BFw9LhWgCC0bdE-gTjdGG41OjQgrG56g0XqZybHgTG0CYXWU15zjCam4TQprE2UIdNqk6AHQH+SYwTlmmiJXxok00p0A9rcADFKE3-BayUK6Mcguk0ub5N3mwUlZkuoYjbM9GpzTwrowcaDNvmk4sKTxXwqGivmplepqi1wlys7mx0ZNBii28aAotGLaYvCrBa0ge7YFGppC2SB9Nrm9lR5q02VpSGZW+TbVr80GLq4AWD0WKNCR-Calw5f2CIBMX68M87G+raVtk3CbHcqWwMf+GyDyjitMUvTUNtc2DbpAiWuJslsAijaaI6W91eBtgDZautcK3LS0wW0hbCt9idIOZvTwwFLlLom5RqPmVuttl3DdZgjJ5CVNuMO2nrechO0Wa3tcvKLffNiC2LGAlq+0ZVg0DLbSajWAqHYswDhifZXs8cf2nG0VYAtHKlGBlom7gAXeyCHLfr3CofaRAR2hsk+O87ZDqhEStwnYJboYBmOOAVjuVTo6d0k+T7Bvmn03J74KtjolsII1mV0TbtloJ5XJA+hyByAx0DIUoiyHHR86gvSAd0OUVLMUwiMP5iSPUFy6ba1vOvFoP0AUQGosALglzU9nJangpA5nf9G94A9wd57AHVDvqU+zHu8OuSKtvW3BVDdOA9xNtthVvbwqTu8gY1D8hdF1gs-epo03pq3AAAnPMHbgB62mVymQOUKK2tMmmVyrGDLCDjEBFVjQzgWyJsSbENi1YfQJzEUmUMYgEepppIAV4K9VISgCva6tTliCPQRe8znAxsS-T3AdehPfTljhmjf4jufQOZBMr9g96heuPTWlmVt6aGxAP3TJoaZtNIM2CppnguF1gIY1bOwMWXKR0mjNoqOkoDgrn2u6Ds3W-FQPhn24KsA5FXju3Fb5P8vtaQGKPODgAFwIUObeKV0QKA4g7+zebALP3P3ooHMfXBpTFEq6zBRlWa4opPlgB3702ws5iBCgBoYJNide54GZHMif7DAdCgPh3CK7kB3ACBqyCro8BwGde1KuYHXTVL4Rqwl67wTHDlSHrHiBQG6bEDXWZTZ1u6ndaGviE0HW1mwqQCAbAPsEIDyCKA3gi+CnTcDg++AwgfMjqrKAVB2gGIbMjYGkZhECdW0DgNPAZD5kS3kNHRAkFJsqh-ZuwZb3hiXlsyh5SAXu2DYE6+B+FQrJF0EwxdsfaXZwfl2nNNsQ0rHQbx9RNYLdUe0bFcKQgqb2NVAaQDpFjhX7yAKK1EM-tuCv6H+SB8pT-pCMUARaAB1AlwyBiRtXDdhs3ZDq8PVxUCYdPDEjGLpg60dtNBWB1HMzYAOIb4Cngn3hXWGUAa2AoMALOrkwkaRURww82cMOdKgi6DiXOpPV6BqFZyszKopupJqKAuWXypodihvixFrK5fPJn9U4Hft2QEY9rGeETGhFui5OTpkMXVZ-tLWS3X0o2PaL+xGFGI19oV7hDJAv2gADpMAl1byrAOAH2h2AOs8O45jy1nyAQy9iSW-cnX0FMBzjJyy4y+OuP3y7jDxlaU8ZeN48HMHPUgPOEdzlBQICJ0AAAC8N2oAO43QcePeC2Arxtox8fRPUJMsPxp4Fwf+NpQAImgfw0cCCMjhLjuJ54-idhN4t+eeTeAKLRwCi1eAotOrC0AV6BhWAQJ+FYyahN4mCTbJm3igi5M8m+T3vMk1ZCAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEHsAcFMCcEMAuBLcA7A+o+AjANtADSiQCuio8aAJqAObSIBQIoAZrOALagDGAFvEiI4oAMygAFAGdovFOnEA6MSoCUTNqTTzUaStOnhekgNbQAnsVhzwsatLWgA3k1DvQNxKVj7k0jDRSPDxJG147Bw0PGJiAflBtamg2ZDRoajdY2IAuUGgAR1J4UPMrUH5oeGpJSuqw23tHNWjs7IS6mvDIxyy2mLz4Q2MzS2JsZFDuppaAbiYAX01tXUUueHMsXAJJJ1cYiLRpCjxjEq38aFAAXlA8f0RJACIAKmxLl6e1eZitHQV9KdwKZSJBRhYMABGYhlDAAJj2fVih2OoGkpBw7wINwMRhMsOhoAmoVOvHOWOgcyRMWQbCk6Mx2yu1xZiRoKTSGUR-RiXh8+iSHPS1B+bQW+Twshc1LaKIo01otyGePB8PG8EmMgxFKpPI8tKkCpurMFqWF3L1sT5vjZyTNGVFevF0ElV32lt5jH5RI1U0a1G+MuyS36IY8Yfcf1WfiOcEeBJhljVoAAbiVSJTpf05WjtUyccqRgmfZrSeSmbq2gatYzLsbbqbOQGs5bZIgtqWzngLgRCEGPe5IBrYJJ7sdVYSh8gR7C4cQ03gMy0+wOB8TR12e5TK8GJVL3Xqc0alcN8Um5yXQgydYGPdXjyb2fbmwePABIfptjtXvOXPsf1d+inEdgNVC8FyXFdANXddrwrKkAPcZ1XRbVcv3XBV53TSlHR5CNYnw-CowBUBqH8IdEAESQuAtbJrX0HgWVuJ4gRBSAnn7NoElY0FOOyPJGNZJ40lkWBEA46DQASES4z4to8jgTgRy4YgngAVTQUw0HAAB3fQoDgJA9FAABaEyfUuL5cPw+jSPIpABHmJYcwMhAAS3HF1k2CldnmHMGAoW5XKM9At2eHj2MDHMyECiAYDcvQwuE2MxKs5Z-mMrzoAwHA0jItA6EkNNYGQJksMXTNX1s0DitKv9U2wwMlmI4zcpoNI6AwWqmUkNr8roWjPC9G1Ol6vKOqa9Lo1APqOq67CxvagrBts9dZuWpyppI9bOrSDAOHgLhoCK+ASrK9gECOlbhv0QsTG6+qDquzaWsUaAAA8RBoE6zvqiCiAuw7KqRarh2ojZsp2n66t7BqKrUYgnpwxYtuMj6vuoDBaQwFEHmgNBHge2HqCQRHLuBg50FRHacR2rHMCR6HzqR28PFsmmmNtIUMn7BJ0fxmoiYBknEDJoHWn4kgkBEXwMHWSj+EW-r5oqpWJuIEWxeelHWFeo4Lu4UAAGUAEkAGEAAVQAAKSN0AABYlEhJQ4VRxR-AwWQ8DYDBoAgoyCpkRAuEQa7vBtD2gi4HA4CDkOnFAAAfRO5I944SsD454-cZPU4CHBwHAAgqDj0Ok5Ty1I+CK9g7Ljxc8rgJG2FUvJr10APewOgGExsdHiz0WiUqLYBtQobw78AJQIHpwADJZ4qKoahn+sh+yruXpWEjI6B1ux9szv4G7jIMD70vVLQIG0uarfjOkCxo6LjBwB9y+jr3qqbsX+pYNrqkb4yu7AIypkB0DQEdAmH8+gHwCF3Hup8Hjn1AE8EBYCIHiTbrfRQqDwH43bPfR+Nds4HlsqNdcZDfStxaJgwBt1DCgNwQTFWGYoFsy-hQzUv947-zdpPHGVNsBMOSLwPAp0QpoFYe4GBI94FnwHqpOUVB2zCNEQldA19eF8AEUojAKixHuQIQXIhZcSHsKXpIch5iuGh2oZvWhWijiCOUXIVR4jmHHRXqYie38ajrmsbYlG7cPZC10S4-RehJHj29IfY+vdEHyOQSEvRai0AaPbkksJKTPYPyMZE0hVjKEcOMdQmh00MkiPCaFf6eSzE-0of4nhQSAiiOjiTX271IA2HoegGp3iYmyPibXVSLScBtI+p06A3TUmlJIiMtpQ5yYy2kL0706wwSGKfi-QIQNiBFKoTM4ycz4A5XANQCwKyRoFM4ZQmejSsF8Pop7bAIh0EXL4XAk+cihnIMeccJA0B0FpPuVE2W4yunSAiZ46BtTfE3L-gcoB-D2oAnOGCyZEKelQrYX02BR8BnjgSXJWITxDhkRRd2NFUygX2NJe0zpGAJnLz-qhWyfcMA2DYEgyECL9C0rBUi5ZWKpFfzZRypBCI7HTT5R02AGASj92ZV470oqUhILEDyjuARZBFHxrwDxiroU4pkZ8wZIdVLaozDoaA1LppZU9oUS1erS6OBZSKxBTwLW6utcQAejhJUkU9Vap5-z0GCsVR4Q13o9m3P9cZVIsBjjBpeXg51tF8n1F9Rqrp+DnkArwWGkOLqlU2msX6wJwKPYAuEBCQNTrM2uqNUEEIqbY2ItEYmv5ybIH1uLXwptoRS13PsR7fAxhTCRJBe8vFJqCXfKeKO3gpgbUkTtQu8dQrJ13HdWup4Pq-6tv0Guk5ZyJ3pthZqGN5bh3AMgJAe4ZIARvM1cauJs6zXIKEHe5AD69DLrjfcul4LIUGuxVGq5xSNWnToAWkxkbLl1OuRe+FGrtJytgNByQUAi1wb7dXTDkAy0AOmvGxNUH8PYdA-BmoWGs2TPbFB5ZNGG3enXDRzamjgmnUkOMsO0TcWxIQeOcZqk4gaN1vc6QBseCm0tjbO2jtnaQk0X7dM-ykH4xTGmr+acXQ+xU4uAOhUZ58QSGiWufE8g73fsZvU3FC5sWyYQ9xMgcmbNfrvGexANMS3ks+xRQjMniNbiZ-IC4BVONCRUlJ6m0CaYs8+8prjH02Z5HzMLiXKkSISd5+LHscGvJS-0NL5x8spuy7FnzksPakuQOSwD6LgPxxC-ppFZK9CoplQ1zF3yct6ks80w6ozjmUoxVlv+IW7V61HIN+ZYijpLNblBSSbQjnHvOZ5olq5es8n6-anVVrgu2dC+cWtHiHVeqTXmgmMGEb5Aq7l-OpJ13jaOy1tdMW4t9efb83NBWXupeO92H7Iays9fu19vLt771BcK1xSgUPzn6eKCISQet6tTMW3dzTS3AJsq2f9ZZDHMfecq7kfIsAlJIPUppbSek0QWAJvAd6plzJI-+X+7BCPUfaGIAx2i1YPadOQFwWryAUzZSm38FoY9hXeM-XgCEQuRcoHF-te53O0C8-Q2W8Me4rgC4CBELgkBwBJDV7QjX0vXzuCPJM4IsU2co7RwXE9UucfLY8PzGgvtYvTnQK8zb0E0cLKBgtt3gfAIMfdx72IaONN+8YY8KXO5KMPJus5rp9vSdw8ef9JFX1HiZ7wKHTbeRm4Oj6MhfcMpFJ2A16pDSWldL6HbogCwMAWfw7vRYNK4Yr3TTxz7An3GOnSC8xVmXtlUNE-Gb0AH-bOJ5FAo746JH6PoZHwR273no96kH+45Z2a0MYdn9virGqWs1bqyNxrg9vP7207A2ALCV+SGlfSxlxPz9yWKwZlH7-ZUUQv9PsvtX8AC5Vi9gCL8wtTtnVx9NMx4DdfZjc289tHV9VC0rd+xbJy8RQkQq99c6RJAPZ20c0Qdu1a5mgZc2hbJX819Ls-tMDCBvNrI9dqCbcBF2BpwO1a53EcQiU6DuCyCu0FUmCWD+wkDc8Fp6CB53EsCPRbIZDeD-pcIYgCD2CrQv4WtYCI8hoeDyDEAYNHBmCKtVC+81D+9ZkHhn4fZtAcEMhJA35JleMI4Ah+1HCgY584cF9+gl8wZXg7D6EwEMhPhiB99AiIVgjz1QgnDmhvhEJQBLC74yRMBTdnEotxEbtECiCdN9s614UNCcxfUcRTsGD81W4zDZc+NkDq00CvVU0iUEgfDLRBhb0BYZAUjn5yBIsks9BlklCDDU0EZdDYhpBOi0iejMtlk7UdCY9AIj9O0rtDChiU91DrdU8-NtEAsMjkt-sjsz5-N0jejQoNkIMiVdsMtotYd9jEFLi3FTiqFA88h+1rIki3owt3tysEDXwcwXcLBaYns1sKikQcwyxJQSjxjujklMjepTkLBWYODHE2R7CHAcRwjL4giW4wSdcNjX8-jd8eQvdMZ49OBE8NwyRJRiAIiGEMgx8sch1poWtgcRCPsXCGIIZ2V09qkI9X9Hkb9ut44CToIScD1Ac5VMTGC78J8fjOD-ocRX9SsmFqlPN6TcIcFHMjFnNFT8FXNilyoMx4CETN0VC3j9AWs7jdj3179Xx1TTjnMLTEoHiNt+hX8HSqkFoVSd9+xxDxR3BlMwtDjJiriwdvikRbTdTnNAzoSDFdTFtvT-Z-8tijjMtnNPSKsCSfSmAWAwA9ZJMOBDYZMrZbYHYnYVAOMn8WF3o2TQBmdOZEBn9oBRTJt1cQ95s4A6T8T6SH9vEz4SVuATczc9Zd1dDWzGB2ziBOzMyml+FjdTdvdJdqz+kZ0k8FF+y5zMYhyNVg85sxyE1UdqyVVOU2BiBuVRTnc4T9zuzlVrCxVjzQAJVTT2AAMST-cU02ADybzVU7z1UmyOSpDVZDgC8Pzxwnh-yMxd0HEgLRSPYwLjp-pFz+N8VCZsJVJYKOd9BYL88U14KryqMLFKF4KL8dBTgIUCofcUwE9XlrSQYv51wpzgV6DGZqLPRvFRp6L7FdUSLIZzkkZDSXAYgaLvFQJeLVSUYcxEBh4q1UCXzE8cQXjNFJtyYXNCE6SCdqzp5dTVLsJCNNEkYNSi5+jyY9gBKWKwN6gWYzzyYD9UcjL+KI1TKS1KELLHyiTyLKKytNLyoOyhhspmKNiCACoJLlKjEXVOYAq6AgqFwvCAdQJFKPNPK4ZjCZofLyLs8Bg7h8YIrFZTiXUAAeDKwKxWKKtK2IPmCnOvJ4AAFULlAHWDQH+Kg1IFDVzCh2QAyDyCeFAAAGpEi5j04OpaR1tNKnAeqILOqeqRiYh+qCpBqTpJQWhS9ydKcqqaq2BoAdJKB0Mmr80Wqv12rkFureqY9pq6BZqcqRrkFVJDrJqPATrZriqNUIp9LuxlTdS+LXx24NNT5C4wQ-Lsh24xiS4cqvLBp+hpF3Dzqbq+ZYtvqoBJAbqYhOLwBSLOoZKqLv8Pc8hTjV5RpIa5iOhzFiqEbQAsaUj8KL1hr1RNQHrKjQB8IaQiCNNV4JLfKUCIQ0a8FQa2ha8RxTiG80AC4khQAnDe8xQ2D1jsgcwkYcRGKlLxCFCv5AaJE9KcqbLxYhTAI9Lh8WYjSLC9bcSYagRfrTDHzwynNXrCFyp3qkRPrDafruNpT+wAaybgbEqua6JH9Ag8M8bAJoaUxYawQEakaUa3LST0bNMSrfNsbOZcbhrJqEgvxRoorypI7fC0QybYJKbLw5rmhabxQJDGbYtmbJK2bQ7XyCZ3bYgebgqi5+bBaaBhagZO9tTRbdwXRq8PQpbyYZahD9o5aTaFbvEla1ajpnrDL1biaPAtbtKR7tw878DBLvQvqjaHbNN2NxNaE8zOBpNzYiz5NSz7ZyyGUSplcxcJd1cpdmNXCX1BMk8edkEldRdxd0KSAT6n7sphc70ligtL7e0fFybQhk9Npoo36Vdz7N60TEEgxezOgIKPBOgBxhiVt3ViQ4H3BiREHd9ezgI0GpZpxMHoH3U+5cG+4CHkGQKq4QgILKG8A9QkHsheyyJpA714Ae8NZyJRF-ieR6HYheyea0GeaPQeGYhez5Z+A5UcBpBd0xGJHJN+hhGPBeyurcGPBJB3piB4SbgAA+Gsw6rhhR9wXskyFR9wNRjRpwa4HR5ncyfRrB91UItoMx0ATRyx3Rl4Zx9wAxrdEC4AExqQdR5xixqx0AMAWxwhkCgAUj8acZceCYiY8dAC8d7KYhUZiaCd0c5nhLsZAoAEIWRUmAnYndG8nbgsnwnHgnhcronCn0nmd8r3AynyGKncrrgTG0ntHdGWmGmkn3UtHqnzGOnmcdHunsmKmtHWniBYh2nXGhnbhAnRnngcm-HdGYhXH3AcmPAqygwopODH6wHzdowx6bh+w1lagl5iA9mz6DmAQy0QHhd37rnEpwAcAAArOQQw45-oU5v4Dp7B0Bs+iCvZZPLx2IS51XXMnZpEsF7KQ4yTW4M+Xs3AiC3AkFuYkR91E2NAM0WrNh9wTF7FtvVFtFwx91GRi2E2NBslk2Il4l0RpAcRgAUVwZkYZZpbRd7IADl4AOW-GuWOXU65jIXURoXwsdEcrPm2hvmOnRp3yLn-nVdYWhWKARXAyCcJXsgpXXGgXlxX77n9nFX5h255dFd5XwHox69Nq6A+5qzjX6YMBBRYAFc5oXn4A0wxiSphB4boIRXP6CB0Ef7tA2WYgoNrXZhYhHy2xQQy6yTqzXKObIEI9P12iRW0dXbJ6VWkyx6g33Ak3voU2ANnm3n5A6T03TXRWlTtLs214ajpLfcw7ObNoCAKAWaMArXnnUU63y7YpI3IBo3XlAxsynyIH8yd7ZNizHYJ3NFAKEB5AMAdVjhEp1hYBx0hYEKvbo5Y49lV2Fqit-6-ECLToYZtwLqngMBxqzMM5Tq2Bzkt3D34I0q8hb3foCAGSSIjd1h7UQ8RAmVL2KMNj4BeBeAmrgg1MZBedAP0nJMerJAAPeBV4nhOqEgEOSbLqDqerYOq22gEO91f2NVtAFlZAg5L2tdoMSP7W0ACPKo3xF6bQTrDqnhnhDr33jlZAv2HDTmoNyPKOSOqDRq1AnhRT8PTpZAsA4AuAYP0M133CoM0qkP+0JJfMSDEEZPQB54+JiC3C8N1wZOnBk493KEdPQASnkFRNZOpBRoVPOYnhRMf9IKZ32x533Il3x0ZO5I8gNO5VWqf0ekVO1OBwrNV9nzOsMcdPU6kPGOeqhOE114xOzn6gidQvrqBxOrz27StknCNdDn+SJFDOJrku0O2RKPRPYBxO9kEvJPqFurNsvgFOdtCvhPjoWIHgIKoMqSKOGviuaIH3n1QJXPd2ovCOngcGwjEELPJOqbQgdO2uiuZYaJ+xdsTqJOBpeZkEAByc9qDej9b+bi9ga69pbvD9r6LudjMWAc5HVM7qTvDI6DdkcUaC7xp4lklkCqgagMauwMa7ScSVSZUOMMa5-AgL4HduHAb46e707rJ7Oh727UHzr7r0HuLmoaHibyQZH+r476H0Ul1t13gD19sPPTpYwdFTfNd+Xb9ILHjFb3ssn7z1JRGILiZDHHjDW2IU57HoYXH5AYQdxY+onwwHjkn4HqrNw3eSn3d3s0TH1CM9L0XjpIXsncZUUh77JRnd6XnvVQwEn7IqQSHL9WnwX6gqWgDaOo67INL9zd+OPYL0bQXswkBvn2QTGBjTyIQVHiHlX7ANXwnjXukmfOX3WzdVN3U+DnBlb0CUab39FE+PnXZcDSQSPwwaP7XahHboPwheD4hsPzgH3pP6DVP434Pqz9n91rn-H7CWr0qvBkcNPoxFnmINn11jnvHnnhP337XQX7r4Sgvy21+h33PnEpCNgpAjLnjLm1ld1SX+nJzGX9+Uf1g9ut0GUWgjpV4ojEiNvGALXz+I1ZfOXlbtivftO6u4TZBRvWnM0634yDf61DVQC8onjXCvhXfyAMzuiw-3zY-jpfmpvOnbLyC-NF+r9zEiJREA4AHKNlGqDJAagD-bfixnbzHQH+VnIAeJFFKQDxSokdyH8S340d9Ao0O-tdlt6PkRITiUqCjhP4iVtA9dTGMVAwCCAaABAWAINHbgRBIAiOOXhoSQLFQDeEtZEJwQ5gzRxoZFPaExS-6AxtYg9b0BzEfB2gmwuhBIJQPXLzRZUdA6gAwM3xaxKQuhPICwPOR0xqkO0FPGoSH45Ep4YMUfhoQcr6BQIOgxHoL2IA2C3+L-QwbrgX4WDcSK-fsIRBwFaJWBJPUUunCqBcBPOMAb3MkE4YOFpAhIMIawxPjSAEQj-Z9BDW5QrdohFgWIXCF2A7dw+5iSIVW12AdMAhh0YIQLFCThCf2gQ78DIG5R18nubQVIekNfbGQ0gMsYuKrnqHLwohLoGIZjDiFXdm0uQlIV0LSE9CMhnfMGLjWqER58hrjZoXAFaHZR2hkgdoZ7FGE1CPQ0wnRoUKCGwRuUjQxQFsP2iiJg4rvP4D6mrJsAjhX0J5DYEOhEcKh3ze+rnUfIXDpY+Ma4YELuGHQ+hNcG4XN13bNEqsBMOYVUDaFDCHCRKXGvWUCFssNh7AS4W8K2GfDthcKX4QEjX53wOoTbE4lCNuFVkEhoEAJrCP7S39Kgi6OVJgGQERJKR6AYgMrwoi0j3eLMMeDmHlgCBOS6IYvDiAogyxMArIxWHSNJi4g4wegYgJPUkjK9nKlg2qg5HEZF5AoQkNgL6AyAV94gwtauDtxRpYjMAiIvkeyKzyCcROeUD6PHyQBrtFuEfU0RqgCjvDbhZQQkGUHiEykkScLegIwHBD2jLAD5KUXC2kHcxaATRauCh2kDQV2QavWEC-BNGwZKYSJMoDiAtGhxcI0iLgWUCcBIdRMKHMoI20YCgBKqAACQZYYAAAgkbCNgMsAASpVRNgAB5DlnbFuDyVdKjANkdSKOCRieRGg6sqQENGhi2xcANAGZ2tFGj3o0fRPsAKpi9jfA3Xa0SUG7Atjgxj5acSEHQHCjxx1ZPMQWOLGliKx1Y2saKUHGhiRxGAvohOP7EJDrRiIocRgHDGcpuRfY27CglHEAgTIWwl+maCd6Pjjxt43wB2ISEHCXhxwwOquBFhNVtGIxAQHIFMDkjlxY4iRMBJUhSxEA7YsQZSDWFrUFY0Em5ieI7GTQm2ngYIDCznIywcQAABnmCaJ0gOkdlPhOCHQ53IyAGoCtGokRBtARE24ADwIksTRAPVSEImK-jsT+EnE2AL+U2AUSlBR7JmPVH4k083E9E9Sv4Un6gQpJXnGSdQBR7btaMThMSUyACBpAwg+EwaEeGonSS6JioYWutSokEAaJ5PEyb5BtrAooR2UHSCUHHQwDsCntLgQ-0aLSiRJ5koWOoLwmWTjJiUWSecR65mD3+R2UCA5IwBOS8A46A-k4LWGxBopsU8dI4JT4egFIHg-WlURLQ2BHJzkvSS+1FLJAQhDgZ+BIhP5CwfxH1eyflJimFSKYVYEwUoO4zyFK4jNIoCUAkmwxtwbgj2t4nrIZhaaRg1wTwOzB8DaYgg3aAzDlodiRpNBL+DgFXi4EEaCQRUa6ARp5AUphUvQQtBwDODgwTAN8GsSJTSJl8TgOQUSHqmpTbBfUvTjtLikAM2pArdKhtNkDz0cpm6R6S5Ll6ilXK2ME3PQkuA9SAYC4GqSCT4HTSppS0GaX3V3jVTkJRpasDTGM4osNCOBNAINTlgyi1YZFfQdNNuxijYg4MpGWG3wLGCdeAQLgQuCtxotWALwRmf2F+LQzbgdMYQUpVJmSjFp3iVGb6OfBeTtA2MvkaDKSmWg9pqsAwf+DfAAQWYoUokqLLhjzSKZrg6sKVIFgBAekpMxGTrX4oMymZYNL+E8EVGTBlR8-FCDwOX4YxFZXMoyqv00RCzr2OMhWPH0nAXgmRsAm0NLSs4myCAb3FbsbKVH+yj+XU0IJADdlmckYO3TjCBG5Sm9K+AMn2EDIhQgzw5Fzd2UZWjnUyuMkAeISt0TkMpkaKcnYLnIuaEgmRITMAIzJeBZyGUYMcOXPAXiC565CIFbo7IhAiz1wDcsWdkC7kIge5sQduc7KogR9JhtQnkBH37nEy9QOtHboHNNlvdoKAQdiUHAMJrsPkr6BVAYVQr4SX6hwERF2IiTsTqyeyY+VmmolYDj5CQmhs9Iwj6T5eqo6nngCckWAKyN-Hbnsjvkvs9ht0BHHKgsnHR2JDIuAIrleHfjQAEo2yk6NRAiIqgmAdiTiBsCaShYOkiRMfNwg5gh5co-ggOCHkiyBRiEvsQPNlDoAD5NvWBVQAAWYceQkC8WLxO8RYK7cnIn2UHJVEeAAxIQHbivhO4gKipkMC8hQvgX6SxZmoxgNiN+GSBGFHImxFmIoDriMAZYtSAABkGWdYtUSEDIntw0JbI9icsi-Ga4kZCQrsR-R7H6KBxjAemMkGHGYxdFJ4qcRYpnEALlkVohxUuNsVrj8xCi5Raor3EWKhxJ8WxWYt-E4ighubGoIHnPEhLiCoYq8UmAjFmLiF2QUCvhOfEhKvgawyJRIus7-cUlL4n+V3gVxOKsJhiz2foD-FHDTmgeBBa4xGK2tjkK8oBQhKQksxUJTY2UfhL0VgKDFOtfwb62ygPc3eICuuYQvAUq0Ql1ZcpUgEqX9BvZOjIlAcLCWlDuhXrTWnlAwnHiCFzSoymLNhG2tbFmyohUjJBZjLUR-0hMv0oh6DKzuGgm0TRGZGcECgPzW4AFAsTwCrlkPJ4Nwoe6t1N0jy7QCtKfCyDd2EKY3JZIGUPcblWw7rn8okT4DliaPE5dCKXmWKPoPUCiGaPrIdRbB6K3TonASxcZ4x+S44HYAgEfjQoe0IcTBzJWnjXwSBIcT1BbHtTJanBWMbcEvHXiqVR49AAH0RIwKfASC+jNStuXqtJImSj4WUB+7UrUlvwn5TEBijghJVXKtANKsCHDkPQvXalcQFhFAcKceCdZeIuhFGlTpFhdEfsNAE2AAFdrSlVfOgXKsulOIfeYuBt7oKkQdK0MWiq6VMreBMYywDiHZVxKbxnq2mjmB1UCrLVWwkVdBDFW2ixgPyXJWkp5UkByACquNQQBVWHQ1VloRSfhK1XpNQ1eq-iVCqNXi0F6pq26NQBsXUS7A+qnLtSrXYrzGV8c1UWgIbV1qduaAlsZypXH9jUBFamtV2pgmDRiVFqlsVap7GMqMFnBIuO+KVUuj5Fm48sZWJrFGxcI86ksYup3FqKNVSq3NR02nU1qB+m6J4MCAE6m0+1DS-SWPGHXZR+JFKnsS6ujGoh91uinEPIsUUqKV1SIN9d4q3VgxGlsI59R0qNK2Rj1S6ZFVJQhCHAXm6uU-NfM07NpT8Z5XulBq3ib4-2uU3AeYkQ2Pkj8KG-4Mslg2lLs62Gstc+gg26J-A0Gi3IRu8E3ySNulXukwyo3yA0NJ8rDaPloyJomNW8AjRxoSGOCdK7cdIHQH+SYwBlNGqUQlME3AooN4AXSXhuLaQrxlcGmtpBvQDMbH0CmwwpHKspbCdusm3SbhvU08a38xm-DdQsBzI4LlvC+glptM1oANNxhY6bUMRVfDJo8qlBDQDGpfKIeEFAzT2s0RMa5NsEyjTxqU2oiVN5G7jRbmi3FszOAIsnLMMdYgiFhYI8JVtnOU8KzuqORjaFv+BLC8tcW8LdCP-DZBYRQWwzXRgo3SBHNBWmrTxuGIJEg8um8Ze5uTXHrYA3mzLd8vYY1bgtgYITdABE0o4o8yE25RMpCWHCplrvQPLMuc39A6N3Wy5cJtE1ZbzkMfaeWb0xFiLtRUSnWhoCa2qjRFoA3bRIrlkyyUO-aUrbHha2nKUYHmr7l1tUwiA1tEFFbSIAG3AoPocgcgAgPYFEbX8J-Ftm2xwAdsKK9bCulj0b4l9ue1SUba5ruXuhbIkygCSsp5BzbLQ32oDijmIFKJSBx0YmmN2gy3ZeKxNIqIjCCZijq6KYUUePI8DU4f+VgpAA1FgCd5xqx0i7TECeDF9OesO8vhlKOzHaDVtwuWS0XUV4AWeCOtrRUx53N9-oT2v-NZrO4QVZdpfOQn5E4LrA1eTDFhv8VuAABOQ1sCh12cNblMgJgcbo4asNblWMGWEHGIA0qC6VMr2v0JsQaF1C1YfQJzGImV0YgJu1hpIFW6rdVISgUPbKpcEWyiU-um9jkJkVR6rdNaSbbVljgHDf4t2fQOZFPKeCF6fuhPTbuT281iAWu6rbrsgzPzWGb84gmAhJXFavhCQhHZtA80lAX5b8hXVZte285y9r8rAA2QHbtxW+a26JTFHnBwAC4EKQlvcqRIFAcQyve+Kr3V7E9KOQ+8gPR1mBA9cI1YcXLADH04sjOQkCFAFQwQaFo9zwMyOZFb4QKIeHcCjivpZzGNvgTajwCfth7gq5gdNcWvhGrCjrQB4AuVBWocIFAvVwbc9VWtlSdqO1QqrAYAcTWb7R9yNXfcZw9SmyCYXwfqXZGYacNT9Z+8yC2MoD-7aA2BsyFZHf1jTCIJa-oCfqeCEHzID3PQvbkkzUH79tNaPWbvmWTbplmtbupYwRov7LlxM3HQTHx2o8NBWqmnewHSYR0xZPm3hQUB9TbaTtZu4kQEhNUMaE09GI4DpFjhpAYoBkh5TPvd5z7PeC+zXkvu0Mr7Rqa+lPF3U8LykltMhuQwVC1GKHq4KecGnhiRjRVK+TwbSNKIVgdRSISAeABxDfBl4juInAZQIZQBqZZD-9Dw7dnJ3iGOmEdUUvouHmKx6RARweB7O8HeyFRrCx-e4CQ6+zlRXC0OZGI1imiCjUkZCfZUU7ZyQIlR-OZ9BKHYxcYxwFNBkc1hIza5oEdFapybmmDpwSw00WHy6VpHnp6KxJTEHXAiwLN2QVIyLMJVTHJIo0WY8sea3ixuu88v2aeqWBMAB9Ay1bsgMkB06AAOkwAbVtFvcP+tgHYHE5XbnG5jaXIBGD2JI4DsgNKAccuVHHHxJx8eeccuNlSsAYA24yVxNFDHSA84W7OUFAiQnQAAALx1agBzjsQRZTcbuMJHygiJ545JFeNPAt9Y+m-vMAAiaBe6VAaQJoZHBHGrjmMdE2CcKYjcXuY1HAGNV4BjU3uLQVboGFYBfHeF1JoE3SfE4MnvGFTII6pBZMKJ2TQPPE1ZCAA

Metalinguistic Abstraction 4.4.4

Ifunction extend_if_consistent(variable, dat, frame) {

const binding = binding_in_frame(variable, frame);

return binding === undefined

? extend(variable, dat, frame)

: pattern_match(binding_value(binding), dat, frame);

}

If there is no binding for the variable in the frame, we simply add the binding of the variable

to the data. Otherwise we match, in the frame, the data against the value of the variable in the

frame. If the stored value contains only constants, as it must if it was stored during pattern

matching by extend_if_consistent, then the match simply tests whether the stored and new

values are the same. If so, it returns the unmodi�ed frame; if not, it returns a failure indication.

The stored value may, however, contain pattern variables if it was stored during uni�cation

(see section 4.4.4.4). The recursive match of the stored pattern against the new data will add

or check bindings for the variables in this pattern. For example, suppose we have a frame in

which x is bound to list("f", y) and y is unbound, and we wish to augment this frame by a

binding of x to list("f", "b"). We look up x and �nd that it is bound to list("f", y). This

leads us to match list("f", y) against the proposed new value list("f", "b") in the same

frame. Eventually this match extends the frame by adding a binding of y to "b". The variable x

remains bound to list("f", y). We never modify a stored binding and we never store more

than one binding for a given variable.

The functions used by extend_if_consistent to manipulate bindings are de�ned in sec-

tion 4.4.4.8.

4.4.4.4 Rules and Unification

The function apply_rules is the rule analog of find_assertions (section 4.4.4.3). It takes as

input a pattern and a frame, and it forms a stream of extension frames by applying rules from

the data base. The function stream_flatmap maps apply_a_rule down the stream of possibly

applicable rules (selected by fetch_rules, section 4.4.4.5) and combines the resulting streams

of frames.

Ifunction apply_rules(pattern, frame) {

return stream_flatmap(

rule =>

apply_a_rule(rule, pattern, frame),

fetch_rules(pattern, frame));

}

The function apply_a_rule applies rules using the method outlined in section 4.4.2. It �rst

augments its argument frame by unifying the rule conclusion with the pattern in the given

frame. If this succeeds, it evaluates the rule body in this new frame.

502 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEHsAcFMCcEMAuBLcA7A+o+AjANtADSiQCuio8aAJqAObSIBQIoAZrOALagDGAFvEiI4oAMygAFAGdovFOnEA6MSoCUTNqTTzUaStOnhekgNbQAnsVhzwsatLWgA3k1DvQNxKVj7k0jDRSPDxJG147Bw0PGJiAflBtamg2ZDRoajdY2IAuUGgAR1J4UPMrUH5oeGpJSuqw23tHNWjs7IS6mvDIxyy2mLz4Q2MzS2JsZFDuppaAbiYAX01tXUUueHMsXAJJJ1cYiLRpCjxjEq38aFAAXlA8f0RJACIAKmxLl6e1eZitHQV9KdwKZSJBRhYMABGYhlDAAJj2fVih2OoGkpBw7wINwMRhMsOhoAmoVOvHOWOgcyRMWQbCk6Mx2yu1xZiRoKTSGUR-RiXh8+iSHPS1B+bQW+Twshc1LaKIo01otyGePB8PG8EmMgxFKpPI8tKkCpurMFqWF3L1sT5vjZyTNGVFevF0ElV32lt5jH5RI1U0a1G+MuyS36IY8Yfcf1WfiOcEeBJhljVoAAbiVSJTpf05WjtUyccqRgmfZrSeSmbq2gatYzLsbbqbOQGs5bZIgtqWzngLgRCEGPe5IBrYJJ7sdVYSh8gR7C4cQ03gMy0+wOB8TR12e5TK8GJVL3Xqc0alcN8Um5yXQgydYGPdXjyb2fbmwePABIfptjtXvOXPsf1d+inEdgNVC8FyXFdANXddrwrKkAPcZ1XRbVcv3XBV53TSlHR5CNYnw-CowBUBqH8IdEAESQuAtbJrX0HgWVuJ4gRBSAnn7NoElY0FOOyPJGNZJ40lkWBEA46DQASES4z4to8jgTgRy4YgngAVTQUw0HAAB3fQoDgJA9FAABaEyfUuL5cPw+jSPIpABHmJYcwMhAAS3HF1k2CldnmHMGAoW5XKM9At2eHj2MDHMyECiAYDcvQwuE2MxKs5Z-mMrzoAwHA0jItA6EkNNYGQJksMXTNX1s0DitKv9U2wwMlmI4zcpoNI6AwWqmUkNr8roWjPC9G1Ol6vKOqa9Lo1APqOq67CxvagrBts9dZuWpyppI9bOrSDAOHgLhoCK+ASrK9gECOlbhv0QsTG6+qDquzaWsUaAAA8RBoE6zvqiCiAuw7KqRarh2ojZsp2n66t7BqKrUYgnpwxYWDAV6jgu7hQAAZQASQAYQABVAAApbHQAAFiUSFqa24zoAgpBjuOLhEGIaA0BTWjbP8DBZDwNgMAZ9MjIKmREFZ1p+gSNEJeYPU8l5tAgfFyW+O48BgVBPmLC4HBwG7f6ZF1-Xu3AQXlaO1XEAR-JOal+TQF5uUqHbZJeDwU6QrQa2HfafIFwwF20DduRPYS9BrfZ+2+MVgIHoIDB3fD73ffVgPzgT7Lk69gEo7trnY6dgJlWQOg0COkO071BJhe7Uvy8rx4WbZgu-dyYug-QMiAXOD7IBsQw9Grnla8Dw4e70Pv3oH6Ah8jlvo8LhXO89vXqHgIWZ8H6Rh5b9v4lALL9pWPO15wDeMCHS7GDgaRfagyS2nPy-9eoCwH7kwCOeXnk475woGYdDMzlgfDwY9ziyCKBzXgzNAEwOyscJmTd777yXmA9w-98DGFMCPaWGduzYN4Lgxebci683onzbAIgm54K4gQjAlCkE0I5s3OW6DyEl0gJAe4ZI8773TkIHhH867FBEJIdGW9Z7zx9mgtuj9AJjnbObeaFV76nToKg0B6CMGgAUrAJS+d1KaW0npNEFgQ7wHeqZcyoimZpWaqfYyQi8Afz+MQDRjhULVl5gPZAXBkAoBTNldGEjtAtFQh4WyLiIR+ICUEkJTjI7uMoLATRt4kJ7iuD4gIEQuCQHAEkE+GVknhMGu4I8c9gixTseIyRb83HhIUU-DwH0vrUCFpzac6BaFf0kpI6+QMRCwHvn8BGfToKeOaS02Ikif7dIrqwsJaAWgZM9N4G0FCbqqIzA0dEeAbZ9ISJQ-6XcQ5LMHtU3RHg8iNmFI6ZC+4ZSKTsMs1SGktK6X0OjIkFgYA2MoNw1xaVwwox+UojAKj-r337tIdBkShobP0NpDAnjJCwowQkIIIROJ5FArU46qQRntg0eimejh0HTL1BCqF2F76DxJWkmF5LbY-ypI4kp+g65nMnugae0jd4L3YW3SJPMAiIFgLsglkgJ5SNgFfGwNQ5FsuuRAxcTMZXdzlWcrRksOGWgUozcRsr+7ypKGwvVbcXpJK5YHKBQDYHWzhSK18OShb5MQBCe1CCnURNfOs70dyHRIkedkukkheae2OFQ5BSyW7NARW0Wy0qiXRuYdAWh8aEZsuslkxNFT0ColTe2FuOzmSgC-im6cabqEZrjXLClOb+xupOQtYtVDWZlr9V-Wy7bS3-VwjEUN+arQ3QYd64BkgJnuAZTGlhIddWIEbfbQdoKh1gptXcB4kLBbaAbsKSQls57XSRZ3bFoQj29Hwee-seKwavD3UPcuGRPjEBpbu5WT6D3rkvas2YiEK0cumtIMkmBCmhw9rnPQi7BpuonY6-e5SPA5njTieDiDa0oN9qumdY7eYZuEF6+Bk6s1fyxcEPAX9BjcI5kq0DkLyBJzDlBwtEjq0lsw-W1mzQqVoXo+BpjkGI5HHBpsdDU6ZmAVnemrDWa-0hrzf6qJeHcmFuwCHQTKd+GgLI1u8cwcINacStIE2BtfbXL0Z3LOmmWOyJ06ubiDxoZMhs8JnWeszOIYmXkc91kN2coYUQkhwq2WRJzA0nEQWcrgHfthpEOYyySjQ-xxjOdhP3waWsvgam2T7oyNIHE76MCPt3s+moiXHC4WTUa46DTeP9DabRzpKYFm0Iq8QErZdhTOpVdagL3KmGcarqQ0LVUx3H1bRVCTq5pWUNNXPQVdm9XTp5L1-z01uX7szSF+2YWcv-RxNKrbrCy0PytUifd7nTaneOxpkzHmrzaLhhmdBVWx0DvWyRbl1m0upxG7t18l37vXaNj95jbngeee0f2aVYOhPe1O8q+2vGm3incHTN6481Ou1c39nbXNIlA9M4bBaBncfuUh495bDWauaqOOpwztnEdPbZSjldKNUbsBtQVjgWM8ZE1JuTKmNM4QY78AEfmgtakdV9qKlTgRSB6zgLL0AAAfVXclebHBKmLfe7h1ea4CPrA2VQls2zVxry0SsKMq-15bvUvMg1KtAX16avNsB0AYB0pR+dECVC2ANOXp7fFgz1wAMjDxUKozvJb1iJP7j3ruSJKxVnrsbwfxXwE9xkDAPvSFPCPQ4sX5iHs7sCKn0BQfvSjVgqAyaPzea3Ytebg8YqA9e9z05-PTei8-Kb1dqHsfW9jpr76Wo0fJC18lvJoDJF+9GzT30Wyo-NRT5tuy4vztscad+9pofS-5ce473n4VTwye770L3zd5-wcI8p7L4fp6V+hGf+ZjfPyb-w-cgvyvj-q8T-XDXxn033jlOhhmzlvz3xbwPwz3bxzxP1ZlUjhyM3QCvwC2QKZ3v0X2UyfwALH1f0Q3f03QwLcx-33xwP-3qEALH0IKT2MkjUOgvk3nmxkQfxgO9Hdyz2Py71PxfmYO3gW0v3r03T4Kvi9iOmGRg1QlsnWDBEpzLyPWIAILr2EIC1EIaTYIoJGjwNXxoJULoMUC2SRTnTrWG1-3YM2Uz2z29x4MQNACeEG1jRDjQOmjmwENYOwNw1wKoL0OnwMPFx5UCSnm7BYMW00K8I4KsO4PHFIRWzP27iCL5RCPcMWxcJIhNW3gVQyHCMRW9AhRsDYHzkhFUOmgyIHh1RyNsnyJSHzgRH8OyxoG1XNUqLHWqMKNITEBKOTwl2IwQ3MK0ICKP3gNsNbieHQzSMyghgAWgRIwbW5laKczGN6OgCeGICzXqPQxMNk1-w8AsP0GUL8M+2Mj7SG2by8T-20PqHWKOMUGk1OMXXOL2MvF9XqPww9SIxmL6O43mNgPPReJuICKjQ4ycLOJ+MiIVxCEn18KXSIIC15iCxyNyMsLgJsJiNPyCwmLWCmIRM8KRMBEWIxLWJdwBJmlJFMGi1i1xLxKjx8M1EQ1eK4R4WQD4T3n6IiORKGNROb1UhcWZO9kxO+RtTlUEKFXIPZP2J0Kp3X3qLRVxOX0lKhLpP0JJJRTRSgEeIGLPRt3VK6OOPY1RTSUkB1OkJHwnx1PqNnTVMgA1PFOePNI51YHRh504B4H52JjJkpmphUBAKwElWOnehPW9GsSYiJD9PqOPlCUGQkLvmIDqxdRBgWPHHiPyUKUaPRlWJWyjNvhGVjJi3KFRx9LyQKSKVCTYEDI5K4OGPHDYFUiLNTI6XTN1MUAGXEOzNGXLPxOjQKIkWIGKPqPqTzIkQ7L03bG7JrNADqJJLmS6U4EWSrjLKrxtDaJ7PECbIYimMm12UOC+mgIDSXMWM3JWOIG3NYTXM7kPJOnhkXMGMrK5MvJe3sMPIFLxLLTOR3PvOBj3IlNpNCH+lhI2x0FOF3gKma1ayWVGwTNPXXALJ+XbSRnRQB0gsoJqBgs3RgSAshjcRvnhWcBiCQptFAiRlexRhzD92ygI09VAtnKbhxF82LwjJvmNge2dWhWHNAkpxYrpTPKRgH0lAkRvj2Dwq-JpJqCRm4pvjLVGQEpcCEs1PXDEvqMa0aPmWorjWJ04slFjKGHIsQuEoIAKj9yYtNi8RDP0roEMoXCvRrhIDBgYtT3UvKgpRmm0ua2uTyDMsMo4qcAAB47gOZzL+BLyrLLRa4DFXkngAAVTWI+KgCwVJOgRXVhArdEIFZADIPIJ4UAAAagrUk21w6lpA-i8uyvsNUhKpW1iHyoKkKqCpaD6X0UMUiuirYGgB0nisSoXVzFSvSvsPKryolQKrYCKvUqcBytWN6pyoqpiCqroBqssv-JIgil4sR2JxwqRB+R-lz01jBAgv6B+RAyoCMoNg0ptL1Dbz+K8qmqkgLi2qgGm0k3QvAGAs6hUp6XAvtgs0dkpzj1Gkuskw6An3mquswTRFA0VKvBGvVE1Hmqy3XX6GrB-jjzIvdUIyorepDiQ2yBeRHEp3eTQH1iSFAEL1hvDEUy-hzCRhxDgsYqbQ9FsgOp9h4o4v4qBnGUkw8B4uhRZquhJqQhDXwq5U5lup2vZ1n2cS-WWoX1WrhjWt+DQqFqBBFoJyU0jE3QZqOs0rhlOp5HOptz+sAlrgVu2vuskkeuerRrnMeBVRWzyG+pDN+pGqmoSC-FGksvKk+o7nVtgkhueJhpw1AHFGbXDURpDORooohFestsxtiGxo1rxoJpoCJqBgBR715oDrJo9Appvipv1PgtpstHprBqZvUu5spHq0Ak5rpVLp3AIn5uEs2sVoQq5k2k5ydMxldIJndKFy9Iph9LiSCOCWKWjGWTBIrOsM72rO0FUn7oSWfJnuQEHv8R4VMOoWHjGRNO8JqHkrKU2mihKniQXsSU5QK1uB9yDB9yeE6HGo8E6AHDZuyAvuJGvvcGJDvqpQvuAmfpsunDfvPsWKUS-qUV-ufkWOtxCHGrAbwD1HvtiAvrImkB4XgAsHGvgcQbip5BgZiAvuxufuxo9EwY8AvvWD91RRwGkFWOIf4FIYK36AIfcAvqyq-o8EkHemIAsCcGuAAD5QBrEcr0G6GRzngTImH3AWG2GOHuHrFzJ+H37FjX02gxHQB2GbhJHQAXglH3ABGL7gARGpBWGlGJGeHQAwAZG-6kyABSXRxR5Rrhox8xjR0ALRxYpiJh6xwx4M1kdh2RpMgAQhZFcf0ZsdUb8duC8bMceCeG8qscCfcdAF8vcDCZAaTO8uuBEbcZUaMZSYSacaTM4eifEYyesW4eye8Yic4dSeIFiHSdsaKduAMdKeeB8d0aMZiFsfcB8Y8ADKDCihy3nsHskQ4puH7FkPH2qGID6aPujEqyYD3v8QHsmfcnABwAACs5Al0hn+gRm-gMmP7975nxrX8xllwv4Jmh6ARpnZmD7B6DMT7BGL6ndxqncBH2asHFjcY0AzRAlkHKn3nPnPVnmXn6HFjKGMBCZcZn6QWwWAXAWiGkAqGABRL+kF+F6Fl5i+gAOXgHRd0cxfRY9qfh6fpxID2YSR1QZ14pPuGaEAkQydGjLPGZJcPrJddgud6cZeue33bGhQ2baC2dpYVLLNtlOZucDD7yBViXZYWbXqnviqUWHJiQwD2kFFgFcTmmWfgDTBAxKmEBNo9FOaXoICblTjGXLuyA0TldmFiBJLbG1kjtoWHKUo6TtaWWnSEVo0kFOYGYctysk2Fc5YpdRZiDde+k9aFKWdWfkGdWBsHEleZY01YtNZiDDveItqbkmgIAoGRroFOBwD7hnPRtihtcgFTaWUDFbu53bpxk7sF09Kpl7o-3QAlXgHkAwGgWOESnWFgFwSzmHOtyVxHFfx7bqvwVf3XCHdGvsIwEypypmpqsHbAPgjATyHnd+gIAWuMjyXWAAUGREGdx13SWvMoF4F4EV2CA1RkA8WPcMYKxyskGbd4DjyeEyoSCfcs3GunaPd4EDb1CfaJP3embFsUG0GvlkHFn3Y8SZQg86mA9OlkD2DfAFtln3ZKqeGeBKs3c3lkB3eyJGY0WKzQBA4Bk8QiTGrUCeHqJg5GWymGS4DvbSV7YCD+I0TARffPQkkdkjSc2Y9AAjz4gjUY5t3XGY6cHVxEvBro4GicBCfsLiC+H7ASFGZqG45DKeFk7kgSG3IQBbbbfck7dwWY7kjyH49RVSpZMjm4944HBTytjmRSOHmE9VXsLQ5yso9kCwDgFo9GjRQc76o9Eyo-fkJUSPWWWjGFNYOE988tH85Ktc+o488U-E+8-o9WWyr6S+HY7-jZEI-CgeHGo0Q6wI9g7i9gBoiXc7lAgM-wVi+eE-rfScy8-o6htCGE4K8I-c5K7K61wGrFkq-oSeAAHIP2NEUPBvb0kPBqP5mOKPCuqPW2MxYAP5oEFuGOITQgjp+2EulvEnAXBGngqBqB327B33tJxIeTDA4x33JUCAvhh36FqvRotvbZ1xHvWuiv2uaIxv7uJ8XvnifvYu5u4B2H6j1XNXeBtWuXsIFVjAFsyVIAVveSzOfZ+4WPduEf+TEYhTQjh5kfE2PARmQehgwfkBhBXyB5ofDAoPmU4fbv+Iz0VZkf5PdvZO1jicFD6eZ4aeO5+56itudZLF3oofYFDBYfYNw1G9TPU5kekMKahS7afXshAuLYVZbOBVseOeSa97yfZAOlPFPJqXeeTN+fBeFtKeReSbe1ZfidH3P7GfQJRoyehfteDT0klCFSHeFsc9iPOeBgudOVeLH2AHbfOBHfPemUxuvWHtH2CetXieIeKoMvYgEhCLLeHtcf3B8eNXCfwfSfg+Tf4qqfVkxvk+-fcbiWtfQ-0lc0XQpQ3VgupfE0qjFjmeS9rsgv2fqeq+UIlNk0Z4-NAP9BPUYARfD2Q9pwRfGfRoGf+gGrXl+48bPkzEsfFBB+VizyTyF1h-09wT8UOfGfoLd-p-8gwqRw5-7CPlTEuU7PFB1+l1nzlQ4xEpEBwAcpspqhkgUKOfD2V-h+VP7-UoZTqAOvc7mJESgaFkeh7UaDfwL5nleYxUTfoh04Lj0fcp-VTs+REgM5So4iU-kRTZAJ0OkxUDAIIBoAEBYAg0BtpABESf8VaTsMXqARP7q8R0BwHLDtEizjQQKe0POjPERgCV-awlFgSGSdwrYEg2gPAfNHlREDqAJA2HtwNZo21ssFAxaP1FOw7Qa6Q6PNG6h37U9GBmpUCBEAUGT91ex5KAB-H37U806w6agfXV779hCIiHPQZQLh4bEJUVQLgCZxgCNFkgnsCwNkWkCEhPBSDHPNIARAj8BOkJXwSj38HeCOkQQ3YEXzBi-ViiafKQNe2cGHQ3BTWSIT4NSGuDYIiQ6NuzUyHRCEQMA85CqyqCD1ChMgPwS6ACFFCVuF1Yooz0KF8w4QsQw-nbwnzhCkhuwDJmkGGQEANWEBLwdkWaExDv2HoHobY21wuDvwVQ4AvtWyH7RPYEsalikm1q9plhX0KhDYEOhgcZhWzGVs0H7KbCOY2wlwXsMOj1C9a2QlHjekP59C4AAwioTUKiG6s2gv1G4Ym0mHcM2AJwzANMN2EAichehHYaVzPIURhkmAYhlRAojEAN4rcMSoe0poqc2AvoDIJlUZ5PBURkwdEWN0AQlAPWSAOEUgCcCM9Ka6Oe4XQMJHm5GejrRVoLBRAPAlksI0iESMBhXQxuo-ECCSJ46R4uRkgeESjwhFwAoRDkQKuuAojjC9Q64QUUkJ5DCjfAGAaEYFXt4ki5R7NUaLKPyHQQxKZXLEWiIO4bEOoGbUKECJYZsUwY+jb4UTQoxr9KgxCVFJgD-55xnRegYgLzxZG89ERr4HMMqMYRVIDkOIBUaKMoiBUPRbI10egGIDajoIXongYhz9GXJAxKIg0Qn0Ph3CvqxoxgKaOyHgxQx-o-ZDbAo5uc8oH0akStxmoJdJRZ5AKGcN2FlBCQZQYIT6Jyy3MAo4IRsZYEnLCUT6j4O0E2GurnpLM0gV4uyAF6whzY5YvbESzKA4hVRRYhAVSLKBOAX2snSzGUE2gZtQAEVAABLwsMAAAQWxjYx4WAAJQiq4wAA8ui3Ji3A6KxeFqvmMjEiZgxMgq6Ie1IAlixx1IyESj1rGlj3onvYAecx-EiiyutYkoPXGAnQZ6iEEkIKimgmsZhyu4-cUeJPHnirxN42CYwEVZjigJokECcGOHK1izRAEjABOMKJESzuBEvQCZCBHPkzQQAmiaxlfHsjPympIEUsKQAjMJk8IxXCowqoCA5A5JKgAhOYk+w+JKkGyogEhFviy6EyR8QIDEkP8WJSAWSWxI3xbiru2UCINoGGQ4gAADPMGLzpAdIjCYIK-wl7uRkANQFaBZK7h6TRAtwbSQ5NKElVIQb2U9C5N0mlDwyUxUyWIPALOZ6oLktHtZJfCIdQIqA8ZmDFClWTEoNkprsFLXbrtbiHMIGIFKZABA0gYQCyYNCPD2SwpCUxUETVarmTE4RU0KDZN8jrVN0zg7KDpBKC4JwB1AtvHAPAG6Zj4AUrONIM8CFT4pVUgMFRnK5gwp+IVb+iOHqkYBGpeAXBAYOp7qiX6NgBqU1PE5S8LMCkawXDTkrLTppq07SWeWSDuCHAkKJHlwIairsAY3o2qQFimkzTmp0dN1O1O7R3hg6RQAkVnHZgvSpMY6CVBmF4Gk1q+boFbOFlYFLRdomAPOnJLTr9BbIOAOPIIJmQJBURroYGnkDumrSdoyg1QWKCYBvgLBPaeXPilJHQQEgGM2aQl23AW5Qy0AFaRTOgre8DU7AEoLIH9q2DhK5M5qRz0UqfQmstIK+E9V3iXBkpAMBcNDOnGoh+BM0NgRDP2iMVPpGk3CNWBYHScnmI6WyNoEKpKixRiguaEbBUHRiduHgMWYrPl7p0gZNAqQLANOiXk-U7NVgC8Edn9hwsMssGUoI4HyySg0M-2nDNdmqynwTYXTJrKGrazQxIsxaf0Cxn6yZZ4yN8HHMjACVhpjrcOTLUVkKYLZ1YI6bRgCCRwTZCs3UTJQdlOzYZY6fUTiMNHpyu+-YHvu0hTkmyFK-NfvmyC1nKiPWk4C8NdOErIihI2IggAd0xG9zcRh-fEaEEgDtyUeSMTkVSLHkkz6EdI-mQUiHjCyx54zDuYnMpFiCPWwQ2kbzMaILzBZyAZeReBXkaT3ARcl4FPLEJj8Z5vIkadfIRCM9g5EIVuRKLyHs0JRCICOR4CfmhyqI9vN+UbPeET5IAn8mMXqF1Fjcy5fc8jiSQoQWTxYIJFbpyQnpsIQSqkbSc+UOAexPxw8A6RAIVIHSzyLkjQngq37Ik-i1BTUIQpR4X0SgjUiwOKj9JydD+o7MfNQplLitUU5U46NpPdHzdYkakkUXwsB5yzWaEsigB7FNzcKcQNgI9JlMuDZSfYB03CDmB-lJjYofSH+a3PDEyShFYCrBYuDCKSLRJB0r+bEDjGs1PJgaNAFrPUWPtB5-c69BRjxE1YAeC3XKYnA0LGLMApilbM9RNH-DcxaigMdKRRhbiUJGAU8WpAAAy8LW8TaJCDGTYKjAJSdpPvisTO5mpT8dlAAmgTfAf4nCQBJzxpK8lKyMbnBO7AlKaxOEyCdwvvjIS9xkSmJXEuwntgilHSEpURMPacTg2NQCZCRNzFkSKJpSqUT+20l0TshXwNPgMtBHPBm+DhCyRMtBE3cOFwiOpaUvFlkL9AnE34dxOpYTJtJGTCqgq03jaSPFAMDJQJTT6KSqGnSwRb4Ghlnld4+SROFt0kA6L1JTNG4d0sWG7KVhYIfsMiO4ZfwelNGDwS8OyIrZGJykkAaxg+VCKNJco60QqxKXwqHlGk55l8tBFnkCUbixbvwrkl1iaI4i0AAUG2a3B2x3-H7k8FxVbcQUmpMldoARkBzhQjPZ5cvTxXvKCVbEolWV0ZU+woBXKwHrbCxUuCYBii5IO9B6iSiQh2wmXPOIiSidrZA7YBSSKeVP8bAMK6yZgFyXPjReVsiVR9B6h6ro6OYWcbcCGVJhJxeq-2jmBPYGITsz4olTyyfgzLzhZQaiSpLQBLKXB9K7IDFHBCerYV3q+iYmwq6IS0AxAa0fatkUkoI1vKrLATPXRNzjgdgbKC5L2i5LSF8WXpvcv0C3ADFOCyOMoqRBuoAJ0qvNd9OyBmrLAOIS1RCEnFETbVOWGNSdhclAiXVkkN1fWLGCPlFl9EtOgGo9V9qCAPqw6BmT1axSLJUawxq2o0ztqbhiajOqCiblv9uFkKM1BGrvYRqVuZyvVWbMPhrq91O6sbmuufHbrxJZ5M9Vuv3WvhU1mqp1Zmu-E2qc1RLA2ExK9W3MIlaEs8ReOvHYxcI3648b+swnxLw14kmdRk3fVaroMWWWyE8GBAwLV1gA7hecsGj3r019kp9ZKrQ0qKcs0GtJTiAiVRLYlAGpEMRuaVgap1sMa0QRosnTNhKCG0wEhp9Lh0zkyzG1LD3WHy4-iGKfsvqUOAcb-gXG4cvNIA7F5Z0gm0+FT241QUx8fG2BQEDY3wMhNw9DFLKt40sp+NxKJOP4FU1W0WU+C+oApqbmzoVN0mkTV-3k1aaVS0AOgEzA6RvL1NWysTiZuLyCbwAOUqTf8GdSirLhsqtjd5uHpBaYSZIiSkCLG4eacpkm9APpvvghaKUU1WlfwrYw6aQtdOOLbHJ25+bSum0ANXtxoDvtktgPcalFpWTzAfkKmzzRJL03SbCVQIlbsptq2coBRzWyNrcOcX3DShTwoYbULeE04RYIgTle2nM3CbRt7W+rZ8LxnZBrRVW6LXPDdhtal0rW6QJlv-AzIctG+fLUd1UjFaFuKDPTdVtFabp0g9m8RFMh5UNafloIrif8v61tAgV02+GqENCB7aP4p2hzZyuI5mK9Q-i7MYEtmW6iNAAGRPmiCzFP8Ad5wsSnjI-A+YKM622ZOFpuF5byAzwE7kVtcV0riAH2kQMdv6yAST2WAqgYh2lSn8s2ObPNi1lUoY1gemfGPiTyNgXbNtLYemr8uWE8TLQj2y0B9DkDkBjo6A12JgOOjRsGuLvNiWYqKiIwJG2o2OimENmAKz+JiL5NJIukApp2MOkHU8Gj5E8Gd2EG7o5z+0Q6iV1dQzgkrwCmtNtKOiJtruz7-QMdg27KFjtAA27Y+XaPyDlnWAC9UGXgnEAAE4Ktm6b3Ug2N3a1Kt5ELwUSsVbDJxY2Ox6bQNW7iwq1BEdQeGnzWsgDJ0dGIEHo-j9d+uqkJQAXr9XJ6LZlgjwNnoS7HAcZ2QbPZHsCTK5OJteW2PoHMh9kbBddMveHuD2cS69ONYgJ7t00IMvBV6vAPQsYW7IusaaybdiqRFI7QRVu54HQqQZj6jy9hN7XlxH1L7fSS4JJZund6GBOVaQGKPODgD6xd4-zElQUBxAG8LE2AAXnvvSVFcI0BHcgCh1mArLS14aYJLAFP1fNQA0nMYjiOcLR1y9TwMyOZHv2kr+FTsZ-RQBsTCNvgB6jvYPqQaSB-ubygoHMHNld98I1YJ1U-xf6opAB2RDA9HSPX2S7AMG8zihqdUaESD-tasF-p-2eo-9QkXePpXEiZ6kDaDIRmAfMjPjKARB2gLwbMhWQsD+4QiMuur2d6P4oB4Q5AcB5DRCxBWYQyIbTo16zRIKxYRzorrZ0uGwNNAylpjEC6Q4Qu95XJKjVy72AhjLmKMre1mGwdBUAJcbvPSrJE1U5fUlQGkA6Rlch+8gPlJyyX7bg1+o3vfsJFUcn9MUV-e-qYFEskYtzOwwUDWLg6cxsylw3Bp40244jKPAvOABiqhiOorI7ABxDfC3IZubnN5cYZQAapEjYnLIxYal0ZMbDPM9pPSJ1RMiq4Cs+EZstfWSzXZtwLGR7JVj5z4xfAvo32KFAZAd5tczo2yOh3tC81v8wKlHIWgGzCj3sjnPfs5X9dnRkgQBQAB0mAe6sFR0nwNsA7AtHc9Gw3EYRJAIee+wowaeqr95gmxt5dseAm7GjZBxo48dKwDP8zjJXQkWP1IDzhbY5QUCMCdAAAAvZcO4AOOxBelvx-aOccl1KNiA0Jm45JDuNPAHjsgNKABE0AeGjg3hkcNseOOIn-jtHQJnVyTLwB32OAd9rwHfYHcWg-XQMKwBeMpbSTPx048iapOo86TDJpkzdyxNWQgAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZygJwKYEMC2B9LAB0IzABM8yMAbLATwzIApkBGAGkStoYuQCYAlIgDeAKESTEmKCDRIYyPGBDVqLVoIlSdAfi416jPAKZadOgFyJCWGGiYALbMzaD22i18lnEAXgA+FHRsfCISckpDXhYQ3DwoO3U3D2809Iz07iM+IUEAbjEAXzFQSFgERBgwKAw0amwANwwonkYNTmzeEyFRT2kMWXkqpRU1DXNvfS7jU0mva1t7JxcJ1MypX0CqmrqGrGbWnKYZ3LN1jcytoNRMeMSYZM1BAuLS8Gh4JFvQvGBaKA4IhMMqcZDCcQ6GRyJD-LBQWpgExxHCxO74IGEEHgMEvQolMqfSpwhGkZHotGhCH9aHDRTKVTJFHzCz6MbUfpWHa1epNFqnJic7zOLCuZkXdLXRAkxHk0KU+5JBU4F6vEoNKDSVQtCBwcA8-yIAAMhXe5S+iDAGAA7ng0NqCMRqDAIPCvngYMxqVCHbr9XVDfaGng-bs0IgANSIViFKGDGFa4Ohnn4s1EpBAgDWLSttsaWDQMCwACMGkx84WSw1OEGWuFna6KkjPd6pLSkEsHAAiXRdzidpi1x2EBtuhAesicB7qCtF0sYVWpgD0S+lHybyGlaDgOEQAGUAJIAYQACogAFJ7xAAFgAdKxb-w002RiYaMA8Bh89QQG6wABzWIcCgVtJHbV8VBwYs6iAkDJAAH3goULHpW5qkA1BgOERBEOQnR6WLOA4H2MBYOEXDMnpdkyJ0CiMnpcAqGAap2kwkDU0JF96USf9-2MZ1UFgqdnASLB-1AgYhgUJQBzY4QADJ5MQEUxSw-w-D8RAoBEniOPXC0qNwDAaMhNt4zpJQeL4igBKgITEC7MAjK7NVnwtZA6Cg4i8DgD8nJwYy5L6OMpOU1ZpzI1zOIMpQsGQZAYH-MAApqEzPHA7ixOsvBbPsrs4oSpKUqgFy9PNSoCsS5LSCgExPMIpk1NMySExUpgIraiK5MXN5ooq+KquKvBvxAQLATg5rwM6pUuvGnqCX0yp6V1MBUCwGooggWg0DHUigsm8zpNE3j+MUOy2M4LsVrWjaqC2gtdtK3rFqQa7ElujB7p2ps6q8xqJvSw6wtFdqlWmx5IrxZ7ytehAbtqu7tt24asB-MamsB0LwfUWasKhhaYdfWcq35T6kabNKzNCzKTpss68uJ+dNvJr4noJ9NEEZ4NEYen6PL+ymwKB7GVhB3GQPmtzKi50mvuRkb0YBqnWvCmalW6qKXtfWgoLILBPwAD0ITABoQQWWos47styi6HJ14s9cN42MFNsA2alpB7cd2wdoCnlkHN8DMRYervN85QjM4EWNbKjmvf1wiyDoQPhdViHxclvqjvbZF4QwYqU+pyystOwTba7HO1tqYr3azi2kQwI2TYSs39sxlWxfVubNcJ5aEDIGAm1Rp3m6+QuExp636dtvC0iu-vB6+YfG+d13a61laKBXtA8Gd1SlaF0LbLtDBgHszRY5fTeR5DOHx+GY-MDP22hEvi1r+3ghqHOubgsPhNH6n3sgAZh7hzVCGAACOo1ICK1AhlYutMcrT3GpdZAUCYEQAwOvQmWYWjoOgaQLBsFwR-3rogXKXYCGYOwWCca4I36VGoUQ-BiRq41QDvtKQ7dhjR27ow2E9hUC53YalNipCDpY1WOIsBL4Ta1SrvnDhJD4FA3Fgw6G4ClD50IFAOgb5CGwJUWQhBDJxgyIEdrOKCi2FKLEfQ1RRczE4y7sBcEsiYp4FLHACAmZzbkMnqXH+wFLreN8TgjmeCvHUB8X4tuysH70y7GEzMfZghYUsSkrxcAk7+Kmmnf6+MPavnrC6Xa98jpWSCXlUpjZWYeOJC9EeLsW57V-pIjuzAM4NKQAWf8nD2k8KQCLbpPTLRwAIGgfpTA4CEAkUMiCjIZlzLGcxNAwi+nLPmQk4ZqxZkaPZnIl2tU+kB32Y4hMEVzmpmKfSCsTAV4SVMVUumgkV6XV7GMzA-kWgyyUNUQc2oJJvUTHWJ0ZSfqekNLmO0DpanI09GYWMUg64hBaNaVGfjHlkIsKY+52LZ5SH0FEmFMsHlGxrHC8FdTxwtkJZIaw9IByPPpYgfQA40V4AxdQPxbVHnuFZd4Tl3K-ERX5SyNI1gV7IskCUEKlzMDosxYChorkVyIFmXUZGiR5z9hAJqdaZBEB8SgGIdVwBty7ggI4IgBpgGIBYJ9F8wDbwutAcUgqPimDZjoDWT6cA0BkG2TsxZ4xMC6kDeCel+hGKnxYmQelUroGo29RgX1wNmBtXDQGoNqpBX6Czf6yNErJWIE9RAVN6aIrZuLWMqJOqyzArhpqGJrpqCiXnIaShAAqBtGBu1PR0HXGJcBMwgCxD6vAHBECTt6M1CwILkAgGLH2w05bK1TqnEqVtw8+1QzSDAYADql0rpJupTSsbmJWjIBJNI4FL3xplRYIoiAaDoJxWkEFNajWaXXbOrdEMT17teBsQ9Drv3nsQA+69t7Mj3vIHG69T60gvrfRgD9cG1FKm-SBzIcrvD4dlf0Ou1R0FoDspO6d-7Oao1GrByQi7l2rt-fFL1lGAPqB3e24DyGpBgZYExs9GkL0IavYwejFh0G1Qilxjt1ZBVpAHLldjNg7AOGowrF4EpLjpBkz43dJMeoodfdQd987P3NoGBGn9ZbWMVuo11QT8592USPYOItP6NJQdE-G2DABINIUnRKAac-JgLOnFNqaYAODTtGFzaYixkRzp7nNQ3C7KkzZmFOSCC9WjznBNO8a8IR59-QSt1wHsgWwUBrVMBVBh-+wxdzCbtkRMdhAuzZf0CO9r2XrDNa812UjdQSrZckPoYb5GxuIClWgbcDgcCXQAKpgEzGAOA1okCau+haAAtLtrSJNB1SBK+BSr1XrWphBdt7VQnED1pJkisQIKTWGhuz9PtTAuw9fHU9EFhB9VvZIDt8cn2hurRG09OuUTizVAHgBcsBY5zVho2jJ5QMBwywK3FsZsPyDoRRpWecTA8fw-Eji-JINSfoVx3DgnCsSd04Auj0KEVqfM8yUz-8HokQWqMojonKO+cBRZwmddWOtxGTGY3REzAJcK04MLhcFOMdRZh1zgXyOMDY7R4r32C5LFUAiEGnypF3k0cF9ryXIucWosVVy5VyvzN8bc3cgsDyXgNZQm5jBKaJcLgk3etR9oMBFefZl9DzuMgguLIadn3Pqh-H1w8vXUuw9B9CrHlr0HGDTaJdKVG6C88Mq0vbkVjP8cARRmjEnLmMglD86h0zkfWWmOZcIMb+hhXKr5Z7xCpeMBKp5aDCGAexvWGAIX0PeESuneD4Ph3w-HmWJl6QCgh7d5wAGsT+XqNU82-nTHrnceuc86T-ziXSvcOSH4-HxAABCLzOeb1e-g4e-RQIauOAr2T6vo0f806cDF7pDfj74G6IBlYR5VCu5KD3Lfie4iCJZeDqrdqoF4RH6V7-gn6YFn5K6I7UBgHX64pAx36P4iZMTxqsoxpgDv54Cf61ZY7AFeDx5-7GTx4Cp+acGSBX6spSoGyy6a4kw66EFPpN7vr8ZG5r5KBmygEW5a6EEQiIAoFoEZ4JhdiT6PCMBdiiFQFR7kKr7kCCG6qo4iFlaaIvjgC0H0Hf6EDTqED8CEEq6hRK6QbqFJBaF4T6BuGaFkCdalq+7qC2H9hCCeHW4YB4SMqwHu62Ed5pD6AGHr4fiEBb4JTE5BE2AOFhElol5u4OD2GxFTCvr8Fr4ehJEpEwBpGZHpFX6SDKHdoRGvgDgxGICKSNFRb5GhGWHAAf7wi1YRQxEJaJb9FCCDERZdE9Ff6izMADFMGXBtT5GjFIHpBX7ZEzYOQaENC+GWIJQAQajjg-C4BMAGyi7DADgGycBSjshjL0i1ixB5zFQnGVIlyvI-z3E1SXS1gRJXwIBbQgCtIqpO40ipydwQy1hFJ1xDiJzJxglOETyjBLIRTVpAovChGUKowYp0CWQh4uQNEjLYbIljL1j6L6y3G1icCEJoD6LVY8hgDkmjSUnn4H79AgpbTYBIi1iBikBGSE5a7-KkRglPogrjEnxLrfyGiCrCnWFMAUlUnwg0mLGJYrS-H-GsnrSwqqoKkRYymMkG5AmhTCkmyqCagtbeGbF+GFHsgNFfi0Z5x4AykAnZK5KqnslAqamSboR7FIgHGogGkuxGnglax-EtBw6NzRbwiPGvhoQI7zHhljImpyiHE+pUZppzrMmWabiaQmqVrJl0Cvx6kJgZlP4+bXpsqWiMhrHICWIhkGx4CTq+RhkHwMaWY+qGgxnsT5mWz3I+rCBeG9hrE+qpgaiIAAAqAAEgAKJ4AABKS2AAMuOVeJpOyKaHXMAIMNauqS7A2fKVkbCcMEGTzlQAbNuXUGAKsfoPGdWcYLWAHNSaeasdYPGajO2jeU9ochaE+WoJuQHBGWOZOTOfOXuJYpeQhgbNedqLeXKfeXud8CiMOGvoKDpvGd6UwNWbWWmj5GfHefIAKksd4BXNqLtt6S5G6ZIMhSiF9r2B8YRcRUUuai9JuBajuPuMeGeJeDePePeMUtaT+HnPZKQI0BcpbOgtQB+Dxb+LAAjnJISvoOkqahkJERHAFGRDJRQm1uOr9A1KwSHH9JhUpXApwAJasTkUoG9OtAjGTLzGPNJRkPEd+LfKtO9BZXLBTLbEZYSopTLMzFZa3HNKpTxTySTN5SDm0iEq+mAIJR5SUgNEVDVCpbZa+vZZVLFfYmFe5Qpa+JvIvAgMvE3C0tZX5QlQFVlUPO2tvPlb5WlRFcZWsfSPHM0q7PFekMSlgNmH8C9EwPVT7EZP7GRKRZcPVVCX1bMToOlekIpcwkYjZc1YlcPJNcQvNawm8TUAMlhIZdVVFQRK2nEoVTNQFSkvxRtRlTcYdCInYsEiBP5fZZXLYgXG5UdeNSUtSuUtNXEWWk6MnOJXxVnA1f8XJOtYJf1ToMfOHArAHKcn1eFYJTVbNvNnlCtmthtt8HQDUFgAbIgPtrNbxbUF8RaESdiLSWWlMsGtAQ6kyoWDgIvIcFnATQgUKOBESbvBTVTS0DTaCETf0tfmIehvxn3DgMkYxO1TDLTbBl+n6WKZpF9bUATemI6cnGULhXhRYAkZ+BFfYAgAXCNV4D9d1X7HUAHArUDTpqckbZcD9QJerdVKlArXXiGidVJNpYad-DVfnjnArA5YiHZE7ZdZcNYM-jKtzRhnUHDezV2AjetptmuITHoiQBjQdkScdogCUO+ZUCDR+GDeSnMgDbeuBOtpMtMivFGjNZaY9cyiNN9UIiclMpneCNnUbWnawQHPIvnQHIXe4FDQGYTMVQvKVb9QVVVYJTBa+OgP-lLcZB-E3EzaxHNNnS7XZTadLRPcbA5atSBNnYmljRJePf3DfKjBde3UZSvvZYtSQtnTirzdovzXogYjQiohJvBhQUhpAWhqTahUoLQMIoondQ4oHiGmPSCJXWdd-W4u4Ifc-c3l7iCmsp-eNKweKRsP-dAzYstRdbXWAwejASfA7Qzkg8iMBKwXTRsOBLg2xKwWHoHXofKsMAFSfWNs3V-cojIuwOgwRmYSnZ7GdHpeAMldekwD8iTQEvCeMPw+eWWWoA0QOF2N2twzFdegOpwA3TI4VLwxFCI3iOlhAewygK6EiHqM5SzHfPEi7mTUoCfd1JA+mfQoaItUA4w3NGHqYjotfWYw4lQWIxyBsNYOEAhcgDoz5PqsFbtAbYAww6lVAO4qbToL42qXo4ExuHVq1fghgiwohUrTpvQ7dXYyA0ZidroXhKYmZR9C5f3T7ZkN1vTIU-oz5V6aHIUi7bVVEZbnEyU-U+NhQvTF5TzCFZpcRJFAptYMuWw9xfZQdfdYPYfpZlCXHttXLWRIKZZlxhmdozEwE100EyTjknQEQUKU5LI4wEs4o7s8o+0Is0QeBP-VCUbSrRbduFbXZIs5wEo1VPs7PUfcPDdSg4deMx2RmIk1gzCNpdlv-TnOVY1f9VrUZdLklbI8A1AGfRM45ajqNIaP-Tw0NAzv9R3U+jwz0+2gzmizVLi5DQrliz80i9PlowFZ05ZSFV8xJDi-zFpQztS8U-sbU8NWkP-SywY0iBizPR3aMWAy+pIMM8PJU805VXCx3Tigy7U9peK2s3zOy+C5y+XYvc2uZRK7y3FpDUZYK9VTcvRTDIxZaixaeBeFeHeA+MArclif-scUPejS1iPRS8UlEjTbrYMPrZwJc9K-OuBJQrqPzXqJEFnH2GNp6-7D65s9nVWaZTuALaGx1cABGYEi8SCJdEG4mxQGG6sk0pG-rSCBGYAmfMAJwBfOYRaD9UNSm0PSWxm4gHmVo+bWrbcwXLW-60DPW2W4gKApYlEm7TqytJ7cW0koO2jGksOzVNcUoOO--ppkPWm8goJCSxXKdQrLjZUHOzqAgJ7fgXRkPSLJptLpADEjsdzjcxrXFUZUPWKga5W8SIA3gTe521IiDEK9xae1vi0MWPLfrvCzoGSwOErrG28CCtpC0E4-ope3c9CoyIUNDn83gYy8RMgDrqNAI+BLJLU2h+SwcsUkrriwbfroodwlQ7siDFfpYoRxnTUYgWRyGhFFRw+0gNc621e2Ijhzrrh8WHFJB9VXW6QP+NpDpQ1KQi1g0ABCJ9+EXQlQOO68nih6Ztx+3bx+gqrZFZkNYJJ8J9-kp6QgADwUJCfSeF6tPxFzYBpfbDlET3brR0Ac0gDFSbhLrgqMDWBdiRgQFpNRn-jv6ieofCBRhpKedRhMG+f+cycom+2vqWfdg2dwDSg2iOfOcoDjojgwDucORefhfoDoT+f6dBcOSXQ5c+d5cASRdmdjI-aEC4vaVKfwvEZawCU5RERYgvt4R1zRN7Rceo4COqGWzUSFfF7xERWtezKpNpNEJnsE4wcFyQvF7WBKeQZtTDdpMFqrBRdMFLc6Mj7JA4ft0RRRdEE6Alb4Q+4RWQYQefhX3Qfsd3O-2SDB1WcNcOQraESMSWjOQne5Mv2UNSBQP66Gi4PPv3tENAzdcgj65EdQ9S6RPa3Q+0ckc-dEandkstcjrtf3taOyu6UYu1PCF+tNdd1jeY8PICd6Fde7f6cqde7kehr7d-Syc6ajeNDjdYjAHTdb6zf3fzfVWtNSBLe1MrfSIHd576BBZtQyc64C9ciQ9dQHccb4HuLkPefeD8YCVXciRQcaeW0PF09SDPcOCvdh1gAffkBfcBRx22bKM1wo9J15MbCA9GTA9PvJ4sMZDgSQ+Ef6ew8i7w8WA0dxbEdS72+z7o+k9tfk+CWGurhZwmvMWHjmvsVWu3jXi2tM0wCU2wDU3JvgBCVPFIK5Sh3GxZ8s2bsdjM05-Bn80NDFTlIK0mLAldJKg21XaWal-Z8wC5-Gtdr0zISUIqRpJSAqSXCK0WCULTjD+SDThj+DGUKdjT+qb2Bz8D9JK2RL+2Sr-eCUJUSMhpJ79qAZDj-A1JLnY8BpLn-0DH-z9JJG-T9G8bAn9SCUKf6OAEDFjIB9hv8f+bhpDP+SBKEEYJfpsHOKIAtm-gIIOjSjAOdEAAA9poJC7C7YQBPgMARAO2Do0DssA+AT2hQEOo0BwgDAYgG7TgDJAOApJEuDwFHFOA6AqAUoVIFwDb+iAgAKRUCCBkAxAOjWYEMDyBiA4TCAOoHgDCBdAlrFsyYF2QuwZBAQewKIFkEhB4gr7AZzYE0DhBnAxAEZ0kBiC1+iAgzn4BQGCDaBag3QZoN4ESCAgygoQRwPRpBATBCgrsAED0GcALABg1QdYM0jyDtBEg+-HgLUE6Btgkge-FIGOLIRXg-2Kvt31ZpNJ9O-gPCMHBUj9hwhPfdMBojCFl9q+QtWWnAGLAAArJ1BmViHAgygHAhfokNoQZo9uIteARYE74s0MhG4UIR31KEr0nKBzemJQmfxpJn8VQtJqf0QEHgwAV6QeHQGH79DBheiboT0MAFJIf+J4A8NPxmEHgJhkw1-vCHf7jkl+P-ccksJ6GUIAAclgF2F4D9huw2XkgQaGIsah6Q8VtEL8AFCsQR6bYG1BTYJC0hEQ5oeZRSGNDXhhwcVmDRiFpBg4DwoICLBTbt1LhbwyphojriM1wRSQimOzT6S2QIyjNRPLGnqB0ACc2Qg4HFAgCFhdEk3S4LCJr4jhzqDffPkbURFnQCgFgFjigHjC1c5ucVCMmx0aB684q2WbxoYSJF1D3QNPNXkrW5HXDFeHI4gAhW5E-UshuQ6ALh1mKCiNWG0MGtsKkDXcdejImoK5CHLXd-wMSXjmVV541RrG9I3Xm2yZGmgjWyQrcIn1YoWsOKd4dPnXGHY7RoAdpDDj9CBBoA-EMsVNvCSggwQj2SOQzNF0KJ4kIYXoz3MFzwChdgghYCrt0SmIVCwxD5coUdwDGpZLEQbIEG+G6q1AxQMYzmkPSwAQAIATnVQHxRYCcBCxEAVQZuCjBMBKxrhTzl4U84ecSuUYSsUqPSBdg0kvnfDnXHAA+x0EaIdCBWOJojjuc-YgsOgghB+YyWvnLzl2C+xecMx+sdBNmPaDBw+keACcesitynJwxDkQQNoVpHbj1OPIVEH0m9HOI6xUyURo5H34NE6q9MC8S0XkiEo36V4iKBePIjwRkxSoL8Q-kGyfJQi8Y58SaV7DRpEAjowsbVEISoB3Q7ovxBeI3rvj4UFMZ8YpEFSGRlK5tPKo1S-Fz0HIi4qMCeJaBniQJxNa8eJH3GCpPOUYpTnpR+Qy0fooLf4v+LC6XBaJXnEiQkDqCogRYENfCUFxomHiN6JEr7BvzHGPMwAA40ibxKDELA2iywJCW9TEldhF+CjemG1AvFK8vxUkmSTxLQAqgHxpjcroBGUmFEuwAAcijF9J5x1khohFzjEXjLE3E+0jKUvHUQAovohwG1HckB8vAaJcgCFwDQhd1sJUS6AVEhzUUGgLkeSayG8wyT4xfkw7BDGSncSzxSYsSb5PpJiCUp6gNKdJMnEtB3JliLEfmF8Z4jao7tY2D4haSZ1LxqEseCyjepolnqTYNJDhNXj-FHkQNYOGVJxGVTWCTNWqfFDHGt0jYeaUtFhOMjNTCilCKiigDlbhxGJ-KK0kbEsTakPIqNGsjVKwTxR6p59TBo1LNj8oMMUDKIcL00h4R6Jy0-nJ1NHgnSJpP3MISNPQQUBTkhoYOJtJRqJAdp24Pabhwhr8peMxDC6X9FcKL9QiA4eYv9JaTGA9xUcApNFlhnxR4ZxNSad4AnxgyGorhDflDJRlvSW6DRH6stxNL9SKpMAXRKwXNJeB2UUWEmQT2yx9TsRFMqmdVIJljT6pcUrkMB2xnEQEhr0tGZzR0Iv0L6+lLmRhgDZJIFpN0vyPzmBngMssXgc5utKGaoo6AJAA6a+zhK7woss02meUP1kWBYaVnc3Kb0RqR0WJFoGOtgjGRTsVqWsslkyj1kTTQiYqV2f4Ti6Z1lsq2COqx1wmtJIJu7DhBXxt4jZ3QUACZNBAIBkAqAzAbFNrOGA2yDpJpSKeRiPE49Y5BAVGeRndBDUE5ZLNqPbPCZcyqyjlcykWGlrm4QO3mc3hQArB4AbU5ABoGgAkgOjZkn1CaV7jFn4onpBvJsoizvyaQWCieZ9hSiyLp4Q0Q8oso-VzyJZqCdcwnI3MNQtzvZWRcfEHMIDJwWCDOdgmHygJizmUfc-7o1g7BRZdQW8+Mfyk4AXzk47swgDk2KyO9MMoUaVDPjML09b59UlfMUUiAb5roZ0OKhLj1hSs6OaZQecfmHmn5R5yeS-CRyfTgRp55BRDHPMKIJEjCKOEBYQQkZQV5AdBXot-h3k6t2CnQeEKYS0bYUkQUparKQtAUkch6LhE0hsS0L8j4pppDwv4WTSBEyFXAcMqwr0BhEGOCk3Ig2QKIGyVa-8uGIAtSg0LeFdCqXMZN1nLBqsCkJSM7OWAgLRGlC-BZMX6Lhl-JyopUJooMWSBtFUpNsh2MmHlDjFWtHTCsQaLsKtitI61J9EzAEAkQactCTnKbB0k6gspKVtqTAU6AQU1hEUkaUNBmKCF0pHKbrKlaeKvgQBKxVqRiXMd6eoS72q4WYW+FQiJdTGSgA9KDB9iFFdJeLXbLqhBgI5CcngAACCe4PcOOSnLDkDwAAeV2GLl3GK5LWGuS-zZyyM8TShY4UTlIADy1ZE8jhVCIgUjy8M7xV8EgqkhxlpaT8u2niVwxgKgwL+MspmV3xfyVS2pfUsaUtK2lay2qFeXelbLVoYys8kPXIoUg0KdZLCrgrPIRTzlRFFEKHKvRnK+lsyy5YMtnFwUSQwcBTCAqc6QDpsLi3xO4t6XhyzYwKxbKpnmWE0r8-VbpRuRWUXKBlWRMZAlFr7FScp0SvxbEp3I+9mQQ9b0n8ABCAq0gjCoIKyjJWciKAAoMbB8qhW5y742pDFUirGxShGar5dlY8oUKjFiV6IKFgvVxV+L8VlJMAgmXqwItUAiASBEUMzKDB2oGs4yMlK7Bj0XRfixOuQgVXgBIMz+UItipJFarKSEq9NEKqpANE9VpEYuQHGSmWrcAM7Q8o3EewqLF2JkvMfGJUXfiiY7uCxVisjmYAWVkKZsKBTrHnKJIYs6so9jRWENvAIKFsppDuUYV6ycasPCyTkDfITk5y6Vf8Lwo3L5QPqZ5V8oQCvL0QOqnQADgoxpoS10KsAOWtCDhsNgA4NFRcVUHFi5shLNFdKttoUM1ZWsVAAGhaBDhE8oymErKs1CULDQSpH8P8QFL9Bo1oFN1Y8vjVeBE1aaQ0Cmv0T1lKF9vTNV2o2hDhvS+apYoWsTK1qHItYRtbgErVSBq1laaKRgBvU4Bm1mQAcGSQdQdqs1hLY9cyCIL9q0emcigEOADQhqx4caj1ZuQjWlqrloRUUCBu1Awb61SYhDeBrNjpraRaGtFchtZVXL50Q64NT2rHXhrMNwSyzMRE+X1qlmf5GpXUoaVNLWlQFfoLRr2UMbDl7S1tecvbUcDKN6G1aGcyBhdhR0Gcj1FnNJJAocUhGkdQ6BI1HkAS2zCjdQEQ0NAaNVSgCguSfS0aNNnGqLJ+qlB8abygm0KMJtSRxsbuuifRCtGyEdU26UG6iG3Wo6ANrN64GuhGT5RGxexWsZui5vKDjSVkt7JUI5tpH0gdelWGzcLTs1DKGebmpzesgRiKAIt0ANzYe1WDBatGzdcLeuH82YcsMo+TzWMitD-g84FAe0lFsLlpaCt6YhANkLgAApfN0oqVd6UvE68GtFMNrcz3imOqcADRazXVv5LHIHKSWkuR1ssWG81WYqs1bgza1MBRtHgDRmk261FIH1+UIKZdE1UylJ2NW-ra8AqyJb+tJwRLdlqa0krotoW27pQCO3C0stfm0RrkuEVhh9ghwRlTpg214rcGN25LZ9vCbt0lt82rwFKHC0HbMtV26UYduQDDba6YgBbRFiW2uQVtIU9bRNtNXDDOg+26oLtq1hFa+KJtMIr2tJX-KKVwIBTNSuh3pBD+6gN7eKux05iUdlEqHUkq8DntPS0qv3gHi0Aw788zOwpV6Qoo8EuCAzRkP9sD7Q9mtqYFbWFJC5U7KSaSGnbqTriNxPo+qGaV3Oi3-1zcWonUcvH1HqjSpLM3EZTKqk6tcdS2v+F70J3whKVGQUnZkEV3FjpapGJypXOMhMEtJ6MsAv5PLCK5hBI1I3l7v4VWLzZfs+FRbmt6hdodXBHQF2HJkG62ZcWWKQRO52RzedFIHglp3caaklt4u-VF9hj2DSN2SO0VSjrSR57DdBDQoCErRqXaqsPAQ0AAE4EOWsK-vohQoCM9tNe+gNKo9A8hYgnAfDXhDFlDcJYXuQOvxiQAtYjQj3LgIoBHD0AmAlkyyZdFvDL671GWP7qymb3xjUAttNIM3q72DwYIZK2aO3SQAHYK2KGD+VID31kqD9xvTgECBrLN7CS1ADEna2MhVRh1J24VQwtF0ohs9Eg9EvQDf1S7kdm2isS-qAMJAQ8rwYpLtJaR07qg1agrHUEIgJRxhOKEFJAkNDfTtpw0gGWGR3GoVpJgOYLvkFilPp+MzQNAKgaGEATNIVCTQjUBche5N9SAzGnAfijyqcpOwatZIH2zIDqReETfa5LxWQI8QDvP7iVn4w9rI5XiOsLHPaBiGJMaG0DTvBw3Ybc1Q1JQ2HkoMoHueeiOgw5ASiScSoU+1g-wcxpoqy0Cho1BYf2ylQJDEDEQLPmfleBzDdhrg34oGCilwmcdOw6vun0d6W9FFWlXBSt12KgegQYAiIfFVa1HdFcvipAg90OpGg3ujgdDSuagHRDYIApcntZ1XFH5SdWkbg3WjIBrQMERA-qibSIssDmkHA79LwN1TEplRzUKQfIPgK5VSuJZtLuThJH8luxHnfkcZC21TE1ELo7ePWx2cv86EORVgE6x+Y-ahUncQgfLk1Bnd0pRGZR31y10UjaR7YNDUsQ8qIKPy3ctFrJUArid6TbUBwOmyM0SSSGz9RypI7Ir1y7-V8k8dD43IODSge0pZM8VMBGdiAAADpiBbi9KhIBMmAABpUQ7IGgSoM9wRZF9DkKg6gdtmFBvjdOv494oBOM6QTYJ0UZEFkNQnDJYZZYCAAKzt100A4ck4gAABeWmSQCCYsDgmiT0J-3emnpMImkCSJrsCie-ZPRwspQQBqUfKMOA-jBJigKyZJNoCNJiAuY6EhC4QAQuvhF4JZNeDqoMTvxlk5CbZMymEBABkLsWEVPKnYpPJ0qEAA

Metalinguistic Abstraction 4.4.4

Before any of this happens, however, the program renames all the variables in the rule with

unique new names. The reason for this is to prevent the variables for di�erent rule applications

from becoming confused with each other. For instance, if two rules both use a variable named

x, then each one may add a binding for x to the frame when it is applied. These two x’s have

nothing to do with each other, and we should not be fooled into thinking that the two bindings

must be consistent. Rather than rename variables, we could devise a more clever environment

structure; however, the renaming approach we have chosen here is the most straightforward,

even if not the most e�cient. (See exercise 4.79.) Here is the apply_a_rule function:

Ifunction apply_a_rule(rule, query_pattern, query_frame) {

const clean_rule = rename_variables_in(rule);

const unify_result =

unify_match(query_pattern,

conclusion(clean_rule),

query_frame);

return unify_result === "failed"

? null

: evaluate_query(rule_body(clean_rule),

singleton_stream(unify_result));

}

The selectors rule_body and conclusion that extract parts of a rule are de�ned in sec-

tion 4.4.4.7.

We generate unique variable names by associating a unique identi�er (such as a number)

with each rule application and combining this identi�er with the original variable names. For

example, if the rule-application identi�er is 7, we might change each x in the rule to x_7 and

each y in the rule to y_7. (The functions make_new_variable and new_rule_application_id

are included with the syntax functions in section 4.4.4.7.)

Ifunction rename_variables_in(rule) {

const rule_application_id = new_rule_application_id();

function tree_walk(exp) {

return is_var(exp)

? make_new_variable(exp, rule_application_id)

: is_pair(exp)

? pair(tree_walk(head(exp)),

tree_walk(tail(exp)))

: exp;

}

return tree_walk(rule);

}

The uni�cation algorithm is implemented as a function that takes as inputs two patterns

and a frame and returns either the extended frame or the string "failed". The uni�er is like

the pattern matcher except that it is symmetrical—variables are allowed on both sides of the

503 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=DYUwLgBATgrqD6BjA9jAdmEUIF4IAYBuAKGIDN1EwBLZNCNEAd3lgQEMAHT4axdmnXjUAJgAoAlBADexCPOhwQSVBiy5FCFOkzYA1BACMJBdHAwo9Nsu1qoJAL7lKg+gFt2Aa2WMWAN3YoanYAI1AxAKDQ0AAaTWUuHj4BWjRhESlZUyhzSwhOdmooMQAiAH4SuIKisWt4RN5+V3S4sELgCMDgsJAJPsdiAHpBiAo0KlSAZ1GoZDcIAGUASQBhAAUIACkFiAAWADpDfYAmZ3HXCGpJ+EmQYDJ4EADgGBS0AHMxSbA3MEy5BQ5MAWehXeBoGBuEJYL4-P7yAA+CIBplRYO+QQ+sN+UggSJRqIUYJCyGQoHYaGx8PxhLR1whwA63xxphptKJ13QIhAZGojHEzL+AzGEzol2ubXe7xAIngvG+VNaAAtlJL-tlcqDrtVioKpAAyfUQFXsAVwqQ4S0QMAq+CS4UuVLi8HsNwgKnqwGa52S6Wy+VgRUQEpoV0gEoSB3nJ2TACeULJ8GQD1Dbo9MgJQJBxpAprEbWoTPNkeIThFFzB7Emk2o7zQbow6ay8izeTBvplcqugcFcRKVZrdYbYAjUdF9AHtfrIAwN3jJKLLObZmBeRN4gLHXX+faHr6JbLjrFk6HM7A8GeMHdeozXtX9G3m53hb3B7O4+dKDQ3wp5+5iGAQIUjoJsUVbLU7XYKVOwDIMSi-H9Z3-QCoGAtBR1Ld8LgQtokJAACgOaOME0XeFl3AnM8yfR9dz1fcx2wuhEL-fCULQi92Bea9zVvFtvRol8nzot9yydMFIm6BBkMI1JQLvbN2ygv0uwVXtgwk6JlGk1DXAww9ozFDSengbT2OIhc5L4+9KI3XcBNI-cRKPegjKk1iZKES9uKXMD+NzWzBNo4snIMiDAKhER2EeAAPTgcmrWSb3I71FOg-1uzg8KQkimK4pABK6D0rCnSynKClQt1dEmSyV2zDxOC+edE2TF03TiezXwYkrXWyqKSREWMaoojqhOCrqxTBcCbjaTBhyGlKJSUmCMrUkopp-WazyK0SxSmkBYvimsQKS3zrI6ujxogr8RGoVxONyw7Ep45LrNS5TYLUgl2VMeC6Buu7gAe-KjvQkKP2uh74Dys0fPkvIA1YHkg0MMHGLQWV9rilRv3m6yEZyMgg2OVGnQhzGoHqYAe2e07s3xpG1IAZhJibrluABHK9xm8sjabbRa0pU6nfj7DmucQcMWfcLxlDFmcJapSZPVq+GMpKOXucqCBBSVy7tZATn5dlmaQGHaqkoUPmH3858HKl0Yim+aaBFNs9FeV4abZ1+34vPDbXYwc24SV3iVfoUbfl1zCdog03ODAWMbgN8WeZDl6FPpOBSKj-SPzBQCnf9ubvdDiiwQZDoI7AJX7eJYBkEQTwarDn0lvS1S4T7MIG88bbnIgDxvHgbvG9xum1ZH3u4j1PXJ+H5ABubz2qKCnFa+uBpklcMf+cgwWPs74NN6aVI+9C0ZnKBgrKROuHrZXl8Luj-vAneIPYas7MRtXv5+mf8+0DIHqFAN+YhkCcDTlbZ0FcwEQPtryKATtX6wMgXfGyKCfb5XPK-aq4DUGfzyE+PBb5iqsw4sUTGysW5vWWgqTGfYKiYNTMoVy+VhCUmsFQnC8R6jcEaOxUQGhfCsCULwpIJ8hCiEkCYBQMdrQ5GUEwTiTdKGh1RGXa4kQxCqK+rSMoA8ZbgmYOQyS7p6E8OPgIjIujCQAC5nQ6m0bFCQNjUT6McWABR8AlHACbtuShEgYiuO+vITxIBFHKNtk4zg+5gkKHsZjGR8gnAamsmEiJvjahKDfMMCA4CsDsTaD0KoMBIAUhEBAaUYAhgjDILMeYiAlRcF0BARmEAvj4QuIzfY3TmakInNWBuYhvCxjiDkFAUARD4IIRBGB4zkCTKVnEiA+iuQ8j5DKZZCTOacWGSAUZ6DtzzMWbEkJCh9FHPwgsqZLiznyHsQOIZIzWi7mOTc+2g9VSaUkGo7h9d+CAyKaADQsESgACogUgDBRhUwcj67IE8DABqIz4CGDiCi4majTDcMmDAEIkKNCPMQHsxOaLrS7n+fdSFf92TUDIO03F+LNK4CtGs3k-IqHsgomyjZIgkmogcBAO4twsW0m4W8wlgziUYpeY-PF1KSx3Lpe0iVlo8A8o5aKkJ3L0brP5Py9kgrhUgC1d9CiT43mKrOSk2kNrkkEjkXyW4UBAworJTKiAXlOUKBxfK5leAiUktRbKjolLAWaRpbSZVXw-U9BZeq3V7KZTesJLcc8T4w2QWKcskJjjYJuqqIUYoHqvWBJzXc0JFKG5UojZGwkRrgAiuXN9cVVzJmSsmE8-Z8BjghpjUynodbvrRtVayxNvLvUAEh2RpsgnKgdsRiDTord9RxjiS2cSvGWldO7yXzoVSWZdyShWNpNc2u5s6LVtpEHEL1BrbWuLtRAJ9cibqTAKGARpYg3AppbvMNVwZ4WIs4CUct8h9FAaRWBiA9j-1WhKE6rAI5oPgcuN+JDKGYNCqgLMYobg+wAFU0CeEAUweg+SdJOgALRUfJT0GFCgn0UTfR+xpAxuEUcKf6gxQ9IXSOINwqpGhOPND4yUSDIGSzcM4KU4TnACmie+Qh9DLqMJyM+cPPkN0sSsNvZu3oaiKKON056-T9sQhab5O8Ex3yLPoys1Q5e4g7PafeOZyzHwOJcTEC5hzhnvRPl8x8dz9nPN8ngHUsMnQojFJmGGRz3pA0mci26e2+1MDo2i6YvTXE4gpYM82ozRbv2GKC58EzXq8sVV6Hrbk8n0bXBAuY5L1WqFyPSd4yJBXXHRvEoEbRfRTWmGjcnXZJnei-q5QF2AIB731pPU2lD3CQgaDK+wiL1XtFVfi3Ns13oVsAY1Zs3dph9FkE4rcTD8T5HhM65ktbXkfNDsNUuhti27kaKhsVgzKH9EdZ8X4m2E28QIhuxkpuT4Jsofsed09u2n1Mem7dgH0S0vRQy7KOlUNkAJR6FlzSOXtupd+UxSAZXVsees+F-L+PYv5atfIaN5OACEY7uRJoyKanVdLE4eE-UqHzlOvNXkF6FtzcQrshOeETmrEACRvZNb1zR-XniDekCd1EuSwXa9cctynFOxfrZp9LuLqXdsURZ2zvVx2zmrLQDz+AfOv26cl7SB7+nReubLZOn38h6c5oSejmc4gKucRlwz59C3Ff0rEHV4PjXKQm5a-FzIEAtc66m9ZEo53CwyhKPyhXXPvTpeD7T2IpngDh4L--D86AHdO4F5wMlnBe2m+66k7M+X43Bhz6AEQoH2T6Oz+0PPrjtmvA6E3qoxNXFneq2P50Wim9SFn0KoP6NhAPE4DjmseOp-5Fb-79k9i+vFBbyvwfa+Meb+x7j8ILeqhkvp-IdPYKF9gjXSjCAhoHHFfP6vuvMgXnAQL9J8ZfIJDXUwMA4mCAyA+QQA4A-nMQbccA13FdFAmAtAitenW5WkexYfXPfvPWGsD4UAMAIQDEXMNwMQaKBLayRxaKOIH5HAAAPgYCznXhEXCCLjPDoIzj3nehWhNmHD7GsDPnBjoAAhgBBiyVAD4LXBtgtWyR9lEX6kGk4X81ekzkZCiSULkL6FX1BU4iUVjAlBmwjAX2-hfE4T-icFyRjmmDqTmEWFWA2G2D2EOEOH6SFUvBdiDBnD8A9gWiTnuEeF8JoCxD1DiX0W1jhDiRP3pCiyiJCQg1JGAznBImF2vCakBhamYQ9DiACNwOP0-FJ1-BMncko2OnNGiJ8PuhwnKNMm3jUiKPiMXy6E0gqIIiqJvhqJSLqMBlYS6LYmaMPlaJCQSPqASlPEbGSO+n0SeHuhPGnFmLGLQECLaLBGululSHunJmBiehxFqMWMBm2IBivhkJaPWOKLwOdFKiin2Ovg9FqI0xjjEHuK+2qyqgKKwNMA+LUJ+LgMJHGO+kmI1gVjmMvxOKTkNm5g6VhIlmdk2kDgKKFWuM2OuEnmeP6OhKxKuI2ImOdHWmELdkhL0QGMRnvCRIDmFjAEKPRMJMrD4S3kOL+FqIaEGhONeEwDEBjguNZMCTRMCNgN3QRhai8mqhwVRKKJuLsWw1wzgiIxI2QDI21ljAwHYGiggBowGO5Mlj1g5N5PQDiBwWViVyhiCDcB2L8GUDeLGDV10Qog5ItOoCtJoBtIi2ciNLQBNJASjkYyj0uBjy2LmG3y5E9NCm9IdMJFbVxSpg0C5L8L5IBPtJFKBKv2D0eHWKKDoDml+MJD5PKjDG+NTPzNRBwTTPTNkUvgCJzJWMDHtOe2oWuCmke3ijgDZIrX0VbP02xgy0DHbKpllJKKOz5RREL3PXlIWW9MI2I1I3oHa1jHk21Now5IY2fRrwuDFIeAlOiUmHpMCKxQokAWAVAUxiWXmPYMZGCXsUcUTJ5IQSQRAT3MFKKMrLOW3KyOql9lPOqnPNfOuLS2eGxn+l2MBkeMuLWMPMK2CM8RF3vPdDJgOgtJlGlMAuWQWPCMQr+khgQjQoJMJIQrECQqxk4lpIAsCL1mhPBNTgPKoXNLjgThhJTndl-R1XZ15QL0DPNILj9hJNWMjmjLOQoiIsfL4pdmLmDkCSKK4uNVNW4TEuml+CyI0BzVEsdnEuRNpKVhiBkp62DJbM1CyN5I0qUvPFLSGzQUUsFCyPh0DMnMJBEuAporEBQx-J4JRO9l0uuPh3l03JKm7CTAeHQGWNQuYWmWbPBCzjEHCuHNQwrgX0cXBRCumP5GhTiE-JSsHH5CiViv6CPTl1zguEmH4DSFQBYm6LQnfl5mGwMuYqNj3HktJ1iMjg0BoupLNg9HN2CMYsThcu9hzX0QSruQeW4FLxKopCTFKWGI8hxmsv4u0r6HfJ3QmrKumqaKmBKyHhcrLO1SwQ6rPGqpriHQnNcU+waLwkqtGKOLuQgwyguoqpGNSAyIsjogD3aJizciuoFLAzuoVCGI2ooJyL3DA3sQrmryKqdFxP+SbnxK4WarUNWxhvnkXhngJD+WrUbTatKqmsetmuqjUIj24SyqnBlGmDwEytDFStQrDX9LQSIrUOWu+hLw31rNmHrPeMxv3IgBJrrDJroqAvumJIktJKgvkOliHh7O82gyIr2gOgOOqJxCZt3RlKouAuWMkpFiFPhu-EgC8gTKwrEA1rPGMr1Dov5WWJesTEe2NtnHMjJFRK8nNszG9C8jVvugBsqLQn8OuLUUtvtsGI909u+qBpIkBNpCIuDqes8g9zNu1qZr0sFXkG8OhIepmp6J9ugoJH9pyOMrTsBrSADvDuBMNvzq9uaEezjrfNcUTtIHsOckcPqRcPWC2B2AOCOEZm8PbBmxoPFogC1IAzgtm38rFFeK9KLMqiwG5sZu1s0PHgVF+jcDDI3xjkqBQwnvACnriBntrsdWuBQCXtUFlDtL7poXbgbL7APuXuPucnEIuELKAknsQV5L7vpkJjIDiBRj1mTIXkGjIFfsCoJl5LiGJm-prOzPZrmn-rntVidiAY-taQ+UMSlpFy-H7IAYXpQfDDiDQd4L1kmiMsey9RgYgg7HPs6Fy2DCwbvqdCwb7LdmIZgrOkUN3FLSovGHrhIOszZtzLdiKJIb3Q6F3v7kUpp34aYa-iBx8pHvoHlk4eUBCD-uqzopkFMBdvoOK3y2dqcG4RtGUF6qzL8DrOHCESzhIHU0MRpwDu5olL7scWsZyyvBzm8PyytsbV5Na1Uctg7wULzHp2-uqy-I8fiy8eTp8fDl3H8ZkYzNZogd4dmJyJsYu23qrH0d9okfhhnHeBtEahIhDgA1AA+ByeeAvP6McVeM2wcYrx0ogBCFScMbitMHsUKeyYF2sakAAB4IAWnimLtGm3EpzigSgAAVUkAxNAWMCAV+SEQ67WJFJIGUfAiAAwNAjEKzHnXJhcEOAwLWEoZZuXIEtZj4DZkpgwitBJHDackZsZsgZgKZkBGZwOOZ5kxZ4MfZ1ZzxdZoAzZskbZ4MPsd5w5z5457505+2CTNx02nIlR5tORAIuUUkBqcR1xORVan5xtHLCKzPfgmBdpyXBY9YhF8BVyqsuRnHKzQx4xvh9CyA+xAO7vbcPFoEi5G2U5tAul0qqJdpvtMF3y2lGPAI7vPRx4Jepinh+sybBQLABUgO2ckkLkBgMMdcgVeynNBS6rDQURzbPSj7b0NF1x6x4J1LZWndVx3cnAvlxjdR7MeF+FJF6RyG48VKyFyu6FivGFh1fuW1xF7RdJlF-uNFqp05yymZaBaKplndAlvwIlhqV3MlrhylyB6lwI-p24+lgDRlxJ1Ny-WdbcEpnLbNtNzloSLNnlvpiPUwQVfS9pQVwe20Ax8V4cSV+QaV6c2V4MIjeV9GRVt0FcqZ1K4cZVyt1Vu5dVsMTV0ysR6R3V6yfVwJw1+nE1ldM1-TaqC1x9Py8JoUmN31yizCGpC+UKRu5w5YFu9w9u-YXYLu7US06020r0+00uWCtuIWGc4MOKV0u9mhsUD9t06gD010ngGk72x99OXxgKDoRs9jZq39u9iM8ccm7pjKGxUFdcLWBQdcCtbdQkUFTcdDytQsLD5a0FHUfD-IItIjlDtWAMMjgMSj2kUFcuLOLWJjxkEJbD1EUFFjQCWMLWbj9gSZ76Djv4tWVtqAfDsTu5YThQUFPnJUeoEISYSoOThT6YdkaT+QUFPQMjhQGguIWMC0NgrUgwQTjTpDheqjHT+QPTiAAz3AIz7U2z+QMz0FdK2kGzuz1g-uiAMFJziAFztWQYKz9pRg2zwz7zkYUz4jtWAAUmC48-C61Ji784C4XrVR04S-s+84AwM+i4XtZxwAy9C884c4K7C7y8DBKA6fi+K8S4gC6fkFy6o4Xo6cK7iFREy6861Na8a9S8q5YJq-07q7YN64q9KBYLa8JE64c4m9G+a8q+Z2C+89MC8-kGZwUFoJsSkxg9vfdPvdCjcfJtcXqmQP8iqF2--f24Q+291vyAu49L5OQBCAACtOkjv2QTuxgsuSP7vsH0EnxGyzPURYO9v4PXAo5pNfvsZmJEPYJQVRytZRygeqzNO1Ylg0B2VbpeP2v0fMeE5keUfZOBB5O1glh8OVPSeCeqyiebR4AABRMjlTunqn9M0FAAOXYDZ+C457Z8LbgJu++Du8-dB7TusdwGO64F5Ky+3H-vO+F8u+h9wmrgF8gBB4V7TolPF4+8l-pS846n-sFLV49IeqjjkWdKN6u+3jGF9PeADD7udPCzWSgGAFjApee-YACBKqCHjhJZ3Qt+ECXtAGHBA-QBZ9MFfjt8IFRGibTSRUTficDD7pZoxjiY5ug0SFL3975KqawP99F9LfT7Gsyyz8vie9e6oG5tz6h419XbD9CXrdFcTkbbwcwjIOtFtFt6e72NT5MbwFj84Hj45pLAPYcJmBPdcNbo8IOCvbkTQdQioHgENm+Geo8CgCblYVPszihBhA6g37OfJKsI6D36kB2fgD2YMCOfeA2d346MHX37lJv8+omz1gPo8CTiLMwDNExDfnt8QEQEhDgB+EvgJpP-uF2mAGAjaf-bvCUD2ZD49m+BAFgYHYCgCl2ZyGAdPGBY-89Y6AcqLcFhDf8be3NV+PABwGBBbgmQSdNazyCX99mJQUoPs1f5RRbgH-VCid2IGkDEEIAQgYNh2YSB880TDgbcDtBYBqCr8TflFR0JiDV8IYZju-muCwQxB3+fUHEjECsdK4u4MQVICRD-cNBICQbGV3KAWFL8p3PMIoIAyGCMKEAOfsgPPBL9mgq-JuFILOT2JVBG8ZkhIkpCKDDQ5acuFFj5IQVZImg7NkPnoEGBBBqoEQSYPEBSkghgLO5Hs3P5qlMieRPwTWXlpPFNBcQtAW8zCFoBcBEQqANQQ6gxC9B+4ZZuWgjAD5CS4Q0oDRxt5xBwhwgwoff1RCTFHETg8kjUJKCkcMqGUbcGIL7SaCGheQsgQUJ-RyDpo3-I2noOkEAByRIa-FoHzCF8l-DZmIOwEjDOBi-K8FAEGiGxdh4gmBG6G37FBtw+wprij1R4L1ykuzBZLs0AQjg+wA4JDLszEKnJOhmwvAWcJ2G5dBGYgc4YKUaG6BxhI5T4e6G+FYBfhT4AEcMPyHbDIR9sd3p70QDe9zKvZOKA3GBio4BGTJcRN7UoSGE1YliXSHljSF5QnilCVAQoBO5IiqwKI6gPHCyIWlMR1YQgajhaFNNoEUWAkZflBQVBp4udFIWmACQL5Ek0Tc4XOA1LRRmREsasNiObTmliRskAJKKgUqXx02BzWkAHSCqtR3Q-g9ITIQCT3pIeLI24LKBwQaATuEouMFKJlHAw2RRox0t6Gz45FoBpHVfI4hQKzBZRZo38oKQ6gYifRnYU0hyOuwuiSI0Amjh6O9HAxgxfpBfOGIXDQDaRXvBkWiK4hVDCQ7iTRuqOhbQYaRHvOkaiKZGBj7R9zM8s4lDH3JyONQRMWSHO6mi4xWA+XNxTqr5EVRk5CiHyK1jaihRZiSsbJVPSioRKsUCGt4QTjyZ5RVAiCHeWcSr5-Ec4komJ2iSzllSqpAIWKAnH6lomuDFEqogyYzjvsi48kpDmPFyllx5iEoEqXnJr5yRIMKwXQH7JKd7Yzwl1M9XILDwEgIgbkOIH3HTjrQS5fsTEmgGviRwBpb8VMWdTNAASf4rdtuF3HVx2R+DXWr+GCA8lzEWjHmmgC7ayhIg8AJpOjFABQA2s-cFAJwE5LOJTU5pLRB2LVYI19ceANbNTm1axQq8OaC3AxKtwc5fsWEnCeQnwnlIiJK4tvHz2uxkTBo7ubzGVibLHo5K5pWcTEmbYtxHE4kqIeyJwbgJBop4xSRWwDJyUHK6iYvKOI3aVt-xqkyhMQTCSugxEmZbkDx1QqTAyUdkgTp2EmCYoDxYbHQo5Mab6JnJsYVyccEkCJVisjLFGFSOs5gCrJbgGyRvj8kOSopc6JkGFN2onY4psoNybYS7p2ByQHpNKV8Ccl3AXJ6U9yf+LUH5SfJEANKTcECmNNbyIUr2MlJ3TME2CfIXQDlK0iFT-J4gKqW5MkDhSzkzU2IjkGslCQUYmU1FglLICAQfgOvY0trD7pTSBAGWSYVQXwFUFHcs0n0vNPgTTTlplBV0GtNdCHDw2UUiqcNVuKtSsA7UiovZPEA5pGWp01AYNMWlgA9pUUw6dFNGjDSf040r1uvkxwPAEI3YBhrf3LyRQ6SIkknLd3JyMShczEqLMnjNz-iYZXE3lKvmT5l4uBlUgQOHmCmvSsAaQBvJ7gpaPZpJcQcGWxMdb0AP0ugQmSAUbw4zsZEM5-B5K7zmDe8eeTUVmJ7wj5+8oonZJPkZngyL85JLvGEwunK4z8AgEWdzOT434gZ3wN2B+nJmMyj8Esr7DUA-QGgjQH+YrMLI9FLSCZG0pAmAWln9TvoT4YWebPZA0yjZRMlAmbJSlnJtwVsp2SEhwIL4CCfefgVTKsEqhG49QNIKBMCHVgkMqQOIBKOVkQAJRLM9Gs1QbyIw4ykAPALbMsDGyv0kcxmcHLoAS5LhK6GOa1n5QUQE5g5ZOfBg5l8zL850uUlwzIIUF3pJc-KB2XtjSFlAWmfaGIC1k4i2YmAtSVrPthVIVpB0kZO6n2QlTsUzVRDlUhJSjzYwoDf8eTVRn8gVkV5YAFhkmDITuQ0olFMmE7nSyoZgvEZBoAdlChSpksklFICHwVAsMIyAYG32GYAAJOnvAAACCCwBYHTwABKwzJYAAHk2eOwPAODVIByJbm-OSCWHKYh7z8ZlgcPAI1bnsIt50C2mRVMHntzoowY0OW+KgWpy0AtUypOAEpiAxs534PWIPM4jEKsF4PH5B5MfnPy35H87+X-IAVkLCF6CzBVBM2q4K+6g8-adQXQXwAd5hMbhU8KoWpAqMfC79guS0wQLsFOMXBXAo8l8KIs00k7mBnBmQh7OmGRpPhE8CBzZF28DRfhnI4wKtpi7MDGAsaQGKuFhs2BSJLfD3yn58AT+QRgAAydPQBavJIAuNwAVi6wNVAUWQyPJCC9BcgoJmoK2FuqDBbKH8VhLLA+C8hYyC4L5R+MvsxJYDFiV906FzitxR4tYXnh2FMSpQAEtsV4KBGyijPpljAy8L3pAioRXErwXWz2Qa0JQBIqikRhwpNS76aUH5FUNWlki36efGdKxLAlscrdsopelqKV01gLLphmdJRRrAshLGaMtazhTLF8nEZaUvDz2wawgfZQOcP+E-CvspimXEPJ-TlLJpqiyXiiw1Zecc0FSovrKDykoZ2U5osRVAszknKRJ5swacMuKWHLIRxy2mdsqZoGtTp7tF4C7HhG7CAVuw05Xwp1qC92YX3PANPK3GwrfhJQBCtCt44R4KIyK9AN3lHKr5dlQHHFRivhWnSF8BKykAhOqgwi28Zyzgugu+RdyPJ6IXuSfMGzaDT8fc6WTsvII5BrFkiNIKEpIX0U6qLKvHOKt-TcIj5eAOpd2l3nirds3Cf-jhhNokKzlWvSAl0tWnPIj47ytAG0u+lDsFAMmV1PslEWcK6AJqqgmvTuTtCjVTBcLuqpyCzgtVCKiPKdVMm+zvgCyZQHUHCyhKNCzaaTKUo0BfgpCMhThPynNJSr78pSoSjGWaryq0MW8wRUquEVJrVVzVN1SbTqB8KdVGuPVcPKtV9LQAdq10GavkAWqSUohfpe0tQGOJrALqrLvmtnCFrTp3qkdla19mmgilCABZMKs8FGrxBiy8VVzIGYDrklRtMdQvhnUkK51NqvBeBLeUrrl1kCspc2n9VCqtVwaqJZurkVE1mqZIddVusQ7ZKGFX8n+f-IWD8or178m9cws8VOqV1barzmepHV01Q2JQBFD7O8IzrFloagkLusDWiID1SC2NXHNu5fr-FGgbJS4vcX3qCQiG3Ja+uKytr2k4XODcUrxXeg-1vcfBtcAMZfhnuXpf8t3IkFCNYozjUBaZTI0uAXyAjBcXAj1g-lGN5wP8rRr7raS6N-cMEAYzfTkbIylG9ldoRo1sbomilYTUxrE3-jWN-G8+D+Vk1cbmNHkvjfbEYDvAXYsoA5fJrglA4eNL-OgM92QB8hiKpmlwNzTBXfTxBpGqzZGU40V8KptmqggvjI3maOE+1ZzYhN806Urs2Kg5YpV82Wa0AImlzUEgKpAk3NR0t8HWv7DoxdmQWn4VrE818gSwr6K4GZos2qaK+lKuzVRqE3ZavSeW5XqvmrmtC0MbU3MLlM6moUwMKWyESZUQR-gSt5wWPO1si2MqEVUWqbuF2E1ebag+1MrdVFG3e44CsWn6QMAS13C+wTW3YXx2y1ebMt-cbTX4QrI9bTpFy76SooEBTLsCtylgkumHQSbtEWFclets-7krTSTSitLXPAD1zulOBFxNFtOzawrMdcwuu9P9y+4waWcPraiCm3xbSkpQB4clou3nCtYV2mrCnQwX-90JlEjyURXMTCtO+dTcCj3xb6+yUx9IxkTbT9IFaqCnoCiBMquWxszkbM47Wcn2j4RSk7oJ1ErzQnug0C-Qv0oKS0ZoEIgeWQzr8WXF+Bc5ec+QFeLnIqlqZAgUzNgB1Ln8l0vuH6LjuLFeQIwVY97Q9vILfbntrWLZKvKXbA6ZtoOkoArrTFZEIdm6KFVDriBG78dZmEgNwg8DSj+OkzPAAAE5zG-cR3Wcq+AkTz4Hu5RbdBhDfA4g266tq4Oo2whk1KrOSTHnoAAZ8ASkx3WIFmGzC+w+wVPTWsjz6Sc0Ceh6TJNRC+6Ep-u3UAlNGiCl6AtGL+iZKtamB89u2wvcAIMQO6rgPAATi+OAAmEzCIuKcAGqJ1HSBGU2-XZV2MICcO9f3LFZDtS0mk29w+u0DNmH5yJSx1YclXyAtW3osAJIGsPjwPmQB2YGga0eqTaDSiF9JSzgaoLyGyYdmhAZXXGpjw2koA6+rHhAAME1hCmI4X9AnpKA0ZaMR+6OT8LQwWr5An+0cFOur1N6eOYgRoQcvZj9AM9Q46QE+mjRaqPx0IeoN+NQpQHf0QG0RMOqXWLqjVKNPYbnujS3779CcR-fBmf1bR49oBgTqUE-06kSFUzVAxUjoM0YgDE5BHL2sJDv6WDtGc4WYCTnTAeDlnXSfIBr2rT7lCUg7cuyO2u4IDPw33umUZ2oS-C7MGXEwQF2jBwuKbc2Qtr2HTxPtj2jXatIriOQxx9G1rYHMmBMAYQy+0pIiu3276jlNog-XaLlH5DT9-+i-Vfpg2C98siHXQ-8P0OkFDDnukw-hq0Jh6-DFUkMMgAMT84rMTM9gKBknT2I5DzWpQxgGZ2BH0EUR9Qzzqy4psDSfCROAsqUBLKI5RywJQXJCZhq815INIDMrwDuqwwNmHoNcAs3QaJ5t3BAonI7KqUK0PRomZ8uBVlko1LwGQgBFzANHskd2wkNUaRlbsejpc6ARXMzEDNKtnIgI3UABKTHJqnCc2Wrqe2rSljTcociQiP3krZhoEsQELoAA6xACdY8rtBAIyACyaghXH05DdBsO6ZPepDX045txFxg5VcaoU3G859xx4-VllAfjXjhQveTUBgC3pBSByRxIiYgAAAvJavIHuPlknjMJt49zts5xBMT3xk7L8ZKDEGATGEZdOQFMoUgrDMIK43iZeMEniuvQ64bsxCC7NEAuzfvH0FmElhckQJ+Q0yahPPGIsrJz4+Z0H2cnuTvJ5XeSdHBAA
http://source-academy.github.io/playground#chap=4&prgrm=DYUwLgBATgrqD6BjA9jAdmEUIF4IAYBuAKGIDN1EwBLZNCNEAd3lgQEMAHT4axdmnXjUAJgAoAlBADexCPOhwQSVBiy5FCFOkzYA1BACMJBdHAwo9Nsu1qoJAL7lKg+gFt2Aa2WMWAN3YoanYAI1AxAKDQ0AAaTWUuHj4BWjRhESlZUyhzSwhOdmooMQAiAH4SuIKisWt4RN5+V3S4sELgCMDgsJAJPsdiAHpBiAo0KlSAZ1GoZDcIAGUASQBhAAUIACkFiAAWADpDfYAmZ3HXCGpJ+EmQYDJ4EADgGBS0AHMxSbA3MEy5BQ5MAWehXeBoGBuEJYL4-P7yAA+CIBplRYO+QQ+sN+UggSJRqIUYJCyGQoHYaGx8PxhLR1whwA63xxphptKJ13QIhAZGojHEzL+AzGEzol2ubXe7xAIngvG+VNaAAtlJL-tlcqDrtVioKpAAyfUQFXsAVwqQ4S0QMAq+CS4UuVLi8HsNwgKnqwGa52S6Wy+VgRUQEpoV0gEoSB3nJ2TACeULJ8GQD1Dbo9MgJQJBxpAprEbWoTPNkeIThFFzB7Emk2o7zQbow6ay8izeTBvplcqugcFcRKVZrdYbYAjUdF9AHtfrIAwN3jJKLLObZmBeRN4gLHXX+faHr6JbLjrFk6HM7A8GeMHdeozXtX9G3m53hb3B7O4+dKDQ3wp5+5iGAQIUjoJsUVbLU7XYKVOwDIMSi-H9Z3-QCoGAtBR1Ld8LgQtokJAACgOaOME0XeFl3AnM8yfR9dz1fcx2wuhEL-fCULQi92Bea9zVvFtvRol8nzot9yydMFIm6BBkMI1JQLvbN2ygv0uwVXtgwk6JlGk1DXAww9ozFDSengbT2OIhc5L4+9KI3XcBNI-cRKPegjKk1iZKES9uKXMD+NzWzBNo4snIMiDAKhER2EeAAPTgcmrWSb3I71FOg-1uzg8KQkimK4pABK6D0rCnSynKClQt1dEmSyV2zDxOC+edE2TF03TiezXwYkrXWyqKSREWMaoojqhOCrqxTBcCbjaTBhyGlKJSUmCMrUkopp-WazyK0SxSmkBYvimsQKS3zrI6ujxogr8RGoVxONyw7Ep45LrNS5TYLUgl2VMeC6Buu7gAe-KjvQkKP2uh74Dys0fPkvIA1YHkg0MMHGLQWV9rilRv3m6yEZyMgg2OVGnQhzGoHqYAe2e07s3xpG1IAZhJibrluABHK9xm8sjabbRa0pU6nfj7DmucQcMWfcLxlDFmcJapSZPVq+GMpKOXucqCBBSVy7tZATn5dlmaQGHaqkoUPmH3858HKl0Yim+aaBFNs9FeV4abZ1+34vPDbXYwc24SV3iVfoUbfl1zCdog03ODAWMbgN8WeZDl6FPpOBSKj-SPzBQCnf9ubvdDiiwQZDoI7AJX7eJYBkEQTwarDn0lvS1S4T7MIG88bbnIgDxvHgbvG9xum1ZH3u4j1PXJ+H5ABubz2qKCnFa+uBpklcMf+cgwWPs74NN6aVI+9C0ZnKBgrKROuHrZXl8Luj-vAneIPYas7MRtXv5+mf8+0DIHqFAN+YhkCcDTlbZ0FcwEQPtryKATtX6wMgXfGyKCfb5XPK-aq4DUGfzyE+PBb5iqsw4sUTGysW5vWWgqTGfYKhvmGBfUK0wyCzHmMsdYWwdgHCOIYUh9AnicVeJgIMM4-AewWkne4jxLxvE+HqL6qIyjyEFMo0wAAuaBYYPQaIUKo+uyBPAwE4HOEiHEuKNQsS1VMPMJBxAkRIfR8htFghwr+Ey7kdJPRxC4iAqjhGAw8XhAiPjjqHycf4tx1xXJaW8WhPR30AkQCCeQyS8SwmJLUlE5JMT6gJVPI2JRyTAnPAKYOacxTIloEkdEz8f1bqpHuuTYGvi-j+LKfda6TS6AtIOm0iJItUm1OcXk50pUoqtOvkk76qjB7KBjmISZUMgKVSwO-P4MR-HJMJCs-qg09TbN2SchQuTvr5I1grEpczUnlKudeZORtnabUDh6Rxoz6l1x7rM9kXTAaT3EZ88Zk1NQvIDsLDppS7n3XWibYuNS6kgo3twRo2TzSdIgA0QaQTRHuhjlfEG7yRmSOOac0wCMWpeWqjg4lTixkXNSVAWYupD4lAAKpoE8IApg9A4wYHYNFCAABaYVMKXguzPh+bFYgxhxBwcragZAIBiDBHFagbgml+EWc5WV6A+ihzQdiqGQRNU0G1fAJZcqsUgKjgoBwqTgC3EuMq1V1wUBuE4KoWUVr9VUPkDhMwkw4CQDwLil2erQrz0XmMBxOzyX7UwOjR4tSih0DmvG8lCgCXlTDFVSNcas3kpwWSotuyCUSLTVUwMsa-6EjLtcKaXlaj5RDQy3Zqim0iJsHQJNgZ4ptszdorkPI+QyhMPIB1dxnXLjOcy5AxRrUcq5Ty+gMdrSxk4CAEVYrsUYXtf-D8lKHjUrEJjSYHzJGGpboA4BoDz3tsJKoiuLjtE6jPfIsRCCkEgLPbFJWl7C1ZuPZYq81VfZ3uqg+wD9s0k9IBoS9pgHDUNrtLAd04axFkwOiamUdLRmPtpP8vFYhsNYwQvhpF4zMPujIxTTikKHEktg-cp53NFbIdnUqlVYI44JyTobdj3t-VoJHbyfkE7J2Ouddxt1coqx+3hW7YT17aQURo7Kx2imXYIsjg4pxkmIBTqddu2dphA3fsU78UD268Dxo05Z8Funq76dGYZ0wsnQX3hs5pxBVnzxeQNWZtT3pHOChs+5+10nTPxvU6xwTCtM1ekLkpt53sYgGf0U4UwThc4XBA+gE8-IxB2PwQQiCMDSuEYMQwLO+i32FGKCUAAVIVwp-JmtawK6GdreGnxVf6AASFMIei4kx+BpFQCxLJrhNlUM82zNj1ziyqYDUxSAOsNAPKc2eObkXyvOj44nB57t43Prqyc7RiQZwCgm0mGA022Kzd8ylnTyng59FLWW7Wd2pteJm1MMQCyBMpzEEl77yXtOvOru7eiBJjMzv0ahkJj2PI3wxScwxGUUf-ae6kcxFk6LxvyXE3HaPfkdogLBUnpkiJNTtkl7RFdDO5cEeK4e9dR45NGYawNByNBzwOR6QzgbOecWmHgcbFJ7uo-CTjA5JZzPrYgG1ypMoJdU+7EmB4qupx4bF06xXaCNMHK+ycxNN2U1+CrXNA3F6Vc9bVyIe39K9ZpLhW96pwynEoe9MDrtVjwcab2gMmZRzwffVd6Np0aSivOc4wSQNXkNAabj2eHzRzmOGaKwTxMza0+znMmSYlXlAOGYol5N35SacJO3tzq9s6c9F8Bs2mvAOhDN-efojTbe8eeW7ZRoDhJMsOvkGzuD63PG06Q8xw1Tf6c+Zx9Pjv9Ou-sg00v2v+Pm2Z6cWbs5bnMJDBGDHNhHDFirA2NsPYhx9iMzZ+2dDYhopUIokKy0eAwDob1sDpZub1mIJxCm6z6zoUSwS-SereqWrOSVAR7-7gAbJAELyxhl7R5kIepepcjQGhSyqv7SIdjtw1p9gYFQExxSoXA5prIIGIK4G+54xa4EyypxAox6wEpC5kB4H0FOyMFkBxDEysGXyVqzDVq0GgHej0yEy8EQDMw-4yyIzebNpfh9qcHjwKhrRgpeRaxKFnjrzyEgg+aBZ0EZx7zvQZSl7BgB5XjkFOiWE9pqCNiGFiFnQ2xPiBawbjD1w1gfBW425uw+5OHZhPgj5s6ObsK6L+GZh+R5jBHrryyeHKAhCDRhFtQgEjYajWTvrJEgCoFOCBo2jKBHY+HCHDgaDM5s6-4VTXj0727UoqF5DvrN41Hdo5whGVG55OqyqVGZBpFoLbhZHwJtGnr9EyA9EHZPj9Fu7RRJoYyprFHKbVFxDPD24hBVgFE84BHwwzjvA2jWILghwf5U5bE7FLHVYqL5CNZA5yFZG7FkhNGG5AGrFW6nFaKHEfA7GNFSAAA8rx2xSonQhumagS86TWAAKqSAPBSLGDau8JCLttrKYkkDKNoiUBAAYBHqiBiHyO8EqoctUVIAYFrCiWiRDmol-liTif8TXEOkyiyqUGCcgKMMwNCbCYHPCaitQEicGKiRAOiaYJiR8BSR8dyYSdybyQoPydiWQINCcfbEYiYmYs3hnvTgnqYLEbUnKKSA1BEeyOulLjfAsRACcatqiKhjAh8WKYEuqUYg1GKaYHEcgF4e8EUemn4QRmKdos3rgFaNuOaSSSktuCcbaRAB6RNrbDcfcdaLuDKftkZvorJhIl6Z-raIUUIS6RgCJsPsCeGX2JyiSFyAwGGPurSAjjFichZpURoKEZUWeofichRHqZ0WGO0dVP0fvt9lkTZi2V0UboSNlgeukdmBIhqeAjWZInrPPhYjvsqYaZxCqdmv3EOdaaORmSwh+A2Y0YseLiuQObvGaXiRHpaX4MOTaSSfaY6c6SIfShHh6fTomegr6WWqorcOeAGeLpucAM8eMg2UJHia0FGVuT2aiA6nGa6gmQcfkY8J6vxqmdWtuXOrSc3jmWgHmejAWW6Duliu1sOEWb2dFsaUrt+JAFkZWVppatWZlnWd6A2R2Y0Y2W6EPn6R2UMd2TGX2ZOpEdZIuZqcuQMMfqubNjMHMBftwtfnwvsLsA-tqKalqjqjgbGqXPgW3ELJGn2OqmatQNqtYWKGpTJcIJ6qAMOIkvJenGuC4buLWgMIGjpearJeOBrrBBouAeuFrAoOuKcgxQoOAZuC5fIJuO5W2eATqD5ecUUP5Y5WrAGMFQGGFbSOAeXFnFrPFYyMkh5fIOATdJMDwOwLGFrBlVlVCd9KlZrmoVgCyj5aVQuickVeAR4DaPUCEJMJULVUqPVdMOyNVWrHoMFQoM-nELGBaAAHwQBCoGAFUdVqHCrdXyC9UQD9W4BDVCpipjUBVqydZxCEgzVzU4ALUQDNazXyDjWBglCDBTUqrRR9WDXDUQAjDLXhVqEACkp1m1l1Qq91+1EAh1pQH+3Vz181V1Bx-VK1ahAAhJaD9edbNS9RAKDXgIDXdUdZ8U9RDVtTtd8fIHDbFWrJ8TgFNb9dtVddjejZ9SUANUjRdX9UKkNUTUDUdQNTjetaYHjTtXTdTfDaUMDadVdaYPjfIMDQoC-hoiWFZdJTZdgeOM2bgPovVGIOuFUCLRpbZbNkLcrtZQrWLc0MgCEAAFb4TVyS3sjS1jB-WBXy2aXtRmUvi1pFWoiq0Wqn7K2EX5Cm12HMT2UZTgFiZjoiBaye38jW1+kUpqxLBoDia3Q5XrXB2h0Jz+0B1pVqzNXwBrBLA+UJ1J0x2x01UCAtUACiwVCd2d6dAd4BAAcuwMXadaXcXZ+bHQ7d8E7RqrpTjo0frbSIbX9X0UxrbS7bhC5iQMLQ3aLTjtSi3YSG3fjR1BwZ3c7djK7SWOusal3erbJNaq-AGHUROKionHyPACOlAMALGFifAFrewAEONkEPHGDkWovRqjwBCkZfqm2d9Kvd2JGKiGgXyuYGYjBXNOvaklMZbt-W7ODtdujGIIvQShuTyQHYvU3b+cA9wDdmA9PQSprTrVQPbkGfXepRakPc0YXQoBBSmbMWmUKJhKAJABBe8PXCsYDIAxgFtp-ReT-SQHxafoJZwpfjwjfgcBJeukoahFQPAIbN8Pjh4FAE3HEr-fFVCDCB1JI30Poqot-C+PI-icGPAESdrGSQKVKTLRbR0Ko-Vugq4V0JpH-HlqTHMB4EnLmpgGaJiG-L-ewIgIgJCHABGl8PKi45ddMAYGIM44gHeSUCiaosE8GcGH2NyQE-g99ME9PNo443rOgOVLcLCA4-Krahk06ck4ELcJkINhxdmBKcKaUNyR6tY7cLY3htLa-DvWgCk9kdCTXMKRICUEk-U7k6qFgG4P4yAlI5nIyL0+8M8aExXCUEY-nBlK-AaPqP4nJjAk+NM1IEiMY7uEs9DVaOUBGIoyqtuNM0ExUDsqovw84+eMI80GI03NMzstonJsfIkvs4aJmuXLohWqHkSks9XSkiUKUwYDk4gl01AD03s7akM-uKKaciiZo4qbYq84Ie87JOs8SSclC9yf87cHaN03ow-B0LSp8-iZmhGOM7ssOh0wC6UJFVk3EOi4C24Ao+yPku+tc38g7g06UEFXELBCC8M3+S+Es9S2Sxi7oHSxM2zAk2CzsyUAAOSaOvzCkytGMSkUnTPtMNNCNXhQCDSGyav9PghZxA6mzQjFDbjasY2x1x1qEUje19gLqEmAIjh9gDhYAOsWFKARj0tEasudPYviCmtMZPh+sCtqvCvPGktssmsauA2RkviBtesAvqtYD9V6zH2n2IDn0BbdomoNzAx-qcC6v3PbyUI7PgEFunxxBvN5QzKUKP2t1cBiAptVhpvUDxw2ZZsSzVhZNQaxT7iiutQYbdvFtqwVDTwL6wtpiUKht-2cB6ymtzgCrRRts5uUKGoLb1DsknwgQTuqYWaXyel2bsgwsphwtRrTJEoTuRbC3ZvVidg4IaDS2zv8ptALtxRXv260rnvKIUQQO3kHElBBU7Pvrbgvvtu3CygKrm04tIOvs3u2o9sMv8X457ubORUAezAgcwdvxGPfskRBMNtn3NsZtcTEueuZG7vKng7S14dNstteSLsdtNO5twe0gNY1DYcLhy3Qdgewcs54Wrt2KMciZgFDtayHt9sCc8fTqlkmneiYws7v0bpbqMdGG7zvpFssvbhqfMc0kLq5tIXcrIC8pTuPRigJxbpaX0DaFvLLsbEQSqcDsstBH2dacVUUKxR6erpGeDIWe9q7bmeYW3BQDNBgBALQj1AiDcjiDWeFOEKbr9t5tBNOuBdtPyemhgfXuBf45C5Rc7n3ziCWcw4ftODMLgJYDsRtA9BVAPZYqoXShgCsPn6IBKhcC6DSEqq3AfiMx3537OLz3VgNxiDeAoFmAoBQDO66swI5AjdjdHMO7cjiYyg3OpKcycQDcgBDfbjbiTcLpjceuU6bf4TbdKzUkDj9eDe8sdBbejc1yyFDzlfhBUKi4Nz3R3e2bFVHXNYvedaAXrpymmKreJyGBxCDfwDEzGmBrBohAvcaAneID-fwCA-RsdAG6QQ9B1q0iyYQ9Q8HG+0yhwUHY48iCsV4XBaEiBqXciDQ99ew-A-HDndfAwCQ9mOAXsiybk93kE94-SfWQE8xk5bE8R4URPjk-M-FlZbw4Ejrp8gBeBjA8I80-vlXgrng8M9Y-+endrfw90-I8vdo+EgY8q+aTs-oyjp+34XingCQQvja+aQ1snLvqwSy9VAXHy8zlcSfaYOmBPjW+o+69AX89lnK5s94Aw9w+0+I-0+M8++89EiupB9Wgc+qbDa0jPmW9MgG8VfEBJ9+nvrvou+Ba28klCTp+gBw5Z9Gb+9Zop9C8HejcK+9DR-sXshsWxmqn9x5UCCNdA4rkUTzC-u-ecDEenKGKkjyng7aK9+bNS-OuD-kqqJT+BfonaIudA7ucGf0Aldy4YUvc4Ut9oLt9gCNeWXK4b9leG94DA4veSB93K61caAn9BeaQUsj+mIYRWVVd4D3-46X8lDz8jhz39zA4QgfIG6FiDiR19f676MAa70V6zxgBh9OJGICAHowsSv9bcEgJAHDNYByA7ws2nQEoDlO4cXcHgI+D2xiBTpbetcSgHDEbOavWHlQK6KTFpinQKIBV2gGNNqB0XegO+kAFwDQBpjVgfnxmBhha4hFX8MEDET0IhBKRdAChVlCRB4ATXdGKACgBUI+G4CHFN22NKrtIgAnM3mtkdpkCBcvA8gWkGuKSCJisWb0IYOx7G95uIgA8g7lkHkIFBVrZQbpykG9BryEAFAJwEGhkCfMZA33nz0k4uoeM2oC4luxJ5c9sw76HwYNA07dsmMcQsMhOxF5SYQhUQnLlO1Yri8shyQyhHrAxC5g3Aa7LdMmm5CARYweGSYAjwqHZVOwkwUHjQKSpMgUYOzOoVUNlCNDJARjQDl7BRgF9GaPjL-MUNKGW4Oh1QkYa6FT5fABhHvEkhMK6HEwRBugckBakWGzC4giwm4E0M4HQJ9WNQkZhAG2HdDJ2fQvMIcMGE9VLqfIVYbmHWF3B6h4gE4ccEkBXCTkkgP6kUOmFCQUY5jNnN8JKFkBAIPwOttajKwtxgRAgJNNNByCug0moww2ugGnj-D10UIsADCMBEIjXQ43A4VMJFYssX08HW4VgDWHxJKheGeND6XxGF1Ph+NdEZiPxHYiSho0OEXS1RELl-6yaJVDPW7BuwoBkUMAOWy6K85lc1giAP4IoHVl6Bwg8vFYOMFG85uXtHZhblAYCiBAwo4Qb0OhFYA0gtVTvv4NwHGCmMgozUfRT1gFAMRuo+APqL+KWithGojwb-WIq-syA7QGUCiUlZujCwHooxsnBW72jjhAgKQDs2Ipj5iRsSQIGA2DFQNPWqo2UDyIQh8jGwgY00U6N7Y58YxhoZ0O+kFFHDLRugPUR3z+JPhLRMTZJE+DzHvDkkBY60baJ9bRitk8w8lNuCrHNjTk-RSdiUG9GgBvahQrEuQw7xMiX8BAkKsUAhp0ihqFce2I13wieB6gaQRLtvCXGpA4gs7QMbOw4EEU66toxGMGipgaBaxlgG0cWLEDrjHRK4ugHEHbGnJNxDAvYbuIHQHjXR7o72jsyJFadHSg4tIFiMfGtoqY9sGABi2AH7RGxurCUg2LLH2xausI4of9zl5rddh24jbBoFq7wSgeiEwCvWUVEm8ZQKSCuOE0mB6wQJC7YHsmDAmijHag3DQEB2DFyjXokY4oINykChMKg4TQbgMHIYQAQSAACWzrwAAAggsAWDZ0AASiCSWAAB5YujsDwBlEQi4ARrhUmdaA4jxaAM0b0FHFATlAJExsYWKOEwSSJN7dLs9jUmTsYJnEQGJeO-B6wLJjIZSRlyYifCaBvE-iUJJEniSpJMk2yRbyMlpdpeqknUZYF-owSsRJE+AGRMJhmTHWJk1IMKkBF+dxM-klSU5LUkaTf6gIy1CCOlpJZBRkIeauiVnGNwFxDk7eHlLcBO8rRlgdKe8LICKSWq1k6qGlKdH2xuQZQ53EmEpCSCZR9FQ1OuhGHKAmAnEJuJpKiHaCoxvQTnvGWW4GN+BsQVJEFgF7egv8V4BvuXwyER4+cRg7ASYLIrhF0pa0rISEBwl2DbSqiN0SZltLaIBp8AIacACbiGiB8IQIIaL0Gwlk9B1CcITUE0kOCbpd0puBpwNQrM-pw0lIbt1OTaILptwHITlj2Egz7pjHRgZbh5FeoEoPQZgRknfLpTKJddcUZKNMHSi5p7A+8R5ldSGCYas3XCRkGNIUR0AOJE8Qfz+KPSrEgQ68ea1MDPADpsY9ISZlCFyYdBzwILAHWYTNZRZ+iPnAqLwD4y9paYTmU6JjIURyZ8fWwcqMxwO56Z9YsAe2OZlXhEBxo7ZINkNnyB+ixOP+kwKgFyyLBwQ3mbJjak3ZrgIEOWT1MmkjERZYs9kBRG7Gvjku1sxHB7Jk5cjxAFs2cvLPF4WMxQdMqUgzM76cAEenAMPluLQQujNmPY30Syy9k+i3x8Hf0R0FjlVBiYoYyor2x0GxyQxLLeMcIAeCoyaw6MvOfkATldFi5UY+OWXLjGBzK5UMB0jXPCDxyqgCPYYtdRGCizmsGYi4qXIgDZi1UY8guSy0jmJx6xpYuYQHVLHExqxtIOedHL+JAcl57M9kEB1Xk3jaQnYoxhnN7HJdw5EEawLCE9y8wshNCQgtfOhx9hrAfnL8ABCAmyRrAqA-RrUCUAcjz4dQIXF-NHEtCwyQvP+eDNMBY5LWwAIabGAlDoZtm8HZRhdwgX2xjUUUK+dYDXGRtVkVU9SRADvHCCcZkAACLmDSDWANAOQOxOkk0jXA+Qv8kviLmVwbynxoabmckg3n1jzx+Cted9DfkvAiUZC6XF-L4XsgiF5ovYawv-GhoU53s98Rdmc6fplAprRhQkWQKkZyQFCv+WvK-HgAhxbIsQNIv3G-xOJ4AbiXxPgCiT2UAAGWzqyTasjIFhmiPqmsAlATUoKQQsTn49gJxvaKHpN1EGTfJfizsNYA8X4LzJFvSyW4tADVRoJUS+yWEucl7DXJVi2xfYp8nng-JMS-KAEuCmjjMpIDcQEllClMjwpkUvJWgHLHJI1oSgeKfiIjDvDSlhirZs-LqUJT-50qTejkvCWFjsZNAzKeiJynkpKF+NdEhgpyVqLKpfSp0bVNcVJLmpnY-sfpRUWRszxuCxZW0UBEZT8RWUgQMMqPkVkxlJyQpQg3KGPDOhl9LNElNKmA4eFMy1shHknFYpulSS+5bqPSnW0aKNIqvCIhdgJtNW6yxNhpNgk4iSFhCo2ngDQmmd3QsbEoDRgBU5UsJ3odmJCuVlKj+QOzGsCssRVArNWIK7ZUY1RXoBSMPnN5LG2+VsjdCJEx-mWJAVisHGkE4McswRDOgdBtE0xfJ2+ALoEgsUoQNvV0nWT5srqMEDSvRlCqleyuaiXgHKUa9yJQqmMoGlcbMp081k0Fb31tLNK4JZ3I+HyrQD1K2RO-UwJwAez-cYpAUugAauKGwE7eFxayXEGeXKrqF2CPVeqt97vTZ0rOXUsFxyA5LhAaQXScAtnRWVPFGgARR-JAhfzDMq7MVT3M8WLT2QgaaVZcD8URS5VUU+NYquVxOr08dQQESPTLRar4ROq2paACtWugjVCgE1TLzW5tKy1CUwYe+mwUqpLqOa2cHmppGAUPVYctnKlz9ULpblIEIVfSsmXDqdmfaq+UKqMZ9rrJ-jPVegvC6DrKQw62dNyt9VqqBVfiudRaqqXMLHaZIZKY5O-AaBUl7ksSRJOkkLBDMp64Seeq8kOKmWeqh1ZdQPVLq7UaCEoMYnPm9rF1WCv+YajXXKA6gm67kP4qjWJ5j+wAWUGEpPWWLrFdiq9QSFSXwb7Fh4i4s2ueWvqwlyK6yJ+t7jETrghRL8FrV1QPoR1MCB9KwVIrEaXAubCEcvEi7-pMETsGjecC7ZwJRxjnOBARsgrxxE4GVEjTgTI3NCBmHQSjfJ0cwCbaNwmvYQkO43ycIMUmtjXRt-pcaWi66RgO8BdiyhVFMmrIXJvU39xiNyABhaxvQYEqaRI6ojXQEE3jhSVaAWzS5kLlNlARRjYzQwogxmaYcXmgDLyQRWqLHMXm+zY5t81l9GKWyztQMGrWlArWhJfzZGy0I2aTNu6tnAJuS1iAlN5mjwW6qs1QV+NVwRzbJEy1ObCRiiwkG4jsBkivEFI4pQmmUW4rJNBW2jcVoAzZbtlBsjapdTS0easEJkJrcppa1xowt1yiLVSrfDRbP1UAOLfVtNa5UCtyW--gAhABaaxEJaNrZZoGW7KhldbJLC6IGqZ9vooC+LYmxKzLbtNuK8DofPFIDj9FP4pkZ2OcTDaasei4LndsMUmyjZTOLOB1tRCUrih4201SGGQAut4VM2hLXEE00uxFtH4faPhAexxdf6GmSQZQ2oYtJiGsFZNifUbbpsfMa2v7WCubD1ktt2UnbeWiOX7bdksO1xmIil491xB7oIMty1a1ZExFPVPwOW0Goe9l+7OjhezOXT6dDOlomctgFFRck9AmfI2T9Co447NCTHW5C9oMVwSTZJLRxcAAL7466WUWwHdLoI42ZptfyzAIiq1g66aO3aWupAA8ALs8qlQjQAAE4SA66a3dlXVVfBVBbfK4PlXVXCBdAsICHSuT454iE1xZXjq6noAHF8AnPJ3YNClZSs+w+wePZWp5l+zdkUehsd8BemEgo9Xu26DCEymjQmM9AMVCwTF6wzTAWezKTnt1BxBLdfWzKpUPQWwLsqCC3WVOB5UWaqVo4jXVrqOqcQ4Fze8MH2GO2astYvepvWhhgGkB10wHYGLir5DVrFiWAEkDWGjrgr2YGgB9rGHnZ0cPF5LOfVVwJKEB3W0a11NqigBL6w6GzPAOrB9EYAIwxpVPSUFFRipp91YQhZGxTXVr5AT+0cLzoUCp6aWuK9mP0HWm8zpAzfWTGquC7DwEg4XPDEAZXITqlASYejHqv8aLq1VQueAzGVkyn7z9CcS-cGBrCgBb9kej3ZUNKBP7Rd1krFLAYp6UHRUP+j1c327XsgH99BsVKayDQhppg7ByamkOOFkHndWI+NJlIOXko9ttpAA6ovmG06xBEadmBpIdU86OCf1SRNUqH1atp4N217S7unFw5YZF8h2H5gXGTAmAMIPfbfIUCBo19eADfVvpf077UmFh4Uoft97lkwwGuDQ2eK0MfBvxuhrOL71NL6ssiR3dOYAghKMysSQYtoOM0GxhtOms+0QRgHp3eH0EIRpjBEA52qHOlFwahU2TiT0LKQQaiDY7TqClt+VFPOScwD9XlGA14gb7v3HhkjTNBUQ1DDoOXZnYISQ8XwLQvRmSCyj67diKIC+bhMp530pztCnfRNGGxE7VndMa41y7GUsnXIWgmmPganAxABw7iqlZLixAu8iAAAB1iAk6s5bKCgNkAF0PTCuH1QuoGos0se9SIvodKSwSAWx1RTsZMl7Hd5Rxk4+1LtBAILjQLaMTUBgCLEmMQ3d9KCYgAAAvT7PICOOogil-xy1JccyOzU4gsJu42WgeMlBcDzxjCEn3ICkUKQphmEDsdOPInATPTZGpyzVjsBCSIQQkogEJLe0+gUrEsMwjeNrLyTfx846iZpNvcYtDJpkyyfdY4nRwQAA

Metalinguistic Abstraction 4.4.4

match. The function unify_match is basically the same as pattern_match, except that there is

extra code (marked “***” below) to handle the case where the object on the right side of the

match is a variable.

Ifunction unify_match(p1, p2, frame) {

return frame === "failed"

? "failed"

: equal(p1, p2)

? frame

: is_var(p1)

? extend_if_possible(p1, p2, frame)

: is_var(p2)

? extend_if_possible(p2, p1, frame) // ***

: is_pair(p1) && is_pair(p2)

? unify_match(tail(p1),

tail(p2),

unify_match(head(p1),

head(p2),

frame))

: "failed";

}

In uni�cation, as in one-sided pattern matching, we want to accept a proposed extension

of the frame only if it is consistent with existing bindings. The function extend_if_possible

used in uni�cation is the same as the extend_if_consistent used in pattern matching except

for two special checks, marked “***” in the program below. In the �rst case, if the variable

we are trying to match is not bound, but the value we are trying to match it with is itself a

(di�erent) variable, it is necessary to check to see if the value is bound, and if so, to match its

value. If both parties to the match are unbound, we may bind either to the other.

The second check deals with attempts to bind a variable to a pattern that includes that

variable. Such a situation can occur whenever a variable is repeated in both patterns. Consider,

for example, unifying the two patterns list(x, x) and list(y, expression involving y) in a

frame where both x and y are unbound. First x is matched against y, making a binding of x to y.

Next, the same x is matched against the given expression involving y. Since x is already bound

to y, this results in matching y against the expression. If we think of the uni�er as �nding a set

of values for the pattern variables that make the patterns the same, then these patterns imply

instructions to �nd a y such that y is equal to the expression involving y. There is no general

method for solving such equations, so we reject such bindings; these cases are recognized

by the predicate depends_on.
72

On the other hand, we do not want to reject attempts to bind

72
In general, unifying y with an expression involving y would require our being able to �nd a �xed point of the

equation y = expression involving y. It is sometimes possible to syntactically form an expression that appears to

be the solution. For example, y = list("f", y) seems to have the �xed point list("f", list("f", list("f",
. . .))), which we can produce by beginning with the expression list("f", y) and repeatedly substituting

list("f", y) for y. Unfortunately, not every such equation has a meaningful �xed point. The issues that arise

504 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEHsAcFMCcEMAuBLcA7A+o+AjANtADSiQCuio8aAJqAObSIBQIoAZrOALagDGAFvEiI4oAMygAFAGdovFOnEA6MSoCUTNqTTzUaStOnhekgNbQAnsVhzwsatLWgA3k1DvQNxKVj7k0jDRSPDxJG147Bw0PGJiAflBtamg2ZDRoajdY2IAuUGgAR1J4UPMrUH5oeGpJSuqw23tHNWjs7IS6mvDIxyy2mLz4Q2MzS2JsZFDuppaAbiYAX01tXUUueHMsXAJJJ1cYiLRpCjxjEq38aFAAXlA8f0RJACIAKmxLl6e1eZitHQV9KdwKZSJBRhYMABGYhlDAAJj2fVih2OoGkpBw7wINwMRhMsOhoAmoVOvHOWOgcyRMWQbCk6Mx2yu1xZiRoKTSGUR-RiXh8+iSHPS1B+bQW+Twshc1LaKIo01otyGePB8PG8EmMgxFKpPI8tKkCpurMFqWF3L1sT5vjZyTNGVFevF0ElV32lt5jH5RI1U0a1G+MuyS36IY8Yfcf1WfiOcEeBJhljVoAAbiVSJTpf05WjtUyccqRgmfZrSeSmbq2gatYzLsbbqbOQGs5bZIgtqWzngLgRCEGPe5IBrYJJ7sdVYSh8gR7C4cQ03gMy0+wOB8TR12e5TK8GJVL3Xqc0alcN8Um5yXQgydYGPdXjyb2fbmwePABIfptjtXvOXPsf1d+inEdgNVC8FyXFdANXddrwrKkAPcZ1XRbVcv3XBV53TSlHR5CNYnw-CowBUBqH8IdEAESQuAtbJrX0HgWVuJ4gRBSAnn7NoElY0FOOyPJGNZJ40lkWBEA46DQASES4z4to8jgTgRy4YgngAVTQUw0HAAB3fQoDgJA9FAABaEyfUuL5cPw+jSPIpABHmJYcwMhAAS3HF1k2CldnmHMGAoW5XKM9At2eHj2MDHMyECiAYDcvQwuE2MxKs5Z-mMrzoAwHA0jItA6EkNNYGQJksMXTNX1s0DitKv9U2wwMlmI4zcpoNI6AwWqmUkNr8roWjPC9G1Ol6vKOqa9Lo1APqOq67CxvagrBts9dZuWpyppI9bOrSDAOHgLhoCK+ASrK9gECOlbhv0QsTG6+qDquzaWsUaAAA8RBoE6zvqiCiAuw7KqRarh2ojZsp2n66t7BqKrUYgnpwxYWDAV6jgu7hQAAZQASQAYQABVAAApbHQAAFiUSElDhLbjP8DBZDwNgMGgCCjIKmREC4RBru8G1GaCLgcDgbneacUAAB8pbkxnjhKrnjgl9wZblgIcHAcACCocW+el2XLSF4Irx5-WPDVo2AkbYU9cm9HQEZ7A6AYagMDHR5lcQcZKi2AbUKGgW-ACUCvacAAycOKiqGow-rIlfedl6VhIoWgbtgPbKd+AXYyd2Hj11S0CBtLmpT4zpAsEXtYwcBWeLo6M6qm7o-qWCzapMuMsURnlWQOg0COtBPY71Cs4CZ3Xfz8cvdUvuB6H8T7fLxR58H6Bh6ZqvNdNlWD1s0b10P307ZaZfu9uwx+-Xzf-qbvoD5jyR13biXO-pnuAjlKh22SXg8FOiFNA98PDjz9lPD2hdQBPG-pvP+ACEroFLh-fQsDf5yAQUAre1dd7633i3Y+mpCG4LPufaaaCMDwMAe5O+cd8FB1bjUF+J8w7vwdozB6BBKEYOoXoEB7gwGTzzpA2e0DOHZSoYgtAyCHbiO4f-XhoVK44P4YHb0xDahP1fnzM+ycL4NV+lwyRWDaGj3oeorRJ9tG6JRuwgIACRbUHgGzd6kAbBX3QKowROcIEF1ESxQ6OAnEuLcdADx0iyEkQcUE5xQ5LqMDgNILxLd1hgmUTvWu9cgbEA0awyJxlonBM1tQCwySGEaOsWwlewcMD0SZtgEQi8ynemzrnN2IizaqTqccJA0BF4yOqWo3wIT3HSD4XQh+BDLGalYXo6ajNDhkQBOcD6oTwnNMFhPHxwi-GdNAHJWIMD0BLL0Cs1xoy9ADP0YskZGBQmxzMZMhhHtakpCgZCfJigbmrNgBgFEGzAQPFeWwKBCI5kkW+ecjAJQR57yed6F5NgQWiLEJ8mpsgigb14MdCZoCW6tN8TPPZTwMUZh0NAK500spM0KGS7FetHBjxbpAkltKsUUuIF7Rw4KK5svJfU3pi8kl0I8PCka0ySFovYNOY4ArGkb1hYgRl5jxX1C5VK9x7YenyuHsKs2yqxX6G0dy2xgzGZ9OEBCUl7KGW0TAUEEItqeWf3dkMLVDS+kKttUyhhxtHXGqqfoxm+BjCmFUUMmpQj2m7N5qpENvBTCUpItS+NYbcUCOZQXJ4qanico7s6-QqacrgBKeGx+bcWEdylb3SAkB7hkgBACx2Wy2nT0VXPWt9agFJuMujEZYSxmePTRGxhz9K1vwLZQWAdA9VwrxeUiVY6ZlVqldpaF06klQANfOlpAQHWhC3VK1IsBZWnUKoen1Fj6iHsnZq9dM7JAXpVUak+N6UYoObfNEcqz+a7vATs8cqzVJxB7YoZIMAaABE8UBgxMMAZI0Gg7RANhso6RKGG4G-RqwcNOpIbcAcsN0jw0UEo0Nzr4dfB6VasAMy4VDHuN0ByDjoFRDgHEO0MB7SRnhxG8TbyAVsmxpitohQZCY1xdgJRZDif4kSFDGA0N4DDRxu+OAdx4SYG+ZC+4DlgNApmGTUk5PQFQ+hzR9R8My2M6ZpTS7QjbkM3kNgUnoB0fDEiGyLdkMmYU2Zn9k6PpfTdrSO54Ar6XDI39EovGgaDRzDtdj40CqccwNx8RMXnpImrAlgAhI+O0TZBqegYdoWkEJ1iUX4Itfq80KrVYmsQQzHoFwZZwvsmI2mrjYYCMVE6eAWguEkrEVgLxRv9ni0lugiWlq7VS-EvrrX+N0Rbrl-LonMgegSKVtg5WHJVfS01nkKmFo7QRppt8AEEMHIUp9DeNR0tw0W9ZBjjsiPgbu1B4BLXYPnQQ3sUAI2xv9Fsk8ZzkwMhPGey6HTwOW6Bbu5F2G32EPWRRqwdG0hMY8DxkTUm5MqY00hB+9m6ZelQI3imO1+KAjM1ZiTxcnNCphz4gkNEZs+J5DTo3ZnepuJazYtgjJtDt41zroEdOYdiAU9aP0TnX8WPYDgTwqRdsWf5AXH8hXP95GYMbaI6XHPP1yOMXrjuav6dfrgzrxRwD9doEp4b3uV8F5ep5zyBIFu15NLtw7vUcvNftWWd2H5A7xlm95+r84izkBB-7esn3Mv5KfsKc4kP8fw-u9ANS9Go5AnBLiUDEQJ67ZQSG9kFPxbS2S8O-0A3fvP3WvJariPFvG-0rb9lbVnrdUl-yPbxPsng2kjTRn-oHuNepvJ-3x3ARukeu96PiTFu5+Ctd3suvPJ-dCDrcgBtYeJZq+33gUp9PigiEkH2tPg7bcdyl-30vgEXli-+kks9s6+Z38pwP3I+RYBKSgepJpNpHpGiBYMPPAO9KZOZKfr0qBrdJ2qUn8MQG-rRN1nciVFwDHsgCmNlDnn8ANpRiOkfhCG4sgJgSgDgftNUhftoMgRuktp1q9lIAstwJAOAEkFQRfDQWgAQTKEeGEsELFDAefn2sUogdoGdmXtkPDjQGzPbtOOgE0jXnqH2gXkdEXkkvgQ-lIbEG-toToR4JfvIZwDfI8Pgephmr6rPjdLVhmA0OiHgHzExgkHUv9AHl9I8O4oId-knjbA6H0IwYQYpHYNwapBpFpLpPoEhhYDAFAZQAgWlO5l3NNE-qzC-nhq4tIJ-kVrZGum-hkZAL0JnvupxHkPphzCITKu2GegUY4NkfoXqKkbYWEvYdURurUQjH3l-gFhrtHrHlfvvt7F0b+pslgDRsdMIcdJCm4ugRkL3tLj4fEJHgzuftMb8v8pLsMXJApBUVMccrcjCvMf3j0ecB3gytkQHGgRaogFanyu3vqrwbDiVk+E2FDihGgQArKl3gvrzM0ARm0LZJMRflUXKt3oqnUdLm8TDrKArtKieu6rzM0TiAckCcel8fPmvr8QjJCf2Gga4QtGiQie2P9I8ZaLZISfUoif9G5khC9oQctgwq3nccdIZnet8Qqu-hCccf2IRKavok0doGvHMQ3GEiMTUvupICKUURJiUbLiQGDK8IKc7sKJ8MQAKcXMqXMeuFKboohPsskSRNIGSJgOweggolIu-oNGgWcawv8e4DmFyjiB3qCUKnbDSSOualwJajSpik3uqgcgkLKZaIMLWgjkaVQLXOQNbhacCfCS6ZiUqsuMoWiMaZGWabrnoEktSmccmauGyRiT3uqjYh1nSf2GAhQiboMYsUsZAhWcrlguktrKfNdkbqdFbpWUOovhHpAsbvWe5I2ZKuJnkPuqjgacZBbpPgngHPFiWhYOxsPpXqUmHLhDmGWJKE6amaadGUAkkmIUtnwLCUqWMgPBkJjrcOqUKTUGuSasVt6ECWIQ0TyDIW7BTgoaYRuGSJKMQEedfKedkVKsvjYeycPFPpTpnCkhDK8kHM0ZIDJkCXUgMZ2RLI+dBAsScd2F7gmRca+DmP9DiECZhbfAtJsTiTEGvILjXHfIRVqiLiQuVBmNkbhLZNSXydNBbr2eaUAqBYNORQOTBRxRmUorRSXv2ECQJTbjBSRffqJdyeKO4MTr0VrkrpxabrGsMQHLxbRTBXWSpYlAOSJbXrsZIDpYJZgKYshcMY+TiUsKjOwNUpjhwFjDjsTGTJTNTCoB+k7OMZIO9GKaAJAcJshrRqxcmpBTnmoQkiesQA+epc3M8lmhEF6ewbIejLmoZhFRodFbOYxSFQzPLklRwXgX5QSgBmYapIlWwYVdUnAXZRfHcoAuoYkhfn5Yim8mwMQB8pOqIbOc1eBfFbKkihfsQGCrlYoEYSmG+U0mwC1UCoNe1eIFKtSviXVocB4TNeOE8MtRmLmgecPAqtWtYdBXfCSX1X+lGm2n1gxdAltRShqjYW4atV6idXFVekwifCSQBToKcGMslq+SYU0tLqdTaOuNZR+hSdxoDS9aqjUKDQ7Fit9ZDIgfEthTECDC3KBEjDlc5LCYgL7NcRCH9YoQqjiCOR+tnvNgOVkXDBmNujujaKHLRVTS-kevEhRZKBfnxoNqKredDRzbFl1azekQhlzfJTzS+pqCjqNfoM+XIRNf9a7ozeVFTTgEMNlJDWjc8hvHQLjTIIzU4MJgQAVDrQuNKZnqBOTRLorXDHUTNKrbLdWe4HkIbdrVVpTU4AADx3Ba3G1SYO0eAe5-4hFPAAAqWsWeVAc5Z6pAQquYnayAGQeQTwoAAA1O1lIQrB1GVrrTgoyqnTtUnancmRnQVFnSbS0ExgpIHSOCHWHWwNADpFOnQNHRybHTvgndAinWnWXsXXQFnW7Z3fnZ3UXchpnTtn1s0JOhFGzZJbRdhUiHDfbu7FrGCOrf0A7OGbblbWXXaVaNToECbNnTvKbdBB7ovUCGCLmX3v-GFnNITe+QsTXnkAOfHKNG7cmR0E-GXcmU-caXZofdrDbeuGXfuR1riURhTvHLjWrV6TcbLZNftTvTEMESOAOWEWgJrEkKACKYkWKKWR6DmEjDiODfNqRWSS3BvXzUdGzZoXxihYBEjM0TQ7FiA+5qA2LV0UvVAHhrJR+ppTgjPTguVHPb8IMhTpwyvf3jvevb-ZTUrUVgCXvRKW-SfRw+fbBVIfDTfb9cYUTSBQ-dBE-bRS-U-Mo5JAkF+KNCbeVH7UnhQ7BHreqJqMA+6eKGA1IBA4FXjTAwTTo6YfI9IVXf-XgGgxgzQFg0DHEdRTg7uNDoxvg7CYQ7cMQ+nKQ3qLZBQww5TZQ5SHQ6uAw0LXxiw0hB5hrXeWfcvdw5TptLZRjljjjATC5fju5RTJ5SHBgVgZQXgRIZeqMedZAkgdAqQeQdgbdZOkMx09lGQXWmCVxfgT0-oBouYZtNFO0xQbgfZTiJAkGCyp0DtR4J0AOJIeXlmsSHs+4MSIcw0SysBGc-KdOJc9s1mh7Lcx7A820Cyn6ngDtZ83qEc7ECymRNIHWvABYDtYC8C3OTyH8zECysg2c8gx6NCx4CyhVvwNCjgNILmqi+i5jv0Ei+4Cysnbcx4D5cQBYPrQAHz+Wd2Qv4t3BZomTEvuCkugDks3BUuQHmS0tXNZqqltAstsvXAcugAvCsvuB0ssrABMtSDvRkuUvUtgDcuPMbUACk0rAr8rkBKrYroAErWaTExLGr7L1Lwm5LPLG1eW1whrsrrLmroAlrtr5rjwTw7t6rNrgrwrnt7gZryrzr7tVrxAsQRrQr1L-r3rerG1FLbrcrxrkBVL4bTrzwFLAb2QwbwrybCbvrzwOW0r1LMQIb7gOWHgvlQYUUsJ4zaznB0Y1DNw-YqS5m1AxAFbIzVbAIJqKzZBEzrbiU4AOAAAVnIEqrW-0PW38Ma9c6syMztYsxIUmR6M250-ZWW0cBQAu9lGgmefS+OCyn4dQDtbu3SwYTC1mrjGgGaDHqC4G6e+ezcYe0ewS1mti4TLjGc0+7jHe-eyi0gGiwAKK3PYs-sftHssoABy8AIH0rYHIHNjUhy7qIa7AePSm8lNw7bQo7xro001Tbk7lBG7cHq7OH67SlxJ2EZ5dbQgF+GHi601nRCHeH8wDsxB6BnblbXTaAdBdAHsflTHe0gosAx+c0fb8AaYRpJUwg6jgECHUzBAi8szEhuTuh06XHswsQUtaIXokAcD8tIFflMtd9ShgE2+COCHfasjXdZedHxH1DQHZFoZ30Jn1Stc-bg7VNuZlnK72uzNCnHgUDbM3jWnujfMm0BAFAvnnHvbKyvji8TpGnAX75gYNTGzjl2ODTeOblVMLTDsq1CA8gGAmKxwiU6wsAYa4ixVe60dosI4GipX5dY+o6zCTjbZ8ETgedGABdbOisvdY91XTXlwZ8-YeQPXhi24k6iV6wNKBeIgDynXtNlh3o8AvAvA0dwQZOMgyBi38rmOqdkgC3vA8cTwSdCQB3oAidqkndu3NneoB3eaM3Uq2gcSsg3MnXHHVNZ6GA93p0sgewb4pTNoPdA9zwndY3zisgk3cx9bb3H3J6AMKBLX0CagkOanUPsgWAcAXAO306ZX+9jqZ6ixR3+6EkSejMkCuPoAkcfEkgnzf9uPTgVmGiNP9rQkIGePUgo0pPwmTwIGckCQ2XC37Y+X7kRXYauP2xzBAQR+u+XFpP5PA4XOx0l+5yoeniNPftR3gPqdyP2URe6PbP7RKvQ9A4Sd7XfFYuIp3B1biFwCDPhdhvHdGvaAD3WvaPDb1PevmPZ8KdTGXwhPm+bIjv4UDwO1Z635Dvn3TvsANEix-uoEIvdXmvzwNzapBcuvA0jjoQNPIfjvqPEfUfDeI9XMsfEmTwAA5O12egPaXwNx16PaUrj5Opr3lxmLAKUpis31jxKUdCLGLKNK3z6-ew+xtVQHu6pHYPndpOJHPIYHGPnTRgQF8LVxJvHz3032a5eJIL350Q39r7n0v0-Bv2n+vyv5v6H9D433AOS5OkJyJ7wGJyRxVOgcYAOgUVjxL3vtBq4izyyq-92ojI55b8-953cD1sr+QwG-sgGEDNEH+2KQwC92f4L9B8e6FJh-37DcQs0IGTlFpVN5IDIA8An-KsknS98t44Bd6FAKf4-pLiRGGtDvjf7AIf08jAho52fq3B+wJvLJI3AV5rJr8cAtzCs0f5T83Yb+TyBR0IGVxiBpAmAY3SSR0C3M5JRgUYw543MUBdzKrk-DcR8DZAAg+gjkkXRqDoBGg+9M0Fz6md5BQkZ5koN0EDo84b+KvsYJwT7cQBoncAXf22rmCwYtgneIAPDpggHBYAiAW4QsESD8idA3PhjTkGCMSAnAPQVYPoJQkuslAxAY3DoH-FbILKdAaAX4ZYDEhH-fcoERlCAlXEo5D9DcRgDP8gaNSfTMgLq6jQf0VfZBgUTQYREQClvIkDEVGZqdHqPecgVDXKFgwahdXEGpUKTx1CYMgBRodLUV7hJdqHhTFlKmVBxhEoiAcADlGyjVBkgMND-mUJaElDyBHPOYalEnSrDoUU-MSIlDEKlDuho6DoUqm4FqcRIiuFAGThgyY02QoTN2MVAwCCAaABAWAIhkGQRBIAJ+DYfSSYKU8esuGJIcCOYwrsZok2abDVi4wkNXET2XTCtlhHCZd2hmLbOg2SpvDToHwoft8PqGAwrojmA8gCPqzJZVMk2CwuGBexoEKhOA-xrvQYSgR-hpSaodkOIBsi-6wQlxngzIaMkChPJEpuw25H+Y1OCsKoFwGhR2c3YyQABBYDmLSBCQ8okFnnGkAIhNhVPZUSz1VGKi3YGo3YFX1Aiv0Pkng3YMa0lGHQZREGOUS6DVHTcpR34GQGaMvpSE9R6ohENWj2r8cqglBD0bHBVH2j9RTMTURcO1EfIlBAY0MUaLlImiTGrowCBaJDZpAi8Osf0cGLmLRjDRl3D0MmKpZWjpRsED5IGmmiFj9oACHmBRwGazcR0bASsV9HqQ2BDoT3J0aO1oJohSxJEesUgEbGFjWxh0dvgfULEs8gyg+H0emIkSZiagByV+t5kHEKd8x7ABsRvCbFSiBxRYytM2Mj4AVbsshELCiAeBPVeusMJxEMWFo4VYSCWW4BxgRHpwHsktdhteLWzPglBz5RHADDPGLZjRvYuAJgAqxURjsdWU7MQC-HEjkYY5RQBRCLz-i9skgCiKBKQCLZNhiTISGDgIB7tzOSxUHL6Ahy1CSMoQBCaRCQBOAlBhDUWkTzBEgQSJWE-2vkD3HBZWYh444F6iIlgSrscpRmKBAogRwo4XEsGGeJZ7QS-xGAACVVnXA8TPBPIdcIJKklARfxwyMSS70klujVwo0WSapIHB-Yq+OE8HHu0nQ-VOOjAJRPOPR6+VNhoEG1kuP3RSoBAcgUwNCkwB7DG0zkvQMQEIFETCBF4pEDmDEmvIHCsUYSYpLgkeSkJuIeYegEaz99VwXkvjExQgqVZ-JghfbuhLwl1cxxP+QySFxMnbjwYiUrwo4Tu4o88oH0eCTRPDE058+hUUaDxKlQBQ1xLYsoISDKBhifJsJTdgFHBDNTLAI1dhmeRfFNgjM+6E7miEnQlSSBsIOuGVLwRtToRZQHEDVJInxSrCX6cEE4CO4gYRpZQYLowFADB0AAEj+wwAABBbGNjB-YAAlYOrjAADyIHcmLcFJpg1GAAgI4aJDbbTSYJyEi4aQGKnsh3on0v8Sz3qnjSrBxwj6UFJ4JV96pJQDCuDMzKToYZIQN6RFKOAWiLhB0o6adPOlXTbp90xGYwBSzJB3oYM96ZmUBm+A-K9U-seNIwCTSQUkMzok8FcnoATIhYmqmaAEHwyWMFM9juBL8rliexVYi+quDPHR12WTWOyQmkckoyThniMWSpHlKIAvp-MwAXXUSksy0ZkMxbJNBC6eBggRHbQEXhxAAAGeYB+nSA6RakBsm0V2ncjIAagK0G2RECNmiBbgs-Q2T6M7qQhlp3oD2ZrldmwBJ01KS2Zbh6gPZ-Z3-e2S+F+76BQInPHaqBEjlx0aBnGRtmvxq53URSYcy4AEDSBhADZcWWEsnOoFYIHZJNeutbK4RRzEoDs3yPPUGTeYbMGGIEWWT3q9ZyBAZcOpsFDniIiRJcu2bXIDAtl+J04Z-l3NAhNzfMtmDkYyLknnN5MimMNAMMZE2MbskAVHOwynlLyC5BAA6lXJxQFkZp7DEqtGiJSr5h4XSA2TVUOD-xfpfCD2X5Q0SPyNUNss4Y-K1Hld-UViE+C-M-5ZoSgaGCwBPHGJfAq+FSX+YXK7HGQmOziD2bvIBihTlZf49ySv32ic1Lx0I-+FUEwAeycQNgbOeIjznAJH5K5Q8mgDKxJTHCyJAcNtl2yVZD+5-eqsgt8DzyYSX1e+Z4mwURlH5bC7ILFP5qxy2QlCgqYFDQm4S92SgjKQMGWJn5sovfBBYuWMo6xcFhcqSVlOMmYB+xdCqhToh2kUBMZGAC6WpAAAyP7B6VgxNjmyHY6s16R7KSTaz+Zmw36ZM3+m8zgZhM0GW7HsXuLoZhM2GQfKSR1T-FyMnxX5UMXGKzF2MAme2C8WBL3Fmw8sUZ2+jiZqZpkynv9LplJgppjMvhYcg9lszTJXwQAWktykJyr5BAQpduPn4HCEC8Sxxd5L6mmSKxSAetuJjwUhsmssCg+QgqbYKS+ZCGNWS9LRY+KGlhTAydJ3kUr9GFzfZhSrMyamSBZzSoWW0rXrxJjWByJJbKO4QKi5ihmTmbLI+lIL5ltDQzEuKY4+LjlKC-mYewWXbiAKuxM-s3xmXlA7lUooudCIKBjtbgnU4ocdH37QJJiTy0FvuVshfLtA8cDEXVzGRekuECi3vq1gak0Qq+4K4BFcKSQAq3lg4sacQuJk9QeJn8psR1GUkkTaeUsVsioPqC1SDJiwmwIctrmYBxpO3bmTwQoFi8iZH0HqJrNJLZAcw8024LTPpnMqyZ6AIprtVRBLc-8CqelTlKlGochspS9cWUEn4iq0AVSqUdE1iAxRwQKq1GeqsOhpV52YMTWcQCXGSqCF1RFlUivUy5DQGkE-QMcDsDZR-Ze0JlR-MwXwd+lOIW+YuC4GkKss8Qjle9HxX9KeVyIWEvysdiZKhVjM90jmHNXSr-ZhY+VZJEVWNSxg11A2fqq4CaqYg2q5VZmsqXsyFOScg2aavlYJrN4SaxZTkP5HFN7VlAagN4ptl2AZVVvFlVj3gXcraJ7gBIIcK7Udqq+hwzWcKtRmzCm1ba0dXLNZWvhHVdKzWSliDVTqAQ+5FyHgC5mqrN2hi7GZdOul3TolSIbdWdN3V4yLFMfFleWuNbawN1qMm8nTX0BPBgQiPBtf2oNkILBoc651TbNdVuL-VUI1ENesCU4gIlpi8xbhBA1RKcQpa2GEuMA32LQVLcR9YmhxV+dvShwPttQVWS1j7UB9LDUehBLoaU4HRTYbPJNQNq70hG-4FIMyJ+UV5ZG1pqhtgaAsMNXBPDYSolJ4auqIJZjURrY0XDSNd1WVDxqo3EaLhdG1dNADoC9I3YCivjUIoE2jd0AfbcAPnMo3yAqaWKmiISvxoB4WN0YYykppTjH0limmqvuhpU0kKwk7YNTdcJs11FDsQKhRRSRs0Ga0AemxMv+H76ab342q5mTQHzqOaV+O1czWkEDAOxmNFmyQMJvU2IqRx2m-ztFsbSJbjNdE6RR4E5wTi-RU43ZTONXCBbz+sZITf4Hc1RbitRmzot5s81Bt5WEW-OXemS2lbpA7m+zXqWgjebJovm0fqpHy3N8wWxWizWFsGTpApN5+PQuBOtWJLlllY1ZVpPWVCtNMPIKnj1tKTDbpNwKjHjOlzGSQNFiwrRekr+waBWtSxHbbKpbFXYLsI0-dFVt+Cs0Rxm0XzePwC2PLe+O1VbSIEG36IPocgcgBMVbnsMgSMGMLqcBVrB4ou+1S-sJ1AG38YKY27zS2HSZTbWlFHOSIkwpZyQvtS3c-HcJ-ilRz8yZFPjbUxrJkioiMSlpfTqEpgop0U9wKMOAJxykABiOIgXXOytangPg6Hf9Hn6q80QHUbKXttykcT68V2lHbdsWX3byAzwdnU4OaJPbScIgYFTtSl1+DGofkWEusBIHgsFROIAAJwMdBkmukFkipkC-D9EBuq1M0pjxixjgxAGdW41BHY9TYYaksrExBH6BhMJspkTEDN2SBi+xfVSEoAD25raRLuyER4G91ziaR2QM3Uis4xF4Nxzo44J0X0DmROqwothmHvIgKiY9lulBsQHV2UJM9ILWYXgCAUgK7C18J1bFsWUoTRd248Xc60AUgsy9HKQFc9qC3IES9TesYkuGsWDIAhAQBRWkBijzg4AmsMZLe2nKwkCgOIEQWAWwAkD+9ZU6HhkpigD1ZgNSgNVIBwKwAx9F7RnsxDGSG0l4O9b3U8DMjmR+9oAXvlGtX1QFGW3wHtXZCBYKjJADfeFXMFACBF8I1YBdYsOWHQom1cxAoE7o8CvquErakdcOqtVnDgDYq6sNvt303F990CQ-Qqi+CIMM9z+kFs8HP1mRwp06xtWsLv3n6rIn+ukoRDrWxBT9uBvA9ftEWY4aDZkIPe4Gj39jNlzSmbXkzm1o6pCb+6ZW6Ox3Dxcd-y1rKasp3sB5WX+KSctvX6cpedmio3TZOLJJEwaIJKgNIB0hiwh95AD5aiGn23BZ9Ygxff720MUA866+9TAQ3iSbsZDBQOQwVD52KGTY6mHDY6iRgpbe10CbSOHUqwdRiJ2ADiG+DyB8GCtghh4efjsOjp3DnREnRIeNbdEkeFCnbKJLgmQBJwF4RpfevAkpSJFPvWIEd1SmSK5StKUjGkabYIgyJ8SKvjhhAgfJH9HuBiZxlZhsFwsOwMoyQAyN8ZqjVE+CZqLfGNGQsLRsZBFkgAXh2jwtAHGAFGwvBuj9VMeWkd4mfpuJFRuPkkfoVUQJJiYnQhJIRB5LhFyRpSTVK2PU7YgNU3Y5pLWXMMdJhR59UwCYD971txfZyZIGp0AAdJgF2u2V-62AdgdHldtZZysBsgEP3WIlH1hY2hDxhRU8fBkvHop7xz47aKwBLCfjEfMqWPNIDzhOi5QUCBidAAAAvZcO4HeO6EvjyJ347EfKAEmgTkkEE08AQPgm0oAETQGoaOCaGRwTx0k-tHJPusk+g-fOjgHzq8B86e7FoMX0DCsBIT0yjk4ie+PcmyWvJhvfycFPCn5+tJqyEAA

Metalinguistic Abstraction 4.4.4

a variable to itself. For example, consider unifying list(x, x) and list(y, y). The second

attempt to bind x to y matches y (the stored value of x) against y (the new value of x). This is

taken care of by the equal clause of unify_match.

Ifunction extend_if_possible(variable, val, frame) {

const binding = binding_in_frame(variable, frame);

if (binding !== undefined) {

return unify_match(binding_value(binding),

val, frame);

} else if (is_var(val)) { // ***

const binding = binding_in_frame(val, frame);

return binding !== undefined

? unify_match(variable,

binding_value(binding),

frame)

: extend(variable, val, frame);

} else if (depends_on(val, variable, frame)) { // ***

return "failed";

} else {

return extend(variable, val, frame);

}

}

The function depends_on is a predicate that tests whether an expression proposed to be the

value of a pattern variable depends on the variable. This must be done relative to the current

frame because the expression may contain occurrences of a variable that already has a value

that depends on our test variable. The structure of depends_on is a simple recursive tree walk

in which we substitute for the values of variables whenever necessary.

Ifunction depends_on(exp, variable, frame) {

function tree_walk(e) {

if (is_var(e)) {

if (equal(variable, e)) {

return true;

here are similar to the issues of manipulating in�nite series in mathematics. For example, we know that 2 is the

solution to the equation y = 1 + y/2. Beginning with the expression 1 + y/2 and repeatedly substituting 1 + y/2
for y gives

2 = y = 1 + y/2 = 1 + (1 + y/2)/2 = 1 + 1/2 + y/4 = · · · ,

which leads to

2 = 1 + 1/2 + 1/4 + 1/8 + · · · .

However, if we try the same manipulation beginning with the observation that −1 is the solution to the equation

y = 1 + 2y, we obtain

−1 = y = 1 + 2y = 1 + 2(1 + 2y) = 1 + 2 + 4y = · · · ,

which leads to

−1 = 1 + 2 + 4 + 8 + · · · .

Although the formal manipulations used in deriving these two equations are identical, the �rst result is a valid

assertion about in�nite series but the second is not. Similarly, for our uni�cation results, reasoning with an

arbitrary syntactically constructed expression may lead to errors.

505 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEHsAcFMCcEMAuBLcA7A+o+AjANtADSiQCuio8aAJqAObSIBQIoAZrOALagDGAFvEiI4oAMygAFAGdovFOnEA6MSoCUTNqTTzUaStOnhekgNbQAnsVhzwsatLWgA3k1DvQNxKVj7k0jDRSPDxJG147Bw0PGJiAflBtamg2ZDRoajdY2IAuUGgAR1J4UPMrUH5oeGpJSuqw23tHNWjs7IS6mvDIxyy2mLz4Q2MzS2JsZFDuppaAbiYAX01tXUUueHMsXAJJJ1cYiLRpCjxjEq38aFAAXlA8f0RJACIAKmxLl6e1eZitHQV9KdwKZSJBRhYMABGYhlDAAJj2fVih2OoGkpBw7wINwMRhMsOhoAmoVOvHOWOgcyRMWQbCk6Mx2yu1xZiRoKTSGUR-RiXh8+iSHPS1B+bQW+Twshc1LaKIo01otyGePB8PG8EmMgxFKpPI8tKkCpurMFqWF3L1sT5vjZyTNGVFevF0ElV32lt5jH5RI1U0a1G+MuyS36IY8Yfcf1WfiOcEeBJhljVoAAbiVSJTpf05WjtUyccqRgmfZrSeSmbq2gatYzLsbbqbOQGs5bZIgtqWzngLgRCEGPe5IBrYJJ7sdVYSh8gR7C4cQ03gMy0+wOB8TR12e5TK8GJVL3Xqc0alcN8Um5yXQgydYGPdXjyb2fbmwePABIfptjtXvOXPsf1d+inEdgNVC8FyXFdANXddrwrKkAPcZ1XRbVcv3XBV53TSlHR5CNYnw-CowBUBqH8IdEAESQuAtbJrX0HgWVuJ4gRBSAnn7NoElY0FOOyPJGNZJ40lkWBEA46DQASES4z4to8jgTgRy4YgngAVTQUw0HAAB3fQoDgJA9FAABaEyfUuL5cPw+jSPIpABHmJYcwMhAAS3HF1k2CldnmHMGAoW5XKM9At2eHj2MDHMyECiAYDcvQwuE2MxKs5Z-mMrzoAwHA0jItA6EkNNYGQJksMXTNX1s0DitKv9U2wwMlmI4zcpoNI6AwWqmUkNr8roWjPC9G1Ol6vKOqa9Lo1APqOq67CxvagrBts9dZuWpyppI9bOrSDAOHgLhoCK+ASrK9gECOlbhv0QsTG6+qDquzaWsUaAAA8RBoE6zvqiCiAuw7KqRarh2ojZsp2n66t7BqKrUYgnpwxYWDAV6jgu7hQAAZQASQAYQABVAAApbHQAAFiUSElDhLbjP8DBZDwNgMGgCCjIKmREC4RBru8G1GaCLgcDgbneacUAAB8pbkxnjhKrnjgl9wZblgIcHAcACCocW+el2XLSF4Irx5-WPDVo2AkbYU9cm9HQEZ7A6AYagMDHR5lcQcZKi2AbUKGgW-ACUCvacAAycOKiqGow-rIlfedl6VhIoWgbtgPbKd+AXYyd2Hj11S0CBtLmpT4zpAsEXtYwcBWeLo6M6qm7o-qWCzapMuMsURnlWQOg0COtBPY71Cs4CZ3Xfz8cvdUvuB6H8T7fLxR58H6Bh6ZqvNdNlWD1s0b10P307ZaZfu9uwx+-Xzf-qbvoD5jyR13biXO-pnuAjlKh22SXg8FOiFNA98PDjz9lPD2hdQBPG-pvP+ACEroFLh-fQsDf5yAQUAre1dd7633i3Y+mpCG4LPufaaaCMDwMAe5O+cd8FB1bjUF+J8w7vwdozB6BBKEYOoXoEB7gwGTzzpA2e0DOHZSoYgtAyCHbiO4f-XhoVK44P4YHb0xDahP1fnzM+ycL4NV+lwyRWDaGj3oeorRJ9tG6JRuwgIACRbUHgGzd6kAbBX3QKowROcIEF1ESxQ6OAnEuLcdADx0iyEkQcUE5xQ5LqMDgNILxLd1hgmUTvWu9cgbEA0awyJxlonBM1tQCwySGEaOsWwlewcMD0SZtgEQi8ynemzrnN2IizaqTqccJA0BF4yOqWo3wIT3HSD4XQh+BDLGalYXo6ajNDhkQBOcD6oTwnNMFhPHxwi-GdNAHJWIMD0BLL0Cs1xoy9ADP0YskZGBQmxzMZMhhHtakpCgZCfJigbmrNgBgFEGzAQPFeWwKBCI5kkW+ecjAJQR57yed6F5NgQWiLEJ8mpsgigb14MdCZoCW6tN8TPPZTwMUZh0NAK500spM0KGS7FetHBjxbpAkltKsUUuIF7Rw4KK5svJfU3pi8kl0I8PCka0ySFovYNOY4ArGkb1hYgRl5jxX1C5VK9x7YenyuHsKs2yqxX6G0dy2xgzGZ9OEBCUl7KGW0TAUEEItqeWf3dkMLVDS+kKttUyhhxtHXGqqfoxm+BjCmFUUMmpQj2m7N5qpENvBTCUpItS+NYbcUCOZQXJ4qanico7s6-QqacrgBKeGx+bcWEdylb3SAkB7hkgBACx2Wy2nT0VXPWt9agFJuMujEZYSxmePTRGxhz9K1vwLZQWAdA9VwrxeUiVY6ZlVqldpaF06klQANfOlpAQHWhC3VK1IsBZWnUKoen1Fj6iHsnZq9dM7JAXpVUak+N6UYoObfNEcqz+a7vATs8cqzVJxB7YoZIMAaABE8UBgxMMAZI0Gg7RANhso6RKGG4G-RqwcNOpIbcAcsN0jw0UEo0Nzr4dfB6VasAMy4VDHuN0ByDjoFRDgHEO0MB7SRnhxG8TbyAVsmxpitohQZCY1xdgJRZDif4kSFDGA0N4DDRxu+OAdx4SYG+ZC+4DlgNApmGTUk5PQFQ+hzR9R8My2M6ZpTS7QjbkM3kNgUnoB0fDEiGyLdkMmYU2Zn9m1WDo2kJjHgeMiak3JlTGmkIP3s3TL0qBG8Ux2vxQEZmrM4uLk5oVMOfEEhojNnxPIadG65b1NxLWbFsEZNodvGuddAjpzDsQJLrR+jFa-ix7AcCeFSLtnl-IC4-ldZ-vIzBjbRGtaK5+uRxiJsdwG5lr9cGxuKOAZNtAyXpu9yvgvL1ZWeQJCW2vJpG2tt6g68N9qyzuw-IHeMhb5XBvnEWcgG7-b1lnba-JT9hTnF3c+49w7oBqXo1HIE4JcSgYiBPXbKCkk2h-eLaW5rhm9RTYu5+615L+tPaW9j+lBPsras9bquH+RNvfdk8G0kaagf9CO0N1NiXKfbYCN0j1p36cSaWxzwV+29kY55JdoQdbkANoexLAbou8ClMy8UEQkg+0A8HetjuLXKfw8Ai8hr-0klntnXzDXyWqe5HyLAJSUD1KaW0npNEFhh7wHeqZcy8vemgdup20pfxiAG9othkOJUuBveQCmbKYO-gtAIyOmXEI3HIGDygMP+1qlK+0L7jd-HQDaauAH4bXBIDgCSCni+ae0BR8o3wLrQ10R4Fim7xXfbine+0AjNH-QPpfTdkl6c6Amnt8tH2qHR0YdJMj1rhHbQDcT8n7EZXm3e830eJH9TGbfXs5uvNCqDRa98yYwkOp-0rtfUeO44Ie+Bx5Btg6PoOfo+KTsGX1SGktK6X0EhiwMAXeUC92ldzXdpoddWY9c8NXFpBjdBoR010DdQDIBehgd91OI8h9MOZG8ZV2wz1YDHAICZ89QgCt8Mwkk70YDVlsCKcTdJ0ltXt3sVdJdvZyDf1NksAaNjoG9jpIU3E7kbAHkJYIDTdYhGd4tFcODfl-lmsGC5IFJUD2DjlbkYVydWtKChsicGUICA488LVEArU+VCd9UK9+xbJr8RQPMGNHYiNGYAFZUScudeZmho86IW42Cld0C5VSdFVsDFCTCXQdNsxq9j0rCzYCDmR9kPQnD-D3V+dh5bVCBPDCMpBGZD8Fpwj6leYgj9CqMW5kivYgi3MkJTDK8HCGF8cdDjpDM71rCFVDcPDKdcjs8PNTV9F8DtA14MhJAG4wlGCal902igZ4CJNED2sSAwZXhmjdthRPhiAmji4xjWj1x2jmhvhEJ9kACSJpAyRMAi90EFEpFDdBo88VDWF7Cq8jgKAuUcQidXChU7ZaiwFNDtDMUcd1UDkEgBjLRBha0N5Y51ja5yBVsdjnCT0IidV3DlwB93A1iqAfitjxs9AklqUVCwSBMwkgS3CqjSFrJ8iDDUsrsekettigFcdLRuIC4KE5tEp0ltZT4DlLtZtesCSDsPRiTxxaT8T3IKTJVxM8h91rIGjpoltmcvsA4cxm92NadkdSkw5cIcwyxJRzjvjNi-igEklm8s9jjURRixkB4MhgtbgpiWiagZSTVPQijpDeoS0rBDNO9Pi2YF9OAl8NwyRJRiANTr5tS+ClDzg+dgSWdktM4UkIZXkg4gjJAZMnC6laCh11dESPBWspVjsxibD6DWshTq9-ocQnCTsFVgzxDYiPA15qsa475MzN52Tyd-oIDcJbJ-oPTuwWSYTIzY0GCA58z2Tgy6y1sCySFcDnsstFd2ypFsz1cGDuzPDxR3BYshtSS6T5tGzkzXwWy6tayFopzWTyTFy4d+wnCVz6zMBTFeDhzNyaj31AtqlgsOAsYwtiYyZKZqYVAP0nYWDJB3pOjQBndhNkNaNeTk0Aywdh8EkT1iBm81Dm5nks0IgC8i8aAS9oxc1DM-zR9ALzSKyvyGZOsILi8I8XyCUANl9VJwLC8MLqkPd2Bqk7lAER9EklcXzEU3k2BiAPlJ0m9zSqK-TQLZUkUldiAwUULFB58UxF8mk2BqKgUOK6LxApVqVEjt9DgT9hLxwngpKMxc1jjZLJ0EjN875-osKW1CVHhyzoFFKKUNUNLsJj8vUtLWKr0mET4tK4ydBTgxkCobT+K7Smk5yQYvMT5RyP1kjuN3LjSrK8MjyVjjIsUHLIZvd4lgKYgPKGFQIkZkLnJq9EBfY7jnKBKFUcRuSP1Qd4kZBFzwC4ZCCXzQ4CrypirGL4lOyx8+MXAYqArVUagENKqgYgiaqgY9h6qd0bR1xmqeL9ArSoKe9XL9syq4ZCqcAhhsp-LurAQN46AUr8qcFGVhMCACpFqFw+jgdQJcqmsxrNqEYZoprnL+CBg7h5rFr2TGUAAec69a-gE6SUU6gQ83S3J4AAFS1hByoAsCnToFICFVzE7WQAyDyCeFAAAGoQjZ8FYOpaQJSCqnAoblLwaobETYaCp4bHrmgmMFILdH8Pqvq2BoAdI-qAbKigaxdQboFIbobJ8Ma6AsarqkboFVJab0bkM4a2BSkDqpUIpOzszFzgKkQHYkt3YtYwQZrsgHYIT1t9qpNIC2h7UTYlqd4troIjtNtxaoAQzZ8Yz7LwBHLOphq+8vVYyB88h2T45RpmbESOgn4DrETLb1i7NVbtYyD1xebaj8IaQiMkt44UrpqC8tD0qRrh5FbsgH8Rx2Tn80BNYkhQB2i-8xRMSPQcwkYcRfK8rcy9RbJZalcqqrqC6OruzoIkY2ri6rpVSYhCJYrvQxagRJbgqP0FycFBacFyphbfhBkG6JagrfSCiSL9F86rrypt1LRlbHVbaNbyDtawQwSwrDa5oTb7TzboJLbFzran5p7JIEgvxRpNrypnrhc0QXbYJEb1RNQvb+xxR+xqx-b3zUrg6IQV7F4I7Ygo63a8BY746aBE6gZv9iyl5vbU7LR074lM6XC-KjyMiGF87y6i6ENS7AJy6QCENq73Ma666bRe6dbvLUYh7owzzOBQsCYrzItbyKZ7zA8E8Q9k8I9W9L0mCo020n9oF49E9Q8jLJ0OG6HsoE8603CCTI8mH9ANEV9Npoog8+HoKAQdS7gC4gwWVOhlKPBOgBw29Ecs1iRVH3BiQNHcCWVgJdGhjpwDGlGs0PYTGPZzGtH5K-U8BlKHG9RNHsgWUyJpA614ALBlKPGvHfqeRXHYgWUo7dGo6PQgmYgWV1gUroUcBpBc0Yn+A4ngt+hImPAWUIaTGPAnziALAnBrgAA+V82mgJ9J9wFlEybJ9wXJ0AfJm4Yp53cyMpwxrNCYtoWp+popkpl4Op9wcphR+S4AapqQd6PJgpxp0AMAFpix+SgAUhGc6YmZKbmb6dAAGZZSYmyaWYaZKeE3ydafkoAEIWRtmxm6nlnncTnbgDnZnHgnhrrFnzmunJnbr3Bbm7H7nrrrhqmdnunndvn3mNms1CmnnxndnndimgXDn7nCmfniBYg-nJm4XoW7nngjmRmSmYhun3AjmPBnygwopq9eGk9w9SKrqbh+xUlzNqBiASWuHZHYSiWTiSBpHSXGXQpwAcAAArOQJVSl-oalv4XZoxtlrh5S8R1vUEj0el+h085l1EWV7KNBeRyBFlIw5SowgZvW4JrNXGNAM0N7HxhF-Vw1rQ7VnVjJrNJJjAQmXGXRm1u1i1y1wZ+5m1gAURMY9edctZZQADl4A-WRmA2-Xj6dWFWKAlWcTustUCqBW2ghXdnRohK6WxXk8VWI3WXaH2WKE9d43shE3unxHlws3OH02RtdVAwHZY8uDs2GWGG0AM86APYXya29pBRYBZc5puX4A0w1iSphBdbAIo2BGCBF5hHW9kHsgz0W3ZhYh+q0QvRIBQ7TaoiXzBru9bTV3HgZNRdPjJAo2+1R66bJ8o2KFmap2Yg93vpD3SKuXeX5BCroyz2K32w9cfWYhA62Zn6V2l9JoCAKAv3m2uWVkt2l9zil3f2mlAwCGgsQscYyGIsbyqYqGHYZKEB5AMBMVjhEp1hYAw1xFtLAgAbRYRwNFCOWh+x7aK1NRPbTo4Mz5aangMBUaCtFZGbuaaXXaKPTq8hyP6P4JJ1wL1gaUocRAHl2Px619vR4BeBeAAbggEsZBfc5PlngsobJBZPeB44nhwaEhdPQAwa2aoatOP29RdO81JOpVtA4lZBuZ2Om3Cqz0MAbPTpZA9g3xsH9AGamPnhabhPnFZAxPWjqXnPXOT0AY-cWavgnhJ1wvZAsA4AuBNPp0iPuiz1Tr9P90JIfsLCC4MvQBI4+JJAHHXaMunArMNFyvQBrnoEQNMupBRoCvhMngQM5IEh0PZP2xsP3I8Ow0MvJD4iAgZdxcCSCuiuBwStjpldzl7tPFyuw39O-Oob4vsoYdkumuN0UuBoo80aBxwbWPWyGt2iy9owPtVdtvduT2eQDvabVvEvYANvF0YCFukamMYvBvVvwoHhlKz1nS0BbO1ukvKPBjGZQIBuGc2RAfnhjHJiC5NuBpL7Qhyv-vAeHuaJ+xLsGbLuqPoEAByVjs9JjgnzHtjrm0pDLuLgHtz7KTFWAUpOn+pkCv9boo6EWMWUaRnszgcFlKgagFGuwFG7ScSOeQwOMFGmjAgL4EHiTL7znjMenw69cLn1Hmn9H3jqHmnrjlXy8SQHX+7rnydHtvt3gAdt90ytxYwAdWAojkbiXaDVxBr3n4G+36RRGUiiM4BH9S9jwal43oYU35AYQIIrgq3wwRzm3mX6nPddOH9XHllEDTlRczJRrRuH9DX1ZSdRnreR3d6UP7FQwG39Q8w4bl3gk9P6PdO8lze24fsI7rJRuGbtZC79PtzKRsP2QN2A3TyIQPXhXq1B3bAPPy3gvpzrb1vmUWyI9mvoSYx3H0CUaEfgdPOP3HJRdJfsXrvzPKPs3afnBHTqx+fzgUflfjdUnvfneHT-3-toP83iqHL9oUxkcC-7WH39wP33tgPs3kPjfsfh9dPjXvFWr4d1WWHfU-jOlVJ3488J3CvpXlsgJ9lK9fVPqwUd6QDQGDVAaq4h5IhVFAWhGAEX2Z5MF9MjvXHqNDj6DFP6MGa3K-jtye8iQn+bhguxkqVECBXnT9MQMgANd1w5An7JQNcSx0aBmA5vsZGYG6piKyoOMIlEQDgAco2UaoMkBqA-pLKPVBgUXxa4SDUok6eQdCjF5iREozeVgRgNHSiClUkfNSicR-ilRFcMGBKmyF-puxioGAQQDQAICwBEMgyCIJADlyO8jieeYqJHyOLMYWWO0djONCcpcZs6-AwGM9F0wtwQhwmIwoZgSDaB7BX6JwXz1cGwFeMHVRzFXi8GLR+owZHaKvnDCmE88HA9IhPRbigRPBpSMgagOIC1DXaAAkBt4UYywN66WAm+vUSMFND-MC7BWFUC4DQoPiUFZIAAgsCtFpAhIcYd4zzjSAEQygroirWmENdZhkwt2AsN2Ck8F+29D5G-ykBqdvMh0EYRBjdjrCphxw4YbBH2HRk9aFwzYQiGrTDw4AOsZPA8JkAzCXQcwx4WlxWEfJceDwpmHCG2GDFdhaqW4YBF2C7M0gMON4RIm+EbDJAQIrYdz0tDQjumgwk4TcJsQ4DvOVw-aAAh5i98fcaIF8mwCJFfR6kNgQ6PZyGEYAhW6eMkUekpEbxqRQwukYdD+FT0rhDXV4tTheGdsqg7wxEa0QOQ21eRl7DEcUwpFIAqRWI5LgqO-CciaIgaPkp9GtK0gcSDwcygJ3qhOJ6CCGFMsELCF0BQhS0XaJgG4ziJshMQowfEMfB2gmwuPDdmRn1FIBbRlIHYXKLgCYAYmVEFTAtGKHEADRnoqVBRBhx+iHID1CiCGI9HRDMMs1BMTp2cyTAMg4NXHk8FTEEB+epPWlKRljGkQkATgXHhnXHKg8Ag-giiCWMh4btOMrMFEDqKiKFjQxCYjXmDzBjVjCuUcDsdOGRHFj5+Po4ZP6IerrhqxBwnkOuANFoieQEY30QyOjFcdxxdwwCKNGnETidW6DUnlmN9DpjJ0RtADkoiuFPkSqYMc5tKMTomwpUAgOQKYGhSYANBjaR8XoGIDZ9Cx2fI0a+BzAjjXku+HEHOOHGLi3x8Y58egGIArjAIH4vjJWX9KURkmZ+OvCmN3G5jIe-Is3AeMYBHiaRyXH8QhL5hxcEueUD6Ae2LFLCscnNLmIv2LFSoAo7I2kWUEJBlBFhX46vPIwCjghGJlgbikYJ1KOjRMtAF4ibEM5ohzByQPPrCDrgkS8ESIHMGUBxBUT8JbAnDDOEsBOB9OIGYSWUE2gAdQA71AABLusMAAAQWxjYx3WAAJXeq4wAA8n63Ji3BsqPlRgAIB0GiQ5GUkyMWGLImkBCJ7Id6B5N9ENdaJRE96Cv10HuSAJ5eUnrRJKDdhQJRwSdDFJCCuTJBLGaEYQP0D6TDJJksyZZJsl2TEpjATjH5LCluTYSAU3wC+VokKiSufkjABJJBSRTDqTweKSZAVHEUzQXfcKeVMileSMpbHekbKOJHz1VwBogGg0zRw3iE094lKXoM8RjSVIQxRAJ5LbFv9iacE2aRFKHGNs2x-7RgJ4GCDKtIKMOHEAAAZ5gH6dIDpFqSHTThXadyMgBqArRbpEQbQCdNuCS8jpb00QFDUhAwSGEn04bN9NgCTpqUV05bD1BtEHSuEdvLBI9NPF9jWuylUCIDNhkPTaWuvHjreg3itVxEAQNIGEEOmDQjwt0tGYlEelZUSaN0mGWX3Rm+QRagybzDZgww+DB6YCfwUoOeLfVNg4M8RFkOhlyDaZ5MgMNSXYFgweBT2UCEzN8y2Z6hnAmcR4GlmKYw03A1AWG2EmZ8ehSYpWWZk+nWc0A8NBcXBIPaTgLwn4tgRnRa7Zj0xmY62ShN4EkZQgkAU2Q1yRik9lJJsmsTzg1FQUtRheK+JcBNl0szZfGd2ZWNwyQBFhLon2W7D9mG0xkgcyOXS0JBGipmYAF4BnLDlkU+xzsiOD2JDidiEQuPbQIbJHGu1c5G42IGOIRCVyYgJc7mkbKoiL9IRLrHkIvxrkQSeQW4wYjuLTH881K7OQ6dzEiLSSjB2FaNEShHldJDpxFQ4P-B8l8I9ZZEjRHrI1S3SDBS8-qaV2YSahV5TvLNCUDQwWAJ4LBL4KTwqQnw95Wgr3NCmpnHRPpr4-vmRWWm+jH5cACEObKCGoh-4VQTAJ9JxA2B2iEMy4PjOAR6ypS1eeuRCDwk4gmMUCxuQ9WAkvzfAtc7IHPMXAXcf5kJPWagtiBQSOq-070PApgVWzkJD-F6mhLOpsEsO-fQmVwgMFYK-5RMicRhOkGYAapxCsJOfnfg6SspGAcyWpAAAy7reyZeJCAXSHY60lyZ9KSS9S2x3k3yWJIqlRTIewUkqW7BkXKKNeSU7sJopolFTYpd8pJC+T4UCLhF2MQqe2BCl5xNFTUsiUqOvY1BxM1U48SFPqlJhJJTU3BTEAUqHS2pVwr4G-xcXYTngifAyn4valqiSINbWxdtL6lsClRQ06luJn-ndM0cNbZxJ9LoUAw5FSDcTFIvgmHTZFcS3afuNHa09aFSClaQg15H2KCRSS3vv2EtnFMDkDi0YecNFFOKy6eUTaeVKqWvzVphmC8TEqKV9935z86pXxm1Y1LsJcZaQjQvfljL6enouiTRGNGogCgwrW4OxLwHHQdeTwahYz2TrScbQmy7QPHESGQ8xkBeLhIzyWXlAZlQwjXmcuAQmCkkOvR5VyIHnFSxJPULsVvLSwUTCoCkqPFZg9kgqpUxwOwHIO6mhQ9oIUzTrCvLzF8huPyj6D1HimVC0F1eOSbcDcUNTEVZU9ABg3cA5h5OFuLMvFNWX5tJIwSjkWUFF5Eq0A-i7CcctiAxRwQjK1KcyvamXtweSK4gBePJWAKMCSK1ZepjvyvglgeIgrNCrvnFS0V-kzeTJOJbbScQ6CheZ4nAVIg88IUv5dtKxXIgcVlgHEPio8WNSDVtRMlT4BFXyqFRNK6CHSvoljBwlBAFlUMLZUxAOVDK11dAHdWHRYKMrMGA-MOG7NhVWZQGQqIlXoC6iMq7QYDLsC9L5uSKojlksxXXcPACQeNUPMxWk9tB8UwldyqlT5qkVhauacitfBQqbASazAPCr8llqAQqpFyHgC6lMr5GfCnKRZKsm2SLFSIDtaZK7X5TRF-KplYKuWbaxW13Ko0kmKeDAhYuC7bNTsGVUxAq12UQGXWqUXaqv5FACdUYpxCmKhFIi3CAevMX-jg1h0sdbs13UyLVStkWdYmm+VpVDg3LVPKQW5H2YwCR6Fws+pThYEXycsk1DKrvQ-r-gSSN9WRNVlwFq0AQNKh4xfWl5wNAK4jo6jfWMUXCcG39YhrYEAbjKsqDDaBr-UQavKn6ydOkDoC9I3YdyrDUYJw1Cd0A3LcAATJA2PsVlUasieah-bMbG0XG9WvEATGrLSez6xjWAuRJXZ4Nj7SQDxoVk9kFcFSxZckS42Sb6NKcbApplbmfLVRm0DlS1JoAo1Dl-fZSkJrSBVtBkcG4TciP8DialUrG2pUhtg2WbU8+Gx9nyJNjuzBR8I7hBMLFGrh9N8m9DQ5v+AWbpAVmsghprbxLEamyzMzQTLvRObTBcW1TRFpQaF1eRk0bTYL1Ui+b6evjSzcJpM36IyNCWafPxrY39TElRI5JauGaVqasMe6FWlltKSFbxOCy+ntt1U2tzsgrCrCRyPQYaAktmatEB1EPHsLjxCGTTB+C5Imx-w0tFLbMq03kBngwvPTfMqOXEAmtyMUWqFPk7WDWZbApwjBiA6nBJqt2MDm-SN6f8b+wfIshuhs2zKWwedepRVsaWD4IGRTOSB9DkDkBjoIkGNlYNKJ60EeoWqKoiSKiIwJmdwz+imHAkdaPA1A23PoAogGJv8qNcbRFqeDX9A+V27CNL0W6DaCow21ZZXS9FvExF39OSGFvm33MMd3-f6MtqEJybstxAanbfzSJ+Rq86wPPn4wmE4gAAnPMAdhc7vGhOqToQxIiC6rUBIt7GLGOBrb360AlYToiOJQCiM+gYTKdPfoxBxdkgPHnj1UhKB9dnq0oW0MCEeAtdEokodkHF2rLOMMOFUcqOOCHV9A5kBit0Kwaa7yIEw63VLujrEAOdlCD3d42LV4Aj5J8jMCVwHjQrbtTysiRpsp3PBD53jUPRymgQNbfuwexPcwSXASLBkv-FraUjSAxR5wcATWGMnNbrKKABQHENn0ri598+1vaHgXvIBMdZg0vXCNWDDywAS9RrGrkJDGRrUl4RxLXU8DMjmRf+oARno7AB5N6XcVTb4BmvcBa6DelSuYNnnyL4RqwVK6QbIOhTUAFBevQ1Ve133yrE1BaktUyvFL76SVZhKQB3q71aEe9zEPvQqi+Am6F9Ae0pMPpH3mR4plAXfRkBn0j6rIq+43c4EIgxr3dnjCYc8C-1mRx9-fGvOfmCwwGzIhut-ZAaF01TWlBIyrcloAZvbZ8S+xZSuJ+2WCEsBQT0YKqh3sBlmJuCcQ1r16cohtmEkbSEv3Tol6iMq5IlQGkA6QxYje0eR4BzCV7bg1ewfk7jr2F8G9U+igMjRb3qZwGvRdMitsqWMH8dzBwnWwdvXYluiSMXjQNqeDaRvqcEjqEWOwAcQ3wV+anhFzz21TcSKAMg2v3qC6HDqoO6g7swoILs6xccgOTsChkLh4l26maKaPNGFCIh6cKGX1V9pSAQhtXLVkcUMIGyG5ZcwMdvmDHz69a-htsXOy8IoQ-BuGBcBXh1asAM5LwfsMKWCO3AOMYRxuJkciNK04hwR2I0+GdGMk2QpcxcTaM7kpGw9wY1HZGFDkegFIMct0bDFqPQScjUoasOBk+JQZgEmRiI1MrqrFHM5-QO9XbPnU11wDSY10X4ZKBhjsBTAJgLnruV49HxkgGHQAB0mAaa9pVgBkFsA7AyXfdHk3GZR5AIuusRMXsNqMDjjtC04+FPOMdarjNxs4Xcf2iPGSJfY0gPOEOrlBQI0J0AAAC8S2oAK47EEcVgmHjj3Vw+UGRNvHJIHxp4Lfu+NpQAImgFwtwd4MjhTjtxrfVieS7PM4e8leACjRwAo1eAKNfni0Dx6BhWAvxxZTSdBN0mITjJ11vHtZPsnOT0vQk1ZCAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARjoCYAoKOJVURNAfTQBTADbg+ggG4BDYZClJoAcwAUaeDngBKUAG9WoA6EyD4kTNB79okHACNBmVeq0GAPq-2Gvh3gPiZEJScNbVB3T28vX1tkZGFBKWhgl3DI719rYWFk0LcPNKj+GAATQXBAwWKcgG5WAF92GAQUC194KUVFSr5hXnhkgBpQeAALQT52xW09L2NTc0s+AAcpREc1ENAAMi3QMakqjZcAXlPhsYmO2oaOZu4MqRxBHN0IoxMzVv5JruKevsGoAARNBHoIgZpro1OC1QGgAJ52OJ8ZBiUFPF4zQxzT57BJVdqIbJHTSQ+rQu5fPhSNBoRCKaBPaD9EmvbEfBZtDq-f5qQFAml0hlM+AQqG3LgWQX0xmCZkCRExYnOaYRHELfYE1bZTXKQnKkKksk3JqS0DS4Vy+B8aSyZ6srHveYWXX6vXanKk8Wm2G+WCoNSJa2lWDCKSYeQtTFqjlUn7dXp8o5DIH+9DteUhsMRyVi8kS2FpwOZwSh8OR1AKpEGlyO9Uu-HuonKV0eklG70w7hFjPB0vZivQG0ySD2lVsgz1vEHJvZN3t40Us2+aQBKS2eJ8LPlyXR9nOxbxv6JlnOFOrxDrzfbnMtPMmrsWC9X8Y3wdVpV7yex6da5ut5sF0XAtuGfDdX37HcWmHO0vydXEALnNsVS9fMfXufgwzsYopHEAAPJZjFpKMHRjA8uU6BMAWTYEsNsHD8MIwRiNQe8l1hOiGJWCMnngBw0DgqccCkJZVEVZFUT4dFBCGRDPWA9CLE43CYmKeFBJ-OT5xQhTH0Wes-HkQQRQ08jvm5KikzPYEDMDPiRTYkCLAMwQCKIulUFMhDG20w1O0pRY02KRBJRkRj3JI8c6x-CieRPQE3gKLxU1QYLQuEcLmI86BHMU0AgvC5ZjEOKKyNxE8+GMcBAQYXSAoK1zCL4IsvIWCqqsBZg6rNBq3OpYRT02aKD3aspAQAZm631+CEABHUc4DHIays5czKOPajrKBOaFtgcEpu4YSAGtxh2uU9uSNBVX3cqAW2wR5vO8EhiOK7-LNM7FsM+yrQEh1DBWhsZ18rQDoscpMDUb7jKtS7ru-A9dVesH3ihuyYeZP7nCuid4IWEG3rQvTfGMpZ4HhAQHt2pb4Bx4bcQySAsjh97pp6GlrXRkzkdxqdGeZgnUIfALomEZBYCOuC8bjCyNqsjQUw3cWjtyvTjvGJWJdapS7s1lWXpVVnuD1vhVPU0jZk0nzkL8omRf4ESll6WBB21w9Zd5Qb4BTR3ncHVWAqczKWKSC2Ee84GbdBo2pUwRQseWm6NWt5sQY7O2zWgZBqTjgTkCWOnAcWTJsnzwnhbNCGofDFQy-h6Xf2UOuY9R60a7zgv66nN1m-JdiMOHRxGvrhvYss-pGpTAB+NiQFAfOHHfdpwKGJZIHgc1oGKUAungVg5-AbA8FgEYRL4zBQHG0BVFLM1xroe-Jv7qVaXF5QTvhIZjH9TBikLy2zJSSZtkb+yBf5XUSpEKeoAShlAqMUSB3gABcoAqYyHfoIT+jddSgPAUaRBUDG64L-poAhyDzSv1gBgrBbpiFXRRurS44FlAjx7KAMWLsMrL3iKAY47C7oACpuGCAEXmLwTl2GxCOpAUSH8+AMCGHIrquNvBsLQJAWwwjeEULQG-ORCjhgeg4WFYRqECiIHANfdRmiXy8LOLA8o0BKgjwKFOBx8DagFDqKg4QQgVEFDYcQ7Rgo9GYL4MwIY84NGmLJElHwljlBBNOHw9xTjiguLiQ3VJlRPGZO8SIPxjpMnh3xh6YhsS8kEIaF4aphgJGBCEJgfo+jFFhIiaAW0o4MkGDUdE2xfCQlUJaYY5sxiuEvjMWkCxVi+ngTsSkrecC0ndO8EIa0boxlMPiAMMhxSVhrGUPFYZ+zHBKKGJ0wQpIdnFJuSM7ImyYkVMiPk3xgh-FpECaWMB28BmUOoeEyJbZZnxEmXE6ZiSvm-3mTAxZjjnHvIAJAFDWZcQCwKZKsCRbcgoJzlC4rOR0kclzrnYtuVEmx4F05YoMC8wpuzIgotoZC4o5yiVPKSrU55bxOUQDysFNAKx4An2UDgFZQloVAjFsgaRSwgT0q8NAqVMr5WGBQXgZJwIGkOFFCqhVPB0Dat1aq1BmBsCOBwCmAAqtAI6WcADuFgF63m4AAWhdYY8CYjDA8qnPywVJ8oRsKdUvfpoBGHCJYbUNhu9tHBslFs54kqpEyLzGwteG8+FxughGoEWqml5gkYw2wgRgpBDAtswldoR5TlxeWmSlaukt2LVvQIihB6XmYc20tUwVFTl1F21tKMB1KBgqOZQw6e1FO7h6CdQ6S2tr4IEPgh8wTKDrUMFdTxq0-kGWu8MHaK2bsuS3VyfEt57rXCvBt9aj3boPLiot86y37pfKyqtG6eLHvJAfRSGBD64AICQcgVBaCMEYM-VBnSjKAjlBILuMUZoiDEJIEckYggkl2dAuEzhdkoIeBiDDcTFXJqWB+ZEFyxLVhRGiVdJIhiwdIXEvD-AexBi3JBZ1ocVSYcg2FVjJYyycZg9AODuHFh1vY4J12hGkrQJQxlCTb5dw0QY2J3wFpZTMhyDx+T1JiKWi0ypkTjGkrMeaqlEKLQwqNQip5GTBQ5O2nMy29KwdsrCdE0xxYyk3ORRCDxxhTlDmPHorhbiYJz4Jy0CS0lBQfNmxyDF2LkRVNed8J9C69m0iObChl+0VMnrQxFFFzQ9HjNqf4HrbTRHeMZSq0Zzzpn9KxiK7DLLhDdO2XaD9Qz1lUtNfU0sJ2iAXbKe4zV326l5NyD4soIONmsp+ei6g4zSXbkVUkhcgS7dEsrbgyZgoKCHBmv5Na21yAHVwnhMyKQeFQButqzN-aLdJtzZgEMdu9dwW+EIogHAlmJDjCCxwUk7ypyTaKn9gHQPFJvegB93OTzaVvO+yx3ASxkAlGXbDkHGTPnqIGto6b0Gg4JZB2t5LBhT1yj+LBtYqATJGtuUHcLvF+Jw9K0zm57cKeU-EYpcQIn6eaf6Lj9lJSqQGQo0RJmWgVXQKl0S5zZ7+gy4Ggdrz2Tii5NAMj95x2wFw6tTa+14M8rkyWG8h7k2vW64zhxPo1HR3MWUI1NAZW4P+KnFnHO8dXcEQgbJ0AJcyEoNxcT2bVc25x3953D3nPSUbbEFtiF1dc6x6uvHlGumgqWdQNZtyi27N9eM72hDExMBjoj88XqTUmIlRCFn+lOXZDQdr5gZzJX4-0qO1B2b7f+pe1K3t7PTm8uXXjyo1H4gcBkwpuP5GYqfxa517rnxfjp9hjRt1jGXt6HvMiFOavc21jb6MtzbGpWGOr710UrwbCo9+A0M77R8rj+P65m1y-Axr8EOn4r2CD-ZwZ3UHO-NIKcIA5-C5VfGpdfN5MAw-H8XTcfJnIiTmHfYrOGH-YzGA71ble3bgJPPgGADTSoZQaSf+JOKkEucgsEQPbLYPYBAhMPVYRwIEAREg-TNJURIYIgzgoUNJWcWgp4ehSEalUAAgiwNAF2IcTHPsKTSUErKfBJdLArRaT0A-fKAMDeV6bRPLVrTGGoAhPmfgUmcmSmR6dQ5GeVaBEPYpFBR2GnVQGQlEdeSTAcRQk-SGdA8-L-DQehXnW5aQxIVw+QjwloASRhFAvnbFNAgw2mOGdOWAgpeA4w8vfjMIqCYvfzYpRVAEDI9wrIocBEasT0eVMzRTDjaTcbG5PIvkSohQ6CEoz8dsXVFBEuG-SQ2rU2DhSWBrVhbQ0AM2bRE2BLEkVfNhMZDAPhYI2QtwpTCI8dZANSdlNhfgmUSoaY-hKGSSdYhkMgqY9lI-PvZ4M2QIgoanLeQXCQYXEyKYoYPYtJd3EfUfMKLrXw3rBWEfMvA8RhAAsdI1Y-FyQvEORLLnNIBjV4jKDTC-L4hjFRNhC5InE45QGEq0Z3XbX-LwDTMjBTIlVErgkUXE3bC5ePVfKcaAro3TBo8I7I72b4opHE5o8jfEmkoo4kujAhY-NkzjDEujEfQI3-bxAwCDHPbQtjBYukyfRkrg3EjEgoyU4o8SGsBPCElEhUqo+NCjfkhjQUnAvuH9R8P9I+QDMgSgagegJgcaCDNoSvZ4PCO9XEO7DVfwUcFuQLWHVnEwfiIYM4hkt4KceKFKWfTHK4pyIEc4tIL0yLX05YrBIUm0tHEMrHYHR01aS4daT2ObFMf0ZMsMxSAOSuAXaM9ncANMnWKGDqcAIYWqFuUnOMubcs7Y60KsoYLqOsgXOnbAEXRsn426Sssaasy+BhKQE6SqFrCjNMFXJsoM-456LQ5kK0FGXwOcvdKtPs9Mo8LM0kmyCcolQs2EOc5XWGC5JsuSU87POAMWOkEdLshnWGeEqdH8N0BMiRR-I9V3UvJ8xGRsV8vKc6a8jWdSI9aUrwAMn8XFECkfQNQY0YcYMwimO8kXbRDoiDQLT9SjJUZ4rbJs3FZk3xN9UccuCDI9XEgSW9XQMCgBCOKoW9Osz9Z3ciz9aYKiqgu5ObZik9PCM9WnIXbs7mZU7CmQZ42wGkeCr88CkaOURQUYTCuIHGDVeIJQWS20egoPB9UcoHDC-CoS3xYfUSoQa4jXNIFBJSmSkYOSvS0AAAHnYWkpUuEuMocxNROyBAABVYgw1Eh4RzQ44bBfo4QZFhtKgUEgRQAABqCQmItQAIJQCxc2QS7QSKiM4ECKqKvnGK1teKtc+hFVI7U1Q3dyzy8AQQO1XyxQfyzGQKobXoEK1KyK8EwwTKuK8ABK6sHGZKlMNKxqgwZqxQbK1SoWCDJVGROU7U5U6Ut4CRWDHoWIUSR8ghCRWYyy3SyguJEwoBZmHSpy2ovbWa-OZQHqwwAC5AG8ttJCkySExqlBfC6FJGRKo66BXUQao6m6mQoQ7awFZsQa8XPA8xBJWDaFOCmfOfa424pczQrwA3dYCa4Ea1GIEoYPMEW3bwW-eVB-T9bRd8jCrEzJKcZa0inSjisEVUmIrAMERi4mrdX6mlfA6ihYGaqVea-UiuWEJk5Uvk2G20Sa-nPSRmuaz8z3BA3lPSZanSt9NapKDamg7apnOTETfa0SHqk6s6sG-ih84zHaprW6jVe69qrWmrFFZ64St9A27W96+cRKr67IH63AmldKyIcFQGl0i4BCtW+85kFZKGgqmG6sY3BGreJGp4e7d1NE5kFG5I15SGwwDGsELG0-a0D83G9an8Amhiom29SM5nBilPW9Gmu3GpSS3Efmg6hM-eMAJyY0gDIgM0kDS0ugGgRMyHf7JAQHbHR8DnXmcvLc+KDgFMX7FuxAQHA87gAe6HRdWfeIEUV2EHLun8yOZsXHGC9MUAMe1umHI07ReKRBIMzUFKwwTUG5UmrwIM-UfegwfUI+3nIMk5c+1e1gq+neu6E8O+k8R+tIIM-mYQFKr+uJY+wwIMv1MMeEFKoBqQHypKf+gwIM6G8+6G4pKB5s5QIEYSUYakWwNACM1BkYdBjAAoRBoM8Ku+wwZQPCIYeEbQY4AAPlADu0iogYIbuhdWIYMFIfIcoZobu3dQYevsERYevjIdAAod4U4dAAESEYMEYb5CBGAH4bYaEY4dodADAB4afukYAFI5HBHhHqGlH1GJHQApH+ggRkliH5GdHRGNUKHeHpGABCU4Mx7RxRu7exvhaxtR4x6yrR9hkRpR2ygwdxj+u6ay44Fh8x5xmyvhBRmx4xqh7xhR3xu7GhgJox5Bqh0JoYbwcJxJ0AdJlJmJ5B2x-hpRrwXRgwWxwwB0xBMkNNAIQetuoOHS3hAhYSUSTUVeOp8eyumpwYteoejeykFEWwAAK1vmmJaZEjh18Zvs6fXpSrkjFyztXtmf6fbspEJlqah3Xs717C2PiiDK1xSq10QbJpPrukIGgEcRChAcyYuaufJhOdOegbumwb4FIEIHPtefeceaeaDNeYAFE76AWfnTmgyAA5KQMF-hiFsFs2smnplevptugopp44CZ0SSxXR3UMsjprZ1ZjIjZ3plZ5F8U+ULbZpgoVpubXxhZq5ZZvFkl9MIMQmCRCHJFgZ3cPu8qk8JsiHJdWBTAYQeEBdYZqQaQaQgIMmQ60ldliep2XfGemAEF7wGuHl6obwLotZUai62GJsy43im49WrTI1Rw89WVxpwSoYI6+l+p8YFFq2k1obJw81gXZAEZsZq1sm2VgonCpZwwYGt2nVz2qEeIDeYGxQMWUSjKINjNOED4UjGNyNVgcukW9ZrAauoDc00DegRuiRKciMBAPgR6NQaCYSTASWOtJsxmOwBwFsFOG2l9SlUkAhJ6+toQyt0HZKvgMKyKvq7K88xtkFZtw7RuN0DtluXM4SSmcLPiEqWK+OXl2AWAGwJmaDVQD7JdxRjASK1EpdiVMK6BIEMK0KrqyKqQTdv1pKI9g2ed4iiRGAbiIQJwedhHeOV94g6AR9y5XQBFIuhYPqtKoEZBtKyd3CIQGdsgqlmuD9r919-fZKzQIEFuB98MQy8+HAVEuOKtqwYBTDqYFt4EEuOVEd3weKGubQHYXZZQL+oQ8j7QdwUdj0Oj0AVx4EGeLW6BOtmccjiVGeZvBc-wc960Yt+NMtyWcjnva+QbYbUbKMHjyjm5fDZ4ebEE9zOjuFw94DyKlDyGcYdDrjqoHbdT7qm5MKntq7KjSSaSOHQZhbUE5jhq0z+qmFL9iYBwDDuSIzrDo0CKlVCEYjzXT91DxNF+19h4oL3TtzzAUVLWszXFCT5ynTp9oEW+3ggEXUcj62vDulpLvT9z2LxYPq7LgjoEAAcnM5rkA-K+YOw3neyvI+Q4i8MsekwHUha+Ee-IZhw+ZieBrccF1Ha+VfWzukSGKBSqBDAXG6zlFB9lpG1XG8r3iAhGHYYNy4M+UEG6y825c+C6i9FRq7W4G9HFa+HzdG29y6LeO4oZblFfFdgEletAuSKnFiylj2w+pBqpG1dmHgI6DN9i+9zA3U7NU6jGHkva8tElu5pHu8QDJmd2e72lpDg7e5W8iDM2s5++cqDJnheg5qs9XWHgK8ahbna4VBuzwgR9e+HmUKk4dk+9k88kJ-eQfwFx1odtWTx5owxBU6YlBMJ9wNqZe7m7+Hbm0SpdJ4RHJ8p6R-KoEn58gQgNZ+VIlVvoI9xV1EIiF6EBF8R1kjbc18R+1991EJq4terAlRfrV+wEN+6HblN6V-N41SBCh4ldh8e-3LV9YJs-jXwvB6pZd5h7h6e4N6ymR8J4K8god6VA6a19t8RxvzgJ4BUKsAJ4IlAIV5-Gx5Svwqdwx7T-ZTRsQIPGJ-wNZu4At2eGp86-TPDzT4I91Ex5MpcsN0njhpNwuwsDs+ymGHhEtxHosCnN+je43KpFr6WA4-Ysb7R+b6HgImN3O0uy78LFQBV0wZRkFG1WzWznsGpGKFKCqCr7-YsAr+H6d43-zRez3700aXjQS0P-pqBiqEH8MPl7L9aCZeZEvFm1b6gpgADr+FXB8BT4W8eIJgBHh5t84U2NPpoWnyrgUe0dHpIMQnQjEn0baJdEnTn7k0t0dtbwFOGQEaotcctGFP-0HhADRuoA2PB+hJpM4UE-oJYOpAnQYlZ0+dPXNPjH7p9ikNaL3nQPUgN98+QwHgUIXD44DC+eNJAgRBEF002Kgg4eC3BioJAcAH3S3FcVKDAMyCaAAxKoPAbdA0AyiavtQVw4aCJ+Wg+EDoOYAsIau6vRsEYPB4sJfG8gx4EoJpzsY1Bc7BQaimJC1RweTzLwCYLMFDV6ki5QVgkDbp+DDgmgkQNoL+C6D3uMtWqARzCECBzBEfL3kjC8FGo7BujQIOfHiBisIIrg5QIkN0EsJvBSUTITQwcGKD5wtUAIXlEqHLoww6gSZly0loQFGhZ6PwMYEeDPt3BVLFobUL0jgB2hcoToQoJ6GPBYhhg-wAoIn52Em+2QhwLkNCGRDTBVQeVEjGmETClm5QiAMMOKKbCMO9Q7SF0Ji7Z5uKzgixJ3j6AnlB29aHCPSQopFI2E+AoYqgMXRDgPy66LAV+gf6vCW0SgaFIQOcr6sL0B6O4fICoFbpLB8gc+EOFQbCpGBFGWdEMHuGQiv0b-e+vAFhF8B4RFlQVCiIhHfCmyR6CVOAG1CVAwqJXMkUSApE1c0E2QfEaAHuHaACOJIkUiR34BwDBULI4EecKuKXCiw1wrTIyNRFEiauP2L3tyO2C7AJRByZkZ7yxEOA4R8gYVG6G5GlC0gboZkRqMiCCpsRuI9buqOtakpdQ2o40dijzo1cgQ1I+IGNzkGtpQ2lYSoaQ1wpe9BGOwkuCjBPilgjo1IIcOf13ABiWgQwUnoyNJ6PC3gbCXEeOQJyxs9RSonESqIsqhjCRQY1AJ6x8E3JwxnFI-l5SFQ4M1cGaM4NaPJFjcCOcw6fmdUdH7CThIqJMTGNlwoxIAhlEtK5DxTyB3uRXDXh2JRi7xRh3Qj+AYg-h6DIxgxLYrvGoRDjME7ZXMdMXsSwp4EoAWwsAlAA3UW4rYinnIlRDtjawo4leh-G0TditA5JcvHAI-jaBD2M8VcaAA-ghsTAoANygAAl-mfAAAIL4B8A-zAAEpuVCAAAeTBbUA+EqFEiiYBPjX9N+AYHcbCLRFNlmx4wDcdBKVET8+xG423nNyaSLF4x5gArn2JkDQkMJihFuHhKyAQTMJUEpsk+JfHvjPxP4-8YBOIkmB3hpQPCOhJv5YSYRyEkfjvCYnOiNxfALcdVGwnQBh8AoQiS0BdSVD++EAEtGRM8LCTYJ3E+oUMPkBUtdU9wmwCIy5zeiJYfouSVGA0kWpMRMEokZexKr5j9JUEhSUSMXChsjATMO1qGXPjaIAADLUAgxOI7UlUByUoL9jxpEAVQatD5P9AwBnJfCRbo5NCkOA0qDAE8QeAinmYopmAd0ppSkilV20L4UEa+nsmbh-uDPIcAFNdEHIgQOPe+gcgSl5T3wAUrLh2xRjGBpIGU8CPwECCJIHJAxFehVPp5VSfkwedKZ1Jk7dSk2vNAKNMPGB2oZAkse-uAVPHhhh+NhLymOU8mNT4glAnKeMEqn+T0k5RRYOwPmm4pRpfAcacIElh8Dx+Q3SIAdKOmSwXy+fOFteJL6F1fhl0iaa1JBRcUeKi6MQBjmIjMIvh3NIkQiSQGoCUB-wtAR8IwpfC6KbwcFMgNY7HNNCbiaAPFUTH5jx0bwpEagOHzmivA-0uiuz1YHJ9B4a5UAmTTngCJyZBCZ4cDL4SMD0BEMmQLBJwF4DgZcMhcWknmkwBkZBo9dNjL+HdomBmMnZAimFkGBb020kEX9IZlEiE+KRJPtfFKDKC-4KIJIP9MhnMUWKZMima4h-AliaRdo7lIn2FpH4+RVQSWcIEZml8IMnM1qijOFRLADESwdpBGN+EkineNo2kc5V1m2iAu0-ekXigdldRWRn6cUZyNmn2yeRDBfVp9OWCnU6QzCe2avCdnMUQ5RMx2RHI6wmzo530uOStMdmrwDEFFZRmAHJkCIU5uKcOdKJ2mSjA5iXJGTbINFqj0hZNNUV1B1GGBrZFMA0RrybmZi0gGvVubzIKCWiR2XsikeuP4ARSnAHxXcb8LHhyxTw08lMBFOklphQwzYqMBFLPJttN5dUnyQlk3ncSaOboWhG1NR7eA6ixjGQONPhDfA7SEIGrlpDKSnz1+NVCmLhEnkRSQxV3ZYJxPMBfyHAFMZ2THUGKhgEgQ4CKdonqkU060zUpIJvImKDEO5DYwnHwhVRIKDRKYxUX-OxmrzZA7mUBSEU3ltzvA2YkmnFNxBILCxpI0sT7PPmMEsgdIk4pdwAWvSNYDZAheAraneCqxJgJ0QcOUCULmIjY2yfeKol8AvxlqAADL-MgJ9C4QO5LfJgSCxDkgSNZKAUS4YELYxZHhCQk4SCOqE7Rd0AimqLf5IkmriRIyjGKk2GIixd5PiACRKJz48RVIpkWMTrQaEv4FYuElNl6hprNYbcj7F8TtFAksJNuO8XELkoEUySQcIhCXtAl-CkqQtwcnRKThy3F7K-LsUu41FzFJSQcIaGqTJmuqCBboy5wQ535Dk1havFMWwSzJSizJSYqwXw4bJ9oyeuMHa4bdv52SimpUJ8V5KVJTQpWkPMxolLikvip1ioJWFkEmcjiEXuJKgmYKTJmdJnDsIhxWKFlSo2CSc0JoHCoST2Zha1w6UAK0R-Y0VIDJXqzQOA2iCcSf225Ahq8+ykBkcR-AXKYAgItmZUAI50hWlDyw5a12OU9KauLypIM-wSLbdtlJw5crApYmZSpR+gwrv4FbSGiexYQVwOJlmlHiBhAUNQGAnWlzKCp+KliQSXYmoAR40+DcZlLTEiSVkbCA8Xwn4mCSiVkEkSTgLYTLtTU6JSlScopaU54ltYj+LN2JXQAUlCgiOoYHTTUIBVTK4VY8AjLyp4ueKoYDsLZX1S24eKk5aCjXyyyikDQDEdiuMCZL3hzEtsQfKeG9NTF2iXBevM8jwLoZhM8lfHNMUcCPkgxWlfqhYkhKKYYSx1SypAVmAVVBqyodyuSy8qxh-KmyMkqkn51xVYaoEFEqklLNcUn86+Io2VXokEpPSgvobMtmssr+CUsBJZKSCUr3uk8otezz1QHBPFFSotTVwrUFrGV5E5lV0VrWUr61koEeHqtxWCrDViEotQgpXpxBZlgqrYmIponfjfxAE-AKvhHUfix19E2RfKsFWKrFGA6gtYTF+ETcVYl-StStJNVvAO1BqpdIhJtX35BiK64xdojEUSLpFk6t4JepcXzqveSanYWepUVPKDwG6pDl0RJiz5zCaYYZrDjdyTDmYgGusgnWcz-rOAGeLeTOBA1dE4if600HLwDxNkbpncceSDXML8oINlIKDYfO67ZBYNGIx-FhtNC4a4Vp0u9nlDiIkbOASGzuNxNQ2Ua9ITiRQEZD+DtLAN3EijV6NQDDNkALUhDbRv+U7K8NGGimIJpw0SbaYE-cFQoJq5-r+NcC5iNaCk0CRVN50qGkwvaWP4pNygdTULJ8GyaJhi4cVQKC3jjd7l7XFKgpsCBkgJEWGxTYUN4DYbaYwmiFaJrdo0acNXm6TeWKYIkcghSw-IVEOlY3JLNV3LwlDB81Oa0ALmzPN8PVUGasmijBzS1Oo3ObENMWuLZznEKkojNMXKEKZsm4phwtAC0Bs5sU12a8oLG6DDzgS09LclJw-JQMtC3FJXZVDTFElBo6laDlNW2dj8s+wRKkoPC+AHwtrF51SEuWvVCNrG1jCxZIs9osAiS3iJ06OywrevGQbTcLNWmq7ilT61fppqrE5dt-2gFwrj8rfcNpG2sx8UPax4rogHwe4Yk6t+W+GPjT6WNC1JmSdrfSlcilh14zwBpL2C-7PAjqGXXXt8OIVroN0HDY0dDSh1lqnmQIM7KbkxGEoL4D2HtpihFnJQHtbvZ3Mtw05wgHRvCmsXNuTmZJFtWQLOi9vW3GNcdQffciVp21lahg9O93lWijSDFhIFPMBj5T4QABOWoPZt4BOxwGJy1QOAL5Qi7gGJyxdOfCcBDARJMAwmTLVBiaECZ18CwBqhcle1DAvO5QKV1K4pg6AJu0VfbS1Xyp9dGwjVQUF52y6QotbI4chGHwWB3UtZKpFIIMB276hDu9YEMG51bhpd4DdfsIGvm3yx0MoHFW5pmHcT8ttO5BlfPAbh75ydy5na1xSqJ6b5FeRtMmwkQh9aQPywIOmnOQOAYgdIB5mcrUCgBZo2iCXtdnaAU989Ji3TtR0-brxAO1QNJbauviA5MAZe65ix2LF0glKooFZPrqBBup3UTe6vVd31TpoDAk+sUAjq91B71IF3dpbNC9Caqo6OgHlOCk5WjbTY60vfmQU30rJa1eajvC2ubVqqEsZ+nAeCl7397yYg+vhNtBpHh1ddK+gVMA2QaT7rceK80Cfu3j-63US+2-DylEGRBx9oB91O11Riy4MAsB5hvnW938L5U9Qz7RaOGUda+c6+iLeaMB1BhgdG3NEYqokDQ7fG+2bwT1ra4vRido20nd0M9FJE8CRGsDYkDQB2pa2Re9eO1Kr016+EdeqXk3vbEt7eDG8ZKp3o1Wx0RCyJVDHxB+WzR6DSgaseLpYPkL0yNBI9GpToUghkAeYk+K2iZHyApAcqBFCgnwMsKiDn-aDMocbg6Hh88OsslQcxVmgFZNOfgIz0wFqySaKiCRM9OOmu4VksA2aZci-1yzXc80dBF8PCMIDcBz5O0jgMjp0pSUzwkGfzLpkE8LZpKPAW8tKBwoEEfOaBGSNeQ9UUEgRyWIiPxK2AbdaQBoAiigNS1y84edObtUqPrc4jDHDoy+TPn2EIAwlQQJIMelsUOjsgvuE3p+WlcAxygXuQAB1WAJa8ZX8EP3gAwEGHEuOQ3Yag5sURu4EE-tOrPZWAkx9pdMcImzHMxCxpY4rImDZw1j0XdsQckgDnJh8WCXFM8dAAAAvOlqAAWMqtljtx5dOsfh1YJvjOx2LHsaBAHGhAeYLFOwA4PoBuDjgaYwCdWPAntGaXaRmYcVjjdYA43MbqSFK5kg54JxiLSiZuNomHjGJpBgKHG62BcT+J5bpCbFBAA

Metalinguistic Abstraction 4.4.4

} else {

const b = binding_in_frame(e, frame);

return b === undefined

? false

: tree_walk(binding_value(b));

}

} else {

return is_pair(e)

? tree_walk(head(e)) || tree_walk(tail(e))

: false;

}

}

return tree_walk(exp);

}

4.4.4.5 Maintaining the Data Base

One important problem in designing logic programming languages is that of arranging things

so that as few irrelevant data-base entries as possible will be examined in checking a given

pattern. In our system, in addition to storing all assertions in one big stream, we store all

assertions whose heads are strings in separate streams, in a table indexed by the string. To

fetch an assertion that may match a pattern, we �rst check to see if the head of the pattern is

a string. If so, we return (to be tested using the matcher) all the stored assertions that have the

same head. If the pattern’s head is not a string, we return all the stored assertions. Cleverer

methods could also take advantage of information in the frame, or try also to optimize the case

where the head of the pattern is not a string. We avoid building our criteria for indexing (using

the head, handling only the case of strings) into the program; instead we call on predicates

and selectors that embody our criteria.

Ilet THE_ASSERTIONS = null;

function fetch_assertions(pattern, frame) {

return use_index(pattern)

? get_indexed_assertions(pattern)

: get_all_assertions;

}

function get_all_assertions() {

return THE_ASSERTIONS;

}

function get_indexed_assertions(pattern) {

return get_stream(index_key_of(pattern), "assertion-stream");

}

The function get_stream looks up a stream in the table and returns an empty stream if

nothing is stored there.

506 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABCAzgUwPozAEzQDwAoAHAQygEpEBvAKEQcQCc0oQmkYUMUonsA5oQAWaUjhLkKFANy0AvrQD0SxHGJom5eGAxRSAIwA2aADSJiIKIlK5EA1stXAmcALaIIw0sSibEAMyIhOjQOoEAdAFRFLSgkLAINigocBCEANZoAJ7mLBBwTDgoVHSMzKzsnNxgIEZGhPmFxbHlbQwA-Mi4aMDYaDj07eUAXIhoAI4gpA1ZuYii4iJiEk1FJdJDw+Vdi6toBeut26PJqelz5vowDWstsgpx4GFJbqRZeoYmhKVbngi8RBGNIzT7GNCIAC8QK4UEIACIAFT6cGI+EPcrxF5IYFwDIgYiZHIYACM5jmGAATL9tgUwICUCADCiTFCzmkidlSVdSDdCMCIKCWWhpHJtjBgMFGcyvhDIfLung+mABjSTgwWGwOIrev0cGLhvJxkZ0DQ-rSAdY7mzSCkORTKTy+dLhaLzcMJcFrfLoeAlXq1erypqqjrlQMDeqjWgTRCykHg5Vtddbgdmhig4ptlnGDmGFjEpx6Zo4RSyYgHeYAG4zEAis0W+nWF2ym12i7E8sp-kgoxgkxu8WSkJM4VQhV+3UqnCBk7oKCfPkCoWy0zuhOMMgwJj82Gc7kWXk7yuIGtGOvSNcbjfd5d912Dw3G03x9V0wHe9kdrmOxDdlvgo+6qeo0aZFOOvo9OGM4Nm0ACQ2zzouDQASYa4Ide2xbju2H7r+Z4XlemHXv+o6ytIDwYQw0axrB15Id2dzVrWIqRiceZtBxHEFuEOBcGQUBeIQbizomWpIB4PqIPCuL4sQ8LrtsXSyQSinDGMkkKvC2DoEwUAKcRiBdDpJZqdsYyaK4O5uOY8IAKpgBkYBwAA7kg6iaNoSQALTeX+sromxHEhtqfEoAJXhyIo77WB5WiFv2cqIG8HzCj8cgxfYrBsnFXm6GlMlwHiBKBbQmWWNY0K5QlBUmXppU8UkDgLrwLCkG4nLlnM1J0f8TaICgbLNZ15I5NSbEhUgg1SZO0FGYgtT1IgYwoFFTiII19Iba4HgAMoAJIAMIAAqIAAUrtiAACwRCSESUk8CThFwPAxsAGBoAR2hgEIvBuJQvWTYgL21G4BiaCEUD-VQiAAD6w2ZwPcK1giQ9DDDw4jL0GEVJi2GjAOY0GIN1ChUMA4wRPAdws16gTDyKJtSOfAIDg4BgRh7n9UBXKILOzkDL24dzVAAGSiwsKz0xBf58-oAhrUzIPtWg0uvhU4nM-LbMc1z5O2WAKulYzzyFgN2Rg3AfZwO9htuKrIuA0mSB7IQ-7k26JtPUkL22igMACGA9tgHCjuvoL3DawMuu8ATtl+wHQdoCHxuPdiZyJ8HLUWzjZPo+HzuS0s3au+70MUYrpvhAngdZxgBEOx7dFA6XvINGXlCe2nZsvTFtgLngEBGKQ8U6GrWwRyzOuc7H3O2X3IcYIPw+jwgqdMwvA8HCveU8DnVvj4wLdSyXJ9t-TFePBvlr90v28j7vDeHxqhet3yHeX176cvTW-CynfQ8H6FmfhrUML0o7sxnqHfW0lf4wH-svIBOh15VySHAhB99V66BQPvPOAMC6azfg0IhF8u5M3QeCABO8EpPzDhPV+Z937nxFmQ1B1QObtQMDgUgH18DEBYCkMedCj6F3AaQVm0coFx2ksPMG3DeH8LQIIteDNu7hFkVwnhZAtD2z8EwFAICgZvEJDgy21tbYq3MCQlhqimYaPkTjHA2RDEMOLufD+rDvbsMmjwfQfgs4uM1mIiRkC9b-Vsj43g5A0BZxQV40BHAFECP9ggQJoZrEe1sWw5mdI+KFlBAQRRyiwBpO1ME6eYSeaIERm0eEuSYD5L7IU5JyCsnxNyUkjAiiJDCJfprKBGAWDAGkSSNp6cOnNIwO+UpOJYSDN6NI8aV9skTL4UwDAMxoH53of0uZQzpEBDGT3ZGkw6yQEbtskRQTI7iIqbPGB8J0BTGThANAcT04pUwE8s5ryCYlGboXKRjzTkvLeeYbmJRK7xO+aC3x0Ss4GLDowHZ6TGF4M8enPo+iWp+JicnLZUB-kENRUsCFRzwgCJxfC-FiLyZEpRcmZhdLyU+24DE3wXIYXnL+YGSei08GQuWfEl6w9eBwv8finlALrkYH5W7Jl-0NhQu-twYwaQMggISewiBMcCW2TVRADI7yzafIwAajVvStUwljvCc18JwUe2VWbc1Zq4BOM1cfNxzpMlOuetwHwxBOaCmAZayeOqpFz2kgGoNeVjXhE2kkpRKSSmhtcRIDxvqkgjwELSy5fSSXpvcQqzuLKkDOQ2UwHNhB1D0quWAmopNq3EEFV-M2WKxXZqbbW-N2pXY1tLRUDtlaDH9ulaGbs-a1pqNZfXEehBCkC1ETckJur518Nsh0ONPsej4AwBSG2kh8F-EynMNkrsBIZh7ew3+nIqBdHhJu5aFYchrRUBtNhg0XDuEQAdE651Lo3TuiSadSBPq1midI5OVZeVLtekYd6YHzzfV+h7MyXQBrkzMmMZW9t6ZoaBEVOSe8zGzvPA7XBGAbaypVvTcwUHjjmRyTfReiCsF4fVF0RDUzmNb0AWxyN9GsPMwoSYKhSDUki3w1xkTmBWN5Ug2AaDQnfaCNrpKyTHHxhng2appOIcFNKfVNh7g9TGmJuKexk4nHtOmZ0AUtZSahEwME0Z5m9ieHNMcxJ1DmnTWbX5Jw+R2iVZ6NzZQIihlhjudde6kWEXIttBcycYzr1nnco01ZrToIuW-Jy183FCLaPjEUwx9SzNzWWaUllvsFWBMleU9wSJBX1M+cy1xpr1L9N1cM8l5m0aYDBqc9DfD0bnGIemH4QgCbPMWbi8V6D8XrwDKow3Ax2awsUDoyV0r7QLJMCstI+yjlnJuXNiHUg+BEC+WqxNt5A7RtTfAOYdbgYQJC34G4BpMAqyYH8-EaQvUr02GIIGrk-CYCfdgD9jAf2ns2GHZemipo3smfcMQOAfoYdsMe2AAH6sGCZQEXUSqN2IMJscc4-7i2EvjHwH4XAH1FPbgQAEmphkE3Bd0ZoAxVO2fEXW9TmnjBptM9cHpuE-2gJ1rKY152pG6ygUZEYSgbOug+IbtxkOkqifK524x2m05IxI7jO6SyhQce2Qck5VySAmZQGyBoK7flRulVzEK9Oy33qrbXc2rb0HAdA3Letn3JQ1JdH5WpMYuFxtk+3EOoQhSSh+823zhgnv5dKMVwuYPifNvzYxWbLjtmED2aKcmgzi6ZV8AVzHybqz+FdJYD0j2ye9dtGs+BuvCB2aTOmXNpLvXa+q3r+szZRX6OZtA9pvLfzk+9RRx9NwHLUs-IuYSvHikgYG4jH8Y3wNhwittFSiVXXmWiWGEDIfU24-H7xafxVm2J+7+fCbxsgJ204v+hntkNSr8f-FXfgSknk-kOMEC9OrixNftir4l-g3BvgmEDP-tzBnmxOUHvvjhfoXFxjPqnoOrfoVmSqYCAYaLvu7mbOnuADXNOIQHbEopXvWrKo2rQaHlVhHoxrhEiJQbpgMGiOYBQYbNwYWnyMwRXFRNUq2uECgIKLoBjrxtQjoBtvPgficmlrlpkoDowJlBCmyHlgAQQY6pvrBuyvbivqCjyjUuHqTDUmMAGsnD0tIZRlYGJlgjzjfnoS1g-inkLlIbYI4XIeJvSMJO8F8iCtyrgQlpSu4SHGFhsFLugYYTKpvM4fJhlpplIkkXJglKYrnBfNYcJiPPApQpkUNirteMpHuDJskVkbgrkdeGMPykFGQeEFxrVs5iVr1JlBTmyC6hTvTGxJlHeNNANA4bIVUQoYQBTpen1ICFwf7IHAMEMfwVQQMD2IKCaFMZfl9JNhToLicAQPTj3qLizpKoMeYLMYnAsa3pPtVvMuJFEXqvnk7JrKahAWRoQKnlfj4jNuXnFuEcMPRgOlxlQQEt1rOJlA3GyFfsCfihnuPiVmxFQcRrnLCdCYvNkQfHNg3MnhNIXA3NcdJgURgnxikW0f7urIieiX2E-JUcUQgEiRiS3opFfjSZgo-JAf3iVrsU-kaAwCBjcRkaySGqSbOBSRRk-AKcSdUWYrRkyVscPjxmMXSbQi3vnlyfCY8OtJtJ+jtD+kdKdBdNdLdFEHyeAkwArvgPQdqJdlJNXmgNcX5tjpzqwNzuYDsY8erEDECgUEvhjgzptPargU6aFq6W6vMNySaajj6Zjn9padqrcpInuMAPPGjr6ezP6QOhzg-FzvolNrGdaguPskmYgKMtceTqGbmU8aGAMoWeYEshIUkCLlWMzuLhWR6YCnsgskWYcvacEbcVULCXSPTkemJFWXuPCK8XWPan1EOQOuAXLtSSxHmeUgmbHFidJBOXdtcRuZrkOYQHAZWb2minuYuYCZAMCP7D9Izk2WLgEvRgeUgN2OGUzP-i4DRneW2YQlLE+dki8ueZgAYJTjomYO6eUH8EDLhK+fbNiY8JlFAHzMYVyFBs2VnGyA0XyX5kBSELgigMxGRt2kDsLNhbhXWC2nyZBV8thVNkBaUKBSOYeUsORRmUBRnjztRTQLRdLg+efIxfiXTnYVechepkRaeDMDhYgAYLaJgO+WBYCsnAIHBVhWYv8lJCYD9ApWeCwZprhBhTRpSWJRpXnhJegFeW3qcKpfJcIIpbnP8gADxAhyXqWiWmXt7jD7bm7wgAAqRUyUtg2Q8OAgIACKA0BIgaMAAwYw8IiAAA1NUt4XwIIBKM4npVQDFVOZFTFX8YwCjD9Ilceesc5acGbjuJ5d5cAGgC5P5YFTSsFSDpzOFdJNFbFTTtlQILlclY1WlY1ZlQwC1blQZQOipMQPSVSeybgnPurEzFBhzEVISNJdsEzD4SmsJQZRoe0Hyo2slZlZxoptNeoO8ULgwL+XABeQIAJTeZKgCZlStLgjLK7JtULrsFLAZd1U+otfKs6NhXnt2P1agW7qAfOopjLHBVJUviYUhedSHOfu0EVVZVbJbmADjH6AtEbFMWgS-qtW0JlORWyC+ZhcQeqEDG9eRcNaxSrF4QddtCrCxVRWTajX9fTUDlNbiLNeqfWUgKKSRrQmNSJUYONX8JNTtczQDWSYpAtdIbDSaLhfhScOtfUBLZpWUfNrtYSN1UdSdWdccfppdcRNdWYrdVLPdYZF0EhK7BpbhQVYxm9f+J9U6A0D9YpEaIpCBFBkDfBaDYhUceLlDYlm5TuJSfDYjXYLQU7hnGpinHTdROjRge0FjUBTjW4eRcLRHW0ITeLcTXpTTfbOTQdcTd7oxcnVxDJZrEzTNUnVOm+lqdtN+r+vqQBkaVdBGY3hDl9tDrDrjmOjLlPCuRLnDvCODpDt9puU0UkP3S3ZgBDoGoAfJv9h3S7EeZLmtOVB9mPVjl4osXuOuECnsFOYwHsBuNneUECimDvQwCmPvYLkCthCfYeNuOfZvWOVAtfVAnfVFmOSTPUFOe-UYOqAfYwECmFIGqQNkFOQA8PH5ScL-WnmOUVSfUVQmJA-mQiG8HBRsgYCgPasg8IKg4NNsAg0ClFdfYwIQPgOYNkFQJCAAHyICXYxXgN4NjneSEMMDEOkPkNUOXZ+R0MX1jm8HDAsOIBkNQjsOICIgCMMD0M2pKBMPBAkMCNsPUOICqBcP302oACk0j-DgjlDCjqjYjiAEjcI8IPohDmj8j1pCoZD3DNqAAhPKCY7I1o8I7Y9CJYyo4YzZRow42Y4gHZQwK46-TajZZCEw6Y0Iwo0E34wYwiBQ546w2E5dlQ5E1Y4YxQ8E+YG0KE9owk9CHI8kwiNY9Iwo+UNowwNY4wBaeuA8Evc3VDr9mwiTVCIpMYssOIOYKPbU6vdiIKtUwPa3fU3AAYAAFYHCEqNPbDNPxBhOX3L21NTkkKS4INtDtOD2dOFjdOWgWAzMrObzr2xxArb44BTkHOLMU1QM2r7RgDKgNLAPpMXNXP24nOnNAqYMYDHT7Qn0vNvOPMU3PPkBYMACi19Lz-z3zB1QKAAcqQOC9I5C+CxbULlUxs8s9DkkXpWM8MBM2E67MAHnsi5gDs4i-1Hi5rlEovKtui+0Ji9o-M5eJszU9szxoKkzKNk3b03U14hbv5VAnmSy9gBgJOEwEYNkIIBgIM6QDWFIfwL4PtZhMSxPSYFnNPeAKC+UNmtyzIG0MPVNJUENeDZrXCHmfsfxXqy2anrYbgCQFs3014iTeYC9XS2yyS-oGiTbWayDnYZa-S9a9iJRkMyM2Jfa8S0katiq6fW7cvia1nKoiYNYMDRgAIMCBJU0p7ShdCPOASBrS2Q8JqR+lXXtHqf+oaTdA3dfCHFoNABgM8rwDoBgG8EwBqjJkuQ2mDBDCQo25sFViQt9YSYBADqlRgOlRhvwDlcAM4m2z2wOB22VuO3-L29cd6W8K9MFn4M3sOzmjyxABAIFXUBBiEM9pu-I4NDFYQKQJuzLPCJFfepFRFbZI1aexAKG9sBew6mu6RUzOANougJDGu89sOr+6dR+yPOgKUHBEXaGC1R1QiI1QuzwugMuysc09mvy2AJ+8BS9ildJBQPCNcYB-opgHoh1Nmk24wXLUR4pPevygZGViKnuER4gOLGZIQF-e9Q0ER1QPDEXEIax5WgDs49JJuqZV0C0xIHR1JA+lR5loOeWwuFWwlHWxqmR0GGMEx-6rVQNvJnRwxxuDhqrNNg5hZmxxbfelBzFbh8ZQR8Jye8OlZwIBRF1RuJFYO5SZRhYrhnp2XmPGx-ZwmI541WZ-h5oB1CQsHoZylWzuiBJ-rih0B6rDJLCFOdmmcdF3h3oIF1O7tszLhIp8MF0P5wiFfXwXuK7ER7bTZ7S-56l0wCJIpCli1WV+R9JAAOSDvZodXNc1dDsJWjtlc4fJfGXPJMDOIDeCMfkMFyr2wts7iuzDePtBhAq2CHO2SFBpXOT6TxwpAlhpVmkmDojpcuV5fTd1iDdfXnwzdJeoeVfVdReoeWdnf+R8h3cVczfXFisSsQBSsLga78JpBJo+7Ef9aDapILoNfzdqeA9gBTnuctJA98KPvNOve2jvcwC+AZ6N4-cpD-sGILp7enA6d-cg9jmbrgoUZUa0F-emUWR8LXHDd7zna7rfevIpB-dKFgGqehXg-k8aFY31OUk-6IQk+ue6f1PfFjzY+-VL3o-oDszrZsjNM084J09o+M9iU56w902IE883VidX0Ne4TnquDK-RwvZWJHkM9JpG8I44+MBjAJq89ieP268G-m-S-Dode29a9aQI+SvI+fcsSRc7A307ju9mK7EYs+CEBe9I8o9fdO8Y-+VY9q8U+B844+v+2bOS8W-rtBTo0L5k-Y8aGemE9TnOek9vlq-Z8xgvjuiX5U+kFs1-gO6qwLr3mZdHj4+dtfmw8dcw2FLw3W6nYi9JD24aBbpICDk0rM+jed3R5d9VaPmz9lY9-rrSRW4nagb6fJrTk0qj9nAlg1tQBwBmqYDiB4ASDN9T8PmN-M9id+ybfXEn86a6QJS9Hn9gf0USDj-RHk89kfAGDYB8Q-Rjys7NCDzQvAt9cIMmYiqxC1biV-+IrGTBMTgE-Q8yrsP-rgEEADo0BAA06k-CwEYCW+3YPAcgOuJEDTqfLROpAMppZ0W+fsDkJQJ4owCjWFrSgWuUYrgC2+pqUgUAMKIgC4C5gBgfXx0jOtYAEGXvlQOArgBA67MX+BgG8C4ATATAWcNfGIBjZYeGNBfDenz7R1MaGzUgd0SQFkDdAidMQQwIQKFw9BM0KCHqFwK5cEaqZWdOsjkE4AFBPufgdRVwJjACgKgxAegMvK4CDBUuNGpXwhAL4Z+xAeAkGHApt8vBY7TvuELzwxCWO5PAulHRqQ19iAv1aiKQTopj91Aqg8IdcVahiA3AGyd1gzjwBgMViKAcsBUKAbRwUAPUC-szDlTVDBOiAWodkHqGUgfgHXPXgbVGSh92gPwMJkUPailCNA5QmMHUNXbFDkIIQAYfayFwdCuhBeZ6FrkFZiBocywnpDUKmGdD2YDQ4ji0NGQNdthPAboUnz6GkoFhmEYYdo2wB6I8YWwvYSsTOENCfggw24Yez4CzD-woyVYUkFGElDgAw8KGOH3iDgo8yII8gPTl8RtQOoQI2tuCLhxKoYB0IqALCKBHftihRwjaj8PahtC2C1HdYU8NkwvCJANSO6viJEifDgg8jdEZiOpHYixh7seEZ-D5JMD2YEoElrCElSUDuEVSNgerE6IGD9BvgwwTDkwr0DqKOJTWBYInBWDpwDXTkdwNXDtDyAbgsmr0JhGaBdAyDISKQNhKkC88AozUVnWuICQ9Eeo8gEJAEjmBTR4gqEXHTE7AA24AwSKg13hCuibg7o7vlMBmCHp7RUgJqu0C6DY1eSjGH+HOgvQhiXKnIrAO9HfC8j9Mdo9UYKPcGRjuAuEGMeLFb7bhCAAotoZaN1FIjBIllbsBelpEJhuwhYqsUGGLGJJ9Rllc9FIDrGnNXYtYxYZhHzodcvRbow5oUMEAxs6SWIi0uwPzGyM7hVDflAOi8AHAMgGyXQLfz0iecNuK4hAOYBp6piaeQo49BsybHzIlcJOBsdaLLGEAtxGo3fuuLAB2tTmmEHcTKLf4SQbRWDHXJVC0jeiTAhzBrkSIy4nVhx2CJkQeLfEZl-+j-PfgCEPRWizR9YJoYiPRHNM+cAowKkI3CJzjDUi48CdeILHkBAqbTHURwBgmhsyqZYrCWsygm6iiJ0bbKNt3xa+k9EbIAAAxyA+SKoFyIMjqDH8weu8GABIAFicTuM4ABidCFomCT1hjVEkLKNDCiSCgQkzQD-0wBsSHBPA1WJQNEkA8eJMEJoRwSJ7J91J3EhKLxNK7tsB0LAWgspNlDcBsAjQTiWCQ2b6T2emk1CuVQ4miYNJhkviWxDtwsBMALkGYBqlf7bBJ4mgtQRYR8ofAlJCAsQQ5JjQeT4WKWMIfCy6C4Qfhvk-yZZ2x5tjygqUjAH5KMAap5+8Q+KbTgyHZDOKf4HyblPSm0SB0eACYcUEowlIxB0osmr1G8loA0p+U+dN7Q0FzoRQ3tcoM7X9F20J2wFfqRjSCmFxbSmQziKkOIidExR2ArAEYLxpESZpk0uUTLAObdUwxolNAN1TGA5S8pGqQ0bgMCEkE4I8RMwTKmjxUAbBFUjqVVK6muxxpHHI6elMfJW9XMro2MDNMLo5CHpnUgKbD14oHEExXSY6v7HBCqjwQuFIiR0V0GijoQho8gVKNGlrS-gIEPQXx2OYY0t8YARKqWINEGCjRAQ28XeIYBng1psYvfL1J3Bng8cB1N9IiBZmKQRR4oxaSK1Rk0YqZjomaUDGxkKj-QSohMLYMJlNiYZaELsQwFOmQFjR6EOCBhEYp5EVRLAmYBjKCG0QQIdUuwtwFSS8yWpWdGiszNZkbTQwfYn0QOOfzBC8ZWBPiswPRk80NZbuevuAHFkviSA5YYgL+F3EAzsaLo-sf70YD3pPxvoxjKcgDHEAvZ1IBruRQ65RicIoyWMQH3jHcj0cgiaGVHLaY+yMx1HbgDem9l3Sqsqc96OnKhnfBvZbTcsGwMUaqAWZiIeOVmLb5RyxYEsIWM3JjlVY3Zo7ImeWPPgtysp7QCsdSEHltBu5XICWeehuEUzhg56EedLJOA9jGMFsr8dhxgHgFOJkMTrMOXKnLlQk9ybeREk4k786QQ8VAGPBqkt8SENU0yQJN6KXymhzHbsIxFslfT5o83IwH5OyCRwzSd2Drl23Pg3z7stVLkDwlok2SQBF4jEZRMQAPjWpwojZkPDEC6BaJbIMyVTRkxWSSkNU-ohs3HmHjicfPBMPgollQLoJ0s0+eeHLxILfCNU0ecMDgXminx3QQmW+PPahzvxrBKwuHLlKVsjuziUSb0RoUoLbJWU-8awBHFMj8FIE6idYA8oAAJf5hgAABKdkAADL-NLo0INCmRVYBeBXJmeE8fDKaGoBx6O6CiRwDaHNRlpeAfANHFokGITxSfaxTMD7AOL0oMAlxfUAMUGI8yCipRaoo0W7Rri1i--gQHsWcTHFBE9unBOpHjCPWfOaxViLCW7p90wyJxfQvaDjlOJ3kIEeiDrFJKmR4nI+SYFyXUjdu9-EBT4osU3jHRLfeCaCMQnXhUF2jcIiyzAWbzaJ+E6BYRMdF1iSJ+i9xUYsdEDp-YS+UTMN3PH8Kuk0SmCXCJxH1K4lCE8PqLWdFUMakiI81uzG2EytrwyoaXmuPIlkKYFjFLKVOOByg5qlxy3pfnV2Lp1qRgJXhZMuG5zKgRdk-qBMEmbQhhow-VWHd3hBD4+FmgYBhsULifLwAW0xUQMAa5jLJ6QKwblMuBWvKHlHXcFSUk-6EpEVx3ZFWyOuIvQUlsoQ9MRzq4tjO4cMWGPkSm5SwL0oyg-iwDIk1s+WKSk9ocp0CzgF8BK6GcuMLARCY6GzU9NCBSV7piQB6blWypmmZQt2+2GEmKskXwiKWhkQpfCM5Drcn+OgMpfCNdzDAKoKqqNKyoQAarihAZBMFl31W1LzlUqsydnjNXzKCRUxK6S7L5K8BCgmAUSUyvMUPy9xRLaJWyEoXnzUkOCzGcoRsUEBCVTi72iehyBsghVaSmpcnUlXsArVBi21ZJG6pKrihuq7JaUryXJ0dVlwdcjkryW0jcIXSukWE0tUwlRJby+1XNMdXMscA7MUSYUAZWpJZVMS5hRvO+Btqi5OXGwA2oMUsq1VCAJPg-zbWDqIJuOe-v2rHXdreozq+lW2uWkhqiA3a3Bf1CtgHKh1W0aEP4owAABBXaLtH+bKKPK+0AAPLgtglfwXdQeqPUnrz1l6tkKaq3XmBzlG6ltfSFBWax4QeINefXwf7gLPV5Qeda6oEnurbFEC6AeUEyjvqHFbIXdYEs0VsQEN6izRU+rb6lq31RgRtZEq-Xmzf1eKtlO7U1yDNscueFvsx1zylk3CdIUjQkBDwoC4hb7bJJEVo2mwE+zaPMoVOY3CoiNy+MKHRuxAMaKNDaOWlRrRFuEBNpsYTU0Jel8IeN6cSIlJoSAcbpaQMbjQOhVACBok7MSZeRtk1MbZxCAQZnAGslsaVNOKhZY-L40mFzNQmuzevljnMUgRHXWjaZuwVKIFwDmgxN5tm6HUnl-CqAmKgc2EBfN6EO8fcrZGqIdV8IBbmlUBXDcpybm7AA8CZgCb3NBYrgIJsJSWaCRImxfPxqy3Y5lN0ABWi5V-FtBsMJIzYWSMqEUjrwCWwLf-hK1wgWtSecQSmpTxiFmG8jdLdZKU1FaVNmWlANlqTy0But3Y5zQ8ui1WAEQy3WyI1uBUgMst7m1Ldki00QYBcHWt5YsvhEw5GlKyvZWsvG0nBKNAW4FTQTQDaaV28K5xMbwXltBxFB-QCcqvzqxAJtwcgaEOIkUvaM1ysxWU+n5Tha2gkWnEWtBi2rd4t52wblOQ21+A1t8ScJVu0myBTypV+MQXGwTYDMCkKbfFAOkj4fcUSf7bbQ8tgiE0llB2lWkGH9kUNEYSOqwKrCEH9x4Ek2F6sVwRwwTMlwQKsPwLYaLCYaPO5OacyOz98kAAkESkwBDrpVxtAO8oPCAJ0+8M8u3Izl9p+gASU1mdEUIjHqKkxPhoOgkeDtm3y7xWiPQnQ3Ch2d5MAiW8wAruj6LkMo+4i7EvH4hgM2QAATjkBpaXdQDDXdLS93hQwGKarAHokhjmB21-1ZjrwF5WzSbZIEJAFJEYkDTGAoDIBoQEa6NdbIEQLPVqvaAOr1QKe2IaSk7jrTk93uzlHEoaQQxER7sPPEgD8glkHaZUhgAXqD2V6-a5gN4LugL33ZP5QDH+QrkTgurctIkFvvrrcCG7DGMwL+f3rBTSRFtMO57L3u-l6Bf52bJmGbxSC3amOKHKwNWE0A4x-YDzBGR8rZDy9sgivDfVErw7b6KoHVGQBUqDXc799x1a5ogD46PIfR4dDGgXoRC+Q-Il+2BfwuBg77rATuRhrICF3N6y9hAJ7oFomCihEA6BDiCBEXUH8j+GyBtSsXgPe0ANAk5tTOunU2rei2BmaSBB+xMAD9r+9-f7FUr6Qk9UBgPanvhB-7rsbavtafzAN-7AoiBqOlxFrXtAf9zBlg35GG6Dpicg0YQ75Bz1tAW9WIjZXEqaWTaVYqEmnLAYu1dimdIcFnX8s53c7edYTaDLN3n1DdwU3257RrpnGXw0CEm6ArYBQAuQIY2ACqO8sBATBT90yhXvoHp6x8r9X7Jw1YDv0P7oNGzcikMWMPnjTDaun7RYdJhS5ZaDQUI20PhDOQfKZYwQGmNIAKQ4IYwNQwis0MiDJsEwE3gxSArta9y+h7RoYbWgxtEAN6w9cetPUXqtFC0UmCxOfJ6KsGbaqJT0tqW+zyppi5dXGoa6hKd0RvM1d0atHOLWAGybxV0ZCXTHXFH63xS3zqN3rGjl6+YwuBSVjGt1Ex3UXmXTXtRt9ti4VVyAPQZK9VW6w1e1FTi0BL9W+xrtysIAzyAAOrQHAVbK9Ah-YAIUA6hA6BGrDAHJhAz2wJn96AUqPccmWPHDlzximW8Y+NlD2YaBn41V0kD5iQA1YPPPMFwgYnEAAAL1paIA3jbQT48id+PlGAT+JuzpFhBPwhyDB+oehhDiBuE7DDhncI8cRNfGYc5JhxoVxtSZH9UaVCAGlUObSBGuDwN9JCcC0cn6pXJlEx1F5OINYtaVAwEKZFO7daTgUIAA

Metalinguistic Abstraction 4.4.4

Ifunction get_stream(key1, key2) {

const s = get(key1, key2);

return s === undefined ? null : s;

}

Rules are stored similarly, using the head of the rule conclusion. Rule conclusions are arbi-

trary patterns, however, so they di�er from assertions in that they can contain variables. A

pattern whose head is a string can match rules whose conclusions start with a variable as well

as rules whose conclusions have the same head. Thus, when fetching rules that might match

a pattern whose head is a string we fetch all rules whose conclusions start with a variable as

well as those whose conclusions have the same head as the pattern. For this purpose we store

all rules whose conclusions start with a variable in a separate stream in our table, indexed by

the string "?".

Ilet THE_RULES = null;

function fetch_rules(pattern, frame) {

return use_index(pattern)

? get_indexed_rules(pattern)

: get_all_rules();

}

function get_all_rules() {

return THE_RULES;

}

function get_indexed_rules(pattern) {

return stream_append(

get_stream(index_key_of(pattern),

"rule-stream"),

get_stream("?", "rule-stream"));

}

The function add_rule_or_assertion is used by query_driver_loop to add assertions and

rules to the data base. Each item is stored in the index, if appropriate, and in a stream of all

assertions or rules in the data base.

Ifunction add_rule_or_assertion(assertion) {

return is_rule(assertion)

? add_rule(assertion)

: add_assertion(assertion);

}

function add_assertion(assertion) {

store_assertion_in_index(assertion);

const old_assertions = THE_ASSERTIONS;

THE_ASSERTIONS = pair(assertion, () => old_assertions);

return "ok";

}

function add_rule(rule) {

507 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEHsAcFMCcEMAuBLcA7A+o+AjANtADSiQCuio8aAJqAObSIBQIoAZrOALagDGAFvEiI4oAMygAFAGdovFOnEA6MSoCUTNqTTzUaStOnhekgNbQAnsVhzwsatLWgA3k1DvQNxKVj7k0jDRSPDxJG147Bw0PGJiAflBtamg2ZDRoajdY2IAuUGgAR1J4UPMrUH5oeGpJSuqw23tHNWjs7IS6mvDIxyy2mLz4Q2MzS2JsZFDuppaAbiYAX01tXUUueHMsXAJJJ1cYiLRpCjxjEq38aFAAXlA8f0RJACIAKmxLl6e1eZitHQV9KdwKZSJBRhYMABGYhlDAAJj2fVih2OoGkpBw7wINwMRhMsOhoAmoVOvHOWOgcyRMWQbCk6Mx2yu1xZiRoKTSGUR-RiXh8+iSHPS1B+bQW+Twshc1LaKIo01otyGePB8PG8EmMgxFKpPI8tKkCpurMFqWF3L1sT5vjZyTNGVFevF0ElV32lt5jH5RI1U0a1G+MuyS36IY8Yfcf1WfiOcEeBJhljVoAAbiVSJTpf05WjtUyccqRgmfZrSeSmbq2gatYzLsbbqbOQGs5bZIgtqWzngLgRCEGPe5IBrYJJ7sdVYSh8gR7C4cQ03gMy0+wOB8TR12e5TK8GJVL3Xqc0alcN8Um5yXQgydYGPdXjyb2fbmwePABIfptjtXvOXPsf1d+inEdgNVC8FyXFdANXddrwrKkAPcZ1XRbVcv3XBV53TSlHR5CNYnw-CowBUBqH8IdEAESQuAtbJrX0HgWVuJ4gRBSAnn7NoElY0FOOyPJGNZJ40lkWBEA46DQASES4z4to8jgTgRy4YgngAVTQUw0HAAB3fQoDgJA9FAABaEyfUuL5cPw+jSPIpABHmJYcwMhAAS3HF1k2CldnmHMGAoW5XKM9At2eHj2MDHMyECiAYDcvQwuE2MxKslgwGIvRpHYTgeAAZQASQAYQABVAAApPLQAAFiUSE6uWf5jOgCCkGgGREC4RBiGgNAU1o2z-AwWQ8DYDAWvTIy0DoDqutafoEjRTrmD1PIhrQeAuHa445r47jwGBUFhosLgcHAbsIO2k6zu7cAxo2rbZsQNQer6+b5NAIa5Sodtkl4PB4AS9Anve9p8gXDBvrQX65ABoG0Ce17+r4taAjTWBkCZDA-rhkKEZ2569vB850cxy5sdhwG8cR-I3pRz6AmVZA6DQLboZBomJu7JmWbZx4CaR0HcgZyH0DIgFzmgAAPSAbEMPQOb1BIudFmhkAl7tpdl6B5eBgXaeR1aRYB07qHgcaZbl6QFYJoX4lALzoAwTLgZNnAzYwIcEC2kRYGkEGoMkto3Y9s7qAsAO5MA3rDZ5VHhsKDMdG25a7Y8ZWIdkIpet4bbE5zp3jjavn-dtwX6aG-BjFMRWeQz84q94Gv9ZjtP3Hj+jhuwEQ+drhbie7Tui573r+eW8ujaGoRIHuMkAT7rjKEgGeI654oREkF3MC1q2bdTwXA8Asd2zujBLv9wG6FL-eDZaenFLsGn1M07S9LRCxofgKXTPMte2rSpYW8l4r03toYgl9HCoWrENWWyAuDq2QCmJ2W9QFoBaKhDwtlp54AhLA+BKAkHOxWPPP44DYBX1vEhPcVxoEBAiFwSA4AkhEKasDP46DXzuCPDrYIsU-4by3hgMOEd2GHyDh4aWIgaDjT6tOdAvco6SUEV7TajA4D+1EYo6CECxHiNiIImOcjWaj1QS0ShnpvA2iGp3S6DR0R4EJgOBINjsKqykY8OWvC24DFtEKB0fRkL7hlA-EcpDQDPy0rpfQQDEAWBgD-YBOC0rhkWI1aMdwHgYFPufSQWtpCCwwZ4L0NptIYAgbkmWvQ66gCCCETieRQL8PaqkP27ZL4VMgI4A+Wj3DHyyWNHJcs2nkP9nkl6t9AyAOIc1CGhxxZ6ElpbHW1s9bj1vhgwaARECwAzLk1qG85kW1lp7GwNQy4TLkvXRcbVJCHJ3qra+c0J5GyabcsWRzYBlIcQHW+Tk0kkRVlnJOucnr5PWa+Wh40GGxITtnZOoKOH9lso2YU1lqGfTpJIIaANjhd2LiYgmzRCltFsq8lpuLh7QF7oSl6rc0UuiCdmdAqJyXtgJmfbCOIo5kunBS7uVKCXLS6XS-skKXGLmabytly0OUSsRR6WyrKu5dVlRmXCMRAluijqSzO+d4U9KKXy-F0NHmIGFW9dVKSNWpKAX00+2gebCkkA9HWtEimWL8AEWpoQXVVMXt6-sDThzPBeA6+WLMMifGIHasaYbrYRpqOuX1ZjZiIVADa6ZihpBkkwEwmG-0qYAlNW6yFQKC4gzdQcZlFBCU4jLcnPFI8TUg0te4TZULhAQnrSCmlUcEgBo9IMZevUzk5qyeQCmBb4YaKlY2gV7MaUvQNbEbNVBx35txkW6iGxC56pBcuoOQy50lwRSmpEmriVtuKZ6h52BoaTs3XvXaHpuIPDeUcO9G7C2JWkNdc6Fao7x1JljHG37VnPqcRk8cwHyagfhsdU6-7bbeJ8d66yGbWH6BVo3ZuazW4YJzMInEOGhHgHDi2pEOYyySjrWOvND6wNHEkMI8xfBq1skdRkbKtwY0YDjczJ11HHC4R1ZNDewjdF6kkSOmRKYjG9yE8QfjCawWt0mf8mZ5wh78upXht6Gzr0Ox3RgcVuyemvM7jvZZT7nqSckmpv5QCVaOt011Apr4cyXRxK8lzo9VUpyeb8pEjqEM3X85IXz97f2IavDfS6gsROGcuo5zNWGIYwYIAx+GNN8OvhC9FsLtiMtOzg3jULSH979lecVrLZXbHnNbnZkV4p3AacUCrKGX7sst303l8NmACvnXC512r7lBuxaeVV-Z7URulfcvVm+jWqsWtSeldgqXsocG4KAQqpUKpVVqvVOEbWb0jTGvwtIM1bYGY9SLIIp04Ag3cAAH2e3JIaxwMbTSe6AV772AhnXOlUfGqdftvctOtYIE3noxD+xDgIKKMgUamZhkW2A6AMGoBgY+NNECVC2HQN17bQLXYAGSk4qFUM5oOmJEnx+jlLqP1qqKe6+dt6PMfY7ffrJ4LqAEnffjF-pgQWfXbZ4ZzokhYKp3U0Aqe-XXMw4POz+AGOMhc-HDzyL4lZepdxAJvm5XocDQl1TqXvpahm+l3NM9KP0na-C2LvotlJfrmt89KkduSJfWrT9UbNmTe3aGhz9XOOeezcpvDfnQCI9TrK+N1nzvTf1HXK7i3yHPcC9j4+0KC25qoRd1bi37vbcC6GjVubAeC+GeD6rznYe1lPAr5HvG0e9fN7j2Nv9xvq+3bT5qfvxvS9AI7znzAeeldJ770XzUJfM9y4CCHc2VndYg-z8rmvWy6+h+543pfHzrPoDb6j-fKifbqMT5gwz6wwTjeFy64gg+K265P5td25thGX6vdPlPxf08y5f3SWsWvWPUFXXyn29FrzVyxwbzc3CW02NR10Z3SUsyWVXy-3dW9Cf2Q2QO9zoTFgQXQEWW1nQKdyvyDy32gI1zHjgINSeDmUII2k1jQJWTQGP3STuUthOSRzIO-29D6RsDYBpkhEAJIk4OORRAwNsgEJSBpgRFwOMnEM+RKBoMn3IP4MyUEJpjEFEOMg+z3QCzUL4KsUoPr13zgKeG7WgHYJIkdlhWBUMMgQ31uxx0sIMKeGIBpQUKzQMNAObTFw8AgJtGwJl28OiVnUpUVycKCP0Ely8IwxQJ1mlUQNNWiPUJtHd2EwSLwI7RhSsIRV70gK9ShwRTCONiGGSKbVULSOMJvW9XN01EXTKMrlJFw3AIsSKIJzMM10bxwxsOMjsJwykMM1cL6M8NTjKJI0-14NqMp1-0aNCOyL0MZmXlnmphmJVyoNgO6nCWwWQDnj0H6MUAMRYKr2cKwJnyHzKPKQ2OT0TT-wWJt10MUFKXKSgBqMwJMMCBKPeOePCNaTKXIUkF+MKOCLN1+LKKPTeM6UD29HXAhNW1YC3k21yh22KjKkqhqjqhUDLy2R2XailiJ0M2-lp22TVSWLWGMxQTPzUT9mIAk3BSRGkLfXoO4EYWYS3g8INRpN9jBQZOa1xNFgYSYWkRQTYCJIoK6J33HDYFUnoXZNFNSyOOiVS09ipnPz9k3glI0NxS0NlNABELKMEU-3FJux1PbD1OIHkIpJVMw1k3kxMVNPFxcM0NkP1J0LKLsNMxm3QHcW1JtFcO9I8LY2hlHj+JFm9MkEun9JvRDxgLfXi3gJAMumVM+PH1cUOHcSjOwhjLmPuM1GjPDJzlOGtmmntM4GMXZlyyZMM3XAFKASVQ4BZ2rI6LBPqHrL12LPAFkCEREW9iIHBRiBrNu1AibK2gS1SRzDxydipU7XLPkVHhxDQwFzsLHKuhizBXPlzJJ2703OwiyK92MjXKNw0X7L2CHNbNiLNzXPDOPJyRvJcAvPSP0HXBvLKOk2kUMQrOpV3KwklHpKGBnN62HP4N6joDxxkF3KcFpwIGmggoXD9WqVAlXP7Mgo3L-K6VABwEAtkxQzyFgvAv4DQpukgQAB47gwL4KShEKlZ8hYAlJngAAVA6IzNACwSgchUgEuXMVY5ADIPIJ4UAAAanTT0SWi+zoFpAjnG0gREuDMEpEoPQ8E+0uykuzMlDvgHAUnosfieGYvAHYGgB0g4roC4tHmynRF4v4vCWEtEr0RUumjUpkqcDktUlsqUvcAcskrYAjgQvnz1wiiN0d273cyRCcz6mxwOjBBbLaCAVXXxl-NTGosrRJU32+JCGIvOhosAmVgiqBDBA8okR0BLMu3nMrMeDUyUryHG3rDzMyo0sKo6DNz8sKuqpzQaKvCgvVALOStY2tX6GrBjlqunNyIhC-IXOhhSuyBCXqtUg0jOiSBqVUWSTFHRU4VlHYzXJxEbNQpFQVUM3is3n7JPKOtUSXTEo8DvP3NOq2h3AInPRAptBjkiqgFyRW0PMUHy272Cpiz-NCt+E7Lyqirev6kvXW1R0OpkowqmqtDSvqOcoNVypTBeoKr0S7NLLoDKt7kqugmqu71qriKgoPQSC-ElwQr-JQw+kOtgi6svHUuaFbVAHFFFUxSGtJPx1nJhXGvKphpiBmvGzmrQAWpoCWq2gSW1xWt3AZS1Q9BzC2tuB2ubJW32tu0OuPJkpuspDs2giuolVPLOr6qtSNtmOevypBvUzW2RJym212wxIO2xOqkFLwQQUITFO0FhK+LjOoNQVUmdoIWsPDL9sQSdjgRnnnW7gVnYVBKvPmNCHYXU2igxnwWDpYWjG4yg0eCDFcM6GDI8E6AHHOuyFcOJFzvcGJALsk1cOAlLpIGHArqzpZOPhruPnruDhZMhxCGDI7rwD1ELtiFcLImkBnngAsGDMHuHvYp5D7piFcJCVLpCQ9Gno8FcPWDxzKRwGkA8NXv4HXuyn6CXt6RZKEpro8EkClmIAsGgoAD5QBv4RLJ6D6M7ngTIT73Az6L7r7b7TJQAH7K6WSo02h36f7P7v4Xgf73BH7XDgBX6pBz7gGbgb7v4wBf6G7xwngABSGBoBy+hBr+9B8B0ASBlkpiE+7BkB2qy+v+tBgAQhZFIbgZweuEQdAFoduEodQceCeFIqwYYfIfIvcHYbbrQdIuuFfrIdwe-hEYEaIbQavp4Y-okdABvukaoc4avtEeIFiHEaYa-vUZUY4eeGoZga-piB0fcGoY8EJKDCinYyDtdtVJkpuH7Bv0t2qGIDseQQ2xsY-RICTpds8btPABwAACs5AzUnH+gXG-hcGq6-H-bgyn947H7YgPHU6i1vHURUnOt06cdXDEdqBgz8nkmLrl6WSCo0AzR1ZR7NHynKnYlimSmn6nht6MASoCpS6Wm2mGmSmV6kAd6ABRGulp-p7pi61wgAOXgHGZgcmfGcpr0QyYoCyd9yi13IibaCidwcl3FPcbiZTuycWd8bgX8dvT93PnWeyE2Z0cSeXCOeTsIQOfmCAWwVwT2fscwx9pMuPlzJeYwDSD43ZFgBwVKuCfgDTGzQxmEEkG5LeZDoYQID5mpk0W0XIW+dmFiBtLRC9EgCxpMVzI-Kx25oUUAmnhHUkFScEShrsr0WWY-T92cu1uyFJZoHJdhbScSiCdCfkDBUKruZOZGy3MZdiBGs5rGtkW-LDL+QIAoBGroFOGws1nFYmtijbCOiJbxfmEto22tvynRP2yxNqkdpj19IQHkAwGzmOESnWFgBrmK1zMhwexHCfztc0sXif3XBdZcvCQwAUvEtUp8tcfzNCE9cDTqo9cBjJgIH8tR3oXWAThUREGpwko+LTMoF4F4C4uCBuRkHAXTc-uyhEoi3TdqqeEEoSFLdAAErcpEvgDzaFctFLfGOTfDO0C9lkA6gkrISvi7YBbbczGcDfEev0C8tsqeGeFstjfNlkATaRxccvl7cBlkC7aJTkrUCeDKNbcXadl9i4Ai3IXteKIysvjTnLe9Qkg+mxTfWPdAHJz4ixUPdCHXGPacFezDYt2fZYaEjiC+H7ASEDb3cJxLe-cuRDO2VrfbAtfcmtZrmPbkjyHvbKV4oOOBmvdvYHGZ0ehOJINYIA7MRA7Hd9c3b9m3bgF3cl3KWfa9cUUEt9bv1PhdVQWjAP3QI-cUoHBo9sqI57J3f-afZGVw7MWEuo7Xbg7ZD7fCgeGDMviUzQD7awFI9df4hFlAlg-7i4-aieGrujTfXI-3e6tCGfZk7k53bTnji8tw9-fCQAHJfXL5R2bPQ2vK1Lj2N3ZOt3zWMxYAI5s4vOD30rQgtpHX-2fPBHGmmmqACnVI7B5LtJxJVJlQ4x5KdkCAvhFPYgEh1PgvPPKG6aQvxl1P5PYAaJQ3MvJc8v9PJByuxP3O8uyjQXwXeBIX2xLoTljBlkOk-O9jkOEYtYT3wukPW9iAsPd5gZev62PAXH6uhhGvkBhB-NWvc5DBl2Ou0ufEMP2pevLPXDv3PDvr6PmyZZVuPAFIZYyiQvjpP4pYFv2veuMFIUuvqZeuUq5aHH8bbh+w6P7oWdhvD8evDvDbE62vDB1cIFPIhBKvsuLvsArvZYgewVyknvLVFVXuYsS3q7LPQJJdYfFvZAscIFxkn9sflkQeRk8P+g8hKW3uhIm6MfOAceSer5Q3KfUfacngpuIXZvmvsJz2wZRyUebpxv3BJuwXpumv5uieluTLRl-vTPa7pxGOu9frfG4eGesiNV0VIUGOnviVmS0GdvBcwt9vHpEfz01qZRSVTuHqPqXy4kNvDuzSvjGlDvLPJdNvye6KGKtZBbIk34V9WCiRbfUzMzzKOuHeb0nfIA+u6znf3eZqvfwkNIfesNTjFBg+TVUyEuxJEpEBwAhEnZqhkgahbvnS4TbfQ-WfM-xJrjqA8fges-QpP9i+h26q0+zUVvPTjMcA0gyJvtis-ylww+5eRw++kq5VJju-SritmMJ-ppczJcu+1ZZ-x-F-MbbEF+e-AOS+MiLd1-Ltwzd+yz-m1zsyMYmQhuzzB-CwTAR+3zMWCWT-I2BzEyHyt-9BkLO+Z+ZoR-ozz+zrmi0ZAYofV-mjm3zxlxw8fJ4N+3DIiRP0mMDePHzXIydhaWOdGBgEEA0ACAsAN1Ma0gCrx7e61dwJCnRgrcwaVaHxgfzoDEZP+fzTAMfwQFnlGal5LCp-1qr5NEabIZARyk+ToDqAmAjpL-1uoGo8gEQXAdPxX7hYKBd1dXtLQxRSAYEwabXgQNhojlg0IgiOK73+7EA1BHVFbobSoQyClBTArWIzUIjN9tBvXMop9iqBcBEOMAaRMkABgWAeChIBwSPXVzSAEQg-bujIBEKWdXBTgrHB4N2ChtMeZuaQCIUF5SB822yawbYJkz+CeCMQzaN+B8GjMwu2QBIYEIRDQDQyQLKoIQkyE+DiAmQ4aJ4OAHeDwhfXEoUENl6hD6glQyIbsFwZpBfYBAMFiVhdBuCag1QuELsEiF6gmhOjKwckNggiFo26SYYTYLYAAxOo4PMJCm0VQzCpEXcGwJtA7axComYCNEOMJIjTCkAywyYesM2h+d4aSQ4rv3AHQXtchbQgoZ0ICHQsPQcRM4aM0GE309hiAA4WcKOE2DpcqwmiDsOahSwpEWOWkA8geAmIR+ZsHYi-0ozsYKBVA8QUf1Qo38GBzfeEbTjYH9x7+kIpAAIMpAhD9hcATAKvSogUCJBn-cZFCLxGB1CRvgDACSKIoURihuInKGdUH7y0hIbAX0BkEEqWcngXIyYDyNDaJwSg5LFkVCKcCWctqrWd3uXkAEURJRWIoETJlBEohwR7MJkaRBZE3lQ28g+XgqJvYU49RI4CURj1pHEiHIRFdcAqP6H9B1wEo20W0Aoi+wLRlEIiljyQBpCwukuB0byx1pnlZe-I7kQU0sGXZpWoUQ4YSUH6gQ4GrwmpFDnDICA5ApgMpJgEr4Kx0x6AYgOd01HncYRZA1EAyJMw8IHEOIZ0USPpGWiIecAXBCyMzFoBiAfo6CHmNRFMCixniUsazwFEEACmlnS4UpwxrhiBsXw9sSWOegbsey3faWGKKMKzEPs2yS7P+wVE5DkgV3WEHdBnFuocwZQHEB6PHHN85RM4SwE4HLbftK2oAMoFK0YCgBGKAACX6YYAAAgnlDyj9MAASoxQKgAB5cZlVFuDLkBcbARgAIDKR18t05Y3wNSMH6kBJx7IKWDOJdF9cAoNA1cSDzAlZQEJRI2XshJKDcx0JzKMojhJCCgTRIW6XMneIfHPjXxH478b+MImMAUJ0sNCaRIwkQS0Eg-ZCYcKnFrikwG4tieMieD1iTIkw1MmaFr4sTmUmEyCayNuqD9JhzsGYS4y0RQiuKCDZdEmKbipiSJcYBWCpJUi10PhRI6kYLyAlujtJ9fJjGxOpHqZpWngYIE7AiDaBfYOIAAAyasgE6QHSCZnsm2C1i7kZADUCJw+THJuQnEMlwckilnJIlSEIlluzhTRYTkuAB302CeSuBj-B-mfzsmZYHu-kl8M31AiQDgyoEeKTlMSgBSKunrSEr1FURpSmQAQNIGEHslbj2MJUgbrlKXJGVvJ2UtqWVMCm4QYkNgJ2DpBKA1wm+-QdtMQNu59ojMKUzqVP3j6tSZ4+xMrAFMprxwI+lNBIKBBiFDSRp-7J7o6KJCDSMAw0vADXGj6R8juSnYwQ9SYE7STpe08KeGWSB2CHAWSP7pACwin8-wMk-tmFT1z3TTpo0mGkQMAHbhSB+oVmkUFFEj9wZhg1KrdjJLQBGB4YM3tBEIwIiN+NA52LtWpEoy6IhmHAKwKfBNgPKCQLka6A8p5BAZe0skWvykFigmAb4C9PDLnEBBGkionKkdOgC7Szp+09BK+xpl8y6yV0uOOwGorIz+wpgu6cdKBkdd3yyo6RKCMYTyxLgGUn6QuCgkeY4RLA24GSKREs4URf-JENWHhGsNfEz4GGsijQBSVKxbosQVjLX4UjGx6Q9wJrN+nfBqWTNDXpikPHqUOEF1VgC8GDn9hCMus5gYiNoHIiSgeMpFITJYHmzMRloDLjbJ8p2yqIffJse4DpnYQHZe-f8G+AAg6jB0+QRWTUG-4xyPZ9KFCNWBekjoAgwMd2UbNurnkg5Ic8aYZiDGCiQxpvAwXHNuzYiI2mU92bf2tTW82QtshkeS0nAXh8xz5X6SW27FCj+4XcnsTz2FgijQgkAGeX1zXK6iABIEEQl7PtgEs-mY0FWdbDVnbz3Gs8s8vvK4HktPBlnU+crO7KXydgkAC8NfI9nuA25Lwe+aBG3lOBycynYNJ-L67aBJ5VY60REN5bWiEQh0jwJArTlTysesC12W0Cx4IKs5PIG8oGKXk9zx51ieyR1EQJ+cvaDeRAqpHClB90A-0GCQrCemD8n8T08MvFM-xMLyhD7HQRhCamizX0aDEoMNIsB4kMwP7d3u6wtysLwyvzc2OFMam9hQAOY80dmMh5zyuE7Gf6MDi6nMgikLqWqZcHqkIwnpuEHMMgohAdjYoiicxenKIrKLDJkErOYcHoU4ctFa6J6YgtiAtjjZTAmxZYsXnBj159sfsRvOmwecaxCip2J-jcWYAPFBqQcYwAjFfC-FY4zPLZIokYA3xakAADL9M-x8YkIO5L1ymSQJ4U-2FZJ-nACYJIdOCVJLQSWdkJ3E9XGUrqXYSGJuEnRf7HDJETB49krpYPwyVZLcleUeie2CaVY4Wl-EuSWcLiEsstEnEr4dxIwDrihC-EzxTECeDhThJZwr4ILwWV-Dng+vTZfZO2V-DUu1xVYhYr6V1KtZzfeSe8KUmrhwpuDZdLIp0WRL3GKij2SZOAk71JlXyvBaGPhZOwQu1YrzmqQcUNjfpKw6wbmXuWKTwe-YeWjfSjjyTmWWOQoQajEnmSt09il0cZINRxjfmLSvFUZI9nJN1azw98mEtBUhc8RMK44QRnYwFBomtwAKFLjL5VcngTScJV50lqpsWV2gYmXaFJn9xrYwK3ld52y70rJhsvQVQjFb7+wqulKv4dAKMWrimQm4rwQEHM57iBZz2EWMQL1XhljgdgfPvhMwD-NuJEWC1SWl9nqrpYmq+sfKg2o+MdxtwJZSsptUSS0EjNHMBm3op+Z6xDKxiB5X2XWDwQ8XC1acusH8qYgMUSNbsWjUiT62KnC1cQDjEBqbA96YNbKtYwsyreAuU1TYB0XYzrVnC2ET4zYk4hnFi4HDiYpNn2rGJUsTVfxJhrbjLAOIT1bxNWXmi9BIZVEFmr8zxTJhFzSSOGrWFlBqFJykSf2oTVTr4CM6nZamuDThSM1n9IdfehHXPD81aMlJOPIL6lq7AOKjMbau1XvLnVx89OJQBr4XrbVobQ9fWO9U6T0AMi29U+svWvhi15qn1WWtqXOrTF7Gc6OJJfVHAcQGSqie+M-E-iRlSICDS+Kg20T8laan1eutwbAaT1zKVjLZCeDAh12mLQ9fIorUxBv1paq1bUobUFiKAGGspeBvvGZKcleS3CIMsY3IbV19ktDToxo19LsNncvDf-1GqqxgmqWDpAsLholExkRpWdIcGE3-BRNc-M3JJsxZHoZNxCaXjCUH4XSDygpUVtjH8Cybow8m89fUSU3jylUg9AzRVUqQKb2y1mqqbigs1qajNwArTeGXSB0A2oWOUFWMmYWKa7NmLGTeAAamqb-gYKFVbCvPW6aQthm6LWal3nHVJhobQLQ1JU3oBLN-sWLV0gPQ8rQVSqWLe+nS1Lo00YlcLccPUwJrBJNAeSjluy7BlktvqgXBZqC0IxHNoWmVc8Mi3QoIQrWwzT1ri19iocuo64fkI6GOCkcWiGrREvM36biEkgPrZhVK00R-w2QOMU1pS1JE9N0gdLXNpm2haiteiRbZngq3RdVIk2vlcUP03NbAwHk6AB5o3g6JoVsq6ZX8IUlIBHlA4ZFUzJ5DeCztEcdzZ5slUAcstGC5SmGMSXDiDleCjQMVvtgJKc+EOiNTqMLnnjvUy2-RAlqpWpIKtsXarTStq3EB-tIga7Z2SlhyByAdvSPoP1eTx9ZW8rSWEqx5p1cReHPObrYge2HaWwtkeFW9sRWWhPtloJiRmw3gwCfocA9qIVV04UI8RniqMkN2vp+iZqKYF2RgoiSvw3+SAJKrAASQKUmZyOjZezxm6s7ueZPWinDqSWQ675loPIKjrkiHa-kFWg3WLxTKna8dNY4Mo7s57+ZDm6wK7uPUcE4gAAnE8z1x+6R6IamQNgJD3kRHBIav5r7A6gE6QZTa04S6qlo1zMU+gWnC5N5oeBQ9EcKzlZ1UhKBi9ca1GX3I9B57-2xwBmRkOj1h75J6sR7PJOlzjJ9A5kQ0lLNum5669XaGZY3pHBgofdm2iejIrwDCLRF7UATGava2qr2RGOv4fbvIDPAhFI9CfbjrEwgr8dlAMfavqwD4lAwAuCXgEFBVpAYo84OAGdGtj1MmVPjAoDiHO6-pLu13QwGKOI5YpZO5AUdrMHOWNqpASCWAJfqqaftmI1sWCjrjBqV6ngZkcyEfqUXZdPoH+igD-Bfqez+wlegrrSrmDeyDB+EasMGpz558ykNfJHAUFT2xBCNPk49R+vfUWrSM5GUg-2urD-7ADsSYA+ElAOjwvgEM9wJAegNmRcQoGm9YX2QPQGrI2BlCM4EIh7ra9Q9Rwc-T4PmQQuhqXhNlAUNmRS9PBnveHtRUzL3tq4fneIgwPZcHhJTEXdDDF2Vdpdf+uXbg36hej3Av2yw2iDB3w7w93qMxPmsxZKoqA0gHSI9lP3kBmpt++-ZD0f3Q9n95Srdu-pihf6f9VG36enUcMFBPCLh83RGvcO8bJS9RNctlWvW84DKDIy7FqOwAcQ3weQIwxErMMoAbkyRuqjkfGSy72An9Ow6MvD1lBCQZQMoZWtRDp12V7RxMBYGtJMDuMj4EVcKCkgFKe61VP5EwCP2A6rOlfSQK7IAA6TAeReiqwC582AdgXdqjp-of10EgEQveEmYPdkA68wOY6CoWNgSlj6Q1Y+seHTSICD2xormKPl6kB5w4ycoKBA+OgAAAXrc1ACrHyDjxrHM8Z2ONHygAJw45JGONN4L9ZxtKABE0CzofDfhkcAsdBObHnYEJhhtp0EXyUcA8lXgPJQKYtArOgYVgJceMOYnXp2Jl47uzxPhdCTxJ0k6lzhNWQgAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABCAzgUwPozAEzQDwAoAHAQygEpEBvAKEQcQCc0oQmkYUMUonsA5oQAWaUjhLkKFANy0AvrQD0SxHGJom5eGAxRSAIwA2aADSJiIKIlK5EA1stXAmcALaIIw0sSibEAMyIhOjQOoEAdAFRFLSgkLAINigocBCEANZoAJ7mLBBwTDgoVHSMzKzsnNxgIEZGhPmFxbHlbQwA-Mi4aMDYaDj07eUAXIhoAI4gpA1ZuYii4iJiEk1FJdJDw+Vdi6toBeut26PJqelz5vowDWstsgpx4GFJbqRZeoYmhKVbngi8RBGNIzT7GNCIAC8QK4UEIACIAFT6cGI+EPcrxF5IYFwDIgYiZHIYACM5jmGAATL9tgUwICUCADCiTFCzmkidlSVdSDdCMCIKCWWhpHJtjBgMFGcyvhDIfLung+mABjSTgwWGwOIrev0cGLhvJxkZ0DQ-rSAdY7mzSCkORTKTy+dLhaLzcMJcFrfLoeAlXq1erypqqjrlQMDeqjWgTRCykHg5Vtddbgdmhig4ptlnGDmGFjEpx6Zo4RSyYgHeYAG4zEAis0W+nWF2ym12i7E8sp-kgoxgkxu8WSkJM4VQhV+3UqnCBk7oKCfPkCoWy0zuhOMMgwJj82Gc7kWXk7yuIGtGOvSNcbjfd5d912Dw3G03x9V0wHe9kdrmOxDdlvgo+6qeo0aZFOOvo9OGM4Nm0ACQ2zzouDQASYa4Ide2xbju2H7r+Z4XlemHXv+o6ytIDwYQw0axrB15Id2dzVrWIqRiceZtBxHEFuEOBcGQUBeIQbizomWpIB4PqIPCuL4sQ8LrtsXSyQSinDGMkkKvC2DoEwUAKcRiBdDpJZqdsYyaK4O5uOY8IAKpgBkYBwAA7kg6iaNoSQALTeX+sromxHEhtqfEoAJXhyIo77WB5WiFv2cqIG8HzCj8cgxfYrBsnFXm6GlMlwHiBKBbQmWWNY0K5QlBUmXppU8UkDgLrwLCkG4nLlnM1J0f8TaICgbLNZ15I5NSbEhUgg1SZO0FGYgtT1IgYwoFFTiII19Iba4HgAMoAJIAMIAAqIAAUrtiAACwRCSESUk8CThFwPAxsAGBoAR2hgEIvBuJQvWTYgL21G4BiaCEUD-VQiAAD6w2ZwPcK1giQ9DDDw4jL0GEVJi2GjAOY0GIN1ChUMA4wRPAdws16gTDyKJtSOfAIDg4BgRh7n9UBXKILOzkDL24dzVAAGSiwsKz0xBf58-oAhrUzIPtWg0uvhU4nM-LbMc1z5O2WAKulYzzyFgN2Rg3AfZwO9htuKrIuA0mSB7IQ-7k26JtPUkL22igMACGA9tgHCjuvoL3DawMuu8ATtl+wHQdoCHxuPdiZyJ8HLUWzjZPo+HzuS0s3au+70MUYrpvhAngdZxgBEOx7dFA6XvINGXlCe2nZsvTFtgLngEBGKQ8U6GrWwRyzOuc7H3O2X3IcYIPw+jwgqdMwvA8HCveU8DnVvj4wLdSyXJ9t-TFePBvlr90v28j7vDeHxqhet3yHeX176cvTW-CynfQ8H6FmfhrUML0o7sxnqHfW0lf4wH-svIBOh15VySHAhB99V66BQPvPOAMC6azfg0IhF8u5M3QeCABO8EpPzDhPV+Z937nxFmQ1B1QObtQMDgUgH18DEBYCkMedCj6F3AaQVm0coFx2ksPMG3DeH8LQIIteDNu7hFkVwnhZAtD2z8EwFAICgZvEJDgy21tbYq3MCQlhqimYaPkTjHA2RDEMOLufD+rDvbsMmjwfQfgs4uM1mIiRkC9b-Vsj43g5A0BZxQV40BHAFECP9ggQJoZrEe1sWw5mdI+KFlBAQRRyiwBpO1ME6eYSeaIERm0eEuSYD5L7IU5JyCsnxNyUkjAiiJDCJfprKBGAWDAGkSSNp6cOnNIwO+UpOJYSDN6NI8aV9skTL4UwDAMxoH53of0uZQzpEBDGT3ZGkw6yQEbtskRQTI7iIqbPGB8J0BTGThANAcT04pUwE8s5ryCYlGboXKRjzTkvLeeYbmJRK7xO+aC3x0Ss4GLDowHZ6TGF4M8enPo+iWp+JicnLZUB-kENRUsCFRzwgCJxfC-FiLyZEpRcmZhdLyU+24DE3wXIYXnL+YGSei08GQuWfEl6w9eBwv8finlALrkYH5W7Jl-0NhQu-twYwaQMggISewiBMcCW2TVRADI7yzafIwAajVvStUwljvCc18JwUe2VWbc1Zq4BOM1cfNxzpMlOuetwHwxBOaCmAZayeOqpFz2kgGoNeVjXhE2kkpRKSSmhtcRIDxvqkgjwELSy5fSSXpvcQqzuLKkDOQ2UwHNhB1D0quWAmopNq3EEFV-M2WKxXZqbbW-N2pXY1tLRUDtlaDH9ulaGbs-a1pqNZfXEehBCkC1ETckJur518Nsh0ONPsej4AwBSG2kh8F-EynMNkrsBIZh7ew3+nIqBdHhJu5aFYchrRUBtNhg0XDuEQAdE651Lo3TuiSadSBPq1midI5OVZeVLtekYd6YHzzfV+h7MyXQBrkzMmMZW9t6ZoaBEVOSe8zGzvPA7XBGAbaypVvTcwUHjjmRyTfReiCsF4fVF0RDUzmNb0AWxyN9GsPMwoSYKhSDUki3w1xkTmBWN5Ug2AaDQnfaCNrpKyTHHxhng2appOIcFNKfVNh7g9TGmJuKexk4nHtOmZ0AUtZSahEwME0Z5m9ieHNMcxJ1DmnTWbX5Jw+R2iVZ6NzZQIihlhjudde6kWEXIttBcycYzr1nnco01ZrToIuW-Jy183FCLaPjEUwx9SzNzWWaUllvsFWBMleU9wSJBX1M+cy1xpr1L9N1cM8l5m0aYDBqc9DfD0bnGIemH4QgCbPMWbi8V6D8XrwDKow3Ax2awsUDoyV0r7QLJMCstI+yjlnJuXNiHUg+BEC+WqxNt5A7RtTfAOYdbgYQJC34G4BpMAqyYH8-EaQvUr02GIIGrk-CYCfdgD9jAf2ns2GHZemipo3smfcMQOAfoYdsMe2AAH6sGCZQEXUSqN2IMJscc4-7i2EvjHwH4XAH1FPbgQAEmphkE3Bd0ZoAxVO2fEXW9TmnjBptM9cHpuE-2gJ1rKY152pG6ygUZEYSgbOug+IbtxkOkqifK524x2m05IxI7jO6SyhQce2Qck5VySAmZQGyBoK7flRulVzEK9Oy33qrbXc2rb0HAdA3Letn3JQ1JdH5WpMYuFxtk+3EOoQhSSh+823zhgnv5dKMVwuYPifNvzYxWbLjtmED2aKcmgzi6ZV8AVzHybqz+FdJYD0j2ye9dtGs+BuvCB2aTOmXNpLvXa+q3r+szZRX6OZtA9pvLfzk+9RRx9NwHLUs-IuYSvHikgYG4jH8Y3wNhwittFSiVXXmWiWGEDIfU24-H7xafxVm2J+7+fCbxsgJ204v+hntkNSr8f-FXfgSknk-kOMEC9OrixNftir4l-g3BvgmEDP-tzBnmxOUHvvjhfoXFxjPqnoOrfoVmSqYCAYaLvu7mbOnuADXNOIQHbEopXvWrKo2rQaHlVhHoxrhEiJQbpgMGiOYBQYbNwYWnyMwRXFRNUq2uECgIKLoBjrxtQjoBtvPgficmlrlpkoDowJlBCmyHlgAQQY6pvrBuyvbivqCjyjUuHqTDUmMAGsnD0tIZRlYGJlgjzjfnoS1g-inkLlIbYI4XIeJvSMJO8F8iCtyrgQlpSu4SHGFhsFLugYYTKpvM4fJhlpplIkkXJglKYrnBfNYcJiPPApQpkUNirteMpHuDJskVkbgrkdeGMPykFGQeEFxrVs5iVr1JlBTmyC6hTvTGxJlHeNNANA4bIVUQoYQBTpen1ICFwf7IHAMEMfwVQQMD2IKCaFMZfl9JNhToLicAQPTj3qLizpKoMeYLMYnAsa3pPtVvMuJFEXqvnk7JrKahAWRoQKnlfj4jNuXnFuEcMPRgOlxlQQEt1rOJlA3GyFfsCfihnuPiVmxFQcRrnLCdCYvNkQfHNg3MnhNIXA3NcdJgURgnxikW0f7urIieiX2E-JUcUQgEiRiS3opFfjSZgo-JAf3iVrsU-kaAwCBjcRkaySGqSbOBSRRk-AKcSdUWYrRkyVscPjxmMXSbQi3vnlyfCY8OtJtJ+jtD+kdKdBdNdLdFEHyeAkwArvgPQdqJdlJNXmgNcX5tjpzqwNzuYDsY8erEDECgUEvhjgzptPargU6aFq6W6vMNySaajj6Zjn9padqrcpInuMAPPGjr6ezP6QOhzg-FzvolNrGdaguPskmYgKMtceTqGbmU8aGAMoWeYEshIUkCLlWMzuLhWR6YCnsgskWYcvacEbcVULCXSPTkemJFWXuPCK8XWPan1EOQOuAXLtSSxHmeUgmbHFidJBOXdtcRuZrkOYQHAZWb2minuYuYCZAMCP7D9Izk2WLgEvRgeUgN2OGUzP-i4DRneW2YQlLE+dki8ueZgAYJTjomYO6eUH8EDLhK+fbNiY8JlFAHzMYVyFBs2VnGyA0XyX5kBSELgigMxGRt2kDsLNhbhXWC2nyZBV8thVNkBaUKBSOYeUsORRmUBRnjztRTQLRdLg+efIxfiXTnYVechepkRaeDMDhYgAYLaJgO+WBYCsnAIHBVhWYv8lJCYD9ApWeCwZprhBhTRpSWJRpXnhJegFeW3qcKpfJcIIpbnP8gADxAhyXqWiWmXt7jD7bm7wgAAqRUyUtg2Q8OAgIACKA0BIgaMAAwYw8IiAAA1NUt4XwIIBKM4npVQDFVOZFTFX8YwCjD9Ilceesc5acGbjuJ5d5cAGgC5P5YFTSsFSDpzOFdJNFbFTTtlQILlclY1WlY1ZlQwC1blQZQOipMQPSVSeybgnPurEzFBhzEVISNJdsEzD4SmsJQZRoe0Hyo2slZlZxoptNeoO8ULgwL+XABeQIAJTeZKgCZlStLgjLK7JtULrsFLAZd1U+otfKs6NhXnt2P1agW7qAfOopjLHBVJUviYUhedSHOfu0EVVZVbJbmADjH6AtEbFMWgS-qtW0JlORWyC+ZhcQeqEDG9eRcNaxSrF4QddtCrCxVRWTajX9fTUDlNbiLNeqfWUgKKSRrQmNSJUYONX8JNTtczQDWSYpAtdIbDSaLhfhScOtfUBLZpWUfNrtYSN1UdSdWdccfppdcRNdWYrdVLPdYZF0EhK7BpbhQVYxm9f+J9U6A0D9YpEaIpCBFBkDfBaDYhUceLlDYlm5TuJSfDYjXYLQU7hnGpinHTdROjRge0FjUBTjW4eRcLRHW0ITeLcTXpTTfbOTQdcTd7oxcnVxDJZrEzTNUnVOm+lqdtN+r+vqQBkaVdBGY3hDl9tDrDrjmOjLlPCuRLnDvCODpDt9puU0UkP3S3ZgBDoGoAfJv9h3S7EeZLmtOVB9mPVjl4osXuOuECnsFOYwHsBuNneUECimDvQwCmPvYLkCthCfYeNuOfZvWOVAtfVAnfVFmOSTPUFOe-UYOqAfYwECmFIGqQNkFOQA8PH5ScL-WnmOUVSfUVQmJA-mQiG8HBRsgYCgPasg8IKg4NNsAg0ClFdfYwIQPgOYNkFQJCAAHyICXYxXgN4NjneSEMMDEOkPkNUOXZ+R0MX1jm8HDAsOIBkNQjsOICIgCMMD0M2pKBMPBAkMCNsPUOICqBcP302oACk0j-DgjlDCjqjYjiAEjcI8IPohDmj8j1pCoZD3DNqAAhPKCY7I1o8I7Y9CJYyo4YzZRow42Y4gHZQwK46-TajZZCEw6Y0Iwo0E34wYwiBQ546w2E5dlQ5E1Y4YxQ8E+YG0KE9owk9CHI8kwiNY9Iwo+UNowwNY4wBaeuA8Evc3VDr9mwiTVCIpMYssOIOYKPbU6vdiIKtUwPa3fU3AAYAAFYHCEqNPbDNPxBhOX3L21NTkkKS4INtDtOD2dOFjdOWgWAzMrObzr2xxArb44BTkHOLMU1QM2r7RgDKgNLAPpMXNXP24nOnNAqYMYDHT7Qn0vNvOPMU3PPkBYMACi19Lz-z3zB1QKAAcqQOC9I5C+CxbULlUxs8s9DkkXpWM8MBM2E67MAHnsi5gDs4i-1Hi5rlEovKtui+0Ji9o-M5eJszU9szxoKkzKNk3b03U14hbv5VAnmSy9gBgJOEwEYNkIIBgIM6QDWFIfwL4PtZhMSxPSYFnNPeAKC+UNmtyzIG0MPVNJUENeDZrXCHmfsfxXqy2anrYbgCQFs3014iTeYC9XS2yyS-oGiTbWayDnYZa-S9a9iJRkMyM2Jfa8S0katiq6fW7cvia1nKoiYNYMDRgAIMCBJU0p7ShdCPOASBrS2Q8JqR+lXXtHqf+oaTdA3dfCHFoNABgM8rwDoBgG8EwBqjJkuQ2mDBDCQo25sFViQt9YSYBADqlRgOlRhvwDlcAM4m2z2wOB22VuO3-L29cd6W8K9MFn4M3sOzmjyxABAIFXUBBiEM9pu-I4NDFYQKQJuzLPCJFfepFRFbZI1aexAKG9sBew6mu6RUzOANougJDGu89sOr+6dR+yPOgKUHBEXaGC1R1QiI1QuzwugMuysc09mvy2AJ+8BS9ildJBQPCNcYB-opgHoh1Nmk24wXLUR4pPevygZGViKnuER4gOLGZIQF-e9Q0ER1QPDEXEIax5WgDs49JJuqZV0C0xIHR1JA+lR5loOeWwuFWwlHWxqmR0GGMEx-6rVQNvJnRwxxuDhqrNNg5hZmxxbfelBzFbh8ZQR8Jye8OlZwIBRF1RuJFYO5SZRhYrhnp2XmPGx-ZwmI541WZ-h5oB1CQsHoZylWzuiBJ-rih0B6rDJLCFOdmmcdF3h3oIF1O7tszLhIp8MF0P5wiFfXwXuK7ER7bTZ7S-56l0wCJIpCli1WV+R9JAAOSDvZodXNc1dDsJWjtlc4fJfGXPJMDOIDeCMfkMFyr2wts7iuzDePtBhAq2CHO2SFBpXOT6TxwpAlhpVmkmDojpcuV5fTd1iDdfXnwzdJeoeVfVdReoeWdnf+R8h3cVczfXFisSsQBSsLga78JpBJo+7Ef9aDapILoNfzdqeA9gBTnuctJA98KPvNOve2jvcwC+AZ6N4-cpD-sGILp7enA6d-cg9jmbrgoUZUa0F-emUWR8LXHDd7zna7rfevIpB-dKFgGqehXg-k8aFY31OUk-6IQk+ue6f1PfFjzY+-VL3o-oDszrZsjNM084J09o+M9iU56w902IE883VidX0Ne4TnquDK-RwvZWJHkM9JpG8I44+MBjAJq89ieP268G-m-S-Dode29a9aQI+SvI+fcsSRc7A307ju9mK7EYs+CEBe9I8o9fdO8Y-+VY9q8U+B844+v+2bOS8W-rtBTo0L5k-Y8aGemE9TnOek9vlq-Z8xgvjuiX5U+kFs1-gO6qwLr3mZdHj4+dtfmw8dcw2FLw3W6nYi9JD24aBbpICDk0rM+jed3R5d9VaPmz9lY9-rrSRW4nagb6fJrTk0qj9nAlg1tQBwBmqYDiB4ASDN9T8PmN-M9id+ybfXEn86a6QJS9Hn9gf0USDj-RHk89kfAGDYB8Q-Rjys7NCDzQvAt9cIMmYiqxC1biV-+IrGTBMTgE-Q8yrsP-rgEEADo0BAA06k-CwEYCW+3YPAcgOuJEDTqfLROpAMppZ0W+fsDkJQJ4owCjWFrSgWuUYrgC2+pqUgUAMKIgC4C5gBgfXx0jOtYAEGXvlQOArgBA67MX+BgG8C4ATATAWcNfGIBjZYeGNBfDenz7R1MaGzUgd0SQFkDdAidMQQwIQKFw9BM0KCHqFwK5cEaqZWdOsjkE4AFBPufgdRVwJjACgKgxAegMvK4CDBUuNGpXwhAL4Z+xAeAkGHApt8vBY7TvuELzwxCWO5PAulHRqQ19iAv1aiKQTopj91Aqg8IdcVahiA3AGyd1gzjwBgMViKAcsBUKAbRwUAPUC-szDlTVDBOiAWodkHqGUgfgHXPXgbVGSh92gPwMJkUPailCNA5QmMHUNXbFDkIIQAYfayFwdCuhBeZ6FrkFZiBocywnpDUKmGdD2YDQ4ji0NGQNdthPAboUnz6GkoFhmEYYdo2wB6I8YWwvYSsTOENCfggw24Yez4CzD-woyVYUkFGElDgAw8KGOH3iDgo8yII8gPTl8RtQOoQI2tuCLhxKoYB0IqALCKBHftihRwjaj8PahtC2C1HdYU8NkwvCJANSO6viJEifDgg8jdEZiOpHYixh7seEZ-D5JMD2YEoElrCElSUDuEVSNgerE6IGD9BvgwwTDkwr0DqKOJTWBYInBWDpwDXTkdwNXDtDyAbgsmr0JhGaBdAyDISKQNhKkC88AozUVnWuICQ9Eeo8gEJAEjmBTR4gqEXHTE7AA24AwSKg13hCuibg7o7vlMBmCHp7RUgJqu0C6DY1eSjGH+HOgvQhiXKnIrAO9HfC8j9Mdo9UYKPcGRjuAuEGMeLFb7bhCAAotoZaN1FIjBIllbsBelpEJhuwhYqsUGGLGJJ9Rllc9FIDrGnNXYtYxYZhHzodcvRbow5oUMEAxs6SWIi0uwPzGyM7hVDflAOi8AHAMgGyXQLfz0iecNuK4hAOYBp6piaeQo49BsybHzIlcJOBsdaLLGEAtxGo3fuuLAB2tTmmEHcTKLf4SQbRWDHXJVC0jeiTAhzBrkSIy4nVhx2CJkQeLfHRtsoHlAABL-MMAAAQV2i7R-mAAJQ8r7QAA8uC0ujQg0KZFVgF4Ef578AQh6K0WaPrBNDUA49HdIRN1FtDmoWAHdEbzXFrNKJHAJPjRJmB9hlxaza4qxPqB4TrxBiPMhBKgmwT4JSE1CehK4msBaJeAfAPRKf7jETxeZGiViP-4EA90xIA9ApPW5ySEA3kIETv2VDS8GJ8knURwGIl5lER6I5pnzgFGBUhG4ROcYakXG8TgENkmyIeAxG6izJdYsqmWOcnGSPJpkx0aBKtB1B8WvpPRGyAAAMcgPkiqBciDJQp4wmNAlBgASABYiUgoOAAinQhtuYUrKf4BiokhZRoYXKdxnylMAf+mAOKQ4J4GqxKBpUgHrvFSl5kOCRPZPg1LB5NScApXdtgOhYC0EapsobgNgEaChSwSGzDqezy6moVyqCU0TI1JSlpS2IduFgJgBcgzANUr-bYJPE0FqCLCPlD4NVIQFiDJpyUmts1LyJCw2+wPBMF0Fwg-C1pG0yztjzbHlAHpGAdaUYA1Tz94h8LSnhkOyGcU-wq0j6U9NykDo8AEw4oJRhKRiDpRZNXqCtLQCPSvp86b2hoLnQihva5QZ2v6LtoTtgKWMjGttMLi2lMhnEVIcRE6JijsBtEyUW+TMnkySZcomWAc26phjRKaAbqmMHemfSNUho3AYEJIJwR4iZgmVNHioA2DgZyM0GajNdhEyOOvMp6Y+St6uZXRsYcmYXRyHSyUZm02HrxQOIJiukx1f2OCFVHghcKZkjoroNFHQhDR5AqUQTMZl-AQIegvjscwxpb4wAiVUsQaIMFGiAht4u8QwDPCMzYxe+DGTuDPB44Dqb6REPHMUgijxRNMkVg7JoyhzHR5MoGG7IVH+glRt07oD7KbHmy0IXYhgALMgLGj0IcEDCIxTyIqiWBMwZ2UENoggRIZdhbgKkgznwys6NFOOQnOZmhg+xPogcc-mCGeysCfFZgU7J5rNy3c9fcAEXJfEkBywxAX8LuO1nY0XR-Y-3owHvSfjfRjGU5AGOICrzqQDXcih1yjE4RRksYgPvGO5Ho5BEZs0+W03XkZjqO3AG9GvMllVYH570J+abO+Bry2m5YNgYo1UDxzEQV8rMW31PliwJYV0-MT-Ia6LzR2vs8sefHgWvT2gFY6kDgraBoKuQxc89DcODnDBz0+CsuScB7GMZh5X47DjAPAKhTIYnWYckDOXKhJ7kbCiJKFJ350gh4qAMeODJb4kJwZfUxKb0REVNDmO3YRiGNNVnzR5uRgdadkEjhmk7sHXLtufHEX3ZaqXIHhLlNGkgCLxAUm8YgAfEIzhRGzIeGIF0C5S2Q-UqmjJmGklJwZ-RDZkQsPHE4+eCYLxcXNMVESy5Ai88OXlsW+FwZBC4YJYvNFPjC56Ct8eewPnfjWCVhI+XKUrZHdnEpU3ouEvsVjTXp-41gCOKZFeKQJei0HHNMzwnirZTQiyaCKsnXgHF2jcIiy0MUsLcpbTEyeYsYreScJr40KQYhqVBTBxS+UTMN3PFZKuk3S4iXCJxEt96l5ARpcMC3lUMakiI81uzG2EytrwBkvyQRMCWeTHRr0qccDkqW5SDEhywKfnV2Lp1qRgJDJRMuG6zKgR40-qBMEmbQhhow-VWHd3hBD5MlmgYBhsULgfLwArMxUQMAa7+wxlmAJ5VkpeX3KOuYKkpJ-0JSTKgVeeO5WyOuIvQVJ+AWUIemI51cWxncOGLDHyJTcpYF6AdLwEKDH8jJdJPlvipPaMr266sBfPisJUcSdAEQmOhs1PTQh8VakrkAeh5UIBk6mULdvthhLirAJ8IiloZCUlMjLgUaNlbpOpGu5hgFUTkFpPwlgANV8IgMgmCy5srzApy6Vf1Ozxsq5lBIqYqLPnl8k6VLAKpXTJZXSK9xRLbpWyBCVCLUk7il2coSkkEBCVCk72iehyBshhV+6YZApPJlSr2AVq11UCMVXERlV8I3VeuVCmGrihWq9oDqtVXjls1ek2kbhE6V0iwmlqmEqVNeX2rKZjq5ljgHZilTCg+ykpHKuI5GKO1d8veTYCbVVLWV2k3HB1wf5yrB1+q+7P2rHXdr1YzqhlUOrdUUSO1Hi-qFbEMlDqhigkmCXBMQnIS0Ju0NiFuuEm7qxJGE5PnKvNXyM11bawVNrPhB4hGF9fB-kYo9XlA51rq5lRRIDXlBMo16i5WyC3UIS7IAAGX+YHq-ggGkDWBrZBlrQpl6sJn+sGUgrNY96o1LirZTu1NcgzbHLnhb7Mdc8pZNwnSGw0JAQ8KAuIW+2ySRFiNpsBPs2jzI-TKNwqDDcvjCgkbsQZGvDQ2jloEa0RbhNjabE41ND5ZfCJjenEiICaEgdG6WkDEY0DoVQAgaJOzAmW4bhNFG2cQgEGZwARpNGqTYirZFcbF8y+XTRxpM3r4L5zFIER12I3aa3FSiBcGZoMSObZuh1R5VkqgJiozNhAZzehDvHYqcRqiHVfCAW5pUAVw3KcjZuwAPAmYbG2zQWK4DsbCU+m+ZTIpY0mFJNHGjLeZtSX1Ar5JIzYWSMqEUjrwYW9zf-iy3xaUAiWpPOINtU0jaAYhZhvI1i0jSJNCW2jZVuq0p5Gt3YyzfcsC1WAEQy3WyKVqBUgMEttm6LdkgU0QYBctW15QsupEw4Gl4fPnKsoa0nB8NbmoFTQTQCKaV2gKwbjZyTzUK2gRSg-vKuKGZ0sZsQHrb2vO0lKM1dcmuU+n5S+a2g-mgkWtCC2rdQt22wblORm1+Apt8SAgAcCsBN81BTQq-GILjYJsBmBSFNvigHSR8PuKJP9vNvuWwRCaS2yyatqDDragwYOrdpNiEH9x4Ek2F6sVwRzESolzDKsPwLYaLCYaDOntRTSOz98kAAkESkwBDrpUGtL28oPCFR0+8M8u3IzgNCHHFLLt7Ua7RbXqKkxPhn2kSN9sG3C7xWiPNHQ3D+2d44VWSqciLuj6LkMo+4i7EvH4hgM2QAATjkAxaLdQDOrSECUHZJQGDuxEQ0ghi8BzA7Kp2kGpaFkrtBEc4cEgCkiRTsZjAV3c4ka6NdbIEQOPXmopnjztB5QSPZZ14BCz2gkeurVgD0TMiSh7sPPEgD8glkHagMhgFnvd256xKbwXdJHvuwqKgG6ihXInHpXJaCRLfZXarsMYzBVFTesFNJFG0A7nsDetRXoA0XZsmYZvFIIducTYAKo1YTQDjH9gPNrZ7ytkPL2yCK8p9QymLkxxQ5WAOqMgXbmxBAg-YmAS+65ogD46PIfR4dDGqnvhC+Q-I2+ixVkuBj77rATuRhrIDZ3tD7dziJ7u5omCihEA6BDiCBDlV6BD+4MDZE2pWLAHvaz6xKa2unVTqbVvRBA+TNP2L7jql+6-f7FUr6Rw95e--QiCf3XY5Vfa0-l-qf2BRQDUdLiPWsz2kHH95BvyMN0HTE5BobB3yAnpT3-7Hd6ypbcst2XOiKG3VQAztq7Fk6Q4FO35bTuCCs6cWYTaDLN0H1DdwUUui7Y7pnGXw0CfG6ArYBQAuQIYc+qwG8sBATB19UyhXvoHp6x8d9eHPfRVEP3H7PV7+ICkMXUPnjNDP0ACTodJhS5ZaDQcigrRcrwhnIPlMsYIDTGkAFIcEMYJIaO0yGRBk2CYCbwYqeG88e5RnSoa7gxtEAkG0DWeqwnPl+lVSnfWYtqVxKyJwaogApIa40T8V0cC5UxOHWMZuJfYVowOk6MVHhhTQoo2BokkLhmjzawZW0fMlLbNlOyoMOmqu3Rr1Jsa7pS5qfa5Sc17UdEHWLmOy7xOvCkwOsbcBuHFAtAbfTPsICNcOJhAchQAB1aAXasoezAP4w5CgHUN7QI1YYA5MIMe2BDgfQClRTjEyi4wxKuPBzbj9xqGVAeeNVdJA+YkANWDzzzBcIcJxAAAC9aWiAW420E2WQngALxnI+8dRN2dIs3x+EGfqX1D0MIcQNwkYZMM7gLjDxnE3iYcaFcbUcR-VGlQgBpVDm0gRrg8DfQAn3N9JiE08dxPQnmTiDYLWlQMAcmuTu3Ek4FCAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARjoCYAoKOJVURNAfTQBTADbg+ggG4BDYZClJoAcwAUaeDngBKUAG9WoA6EyD4kTNB79okHACNBmVeq0GAPq-2Gvh3gPiZEJScNbVB3T28vX1tkZGFBKWhgl3DI719rYWFk0LcPNKj+GAATQXBAwWKcgG5WAF92GAQUC194KUVFSr5hXnhkgBpQeAALQT52xW09L2NTc0s+AAcpREc1ENAAMi3QMakqjZcAXlPhsYmO2oaOZu4MqRxBHN0IoxMzVv5JruKevsGoAARNBHoIgZpro1OC1QGgAJ52OJ8ZBiUFPF4zQxzT57BJVdqIbJHTSQ+rQu5fPhSNBoRCKaBPaD9EmvbEfBZtDq-f5qQFAml0hlM+AQqG3LgWQX0xmCZkCRExYnOaYRHELfYE1bZTXKQnKkKksk3JqS0DS4Vy+B8aSyZ6srHveYWXX6vXanKk8Wm2G+WCoNSJa2lWDCKSYeQtTFqjlUn7dXp8o5DIH+9DteUhsMRyVi8kS2FpwOZwSh8OR1AKpEGlyO9Uu-HuonKV0eklG70w7hFjPB0vZivQG0ySD2lVsgz1vEHJvZN3t40Us2+aQBKS2eJ8LPlyXR9nOxbxv6JlnOFOrxDrzfbnMtPMmrsWC9X8Y3wdVpV7yex6da5ut5sF0XAtuGfDdX37HcWmHO0vydXEALnNsVS9fMfXufgwzsYopHEAAPJZjFpKMHRjA8uU6BMAWTYEsNsHD8MIwRiNQe8l1hOiGJWCMnngBw0DgqccCkJZVEVZFUT4dFBCGRDPWA9CLE43CYmKeFBJ-OT5xQhTH0Wes-HkQQRQ08jvm5KikzPYEDMDPiRTYkCLAMwQCKIulUFMhDG20w1O0pRY02KRBJRkRj3JI8c6x-CieRPQE3gKLxU1QYLQuEcLmI86BHMU0AgvC5ZjEOKKyNxE8+GMcBAQYXSAoK1zCL4IsvIWCqqsBZg6rNBq3OpYRT02aKD3aspAQAZm631+CEABHUc4DHIays5czKOPajrKBOaFtgcEpu4YSAGtxh2uU9uSNBVX3cqAW2wR5vO8EhiOK7-LNM7FsM+yrQEh1DBWhsZ18rQDoscpMDUb7jKtS7ru-A9dVesH3ihuyYeZP7nCuid4IWEG3rQvTfGMpZ4HhAQHt2pb4Bx4bcQySAsjh97pp6GlrXRkzkdxqdGeZgnUIfALomEZBYCOuC8bjCyNqsjQUw3cWjtyvTjvGJWJdapS7s1lWXpVVnuD1vhVPU0jZk0nzkL8omRf4ESll6WBB21w9Zd5Qb4BTR3ncHVWAqczKWKSC2Ee84GbdBo2pUwRQseWm6NWt5sQY7O2zWgZBqTjgTkCWOnAcWTJsnzwnhbNCGofDFQy-h6Xf2UOuY9R60a7zgv66nN1m-JdiMMqpmxyMkV64b2LLNPEerRTTAh4DnrUFDSBsuUOf4jHqc5PXwQhf75yh9N5A1LXofN5iqwmaQ1OPR3o1EsMAB+UB4oFYQAHcpHhb45-2h+DAAFyNzdG6O+e8QCgHzg4d87RwJDCWJAeA5poDFFAF0eArAIHgGwHgWAIwRJ8UwKAcaoBVCljNONOglDJr73NLScWygTrwiGMYf0mBiiF0tmZKSV816lmQOwq6-8vDPxKGUCoxRhGGCAVTGQjDBDMMbrqVhAiOH3ySiIxuKjBGaCkV4IBgoGFMKGKA-hOiUbq0uOBZQY8ewv3FmFWB8RQDHBfndAAVE4wQ7i8xeCcvY5AR1ICiSYXwBgQxQldVxt4OxaBIC2C8S4uhaAjEKLCSYj0YsXYZS8ahAoiBwCkLiQkl8LizhiPKNASoY8ChTgqRI2oBQ6igBEEIaJBQ7HaNQa4wxsB5EU2YBkwC8Tclkg0QYAppCullNcfUqpxQanjLqSg8R8zGnjOaa0wQ7Slk-lMWwhZ6yNENCaW8E5hh-GBCEJgfooTwmgEiUMW0o5FkGFiSM0pPT6F9LuUM7IWTHEvjyWkSZqgPngRmaAOZ1SdmRCENaN0AKckvgGHo8ZKw1jKHir80AGLHCPNAM83emhUXjLJYYRFDjkXgXTk0lpwg2mOiSp0sx3TkmpIGX8sFJSaVjPGaC6ZpxZkrMqTCplBgACQBR4WXGGTy+IqKpXkqSni5QqqCVEpJWi5V3h5zgo3qhJVBhNkMu2eK8ZMr9mqKeSOXeRykrnMiI60Azr-HBTQCseAeDlA4FeQ3PAQraKxCCUsIE2qn4BJDeGwBoAA1nCBFchwopo0RsTTclNMaHDYEcDgFMABVaAR0s7vwsFA283AAC0Fbhgvl8YYZ1U53WerwVCOxZaYGfNjVIE6Vj4g2NqHY9BST22Sl7c8IEYtAnBLzHYhBSDXEjugl45QCb0BJrzJc-gq5lCNXPtwo8nsd0ERTI-BebNAilDwi+NV8g90Mxmv4QIKhdSetJGEVwixt0vtvSjC9rk+ChNRDe2sbw7FMKSd+rQ9q+ZbvDP07Qz8gSntAEAphLd0F+GMI8fp9ymFRKZbEpJ6CcMRIUV1aDP4MCBuhag5+JcUNwhbmoAR4xBRJugoEPgf68LKDYzcloY9QW+G49evjko33mreQGJB4HXHcYA2koDYmBP2q8HY2AZhjDymU5WNQWGA0Zq8BhvTCQcD9J9rSdjqAK0mceHWyIc7zPAh09AGz-hTNAlJei1YjgXNDBsS4gAfPlTTVpqSWf47p9zjxgXGvpYys5GdYTMeMIPTcnHuOnw3tE2d8hCEWFcWmZeq8772qE-wET1jPX5Yk8IsDCiknycA9VarDhoB8siOp0L8od6YdMy4wzhhjPRbM8YmyQ83P6fs94RzY2gQ70mx5rzGjVU7389oY4wWNOYC09aXrtnfUdZdfFs1iWK6whXuMTLr7okwcw0+lsjZX2LniEggAKgACQAKJ8AAIL4HwF9gASm9wgAB5AActQVxJdai0PACYPB4XrmSgEq18wQxsFgjvQsS7XGVk8fR+14Rz8MPce6C5tHeW2u6IKEAjDMgMqU-QyYfqTOIuo4C0yqcn2fv-cByD8HUOWfWnJ38SnwGau3Z-MN-TygmuKZa9T8wJLnMc5aItuzL2TCgF53wIHeaAAyX3oegFh6weHiORhpeYpLtrmOeK72lwePH13lfE4KKT1nYubdU-gDV4R9PWeM99-2pL3AGdZFDzjiweuDfG-wCL-Hl7ug7z91L7nlGRvUiWEsOUVRo2y9M-LgnCmKZAaJ1qnVGj5sTYOxCZb4yi-YaQ558b8RNc4AhIuLBikMDYNwAQEg5AqC0EYIwWhkgRxGUBHKCQXcL6U1EOIZ5kYggkj0c-OEzg9FAIeBiDfGjn6TpDR+ZERKxLVhRGiMEOQhhz9p0lPf-AexBi3JBctocVSb5abaZq0m383xdwaIH9d9P1wxLxwJ38yxP8cgf8p8MowJrwP9XYQDoB58wDfALRZRmQ4Cj9f8wpsDuZrJQCNFn9-8UEQoWgwpGoIpPJD8kpn4ECKC0pqCMpaCspIoFYWl0DH86dFhlJg5V4GDPcu0e0nIsVHh6JcJuIwRCEE4tBG9q9IhBCzY79BsChSCn9FhPoLoRC0gmC-9dD7QqYnpoYRQFDVctD+DRZlY8DGCCCMo9ZZ9eDMD+BbJ2gfpcD9DIhDCwoPDp5vCSDXCyDFhfZEAXZgDv98DfZ1IEC5A+JlAg4OCQ478eD58lDyUKpJIiUBJ240iH8+C0gZEdsBF+QC0i1kAS04R4RmQpA8JQAq1HCEj9oW5YikiYAhh2565ysipEAcAqCJBxgJCOBatIgpxYi+iBikAhi+ARjOjzRc4OsTU2lej-QcAlhkASg5jFIOj2tFkWU4kBokl4iZ8g41DRjMjlCDBXI+IUFxB0C1hUATINCNEg5ZDeJ+I9iq9riNF24rjfiLlFIHiJAnicD+hRjYsk4qQDIL8iImYtBw1n5YTbUKC7j+h4SBoijtCaMjkVjTtIgs0yiOB81C1i1wY8pyY89Gjq1Yj7MGhztuBsixBcij0C579eD2kpws4c5442ShEHCS4pEgFVVTjEiq42445+SrDeCASChmSYJRwBIiJJS+TGoroOT58UZmCgoqDUAaC3JOD6Dgj59nd70Jhf4d1V9EjeomomISoQhNTSQ0U-DZAZ9bTMAKDLCnS0UZFrTngPT+ovYZT58W5mDjDLonTolejSZyZKZHpFo4Y-VllShRVih7V8SeBCl5dMIOZzDYZkY-UuFcQxTngJT8ygiNANSH8MyTtYV8ppMIA1g0ZnBFTtlXFtVSykjmzOZPCMYvZqzeDVMfBszfAUTYJyyjg2yxjdkDxJzWyiVhy4stl6ziyFhwzTDEyM0VSKzaY4YBgazhFnUGTaEFSYBsDKhlBpJOFoTi5eFrzsSI0hT+DVUgR3FzziIGRKgfEhgzzQRPz5lZwrywQrovQjVQBw8LA0AXYhwti+wYDBxLDozRyZpNy9CUJ6zYlsYkljDdzLClzx5+BYyKYIzkZtU6Mr5tUDFc989VAYKUREFoCBxOd5zAiBzSQ5SyVoLEgGL4LmKWgBJLEIzXidUdyuZfokyoTMzJNCKvTewmKoJjSQhyK3E+RX8SwELR0ERqxPQqLwC1woCgCuDETlVj8AQkCIJNLoJtLPx2xo0gFzcvATz-FmDnC0DTSCNGyzYkkTY1CSR7U7EkUqM4R6K4KFLP8BIzYjs7EPyhR5lgq-yLyqggqjspwuyzZOLCS8I7i-g58wSTIgqhhYqZRKg0AnTtS-8AivCvYozM8DxLFxzRxlAU0uyXJDTUiSRMryVCiwy-8iCCyTTbFGyiUTj-TeMAKRQ2yCihy3hsCz9EDbVxq4rJqbK4g0iiUnSKMDxFzILHDhwDLkCrKlLvZ0ix45rVqFrYILLwr3wLr1DNCxrrqjLKwL9OrTqATDzmkDBJ8-91K+LFKv9uCH9olzrxJLqmq-qbqtKwb7q0guzIbnqhxXqVQnSPqZqGhMEwAnJ+8cEh8yBKBqB6AmBxpaE2hLS8IY9QAGjA1-BRwW5LEJCPiTB+IhgMrTqzS2o7p1jNjtinJPMM0mb5DWbj5FFPrSaX9cAeb7iRjKaJ45YISUxuatjpbFIz1uB3jyxPjIYkjKbRpqpwAhhaoW5ziRadaOadYoYOoDbQByNdrkjHjsBwSza6rbpLaxprbJp6bu1xhGqAzUB0Tda7pfa280wA6W4xzYwprNVzb3Z1pD0NqbJI6iU1bnIk7UTQ7YZo6Xbk5I5mxNVtS4AxY6QlAQT8rYZgbs6LA3Qxb-FyyscMQK63gt5Gwa68pzoi6NZ1J66ZJ2adAvAm6fxVVu7NryQ7FRhxhiLS7HaRQklzd-EGbHdL8lQyrCVbUbzw4FhVULqV7ciUZu75qBJu7ph+61ygYqgj7jbHc2zD7Hdj6AZT6a1mwL7drbj88p7niCywad6ZAV7bAaQJ7OTK6X45RFBRgl64gcZA14glAwHbQBT8DVUF7b9t6bUGVVc-6hAQTHzvAgFoHQGRhwG0HQAAAeYBmBghuB7B3wlpUoxwIEN7WILtaAeERYxQGwX6OEYJJ2RASoIBIEUAAAaggsBO3wCCUAKXNi-u0CEbb34aEZEr0yfQkeUEoaoZwZoezRXQYeQAgEEHflYfYcxk4dz16F4eBEEeEcBMUfEfAEkerBxhkZTAsYUcfRsfUlUZbhP2CXmqmoutqreBcvQJ6FiFEkboKH8W4tDi-tQfXqSjuxLkIfgeUKYKCcnVEhEpuMLuQGLsUHfqdsKI0KAQushSRikZEufl1EoZEqKZgqAu3tVzdA8aPOEVBTn0hXHvEA2LjLyunqtCLMMCJPWDBtJJiBKDNzBGmycrrJkrU0bO7qSTrsXsPLJSnEiaSKvu3vWexy6rJX3tZKPqOycsSwfrn2Cfzh3XRtoVBqv1euGdXuEH8b8TbtSZCYuY8uEQidqZQfudidqUXwSfqYzRSYkDOfScBPbuyafTyZMgKeryKbBpKcbEBeuOfhlUqZ-tQbUe0LWfnCka5SabpRaezLaZpouEnp6Y-uZH6ZuNocIZGeVtQWkhpOSRlAckOfrWme1TsXmdcUWdv2WdnNxDWf3s2aPp2fGT2bXq2aeChKObldvNObSbecXExogD7ywEHyIHxtHyJroBoHFqmMGOGN2NGN5kXwPXihJOBEIn6KNZTtxQCGmMQFmP6Kdn7NdlNfphzr-GyEhNbUbJtaddmOxqSXin-lfk1Db0ME1HJR+O8Ffn1CjYMH1FjauNfjxSTdxR81TfDbuhPEzZPBzbSFfn5mEDb1LY0Tja8FfibTDHhDb1ra-krbTbukGaTcGbJSrcMFfmElGGpFsDQE817et3XAwAKC7YMFfgEczcMGUDwiGHhA22CwaKEZYdAAndUv6CBArRnYMDnYXaXapsaNADXY3dfh-LSH3ZPcPYaPcRPYMDPbumAF3dIXnevaCyPbAFPZbb5CBAAFIX2r3F2P2Gi-37312f2t2hUZ2gOb3IVF3IOV0ABCU4GDt94DzbI9lD1xBD3N394hwD9DuD0hgwXD4tu6Yh44Xd2DkDkh1xa9xDoEQLQjg92j4LUjx939wLKjoYbwGjzDho7jjjxjpDl9o9rwTDgwJDwwCm-+MkWdR1o1nYx8A+gbAoYSUSTUeBRTmY41x8QmBT213T5TykFEWwAAK3ISo2EQ072I-fTZ0+deemAQ9EhI3Zm0c+Db73k4Dc8-GD+oSoBFfhozbxo3c5EerbukIGgEqRCnrd4+i9i-JnC4i8nbumHb4FIEICTYy6y5S9S57fkGty+0zYy6+3y4i9fghykAhxfeq4hyxYi58-TAdaM6c7krf23rU7SFs8KUw91HAFV0DaU4C+a7UFa6Df84APlFyO68iF64-bkkG6G78468xjJH8UmOG+M-mOgC6LjhPEpsmM4zEUwGEHhChfM6kGkGgoCDJmaur22-a9dfiBFA9ZgAq68BrkO+qG8F2vhW8YpadsptfvuKB5eJ1Udloqe685U++YyZh6m-TE67xZTSh5QTVVW6DmQAs6s6GAR9W8ht3vFfOAnq6YpnB76ahFe1J74EUDFj-vYIdspfnThA+CWGhdhjJFVZDYHzwC1ZH0Jr1b1doVDojAQD4EejUGgmEkwElgstlsvjsAcEe1zuyAV+dNEK0g9A1+keBD4DkdEaUdsdV59ZUYgKBU1+KJc7zot95RbnWOEkplkL4hKjEfjiO9gA0xwCZhn1UC6K98PYwCEd4y98hSBH4cQ34b4acaEakED5J7SAj4Nnd-LloRgG4iECcHd-2-jlz74Az-DCEGmAlQHoPGscUAsaBBXQscd9wiEBd8vNs5rgL+gEz57u6L14hCBBbkL8hnGEITMxrkV54WZmH5J2BBLjDRsMwgBGH+2C2D0RzNH+vmyGH+0HcBt7X7jjfWw+BFPSoeflN94x3-D9PRdIbOZHF+tCl9HVl8lnH-GSAWX-CMiKjHn52HDX3zLOBJSNXnX8a6IYa+QjPvpg0H7H98iAA5xuSn4aG8Lq1+KSLfmSLtV-+O-PXuGlgEWNQBA-BwGZjkiQC0Bb6ARhgM0DT9Qi2AldPm1z5FU2+RfHAZgEOyB5FgqqR-gYShS0D++K6DNr+QBC6hh+XKdfjQPb4TBcBVDcghXxP5TAJ+QIAAOSG8a4VfOQUwIr7KNh+vfDgZg0eiYB1IWg4DkA1LY+pjI9gRwLqF0Gfcsid0RIMUFkYCJZGWcUUBZhRyyMd43eQ-uwPb7H8zBXKLwe4LoEiCGBYg3wZwNMGjhtBDTD0D4OwGS9Qhi7FuFdxu6wA7u1oIlEVHFhZQ2SI-V-q7F3QT9X4WQ3MJjl-4oCowu6EnrZ3iE0hEhiAMmG2VSF7RaQufASLuit6RByC0kDIbkLuinoXoYNBAe0OaFMDGoLcXQQqDqJ4Q6h6Q3dMhVIRYETGERbIQRBnKzMWuQcYph2WlS9DJI7Q5AUxFSLNDhyCnNIZZnFy5wkktnEYQiDGETCGhrDJoYsPZZThVhCLQNECAzYT9VUL6bAPUKEAnCPeskFONkEIhHCfhvJUCoEKeHVhw++bd4V8KygU5c4TAiEUqHD4VDbu1Q5IbajIHUMh6wJPximnKHXdKhSQ2oUCO+GNCMhLQ9RjiLh53NSRcI34YTCmYrlei-Q+4TsinCvxuhNRK-FsP5b3DayK5c1GlQIgZldqVJZ4FMP0H8BRSiwifrqByH8FBmbJUkpUWqJ-9YQ4o+1hnUxgZCY6vgGUUsDcHV1ZRio2lo1BVHkkWkxQ7sP7V+j2sXMEwbOPYGpDFBSgVQSUWX1xDijdRLwsTD312oHBxc6uSsGoQ9EP1dQ2ovcvsN2qWJbAF6B7BZVQYvIY6qqRMfcxeQtw4xlBEuhZWUBZjgoSgSmrqHzFPoUYJYnMYtXLFTAY6boKsWWPjEl1OM3dc3gdR7pH0Y6vSFsZAQVRYBscYZbKrRTTEJ12xQDRBt7VNgNiVAQ421KrmfqMlWgyPZkJeESLmjexTwGgaM3uKrg+A+CFBPEEwBjx-E-oJYHEUWH1lei26ZoauUMB2IqxPlScfjjmJLNj0a4u1NqinB3jqMIqCREC3YGbi-g243ccUH3HKjXxjXdRsePUhVipqdY9lsuVNRZkZh0onzBSOvEb0LAqqSCcf2aFDAsJxow0bKw5aCj3xP4IYc03lboSGyJ4jIUxmzzo8-gpQOtpeTQD3JGJX8boGgHwyejVoK-VQLVAn5sT4QHE5gDYiYEfCkWtUEngFkw4HYc8eee4oJOYnZ55wkkjJiI0Ul-BOJe8S5MyAcDxBruEEJiYcFYkiB2JmkriQ-QMEsS3BGkgQCJMCHiSZw1kqSYe0CCEJ9JsxDScoFsmcSbEifJKNJOCyySVJ6cecaI1MxzEww6gESHsReiU1wAUUu4n1mwyyTeuCxUCsbUSlyhkpZmA7CPwBYjY3Bz5a3m5L0kJBPJpkoSQXjJRIxCpXVQKRACylDgDs2fCKdpH0yhTJ8A4+4gUi9J9BM6dvHsThBOojjQMXlScfeOzG5Mmxi9NMc-Qfqfjyk34+ZBP1B5VA0xw0h3NjjEnu4+Avbb1NBIvx1ihgm0sCS3CJx7T5A3qT1CdPkBbSZWMdHlvGnADahKg-DaQS9KJBvTBh80ORDdNADDTtAE-eZt9Rn77VgMQM0QmtK4xiAiw-U3Av9NOlH0mB+olCTdh2DMCUJgM94btP2kEM3Qr6fyWkDdCAyiZDmXGVdIIaQZzBqXRuKTLUk6oDmTAoEJ9PiDWCmMT6V7FFjlwU0UxKEt9g1JLgow8EpYI6NSCHAuYlqVmPbqABGH-SRho05YeNzxmVRmICJJJBdLxnKA5Zd05JNLPx60ydUCs2+ltVxAqzMS86Z6a9OsET9iprQuEJzJMDczi85stWViWNoXpkc0s9PPbjAkx1ZJCU+QLZ2jTDSbAQWQzCLIljiyvZkWJIKHNzRZt-cvssVtGgRxeoR2wY9AHbgxxgTtcSCXrP6BgCEIkkAABjhz+Iqk78G3HJL9ijpEAVQTeIfELm6SiEriAucrWLlCMGApshYO3KLkOAvaPaSuftW7HPA0xvWfIRxgWR8zMUreeBChInlzC3+lYeufi0GnEoUYWmMECPJfAVYkgd8HLI2UXncNl5Q4eubPT0bVzJ5K8hufan8TuZxgn8YQJLDDFpA7sl4s8SpUsTDzcxq44+bXKnngTyCBo8Cc-FVQPy+AT8yWPKPuFkyIFUCoCs0KAVWilgooh+vApkCSxSsu1UoPJI4Qogkgq4uabfWiT3zjAj8zBTuj9QXi4MxKNCYhJ3S-T1e68+-EsPJTdxf4BFJkQhJmZpBbxk0gsdNKHDNi2xJs7cj+FsCQoaMrxZ+C9NNSvEgEGC5+XmIfFHTCJTqVgBKmkokTuEopSGTqmfhKLoFLdN9JvyMWILKRZKIBHIqEAEVjy3EquuQsgWULd0-YnKjDOWDZM6Q1iacQ8z9meUWun40ANBJmm35iFfYt4KCjvF78wu9ZZZBI0unpyVFU0mCZONVwMyvAtoe6XaksbwTViKFcGbaAkwRcIE7iMpXVnGlTSBFULUJRiCyVnThEH4iaTEuWmVAVKMABJVrMTEZLglqiysWksVQSolUyMqxVaJypdiUU9zbJUdkzKgpcF+efgJ5HqXhKZWx9UpeUr+YHgWZ1s-0dwoSybKSy3U9aSwqmUNKjmYUjpbY0SXXT7kSwQZP4ocWvjw+rM76aIW2VfSbZiophWqluVdRgZjuFGbBkcBLBaouS7wEwSOUeLNixEKrL8umWArwZdy-RdQ2hm9ToV3ivtHcvgT3J2xoAdZe4gRWqoQV2gDGajMxRIqJ+lyimFrIJmqSIuBMrqGTMMBUrrlVMp7HSsNkFAX0jKnpeE1vqBD3lbM-0WFMmK4Qd4WWHujrKTk5zjZ2OQ+S11DAJAhwO8JJFvKeA7zwIe8iVdFUbIsqLZSScNCyq1lSr8sTKmJEvFkCrxFVPFO+Gaq8CyqZWPciwHqrdmWzXEgq15WwLtnqNSy0QhwOpF6xqFrVyqs+InxyZczmpI2ZQC6qOLRwAxJjCmGnmzkyzFZt5AOVFODnKoVVmHQzKKptwSr550qlNbfXFZpykcSaonNMpRh0gNim4XQdrJiHLB3c2SnKZTXTVByYpHzR3B+21SyT6J7+IyQ90ZmeyJcJq5OSWozQNTJiSasdTnIOYAkRWhU3qtPj4h+rtBDa-1S2rynyrxus0DgERhMB6h4QeeDdWEJTC+rdB02KcHupgBSLWlkiUQjWrdZrqdBMQrdYVKYE3qkgkYgSD4MXUdTw6RFcnhQXM67F1S+U3hOBo9mQxrQaYUDZwGlIx0YFncFuDuTg2mg7hncGsR6Cg27USYwG91PBspCIapRvE3DWFPLKEbTQJGx5chrT7+IdyVGzgJhtibdwcNBEejXlCqSKAjIfweteBqQ0t0ONws1AOZ2QCBBlA6G5je+o6l6igNZMCmFJuI1KbaYbg-9aZiYFwbxN+85iLBtE0YbJN+m5jTTIGb+kX13ZGDSBuo0qaNSmiw2eppiyLhHMAoFBLIwvUxCQ6om7TRtzyiEbtN3k3gERtpgybTMI-SekxuI0RbVNtsyijYRbkeTDJZkodWSnc3+qLNUMKLQFrQBBaNSr41tYqkiANS-NEmxjYFoM1RbbN4FavA5sOxQhnNtg89WZsvUnTAt3m2oBXMEA8bEi-xPLduqAbtropYLclDy0Cx2b8kl8ZmKlvXXcbeN5m7onaqSjhqnZkauXAc10RVbNES2+AM7OwzIyhlDGEuAVu8A1anNiCFdPYLc1NaPNQwGbXxB816RXIpYRBBKLPFAMuyq4jpvTxx40Fme4JFGKiKqE1CL8PWk7ROFWbZ5A5g25LXyrBDhzxkj2jTIkSuS9hlxzwESnwKWLZKzVKjTHEuzUlKiJABszlQYCBAVFLRnqVekQiaJyNNF+25KADuJHJ11E+BLbTtrMwjLQih2tFCdrq1nagQDO9EW2Uu0rrxgzW0AALqB0ziB0jZYSOMMbYsNXEAATna2+beATsL+DlNUCHjVdHqOtjlK4yEInAN26hQUoKlsK9l2yUFAVjOAlzqWAMtXXW2UAyCZBKYOgG7smZESeF2qeXcfzUDqLvA8u-XSFBV7BTkIquCwNWiNrkT60bwQPbJOD3rAhgsurcA7q-gowZAn8b+BaSaoygWMIWmLI9I2YjZedW7DPV-B-ijhhdbpVdWLrL1Z7aab42hHSNpDmbAgc6J5A4BiB0hkuO6pBLNCSQXDai7QcYc3qpycC29iCKvtUG7xlZsyQxTAF3ri6gA9+20L6cyAhD1kfd27JoqPtlkxCeAbfSfTSR3aQgwVXgH3VEPrWzQvQx2QUc6lBQOjttpsVjK6MvLX6-UgY6uQIhjm7hP9DotQu-oIqgp59i+8mMvvjR0hoGooO3VvqrRwG9Zsc80K-tQRwG4DYoW-TwuPKcsCgsB1A9Wl0GowESGAPA1Wg90GA49Ua3tdnkzWMzu1m2V4pfpiHQ7ASyOoMKju1lY7SEhOiAIey1KJ8ptOgl6I7O20rbi8Qs2lDHoo09lxZaAd+Crwn0gYlZfegfY2suHD7rhY+rPgoan0z6xpKwx3MFQEMcGHZSgCNZrvENOq7yzMbukk3BWT8dGeMp9ADPkBSAw0EqIBIwbS2sGlxM+WaP8JnA2HVcOOngx+y1JtFXRX+z0pLJcwj9xVMRs-RGk-1xHM5gQv-ZnKlmxz09ER6IykeiQpZWMmcx8ZlhiMBVGycQIMSjgEpJI9c-OYHKDkhyJ43gNRgHHUaFym4WBmc9bB+3KM-6BKqVH8ECECTCqrmER8VQfKZT5Hq5GWAnNqtKMtcejaeao99n1xG4Tc9qOPKsfaMLyh4XRzDgsaHiMjbygxlWFCFYCj7zNMgsTMoGJ0AAdVgHEZor3En94AARGZkO0nsD2b6HVC7uBAgHsmrRM47CJb31rLjHOa45yruMPG8FjouYq8ZvSYpIATyVXIolVSInQAAALw4oGA7j3gftc8bhPcHFEmJr48oR+NAg-jQgPMEqnYDSHEgshlXpcceN-B8TDAoDjwN-auHFYsjWALI2sGkgZBZICBOcZBN4ns4Lx1k+h3ZOl7ZGtgbk7ye7xkmxQQAA

Metalinguistic Abstraction 4.4.4

store_rule_in_index(rule);

const old_rules = THE_RULES;

THE_RULES = pair(rule, () => old_rules);

return "ok";

}

To actually store an assertion or a rule, we check to see if it can be indexed. If so, we store it

in the appropriate stream.

Ifunction store_assertion_in_index(assertion) {

if (is_indexable(assertion)) {

const key = index_key_of(assertion);

const current_assertion_stream =

get_stream(key, "assertion-stream");

put(key, "assertion-stream",

pair(assertion, () => current_assertion_stream));

} else {

}

}

function store_rule_in_index(rule) {

const pattern = conclusion(rule);

if (is_indexable(pattern)) {

const key = index_key_of(pattern);

const current_rule_stream =

get_stream(key, "rule-stream");

put(key, "rule-stream",

pair(rule, () => current_rule_stream));

} else {

}

}

The following functions de�ne how the data-base index is used. A pattern (an assertion or

a rule conclusion) will be stored in the table if it starts with a variable or a string.

Ifunction is_indexable(pat) {

return is_string(head(pat)) || is_var(head(pat));

}

The key under which a pattern is stored in the table is either "?" (if it starts with a variable)

or the string with which it starts.

Ifunction index_key_of(pat) {

const key = head(pat);

return is_var(key) ? "?" : key;

}

The index will be used to retrieve items that might match a pattern if the pattern starts with

a string.

508 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEHsAcFMCcEMAuBLcA7A+o+AjANtADSiQCuio8aAJqAObSIBQIoAZrOALagDGAFvEiI4oAMygAFAGdovFOnEA6MSoCUTNqTTzUaStOnhekgNbQAnsVhzwsatLWgA3k1DvQNxKVj7k0jDRSPDxJG147Bw0PGJiAflBtamg2ZDRoajdY2IAuUGgAR1J4UPMrUH5oeGpJSuqw23tHNWjs7IS6mvDIxyy2mLz4Q2MzS2JsZFDuppaAbiYAX01tXUUueHMsXAJJJ1cYiLRpCjxjEq38aFAAXlA8f0RJACIAKmxLl6e1eZitHQV9KdwKZSJBRhYMABGYhlDAAJj2fVih2OoGkpBw7wINwMRhMsOhoAmoVOvHOWOgcyRMWQbCk6Mx2yu1xZiRoKTSGUR-RiXh8+iSHPS1B+bQW+Twshc1LaKIo01otyGePB8PG8EmMgxFKpPI8tKkCpurMFqWF3L1sT5vjZyTNGVFevF0ElV32lt5jH5RI1U0a1G+MuyS36IY8Yfcf1WfiOcEeBJhljVoAAbiVSJTpf05WjtUyccqRgmfZrSeSmbq2gatYzLsbbqbOQGs5bZIgtqWzngLgRCEGPe5IBrYJJ7sdVYSh8gR7C4cQ03gMy0+wOB8TR12e5TK8GJVL3Xqc0alcN8Um5yXQgydYGPdXjyb2fbmwePABIfptjtXvOXPsf1d+inEdgNVC8FyXFdANXddrwrKkAPcZ1XRbVcv3XBV53TSlHR5CNYnw-CowBUBqH8IdEAESQuAtbJrX0HgWVuJ4gRBSAnn7NoElY0FOOyPJGNZJ40lkWBEA46DQASES4z4to8jgTgRy4YgngAVTQUw0HAAB3fQoDgJA9FAABaEyfUuL5cPw+jSPIpABHmJYcwMhAAS3HF1k2CldnmHMGAoW5XKM9At2eHj2MDHMyECiAYDcvQwuE2MxKslgwGIvRpHYTgeAAZQASQAYQABVAAApPLQAAFiUSElDhZZ-mM-wMFkPA2AwaAIKMtA6BkRAuEQWjPC9G1WqCLgcDgAahqcUAAB8Frk1rjlgNJ+uOOb3CWlaAhwcBwAIKhZuGxblstCbgivQazo8XbLoCRthVOwMlkyxRWuwOgGGoDAx0eLbEHGSotjoEbbNa0CgacAAyWGKiqGoYfrIlQe+pymujUAJvgLhoFe1DRu8caAm+37-oeU7VLQPHoDS96VhI6QLCmo6MHATrafxwnX1szpJFg26qUZ5rPoCZVkDoNB8bQQHhdQyGyfgH6Mkp8cgdUyXpdl8S3qxkjtZl6A5ba1mDpu7aD35pHBd9WpbaFuaWn1j79CN3WMAggmUetsb9AF9cneGkWDZagI5Sodtkl4PB4AS9Beb6JWwYpgHqdAJ5I9NmO44TtAGbDxRs+juQ85CzAWbZy2zr9kmA8d+3A-tmGXcxt2+HQY4o4wXP44rr3sKTjwbfqIOW+F0OO9atN1qZXuy-7gFh-cFPybV9PNcz2fkHnvv88Ljud73xf87N6uV+J71m81G+a5d12meM4-LgX2Ol8S73L9Hmpx81VvH5iz8AEOOU1qDwC6gAD0gDYQwehv7+xxsrVWf1N63VUqAnA4CoEwOgHA9Ah8n6KEwdgocCB8YiFgNIBB9dQDrDBFXC2HMuZ02IHfV6U8iGAjxlgiBB1qAWBodfRumpg5t0WEXYBGB6JtWwCIXWQjSapw3lTLeTwZHd3kSbPW7cuFX18Dg2B0h4G+2Tog9hrddFAKQRgQ4ZEATnGgNAoxJiFZ129F9FWadVHoNAHJWIWd0D2L0I45xeDjEEMAdjOxhiMC4ORm4sxtCAbSJSBnSEUSSIxKcTA2xXdFGAgeKktgGcERWOiUE2JJR5ZWySd6FJNgSlbzEJk8ObVCgZh0D7RJI9EGeJQerGpwNM6yCKCbXg9NWlrA2NAdpYyumnUcIrRB6cnijM6RMp4xAgaOHKczDp4zZmaOgLrahvsPB1JtBYyeezjKpCoe2Y5Cidm0R-osqZ+hYGPLkSc7RZzbpLPcTaYOuyJHTwCCc4QEJ1mHPecs2hV0QjvNueLf6QxvlIF+XLOFQKpFBCRSCzh1jWr4GMKYS++ipHr1QT4oaqlSW8FMIQ6xXlZkMvJaY3pySqZPHZVstEwsUX6HZRgfhgjOVcuEWPCezshU2KEJAe4ZJl4SspTY6lgyM5PAVUqiuzLsZu0MeE1xtTJVXJEffD5lBYB0H+aa1e5iLV23-pPK12kMDx1tZIKAgLLl4uut6yAoLRYGunMcD1NrA2+rNQ3eoPqrVfIjV6+N8LvTrnjZjSRNjZ6SByRDPpyDvHjhyapOI+qSKtTSMkSBTJJAUXzQigIa0NoO3qPWpwS1s3x1bTUdtcqq1OIwLCTmdakAjRzGUHEAt624RTjmsoTgEhPDLaAPIZQ5UBVkTYPG4JCRlARETHM2VbgBV3YmCwZSkS2WPY+O0TYpKgHxXgVdaJ+0BFgMEbpmLdYNo8YWlRGsfm61Uh+gg5bjKHFjqQCJaAwift-ea6VmpQPbjlSh0V4ABFwYIAh-1BL7YYXgy0fs3EeUlB0vACwZMP2TP7HkdhhGcOh1YG7bKHBuCgEKqVCqVVar1UhFm7q6ZMUZxNimV5Bb2kdS6j1FAfVXp8QSAKoafE8i4x5jDRTdxDpsXPkwr+jD2ac0CHTV6xAxOtH6GpiOXdsA51PhXBTeoEhCe7CXN+5cVW+Is6prtc9X770c5p5z+QFyD38wQDzH9E5bx83qazHq4E620U5nkLmwsexS7FtA4nfOtTscgBx3YckuJi8LLTrm8k0EKyE4rYT8Gwey7l+LNiSEQJK8asrc0tOsowG7UcPDSH9woXAO1w0oKSTaG1jDWGYYTcm7EOLPIEswoWcFtLoXzirYmTIA5XTZHfr+WZ-IOXLPyRsey1L-R0vnEu01s7-EbEaKA1l8rIXKvPcO9i+7eWJaQEVcgZVJrhpaZ1YI1zxQRCSENR1hrx2LPzdXCk4z3tqGerG2oczp2Hu5HyLAJSWqNJaV0voFmct4CQNMuZCHmLwOKDB9D7QxB0e0WrFDdaXAasplmf1v4LQiYOtoWDuJHOuc864YztAzObWgvDHuK4bObNcEgOAJIfWJd85Gu4I8eDgixRp1Dw1YrJeY-8QOJxIgaBdRy9OdACizfQUNWQumlDqF88Rwt2I6OPee48DDm3nBjbYs17eK0kmZFf1gXrnHXFKWD0XLMw4lvHhR7wCDgceRnoOj6MhfcMpFJ2El6pIn2k9LsD0YgCwMAqeUH+3gCwaVwxgr0cjzqqPc3QOkFj8TAvbLuvRx3oNMf3AJCfZxPIoEDcE3ueGz1g-HDd9N9BVv8eMzUMTQPnJC+TviatZVgrRWjVw-u0TNeNHc2yYJtk5xIuMjw+x3JG7i4RPX9ySie-zWWtT8kK-2AHq08f575hbbbdJDRd474jSK5dTK6V5zIbKgGIDNAC4xq2hCjZ4xC54K50iSCtRxzhpPKvZgH86vj9C2Tf4z4YpaLfYAqY4WbWTy7IHa62bsBhrfJDSr7Mh+IejkGsEHZUFDIL50H9hQER5DwUGyLsHezEH+K2TiFAwcG4QYEMEkFtBkHAF7Y7YO4Or4EvZyxjaCGnaKFN4YHN7WIr7aBGx37cx4K4Y2JPqSDWG9DXaPrXR0YkDDjPAvAWFJbCifDEDmG0w+F37riOFtyIR+IhrMxkiYCq6lzvz5wY5ExQEgEcKMGdxHAUA7I4ggF8FYqIGvRGGC5-rQFQpwGwovL+Kj6uEeiDD-YmzIzREczkBRYJHQ68EEHUFEFL6e7SCNGxEtEVzUK9YpFaGe6JodH5EvLiJKEuh56kGSbuaBZebdYeikbjiLEObuSGaWr+IJYvyRZLHA7D7tB3BUz7GzKHGhTbEcIO55BPrWSmHYyVZ3beanaHrMFio4girG4wy4Q5hliSjZF9HNGXFHCSBiqh5MEZFsiWEOA4gBGwkbhkiSiQlqrf5io+48gW71HW4pi25B6PAAngHeHGLSwZDgEWZAHnCfb8GiZvF8yIK9aiEJ6SBaHf4yKw4wZmajH9CUlyqVaZadHDIWbvHQnew4jf6CntgGbCyL64RGx6bsxfxSmKn3xYQJ5ylXqILez8lhbnEDHLHCn0lIgKnbEcGSD6mgmqncm8mX4Wnxy7wBabGfxDxzYQGYlCHijuCCZhYbHxFBavE96vimnmxKlDx+meaJTXFzb9jf4RnRaYAylzSL4emGESLpTl5AJsa5ScbFRlSVQ1R1QqBZpfTn6QK2GU5MREg0Zyq9b9bO4jZULEAYkQGn4rI8oRDK6q5W5uxbKjENmMCjbNmYblCekllK4q5q6862H9JFqPBsCqSdmTk9lcJ076BO7DaDlULQ62ENJpILmgAZJypG4jk7ltncrhqNLQ7ECXqRF3JcK4n4kKJsC7lFJXkHktK1kzKpL1zmlJ7aKvnjjqL+wcH8r-lyxWqtTMkZj2kJ4zn-o0rjjewgYgXexrlx7exVbJ6wVLjnlSq-z2xSF746CnDGJ9SPmB4KIikMm0LrhjkdziEcCmbUVam0ICz0V6LjKkVsqCJMX4yL4uAxCsXeigR8VEAQGYw5iICgyQqwFiZPnaI4j3FZp1nkI+yhmSjqlr62HQwaXgGo5WpiWqlu5qV7BCWehsW2xiWGVqUcEmV0xmUXIWVpr2zWX8mQKW5-TyWUVZZ6XqngE4BDCzIsXOU2gEB9TSUyB6VOBVnhV0CRULhOEhagSqWmbbH6UlDb6BWyC4nHHuB5BxWRXpVOAAA8dwJs8V-AsFSVloLm+OheTwAAKodHQlQBYNanQKQKcrmHXsgBkHkE8KAAANRcE9GIDrR9S0jirRXDWZyqSzU8kxDNqTVsCCKJXEYZ544E5NUtVsDQA6QdVdV-I9UA79WZwLW+7LV0BTVRXVxLIjX8qDUjWLUeBXU3XrVWoRSqnmnbECWvgdxib-SHRgghVtAdy9EnTpX+Va6qGSb2HFUvUuY5ZA1QCsm+7uBcXgBkV0AUV24paUkvV5DbGowCwI2+4dC2zrUvX5VojRHOpXjRXqiagfWFGgD4Q0jYFiaozSXBUwEQjeV40QVpExAF4ji-WZwaQHRJCPp0yN5ijKH+I5hiU4iMVqW5ppkejXp01GXpXQ6mWYmO62Xt7WWokmFm0oGA1Agg1pl3n04+HfUGYaXql-VIgA3I1W3q1Bn9jg101Q2piZUw10Rw0Bpk2ARI0pgo1gjU2Y3Y240Eme0bWARE0aUk22yh3QQJBfgCyJXql5VWa00nSwSM2XjVU7gESjXZDVhc1Vk80lFyUB6C21z+Ki23UWzF5oBS00Ay34w15Sly27izFuiK3MHK23Cq3MUa2Wha0nQ616V60OUG2ARGXG2mWm3GHr1FE2iW3A0J2ZosZcLZkcZcb5m8ZFnVTjki7ICc4oDc7q5AIm6ppKIarpx-CqQwJX1i7oXv3X3IC31X2Kp5GOZ86P2xoEWaia6SXMHf1i533RjHqnHjhBirKdD8oeCdADjdGxCrLEioPuDEgYM+6rLAS4PuHTgENIM8oAwkMAzkNTY8qIp4D8oMN6iYMxCrJkTSCKqUb8ocNcPtU8isMeCrKi24Oi0eiCPuCrLrDSUeo4DSBbLSP8CyPZT9ASMIOPBPBDUkMeCSCQLEAWAxUAB8oAlOI1-DajqyJk2j7guj+jRjJjpkoA5jhDPKfhbQtjTj9jlOLwTj7gFjPKwA1jUgejnjNwxjlOYAzjFDQFAApEEx4wY2Ew4zE746AP40BUxNowk146jAYy40BQAIQshZMhOJPXDhOgBFO3B5PRMaMlXxOlM5NlXuA1N0NAUlXXDWPZNJOU4dMtPpMaOGMNN2M9OgDGP9P5ODOdPECxDdPlMOOGO3CeOTPPAFNBMOMxDzPuAFMeDllBhRRQOi433i5ALGU3D9j0I9rEDQPHOwMAigrRRHO-0nPRgcw4AABWcgiB5z-QlzfwSTRDTz3O-K7CIei9g4QLLz9zBz0JNzzzVW3ceh8JVMqyWe1A-KaLaj6NbDPKBUaAZohWDeMzeLBLleWL2LkjPKijGAJUBUuD1LtL5LFLUjSASjAAoiQ9S2y0y9i6sgAHLwB8tBMCt8t52+4wuohwu33ubpU-NtB-NJMCwvnXOQsIt2aIESsUBSuJ62Y9yo5yvZAKvzOgvLgkCqslygodzC7at3PwKv0dUAy2HC5pAYCCiwD14bQYDvPwBpi9HrTCBo2AQ2v-0EC6xAPaA8te42qOuzCxCPH7LeCQBx0KK2HYlW4C3x1aEKr1F1qquGp+3U0Qsf23MyuM1Zt1E0C5vFvwuGrgAfNfPgGFtmvVvSu6umwGXgsxC12yX80N0En6wEAUC110CnCBXFZ9u6zZFehJsZspvzAZmsY5RH15k8aFm1Tn0dxJ4IDyAYBjLHCJTrCwDkrnHwWBBdXTQjjsInuJ0nEMaEUOnwROAPUYBPUCoTXXWrU9r032kRbbjD70ZOrXtyqdnrDtLO4iAJLvvRooHwC8C8BdXBAiYyDM5wf2PZQjWSCwe8CoxPCDVLqDUDXzUjVYeRt6i4fbLjUbTBpZraBkKyADTvvS62pMeutoB0eZjOBvjCU2hXWzVPDPCzUgcQKyDgd36XOeqsfsdMdIEPVqBPByq0fxw5WUJcCYc2qnv2GerD5LpPoSTna4FUxaegDwx8Q4EBD2HrhacdoLSIxIahBWeVNCRlradSACxGdVnLp6cbZbuwfth7vuSHvkpadyR5Bmceq9VA6JxGcmcDjqbT4PmcnwJWd51LoCcjWKdUKzIqdfsD7JcXUeiDWvtmnGbWGS6vOJdRfqdPsV1kfnXpdsdKdZdwCqfsK5dVf85DVm5fBef50Zf0csQPD8qerEB9dNewA0T-s2KgTBfOGjfPDEP+FUxufqdM32dVcjcNeZdYDNeTerSUfyYzex5PAADkr7nqfHp3bhb1n7WnCnm3OVYysAgij3iTNFxR9h+MU0M0AsL3pHA4qyVA6Lqkdgj12k4kWshgcYj1KGXwN7sQCQc3P3GYT3mOJdv3G37H2343k3iPts6PaPyPeTbImPv3cq3rvrvA-r0p2EIuxg4Sg+p7OqgOjmeaJG6jzwTPkXBcxAMO9WXJeanbHglz5PQwlPyAwgHBtPEyhg0nDPcPAwdhzF0CLnqyZa2yGlzCJmPMeak3OScqL3Zs5OkCUv9PeaSR2BrUnPLPyvMNStD5xNtw-YxXLCPMvPuCcOOvRhjzdPkPf06OnkQgkgBvZO2AxvMCPv4Bm+NvRhsh9vKdHnxDbPoE06nA0vsgfvMuqP7C4fafasLO8vHgeQ+b8fQkVDSfqf4SefMubhxf1cOHIvfr4v1PCePX8QpDI4tfbdWhwvProvVPkvOf4SsvOvk3olcf1cKrEfVftqqJmBOMFv5nSvkA0hQdF5GjavaIGvJXS-Zdc-KhZB0CDxtt+gleMADPeFSik+yvbP7F1-+dLdJaEtmkpe+gFXJ-VekywH6Aye1CZvb3l-HhVns4Top39zsD-aBO3WJxl43+6RH-uhWVBxhEoiAcAKKlmTVBkgNQP-tx3f5n8zeHnBAalDlToDEsokdyMbiwGhVQGP+b-kdk97xtjIvWHAFWhbTnEtKHHbAe3x-aOlew-tOCnKiYHVZyK5xcEswL6i2EBYAgsiGIP4GiCcaX8SQRtFsLrgFB0g+gYoBUE40XWYlLgUyB56mUL+7sU8DoL-A5QHK7lTysYJ4HIVTB+MHSh4UYGyDLB4lKQnoLMFqCYwiLFACJkf5iUNundP6LPAwCCAaABAWACNE3ZQBwcyvNIlARzQ69haHgHMBoK+KyCMAWgtWj4NMqs1KBoAZIVWTRajEEeHdbsgEPjhBDAeoQwfK4NsGjE8gEQSAIIg0HmkNBZdGYihCgJX9l+gdMPLQlAj1DBEt-LocQH6HfsR+rNPfjIUQR69+whEDgSMLzRyo1oVQLgOFxgBW5kgccCwHfmkCEgNhlGNWNIAPT-88MV4DJGzz2FbC-ohw3YG4WT5p0MkgvGxmh3GrLDVhOJC4dsJeF4xvwMgB4U219wfCrhCISCnLDgDHRb6gI34cQEBFtQjhHAhhr8Jc4wjrho-DwqTT+GARdgSTNIJQnBEXEXQ+wmoMiLhC7BHhloLEfMyWHfDYIGSIlNjCpErC2AccQaIH3tbQdN665ZkZbi3TLCGOrwv5kzjRB0iSITIpANyIZF8i8YGnEOl8Johs8x8+dHEWCKqAQiCRlwwNnqFJqyjI2FI4xqKMQDijZRkolYULG3QTc98HlHErSARYPAUsrA0iEgGqHsCDgHxWQSkMEGaDMA2g+0W5Q4F5Db0aBTIM4TTY1B7R4CYZNZVuFii4AmAaRlRCaHyDZBqPcMU6KtQURKEsYhyFVQojQjHRNg50SgVHpCQ2AvoDIINTZ5PASxkwMsW4Q6QlBR0wycMU4DZ7K1vSiogIDmnrQ1c2+IYtIZ1BRC2jsUOYh0RGNMpuEoYHhLsfDCm4eEmxSfaMQYjjFVV1w9aMkTyHXBNi1xQEBcZmMohVVp0Y6Lcb7gFibj-hS9Vem4UrGlj0WiwjaIOyuJGjyyBgzgSE11EuEQgVqAQHIFMAepMABA5eP+L0DEADew4g3tZVFKoglxqSdEGnhxDpiYxGAJcUH0J5xI8xgE9AMQDPGAQwJWQjgVBNTyBRix141vh4CqIhArud4xgA+LNHUQsx0E6PApxyoDpIEDY09ldS-Z9oJEg7UAI1QAASbLDAAAEE8oeUNlgACVGqBUAAPJ8sqotwZSlmj2p7iSBiA-JPBN8Cpjnx0GWZMxIbEZiXOm6ZiXn0h5iQsoekmMZN03QlBuw6Eo4BukYD-4bJJk+5liOOE8T+JQkkSeJMkkyS8o9k9sEZL97OSzJ6ktALYU3QSjmJQ6JMCOlCmo9tUwU9ACZAZHoUzQQU0gSFJ3GaS3JDIvrMyMuYO5wxXVMJjyS-GMpfxKk0yYnCKkqR3CBomMamMeFKSBAlUlyaFNTEDtGAngT9Hkm0CUIcQAABnnYdx0gOkaRD1Kt7uRkANQCGD1IiB9TRAtwdDPNNBGwBZqkIWdIgmWndlKEX5TYKNPCzcCCY9o9DJNMSjTS7B04Z4Bv1AinSIuA8aaatycHiJj+o0awodKZABA0g2GAsVCVRB3SAcXPNIYqEfT7VxpkWM6aFGmm+RXaFeGwLMgox4ByUFA2Go2nCzn9KirVfaWDOEGP8AZuqKaQGF2IzirpQA2qpwJeEIySg5KQYcuBeqUyMAiM8lCAK6FisFIh-JEDZEQQMymZP0q1MkDWEOAOYsGR-j6P0H-U4Z0AKmUjNzTdDYh3abcAkPcBV0ig9Y+0YrJUJ6hbI41DMNkLlyD0lZyID4u6KkGei+sGQ1MXrNX7egcAqMAoZ7gSAljXQ1NPIDzOpkiCPRzQ1oWKCYBvgJhmtSTJPmbEZ1qyUsxme7PYr85O0bsmWXRQL4tYnZsgcYZzI4ExzkZyvcwVaM6gq44ElwJwc7XzHjpXRHok2Z63SGmYxZbgjmlIGSFVNUCz4bobZG0BTVEJWYj2abOaFJjMJFLGIAuEtk1c5+8skcAuGILo1WALwCef2CSFujbgTQ8uTzD7mFzWatkWuQGOfCYzm5q1VuXuPzlYTchqQxMR6NNxvgT5kYMcTUXyCWjK29oxeb6LaFShqwAs+ogEETiLzK5tgsyuPMnnzFaEV46sTeM5kK0f53oEMfnN4GWyU5r0zeRCCQmQBJwF4cCW5KLHMQqxBAdFhWNQU1j7+qs0IHAuuYIgWxalccR2O7RwLg5seXsdaJznGI85eCkgAgvPn6cSFIEA9Gz0oXZysaNCnYJAAvB0LwJoAL+S8GIWoSrpZC4zgjAnGiKCFs3NAC3KQkriMRvuFcQiCPExBoF28qiNOkUU9y2g06FRXvP6Am1LxmCgBa9OFwQIUMP04CShPamgAcJDlCCRQFjhVBMAKGHEDYHennEvpsGFDKiRzDqKCJOIM3OoqQkgSspWEyDIuC5LOKqA4MykKouyD2LbBm02hAEt1ywSPOJikiSPnfF4Baxl+XdoTx+kzZBEMS1xfBjXHY17xlcI0WkpgkhxMY3EviQJLElqQAAMmyzkm5LhpeiZqUoxQzUJbFiCjgdpLSHsgWJcUtnoZPGVqwBl5k3wJZIcnWS4l1CK1FZJCArLXJHA5pRgFaUdK-J7g+gA5MCmbK4pz43Kdm0rYO4IpRoqKcOhKRxSElASFDMlNlFfBHhNymiZ5xAyfpXlZo2HkQLrwQg5lQy8WRwNyn6iCpq4NxfMx5LmK4lViuqRmMakO4+lpyrKYXKtTGJlckWF7shLgAQhQVdMHkVKPOWyi8pSAKFWDTUpJN-EFyitn9EhGjE0prUsyWEvqkaTC5a4t8cLjmXsrkVmKzEjrW1G6lhMIgQpQSvxVPcnRJKmiI4rsX-MT0jAQWB-ylVE8ngU+CVU937pqoCgiqteU2DZ7YqAGWq57oTxlUMjJueq7QNQNBF6E1VqPYVWaKtTED0MdgVlVF0SlhTnxUFT9Jhy9XkKTirqv1bZMm7EDbJ-qjKegBdXUB0pqk2DKGqJjHA7AaAr1WMrGXVpI18avxcwSOhxqqpRwHEDsuEmiSJJ0k2SbhGLVeSy1vkuCR4VsnEA3xeaj1UcFRK2QngwIeTocuDU7BfFSa5ATYDiXprdJviv4rmrwB-QBlRajyXss6WVqZ17SzpXWqukoZG19jZtQMrbWIIO1TKN9HXQhCHB3mEuLfNKKRQnrjyvBQ9UzHnziDbY56w5YmivX-Bf+neJQfbHvWvTWoPbXuP4CPX30T1Pq8zgGg-WKTeCHDP9fIBvXPjBh1HDuImnA1MwX1Q+Z8SzNg16J0gdATFH9DxUAa3JMGz8egHebgBvpT6+QOASdXLDT2360jcvBo01V4e+Y2VW4UPXEafFeCdsHRttUQaNWR4zVXivEI0auNiG4+T3Io1Sj9YMUDnjQEep8bCeYFQjaxsDAdxwNrGyQAhufUWrtRgG-dT+ukDcb4E6msjS5wVH6dVpeIheJsLvwO5ZNkq8QoZseD2bt8YmmiP+GyBviVN30+Db+sQ1qbvNz6kTQtmc2hxJNHa2ADJoKUvceGv6xTfMBGnQBMNUOb3IxstVkqzRFKlkVHVXCj1DGvsnkAiJs1PcHC8WrDaarU4z8nleoKpVRJqU0STaGgcIgxqq3ICatvIyMafLuLXRXNsQILZjBC1g9wtYq2ZJFuIAYbMUSmzipAjkDkACYKMjkZtmfxQ5H+w7Udo4gnYAUyevfRvhL2VIy5NNzqlsNenJWQrA+ckbLXJCcRTaocIkdVrvChyFtlu5W-MU8otI88jG-wluimG7k6L3A6kZ-iTjqn+01pZkOrr7NPkxAngDfMXttuwiw8UuaISic1tlXz0ahloDrSEHBY9aJEIWyHf3zQqqQCtRLUADjqb4cFNWrVY3rw02E4gAAnLFr0SU7KMSO9kZmWxgM7oU5KwrDNGOAja5ZC-M9kimOAr95aBs6sPoCrIDTuhMQNnZIGO7HdVISgBXTqvvlD0PQ0urUd7OyBs7ZVaQyhMaJ+GC6RtjjI8jMJTlS7yImw7XZzrFrEB1gFO83ZRhdV4AKMVGLAOfiljaQbAe2yjc+Oc29byAHPJ3ZRmowZgBtC2obXJuZyB6XdOsnCEwCzSD9DApWtIDFHnBwADoxiMlvKoKA4hg+FgI3ib0MCjpMuOBNjuQD46zAAVSIasNzlgDp7CWjnZiMYnCp6w0i0up4GZHMgJ7soL3HGKXooBU4rG3wbsR4Gl2jdStBQOYGzWUL4RqwtkrACgOmgepY1d+Cfd0J7WzJ3VEa8NWmuNyr7Wa1etPVjXr11y1k1YuWF8ENlt6O9wO2yZQGX20Br9ZkKyFPoNnOBCIQCtoFfsf12LCeo0epdlEf1P6167gLXRKLpXkqqVWWmleU2ppj68VZ467VHFu0EwCgToxtZ9vYD2Nd8a4gnUH22QI7qJvIp9A-CP6gaHkv46QDpBmjJ7yARc6EtntuC5789XeovfRxoMUAHqFesukrTUrwNcDqB+HX1GqVI7iDW6tGfYTEr0a2+TwbSK1T3EbQRx8ADiG+Ezz3dw9kqxA3LGQN4HbONQSQ6jxe2YGkmu+RYQOtTVRrMALrXSYmtfBQFmJtaUNd0InSWAcQdymKSUlDWs0cw8HfHNohbWyqDWkkT5byLKAQ8LDfy5YUro8CSbQjmcWyREbxh9kPQ03L1WuqSY+GPF7YOfZatn4f6kIhy5NYOvQxWHxlfM+VaFJxCRLoM8CUdVXr532HaFO4oXdkGcPtVbgbhiELFKaNeHmCGRvw+hgZGBHoIwRndLEfUS-KUpwBkgP7rGMvKUpnbW6Z+jSPzM+jpsAY9qNyOv7IFcervaVuO7-jJA32gADpMBLFlyv6MgL6x2BVOT6fRnY35yAQ5d28Q-bIDSi7G8V+x5yYcZ0UnGzjDK+fVcfG6jorppAecKj3KCgRQToAAAF6mtQAJxr3P8cuNsBrjhh8oLCYeOSQnjTwGvens-65a-E4hKgJQZmj7GkTKAlE0CdKaLcgKSh+lI9V4CPV0WLQY7oGFYDvGilZJwWQCcpOqdqT7PbVI9RwAMmmTsPbE1ZCAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARjoCYAoKOJVURNAfTQBTADbg+ggG4BDYZClJoAcwAUaeDngBKUAG9WoA6EyD4kTNB79okHACNBmVeq0GAPq-2Gvh3gPiZEJScNbVB3T28vX1tkZGFBKWhgl3DI719rYWFk0LcPNKj+GAATQXBAwWKcgG5WAF92GAQUC194KUVFSr5hXnhkgBpQeAALQT52xW09L2NTc0s+AAcpREc1ENAAMi3QMakqjZcAXlPhsYmO2oaOZu4MqRxBHN0IoxMzVv5JruKevsGoAARNBHoIgZpro1OC1QGgAJ52OJ8ZBiUFPF4zQxzT57BJVdqIbJHTSQ+rQu5fPhSNBoRCKaBPaD9EmvbEfBZtDq-f5qQFAml0hlM+AQqG3LgWQX0xmCZkCRExYnOaYRHELfYE1bZTXKQnKkKksk3JqS0DS4Vy+B8aSyZ6srHveYWXX6vXanKk8Wm2G+WCoNSJa2lWDCKSYeQtTFqjlUn7dXp8o5DIH+9DteUhsMRyVi8kS2FpwOZwSh8OR1AKpEGlyO9Uu-HuonKV0eklG70w7hFjPB0vZivQG0ySD2lVsgz1vEHJvZN3t40Us2+aQBKS2eJ8LPlyXR9nOxbxv6JlnOFOrxDrzfbnMtPMmrsWC9X8Y3wdVpV7yex6da5ut5sF0XAtuGfDdX37HcWmHO0vydXEALnNsVS9fMfXufgwzsYopHEAAPJZjFpKMHRjA8uU6BMAWTYEsNsHD8MIwRiNQe8l1hOiGJWCMnngBw0DgqccCkJZVEVZFUT4dFBCGRDPWA9CLE43CYmKeFBJ-OT5xQhTH0Wes-HkQQRQ08jvm5KikzPYEDMDPiRTYkCLAMwQCKIulUFMhDG20w1O0pRY02KRBJRkRj3JI8c6x-CieRPQE3gKLxU1QYLQuEcLmI86BHMU0AgvC5ZjEOKKyNxE8+GMcBAQYXSAoK1zCL4IsvIWCqqsBZg6rNBq3OpYRT02aKD3aspAQAZm631+CEABHUc4DHIays5czKOPajrKBOaFtgcEpu4YSAGtxh2uU9uSNBVX3cqAW2wR5vO8EhiOK7-LNM7FsM+yrQEh1DBWhsZ18rQDoscpMDUb7jKtS7ru-A9dVesH3ihuyYeZP7nCuid4IWEG3rQvTfGMpZ4HhAQHt2pb4Bx4bcQySAsjh97pp6GlrXRkzkdxqdGeZgnUIfALomEZBYCOuC8bjCyNqsjQUw3cWjtyvTjvGJWJdapS7s1lWXpVVnuD1vhVPU0jZk0nzkL8omRf4ESll6WBB21w9Zd5Qb4BTR3ncHVWAqczKWKSC2Ee84GbdBo2pUwRQseWm6NWt5sQY7O2zWgZBqTjgTkCWOnAcWTJsnzwnhbNCGofDFQy-h6Xf2UOuY9R60a7zgv66nN1m-JdiMOHRxGvrhvYss-pGpTAB+NiQAgRSMHAbA8CIMhKGoegmAYfuLEkEcjMBOUJC7mKZpEMQ99kSMghJRLvCngwjjvrwAC5i7BHJn8MB+xeQI7ICWB+ZEtpRxiWrCiNEH8SRDCPpoL+Bg35+gDL2LckFbyeVvklUAD9L7NWQUGVBZZ0Gh2srA+BoBEH8DAteNBrtMFJRwbaQel5wKEIHLuGiZCsGUOpMRS0zJP5YMYWFC0soBGcOgMfchPCgohRaGFRqEUMEqnIcIjKsj0rB2yofSRcDuGLGUloyKIRVGgHVnwJyyhDHcTBHxSGOQBjkKwZEQxZsHFOOcV4LhSUeGfQuvQgoajKaPUWqoKmT1oYigTloGBujpGLD1oIhhoBcGJIkVI-RvhbLtB+uIlRQiUlMOyUZbmpC4mZIdksJ2iAXYcPyck326lL5yD4soIOiisrGJiSk3RjjPEuL6BAmCo4BLtwcT04+eifEpMwNgdYW0ACq0AjpZwAO4WARMyKQeFQAAFpdmFP3nxAOZpGltJgEMdu9dEDgFAMoXwhFEA4DkRIcYliOCklxknKUVThAU0ec8pAryLGKXOdAS5ucySGDqCk4QQgeC3Pufwf0OAljIBKCCx8YLPmOkMD2VGTN4CgGOIcq+rSg5uI+X0-pzjXJ8WgH8I+axUAmQ8TSwwQcbG8X4ti6l7LPHtz5fyrB7TJHMrEf0D5qFIh834AZEBzwiKEqmc4h+8qRzjDTPS-oSqBoqv0SUMoFRii1GhbC+FuKDAODmWClMSyVnIHWfPPS5MliCD2QcxpeZoUZw4oMySCqBKNTQLE4+XyG5ZxzvHZQwb9X31ACXeBb8VhrBjSAg+Vc25xxjQRK6obNBCs8RVANGqBJESzdG2N+aUa4I0fIjKHSQ46LDbi2VExMCgOaQfXqTUmIlRCNWpxaiWnPB7ZgPB6BxneOmV21pY7+pewLRMmtTC-E0xDcur5Ny7kk1ReTYJ1M4Yj0tgeQ15RoCVFNWakQ8Lt1IvZmjHJGMvZXWPWkKcs7niZsibDZGAxYFXoMDCm97rLV4uQRANYj6NDDPdSSjxn62lQc5k+0pGg80Aa-nerJsZYNIchihmDCqcUeKnN+o4sHAPeGA3C0DpGfy4LXcoNl7JH0lN+nDf9uiqNeAaLx313Bi1iBgKIyoyhpKFxPQzKwTNsgSbjd-BNsmv7JtWI4IEAAqETfCL3FA00CIYQm+DaaFLp2c4mwSvshAASC8AJjZLshzor7EQwc0SR7YbPiE-xKFw3gfTHCbGxK4ThK+lzDjJIePfMWKTfdTHkYeIfomzxb9HZykOI5lEkAXPsJaAJcjqHf3Y1JIW-laBMvObYVBAMyhzFMZY8Ky2bHcm0yPdK69tG-Ph1WhO4sOXqskJMZ4n+AIewELfJKIBNZSQeJ4dQiCrm6lDf6SNvk82qvEKm56Fjb8S5UYaBXWEqSxZa3SSPfFZtgsmzcZFt4+KTsyAwCS8riQsv9eIQJM2UL-NqFACZmUlQnugCM-9hkYmHtwu+913e6bWlm1K1gul6XxBiuwBKqx4tHtDFB7pjdsCV1hWKS15tI8hJSBOpVXDCrmPssQy5NynTlEDoa0lfHLdcGiLQ97TduL8UKuC4hznVo8PQOXVR0RU28NC-lAias4yFX5qo1OBV7OmHrYm10-NXyJey6VHh9XtDJu67iO4goiGDeLegtT0XsCEdi-qADJypLesoI10z7nsDtc6cl9TsbJZLeVmN9Nu3iG-fvffNblU+aQ-cb7nPJyi9l4EBIOQKgtBGB0HGjvQ8Hbnh4VJz+HZpwSX+FHC3cxliuUmH4kMeHPO3hTniilVF6KGWYspAZlnVe7Ebrr5hw7A8UVooxe8gvZlLjrU9m0lMQ-W9-Ccic2EnLyzcvseAMft0oYdXAEMWqLcKXIDUm0jfbVBnb6GF1ffikUcSHFSZdfXzG9n7Gjv0Ak1y-k-GOq2CWqrQn51nyECN-qOAZvlKgNqijDhs6Prhqv-u7JPvFArjZFThqovtwMAZquAbDMRo-lbJHM2MRjWnAGLHSEoDfnfrDJ7q2j+G6P3tnt+kvB-FQQ3ngVUHQU7udCQRrOpIwU8FrjoHZlJgsCmo4LwTJPbg0PiqMOMLFhTEymjiKMFnttnhXjxPaOJHCkMIGnASIWAkqButofvmoVNvlmodMIIdFrqGISjGIbBqYWCOYQDEIRYG6NYeznhPSoyqjiyr+hoQYVjqALYDSDIborgSNHKIoKMHoXEDjMXsDhEVEbaFdEOqALoaoVAn4VoY9kukEUIDfgpt4G-PEEoFEUHjjAADzxElEjDKBJEFGRA4KzLIDqYAAqsQZiiQ8I5occNgv0cIAC1SlQb8QIoAAA1KACzt4GoAEEoDcubH4doOMaASMeMZMV4NMYEIoHMbUdkfUYUTMjakCG0cgBAIIKst0YoL0ZjP0b8ogEMcCGMRMY1oYBsbMeAPMdWDjEsSmI8WsS8f4JsdsXUSjL-P-IAkHiLhofwW8BwZIj0LEKJMwQUE7i9qHJkaAHUV1t4G2iXNEZDn8TgnCb-KJH8V4sQcgKQYoOQQoZQbonsfokHsSmcEjAsaSdgo3HUWyW-KieZmUUum6MCVFkBlhoikfEySXhcLIdST4cyG+pENas0XiXatADECUAmmCN6mkDRhah4vimIcFgwWoTGrHp4lODybYWUW0mYXbvyrYYGlaQ4VDtRm8HxtFkfPCfnMacfC3DrhoZCdWFkcINCV4LCRIB6YiaEWBgYCiY5nif4ZDlic4cXLJnGfSQ0RMuGTTs8ZwRSZsdKejvjiztyRoeKY3HyWsQ-EINaLqEkYGWmWkNybGfOAsUMAKbsUKaADCiKXcmKXEdIeIHunId4RKnKd4AqesFCcCEsqqQyuqU8B6uaDpg5E6bxuanRp4nqWoQachhYkaZhqaT+OacYZadYTaeynaaWg6U8O1pEK6cKUme6cSV6YuKwPHgvFgLgMnmvGnpvHQDQNng8gEICogMCu8jACfOPkeFPhwCmACi8vtC3HBUCuME8k7M+q7B8rzKweZlKlCPikhSBW8u+SSvFM-E3pqKAYYJqP0gWmRXdPqJRQYPqDRQjk3iIYxakWpixXRYASeBxSeNxWkE3vzMIKASJVgrRUJXdMFGgE7FIPCKATJXJV0UlJJQMoAeOYxeOZ4mpd4E3sJKMNSLYGgAZgZSMEZRgAULpV4E3qMRxYYMoHhEMPCNoMcAAHygA7LjEqXWWGBN67L2UGCOXOWuUeU7IHI+WsV3T6ZDCRDBWgAuXEphWgAaYJUGC+UGBN7ACBV3JOUJWhWeWgBgCRU8X9BAgACkOV8ViV7lhV5VaVoAGVwOd0xe9l1VBVReZwLlUVgBAAhKcG1XlTVclf1SSt1aVcoECOUVVUNR1aAJUQYONVJYAeUccIFe1UlYVatYtU1U3m5TNSFZtTsh5TtT1WVW5WtbFV4BtbVcdSSvlWdZNb1TlYVV4LVQYL1YYPns-GSPhUBfBe3kbn4cSl-MJKJJqEMARaBQvL9RBlDURY+CiLYAAFali0wg0FBg1gqbVsX-XIWgFyRSpNXeDw2A15aw0Bak1h5A7xRN5nrGqgH026bE3PHqVlWEDQDnohQKWxUc1c3kws2s02V3RmV8CkCECMWi3i2C1C2ZUi3yDmUACiHFotitMtstTeAAclIJrTldrZrfWazRTb9lTfgjLsDccKDSJG0ptVYUuqbemEGITH9U8gDWHnYRjWkFjbcrVYTSVqkXjYRS7k7WSE7o0kVK7chWTZ5DBRcSeHAeHYEMZgyg4H8nmcjVINIOVgEGTFmTSqTahfECKBheBWeZEDXPHdUN4PZiFqYIAvITKf0HAUjm3g3ejg1mlgysoKTUHGUUMGyQHZHUHe7XyWXV4J3VUD3dfsgCjWjRugPQ7X1nYerYYP2VKW3SKIuPEESv2YoGLEEQ2sOYoc9h8PXUfbDGSK+WAAnh+SvCnuvOnvQP+U7lqhGAgHwI9GoNBMJJgJLPNnAYzHYA4C2CnNkP-TNoEo3G6G2WuOBEaI8UCHwCsYFjMVse8SA-gWA+GCwvEEaCplAx6OAy3CisJJTDYnxCVKg5JtFlILALADYEzAfKoJcnQwVRgOMcoLQ7AKWUCCMQ-LwxQsCD8eMVwyvUlLwwbFQyjDANxEIE4KgxCvHIo8nbI4INMNZiwQeK8YoAg5NY8SQ7hEIOQ2JljTXCo+GEIIo6+gg5oECC3DIxY+MHYjgJw3HAAzJszDXPUfwyXECPg74PFF49sFsOQveriW6F49oO4AQ82JE6AKNcCDPN43crqEE3EUCDPCka-bQ9aJ-ZNj-ZLF404m-Per7DUq7EEzsGyg8BiO0gzk2pE2mfw3o+MQ45DE4w4C46k7nK41MJ8qsf0iMcgxCZJNJGCpSEYp5HEwM54kM48W03kc4xg3+NkGMo04sWyhCH484m-As88ECHxYo9jtAKoxMJ0xAw2YsLoUU5A3s5NexYZgCN01MK2R6JE8c6c84-Ub4gCUEDc2kPwwAOTIM1wIPAv4PaPbFeP2MnOOMf2jiYDqSPSIvuNSQplPBAOOC6jItLWy1+V3SJDFDLHNHLFZyig+y0gODks2RMz7QXPpl3PYsIvdXDAeg4tLp7NnOYA4DfN-awvtPLPKDsuvPNjCt8unPsstwZ1Z2wA53WgKpFTixZQ5pLCotlO1JRjDxfyrZlXqv+xDB1NMRNrDxj2GBY3Ss0iyuIBkywaKt7S0hWMqt4MFA8JjNauQNN4zwvR+mjNMEET0v7GNQtw4sKhbJ4R2vKvDxbqIq+B6u7jDxvp6nX6MnwYFAjOQK1PX6NraIJtRZ-VKuUt-DtzBZY0hubLtDhuEQFsbpjK5t3xkbJslnpPsXaucWpq6hVv2tCBFuQqySgPd3YBdvdBXIBuvzOoTMptnAHN9DbMAsB3VvDu5z4O91NtTsWvZ3WvyuoGtu6ErsBkNbmuZ2Wtyu2udtZSOsJu8u7uNsBnztDs9vxxOnanuqeZSR+uqtvpP6AFetwg+sZvPB1urkgZ+YfoET7Y12uoAf+thHSbLBqZOutu6juuXPjkqvKkOpOrZuwiQdoEWC-6YxOswc9a6HIfpm0H+v4OoeTxTnLJrK7z1PZRgHMi-S4eLlCCYCTbwDZz2DUjFClBsHQfUEHiQeEfpOChUt2M10HBFuUscfQRuJRtCcRxVD4etZ1sNBzz5wODvjtDgSQ3ZbmizldDwBX2335QjAiR2Jv53JCABTjSZ6Z5wJh20jizKAnTwhDDGD+iYDFDUPQ7JnMxefNG+dNN8ulDnqVDFMpLzQyBueCAeeNy6hBc+dWZsoPxJeljBfJH9KpYuewBxcJdujJchcozmK6fxDKDnYQYQ6XDgTBZN4ableCD6ZOlO6gkAIFd8AMBDDud8BdRYn4poCQC2BNfBaCiue9fdesvNg1dNc3npCIpDcjcvillM2VCjlJlrcmpfzPuJk-ZErFdjd5edfMAivEjDdzcrlpB3qHdxFbcbfvo-hbcdlAedZRlJTdwejFdXe3k7cukwl5SBDsf9CTc9fxd9eBmjijmDcXcrckrjf5eg-TfZCzcvjzdRCLew91d3cp0RfFAPePwmCXAzeY4ZRNemsFC6HxRI+6G9encYmwFiOeJuio9wPo8dY6kbkQa3dscTfg-0-zhY+4M-cLd3K3dnD3d+a2ZpBVnE-nfLd6esDS9C26G0-8+Q9qMU-8qC8K-C9kjK+dlrl7eRCy9FeZc+ca8i-8YFB3mdkA96RKXyCwA1E8tYlCQ8PtdLCzsrbA6xBgkNZvx4DpNA8SeTEPwh8ceTFvyoc4Dod0egBafEILlNean3nRaO-wDO94UQaJ86dw8dEU5NeVe1D4rGfBa5+ccviTWe95j4UGckoV-QRF9AgR+iih15TmK2CBDBRBDzaW9EcWC6F98M92goxd8Mp5nzbKDj899TAD+Nwz+bFj-d+T8arT8r9KBwFuiL+b8tw79UlJ1iE7GwPxAGtmHz8I-H84PiFuE10t1VDD9IHWHz9pGf6mwb8qCP+wFn8OEtxA+9iXhWk1HMQscxnJ-BVwfACzgyniCYAR4L9fOE0kE7dl70q4J1gTyY6-Z9+V2D-nwEP57kCIP-a8i92ixYCce4XY1CzgfgwAwBg8SAYSxgFocsADhIsmASWDqR9+eGffuzyAxG9X2JHf1ugKnC6F-QbAwVgmyGAiD1I5HD9iL127vcHyYHP7tb2iySCnWLcaYgkBwDUgqkyOUoGGHhBiY0AU3PQfJW6BoB+uSnHrLiSMHJMTBBgv4OYMq74NdCSMWqFr0q6bUNBjwbQW6jbx2DDB-gTQXL1UBuCB6QtfwQ4K6iQFmOmAeIJnQgj6DDBxgkQKYMiGotrBtUVthEIEDMAnBLrNtli0bA2D3BBVQIHYjiHAoIhygbIY4KZ5YIPBtVLwVoPnC1QhY2eJoRYjDDqBrasdPzg3HABdD6UfgYwI8HkZBDvaFyOEG0KdwDD5AQwpoWMMeDpCUyTQ5JslkuZlDU6CQSoSkPsF50koSMQIUsLHoNCPKsw+APMKOEuMOh2kEYTy2mF5R7+uAsQEWD6DYFsGL4IYDhG5zP9ecEGUgYERwF4CP4w-W-kmVIES9ceFAyBvfyv6fDQA3wwgWo2cFzCHAQ4Ays73X4T8yC1OLgV8PkBIiUYKwC4WiL4AYiaixI-ET8PP6WDwYW5dJuAG1CVARirbIEIyKJDMjKOMXbIJSIRHyBtArbfUgYH8ZUJww3dfkU8TnZPCbkvWN4QIl5GIimB15EUXB1TTEjtAOwK5vB2+HJNiRdidEU7xqJuh1RWvJKG6B1GmjKeqI8wGSMNGCsTRYQ9lLqAtGOiaU1hXlmyKZFEt1BmxbeoHiuGOUdC8HPKqcKUxZAUYzvUsEdGpBDhxOcnKZrJ0lBDAQ2vIkNr8LuwQZyRlOIbgNGCx6jSR5IoVsyzg7c44xSYyUXixpRpizCSuH8FmN1REoGRXo73vGnWGRBuSvokwP6LuG1ZDR2Y5VPYzyLd9XI4o2sJo1g7aN7R-IlGMZ2GGaCCuU3dzhYIzEBYgcxnBcWD3hCX5xxCwJ7JCPIG6Z2SJcQRmgD-4p1w2vXVEKOKq4BZ3OwWDtvyNrHj5UB7nbQPwxniCN3OUIbeqABaIAAJRWnwAACC+AfAIrQABKLRQgAAHlNa1AElMoXoImBnevCYHnllHH6jCR8-SAEOPPEYS0RyTWccOLwjDtEx6E-MeYF5aziZAGUMsXlhbjUSsgqEqluhLgL-jAJIEsCZBJglwSGJRPYiaRLQk1YKJ0AOArOIWHES+Al46qCJKXQCgyJqAXZE0NY7noZOQkydCJKwm0iUGQQ84VjRYzfCbASVSYpGIlgxjmJ8YpIIZNj6cUSR5gQkRT3ADITzKdE4SdaPBRKi1GW9EwEYFpZ4IYAVnElAAAZag2eC9Kskqh+S420ERAFUFJx+T-QAUhwMFg7SbhEpMQx4gwCfG4hUpmBJKZgA-wU5wpzCKvsP1yk+C-Yk2WKUGNTQZNQCuhcqdFMrCxSzucItnijGMDSQSp4EfgIEGUC5Sbxv2RqbcQ1bNTigShM4pFM3BNShwsU4vvbwCiBDxgqyGQJLEU5fw20qAqNolgL7jBipU-ajsNOqSjTZp+PWbFqNTSkdkkuhJaXwBWnCBJYSHAQZaKYrGBlpq08zJe3OlBt-uSZW6fdMlgDSW4pQXwb5xRBJBqOoImkQtLND-SPpajLEq+y2kkZPEd6KmLF2H5eTje2JGgrnmIE8DgO8gtIBdmwHYiD+Q4I-jfxrEs4pwtgVblCN0ykkH4jI2jKSTfhwyHpWI2fpwO4HOlrMcg+jOPhI4Cj+UD8DmY9MbBYzom4sz6aOx2YQBHsggDsrb1t7dw3pd0+Gf63cKeFnhywCknSHAhtTT+I-LSSuMwEf9SZ3M4ERiChm-83gd6LAQk0l7vcpwMAOYraMz41EOBuIj-kuldGGBbQhIqui6V4ExtRRjgW0DillpzwNMscr+BdgtkkoOB1s54IHM8ki9aZFsp2QzMi7DY+W7swsX339ney1+eIpXtZml7WFvpHhdLEbPEJpywRHPF9oihBnpZ+AnkNObbOvLmEY5ccgoFOE9EcjvRIcwmRtIYw1yu6X-IMunPA4D4LAbs94h7MxFLApuSwenumKTL6kmxQ8lsV4H4bsj4gRLLkXIB5GryuogotQiqNQEryRZUoieX8BlFopiIhsleZDXXlmEr5YotebfPTLSixAT8g2RVzXmQ0puz-IqmAFjkaYVRqvWqMEwumOBv5rbBeRTELHGjQhstY0V1BeleBkFS8moh23QWViDhjYb+dgvPJmEPRB85kX-zlS0snA7GWUvPzHhyxTwDC7nEAVpasc0woYHCVGAGnz85IA0jqX5LcT8LtJIlczEV1pbOs52TeGQCtPhDfBc8EIfBlpC+7SKHhekcOrhFyn9TaWyY4sZpNADViHCXyfFKGASBDhcpKUuUGCG6nxBepSQIGWbKJS4KGxwWNlLgsLEpj3JZC7wNwtkDaILFr2AaX4q8AmKiBO4+edAHdnuLt5h83eYpjbGBtYc4wHFnos3BuJglVi6RaaMpJ+ihwCwtxcxGVTeSiU7EvgOBIWQAAZRWvBLDHCBQpMw5yVNOYj4T7J6c7CbhNKB4R2lok1tkRPPHdBcpAkWSfg0YkZQRl80ueaAAmWtKBIbEgCZUpqV1K+J1oASX8CmWyT5+HQievsKwTiSAxkk6SX0rqHiNcpSkq4RCAp6HKexdUlMBcuUmaKAo4dLZb4s6XaSOhek62ixmsW1VJi2i1pRkvEJGLTyLGJyZ7PmV9LCRKMOkKik3DpKfFdkjyRaSuFwEvlXQ-SciXpEeUPEuynQX4N2FiYWcqkiyZKAEhIrMJ6c00aGNeW0sKVhi95e6Ltyoq7hBOMlGkuZZFiHACXVlZoMGlEpZoHAYLOuJE5isgQn6eFjytT4NwhVMAemQeNzlzs4VaFKVYi25WIskRc4pYfgzlVJBVODKnlUuj5VLD1BXHYwGSpimzS8Jrk0SdGx3SOKelVfW1SjOJkQY7xJKY5eDyvEuqOy5iswJ1LbgKTClVwz2o1luXzj3OFLdSZcruEyqvASwbLAV2jUsTFJyksetc2DVDBQx9DWZMLltXar7h+2I3rigOztDzVX+PyUnWInAqBVtk-UcFgCW8LPIzijHg6twHniq+sk6Hu6vi7BYvVFMK8bJL9UQZc1ga1pYWrDXCoI1owqNTS3iCxrNB8awwImpB7xcHltLRdY8E7yeIGp+iu5AVTHXC5ypqwp9iWv+4zLpOE65opaoTHqTUWuil1RWPjRXrH1wa3llettWcN31PpPjreqSBPrcUagZouMALXVqbVP6lxQn2EBqTU16AYLBUs4kQSoJsE-AFRkQ2gTkNPE+pZmvUnZqCqcQWDZZMJhJkgQf8STper-W6KxFbwYDRavKngaeltaqjPikI3zKENSyqpbUrQ1vAKlXGupXmPg65T8Nm1NjSMqdIDzyNNCgcmTAphphkaoKWNEwo8bZBY0++HcvJtNAqs+hU4J6Z3BbjloJ0CmzgEGlzRb8PQammurulk1bheAxmykNpuWHMxLNMy79DJXs0TwzNAiyWWZoM3MRgwdm00KZs7jz9pB5cMKYIEUBGQ-g6SpTdpL03hb4B0AZGsgD6maaTNWq1Ycppk37p0tDmvLbTGSYmqcA+DeTalqcX+ajNQW5QAVrzRrFJV6S79AVpq2oAPNdWg3kLWK1tDV1k1QlssQa3MtQCZWwIO3wd52byt1QwLRls8mFrUWUpdzaCgW0ma1hymfIZsNiHbCEhqQ-ZazlSVqqeCO5JbQgEm1oA2txq48miscQdaD1m1dzRNsM1HbWsj29razS62LgetZGzAP1r204tFK42kbbUCdwXootrSQVDNqy2fKrhnQ+QFiv6Rby3KSvJKBIoG08rxMkW6Lftt6Z1aiFJvTsVxxDU9j3RcCa7YpnyVdiCd84quRXMEYlwrtkQLrVCA+1ktvtRyTldKqGDA6jIo2gKK5FLDZYoOqrefohmo67196Cic+rKSlZHsN2NranGDq60TgzSUO75SSWcTw6nEvO+hq0n-5BhABzwNks8zzSeS-FtRA1qFTCGocJA-dHHYYCBD2p4+xIhnpgAXIrFy5HWoEOuytay7UCMi5JGTvx2FqryyI+WbTqcQM7yQH2z3SewVQs6OV+20AlHs3awZjaRKYSOGyUr6DgsAATkB15QM98lQPX0Kdz56KYHQkKMAzUAc7Ryr7awaDCxK7c70FgOIkFPQEl7lAgLQFimDoDd7l1BMt7h4jb2HDeZXgEvYWtwF2JFhzQ5CEugsAHI98Sgn1CPt4DKUx95e9YEMDT22bZK+glGPIvkpKLQEMoEDZlrRXz9itjOpNQKGEAKKD9z0YECjsRagE99ii9tFDyaV5Qz2tITHYEFXVaEHAMQOkALTMUQZZowWMtvCDDYRtaQ4ogVj-oM5LFqgEIJ0neleSYAAD3NeJlOzpDFE2+WJNvUCH2QHJP9GAHFjwBOYGcPUAVSEM+qX3b75KygTloiq9CG9CZtvO9AWq46mxQNfHMTLNFdXl0qNfkm9V+s-XBrTYh+JFrzJQP-7cy5MTAySm2gcjmQEIbGfgcIP7I2OcG80DwfGnqH9kYoFg29xVnnqCgahvQ8YuZYEoBoGAPQ-oZF6j6FheKqHbDrdE4rSSjBrlY6J13Mg9dQrJEdmqt0QACqkyU0Q-qRYvQ8d3Y+cSXCNBPsa636RIGgFWTAM4DY4rwPilAMkpwDkB4gzAbkapGEGiB+bpuUswC4ftXK2aBEaUAFLA9MRiTafDRbMwxC2XOdiCBOLkjNifI9oH42sy7N+WeRdJd4aQAHxKjjcZo0ulN1BHNqkyaTcRK7USjxFM0X5ioAfF17omK4MUasbaGsBiDmOwFmWOUA26AAOqwEfUEq-gnB8AM0Rca06EqIVT5Oyk73AhUDABhCjscHZZQ9jBx446cboUT0Jg2cK49y3FGppIAWhJdAl10JgnQAAAL39qgATj3gf45ceuOTGEucJh48KieNAgXjFJN49L3YA7lEjyRxwPsfOMAmLEqJoao80AJSBlitgZYrAGWJEtSQgLMkHPF2PpKyToMik0CZcbUnmqtJ+k4yeZNIHsTYoIAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARjoCYAoKOJVURNAfTQBTADbg+ggG4BDYZClJoAcwAUaeDngBKUAG9WoA6EyD4kTNB79okHACNBmVeq0GAPq-2Gvh3gPiZEJScNbVB3T28vX1tkZGFBKWhgl3DI719rYWFk0LcPNKj+GAATQXBAwWKcgG5WAF92GAQUC194KUVFSr5hXnhkgBpQeAALQT52xW09L2NTc0s+AAcpREc1ENAAMi3QMakqjZcAXlPhsYmO2oaOZu4MqRxBHN0IoxMzVv5JruKevsGoAARNBHoIgZpro1OC1QGgAJ52OJ8ZBiUFPF4zQxzT57BJVdqIbJHTSQ+rQu5fPhSNBoRCKaBPaD9EmvbEfBZtDq-f5qQFAml0hlM+AQqG3LgWQX0xmCZkCRExYnOaYRHELfYE1bZTXKQnKkKksk3JqS0DS4Vy+B8aSyZ6srHveYWXX6vXanKk8Wm2G+WCoNSJa2lWDCKSYeQtTFqjlUn7dXp8o5DIH+9DteUhsMRyVi8kS2FpwOZwSh8OR1AKpEGlyO9Uu-HuonKV0eklG70w7hFjPB0vZivQG0ySD2lVsgz1vEHJvZN3t40Us2+aQBKS2eJ8LPlyXR9nOxbxv6JlnOFOrxDrzfbnMtPMmrsWC9X8Y3wdVpV7yex6da5ut5sF0XAtuGfDdX37HcWmHO0vydXEALnNsVS9fMfXufgwzsYopHEAAPJZjFpKMHRjA8uU6BMAWTYEsNsHD8MIwRiNQe8l1hOiGJWCMnngBw0DgqccCkJZVEVZFUT4dFBCGRDPWA9CLE43CYmKeFBJ-OT5xQhTH0Wes-HkQQRQ08jvm5KikzPYEDMDPiRTYkCLAMwQCKIulUFMhDG20w1O0pRY02KRBJRkRj3JI8c6x-CieRPQE3gKLxU1QYLQuEcLmI86BHMU0AgvC5ZjEOKKyNxE8+GMcBAQYXSAoK1zCL4IsvIWCqqsBZg6rNBq3OpYRT02aKD3aspAQAZm631+CEABHUc4DHIays5czKOPajrKBOaFtgcEpu4YSAGtxh2uU9uSNBVX3cqAW2wR5vO8EhiOK7-LNM7FsM+yrQEh1DBWhsZ18rQDoscpMDUb7jKtS7ru-A9dVesH3ihuyYeZP7nCuid4IWEG3rQvTfGMpZ4HhAQHt2pb4Bx4bcQySAsjh97pp6GlrXRkzkdxqdGeZgnUIfALomEZBYCOuC8bjCyNqsjQUw3cWjtyvTjvGJWJdapS7s1lWXpVVnuD1vhVPU0jZk0nzkL8omRf4ESll6WBB21w9Zd5Qb4BTR3ncHVWAqczKWKSC2Ee84GbdBo2pUwRQseWm6NWt5sQY7O2zWgZBqTjgTkCWOnAcWTJsnzwnhbNCGofDFQy-h6Xf2UOuY9R60a7zgv66nN1m-JdiMOHRxGvrhvYss-pGpTAB+NiQAgRSMHAbA8CIMhKGoegmAYfuLEkEcjMBOUJC7mKZpEMQ99kSMghJRLvCngwjjvrwAC5i7BHJn8MB+xeQI7ICWB+ZEtpRxiWrCiNEH8SRDCPpoL+Bg35+gDL2LckFbyeVvklUAD9L7NWQUGVBZZ0Gh2srA+BoBEH8DAteNBrtMFJRwbaQel5wKEIHLuGiZCsGUOpMRS0zJP5YMYWFC0soBGcOgMfchPCgohRaGFRqEUMEqnIcIjKsj0rB2yofSRcDuGLGUloyKIRVGgHVnwJyyhDHcTBHxSGOQBjkKwZEQxZsHFOOcV4LhSUeGfQuvQgoajKaPUWqoKmT1oYigTloGBujpGLD1oIhhoBcGJIkVI-RvhbLtB+uIlRQiUlMOyUZbmpC4mZIdksJ2iAXYcPyck326lL5yD4soIOiisrGJiSk3RjjPEuL6BAmCo4BLtwcT04+eifEpMwNgdYW0ACq0AjpZwAO4WARMyKQeFQAAFpdmFP3nxAOZpGltJgEMdu9dEDgFAMoXwhFEA4DkRIcYliOCklxknKUVThAU0ec8pAryLGKXOdAS5ucySGDqCk4QQgeC3Pufwf0OAljIBKCCx8YLPmOkMD2VGTN4CgGOIcq+rSg5uI+X0-pzjXJ8WgH8I+axUAmQ8TSwwQcbG8X4ti6l7LPHtz5fyrB7TJHMrEf0D5qFIh834AZEBzwiKEqmc4h+8qRzjDTPS-oSqBoqv0SUMoFRii1GhbC+FuKDAODmWClMSyVnIHWfPPS5MliCD2QcxpeZoUZw4oMySCqBKNTQLE4+XyG5ZxzvHZQwb9X31ACXeBb8VhrBjSAg+Vc25xxjQRK6obNBCs8RVANGqBJESzdG2N+aUa4I0fIjKHSQ46LDbi2VExMCgOaQfXqTUmIlRCNWpxaiWnPB7ZgPB6BxneOmV21pY7+pewLRMmtTC-E0xDcur5Ny7kk1ReTYJ1M4Yj0tgeQ15RoCVFNWakQ8Lt1IvZmjHJGMvZXWPWkKcs7niZsibDZGAxYFXoMDCm97rLV4uQRANYj6NDDPdSSjxn62lQc5k+0pGg80Aa-nerJsZYNIchihmDCqcUeKnN+o4sHAPeGA3C0DpGfy4LXcoNl7JH0lN+nDf9uiqNeAaLx313Bi1iBgKIyoyhpKFxPQzKwTNsgSbjd-BNsmv7JtWI4IEAAqETfCL3FA00CIYQm+DaaFLp2c4mwSvshAASC8AJjZLshzor7EQwc0SR7YbPiE-xKFw3gfTHCbGxK4ThK+lzDjJIePfMWKTfdTHkYeIfomzxb9HZykOI5lEkAXPsJaAJcjqHf3Y1JIW-laBMvObYVBAMyhzFMZY8Ky2bHcm0yPdK69tG-Ph1WhO4sOXqskJMZ4n+AIewELfJKIBNZSQeJ4dQiCrm6lDf6SNvk82qvEKm56Fjb8S5UYaBXWEqSxZa3SSPfFZtgsmzcZFt4+KTsyAwCS8riQsv9eIQJM2UL-NqFACZmUlQnugCM-9hkYmHtwu+913e6bWlm1K1gul6XxBiuwBKqx4tHtDFB7pjdsCV1hWKS15tI8hJSBOpVXDCrmPssQy5NynTlEDoa0lfHLdcGiLQ97TduL8UKuC4hznVo8PQOXVR0RU28NC-lAias4yFX5qo1OBV7OmHrYm10-NXyJey6VHh9XtDJu67iO4goiGDeLegtT0XsCEdi-qADJypLesoI10z7nsDtc6cl9TsbJZLeVmN9Nu3iG-fvffNblU+aQ-cb7nPJyi9l4EBIOQKgtBGB0HGjvQ8Hbnh4VJz+HZpwSX+FHC3cxliuUmH4kMeHPO3hTniilVF6KGWYspAZlnVe7Ebrr5hw7A8UVooxe8gvZlLjrU9m0lMQ-W9-Ccic2EnLyzcvseAMft0oYdXAEMWqLcKXIDUm0jfbVBnb6GF1ffikUcSHFSZdfXzG9n7Gjv0Ak1y-k-GOq2CWqrQn51nyECN-qOAZvlKgNqijDhs6Prhqv-u7JPvFArjZFThqovtwMAZquAbDMRo-lbJHM2MRjWnAGLHSEoDfnfrDJ7q2j+G6P3tnt+kvB-FQQ3ngVUHQU7udCQRrOpIwU8FrjoHZlJgsCmo4LwTJPbg0PiqMOMLFhTEymjiKMFnttnhXjxPaOJHCkMIGnASIWAkqButofvmoVNvlmodMIIdFrqGISjGIbBqYWCOYQDEIRYG6NYeznhPSoyqjiyr+hoQYVjqALYDSDIborgSNHKIoKMHoXEDjMXsDhEVEbaFdEOqALoaoVAn4VoY9kukEUIDfgpt4G-PEEoFEUHjjAADzxElEjDKBJEFGRA4KzLIDqYAAqsQZiiQ8I5occNgv0cIAC1SlQb8QIoAAA1KACzt4GoAEEoDcubH4doOMaASMeMZMV4NMYEIoHMbUdkfUYUTMjakCG0cgBAIIKst0YoL0ZjP0b8ogEMcCGMRMY1oYBsbMeAPMdWDjEsSmI8WsS8f4JsdsXUSjL-P-IAkHiLhofwW8BwZIj0LEKJMwQUE7i9qHJkaAHUV1t4G2iXNEZDn8TgnCb-KJH8V4sQcgKQYoOQQoZQbonsfokHsSmcEjAsaSdgo3HUWyW-KieZmUUum6MCVFkBlhoikfEySXhcLIdST4cyG+pENas0XiXatADECUAmmCN6mkDRhah4vimIcFgwWoTGrHp4lODybYWUW0mYXbvyrYYGlaQ4VDtRm8HxtFkfPCfnMacfC3DrhoZCdWFkcINCV4LCRIB6YiaEWBgYCiY5nif4ZDlic4cXLJnGfSQ0RMuGTTs8ZwRSZsdKejvjiztyRoeKY3HyWsQ-EINaLqEkYGWmWkNybGfOAsUMAKbsUKaADCiKXcmKXEdIeIHunId4RKnKd4AqesFCcCEsqqQyuqU8B6uaDpg5E6bxuanRp4nqWoQachhYkaZhqaT+OacYZadYTaeynaaWg6U8O1pEK6cKUme6cSV6YuKwPHgvFgLgMnmvGnpvHQDQNng8gEICogMCu8jACfOPkeFPhwCmACi8vtC3HBUCuME8k7M+q7B8rzKweZlKlCPikhSBW8u+SSvFM-E3pqKAYYJqP0gWmRXdPqJRQYPqDRQjk3iIYxakWpixXRYASeBxSeNxWkE3vzMIKASJVgrRUJXdMFGgE7FIPCKATJXJV0UlJJQMoAeOYxeOZ4mpd4E3sJKMNSLYGgAZgZSMEZRgAULpV4E3qMRxYYMoHhEMPCNoMcAAHygA7LjEqXWWGBN67L2UGCOXOWuUeU7IHI+WsV3T6ZDCRDBWgAuXEphWgAaYJUGC+UGBN7ACBV3JOUJWhWeWgBgCRU8X9BAgACkOV8ViV7lhV5VaVoAGVwOd0xe9l1VBVReZwLlUVgBAAhKcG1XlTVclf1SSt1aVcoECOUVVUNR1aAJUQYONVJYAeUccIFe1UlYVatYtU1U3m5TNSFZtTsh5TtT1WVW5WtbFV4BtbVcdSSvlWdZNb1TlYVV4LVQYL1YYPns-GSPhUBfBe3kbn4cSl-MJKJJqEMARaBQvL9RBlDURY+CiLYAAFali0wg0FBg1gqbVsX-XIWgFyRSpNXeDw2A15aw0Bak1h5A7xRN5nrGqgH026bE3PHqVlWEDQDnohQKWxUc1c3kws2s02V3RmV8CkCECMWi3i2C1C2ZUi3yDmUACiHFotitMtstTeAAclIJrTldrZrfWazRTb9lTfgjLsDccKDSJG0ptVYUuqbemEGITH9U8gDWHnYRjWkFjbcrVYTSVqkXjYRS7k7WSE7o0kVK7chWTZ5DBRcSeHAeHYEMZgyg4H8nmcjVINIOVgEGTFmTSqTahfECKBheBWeZEDXPHdUN4PZiFqYIAvITKf0HAUjm3g3ejg1mlgysoKTUHGUUMGyQHZHUHe7XyWXV4J3VUD3dfsgCjWjRugPQ7X1nYerYYP2VKW3SKIuPEESv2YoGLEEQ2sOYoc9h8PXUfbDGSK+WAAnh+SvCnuvOnvQP+U7lqhGAgHwI9GoNBMJJgJLPNnAYzHYA4C2CnNkP-TNoEo3G6G2WuOBEaI8UCHwCsYFjMVse8SA-gWA+GCwvEEaCplAx6OAy3CisJJTDYnxCVKg5JtFlILALADYEzAfKoJcnQwVRgOMcoLQ7AKWUCCMQ-LwxQsCD8eMVwyvUlLwwbFQyjDANxEIE4KgxCvHIo8nbI4INMNZiwQeK8YoAg5NY8SQ7hEIOQ2JljTXCo+GEIIo6+gg5oECC3DIxY+MHYjgJw3HAAzJszDXPUfwyXECPg74PFF49sFsOQveriW6F49oO4AQ82JE6AKNcCDPN43crqEE3EUCDPCka-bQ9aJ-ZNj-ZLF404m-Per7DUq7EEzsGyg8BiO0gzk2pE2mfw3o+MQ45DE4w4C46k7nK41MJ8qsf0iMcgxCZJNJGCpSEYp5HEwM54kM48W03kc4xg3+NkGMo04sWyhCH484m-As88ECHxYo9jtAKoxMJ0xAw2YsLoUU5A3s5NexYZgCN01MK2R6JE8c6c84-Ub4gCUEDc2kPwwAOTIM1wIPAv4PaPbFeP2MnOOMf2jiYDqSPSIvuNSQplPBAOOC6jItLWy1+V3SJDFDLHNHLFZyig+y0gODks2RMz7QXPpl3PYsIvdXDAeg4tLp7NnOYA4DfN-awvtPLPKDsuvPNjCt8unPsstwZ1Z2wA53WgKpFTixZQ5pLCotlO1JRjDxfyrZlXqv+xDB1NMRNrDxj2GBY3Ss0iyuIBkywaKt7S0hWMqt4MFA8JjNauQNN4zwvR+mjNMEET0v7GNQtw4sKhbJ4R2vKvDxbqIq+B6u7jDxvp6nX6MnwYFAjOQK1PX6NraIJtRZ-VKuUt-DtzBZY0hubLtDhuEQFsbpjK5t3xkbJslnpPsXaucWpq6hVv2tCBFuQqySgPd3YBdvdBXIBuvzOoTMptnAHN9DbMAsB3VvDu5z4O91NtTsWvZ3WvyuoGtu6ErsBkNbmuZ2Wtyu2udtZSOsJu8u7uNsBnztDs9vxxOnanuqeZSR+uqtvpP6AFetwg+sZvPB1urkgZ+YfoET7Y12uoAf+thHSbLBqZOutu6juuXPjkqvKkOpOrZuwiQdoEWC-6YxOswc9a6HIfpm0H+v4OoeTxTnLJrK7z1PZRgHMi-S4eLlCCYCTbwDZz2DUjFClBsHQfUEHiQeEfpOChUt2M10HBFuUscfQRuJRtCcRxVD4etZ1sNBzz5wODvjtDgSQ3ZbmizldDwBX2335QjAiR2Jv53JCABTjSZ6Z5wJh20jizKAnTwhDDGD+iYDFDUPQ7JnMxefNG+dNN8ulDnqVDFMpLzQyBueCAeeNy6hBc+dWZsoPxJeljBfJH9KpYuewBxcJdujJchcozmK6fxDKDnYQYQ6XDgTBZN4ableCD6ZOlO6gkAIFd8AMBDDud8BdRYn4poCQC2BNfBaCiue9fdesvNg1dNc3npCIpDcjcvillM2VCjlJlrcmpfzPuJk-ZErFdjd5edfMAivEjDdzcrlpB3qHdxFbcbfvo-hbcdlAedZRlJTdwejFdXe3k7cukwl5SBDsf9CTc9fxd9eBmjijmDcXcrckrjf5eg-TfZCzcvjzdRCLew91d3cp0RfFAPePwmCXAzeY4ZRNemsFC6HxRI+6G9encYmwFiOeJuio9wPo8dY6kbkQa3dscTfg-0-zhY+4M-cLd3K3dnD3d+a2ZpBVnE-nfLd6esDS9C26G0-8+Q9qMU-8qC8K-C9kjK+dlrl7eRCy9FeZc+ca8i-8YFB3mdkA96RKXyCwA1E8tYlCQ8PtdLCzsrbA6xBgkNZvx4DpNA8SeTEPwh8ceTFvyoc4Dod0egBafEILlNean3nRaO-wDO94UQaJ86dw8dEU5NeVe1D4rGfBa5+ccviTWe95j4UGckoV-QRF9AgR+iih15TmK2CBDBRBDzaW9EcWC6F98M92goxd8Mp5nzbKDj899TAD+Nwz+bFj-d+T8arT8r9KBwFuiL+b8tw79UlJ1iE7GwPxAGtmHz8I-H84PiFuE10t1VDD9IHWHz9pGf6mwb8qCP+wFn8OEtxA+9iXhWk1HMQscxnJ-BVwfACzgyniCYAR4L9fOE0kE7dl70q4J1gTyY6-Z9+V2D-nwEP57kCIP-a8i92ixYCce4XY1CzgfgwAwBg8SAYSxgFocsADhIsmASWDqR9+eGffuzyAxG9X2JHf1ugKnC6F-QbAwVgmyGAiD1I5HD9iL127vcHyYHP7tb2iySCnWLcaYgkBwDUgqkyOUoGGHhBiY0AU3PQfJW6BoB+uSnHrLiSMHJMTBBgv4OYMq74NdCSMWqFr0q6bUNBjwbQW6jbx2DDB-gTQXL1UBuCB6QtfwQ4K6iQFmOmAeIJnQgj6DDBxgkQKYMiGotrBtUVthEIEDMAnBLrNtli0bA2D3BBVQIHYjiHAoIhygbIY4KZ5YIPBtVLwVoPnC1QhY2eJoRYjDDqBrasdPzg3HABdD6UfgYwI8HkZBDvaFyOEG0KdwDD5AQwpoWMMeDpCUyTQ5JslkuZlDU6CQSoSkPsF50koSMQIUsLHoNCPKsw+APMKOEuMOh2kEYTy2mF5R7+uAsQEWD6DYFsGL4IYDhG5zP9ecEGUgYERwF4CP4w-W-kmVIES9ceFAyBvfyv6fDQA3wwgWo2cFzCHAQ4Ays73X4T8yC1OLgV8PkBIiUYKwC4WiL4AYiaixI-ET8PP6WDwYW5dJuAG1CVARirbIEIyKJDMjKOMXbIJSIRHyBtArbfUgYH8ZUJww3dfkU8TnZPCbkvWN4QIl5GIimB15EUXB1TTEjtAOwK5vB2+HJNiRdidEU7xqJuh1RWvJKG6B1GmjKeqI8wGSMNGCsTRYQ9lLqAtGOiaU1hXlmyKZFEt1BmxbeoHiuGOUdC8HPKqcKUxZAUYzvUsEdGpBDhxOcnKZrJ0lBDAQ2vIkNr8LuwQZyRlOIbgNGCx6jSR5IoVsyzg7c44xSYyUXixpRpizCSuH8FmN1REoGRXo73vGnWGRBuSvokwP6LuG1ZDR2Y5VPYzyLd9XI4o2sJo1g7aN7R-IlGMZ2GGaCCuU3dzhYIzEBYgcxnBcWD3hCX5xxCwJ7JCPIG6Z2SJcQRmgChDb1QALRAABKK0+AAAQXwD4BFaAAJRaKEAAA8prWoAkplC9BEwM714TA88so4-UYSPn6QAhxKdPCMBLRHJNZxw4vCMO0TFAT8x5gXlrOJkAZQyxeWFuOhKyAASqWQEuAleJvH3jHxL498Z+JwlE94JiEwCTVhQnQA4Cs4hYfBL4C9dUQ0E1CRSzonQBdkTQ1juehk48SBIDE0CbSJQZBDzhWNFjN8JsBJVJikYiWDGPwnxikgsk2PpxRJHmBCRFPcAH+PMpYT6J1o8FEqLUZb0TARgWlnghgBWcSUAABlqDZ4L0qySqFZLjbQREAVQUnFZP9A2SHAwWDtJuF8kxDHiDAWsQeECmYE-JmAD-BTmcnMIq+w-SKT4L9iTZPJQY1NBk1AK6Fkp7kysJ5LO5wi2eKMYwNJASngR+AgQZQJFKq4BZcptxDVvlOKBKEzirkzcHlKHCeTi+9vAKIEPGCrIZAksRTl-DbSoCo2iWAvuMHilT9qO9U6pI1M6n49ZsWo1NKR2SS6E+pfAAacIElhIcBBlopisYH6mDTzMl7ZaUG3+5JlNp20yWDVJbilBfBvnFEEkGo6giaRPUs0NdJOlqMsSr7MaSRk8R3oqYsXYfmZON7YkaCueYgTwOA7yC0gF2bAdiIP5Dgj+N-GsSzinC2BVuUI3TKSQfiMjaMpJN+F9J2lYjZ+nA7gc6WsxyD6M4+EjgKP5QPwSZu0xsGDOibMzTpo7HZhAEeyCAOytvW3t3COlbTvp-rdwp4WeHLAKSdIcCEVNP4j8xJK4zAR-0RnkzgRGIN6b-zeB3osBCTSXu9ynAwA5itozPjUQ4G4iP+S6V0YYFtCEiq6LpXgTG1FGOBbQOKWWnPA0yeyv4F2FWSSg4Hqzngts0ySL0xkqy9ZOMyLsNj5bGzCxffa2ebLX54ile1maXtYXOkeF0scs8QkHLBEc8X2iKB6eln4CeQg5ms68uYQ9leyCgU4T0RyO9EOzYZI0hjBnK7pf8gywc8DgPgsBGz3iJszEUsCm5LB6e6YpMvqSbF1yWxXgfhuyPiBEsuRcgHkYPK6iCi1CKo1AQPIZlSiW5fwGUWimIiyyB5kNYeWYTXliih5m89MtKLEB7yZZFXIeZDSm7P8iqYAT2RphVGq9aowTFaY4HPmtse5FMQscaNCGy1jRXUA6V4H-l9yaiHbYBZWIOGNhz54C88mYQ9EzzmRf-OVLSycDsZZS8-MeHLFPA4LucQBWlqxzTChhwJUYGqfPzkg1SSpVktxNQvEkiVzMRXWls6znZN4ZAA0+EN8FzwQh8GWkL7uwoeF6Rw6uESKdVNpbJjixok0ANWIcJfJ8UoYBIEOEikBS5QYIcqfEEqlJA7pSsolJAobHBY2UkCwsSmOMlILvA5C2QNohUWvYapVirwAoqIE7ju50AY2cYvHmzzJ5imNsYG1hzjAcWUizcG4nsVqL2Fpoykn6KHALCjFzEZVOZKJTES+AT4hZAABlFaX4sMcIEckzD9JbU5iJxJMkjzos4ElCpBOKWwTqJkE7oJFJEnGS0JRPDCYUoEgzjmleE+pR4PEkpK0lmS-AFROtA0S-gXShiXAQ6ET19hWCZiQGNYnsTqoYypxYYBIXxA+JVwiEBTxmU9ispKYSKWsruEQgUY4dUZZYuDnz8OhUk62ixnUW1VJi4iwpSEvEJyLTyLGPSabNaXFLCRKMOkKik3DBKLFWkkpceSuHjKrhnQ+QNJORL0iPKHiCZToL8G7CxMLOQSSpMlACQAVIE4OaaNDHHLaW6K2RacvdF24LSIK1XEciCXMsixDgBLiSruG1Tfss0DgMFnXEicxWQIT9PC2pWp8G4jKmANjIPGRy52PytCpysRZUrEWSIucUsPwa8qkgqnfFdSqXS0rNBkBXRaUDwhV91ReCmaL8xUAdtpxYQVwIsFQH6ro4NdNQM0XGCGTOpNq9VZwyQmoAPMTs3AZBKr7WqAZ8MiDO52CxzLweHE91R2WUVmBSpbcB1bEquGe1GsWy+ce524kETUA+yzQdyq8BLBssBXONapMTWPBO8nia5mGqGChj6GsyYXNaqlX3D9sRvXFAdnaFcdjAhSl1S6rtVMKDFmk-UcFhsWULPI+ijHjujVWuRNVjS6Hl6vi4+rIJbEv1QssaWBqIMRakNfWqaGRrhU0a0YbGpparL+JIvVNSD3i67LaWWanADmucQ5TpFdyAqrOuFzJTVhT7Stf9y7nmg+O9a5oqiqjDurtVDy19a22k7vqw1vLL9davtU8SjlD6-9a+txQWq61papOvBIA3xrGJVGfFHECEmwagcKS0ic+NfEfiBlbwVDQ+PQ0UTsleaniQWoKqIbn1AYJ0jXL-iSc71X6yRc2vWK1qv8VkqDZUu7X7cE+wgEZXiuCy9KMlWSqjLxv6V5j4OkU4jZtVI31KKNP4IEFRowUDkyYFMNMMjVBSxo31uJWNPvh3JKbTQKrPoVOD2mdwW45aCdMps4BBpc0W-D0Bpprq7oFNW4XgKZspC6blhzMazXeu-QyVHNE8CzTQtZkWajNzEYMA5tNDmbO48-aQeXCcmCBFARkP4MEtU3iSDNkW+AdAGRrIAqp2mszZKtWFvqpSmWpzfltpjJNlVjwfBkpvS16LAtJmkLcoEK15o1iHK4Jd+kK21bUAXm+rQbyFolby15ILdZNUJbLFGtzLUAuVsCDt8HeDmirdUOC1ZbTJZa1FlKU82goltZmtYcpnyGbDYh2whIakKmWs5AloqngjuRW0IBptaAdrUquBV0rHEnW09ZtU81TbjNJ21rM9o62s1utbQvrTJswCDaDtOLRSpNrG21AncF6GLa0kFRzact4ki5V0MhX9Ix5blJXklBYVDbqV4maLbFsO29N6tcCk3p2K47hqex7ouBLdsUzRKuxhO+cWnJTmCMS4N2yIB9qhBfayWv28lYdtAKg6jI42gKK5FLDZYoOqrefohmo67196Cic+rKSlZHsN2NranBDo+0TgzSYKy5SSWcQI6nEvO+hq0n-5BhABzwNks8zzSmSrFtRA1qFTCGocJA-dXHcsvtTx9iRDPTAAuRWLJzOtQIddla1l2oEOFyScnQTrLVXlkR3MunU4kZ29a017u6XZ7q3Z2hWdZKClVyqGAe6T2xGEvpmO2T2bZK+g4LAAE5gdeUJSvoID19Cnche+SmWtwF2InAQwRib9OdXWDQYWJXbnegsBxE7J6AsvepEBaAsUwdAPvcmrzngzO9grNQJTK8Cd6K9IUYBjcOQhLoLAByPfEoJ9Tj7eAylSfVXo3TCRw2neo5cIB4V8LQEMoS1dlpBXz9utTOiPdwvkoH7nowIVHYi1AJX7eF7aKHnkryhntaQWOwIFuq0IOAYgdIAWkoogyzRgsZbeEGGwja0hxRArb-QZyWLVBDlVGO9K8kwD-7ua8TKdnSGKJt8sSw+oEPsgOQf6MAOLHgCcwM4eoAqkICsd4GH2ct-lXoQ3rDNt53pS1XHU2Far45iZZoHq8ug+uSlPqQNwGsNabEPxItKZyBv-bmXJgYGSU20DkcyAhBD7V9+gyagQf2RsdYN96-jhQYINihGDb3AWTeoKB4G1D6hkgw2IwCmH9kA+gwBPoWGwqwVcOt0dCtJJ0HKVjonXcyD11CskRBaq3RAAKqTJTR9+pFi9Hx3dj5xJcI0E+xrrfpEgaAVZMA1gNjivA+KEAySjAMQGiD0BuRskYQYIH5um5SzALj+2UrZoYRpQDEoD1RGpN4+XEmIWy5zsQQJxckZsT5HtA-G1mXZvyzyLBLPDSAA+OUcbgNGl0pugI5tUmR-8x18y0cfSqJTeqSUpq2o7B1QHudtA-DGeII3c5QhWARBrHYCzLHKAbdAAHVYCSKJ6EwbOOAGaIuM6dCVEKp8nZQ97gQKB--QhV2ODsso+xw4ycbONYKLjbB649y3FGppIAWhJdAl10JgnQAAAL39qgBTj3gAE1cZuNjGEucJx48KmeNAhXjFJd49L3YA7l4jiRxwAcfhV-BATqJoao80AJSBlitgZYrAGWJEtSQgLMkHPD2PBKyTj0y4xYipPOUaTurek4yeZOHLsTYoIAA

Metalinguistic Abstraction 4.4.4

Ifunction use_index(pat) {

return is_string(head(pat));

}

Exercise 4.70

What is the purpose of the constant declarations in the functions add_assertion and add_rule?

What would be wrong with the following implementation of add_assertion? Hint: Recall the

de�nition of the in�nite stream of ones in section 3.5.2: const ones = pair(1, () => ones);.

Ifunction add_assertion(assertion) {

store_assertion_in_index(assertion);

THE_ASSERTIONS = pair(assertion, () => THE_ASSERTIONS);

return "ok";

}

4.4.4.6 Stream Operations

The query system uses a few stream operations that were not presented in chapter 3.

The functions stream_append_delayed and interleave_delayed are just like stream_append

and interleave (section 3.5.3), except that they take a delayed argument (like the integral

function in section 3.5.4). This postpones looping in some cases (see exercise 4.71).

Ifunction stream_append_delayed(s1, delayed_s2) {

return is_null(s1)

? delayed_s2()

: pair(head(s1),

() => stream_append_delayed(stream_tail(s1),

delayed_s2));

}

function interleave_delayed(s1, delayed_s2) {

return is_null(s1)

? delayed_s2()

: pair(head(s1),

() => interleave_delayed(delayed_s2(),

() => stream_tail(s1)));

}

The function stream_flatmap, which is used throughout the query evaluator to map a func-

tion over a stream of frames and combine the resulting streams of frames, is the stream analog

of the flatmap function introduced for ordinary lists in section 2.2.3. Unlike ordinary flatmap,

however, we accumulate the streams with an interleaving process, rather than simply append-

ing them (see exercises 4.72 and 4.73).

509 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-FnoNFQb1tEOw6yuHQ4IZVrh40RaF-hM59BEgcIYsKJ1KZ5tpOqAOQIGwFGBtARtiacsaNqR9cxINsW0diPtFUixA6YukcOXJYjA5AHo1SJmOhEF5cx8UZkb6O96Uh9hTrHEoGIxTBimxTIUSGvUdL6ADOawmYa53G6udcheA3rjbAM6jcJx0XbfHkMiSxoVuzoIxBkTQA45Y6IbVrmUCdGldpyrnG2G22lGnJUsP-VzsoHYaxMMirnMmBvVABVEAAErLSMAABBfAPgFloAAlKooQAADyqtagFJDEJ0piC2gEzpJyrEBIixegekdryI6QBUivfQkE6IpFuMRxqEgkPm2TG4I4J0ALliOMEB5BExbQBHMRIbjQSUx6ASoYyJfFvjPx34v8YBOAkUTCe2E3CSHzgToTsR4dEcQ8OwlGA9xdWAiQdFxZ4SRgV4PoeBWFhdtJJsEw0SVBJFEc+hxEQYX9RIT-DpUsVWYjGIjDxjqJyEbSbHwYrkjsRCE-huAEgmGUyJtEgiZZIbSPiqW0UUvOZykgAAGM+p1HSiHgCwokbjhLi1bFhEAYCePAFKxAwB3JwkCKa0CimrhJiDAc8ZOhcmRTDhmAAricF8mPAURyI0njFNkSasvkoU0MXBxSZv4OCqUoqb2FCnnc8pBvZ3HUGbg5SbkxgNKEFACmHiiaVUoKcVO6CiFti-kwqb1JqlhSDYnUQIScEPCCBIwcnOEpmikSEdjoYoIvtlJn5ACepxTPqRmVOYkcKO3CDgpNKMDTSBAkYOQa+xdGUUtAU0maUoLPYSINBWg6tnGmunHTbpLkr-L0BCFedJwowIAVCIsKooJpr0k6bNMe5YDFp2vR7iL05J8jMGgDLTtwCDi2QxoKeLgML0tKqDbIdiUEVv3BFkDLJGM9bv6iyA0CUodA04l4BZESxaSQQI6aDNn5giN+wg9EO+AXgc9lyhOcQTKJjIvSuAN006Y6Khkap5UfMgWZGEIJJdRwQQamaYC25HkjyqMkGbdN0Fgc5RXwtiKSBeD1Sh+BQSyaimBFr9cZCdY-pCIRlD9r+0QKWNQOiYPduuz3aAGMRLFZ8ii+I3-EIJrHYs3AeskkU+CTbG96IEMyUQUF5jbkGUPcCOSbHwEgipIAg02eWh9mWyIyVAkEbbMl4IjuEMAJ2Q6PH61i3ZhQRmVvyOgLwS5gZHQg9IcJ39zZJjROQ2OyiiDGIX00BMYDWA+yAZRhXQuHMjnJz-UPo7kX6IA47d7ZccJEe-3FK+z-uQ47ltnNLEpBqeEPLMWMJVLJMuRxwfFhyNXk8inWEXRuHPMBq9YRRTBdUT-znk8ywo6siwJrOBDay95MRBeeXPFHGBFpKQLroiMrmfDL52Ja+cVxfmA1xuj-HKmAAjk9xj56vBrH4zDRQQ4OL8txlnMuLOyXepomIduVNG9ZLp7gOBbhAdFttkFXsxoG2zQW1iwS+5b0ZvIHlTy-IAUxwBQk6BIsgCOGGhf9E3AuS8OqAfoMhLJAfSiOxmD6V-lSkWYuFjInikoK+6dSpZlIDVgIGmnpA0sMeOJk62MyiLjgwDcTpHV5AuSOpQ-cseZPgmgB6xgMoEdOX6B6piwLkm2FoErgtSXgbU0YB9LcTTlMFeYgcTbCTiOKHR2iikegqnK0EOFawYxZgg+leL-A+iowslMFiOz4FzYlea2L2Htxt5JKE4Ji00X0F68UMVIaYs6nWiux2gIMS8LECOL4oTGR8QxKMA-jtwAAGVlogTIxDcbyS9Gskuyhpl0BySpMZHIToKO43iXoEwkcSdxLqFyeqDEloNKJeQAZSV3Yk3QqJYy8OiUrKWVL8AEykgb0BwmcQxlYk1STsOCGgIM62oAScGKEkiSulhEoJe4GYUBTpJOwx8C0L2V5LyplLc5TJLeGUwcITSwZUpP1mMi1JtwoYTphIRmKyqsxF5eoqoUuTAa7ykkS0IaVQS1l4K00v6NYiyIklHiiyZwNHFHMNlLw9SSIE0nELZyAKk0GpIHonDrBZw2yHJKMk8TkVuiuwtaIjEvKxlVK5SaaUNK6k+hKBBJTC1XDwt+WCEtFV1KEhWgUaUkOcTh3EDCtNweMTlXC1T7vs9FQq1cenLC4XNgQCKxJfyzLE8rUVbKtBoKpgBQwP8V2YVqysuHf9sJ1fLUURxVRENHRWo0JqLIlH-1v0tqvQRxy0AUr5I0dbCbsgUmESI2R8Gxcsur52TkZjQS+MeKkgHKTu+44NVt0vgUM1w2Yd1T2JeEu1HINy9Ydlxkx2SLlLwmVe4BSBQJRupUbNTJLJ5nMfVcgCMfGosU3QfVfKg8hzMtJgdJAFRdpBFM9WdLBF2YomgRJtizB2F8uOxVbP9VLLCQ5qpSSGu8VCRw1BgHccJKjWiSJ1saoxboBrVNK0Vqa2yOmrHHRd7lxwHNQYLzVuAC1yITNWcv3WlrjolUgKZWqyrVrE1qUtlQ2qxlNqp5EnVKRUSTXeruJqAJFhouDX+zKQ76qhcGrQYSc7J36mCYRPE7dB5JP60YABr5gtq3Vdk8EV6pjXdqhIuQODVBsiRPjXxH4r8b+P-FASFl0QEpUxOI2sTql5a+DbeoWrYak1FuMYZuCSCWMwOwG4rl2qeKuq21siDtcsuSUHlc+AgVZQFLw2zKKlVSg2JJvmWFi4OoKiCFlUY0DKDyY0VjYkHY0UKP4S9N6DDWqh3RRhBeYRYNGMLW5Zg+m9gIZoX5UF9ojUicBZqQj2sjNz08jkbm-5tkRKlmjvKZstXONrNi+a3F5qQjWbuFtm9zWB1+zBb2Azm8Om5pEY+SuAdgUsJxCSW+bGR50hLcBlQAw1kA7UxzTFt5Vsq-NfJdmAVo7zlaQch85qX0LQYWa8tti66Hpqc36roA3mkHJdMlVJLnslW1re1oejMAjeGJY1S8KYwnrLqeLO4l1v5Zv56taUP2o70MC5b2p0WsekVsuElbPNS2gzatqq0XMOxHIWdSkNqHpCSVOy9ENNq5V+xFg22qzbtoeharLhKvSKllS80NaroE4e7Q0Nu1j1i5pxEbQYLG2FrWNmAKbRysxaSUltDWhbfanSjJbIY9kR7aNoxVBDvlOK0cMvIcqDbbgJm8Heqrh0papVhobtictuDZKOOya9YaaRcBDbKQ5O3JVTvLmlyggRiZ7cZE0JsqyY42zcMSzB3WBSwROt-ATtEAw6U0hIPoFAkg4YDGR6sIAVvR3r4gT69+cVsnTNbSsdkiOgHZsMBhjQvlGk41oZEx2GRxdFDSGKAIWDgDxAHde5g9qgEd1VEOrAKozxQ48BPZeC3suh0qhkjIeTFG8McV6KDbS5py-duroug0sgu9OynTMLVHrMal4pQ3RzpNV5xudIe1dlFD533hRAguuQKnsPb-4Xwl8cUCGykpmCbYAATnEKLbRKZgtFRIBQFV7pKaKqOqqEcByBfV73LAdsMnWHkG5EEfQKEQ8nQy3AJe8SmIF+a-NSodAKfUevrlDzcBw+wwNJUdGSAWZtwEfRDk2W4hZUaknjAdH0C3gF8mgpte4HX1N6t9QaOQEXp6CL6zBX+QQNItkWBQy4ra9bcjsZFa6cAXO4HffvEqP7X8pUS7dKoAhSLf9WaGPFRCfTTsgQROyCJsygSJFVwOQYELzQNnTkrQNsYtmeHmAhsoDbymxrAZPXqMnwNLA2FLAQiYAkDHNUANE0OzcjOgj4bruvsuo3hbwuBvRfy1nWEHGo3lYulqCYPTMYDVoTyAHPoRHkpYqGjjlxzhCwb4YQhx7pxpOCfqIN4GutRZjkNbcyDiB7ElQZoPAhjg9BofRoCYNeUWDTUH1dhBkP9TTDN4FqCIdUAKyX1MQYw9YdvCYtwo+YhGi4Z4NbdT9Dw46GpPR2eimCuk04gIaSWxDzdnQS3WWIQmVrXdEALKkoB17dI1VV2q0MdgDE5Ko99jIxMAwbVgdnsHQNAIeFlRpQT1-K8SOgakiYHS2uBqUfgbKM6dbixB1fcqSYJ4bAD8LDI-YG7G17cjamzNKbhMLpdKQPOzYsaNFSCiRAfATxgvA2ait1VkRpAJtHSPoNhjB0B3QkYWpJGrGKEzpRaqEXGBQWNq6UQ2mYC4GYDvzUTmIDwUAAdZgP+uMFl5JD4ACojkcWi2V-KfEIyBPpkzkGkDr+KiBcaSVXG8JNxr2fccePfSs0nHV47MylFrRIAiRA6G5w4JInQAAAL09oaB7j-gIlS8beObG3OWJ7445F+N4YtDpgQtLL1YDW4ijJRjcFcaeOcQCT8JrqrcyLwzGycdxWAHcXxZoRfmVEBlMCfVVMnoTrJ+xuyZxZcmZMWQHk3yZpbkmWoQAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEHsAcFMCcEMAuBLcA7A+o+AjANtADSiQCuio8aAJqAObSIBQIoAZrOALagDGAFvEiI4oAMygAFAGdovFOnEA6MSoCUTNqTTzUaStOnhekgNbQAnsVhzwsatLWgA3k1DvQNxKVj7k0jDRSPDxJG147Bw0PGJiAflBtamg2ZDRoajdY2IAuUGgAR1J4UPMrUH5oeGpJSuqw23tHNWjs7IS6mvDIxyy2mLz4Q2MzS2JsZFDuppaAbiYAX01tXUUueHMsXAJJJ1cYiLRpCjxjEq38aFAAXlA8f0RJACIAKmxLl6e1eZitHQV9KdwKZSJBRhYMABGYhlDAAJj2fVih2OoGkpBw7wINwMRhMsOhoAmoVOvHOWOgcyRMWQbCk6Mx2yu1xZiRoKTSGUR-RiXh8+iSHPS1B+bQW+Twshc1LaKIo01otyGePB8PG8EmMgxFKpPI8tKkCpurMFqWF3L1sT5vjZyTNGVFevF0ElV32lt5jH5RI1U0a1G+MuyS36IY8Yfcf1WfiOcEeBJhljVoAAbiVSJTpf05WjtUyccqRgmfZrSeSmbq2gatYzLsbbqbOQGs5bZIgtqWzngLgRCEGPe5IBrYJJ7sdVYSh8gR7C4cQ03gMy0+wOB8TR12e5TK8GJVL3Xqc0alcN8Um5yXQgydYGPdXjyb2fbmwePABIfptjtXvOXPsf1d+inEdgNVC8FyXFdANXddrwrKkAPcZ1XRbVcv3XBV53TSlHR5CNYnw-CowBUBqH8IdEAESQuAtbJrX0HgWVuJ4gRBSAnn7NoElY0FOOyPJGNZJ40lkWBEA46DQASES4z4to8jgTgRy4YgngAVTQUw0HAAB3fQoDgJA9FAABaEyfUuL5cPw+jSPIpABHmJYcwMhAAS3HF1k2CldnmHMGAoW5XKM9At2eHj2MDHMyECiAYDcvQwuE2MxKslgwGIvRpHYTgeAAZQASQAYQABVAAApPLQAAFiUSElDhZZ-mM-wMFkPA2AwaAIKMtA6BkRAuEQWjPC9G1WqCLgcDgAahqcUAAB8Frk1rjlgNJ+uOOb3CWlaAhwcBwAIKhZuGxblstCbgivQazo8XbLoCRthVOwMlkyxRWuwOgGGoDAx0eLbEHGSotjoEbbNa0CgacAAyWGKiqGoYfrIlQe+pymujUAJvgLhoFe1DRu8caAm+37-oeU7VLQPHoDS96VhI6QLCmo6MHATrafxwnX1szpJFg26qUZ5rPoCZVkDoNB8bQQHhdQyGyfgH6Mkp8cgdUyXpdl8S3qxkjtZl6A5ba1mDpu7aD35pHBd9WpbaFuaWn1j79CN3WMAggmUetsb9AF9cneGkWDZagI5Sodtkl4PB4AS9Beb6JWwYpgHqdAJ5I9NmO44TtAGbDxRs+juQ85CzAWbZy2zr9kmA8d+3A-tmGXcxt2+HQY4o4wXP44rr3sKTjwbfqIOW+F0OO9atN1qZXuy-7gFh-cFPybV9PNcz2fkHnvv88Ljud73xf87N6uV+J71m81G+a5d12meM4-LgX2Ol8S73L9Hmpx81VvH5iz8AEOOU1qDwC6gAD0gDYQwehv7+xxsrVWf1N63VUqAnA4CoEwOgHA9Ah8n6KEwdgocCB8YiFgNIBB9dQDrDBFXC2HMuZ02IHfV6U8iGAjxlgiBB1qAWBodfRumpg5t0WEXYBGB6JtWwCIXWQjSapw3lTLeTwZHd3kSbPW7cuFX18Dg2B0h4G+2Tog9hrddFAKQRgQ4ZEATnGgNAoxJiFZ129F9FWadVHoNAHJWIWd0D2L0I45xeDjEEMAdjOxhiMC4ORm4sxtCAbSJSBnSEUSSIxKcTA2xXdFGAgeKktgGcERWOiUE2JJR5ZWySd6FJNgSlbzEJk8ObVCgZh0D7RJI9EGeJQerGpwNM6yCKCbXg9NWlrA2NAdpYyumnUcIrRB6cnijM6RMp4xAgaOHKczDp4zZmaOgLrahvsPB1JtBYyeezjKpCoe2Y5Cidm0R-osqZ+hYGPLkSc7RZzbpLPcTaYOuyJHTwCCc4QEJ1mHPecs2hV0QjvNueLf6QxvlIF+XLOFQKpFBCRSCzh1jWr4GMKYS++ipHr1QT4oaqlSW8FMIQ6xXlZkMvJaY3pySqZPHZVstEwsUX6HZRgfhgjOVcuEWPCezshU2KEJAe4ZJl4SspTY6lgyM5PAVUqiuzLsZu0MeE1xtTJVXJEffD5lBYB0H+aa1e5iLV23-pPK12kMDx1tZIKAgLLl4uut6yAoLRYGunMcD1NrA2+rNQ3eoPqrVfIjV6+N8LvTrnjZjSRNjZ6SByRDPpyDvHjhyapOI+qSKtTSMkSBTJJAUXzQigIa0NoO3qPWpwS1s3x1bTUdtcqq1OIwLCTmdakAjRzGUHEAt624RTjmsoTgEhPDLaAPIZQ5UBVkTYPG4JCRlARETHM2VbgBV3YmCwZSkS2WPY+O0TYpKgHxXgVdaJ+0BFgMEbpmLdYNo8YWlRGsfm61Uh+gg5bjKHFjqQCJaAwift-ea6VmpQPbjlSh0V4ABFwYIAh-1BL7YYXgy0fs3EeUlB0vACwZMP2TP7HkdhhGcNEuxscOwszlRxkSmkDAA7IGSA42JPQI1qyVvZDWy4-HDCcfQC0ImBwu4UEnbcXjQ6kwjoEwCW8soFN8B8DYU2GnEprSqIxfx-RN3GZ3WULWUnBPoBMpZrgaUgLkHBDZ0SAIHOIG3U5qCepQKGfQMQXYNwAB8unYD6fbIFyu3mTM7lAMhfcSIlghuZogNj0jP08cwLx7DmZXzRSQJQ-QtxIOLhg-lrT7gRMBF47WiiJXZOvnk0cRTlgcQqeHSUxrcA0DVeRDp3gentFZYIFukzNwzNtAs3FqzYxM4oa8z55zbQYpucW5+5bJmtn+NAih4LThrjheG5F0b6HHMJaS26FLYK9HQdmXl+tRMU7Nr6j20dIdMYEAoAAFQABIAFEMAAEE8p5UBwAJV+wVAA8gAOSqrcJ98ws1sEYAID1tmATUN674YgHA6a4cSLIHL1bPtNZI-QRgZOnFqxi7j4rfXWj8Wp9FkIWOPNZQ3TTko3YGchb5oggHwOwcQ+h3DxHPP2y8fp9jrKFPmcvcQbNnzkgutqZ60z3wah3PSbQNtvGhdWBu2yhwbgoBCqlQqlVWq9VIRZu6umTFGcTYpleQW9pHUuo9RQO9mGfEEgCqGnxPIuMeYB71NxQ6bFz5MK-ow9mnNAh01esQN3LP5I2JLm-cuKrhaB-yAuPJbWe77wrq7tA7vQ9drnq-cv+e5qF6d92F+42G8muGRnmvrUPbaNes34vffsVb273qMPEcgnIAcd2HJLjE6R55AkFvJfgnoFCbg-BsHR9V8z6z1qJCIFz+NQvgvUe6EzIwG7UcPDSH9woXAO1w0-OSWyIfjDWGYYv9fzEMfPIJ9zIbLdJN7n4r4woLLgETKyLfp-Jp75C74977Skgcpn5L5F7nDsqV7V7j42IaJAb96L79DL7F54EwEj6+J-79AAE6rIDKqd576xAJA6qCIt7FAiCSCGrH5b5wEZ7f4DgpLJ7ezUKepP667wHu4MEDD5CRZ2BaoaRaS6T6AsxyzwCQKmTmSsGYrgaKDMEcHaDEAiG0S1ZxLrRcDT7IApizLX5-DNYyi2TMEmHIBmEoCWFX5cJ6FoAGE2qgrhh7hXDGERBcCQDgBJBuFAIeG2HZBHh4LBCxSaHsGGpioRF8E-5OIiA0BdRV7TjoAKLTaASGpkJ0yULUI2EpE-4eAiFlHlHsBcKZEpjZHGzYo2EJYOqNqpL1yDyLgEywKxGSHtCUqdEZgl7pGPA9F4DDRmZ5DPQOh9DXZybSFKQeGqTyHaR6Q1HWKIAWAwDqGUCQCKoWCraJZ3bWICGdRCG5rQLSDp675ya2TuoiEXFBp9EPpPqcR5CgTxEEz3LhqeqPGODXHu5VFtCnGDF4INA-HeF-FiEZ5Wor52LmHr6z5hLcE77u7K5tHeYZi5q+4EzZLOImEZA8G77PHuDEHO7sF4m5IohEnYE4GfGSCUmwAerjE0mwnF6QHAGIBXHiHCZ0jq4QpBGbGAGwovIjSei0LTEigpZ+E4x8kH7orQFaLkFDTNDzF0SIL0nfEYpKlDL-EZ7WQyktYeA5hamyJDSgk4j+KalhralYq6m676n9jGEyJfymlAygmRGWi2Rum3Sgm4QxBzFGnqm0JgEHILJ5GjThpPKwEvKECOmhi3ZpbGQgnaBGyEncx4LE6IqhAZm9BEGPrXR0YkDDjPAvCplwLSwZCfDEApm0wVkvTri5ltyIR+JJmKDSBkiYAhGlzvz5yiFEzGEckcJqmdxtbB5ck4gcmKl2miH+kxo2KQpClDkvL+IJCvEeiDB7EmzIydkczkC54fz5I+lkH2m64RmxAdlUB7k9l54K6srCnhnVGriJrRlyxP7NBXaGn9gpw54d6n4gGWikbji-mnwDyJ6Wr+IAFt6zJ-nb6oEehAWPDQUHlnzgUcLTZ5Ao6JmO7F6YGonjo6Zio4gipJEwy4Q5hliSiTm7ndkoUVzUJioDY5jlnGKVkOA4i1lpk1CUU+Hzn0lipAnZBpHbl1ENEKI8XEAsVSzCjckwlyor6kE6lYHE73kulDx5H0kyJcGVZf7nltByXHHYwr7D5DIAkEVjnew4j0kmWgmsm4RGxx7sxfw2VoVf6pjYRmWzqILezyXF7IWwXKVEwOXgW2X+WgXuSuXCxlH0lhW9kDwJ5RU8nRW75OQXIdxwkKZl7hWd5mVBX1mOWt5DwgVxURXmxHRp79j0nFW3mhQJVzRmXJXu6Zom5cJm65SW7FRlSVQ1R1QqBZpfQ0aSCQLE5qFMREg0Zyr3nX6FEP5ULEACU8non1I8qBHBGhFuy7bQQzWMCP7zWYblCOltlSKrUhEZHWFZn-o0rjhsCqQnXrVcLaH6AFH347VUIcHE4NJpI3WgAZJyqJH7XvVLU2ifUlLfWXpHXrHRiiWcCNGPBsAfVFKNIcHEAtKTWX5qVdEMnoAjEI3jjqL+ygn8qHA41vrtH8ihXYQXXKJXVIUeWLYE3eyPUDHezDH97ezE7sLs2wk6CnDGJ9TQ05H94Z5A36DriHVo42lX7kIEzC1C60ICzi3pU83gCk44CCKE74y5XOAxBXqIKgQa1EA8mYw5iICgyLkQhu5iXaI4hYUdxTXS0yBlWShYRdHRrznQxO3clCFWoG0FUlHS17A63ilSo1AG0+3S2gn+1E4uBB3znrhh3yWQLpF-SW0w3PKe0u3ck4BDCzKy263JImx0Cm2O3VxLJjUEB9TF0Lh5nn6gT22p7gVe0lD-GgDZ2k6UFUF3CF3F2N1OAAA8Xdld-Akg1dJJHgy+MhI4Twv2h0F+aAFg1qdApApyuYex9wGQeQTwoAAA1H4tUW9nQLSOKp7U4LvfylvbvXpR4AfUfSPc3cRgOApJPc8DPeAOwNADpIvcvX8qvYqsgBvZnDvXveUTfWwMfaXafZnKpEA1fe4KA4IqPVahFAVbZeBVrUiErSmP9IdGCHnf0B3Jedvhne5ZKGKW0CnE+iXRbDXZJMvlXtg1AJILAx4OMrzRtALbDbmsSVfXkOBajALL3cwx0LbKPcw7w52c6leCfeqJqIg3OUhE6XyW7qjKbbnYKRbVkWndomQ0Jc-Wg5nBpAdEkI+nTIcQRF+R6CadLTiKaQbVw01f4tehI77Y3RwQHYJQOL7ecWHQNgGbdsHTaG7gw7gylYZYbPlSFQnk7S7eg78HokE0CCE2iUGZDczBI43ZnTo1aJ7pQ4I9BHQ1g4k0w+Uawyrew6nYLdijCRGbw07fw7bHk7Q2iDTgLNXS7WPVnoQ5I1Q0dC3euHI-2OKIo1IMo2Nao11Ooxwz+iOb-no9EwY2gEYzQCY-jDsSZWYwGRY5aFY3TDY5LXY-GV6Ygl0y457W40Th4x6F49hFHfjC0eGP43xfQ0U+LelKk1lDlBblbl1bbr1dVP1QEDAk4eYa4dYdoB7hiV4gBnDfoZnEC84RYZMnKvCyC49kEQQLrBXjYamohr-PbM0cbTpiiy4VYa1RxVTEGKsp0Pyh4J0AOGecCTysSDS+4MSPSykassBCy8WdOOy5SzygDNywDHy4y3jdmfytmXqAy2-jymRNIIqpRvynKwqwvTyNK7EKsopHYCy1q7AB6OqzEKsusKbR6jgNIFssa-wKa9lP0Aax4Kstvdyx4ENcQBYEduFmobvaq3a+4KsiZE6+4C66AG62FqAGoeZN6xyzytWW0EGyG8dmG6AC8MG+4D63cDysAAG1IJAq6+64m2AJG-y3jQAKRZtxt5tqHFspugBpurJMROvluhujWshutRt40ACELIDbObwbFboAnbtwrbRbjwTwfdZbPb8bHroAA97gQ7orI7fd1wAbjbCbahi7s7tbPKoW47ubTboA4WG7bbI7oWS7xAsQK7U7J7h7w7zw7bWbibMQCb7g7bHgw1QYUURLphqLYRUNjdU2-Q9CPaxAxLiLP7OOH7Y5IHoLtR4AOAAAVnIBOdcP2IB38KG5y1+yS-yuws0Wm7EFB6S0AqCtFJh6ByXMeum+OKspKfypKXh0+fazygVGgGaNPgcWe8x6x5sfRwx5RyO5axgCVAVCywJ0Jzxwx0a0gFa4DtywJ4DuJ0+asvDvAPDlm8p-Dh0+URB6iARyXt3KbH+8hwB0IBwaGwLPDcB6R64eR9pxQLpznkIf+20Kh2Z06vDWIfZ5lW+YGB3A4bp2C54YvQDMTg4dxoKLAHgBYOw3B-AGmB2etMIMU4BLp04YqnaVi+C5cxUTasF7MLEGE8ZG2KCFM-3sTsJRkRU5w3kQqtuXWlZ4R7+8Q8wyQPV3p9gAZ9I9V1uTQHV8CyS2B4lLBwh-INyc1556XqbN7Vl2jGo1CiV3LPrD9jNxgHQKcNnbPpo5U7FEV5APN48IGG86bp8-lJ1Tbj1bVP8x3MTQgPIBgGMscIlOsLAOStBVTZNNNCOJzfHLvJcC7FTgxvbK97JmfRgBfQKutH1LfV93Xkxn0fRk6kD3KoEesO0oUSIAkhD7aiF7wMNlwMEC7jIAYTj3m9lLvfxjj6jE8FvUulvZvdA7vfAMT9N20FT9st5htMGlmtoGQrIANJj14bagLxgNz-HLIHsG+Pnd6AfUA08M8EA8jxArIGj4SYB56sL2gDz4bYYZA18E8HKiL1QrMpQlwPxjam9wGp6n0Uuk+hJFngflTJb6APDHxPyYEAGuuJbx2gtIjEhqEJ7-20JGWlb1IALI72Ncurb2gdd4z+2Pd+5E9+Spb3JHkK7zQXQYnI787wOOHl8bUdpfAp72PUunL7vQb6Tsbx9g8YXzAwOFvWDyFcnhmR4VDfnxn2b5A2ZnX0A2X0b3ACb+wlX+38D532oJH53T3+FA8Pyp6pJRr6L737ADRHDzYgFmb1ThP08FyzWVTKH2bzI37+37P5r1gH38v6tOz+9kn-mU8AAORg+eoy939FnwOm-gz69z+G93cZiwCCJjI--m9Ip8YU0GaALD-5zteOfHZ4FQGoDn1tWNMcAOJD1ypQQMn6L4A-S4hshNeH2MAWIXXA4Cj+8-E-ov2X4T9QB3-VtpeEkD4DMBhAnAXKhi5xdeACXdsCzRgTGBwkjxKmmnwrx5oqcqybgQCH5ScFkSlWPNNN0A4MChgTA5AMIFBImF2BhgAXtQjzToD98AQJvrwPzKrIy02yJ2swhTw8wVBRZHJHKjAFmwVCkCeQRMkMCcCBycpCWGvVoI8DoEnpVrKiENR8Nbg-YBviwh5jCDN8oglwb41HI6dOA1g2QH9BEKeQTOZg5QtgEsFsDwhSgzgcEO9K1FPBQkLllTlAjTowh4SenN4TELsJEh+QyIYUNUG5B3moUDIcxEFbZC8hUmMobaiLIeC6m4fSQfFxkEsDsIY-eIDyxHCtDq44gkzh0OkGyDWBDQ7kg8RUHL99a6Q+ZiUMaFJpeKSEGUsYQ0FBD5itkbQfyh8EGCZaQQg0i6GSzBlvQJg7Ch3E2IwBbBctP9HEhLKaCMBCtFwcYOfoloFmChNYq31FpbEkWBXYuNjVgJ5oRaK-B4S8PzJi1wRWeXVo8WWKaRVi+gb4aORGLmsrUMWLAOAFFTsZqAyQGoMCNuHApfhtg8Phpj17-D3YOIznPrg-wsEXBIIgWMTSBGHDyRF+TYDgCrQtpoKLtJcCCNAhciSGS4OVOyJoDsNoKkgYUWRD6gc1bYEojaFallH80v4Co8GCCPXDKj5RHI-mtxjsb8iw6IIwsCYF1EB1E6ydO+jD0NrewCcAdXkSWXvLKizRP3XsAKMpBWiic-aCbigBdzvCDas-JZn9FngYBBANAAgLABGhXcoAtIyAFk2MI5oVBMzY0oRU1F0BiKSYnLFLVTzejjRjjRBMqNRiSkIyCQbQH6MHhMkgx1AEMbCJyhE4amncSAIImVG2V1RwQ1YccP8L2D7h04FIfGNaLehQIEQOsR9hUHEB+xgiSEVGPuYtiUIKTAJoiOgTyMjifjGcbWMjFWpHMHqbrn9GSBxwLAhJaQISC3GUY1Y0gA9ASLwxXgMkVOA8TuL+jHjdgRZHIQ0wyTTcQsCbNcTVwyJXjdxc2LgN+BkBPjmu1RT8TeIRBWo0glCY6K4SAl-jiAQEtqCeMl5KJcmF4-MrBNvGzCSyAjf8YBBfHhYwJcACCTBRdCHiagqEuELsGZ48gcJ4PEzL+L3HiIIaa4tgHHEGgmc-g2yYnExKZyxY1ca41DrC2aB-VmJ6RCbDukuwgjsyfPeLFTnXJ285Y+EqoJBKInXikueoARt+IU5UTOJiAYSY5kkl4xaJ6k5jCRHK5-RaQenB4GzW+5MgYJSAV0Xc0PSJiRRfUFMU5LoBpidRVkv8FWLuZeVaEuYsavmPzImSHR1k0iLZO8mUh7x2uTAMayogNilRSYsQuAmGQJ0WReOGKQ5GHoUQbJKU60aeIimU82AvoDIFvSpxPAipkwEqcYKKAlBPsOUpwFTgNoXJO6M8btM9ipwmSeMnUFEBZOxTZSwpuU6sS1MBYllns8MUEZ2OSnB90pGAWKcPXXD1oKJbQdcFNKWnZAZpc0j7ItIAmAQBYq0naauB8ZFlypxUmAXKj5qrdGA1Q78UNWJygQe2VEp9FagEByBTAHqTADFkkxc4gsoAMwf1LMF6jCsOmOaaknRDjEcQG0zKVQPIH3DhkMWYgAdNXAAysxS4kGWMUChCQKpBAGAdJMLKd0LpP2a6WrjRkxFxiPtKtFSLsxHBFc+OCKcTkYnMTAO02ZKcvTCznkXpjKd6ZTOXgsyVIxZbSX1jskujps6OSiFawFzpShZocJbuhgiDaBKEOIAAAyo4O46QHSGNnYyOD0+uWGoBDGyxyy5JerW4LLNOoKzd6kIXyd6BNnyy4AaNTYGrJLGOiCY-I9DAIK4wvgEJ+gUCBH2A4llXZWsgeMgGoD78Qpv3IycZH0x0xHZTIOrLBhQzmVUQ-sv+trJ4yKhH0H9DWeuOTmBzdZuES4TYFmQUY8A5KfEd+U9yxi6Rq5VkbMgdlij3hSc3VO5CDkdMACHxKEbXRLJxZC5JQclM8PHFrSu5GAIueSjHF-cNy+QOcY8x7HAoC5Q8nuVVjlTJAYANAAIInHeFGjo6r4fOdAG7nFzc00Y9sbGNcE8hqwHSWqfyO3DdjsmtCTEtAHnGbNWxV8twRQBwAuTJRbk7UQ7UNqpToItkV+QFKfBNhYGCQIqa6FgZ5BB5w88UamKVETiCITAN8IGWzFtEPiDU-JuNR3lzy95CtWTJ2kgXzyxaFQ8eaAtkDzjCInsjBbvJLkuCTRIlMycETgQSZ+RC4KWQ5LHL+TW6qYz+ang3k+SkQ1YXMQO1tBCguQI5WyNoCPqzSoZ8UoeOqIRkQCPALCumXl2lKPyYx3aBcM1ifKsAXgui-sDmA4UNjuFPMJRT-PIY5ikxAfBsIAuFBVyJFYDKRWLNDm9hEZMizGnIoQVvgAIYdSChPNNHMKSgUso4ShGrBLztyq82DEot4WXztaOivRf0FsgnTKpZ01RVOLLkhkk6tXAJXgCCUXD7saASRZtMgCTgLwgMihU1PD5Yyqp1-KpTjM7pnzQgxS4DgiEanS0iyrUkCBkmAb9FOp9ClWsYgkxNKSApSgOu0oCA5pIAB6DqZkoyJ9LGFOwSZcB0JB6jQAcSl4GMo7GdK4YCMKGKNJaX5l7FEITaQtKwnVEFpCINaR4EOWOKqI06U5QouyDToLliM-BgHWX5JLsZZIiGg4QgQoZ8sxAP6dFIBUwyylz8vgMdEwAoYcQkc-GNHMuCxyF5SIZigUocXozLSA4a5ZtMBUCz8cB08rNBngSxwqgkK+DJctiDIy3RFC65WisqWnTeh49AsiEGME4kv+cAQROhiSJEqry8c5ngTKuncSTMkgalaTK+wSIluIuDAJDjUgAAZQHEjkZV4AVZeiUWZjhQyM4cVgXUFfOQey04+M6U4Ppullx-Q1VNM-rEWU3R84NZ1CK1Bao5wmricEqqVbKryjS5dVasE1fqpBFviNxKky0KrkFUa4IQI6fVWSpiDqItsjmL4Fl39U7ofZm2AgIbiczhydCa9CEB6qBV0yvV34q-IzJM7TYoVCbc8j8o1n-L+ZJWKWVlxVVWt01GqqWauNS7jYwB0MtlbDPLURSRJNELNT5hzVIAmZry3ZoWo9Derl5m4pSYSQjJmhIh8ufJNirbVh1meVEhwiatnWCy6ZeHFxupN8rklZkTasAULI7UJyKABQNDiekYCCwiR1Ap4J8VZU-8zGtkY9doDzE2KMgVOYxOix3XkDm1P-fdZdiLIPrYMjIt8l+ooEbqfMaIykehjsDcyC+06-rOJPfSfovp+uNBRgOqDGrENMWZfmhug0Z9YN4Gqdd9NgyYaiYrGGwDhtywUbycmG8ijpiOgEb9cFHCVWLihww4EcLqpEExvBwsbJc8qgLLBsOyhs6N5GlYWqieDAgvlWabDX8vjkkaMsZG9DNxjyzxyaNY5ITWqpxCOqZVcq3CJpudUQy-Zn6ATQmzU2foRNiS8TaTXNol44O7hHJG7WnlnioSf1SWocBs3-AoS9I22HZoTR4J2wrmpmMoMuLE4xxnPcFBMzm5ys3N0YDzflIknebnNDyXuP4Ci2PBvNnm+oPFpZGJpItAWmLRQpC1upoAdATFH9CbVpb8pfc0LXolc3gA0gWNNAClu5Kgb4s8G8LUKX83hEOtI3YPs1rxhFkatdWxNF1q5L1bGtCnISiyqbWmlhto2gLWeRbLVFetS-TGOtm1Q0Bz616sAUTXQBwdat-WeYB3Ei17bJAOW-4E1ojpiTYtApCLclvcKnbutuMplS1MNkESF4248dauE22frTS92x4L9pbpLb5t2QKiUdsG2+akt0gRrSdtu1nagdP+QHfrFW1wDM4X2tlUq2S17afOeidIMVvYKVF21l2ihQzN7V5rDp1jY7AgpPnqCA0qOn-pIBx0lab1giQwqGp5B8qMsAqndD4w0ALa+h7OomYKp8VeKX0T6f8NkEB0rbXMTwbSIgJR2TbyB-KBnSICx3WI6cw2dgqXKXH0l3h4zVbrB0cSbdYaVqUYcwNsr47AdLYa9Nmq0l9q9QFS0LHJDV3kACYIkdrp6PYLMNd+WPIWWSpHoE53WAEmESmHkUPKPhCI-me5T1ZmRAG29TxQtqeAm6uhhNMeefn52c6TePiy0JhWuiCUJdEiVbYnvGE9DVItO9jqAEL3dCuitnC-JYOVbbicQAATgO16I69lGDtTIDDEt7yI24jtTxkoQDRiAcGlJusIDTHBj5D8kJXyVKyshFZWTGIK3sEQ38b+qkJQKvo2a+FH504jwAvo+xj7mxsQBfb3unwzQ1xQsMQvoHMi-VBmU8uyPKx71rjj9I4bkusFr3d7KMaIvABRioxYBBq0lNjD+vUkgiltkukduRkozUYMwG2+XWjoMKf7wDP+wUUwCzSLCAgTatIDFHnBwADoxibjmwtRAFAcQsQiwBYKsEcCsB6B8gDL1mBoDcI1YSwrAGwNscrFIySqXLC+Ajkd9TwMyOZBQO-TyBOMDXpQfUL+tvg3Sg-W-sEQ98mdVAuYIlkNL4Rqw6IjLFiI9Q4jCSBQcfRUQg3ZYoNn07DeiKSIaH99dBrA2U02LMG1krBvWFfM4PcHo9MWSgGodoB2GzIVkOQ5vsIhbNsgthlw3wbZWRlYi2UFw64f32H7dJ-iXiaTvyLk6Hd5RKQ02p2mu6o4u8dggUB91SBg97APNhIWZ6l6qB2yDaITPT307roD8ayCyNNJUBpAOkGaBQdrhIqdMBB24EQZIMoHR0hvdXIIYoBn1qDCWHZvjAo55G0jaIQo-yvb1PSBsFDANAbRoaMFM42kC-GLI2gDT4AHEN8FMQ-6k40DHolIwTGGPmdpaLdP3VkdDYSE5U+h2DUhqpkjRSN7GWDWmLyzUaONQOUHFxolxsb9NnY+GVIDzacbxcrGxHJMcQRiamUmaFA9IZv4aZJADygADpMA-l74v6MobYB2ATeou4Nrm1kyARl928Uw7IDSjgmm1kJ7HNCYUVwmETG4jEVflROjpOxpAecGIXKCgR6ToAAAF7Lh3AcJ2IIiapMonF+xx8oOyaxOSQcTTweg9gb+EARNAktKozUZHCQnKTyJmkxO23541Vj9Kc+rwHPowCWgN-QMKwEJOfqFTI63k8qddaqnQD59HAJqe1NoDRTVkIAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4BiIAwKQMazIjed0+EAYwRpAzBaAwgkjAwUYGRowBjsuue1OACsF1AbBBg+wWECRYIlQYBgtxkYi8adA46eqIiL0AGDpB4Yx0ckgEN8Fk8SuC1dwSIGsH6C7B6QwwTxlsFHNXBKaW-pxDAhk1eE+kU-jyH+iP8+YdiV-kQLX4kDiIUhK-hQIsHUDsetAkWPEwKED91EJjcoZ-wsJoMlQ8AVUMWC0ou8BBG-V-gdD6GcCv8QwkYY4Od5FEhhcgGYZUJ86cCx24AWdBlB6LxNNw2wmeLsOQ42hIuKw0AOUOUDxMVS0KJ1ohkGCZ4RAVwi5gUKjoWBBIJQiEOcLWE6EvGsHNaEMOUChpiOa0S4Ru1SGrhRhSwpQYCLJ4mhF0lwuEdqHmGQjFhWfIom2yeFIj+a86REYzyMimk0GBwnYfiz0GioN62ieIfYzjxP81oGVJIWVSMRf4TOfQRIHCGLCidSmebaTqgDkCBtzhgbdYXgKJpjDDK8UG2CiPTCiixA-IkQABG5GXA5A+IoyIKOaEF5RRtSPrmJC2EkjvelIYIU6xxIUiMUVIvBEsM1GiQ16jpfQJAFSK99CQjw+bBYJVREN0WjovIeYgM5eC7Brncbq5y65VDpykSfTtoFG5+jou2+DYZEljQrdnQRiDImgBxyx0Q2rXMoO6NRSXxXONsTEWvWdHGApEo3ZQOw1iYZFXOZMDeqACqIAAJWWkYAACC+AfALLQABKVRQgAAHlVa1AKSGITpTEFtAJnSTuSzgSOiRh-Q8-n-xtF2jkxo4yEW4y9H2iCQ+bBUSOMlHQAuWXowQHkE5FtAEcm4huEOJ5HoAkhk4ysTWPrGNiWxbYzsfgD3GE9Fxy4kPquIhF6Bw6XozIZBGTFGBUxdWNcQdFxYrjUAV4TIeBWFhdtAJx4tceOO15EdMhRgkQH9RITlDpUsVWYiyIjDsjDxyEZCbHwYrDDIR0E-huAAHGGUdxkEl8SVFmENoKxVLaKKXnM5SQAADGfU6jpRDwBYUSNxwlxatiwiAMBPHk4lYgYADE4SIJNaDCTVwkxBgKcn9S0ShJoQzAAVxOBsTHgPQ7oaT1EmyJNWXyPieHQ4IpM38HBOSdpN7B8Tzu6kg3s7jqDNxVJNyYwGlCCicTSuXPQSSZOER8TRC2xDiVpO4k6T+JBsTqAEJOCHhBAkYOTnCUzQFjw2x0MUEXxUkz8gBxk3yaZNW4SIoIJHCjtwg4JBSjAIUgQJGDkGvtsRTPLQMFNClKCz2EiDQVoOrZxpSpuU8qbRK-y9B6omkYwGsCAFNCLCqKQKfVLylhTHuWAqKUHBu6clThmDQBlp24AjSjIY0FPFwGF6WlVBtkOxLUK371CyBhExaet39RZAaBKUOgacS8DbCJYtJIIDlP6mz86hG-YQeiHfALwOey5QnOIOeExk6pXAMqflLdHa9Qm8qd6Z9MjCEEkuo4IICdNMBbcjyR5OaX1PKm6CwOrwooWxFJAvALJQ-AoIRIzH4CahUkAQcf0aGTSh+1-aIFLGoHRMHu3XZ7tADGJojxhxAyYWvwOjKi3A6M2YU+CTbG96IQ0h4QUF5jbkGUPcAWSbCxlr81pCdPGeWhZlEyIyVAmoWTMl4dDuEMAamdKPH5MyJhv+IQSrwXiy87CVUhwnfwJkmNJZao7KKIMYgtTQE7U0YCzK6lGFdC-MwWdLP9TEijhpIgDjtwplxwuh7-cUqzP+7WjuWys6ESkGp4Q8hRBeFUsk0OHHB8W+w6OccKdYRdG4IcwGr1muFME-hP-EOa9LCgIyLASM4ECjJTkxEw5vwu4fmIeEpAuunQ-WYUPznYlC5xXKuYDXG6P8cqYAAWT3Eznq8GsfjMNOlIBFpyLmSsy4jTKKKLps5xUmIBPN6xTz-AI83CNKLbYNY55tkNtrPKZlgl9yRI+OW7IDl+ROJjgChJ0CRZAEcMx8-6JuFol4dUA-QW0WSCalEdjMTUr-HJIsyPzTxPFJQV9ycnAzKQGrAQCFPSBpYY8cTJ1sZh-nHBgG4nSOryFomOSh+so-CXoD5H8sGh3UwMUTX6B6piwtEm2FoEri2SXg9k0YE1LcTTkF5Fo7UVJCTiULpRSCsccqNmB3z5c2CzBE1NXkxBVRFhGSZOkoXiio5uo+JgaI5DdITgmLBBfQXrxQxjg7CpycVKNHaBKROQsQPwqZCWimMFY6sbWObHbgAAMrLW7HjRFoLEl6MRPRHeTLoUE2YUR1tHQUZxf4+JguOTEupaJ6oRxU633F5A3FJXO8TdAPE+Lw62iowLooMW3iwOzi3oEuM4g+K-xsEqkXCFrCgIM62od8aaMXHfiTuaYv8Zwv8BXzOJwEqkY+CRFpKVFBkylgUpAkejKYOESxe4ookYzTxcElISYJ0wkI8FZVWYrUrgWHzaJgNBpbMKRHmLBxsSgZaaTJGsRZEEihhQRM4Heijm8SnIfBNaUpL-iTBBasdDgkD1TgUQmIbZDAlYSRxMylBYMqGQMinKtSnxccsommlDSupTISgRJTiL+WMo-ltBPmXOSiaVoFGlJAM4LohOwrTcHjBhargJKB5MaN8pgD7Tce8TYEJMueWgrXloK95Q8rQaQrRgSnJFYixRVUiv8uwRcdX0BFEcXRaqHMXxDCb3D-636QEV-kkAVFuOEE+oYuN2QQTfUWAglSjLIkzSpyRNLMVJAyU-iWVT41AGj0vgUM1w2YQ5cooMEu1HIpS7wdlxkxkTClOQ1PrjSgSjdSoyqkCWTzOYQS5A5y59LoAIU3RGVDyg8o9MtJgc6VWgSxUypnEfzbE4NCiTbGYVCB5cZC4mUfBIVRLCVFE7lf4EzHRcbYAqrJb+P9VbcxVxqyVXJMyGyrbI8qn0dFwqXHAVVBgtVe4BSAarFV+S1NTquOhGTOJBqrKuKpNV2rzV97D2XzFMSq5ugMSwSRUSlWjAuVxK4wPApbXxMJO7a1lWgwk5kShVw4kVeJzrVNqB1R431DaoZXCreJM6qJWOsuAHlc+AgcCdOuDHBKGxTY1sR2K7EGx11l4rdTeIlFwcyJxaharkBXWDr0A4KuOJuCSCWMwOXa3pU5NRSTq7V0dZlZ6uFFCRz1dSm2MEtCWGLd154gDUYsLVD9DVP6txdeudl3rv+bZWYDDWqh3RzBBeL+YNGMLW4ENSEZDQvyoL7QrJE4LDewHtYobap5HI3HBqXo9BDAiGn8uhtbXIs4c6GxfNbhEq0aEAOGp+Xhoo1gdfsbGpCCRvDrkaRGrErgHYFLCcQJF9G08YVJE3AZUAMNZAA5KI1j0cVOQpFvBoU1IaVNIOdOTZMyFoMENSm0hddDejsb-sUMLTcRp16YknlIKuFn7C6A6bLN0AczQ9GYBG8MS9y3FQ2izWeU8WdxYFZizfxGa0oftR3jRuM1iB+NxGtTYEIY1tkYtHeJLbpouYiLyyaUVULIoiFmBxKey0cEFpeXPYUt0WmjQJoOjeb1NKvSKllTY1Ra+NZW4jaVrQBuajonmgkZoQrV5w-Nl1QljJkK2grJKkWsLeIT1xibNo9kOZQ8sWUOCWliE1SJHIcoebbgaGuzRIvSjiaCG9mw0N21yXohFFHHE0SotNIuB2tyMA7dKrsG6ztZGRIxNVuMidbcVZMHrZuGJaBa1t-LN-BttLDhb7UhIPoFAkg4YDTx6sIAVvR3r4gT69+cVsnTNbSsdkk2yrfFvyhjRmlxg+bU5HWWOVDI-2ihpDFAELBwB4gDuvcweicDclqiHVgFUZ4oceASo7Fu4DKi0dKoQwyHkxRvDHFeiHmm7Yzv3bw6LoNLILhdqO3eDdZ6zYxQ3B3ZI7fBz2jVZuD52rsoo726wKWG21v4Fdh7f-C+EvjigQ2UlKITbAACco2+1PrvErzKJAKAiLaJSiHzKo6qoRwHIHXGYDvVjGn5AGtoQeypY+gUIoxMe7uAzdhoX5r81Kh0Aw9GapaVWuOiB63RkgW6bcED127cQsqOCTxgOj6BbwC+TQVaoD2GBpKSeh3XTF13Uabd4lL-IICAUgLAoZcelXFt8FEdpdOAWXf5sAXiUq9r+UqANrhZv4K9berNDHiohPpp2QIbbZ+L82JFVwOQYELzUxlfKbYxbM8PMBDbD76lNjMfTp1uJPgaWBsKWAhEwBT6OaoAaJodiOGdBHw3XGPV5Q50r7QAmLAwJsx06NRvKxdLUDHumaj6rQnkDmfQiPJSwyJWaTjlkG451r4Yn+x7o+tkSNr+1faxlRZjANbdd9k+7EofuP3AhjgZ+-3W4Ev03gcDw5S9dhBAPdAn9OBlqN-tUCQzlpjQbAzgY51374oGAGgyQbR6J6PxmyhJRjoW1Y6ltpxd-RIvxEE7OgROmUdBINV06IAWVJQDZq73wtjs5IpRSLrsFMjoF-sp9M9g6BoBDwsqNKH5s+VCQrQ8+tBSWyX3HtHha+7Qxvpkxb749ypJgsGOkPCGr4chw7RbqUO8LCcpuEwul0pCvbNioo0VBcJEB8BPGC8DZqKxeUCGkAm0K0EZm-SeGDolO8QwtUkN6CEl2yyIXlqjTjd0j0QziGgADEbCv5aABrPE2yMuo8jJXQYXB3JIryukhqrZUkrLylHCGDgvdDUYZ2OQmjJgXrHioUnZbbkuyzI6sNy05GujfgqMsUYuadHyj57Ko9+iKM69DVmWsIcnX6MZHotwxsozyhK57arK9DBJa0eUPvhmAK+0fb81E5iB2jAAHWYDtqGjnEDjsRAqL2M7t0VfynxCMgh6ZMe+qfa-iognGJFZxhURcYZ3XHbjrU+45x3ABPHHha0SAIkQOhucOCcJ0AAAC9PaGga4-4G2UPGoTszBI25zRPvHHInxvDEgdMCFpZerAa3Ooc0MbgzjdxgA48bxNdVbmReII2TjuKwA7i+LNCL8yogMp-jLy+k+CcZO4nqRtlVk-5ruJZBOT3JmliSZahAA

Metalinguistic Abstraction 4.4.4

Ifunction stream_flatmap(fun, s) {

return flatten_stream(stream_map(fun, s));

}

function flatten_stream(stream) {

return is_null(stream)

? null

: interleave_delayed(

head(stream),

() => flatten_stream(stream_tail(stream)));

}

The evaluator also uses the following simple function to generate a stream consisting of a

single element:

Ifunction singleton_stream(x) {

return pair(x, () => null);

}

4.4.4.7 �ery Syntax Functions

The functions type and contents, used by evaluate_query (section 4.4.4.2), specify that a

query expression is identi�ed by string in its head. They are the same as the type_tag and

contents functions in section 2.4.2, except for the error message.

Ifunction type(exp) {

return is_pair(exp)

? head(exp)

: error(exp, "Unknown expression type");

}

function contents(exp) {

return is_pair(exp)

? tail(exp)

: error(exp, "Unknown expression contents");

}

The following functions, used by query_driver_loop (in section 4.4.4.1), specify that rules

and assertions are added to the data base by expressions of the form assert(rule-or-assertion
):

Ifunction assertion_to_be_added(exp) {

return type(exp) === "assert";

}

function add_assertion_body(exp) {

return head(contents(exp));

}

Here are the syntax de�nitions for the and, or, not, and javascript_value query expressions

510 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZygJwKYEMC2B9LAB0IzABM8yMAbLATwzIApkBGAGkStoYuQCYAlIgDeAKESTEmKCDRIYyPGBDVqLVoIlSdAfi416jPAKZadOgFyJCWGGiYALbMzaD22i18lnEAXgA+FHRsfCISckpDXhYQ3DwoO3U3D2809Iz07iM+IUEAbjEAXzFQSFgERBgwKAw0amwANwwonkYNTmzeEyFRT2kMWXkqpRU1DXNvfS7jU0mva1t7JxcJ1MypX0CqmrqGrGbWnKYZ3LN1jcytoNRMeMSYZM1BAuKxAHp3xDLoeDBkb5oOA4RAAZQAkgBhAAKiAAUqDEAAWAB0rDRpXAv0qGEaWGoICwtViOCgnFIjWE4ikMjkCiUyBowDwuPxhNgYAA5iSoPMppJUKT+gsRspcBgeXyvPpqHA4ABrECEEx0HAAIzg1DweIJEuQqo1WrgzLA4sl5LAlOFFmsijwEAQqCwNSiEFoaCJf0l1r0iFZWod-0SLqobqwHoqYB5FqtGVtSjxaBgWDVDVd7s9CG9GX0-u14eTqZaoYzkejfstUptoqwyGQME5YBwpCg2fSuZ1BDrDabLfLFKrVlFgbIMEj+JZAA9CJhu1nBbyfVIOxOR2O-hOMNPZ-X51BSTHB1J43haOqyFgpzOMHOowuj5J9DgsPKWj8y2e1Re8LYPc3amgyDmkulwWJ+34amQdDAaBGwDiBiAnoyACOICkBAer7ouOZ+p2KFoZAeoYKh6EtE6tTNjUQH3oeCEnqmcAQPKbZpCuWoMUx-aVnRoq0vIJiJBRfb3ghbF4HxYACUSGCUa2C60XGNbENQMAQJmd5YQ+iD6OE1DQf67ISu+fxXjuXo0RWlIXLBKmoHgxr5rqQHhpy1GaYeWnWHUQIOPJiAAEQAKpgPKYBwAA7kg+o1Fgk6IAAtPFuFstJ-mvCUxmVLp0FlJwLnIFSngwMAiBMHaM4wDg66HJlUZlC8fReBJiDZT+SZVbANVYmWuUtWgrmvFIRR+tQjJVCVZVKA6OCEHA4AULVTD1YVXiBqgAzIKoUD+MlBLSUt3UmZBOXgO4CGwVutSRBS9gILJTDnbBUi1T+4bigBQH1dZT3pPl30-d4L03UCvY1AdYAvINFjNXaEmOWhTCzltWnLgMQySTqaH2ggV2tkj1DYRs1jzRgwDVIwhRDSNY3UhY3lwA4vVBSFYWRd8h2VFAdAkAlSXZWllOSCUGUc0gtlQPZzKYzeTBboQyCHo1OjNWFBD9UBcsFSB+hjNQIGLHYDgGftZOARLLmy9OBWHv9GTi5L8My7O5vq5b8vuJZLyFCL5R-Lt2PkOuCCbtuN67hpB6e0rkgw0o6AI8bxIjqZbXtBZA4o2xhlMMnctoAHbmkh78GZF5mP7bn24EAT5qe97mK+zieHEQRGE8grUe05IxWlXaMmEFzJgt6R7cNV30ODHSiAk2TYAU-0w00GNPeTaetYS+RMnCVhBUrZkzWJ0Z9h2Zv90LtbA6C0L1MYNHFhrdtpsn1hjs7Y9h9LcfG+CVvYPn+4l8lwr1hpPfi0tP5mwEqSR2Y9HrNSft-aB0sr4WEXqNW+480gH2biRQiD0nrOykkJKio92CALSCUHQwsG7YjFooCWDlwC1nrI2doppmwFTvrHZQqh1DsJvEeHWvClwG2WP5AAVEw7srCyDiP8pwe2jDTTSLnswB4fDxS7wKAASB0G8WqKA1KSTmhLEsb1IyF15HfYBDJh54PvHvVajptrnx2vhUiRDf5QEsVDJqoD6QshmoPdx9id4o20ogXWj1rDhFIK4Ix9kQCmIwGGCMfxPpf08WfMJZ0AZSGQAkkx6ZzHpKYM+V8Q9cFt0enk5WN5v7SVkpYrRvjEBoJpkubhD9nTJNSepFi7ZEDixzs4npxS0kIBVOqTUkpwknkTIWNMZiJkR0JhsGU9CmALJTEslJpYTL6mmckTS4TJDWF1ig6hBi8wcWYn5Acd8H6IGOjtW5eBjqShQU82UalRpuMKUk8Z6kgLHVaU8qRLDVEAj8EM+hDsIU9naD8-EBUUHYJSsSY6tt0iXTiSyS0t1QatmRaNTgCKZEdwzvXa5nY4an23pHB549mrlJaHDcBNTJAfzhnnMO5l3KcoyFS-Rot-bMJ7NkxllZHnOMQNLHaH9xWNlko7Wu5CpBKskocw0qrNUqu1TMiy0tDxov8XKtkGBqWirzNsosQKyz3OlePTVUydXgNtbsvpkZXWGoFWkD+Hrix7JKZM8B6dKzYsAcNSQNDIz+26SGYNKyuKUjvi6g1WpwEJt6fsyZGaYLeA-tm+1Jkw3uU9pGys9cPhfFqgCYAQIQQQhhPCREqJ0T8FjX7O0jJqDMkTtUbk94uFmrtCodUdRJSSAAD7TvOj29Ag6p2IFnfOpQGpNTYFWcIVdmQx28OXTOude6lAz3Jq4TSVrG4BMSJyTkxhhl+SgM4BIWBOSOLRlPcqhsp0ADJf2IGcFgC9Rd-B+Bhc+lot6r20NFPwqdzLR1xzffeigj6sKcH8vwgWIrr0oANJqB28Hh2IfRoB1Y6jZkwbjXaPVDKrFd24be1Dp5Nl+X8nRmoOGfawc4xvAjxzQOMbNUBtRSQVjAaYJRhxXtcO8ZUSqstQnPDNVE1J8T0mTnpS7ZUO0xbln9JIyppDr670PrYxhgK+mk3qW4zppA1mvUHIEwh4zZG1OUY8+JmT2mDGOdzRjC1rmaQiYoxp7zWnqPdoTAWHZQanN7mUyFsjdpmPmdQOWfygaS0IDswY7LBnvX5qM8lqeXnHgSbExVnzUXKgFZs96pTDG3NlbCxVzTRdZM8Zo0ocCl5eW3mCzHEzaW0MWcjv5Prpk+W5d86Kqbv53p1B8dHFlRAWACaI+KTg5XBO8i6-ZoZuAvyXg+SV4b7m2vqA6-tubeGQHoyyfRxxTGUPpbkpZ-ydKf6yTy6KnlodBvnc-cMXbVG5M9YDqOccWoBvhyGyDm9b2xsZb8oKqzCBocblh4D8Of28OVxnKnEDzXSvDHtpgYA5ZNC1Yc5jlOa0EfNQp6TcsQhaeIEJ-nfEH2ksXanizqnfkADMd3YM9rsW3YHr2zMo952SAKISML49g6yyprdMKkk4cJsjwz-JK4wPI4IWuxdxoN09khJGpAtdB1d8H3W-YIIt-L7XNukBqf-hzwh9LLdhNW2am7qKIfRcCQPOg6uR7-39yl0YB7PfB90719ezvR7R6-bH8YgeDsGLtLchHiPRSjdY6jz7tyVdxrV3n6XZq9dl84PeDnbyzuaRHZdyTN3s+ito8pVShmW86-T6Zlj6GJu6V75GcvjvRbTaB-3t35H28Rc6xz-KTPQuL-a0v27HPVar7gO7NPwx93jH30Hh3lQncW1Py99fzBr9e-qWrVyTBr+H6QJR+-bwa3s2vfWxtYIoRYQERkQ0QURhdDtUs0AEZJwP1mo4pwMIMoDLUE8kA1dFpFt-xltOAsVO5+hmdNl-JppZp5o8Bap5F0cMDBgsDnk4AoITUUDhxgRiDIhFpgBYCRtkdi9WxgBMMiC5oWDRZJ8L9p9KCPolp2Ddc4VKclpOAacGCXoPk2DW8BcpDWceDEB2d5Dp9gY7o+wlDSMVC7JpD1DRcOc1d2UgtAxcYJDDDWwvt-FHYjcrCWxTcQ8LDdQtkLUbCj9kNZcuDPDdRMN3C0IhCkBgiWhnCwZpZvD3c7dojXCcRIBZR6wuR8VGhCV7omU8CA9xMo1DsncG0zQsi6k29mA8jrkki4BGR3kco-wMBFYRA9ESip4lhGY6j6CSgnlINQ9B4dCiUdoLlDs0C6iNsjkO5pZXdmjhhWjRjDRxiLUz98i6ifVRolo6iqQmiydYjJNCjmwEikBdiWgJi1jxQNjrcpj39xNDj9i-RJwroKA+iz4BN5jSVnlawWhiitihlSBORn1ZjNROEEDviuQ-idQtZMh9AZjhizQM0XjrY3jqiS5FIGgQTHB-jRphAAAeYE34tEsE05XMNAHyJgfyAAFTlEQGfDADoD6k5BACaRQCVEIBUkYGsH8kQAAGpEB0cLBbhB1ipoJYThAuSjd2SuSeSdA+SuQBSAjd4akvIiSGYSTyS4BvgMBwpaT6SWwARNoe9WSApOTuTalggkxpTgBBTnjhSApMNDSJT8lF0zToJ8SbjZQFQlQVjVUM0Gj+gKjGhTw5RCBZYnUlwDEClnR0S4SP0sETNdYIzTlpRLJ-T998FjSKw3QqjB00iMi+wM47TrAM0wMYUPdLS7THwF9mB8TSzEJDFwzpNLTOBKNnSUEqEgEJoKRCzEBuj+5eiCUQZZIozC1FTfIBNMNgoNR5pIlxQcMKEb4740gnlDidoCiRj1UMhmowy6pljYSTi9jsUnpDjHZPp1jWkWzTyviKQkzAzyjRV01Nsw0RzzVqBvSdBfTLygzU1MFnpRUNyIzOB8S5zvBuFYyhT0dcxLQ3zSz0JkjMzHiczKx4yzl8MjkOziyxiELUZGQJY1MwS-z8R0LEKfy6y0KGzxMmylxhpWzSp2ygSuyglw9YKagByvB6ZhyjlRywBxzyBJzmxeYWoFMWxpzvB2kMFHoFy6ilzMlDj3yTzAKzUfyDztzri9zYIDzjjriZKhYF5siyMLzXSryq0v9Pgf9aE-9gQACW1gD20UQkQIClAKoOoYAupr1wYb8Y8h93twZMN7LqpDcbjvLOoWhKpmSvF+l6o39yz1MKtlp64nl-LHK3xRZoVYUMsfQ9dRMjcpBRNLhckvA9d1EMrJB1FsrbY9dWiCqbBDZirUqCDxZyrxYqrvA9dj9qAjdmqMgcqwICDRxkBmT6AjdureqaT0gOqdA9cWKCqWKNgRqpA9dnxn0CA1RkB5E5rHAFqAQ0hprJA9cOTyrNhJxOA6BhBtg4ouShrNrkq7D4pdqfB9rEBDr-Agg4okozqSqCC5FOAvAmBbr7rjrEBxE7rJBzq9d3hrrSpvqjrHrEAvgXrqqMt-IABSUGr6g6iGxAOKeGgGxAIGgghA3a5Gu61G+A8DAm16uGgAQnAzxvBoerRsQApphUOtJrsMxKRupt+uxMkEZthuZr8Guvxp+shsxJhRJu5pJICFZpRppriiCE5uxrhoCF5o+p0H5sJsQAVtlqZpJLJtBtpp0G2EkDJqkBgJ9FeFivah8tIOn1hP8CXGfEDNE04DiqcpMtNtlSdoSuvXsjVAACsUlvEba0g7bwYabSrzaAqjcwdlpzqLB3bLbf9XagwbAw74qC5gx-aYVhk9cz1VEjds7GBo7UyZqCDwQwBZ4xw6AMqS6y6uYC7C6LqSSVq8BoRwQCrG7m7a7C7ZqiRVqABRcqxunuju1MvXAAOSwBHtBrHpHvwtggTvWljuLWtr8FtvWxKm2DUzYMduTsOGzSDzNsqgtuLQmIDu8CDrXqCEjpeC3oPoCtTp6SDwMValjtYPADyn6nFhiJamUnD2qDwBJnqDoEzO9oOFrAgCTAHhTNAljqCoaFklCtOmUq8Bcg-vyAsAYMwvdIYtbE-txWul7N0LBkFViXICYGfqtueM4CrKTpvpTsXvrKIeIDiVIe3o9toS9t9ugA7ioYXtGRdAmKHqkForDyzL7JcPrgaG2m6M5FlDVE3Hwf6JhQweVCwbMEKG-zrUBDMubSALbWsussOysI9GgDwBIlQBMmfDQGYkDU-v3QnQcDB2sZeCXH0DB0bNiyLEhkNP8jwDFJNP5PNMq0ivUEcaPGsAcfcYaE7wJ2BGfCHkW1qAvVNIGmUOGCwAgAgHpNUH2hYDynSdRoBC5KYDSYgA7P8nZP0DKerNFMNOKYEfSDKfrwdIGg53AF-EZFiCSbftci6b-rADaYwCpG0W0qnilM5C8ZJMNOmlicZHifaCDpcl6f6a6d3i8cEH8hab6fDGqIAhwCKf6hsYz3UBckEQCl1n8hEVFGGWOcQH-QQlXljMo2OZ3WnQisef2eEHpoCl0DSmcdKjU2uaBP8m+fOn0EMbSYllMe9QseYmOfOmsFXjHzUjLGuducuDHTNCBlxy9CeczgCgma5Naa2agzqF2f+ddhxdtMuHZN8YzS22bHBjYbh2xfecpY2GpcNMJcAmJbQFJbt1XxxeFJqTSnOdLmnk2a5ZJNqq6bJXFe2ZJacbSBPBmNhdYjFf6ZJLKoUU2TJffRIoqyeZlf6YSHlYuYXSSb2ffV+f8gAHJfGXIvHbWLnRmZTjmNmjWSI0BoIPX7qDCfCeFxhmw7HAnvW6mNg9dnQyBRSGZRSwooBRTmE6g42gjVBfKFX+ROX2m1MQ29X1Bs21WiXjWeXQn82JWs20JPWPZKM82M2WgQ2OdgG8QClwGJZpY2pGIw43YDmCAe8kWvQ5YTnw2e3bNOBMXrxBt+3EGdAg6G3QHm3HY22MI6xlnO202RR0X6X+3fm9dvn69NsHJ4N+3i25YOdvWVQYpJwF2O3+3rEJpu9mTx8+3pxYEnFE6XoCyYUlxaX92MXtCsWsxD3mzOc3agRF3GQKB8odog7T3opEgL2Zx22l3aSNYn2ZL4FyHkLAWyrfmZi1N4PQPjB8oPYwc8Ow4CP1ZIYLm32BNSnarsOQPSPwP1ZKP0PDRSmZ2m2YAB5HDsOf0qO2LBVp2QGOOuPW2SPEPV9D3i2Zi+PDQt6EOwOn8g8qFZybExQN2UOAL8C4ad2kKdVv31PCBZNlOl4RK-EdLpxLkGCuYSBO2UmAkZjN3VW1NHPvAFTiS5Z2LQoIokAmXOZuZfKOdIjvFbPfX7Of0XOEzKMIvqwWK3ZPPWYfO-26ddgqJQi+LGQ0BvUoA4B3kWhgMqAyin27POz-PbPAWE3Mv1mGD8uuwMvvUPlr3QuIqgvkPDPtMjL986h1JX0ixHakkWouL70oB1H-8IBHAiAAJEBhdSpGRYNhcwCwCtBH66xGImBXw6BOBMAHQ0AyBJivjmrEYUkGZdvcW86yA4W-RUJ8Q1uMANuIq1MtvjutEakXHVhHudvwSiZ0vVv1uc3DvtuTubi1dEgixfBx5vlGIJwQeGgdo9dxFoeMA5FWkDFXTFRAz1u8AOBEAMfehPzJAnlNo1QEedpmEfvbvMe-uSUevImNLxoZuQAie4sOyzumKJ4yMzvAPr4TOAKX31p3uyASeVuIAbvw9+A-vCeEejO90Jp+fmfyBSZz1Wfoz2f5fZ554NhhKef0hmpKN+faezyvBKEhofSu9-hE2ReKfsfyexfHy0JWeCeGfieYVSfheMesfKMqfJfaeV4JemegSWetfJTBhX0KtPe4tJ30gZjhk3fHaf0cfcLdQr6qGdAPfIetQvfafNe8f75ZVZfneheLebfpNHe4speMgV48-iaA-PzdFvBMKQ-kgS-euxBa-jSZiZj4-beBmI+fpi-GePHZNW+2lZzs+0h6-dejuduE+7fOfUFyKtKXzRUBqiQxuylWeWUaO5Q0eRXQIZQt+lRBVrAQRAXqg6ud-YJ9BT-E2eS3OlScB4vvPEBOuVleKEfBLNKLiuBFBbAoAxuYrZVn+3XJ3pSRfBQY4sqjMQE8iG47RABWXcAZNn36EAcMsVfrjClgEmQEeJJK-pV1eAGJK81QUcFyE8JJhw+XfT+jMUDTT8BmjeAgZmUDRMA1QtArkJ-TUyMDA4zAmgewM5Cqo2BhA99MV0oy8DB0NxIQakV-pSVKBgIU4sVxd7EDFk9RKQXsQ5y4MKyETBQcakUEDNiuUJUAe8iYHchJB0REdusQ5x2hEwIXYZn6yLzDIPOXzNLqfzTrJhiQtgw4jK04oUBEweAcbuQAaBoAP0fmffPpCK7Z9VO5gw9oHykBPJRBYzGFNELwDiCVy04YwacVn6f9ohcvKgGr3O5PR9A4AdwfmHzjeCyAvguLpoPQrWAHQhAaCHEPATRCy+qCFTrezsrhcNOo-L4jMUqHQRnOKHTgJ0KCYrtM+I-OBGamPbz8DeBePof22UF3E8UxUAuPQj7CSCLwCua4jKkTrpDYh+g+IZJAkFqDkhSgywUgA2FV9Ve56X5ioLkGkDlh+wgZhcx-4ARJIc1VfjUKCx1DOgRIG4X5SJAPC8ATwtEj-3eErD1ixXRcoC2ABJBGA7JK1uCMeCQiLmLca7gCK4BEhhAvzRcjGkVaihzBP-VEaqxUHxDmQa0BYWDCRHXCyhprZocsBxE3MAM36ZYMsJOb3C6gjwlfmiUow4ie+GQSjAyM5GR9vhzI34ayMCYcjk+sENTDyNFGgR1KFzfyDCIaCRsOcKRaRoMDzRxBdmMBbQT+lurXBIkvCG4mNxSTygCAkkCrsizrCJs-gnAU9kiNParDwesqP4eJBvBbQdoTI-iH8KYDWiPh6XC0QgEoZ11YItokwYcJAG-9Vq+MbaGCIhGRtfmUSTEUqIkaqi7guzR0RGJuIgBqiBArcKQxRHFczWS6XDiiJuJDcBIyYkXlj3W649+gBPHaEN3LGcBKxrSdchkIV6qIIkusassgFMHy8L2GPY0DmNJyRDZU63HaIWN5Cmo3K5g9bsIAqbfNqy63cRoMEQCkkAAEj3TwAABBUEKCB7oAAlUkuCAADyI9REDCkGL5FBgY3Wrr6P+ADiHhnw4rhmMCo9i7xzIk5iWKzGTgCO5ozLqUjdEQwLmJY-EFqFNHpIOcQEtQNeN-GOgweIY1ceuK3E7j9xR4k8eBOD6fjvxdXP8fyPkCf0SxtwUIGVB7F4A+xVOf8R7A4w-jIw8UAibgDS6zxwOVE7CVAHvFlDiutE-AMAFoD7h1snKZYfSQeo8kDRTEY0VBLLD8T7+FVFicyM+E99gAl41aqBJgn-jPh2mCRtIBTbYxwAk3GFAAAY1GBiOeOFHEiaTEW3XGAMwFgKaSHQ2kuoDtCgJpgbJuwNAIaVYATip4DkiIvwQAhmFdBRkgofIMuG9cNJaYMyd6gsnkCf0QLI3DMU8ndt72vbSZBZL+4hMH8-CAKXFiUDVBEYKbD9E8jilhSTIFkgYuqRMmhSh24UyySggMQhAWg4UfEMxEa6dITMYQoro9CfB+TSp9A2wQVIqlFSyAcyUUA5yfbtSKqywWqXgHqnUBmI3QtrryMEaYA6pDU-oZJ2iS3FCAlnT-hNKmnMRPJNxKgBEF272QowtgyQXaJN54Ztpy0rQSEKaEFDZYz7aXlRSu7BM9hfoR6aBB15IFUhVMbnm0N57bQ1QryLYQkKKKfCfpZnKeEDP96nDVEpZfQOCPQSllrAV06aQwK2G1D6hFCFvln2GFuUHOuIi-p2UWmTTlpznBqLOmJkYAlpaMqLqu0uDWBEZjIWfkbw-5fFUZjUp9tMPuIEifwVResKD0MH4gHx9o9YfoOBlcDthpBEYmdODE6AV46Qz5tX2akq8BSgosMejMlm1D9BHsSUVIB1DgyjSv09BHT1XjmCdQY8VMkZXEQ2ylwUQ8WZsMlmgz6WBssobP2aiKyThmQs4esjFZqyPRlAvWS8I8JvCW+2iWvtcTWkXChZT5N2QvEaGlQDpcSJQFmFdmyzTiGxa2bbOV5TxZR0YqrsZxNnZ8D4MwkhjHPBlaVz8SAcAP7KFGEAsehAG3udM-6gjiaec2ETGNVbtz5R5-GLi9NIYNyhAaIuohSPun1zCZCZfEXMNmjdhQe9cx2k3PWKjzsRvQc4aXIoDTz+ZMAOeTb3nlsSoaXwG2eIlHnt9NANIoaT+kbknMa55pdWav3ZGaB5pFgdkUICfk6Ab54eD0bh0fl6y0guHV+b-MBjHkZRcoyEaYKUCeTYgjSFwnmN8LD4LM0CmoMmwaBpdAwboDMV6D2nFcwce0m4nFI+RYKmuB3SjLr1yn0zfQ4bagPVLoBxwkCPzTEa43Ey4KbirUS8JAs8lWjy24eFSYgCDHSDRZ60N0FujKm3wYUmAdKYGiylRg9pXyWVB-KdGbQCYb8S4PIo9FejpJ8gN+S+3QXw4hFzoERaGwyB8KDhn-eRRGNKagLO5-IOMa512iGQTGXCnKWmA+R6LJIe03kQmJVFao1RTAMxc6IJgHZ1J8EvALuMCgAAZHuqeN1FqADJoqeSWGJEVAQeFzcr4k+O2FUBJwr43Cb8w-E9jjAnkpJThIAmYiIJWoApRAKrmIBSliS2CZ-2CWhKIloINCRLAwkUByl5E9iWqPilMNOU+EnxZ+JInk9+x5ErRRYC+wpsaJaotKD3z6VljopyCjAJMuTFpQWF39GpckuBFNcOJpBbiUHU5SeSaaPJVhSIqcUKCNlpxOSQpPWVFLVJiomBrW0cXqLWJClNUZ-W2VcSiQeytIKCKCCPRtlxDCgKcEgaXAGJYk0pE8pkllDeROo1qOUohWaKyh0dF5cmJuKHwHFdQL1lwpuGljQgeU2VMhDKC1jBgUmUrnm38horvW7-AvASvAAtishvzesDNDTDetPRWKzQTitwDFsaVUYFrqyoxUexkVuK8Bekq3DgDqRRChkE02FFFiV0LzMweGGlX7ZFR2XTAGCqSmSRPxRTJiQgA-SqdPx4ApSRDHt7DjbuO0AZaRK1VYSdVs-J5BkyJItg1V3i5MSfQBizLCJv3AKIaqWWhAqVOgQgEkhF6YYvVHE8ghsGVbaqwAnAHUXavEXmwI1HKnAPUNxktlKlqABmGyk0m-1NVhC6sW7SKU7Q0FBIeHDIv6B6qexYqopR9Jz6J0RxMKc1UMrImVqbVsqGNQ6rikcSXVP0N1bgEDUBRPJ3quibT39WtgPV4yhoAOpwChrMgsUlNlGtRqtqXQ7a15a0mTXG9KlNXOKQzEdWWqbxXbSBYaonkWAdIZANpSmx3XQTiltimroavPWRgWFJ67dQervhprVVhqqWZqoPWyLE6moRiVav+A7RgliEvcQeOPFNL+ggG7ccBpQlRLw1f6udTTR-WOqlOXxfyAqCq7rqH17C3Kc+pVUZq0wWal8SWp0BPJENBSgDWuJCXhLIlKCepVRpg0-oOFpUVGqRpTbIb+cwwVDfKHQ22Uei4eQMN7VFhuw9u7GgJLGU1g3Enc-G7qEJpYGrBxND+OyFJvKCtdhNBeKLlbBuJ9w6KlARQAJucribYF-rdQPJvkKZJuqem6ADJuwVyaNNCm0xLpu6gqbP66m92DvgwCchpIFAFlQZqa6zTFiAQsAN7TgDZSlNnDbFRxK7bdk+NCACzWWFC3eITmgq3ABc343BbpFj+eLUBEy2GKuU5cWoOis9YQJFNMW6Tdlo8BD9jSSWxNdpmHUkkI2opClVwqcIxa0tuApfrprS0nAHNym8La8sM1RadNyAWLV6HM2OaTmNitds5P2CHAgVnKRrRiqK32aht0m0bcpoFVblXl5Wz6qjXM2dbCEq2zhl1uW1ratteSKrQdlq2oa0ADWvLQ8oxX9UOt1QNrXhjngebiQf0dlRFs6XJidlny3iVKPEqBAW+6QA7vNsK2vbPNBW6CIR1GUZBPF2XJ1YRPUpaAKtvoeHUmKR1Lzw51ZXWKdpfIbaUV9cS7bGxu0Yo7tnrI3BDtqDPbYMW4FJEkglBNTP+H8WwVIxkZyN0iojRivWyE5gNOOLbILB9vO1Kx1yXSj5TxMDLnQfl50OnRk2JAOCekTgiUFWR1bwlXBVZLZCOwhrJ9YujQf0QGKkDMwvObMH-uahcmJQDSHJMORVv8jsc+dInC1Cstxbo7EdPayOaK1x1S6CdQqt4Jdrt1ztpYpOvaPlspWcB-d-OmBIUCeTPgL2A1HgDtAACchQAxHHvoAJqWA-g9rT1R4AJr4hAEWIJwAhha9VOwFfbFr014rwkAQJXSUrykCp7oI1ra1phhRAt7fVxsjpBsHr2BNUAWM7wPXtz1jhJ02yzTB7CQBJQ5C2M8Yf3u2WD7fInAGPYNsGosKqF9AWhQjB7DpretKKkEd7twBE6A1HGFfTQoSB0LMMYOiunlCP1r7qBYgQ7GJyUAsrqgw6v8nUA1D1ga6aw9aMhB2jQc6A57S9nWBzESsn9-XEUvkBWUoIV4zQNAG-vLp00259YFEnG1Z5d7-IiUJKPft4VcKdgw6yQOgYFhGyvAXemtlDs9Fexh+f01mabLfXZdcuBAE9e0GQhVqdAG6zSVupvXXr41HyJg97wmjQHYDXMeAzCn1ywiuMteyQKgfQMW7DVLUBgwLykOJQCDWfKg6uqIPf8eAJJBQ0lG9YbQtoAILQ1dVp7T6fFfyrpV8pUqA6AgpZEgyytFEK6agSuz0TcKjV67vgqNSkIYvP1OGUAg6RMa7t2a6xIYK60zZAmdDIBwok6EA4OPx74qf9XCs9rBwAOFLgDfTUAwFHAP1CxKmiBVLdtIPIR68vhrxensCNNiYyB6Q4p9wTJYZVSfwwdMiMSDnNtExMWVuTugj2HYA+0fIxFQqMexNdbhmmh4eVU-bxdZ9V+igE-ri6ro6e7ZaMcjXjGJN3EqYxxI6a4rDNpelFbGOESYjqgAEabUGjaDMBHoHuTbY9B1GTHSA0xrpZphRUHYxA9+0g9a1NFMADdiAAADpiB91jDSILQeAAMwAjvCA6ijQaiwQm9AUfg1UQC53H6OdYB408ZePvHPjh0hIDl1+M8scxywEAH+Q9h3cZimJxAAAC8r6kgd4xYABXInSCfxvo3d0JPAmfooJrLK-ohM4Za+pQTJGEYiMOBHjXxigD8cpPfUtWcNLAKKTVCikIAopSNi8GtavAjK9xllVyaRO8m0T-J+uhxmFOinxTKy+kwLCAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-Ftgy9QRg4QxYUTqUzzbSdUAcgQNgKMDaAjbE05Y0bUj65iQbYto7EfaKpFiAoxdI4cuSxGByAPRqkGMdCILwJj4ozI30d70pD7CnWOJDetoh2F4IqRiY0SGvUdL6BIAqRXvoSCdFItQWjorUV-gM5rCZhrncbq51yF4DeuNsAzqNzHHRdt8eQyJLGhW7OgjEGRNADjljohtWuZQHsaikviucbYbbaUaclSw-9XOygdhrEwyKucyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaATOknXMQElTF6B6R2vIjh2OgpbinRFItxkOK7EEh82YY3BDBOgBcshxggPICGLaAI4CJDcSCeGPQCVDGRT4l8e+M-E-j-xgE0iYTwwlYSQ+cCFCdiPDpDiHhGEowDuLqy4SDouLbCSMCvB9DwKwsLtmJOgmGiSoJIojn0OIiDC-qJCf4dKliqzETOfQRIEGIonIQNJsfBiuSOxFwT+G4AcCYZWIlUTcJ5khtPeKpbRRS85nKSAAAYz6nUdKIeALCiRuOEuLVsWEQBgJ48fkrEDAFcnCQwprQCKauEmIMBTxk6JyeFMOGYACuJwbyY8BRHIjSeUU2RJqy+TBTw6HBFJm-g4LJSCpvYYKedxykG9ncdQZuFlJuTGA0oQUPyaVy55hTKpwiYKaIW2K+T8pAUwqSFINidRAhJwQ8IIEjByc4SmaKRIR2Ohigi+mUmfkAIqlDSqpq3CRFBBI4UduEHBcaUYEmkCBIwcg19i6MopaAJpU0pQWewkQaCtB1bONFdKOk3SnJX+XoCEK86ThRgQAqERYVRRjSXpx06aY9ywHzTtej3EXpyT5GYNAGWnbgEHFshjQU8XAYXpaVUG2Q7EoIrfuCLIHmT0Z63f1FkBoEpQ6BpxLwCyIli0kggh0kGbPzBEb9hB6Id8AvA57LlCc4gmUTGWelcBrpJ0x0ZDI1TypeZ-MyMIQSS6jgggVM0wFtyPJHkUZwMm6boLA5yivhbEUkC8FqlD8Cg5k-cfgJBFSQBBx-SEfDKH7X9ogUsagdEwe7ddnu0AMYumKz5FF8Rv+IQfmOxZuBdZJIp8Em2N70RwZkogoLzG3IMoe44ck2AbLX44yE6Js8tN7ItkRkqBIIm2ZLwRHcIYAjsh0ePwLGuzCgDMrfkdAXjFzAyOhe6Q4Tv5myTGCc4sdlFEGMRPpoCYwGsG9n-SjCuhMORHKTn+ofR3Iv0QBx252y44SI9-uKR9n-c2x3LLORmJSDU8IesYsYSqWSZcjjg+LDkSvJ5FOsIujcWeYDV6wiimC6on-rPO5lhQ1ZFgDWcCC1m7yYi88sueKOMDzSUgXXRERXM+EXzsSV84rs-MBrjdH+OVMAOHJ7hHz1eDWPxmGh2maj95FzTOZcSdku9TRMQ7cqaN6wXT3AsC3CA6LbZILPZjQNtqgoLFgl9y3ojef3Mnl+Q-JjgChJ0CRZAEcM1C-6JuCcl4dUA-QDsWSHelEdjM70r-MlIsycLGRPFJQV93amSzKQGrAQJNPSBpYY8cTJ1sZhEXHBgG4nSOryCcltSh+WY0ybBNABFiAZQI6cv0D1TFgnJNsLQJXCakvAWpowd6W4mnIYLmxyYqSEnAcUOitFFItBVOVoLsK1gRizBO9M8X+A9FRhRKYLAdlwKyxy8isXsPbhbySUJwTFhovoL14oYqQkxe1OtG1jtA9Yl4WIAcXxQmM942iUYC-HbgAAMrLSAnjRFonkl6JZOdkDTLodkxSYyMQkkDegBILiXoDQmsStxLqJyeqGEloMyJeQAZSVxYk3RyJYy8OsUtKUVL8AEy9pYSH6V+TBl8k8OspIHoZ1tQvEhsfxMEldK8JgS9wEwr8kSSdhj4FobstyWlTKWZyySW8Mpg4RGlay7RQpIXkF5lJtwoYTphISmKyqsxZ5WosoVOTAa8k8yS0PqUQSxlzS00noOzoJL+WmY-loqHBWcDhxRzJSTsJUkiA1JRC2cgCpNCbLjBoQswNYLOG2RpJBkzie4rMkkjrR1wiOu2BeXIrVwgdNFaaUNK6k+hKBeJTCzZWsq4WcEjFR1KJpWgUaUkGcTh3EDCtNweMflXC1T7vtdFEq5cWnLC4XNgQrEWRIksxbCqeVaDcVTAChgf4rswrblZcO-4YTq+WoojiqiIb9jpRoTEWRKP-rfoBxegjjloGpXyRo6GE3ZLJLwkRsj41ijpdXxslIzGgB46LjbH2UnddxEarbpfAoZrhswPqjFDsJdqORrl6w7LjJhsnnKXhSq9wCkCgSjdSoBaySWTzOaBq5AjKlNeYpuiBqRVB5dmZaTA6SAKi7SMKX6uQkCK4xRNXCTbFmBsL5ctiy2SGqWUEgbV6yx7tGsaJSQ41uEXccJKTWGLdAjaxpRiqzW2Qc1I46LncuOCFqDBxatwKWuRB5rTlR6qtcdHKl+S61WVBtWmuSk8rW1mM9tZPIk7JSKi6agNRxNQBIt1FEav2ZSC-WUKI1aDCTjZL-VQS8J4nboDJP-WjBgNfMTtd6psngj-ViagdUJFyCIbYNkSB8c+LfEfjvxv4gCQsuiDFL6JZGpiVUprVIaH1C1PDemotxjDNwSQSxmBzA3Fd+1TxL1d2tkS9qOlSSg8rnwECcQBlNsWZeUsqUGwZN8ylMXB1BUQQsqLGgZQeTGgcbEgXG8hR-CXpvQYa1UO6KMILxCLBoxha3LMCM3sATNC-KgvtHqkThrNSEe1qZqenkcjc3-NsiJRs0d4LNdq5xnZsXzW5fNSEOzVwoc1eawOv2MLewDc3h1PNIjLyVwDsClhOIiSgLYyLOnJbgMqAGGsgFakub4t+qy4YFr5LsxitHeKrSDgPmNS+haDazYVpsXXRDNrmk1dAD80g4Lp8qxJc9hq0dautD0ZgEbwxIWqXhTGc9ZdTxZ3Fet-LN-E1rSh+1HehgAra1Li1j1StE28rT5tW3GaNttWi5tWI5AGBUpqQuoWSrcHbL0Qc2gVc9gO0NC9t8Wg6ONoMFFzIqWVXzc1qugTgDt6oP7e9sGKvbNhDaKbRxswCza+VmLSSqtua3Lb7U6UNLZDHsjoqeVWKl4Tip+XXbbgS8hyiNtuDmaodSKxHeloVWGhu2xy24Fko44ZrclppFwKNspDU6cl6wtUSXKCBGIVeMQYHUczJhg7iWkO6wKWDJ1v4SdogeHSmmWUUMIBGAxkerCAFb0d6+IE+vfnFbJ0zW0rHZCjp53VwxoXy1Sca0Mi47DIUuqBOIFAELBwB4gDuvcweicDAlqiHVgFUZ4oceAHs3Bb2XQ6VQyRkPJijeGOK9ERtJck5fu010XQaWQXZnbTtZ33yMunOo3ZoR5V86y1m4UPauyiiC77wogEXXIDT2Ht-8L4S+OKBDZSUzBNsAAJziEVtolMwRiokAoDq90lDFVHVVCOA5AQa97lgO2GRrzS9ciCPoFCJuSoZbgUveJTEC-NfmpUOgNPtPV1zB5uAkfYYGkqOjJAzM24KPohzYrcQsqZSTxgOj6BbwC+TQe2vcAb7m92+oNHIGL09Al9Zgr-IICkUyLAoZcLtVtre1Ecedyezyg-vEpP7X8pUW7YqoAiSLf9WaGPFRCfTTsgQZOyCJsygSJFVwOQYELzX1liqbYxbM8PMBDZQG1lNjWA+evUZPgaWBsKWAhEwBIGOaoAaJodm5GdBHw3XDfZdRvC3gcDui-lqdoIONRvKxdLUIwemYwGrQnkf2fQiPJSwMNHHLjnCAQ3wxBDj3HjScB-XQaoNzaizLIa26kHED2JSg9QeBDHA6Dw+jQIwa8rMGmoga7CNIe6BcHmDLUYQ6oHlnvqYgRhkw-7sxbhQkxCNZwzeFn2Cjb94lOvcdGUl4qjIxu04vwcSWxCLdnQK3ZmLgl1q3dEALKkoB17dJEVAqq0MdlFR1jo9MwoxMA1bVgdnsHQNAIeFlRpRz1oqoSFaHQMoqS2WB49lKLwNlGdOtxIg2vuVJMFCNgB+FhkfsBZG69uRzTZmlNwmF0ulITcAeEL7OzRUgokQHwE8YLwNmorJFZEaQCbR0j6DEYwdEd0JGFqSR+Fb0eyXZH7GceJ-mtAyqMrcjV5HAzAd+aicxAuCgADrMAgNJKziBIfAAVF7GnO6Kv5T4hGRJ9MmMg0gdfxURrjiS249hPuOeynjLxr6Vmk44fHZmUotaJAESIHQ3OHBVE6AAABentDQE8f8AD14TxET49sbc64m-jjkAE3hk0OmBC0svVgNbiKMlGNwtx148ScRPHHbKtzIvHMbJx3FYAdxfFmhF+ZUQGUYJpFWybhPvHSTXVHk9-ruJZABTQpmltSZahAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARjoCYAoKOJVURNAfTQBTADbg+ggG4BDYZClJoAcwAUaeDngBKUAG9WoA6EyD4kTNB79okHACNBmVeq0GAPq-2Gvh3gPiZEJScNbVB3T28vX1tkZGFBKWhgl3DI719rYWFk0LcPNKj+GAATQXBAwWKcgG5WAF92GAQUC194KUVFSr5hXnhkgBpQeAALQT52xW09L2NTc0s+AAcpREc1ENAAMi3QMakqjZcAXlPhsYmO2oaOZu4MqRxBHN0IoxMzVv5JruKevsGoAARNBHoIgZpro1OC1QGgAJ52OJ8ZBiUFPF4zQxzT57BJVdqIbJHTSQ+rQu5fPhSNBoRCKaBPaD9EmvbEfBZtDq-f5qQFAml0hlM+AQqG3LgWQX0xmCZkCRExYnOaYRHELfYE1bZTXKQnKkKksk3JqS0DS4Vy+B8aSyZ6srHveYWXX6vXanKk8Wm2G+WCoNSJa2lWDCKSYeQtTFqjlUn7dXp8o5DIH+9DteUhsMRyVi8kS2FpwOZwSh8OR1AKpEGlyO9Uu-HuonKV0eklG70w7hFjPB0vZivQG0ySD2lVsgz1vEHJvZN3t40Us2+aQBKS2eJ8LPlyXR9nOxbxv6JlnOFOrxDrzfbnMtPMmrsWC9X8Y3wdVpV7yex6da5ut5sF0XAtuGfDdX37HcWmHO0vydXEALnNsVS9fMfXufgwzsYopHEAAPJZjFpKMHRjA8uU6BMAWTYEsNsHD8MIwRiNQe8l1hOiGJWCMnngBw0DgqccCkJZVEVZFUT4dFBCGRDPWA9CLE43CYmKeFBJ-OT5xQhTH0Wes-HkQQRQ08jvm5KikzPYEDMDPiRTYkCLAMwQCKIulUFMhDG20w1O0pRY02KRBJRkRj3JI8c6x-CieRPQE3gKLxU1QYLQuEcLmI86BHMU0AgvC5ZjEOKKyNxE8+GMcBAQYXSAoK1zCL4IsvIWCqqsBZg6rNBq3OpYRT02aKD3aspAQAZm631+CEABHUc4DHIays5czKOPajrKBOaFtgcEpu4YSAGtxh2uU9uSNBVX3cqAW2wR5vO8EhiOK7-LNM7FsM+yrQEh1DBWhsZ18rQDoscpMDUb7jKtS7ru-A9dVesH3ihuyYeZP7nCuid4IWEG3rQvTfGMpZ4HhAQHt2pb4Bx4bcQySAsjh97pp6GlrXRkzkdxqdGeZgnUIfALomEZBYCOuC8bjCyNqsjQUw3cWjtyvTjvGJWJdapS7s1lWXpVVnuD1vhVPU0jZk0nzkL8omRf4ESll6WBB21w9Zd5Qb4BTR3ncHVWAqczKWKSC2Ee84GbdBo2pUwRQseWm6NWt5sQY7O2zWgZBqTjgTkCWOnAcWTJsnzwnhbNCGofDFQy-h6Xf2UOuY9R60a7zgv66nN1m-JVgQAgRSMHAbA8CIMhKGoegmAYdjuEkEcjMBOUJC7mKZpEMQF9kSMghJRLvAAfgMI4D68AAuYuwRyM-DGPsXkCOyAlg-ZFbVHMTqxRNFr5JIYV80LfAwl8-QBl7FuSCt5PL7ySqAY+29mpgKDBAssUDQ7WQAUA0AID+BgWvJA12MCkrwNtMONc4EUEDl3DRTBsCcHUmIpaZkN9YEkLChaWUzCaHQFXlg+hQUQotDCo1CK0CVRYLYRlAR6Vg7ZWXjwwBdDFjKVkZFEIEjQDqz4E5ZQKjuJgj4pDHIAwsGwMiCos2xjTFmK8LQpK9DPoXSIQUSRlNHqLVUFTJ60MRQJy0P-BRfDFh6xYcQ0ACCQncN4Uo3wtl2g-S4eI1h4TSFxKMtzDBgSYkOyWE7RALtqFJLCb7dS285B8WUEHERWU1H+PCQokxNjzF9G-jBUcAl27GPqavRR9jwmYGwOsLaABVaAR0s4AHcLAImZFIPCoAAC0CyUmLz4gHM0JTKkwCGO3euiBwCgGUL4QiiAcCCIkOMHRHBSS4yTlKXJwgKYnLOUgC52jFJbOgDs3OZJDB1HCcIIQPADlHP4P6HASxkAlHeY+T5NzHSGB7KjJm8BQDHBWTvCpQdLHXMaU0sxrk+LQD+CvNYqATLWPxYYIO+jeL8ThXiqlNj26MqZbAqpPCyWcP6Nc1CkQ+b8AMu-Z4REUW9LMcfIVI5xhpiJf0UVA1xVKJKGUCoxRah-IBUChFBgHCDM+SmUZ4zkBTMHnpcmSxBCLOWSUvMfyM4cRaZJYVAlGpoACavW5Dcs453jsoN1Sqj6gBLkAy+Kw1j+vfkvKubc47+oIldD1mhWU2Iqs66VAkiKxr9QGpNKMEHSKERlapId5GeoRQKiYmAP5lKXr1JqTESohDzaYyR5Tnj1swIg9AXS7F9NrRUzt-UvbJu6fm0hjiaburHbc-ZhySYQvJm46mcN67eCnCq8o0BKgas1SIIFc7QXszRvEjGXsrproKFOAdzwY0+NhsjAYADd0GH+fuq1OrEVgIgGsE9Gg2lWvRdYm9lTf2c1PRkjQibn230PbE2MAHQOQ3A-+4V8LrFTjvUcADL7vBvsBR+jDP4EGTuUJS9kJ70m-Thk+hRuGvANAYw67gaaxAwA4ZUZQ0lC6WzMlJJm2RuOBrvsGgTt8w2rEcECAAVOxxh27ijSaBEMVjfA5NCgU7OLjYIL2QgAJBeGY9Ml2Q4oV9lQYOPxa64Mb3cU4lCXqv3pjhNjNFcIvFfS5tRkk9G7mLFJku0jyNrHHxDTYy+js5SHBMyiSA5mqEtAElhiDD7sakhTUytAMWzOUKggGZQWjSPkbZZbSjCTaarr5Xugjjnw6rW7cWeLeX0HqJsffAEPZkFvklK-GspJrH0LwRBCzhTWtNPa3yIbuW0G9c9ORy+JdcMNArrCCJYstZRLXUis2bmTaWJ828JF62ZAYHRVlxIsWmtoIEmbX5Tm1CgHUzKSop3QCqaewyTjx3AV3bqxYEDZsMuwMJVF8QnLsDct0eLE7QwPsKenQA8dYU0nlbLWuoSUgTqVQQ8KsjVKQMuTcjUsRzbitJURy3BBHDIPexnQipFwq3Mgep1aRDf8x24Y4b1xDLP5QImrF04VSbcNTmFZT0hU3uu1KTbcrn-OlSIclwQnr8u4hWIKCBpXI3oK4-ZwAoHHP6gAychihr4Cpck9pwA2X8nue486yWbXlZVd9YNyBh3V33y65VEmt3dG+4DycsPUeBASDkCoLQRgdBxpzzjNW54eF0c-nmacdF-hRwty0To2lJh+JDEB3Tt4U54opQhVC4lMLKTKbJznwx06C8wZWxhRBZfoVXKT3xo8ntKkpnBZCtvil1mwhpeWOlRjwAd9ulDDq4Ahi1Rbti5AalKmT7ai0mfQwuoL8UmDiQXKTIT9ucX9fY1Z+gEmpnzH4wpWwVlVaVfOs+RAhv6OZT+VUBypRvB50ivpUP-dutN3kLjZDjtKkPtwC-jKh-rDGhkflbJHM2GhvmnAGLHSEoLvvvrDNbhWj+G6I3rHj+shtojxM8NgUXvAVUPgSbudKgRrOpCPGCDLjoIZrxriOGo4AwU8MLuSEiqMOMAFhTKShDiKG5otgQVniQZ-EqNOi6v-uwVIXEDIRmijJwadOJICpUiQdMCwX5rqKoSoSQQBklloboDoX9sMB6PoZTnhESiSuDuSg+uoUoYCvnjSPwQonASNHKIoKMAoT9mimcPEEoL4baFdK2qAPIRIb-E4UMKEaOrYG4bvsJt4JfEET4SMH4TjAADxvbeEhEnbJGRDwIDLIBSYAAqsQmiiQ8I5occNgv0cIz8eSlQl8QIoAAA1KAGTt4GoAEEoPsubE4doJ0W-m0Z0d0V4L0YEIoAMcoHEYUSkf0vqkCBUcgBAIIBMrUYoPUZjI0Q8ogC0cCB0V0SVoYFMf0eAIMdWDjCMSmMcRMWcf4NMbMfMS3A-E-C-C7mzuoUwW8NQTwj0LEKJGQQUCbudqHDEaAHEbVuuuvPxszC7mEacfAgCQ-KJA8bYigcgGgYoBgcIVgQogsUoi7gEeikjEMRiXAo3HEZSZfOCVpoiaOm6K8bfIxmkIeivKSecPwYuoIfYdypemkHqqUX4YatADECUMGmCHamkPhtqtYkiqoW5neqof6v7jYlOPSaob1sYWCMmpSdSoYS6poXqb9nhm8GyeYSvICfnGqavC3HLuod8dWLETIL8V4P8RIDacCR4Z+gYGCSZpka6f4X6bCXxiXJkUSUUd0t6XjqcTQdidMXiQ4cwojmTnSeoVyeSdcVGWkMfEINaLqKEcGbmZEHSYGfOEMUMMyQUWaQxiceySCpyantyeILycmQKTCbYiUesD8cCKMhKcSlKU8NauaPJg5HWdVvKTYoqSQcqWBsQdfDBhqT+FqYYYiSaU8Pqacd4NqcafoZOa+haeQQeNaWiXaYuP3GAEHlgLgKHhPBHtPHQDQAQccgEC8ogG8lcjAGvJ3h7PFBwCmM8ucvtC3MBa8uMKck7Geq7NcrzBQVprylCEiuBZ+ZckPG5vFGfCXpqG-oYJqE0tuc0k-vqHhQYPqIRUDiXuwWRREZJpRdhXdCeLRSeAxWkCXvzMIG-pxbAkRd4CXsFGgE7FIPCG-oJcJTUUlHxV4CXsKZgGRXJTYtJYYCXsJKMNSLYGgMpmpSMBpRgAUMpQYCXu0bRYYMoHhEMPCNoMcAAHygDzKdGSWGVvZ3QLKmUGDmWWXWV2XzLLJOVUV3RKZDCRCeWgBWVoo+WgDSZhUGDOUl7ADuWHIWVhXeX2WgBgD+WMVP4ACkiVoV4VtlaV2VMVoAcVd0qepl+VqVKeZwVlAVT+AAhKcJVclQVZFU1einVVlf0ECFkXla1dVaADkQYF1exXdFkccO5VVRFWlRNSNWVU-jZf1V5TNfMnZfNfVT1TZZNcFV4NNYVWteiilZtcoECA1YlWlV4IVQYA1YYInmfGSChe+SBZXirk4WirfMJKJJqEMKhV+UPI9d+n9ehY+CiLYAAFali0wfUFBfWfIzXUXPUQVv5yS8rOXeDA2vWJaA3OaY0e6vbxQl6bpqpv7E0Kbo07n8V3SEDQBbohSiXBU0103kwU2U0qV3Q6V8CkCEBkWc3c2s1s0uVP6c0ACitFotAtbNJeAAclINLYlbLdLaWacTjQ9njUgnzu9ccJ9SJJUjNXoaOuremEGITE9aci9R7kYTDWkHDQcoVajelhEUjWhWbibWSCbiUkVObRBVjZ5IBVsSeP-p7YEGpsSg4I8kmeDVINIFlgEGTHGfipjVBfECKLBT+QbgUDXIHdUN4EZu5qYC-EISmf0P-iDhXkXZDsVpFsSsoJjUHIiUMAaUbY1jqZLYYNXVUHXTvsgBDVDdOk3c7W8pbbIRnZEHwW2WTHyXvvicyIuPEKiuPYoGLAkcWvySIWdh8IXWvbDGSFeWapSMHneePOHlPM+c+QQbKhGAgHwI9GoNBMJJgJLENv-ozHYA4C2CnNkM-f1i4o3G6DWeQvEEaMcUCHwGMS5n0TMZcR-QgV-eGJeOBEaOJn-R6N-S3OCsJJTPonxCVJAzxn5lILALADYEzEvKoDskQ6lRgJ0coIQ7AFyUCG0cfIw9gsCHcZ0XQ23UlIwwbHgyjDANxEIE4JA98vHKI6HYI4INMHpiebiOcYoCA6dccRg7hEINg5xnDTXBI+GEIKIxeiA5oECC3AIzo+MIYjgLQ3HC-VYAJpY1MLfMwyXECMg74PFDXNoDsFgkehGW6O49oO4Cg82H46AB1cCIfBCA44crqO4ww+E+EZfYQ9aLfT1g-ZLO46YpfEer7Pkq7DE5400g8BiFUkTqWn41Gcw0o50SY5DGYw4BY9E7nHY8A+MU0m0eA18ZJNJJ8pSKop5MEy0zYm08cdU0IBMHUzA3+NkJ0mU8MZShCM42YpfCM88ECMxaI7DtAJI2M5gDgD-WkPQvIek7-cs6dTRSpgCA01MNWR6H4xs1s+Y4UQ4k8UEEc3mcCAAOTgM1wgOfPIPyOzHuPGObOmM32jiYDqSPTgvWPwnZBPBv2OC6iQujWC1GV3SJDFCjGlGjFZyig+y0gOC4s2RMz7R7PRknOItgt1UWHNhIujrLPbO7PIPkuNi0vXM0uUt0vAs1OgsOBWUtxR0x2wBx3WjCpFTixZTxpLDQvZMFJRiNSFETY9Uyv+xDDFNMSlryuj3eBw0Cs0hCuIBkwAZit7S0h6OStIMFD0JdPyuRMl7hMvROmdNLkESkuLGNQtxIsKizJ4TGsSvyuzogq+DKu7jyuCmKk74klAYFAdM-xFM74lpyKhu+ZPXiv4t-DtxuZw2eszLtA+uESpvTqdJJsHyYYRuZktlAg0WRPyG6j5smtCDps-KySf213YD1vdC7KusXz71vXVgMPMXVtttZQdu5zIP13ltnBAi6ux0GsitgHVuSbdO9tKhateA6vR16vCtGt1tZRmuhuPN0URrjsulO0FsjvxxmlylWo2ZSTOtSuCnH5P72twiOuxukEuuXtaqEb8rEYERLZ52CgEvQTwDZz2DUjFClCUEuueG4gWrvtSsMOAeYCigOkQcMJCDIfQSWL+s4GIyNh36YzmuLgDz5wODvjtDgS-VxbmhDldDwB70jx3mwAjAiSGLn6HJCABTjTR7R6AIe20jizKAnTwhDDGD+iYDFD4PmGcXKBielGSflOPZh1bqVAZPhLzQyBCeCAieNy6hycSe6aUrHx6eljydInhZjloCCfCdsvZD6cKcoxaIUfxDKBbbfrfaXDgSYWBXOeCBKZmkm7vHPxacUwMBDDCd8BdQwlIpoCQC2C+duaCjWfad8BhfUvZAee+dVaRCHqxfxcvhclk2VCCk-sHhFfqqslftdn3aor2eJcCewAheRe2eqBxdZeHnpAgp1ctnlcldJQbrKdqq+aRBXvVelewcej2cddMYFCWmgBzcm6BAYf9ARdpcRfMDBmjh9cxdtcFfopJeNercteZcvjZedcce7dec9eDfk1jf52XDNgneUeUnyHxRHeHuODrebdSNcM2JuhPdANnf1nvp3dIrdeWfJcUwbfpetf5eIPTc+BdemcSeFc3fFeOYGZpAFkPfEiXfxAmKY+U3yHyFfdQl-6rslbzh48-dkiE-zdVehnRsmA4+yfI-FDfcI9HmzfHkel5TiXyDMcFZ9dCT9uxAfELP4r3xi-PzFaXx4AVtLcEsS9UrHyK-IfdGXxyUFZinGqmqkdoKjm+cylc9+b8-wDMfIXfr6-kd7dVFY6+eue1BIp0dubW89YO+rPS9LB5goXUfopu-AcvinVq+iju15RaK2CBDBRBBDYc8wcLDyGx9k92goyR-EpJlDbKBp-R9TDx9AxVDZ-TGp9R8Z-SpZ8l9KD-5uiF+V8tw1+4kh2qlJ-6F58Q+NfN9aHWG2FzHwMvjfeqsmG4dsGLsR8V8qBJ9oYD96ktwrjhjmut+xSWT9CNQpjhNf7G3MiXgVIr9YCMFKeDl-Crh8AsfErxCYBrom7+hLClLQehk3urhEeg-fr1+7Zj98CN+SE79WFEYHgv-XelAqdigZOY+DAAP5kJj+6LM-pKyn5bl0y7+a-uX3T7oFcc9fIHlOWvaBt+A8hUNndynDyEr+6kXUKGyGAECtM+7YbvTxB6M8-M7rVkjzz8ykD5WLcXogkBwDUhckoOUoGGHhCcY0AaXLgSJW6BoAouQ-erBGT4EKtQAAgngX8GEGudkGNbRsBIIp4eUqG-gVgewMtQV5pBvA9QY8BZ7KCDSlNHQbIK6jr9DE8QaOhBG4G8D+BIgQQaYOhbiDaokTEwQIGYDyDLWH3CZqoFqgqDDkqVQIBYISBvITBygNwXIN+6wJXOM1FgfoPnC1QhYBBOIWwPABhh1Autf2lJwbhpD5ARKPwMYEeDCMNBttbZHCCSEm5ch8AfISkOKGPAnBtjFIZILCz7MeAzIcOiEOsEOCE6SUJGHoN2arsYhhVKoTUP6F1C2B2kQobswqF5Qy6fwfZA1j6AwFe+lHKQfIBgFSNbk22Mfq-yQEN8hwTfFYfj135bkRcP4P-mcHK6RM5hPfQBjJDWG059CCgvIQ4CHBqVBe9fRDKgKGA4RHhnfPOisGqGvC+A7wjIoCJ+HrCThmw0QeDDnIVtwA2oSoG0UiZAgERRIJEcgypiadwRDw7QJEyVIGAXGuCOfoCLxG-05h7-MQEWCWHMIcRvwjYQe2OSLtSR2wXYEyIjS-DJBgIwxG8IF4ZE3QpI-wUlDdCcihRBQbkcCNBE+DBRRgqlLqFFGyj8UB5ZBqiMREYtmB0xees7jGGJ5W+8hZKkMLsolwUYzHUsEdGpBDgkOu4K0S0CGCescRnrFvvTm-SgjscsXAaG5glHmAQRfI5QPaMhE2jUAjdFFlSkdH-DWCCwV0QqlRTwi1RyvINC0LLJwhNRJgbUVMIKx8i3RYqYxqMyj6uRa68gaFvI2lGFiUYdHAoawJC5rdtOIgw7N+lex0cqx4XGsWaU1Ko8ABaqKkiXFYZoAZ+YdH1hF1RAFjawdY5zMJzcy1tCxZwvjA-2E7aBmG4TVhsJyhDz1QAZRAABIi0+AAAQXwD4ARaAAJTKKEAAA8tLWoDooxCBBcACYGY7ocgO+WL0V8ihH-5IAuY-scOJ5GSDyxeYvCB23xaYdHxLw8wAe3LEyAMogY9AC3DAlZB7xgEntP-g3Fbjdx+4o8aePPHQTmev4-8ct0SyfjXh-+csbUN-F8BBx1UJ8aOgFAATJQCyFIeAXBhR84JkoASE+IZGt8Uh2idIXDXIy-CbAEVboqaIlgWimJUYXiTgF+rATnx+hFQTePN66VIJLEySQyLnomAjAxLRBDADY7ooAADLUAILboJklUdScG2giIAqg6OdSf6E0kOA3M1aTcFZPaGYBjiDAacbiDslQFrJmAS-FjgMlkIEGLnJPu5M0F+wesZkuQouyBDPt5CQUkyZWDMktdv6KMYwNJD8kvh+AgQWTsSzc7OYYp+xWVnFOKCiENiRkzcLFKHBmTHefxPKOoPGATIZAksHDrfErQP9-WIWO3uMF8mZ8d+uUvJPlPKnFBcyBzRdjazazeCapfAOqcIElhECP2Yo8isYFqn1SyBH7QaeEj-b0DzC40yaZLHckoxSgWgyTiiCSA78O+epW5Cbi2lLToRsGTAWQn9ToYbEHJDTnAzuH-wHpVKbuPHgoHA8as1AyINtl2E593+Bwz-gyO+lpApwtgdsaqgUwYlj4CIgjBiUviXSppiAoGSgLQEjdWAemUbn9IbjsjHAmw4AcMAWkTSlpRAm5AExRmSw8CXbRZhABOyCAKBc3Obp9MECLTUZTAvOhSIWGQpiI4EW4f5PuG2g2Jzo5zH-1ACfCP+18U6acLeCHoX+oTXrjCQG4DEfRcktGaX1gjfCGyIY5PmDN1mUCas9-OfraHhRs0B40mK2bfG2F7DAZSZaWRiBFkviKBkMnYUrLR5ADRpMANWVKNj6KjJZb-FAWP31J6Yw5-pLQgNjWnd8J+bpF2RaSq6Hp9pUWfgJ5GdmyyfuphS2dbKvQ-hVR6I9UQnKoFNTf2Mco4cLLjnf8mMTeCwD7MuLqzBeSwNLksGh5OjZGCwJUrGILnxivAzDNEfEAxaYjnptdZuV1HxEkEiRd0puWSLeY8yxAfMukALKbm-VW5kcrwbP0cAtyZ50ZOecsGxKLyXOLc36mlxb7pUwAVs6TJPOJ61RWRiwYnmPOObQBfZvogUX4INICiuoc0rwHXIphSja2b8vWQUFrafyA5oJLQge3zkDyjGedWJMSycBUZZ6C-NaHFE2gILacz+YlvRPfwoE3xUYXaa3zki7Skp6kyxPgphHFxbG-9SbllLpkGBFWp1GQHVPhDfB48ETLwVpGoWA8UYntXCO5MynHD-RQI8wHaMpaLktyWw79KGASBDh3JtkuUGCFSngR0pSQXabhiRQ-ysxHoqNjYg0VSjBFPIr+f9NQChhcFnkKRRdl2mGLvAYY6fu3NrlPz650Yhhv3IxG-1ExbrKNHxB5bgt+FGsJfOpHMUyKspQonElqKHC1CNF0YpIauKQl8ADxwyAADIi0LxomLIHpMqG3jdK7kxSUIqkmD87Fj2d8aUDwj4SQJkTH8f2O6DZLSl0AUCcz3AklTmIlUmuaABgkZRqliEzcXEsSXJLMJ1obCX8GqUUT2J-QzQVFh6GwIiJYwkiWRJqVRDuG7k2if0IhAqCpl6YyKaMUWV0SZhekT2kMqUkviRlUwzifIG4n4pZFhVbojwsaW+KJJuShkTJMyWNKclBil8SjDpAQpNwSLP0aItYlQiKx9Qo5RoKqFnK0gncuytYg4kd0IENgqoGTi3TptqJeE-Ra8IeVk5DR5oB5BTGqUorhFbyg3NqSaHi5Vk4wb5Uiw2EArdmEi5zLNA4BuZGxcHH5by0ok3pvFolVsT+FpUwBoZgAyJh8ugpsqmV4LClU0OQZcqkgBHCrKy3+VEqYFyi4pUHxZHkLfAxYycaDDCCuBFgD-NVTsoChqBSi4wSCcDOBnFLaGSK1ANZlum-ig+kE96UYrHHac3MMylLkONtUUCkUxDAZKziNUpDraJWNZZWJs7AhIJSyqYcbwxpxYQueLXCagFDWsDq8NiQ5uaufEYrPVyUtuMmspVndcZx5FpfquMCNLjVv43xdlLVqSS3MaYExXIlUXyyrV-YxVZJLtXeAkU449FM6ophDiKJ7qyRWYHTWFrfV2tHcgGqKFBqMF8QONY8HDVeAlgka0dVsuWWrtopxLIYKmt7Ws4gpTQz9sXOrkEEDggy9SaUREl9Nk10LPhbasNm9zzQaHM9SeuQZ7qj1SQN1QBzQ6QSzVMa2pbcnzWGrM1IdYtU+q8BIo4giK99a9liUoTDxx4s8fgFwxga9xEG9CSkqTXvqV1qVIDQ+sJgRiLAQIR+NApaX3q+FZCt4F+sLW-qPxNagDVb2ED7r4goGrpfEqSXQa3gsS+jcks9GLt3JKGmamhuyUcqDw2GlWDP34ACFu04ND5AGiQUwtJW5ca8QuTTCibOAUm--DNM7gtws0Im00K6gTRV8PQAaQTRPSXSCV5NlIRTRJojK6a86d6QzaaBM3kLlN0mk3Gpqs2cBNNncVvngS00txt0igIyH8G+XibbNjYczS0rk3IAMpcmjTSKv6HQthN4W2FLFoQDmdoyhK-ocgxC0ZS1N8WirJlsTQTFWV3yu9JluUDZbQ5IY5LVMKSEzqlWxKUYnlspZv40ttS2oCbkM2hakgTmhLZFvK0SbhN7W3cL1sS0JixM68xyZYNCH2CZBEy8nJ4tJWUskMUMXreEN4BGbaYo6MrawJK3eAMVLW9LcxGDBLaNNi2tAMtpy108mUa2+oYuEq2nUsWKYWrbyzEpLbWtYfPSF5qXgsoZVUWoFfoJBW61yM4K7GUlBk53afFr2nBoKt2RWLYEoS1MeErGEHlAEp2y9dDpA6w70xTw8OQtgEwE9Ig523ZlCCu0ghkAhLIEMDoZrBpBA3mviM9oCiuRSwcWeDqXWm3QDWyS9HusIm3qz1+WG7Gdoa1xzvbcd8MTUqMp+3okzE-2glH+OIYVIluvYLfs8EpKXNE0UIqxXMVVbeUjBWvCQMGMAX9kxkkyCwICLJ5OSlkRxdotjPDnJRp2+rXnWAQtbJJkdaYysU8PpklwtWAu-HZGqnbc7rdc7O0DVum1sq38Vurdmhid4ui5kW4XgBJTcwABOJrXzyj3cDKVqgC-gnqEpJ6OJIUd+moCGAfq7+t08QeqtDKjdD0FgFstpL65eBxK3A5QO83eYpg6AjeqdegLu7V6RKPgtQJjO8Bt6KYmewxOMIMF1ILAyyefHQJm6GAe9lK9-v3unTCQfWPe7hcICYUsKP4MoA1Z1vW2t9cdHupVkvpEor7nowIUnW-kYX76q0W3dJXlB3a0hBVgQSrbEQcAxA6QLNalQ9lmhuZs28Ib1r61pAFiamRyTZtRxGLVAIQZpQ9BckwBP76aITSdnSCCKh8YSPe06ksmWTX6MASLNoZVoMAoGxQF6ifYnvb30syVXoI2dqjm6HojVIHU2Iaog6cZZoTarwPhoPVdpX196o1ZYnoMddwDj+xMuTBgPopto6I5kBCFb0EH1IQIFAybsglXrIO1qSQ7gdxksyGet8JAxIckPLIMD0YjAOoaWTN6DAk+2oZCtGWgqlRcImyhiSIOzbZRMuoMHLr9EbCV1WuiAKlR6RCjSd9h5MUoDCXJ7jR6cHdZUIXKJA0AEyd+nfriylrUU7+9FJ-u-1oG-9QjMI6imAOgG1F36VQq9ncOzQXoKYlHT4YExndK0EZdI5IMJ1VE5J0xB4VIGcZ6YlmXLUZt8psOb8l4WRxuMUccNq6ZqPSFuIysamYa75w0l1pE2U0HsteO-IEEan11rT1W2UYYPCEtRYLJVLm6FtgMGO-13NUrTET2WZ3jG9dJqf7CUxmOLG2IrANA4KveZWjlAgCgADqsAz1HAivFQfAClELGrusKl5RuRUp69wICA0-tAonGh2N+75eceomXG9ZNxu4wdImDZwnjOzAsRGkgCxFR0OneQgidAAAAvR2qABuPeBoVjx546rrePongGJWL40CB+PYk-jmPdgIEfQAhHHA5x+438DxOwnWq5zJ-FUcVijFYAoxDFqSHeZkgB4pxoE7iehP4nWTQtJVqMVsBcmeToB0k2KCAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARjoCYAoKOJVURNAfTQBTADbg+ggG4BDYZClJoAcwAUaeDngBKUAG9WoA6EyD4kTNB79okHACNBmVeq0GAPq-2Gvh3gPiZEJScNbVB3T28vX1tkZGFBKWhgl3DI719rYWFk0LcPNKj+GAATQXBAwWKcgG5WAF92GAQUC194KUVFSr5hXnhkgBpQeAALQT52xW09L2NTc0s+AAcpREc1ENAAMi3QMakqjZcAXlPhsYmO2oaOZu4MqRxBHN0IoxMzVv5JruKevsGoAARNBHoIgZpro1OC1QGgAJ52OJ8ZBiUFPF4zQxzT57BJVdqIbJHTSQ+rQu5fPhSNBoRCKaBPaD9EmvbEfBZtDq-f5qQFAml0hlM+AQqG3LgWQX0xmCZkCRExYnOaYRHELfYE1bZTXKQnKkKksk3JqS0DS4Vy+B8aSyZ6srHveYWXX6vXanKk8Wm2G+WCoNSJa2lWDCKSYeQtTFqjlUn7dXp8o5DIH+9DteUhsMRyVi8kS2FpwOZwSh8OR1AKpEGlyO9Uu-HuonKV0eklG70w7hFjPB0vZivQG0ySD2lVsgz1vEHJvZN3t40Us2+aQBKS2eJ8LPlyXR9nOxbxv6JlnOFOrxDrzfbnMtPMmrsWC9X8Y3wdVpV7yex6da5ut5sF0XAtuGfDdX37HcWmHO0vydXEALnNsVS9fMfXufgwzsYopHEAAPJZjFpKMHRjA8uU6BMAWTYEsNsHD8MIwRiNQe8l1hOiGJWCMnngBw0DgqccCkJZVEVZFUT4dFBCGRDPWA9CLE43CYmKeFBJ-OT5xQhTH0Wes-HkQQRQ08jvm5KikzPYEDMDPiRTYkCLAMwQCKIulUFMhDG20w1O0pRY02KRBJRkRj3JI8c6x-CieRPQE3gKLxU1QYLQuEcLmI86BHMU0AgvC5ZjEOKKyNxE8+GMcBAQYXSAoK1zCL4IsvIWCqqsBZg6rNBq3OpYRT02aKD3aspAQAZm631+CEABHUc4DHIays5czKOPajrKBOaFtgcEpu4YSAGtxh2uU9uSNBVX3cqAW2wR5vO8EhiOK7-LNM7FsM+yrQEh1DBWhsZ18rQDoscpMDUb7jKtS7ru-A9dVesH3ihuyYeZP7nCuid4IWEG3rQvTfGMpZ4HhAQHt2pb4Bx4bcQySAsjh97pp6GlrXRkzkdxqdGeZgnUIfALomEZBYCOuC8bjCyNqsjQUw3cWjtyvTjvGJWJdapS7s1lWXpVVnuD1vhVPU0jZk0nzkL8omRf4ESll6WBB21w9Zd5Qb4BTR3ncHVWAqczKWKSC2Ee84GbdBo2pUwRQseWm6NWt5sQY7O2zWgZBqTjgTkCWOnAcWTJsnzwnhbNCGofDFQy-h6Xf2UOuY9R60a7zgv66nN1m-JdjuHJpZnka+uG98FY1mUEfEsMAB+Rvp4KAAuUAHGwRxGpTABVaAjqzgB3CxGoigf4SHgOetQPjMangjR75-gJ43u+Z4Mee3UXtIV7X5Bn6Wbfd4HyPm5LKhYr6-TYiACAikMDgGwHgIgZBKDUHoEwBg-cj62jkHxQEcoJBdxijNEQYhJAjkjEEEkr854GCOFQgwK8HgYkoUlUA88xbICOpAJYH5kRYPtOJDKklpI5CGHgzQdDQAMP4D2IMW5IK3k8swpK89SEZRkSWMsCjQ7WTERIqRw41zgTkZo12SiCgqNtAYy8Ri3y7horolh+iLSymZDkCRFiwrOO5jo6A+C9GBVSiFFoYVj6gMUSqdxq9LFBSCagEJICQ64N8eIxxixlLB2ym4lh891Z8CcsodJ3EwR8UhiIiRLDIjpLNmUiptTDAOKSvoz6F0zFpA8RlZp9oqZPWhiKBOWhRHJP8aLZWWTlFRLCnrJJfjUm+Fsu0H6rjWmRHaZVWMvTYb2KGbMh2SwnaIBdnYiJ2TzR7OEOpVR2DnhB1CYkkkgz8EDHKWkCqkk+ECXbiI1eySUmNNXpgde-Id572QIfOE8JmRSDwqAAAtDCiZsgjIX1hL7dSHAhjt3rogcAoBlDjwCDgIJEhxj5I4KSXGScpRnIpoRRAhKkDEryYpZQ6LzS5zJIYOoq9hBCB4DivF0jcBLGQCUJlj4WUwHJY6QwPZUZM3gKAY4CKrkSsfKbZAalVWaCeXU2prlr5-DwWsVAJlnm6sMEHIpvF+Jap1eaup7c7X2oqTc3xxqXH9DJahSID81nOhgqOZQRF5W-IqfPAyfDmrgNccGgaobUklDKBUYotROXct5dKgwP9HCsqBMCoB0C9KD0ELC+FqK8ycozhxPoKIxDvNvgXB5o8G5ZxzvHBtV06HzxLnQleT8p5YKMiytY1c44du1d8x5ZrDCvLrSOZiQbmJt1zuOptKNVFRugGlYJGVbmZK2fgilvr-CBsuUO3qTUmIlRCGu8p7SVUXswJu-pE6Gl-LPTgx9-UvavuSS3DdnTLpNopdi3FJMcBkwpoB5GzbKWgETeUaAlRU1ppELy0DAr2ZowWRjL2V1YM+p-B+65I7OY4e8RoK6AwxEoYMFytDJbM0yoDAqquZGNABpLUq55xHh2QzI0ZCjtNtU0aoRhuZ6y+F8ewxxvhUrnlTjY34WT87aPeHozyxjCmiOWMA9O782HBO-ThtRv9VCGheAaBXatUNJIwGcZUZQ0lC6WzMlJJm2RnPxq8N2jzVC+2rEcECAAVPZ4iDJKjBaBEMWdfAwtCiQ3+TzYJ8OQgAJBeCrdwNALshwir7CYyUL6QP8t8NBlCFKvCyteoquE3Svpc2MySNTrmGb8FJuTSmj1Fpw2eb5rIzyV6OzlIcXLKJIAFYHEV6TAnFl4dJE651cIxv5eMVNloAlcl6aW86ois3cP9NSxy1DmnKtwb9Cx2RtjIohD66AeK6jJtQUrAiasnpBuLDAteeRpjjl1LYQCL7EFCvQVe5+ds06V4lzU1ZjBCLTZiy1ge0esqza1ZNtU5rbxZWI5kBgJVOXEjjae1ogSZtjsGFlfFmUlR8f3ZrXZ0E4XEsFPFnjinDdeNm0W3qvCBrxBuuwB61nLseVDGpxF4oaA13-ssfMozSyfGHulUJKQJ0-WfE48ofTvGXIJP3SqHnO2xHrssV4zZSuUcsdAHw2rvHzfyik-cydHPnE8IylJh3nMBFfL4U2tTU4+Gy7CkDtbz3tEKxdxSt3YPeHzuUKH67L2ff3KobxxPP3JRa+d2Io3WazNcoMHDjdj2w9aOmaPGPAitel6T0OWPNZtVp8HZ+y7Gj1uVid4bl3eeXdQlYFApysD4EEBIOQKgtBGB0HGnDtomBA14Xvj+aFpwlUnsEC3XJ+SrUmH4kMbnUeVc-niilCDIqt1ispNF-ToAd8lOl6AA-onrMYSjWf0VpKl9uaPJ7FlKZ-Tv4X5OTIrcCWrljWqlLgBf63RQwdTgBDC1QtxBzVJQFHrH41pwFDBdRIGKQC4SDuomSoFH4jQYFjTwGgCTSb5q7jARrx5pjXy1hvBTgn60F2jRb5TRpaAtwSb+pSZyZoHf4ezxR+42SSbzogHORiF2iboMEJ7zrQHJyRzNhybrpwBix0hKB4EEGwxiICG4gfwF5w5KZwJghTzJJ6GKFVDP7F5qHIBCCmxoo8QySH6ZatYLD9omFPD+7kiyqjDjAdYUxGpC4ii1bQ5w5b5OFiTVgP7vIKEWD9oN4xHzrlxGFOHu4CSeGCDTCuFwa6iZEoyZGcYZFOHZEAxuEWBuj5H-p84jZaHBGbICJJFi6P40j+HmHEHlRyiKCjBRFKg4yr73ZdE9G2idphq36BbKARGmGJFDAjETq2CtF4HeaRArzxBKA9GJHaAAA8gx6xIwchPKyxbS-ygKQIAAKrEKAMJNAPCGyooDYL9HCFwvspUCvECKAAANSgA37eBqABBKDYrmyNHaBfHsHvFfE-FeB-GBCKCAkHH4ZmrfwAq-zKDnGXHgCCD7x3EPGYxPFnKICvHAifHfE7Y0L+AwlwmbHElgnEmQmGDQkAngDqRzEozsKcLcIN7Z4CLAbSpOSTo9CxCiS6FMYGB8mE6hyNGzHs5naEZuYly9FxCjFLYqK+ICn5za6kn1K2EaGKB1Emo6E-J0krwN6KpnBIzAl0lvyNxzGWmSLLaJCzgKmHFDBugsktaVoFAYZ4Kmlr4XABF6keoEbeDZpOkAIxAlCgDSQVppAaYZrPKyqZG1bGGRGia1JTjiksppGJGZlghN6akWppH1r5Ec6WZvAWZwZ4JqlCmGF8lV7VhcnVhSnCA8lvB8mVnsLVnK5UJim5ZOlNEuYVK+rymbE34qkSBVkanG7akwkBkmQm437GkCI+mNwjnKl1bWi6gjFNlHEVLGm9nzjAkukehunmYklpBem+LLl+HiAQadZBH6nMhBleAhkN5hnn7FCRlgilrmjM4OQlknZxm1IJlOFJmkZ5IplmZpk-gZmFHZn5G972qFFFklH-l0ZllMFEaqkdlmH4L96D4wJYC4Cj5IIT6oJ0A0Cz6PwEpEokrMpkq8yEKXDrS-65q0r0qIDEoSG37UUMrjB0pOy4auz0X0yWGOlepQiypsU0WX5Fa1bxSvwn6ajsGGCah1J5mVJ3T6jKUGD6hqV54n5PzaXjFrB6UKV3QnhGUnimUvJ3T8zCDsF2UsLqXeAn7BRoBOxSDwjsFuUeW3FJTOVeAn7ZraXZq1IBUzp3TCSjDUi2BoDRZRUjAxUYAFDhUGAn4fFGWGDKB4RDDwjaDHAAB8oA0KXxflqV9OfIQIMKmVBg2VuV+VRV0K8KZV+ld0UWQwkQdVoAeViqjVoAwW3VBg5VJ+wANVuKOV3VDVxVoAYALVZllVAApGNV1T1YVdNQtYNaAMNXdKvplStVNSvmcHla1ZVQAISnB7UTWrV9XnVKrHXzX9BAhbHLVXUHWgA7EGD3U2WVVbHHA1X7W9XTW-WfXbWVUFUvX1WA3QpFUg0nWPUFV-UdVeAA1rXQ1KqTVw2omnVjXTVeBrUGCnWGCL6vxkiSU8UcW0VqqJGKpULCSiSahDBSW8UyUbak3W5M0U0s2VjIC2AABWpYtMNNBQdNqqgNBl5NnFskKc2QXq5V3gHNjKQ+bN6Y3FdK0lj2dO8UJ+CGya7BOtiWct+ZEVlVhA0AiGIUXlHVpt5t5MhtRtFVj1CVfApAhA2lTtLtdtRtJ+TtAAokZb7Z7fmSfgAHJSDB1jWh3B07n23K1qCq3sWMql7U3HC00iQsqA15EToK3jAa2x0KrZ3Pq9hFFC1pAi04prVyRQFZ0S051t7Ca1C1nUpFRq3M2kowAYpxwnhxGnJOwUyBBxZboODnIzm81SDSA5YBBkyTm6oF38XxAihCWSoIVpA1xd3VDeBZYWBCCmDcL3nC7d36q1F72mrmrDZbrKAF1BwzFnmkkF1J2Hn6Zn1VCX24E8380IAP62nx3q111FGB2GDXn+nH1WiLjxAKrXmKBiwLG7qC4PkKoE4fC72wP721AD5gBD6EUIJj7IKT70AUV8n0ERgIB8CPRqDQTCSYCSxA7d2Mx2AOAtjS1yGGLxBGhULzxaTHnhjWIsPkqgl8DglwjkmMnqRyTUOkj+aNyulcMvhCxw4AHCSUxFJ8QlT-Hxzd1SCwCwA2BMxDqqAYqaNTUYBfHKAaOwDLlAjvHzwWN2k0lfGmP-1JQWMGyqMpF8kwDcRCBOCqMd3xw+MD0eNZG6BpYYUHgMmKDUmonEnyO4RCBKOOYi01z+PhhCA+P4bUmaBAgtzuPJPjAlI4AmNxw0NWAeYFNTBsPAglxAgSO+DxQ1zaA7ASKYbyluh1PaDuCSMeitOgC3XAizwQjlMMMzh1PmN9N3ocHMhEPWikNZ4UOSx1PlIryYa+wHKuzDMNN1KMLXK4F7pRitPR1WlAiRNfHZOQy5MOD5O6ifJ7O0l1LvECOclCKmE3L667OFMgk30sJ3PEknP2F5ODNJalMfJvO8NmoQhVO7nwbQABOokWU+Pi5Qs5MTDnPiPLyLD9rzPmKQvQtAiGUxYAiXOFNHnNitPwsBNIuYA4A7lNJCMqAYvHFAgADkAjNc1JTLEjYTcJdTWTCLpzJDo4mA6kj0ArRT7mzMTwdDjguoQrX19tDtqJiQxQYJv8YJWcooPstIDgarNkTM+0KLxxPzzwUr-Lx1wwHo0rE6Br5LlLEjBr-zyg5rRL2QDrWLiL5rLco949sAk91okahE4sWUDaIryzhyUYn8KycrAo+JIbrEQwzzTEiSI8y93gItHrNIXriAZMnGRU-rtIqTgberKxxcphYb3gAOlVfTL01ejzGII8VLq8BELc0rCokKeE2be0tIgbJWYGuy+y0bSQtbZ2CZuBJp3GBQDzaITz2zLznktb7pZNObQgfw7ctWItTbCILbbbWUebs7M8imw7S5AxOLgW4Lxx-auofr7bi7baVGHTzYF7WU3QmKBb3gK8V9B7ZwQIFl5T97GrS7ucEjb71Y5jqbE9GbPr4h37ExgHSoSbXgKbY9ab3rWbP7D+nytbdbHh+7jZ3FC7j77KMO6aJa4mVgxbd8sGzBd0Fb4K9Z1bw8ZHBHDGZ2U4jUMO5IUC+cDg747Q4EjNE25oW6oAXQ8AaDmD+UIwIkJSFBuKQgAU400+0+4itZtI4sygJ08IQwxg-omAUuIr8pmnv8OnYz+tlQCzq880Mgqngg6njcuo+n2nqWZq7DjYdnhndSQ2ynsAln1nboLn+GVB6u3H8QygVuKtuOGUgXXGEbwWEXUWHOfJbJXCXnfADAQwanfAXUMp4zcdaAkAtgEXtWgoKnaXKXprzYYXlw4E3q55-KOXeXL4y5xnxQT5cGjX7pdGhHmXVW1uLnBXHnSXzAjrqguXEXVXLCGGPXAxjXzXspuIrXzysZWm9q3cHoLnqF6m5m6FXgfJgQQgmA-QxXqXVn6XTZo4QZ1Ww39XSqhXnnB3pX2Q5XI3a3GGtX+Xk3g9iGlQ0365lwZXbO4XL4sHSU-a8Ut3-aaXA3Nu8hDjtSboD3Mjo36mHXIp3gsqE3P5aARXR3EP84F3lXa3UQ-KE3ZwU3Z2GWaQ29P3xIuP8QTyZPmp-aYPWPJ3WRgPzqOPdXePZIdPoAC3nX5PJglPi6WnxQzP+PHpMZm3FqeUPl8gsA+xlLmXQk5jCXSwJ7-292sQ7J+mK8eAh7O3mravuq88+ve3PxSJgKOAACIKYKHHWi35EX0ZaF5RoAMv8AcvEl1utvXHl3Vx1BFXQXedgnJgtWXvWeEXMLmvXCeYklfHSqof0E4fQIJvooZIfJuStggQwUQQQOovFh8RExOfkPdoKMGfW6M5QOygpfWfUwefjcVfMJJfmf5f8e9fSg3dborfUwLcnffA-dmRTD3Dzh+Rtf13A-APWAuZ1RBqY-PHRfo4sbJRtf-a6fTf2f0js-cmC-k-m9n24YnbHRq0TFcUAIm8vTXFO3vYl4OCp-mR8L4ZF+q4fA4nW68QmAo8BD+cFyd8mXxHBi+bfPlOa3J33Ryr9dSffFMgRC35PAxe4cBYMALe6lAPuxQUcpC3v5-BH+z-YoK-wbRQCsiC5DgksHUg98pMnfBHpZg66-9+0A7ZHs737T+hCBdrWtkMHoHqQP4ZHNbrzxoEVkG2G3Uss7xYGBsW4fxBIDgGpB7JaipQMMPCEcxoASukgzyt0DQAZcD+VIYcrVHKbyDpBfwJQcFwkZntGwsg6HsF0BrCDHgYgoeBfk0EyD-AIgwXoYNZ6ysvAVg7QV1BRiBASk8QMehBCkEyC5BIgBQS4N04lNDBGg-wVoIEDMBdBqLfQTOHsH6ZjBa1dwUPQSCMpnBygZwREOC4OCWECQoqqYNEHzhaosjMUjYLMHgAww6gNOqygHKwDwYFQ6+H4GMCPAvGtgsuu3ThDFC8o5Q+QA0PyEtDHgQQ5mPkJ3L9ZhA1TZkMkK8FyIfBVQZ5EjFKGUtYOuQiAPULlCNCRB-QgochCaGUtOhekQ+hfmxTPo+gsMQvjhG9gT9oBFKVHKAJAFl9NC4A0woXyqIhNcQ8A4nu92TTlMDhVQM4fIFwEYcehDgIcFFTl6V9QBWuUgUMHOEAiW4KweACUhBGy99i8I6Ef8MuGBMVBGI8xuAG1CVB3i5TIELiKJD4iJGVMCzqiJd7yBtA5TRMkXlRYrg9+8ImkZix+G98xARYE4a4kpEwiMRdbceBMWZHbBdgAoyeOcJGHjEERwIvgKCP2JuhmR2QgoG6HFGKi0g8IxETKORF2sFRX9e1LqBVG6jzUxZCRkSLxGKshBMJMBi9gWHZVu6-aCassJLgow5epYI6NSCHCChNWuzDVntxaBDAm2lIptsP2lSypZRayHLgNFqzqjpRso+1sa2WDojPRvo1AEMENHmogxJRAPD+DDGxp4GH7YkfEEVblMe0qLHUlaPrw2icxzEENFk3sKZ9XIF9akbXzKw0ttR1IlGEJ3WHNC1OJXNTsoOxzW46cQnLzr2Ks7YFXhCwfHB8MQHJpWEkZDzHaTQDcFB6rbNLqiEbGMEuuKtNTrVnPbUisxbmVcF520BWM+mdpNTlCDAagAziAACR9p8AAAgvgHwA+0AASmcUIAAB5YOtQCVRhEjCJgOXtSB9HTZox5gAEbX0gB1iVxG4xERKM7H1i8Ij7ECRtlgnAi62nYmQBlCTFFYW4mErIMBN27TZu6t4+8U+JfHvivxP4vCQL0QnISiJqEsCdAG7qdi+hiEvgGuOqhMSJ0AoFCagBhT5CuKiGJdnxPQBoTwJfI2vvkLyQVCRa06c4TYF6o-EXREsd0YRK9GeQFJlvSUYiIBGs8MSbvRKjhMYlAiJJxZS8cH3nybh-QMASTkqgAAMqDPkkhn3iVQdW5gv2FnkQBVB747kmyRMMwC1YrJtdWyQ4GJIMADxuIYKVGlCmYB-O4wFyVYhfAz8aeRgdycG3fDeS7RExIEFR37TRSMpXkkXndxSlZE9hAUYwNJCSngR+AgQINDqxC5x0CpUbTKR+T-GYk3Jm4QqdBG8nBc1MfJGweMH3gyBJYI8RXoxSPFjS7suSRKRX1P7NTe2rU-ZvQjRYTES2mLftINL4DDThAksXUEwLpJbSdpksNgUsFYa1Jv4PAvgXBiOkjT6pLDFuKUAsFS4UQ-bSAZD2YZD9F+vJPKLdN2lTwgyv-SafJlqRelzO2QQvmVIAHeBu48+DfPNyR435Ucdw6vr3yHD98vp2-Jbj+FsANdPhiWS0vPFxGaZLSK8P6ZLGIEt8yBEvNLJwO0xuYqBLI81O-GMBDS7p+08lO03JmOkyp+A4mUIDa489JetQ4YKzO2l3SR4U-WokcOFTERwIpUpshBJDFADbhSqHvo8IxDPDMxbwDDMAJ6Yk9keU4GAICU1GGTwR9w3UiQNAETo0xhgW0LCI+a88gZe-W0FKnzJQJgsnsqhDcItkoyZyGs54PbL5GCypwes6cUmgJm1J54xspkqbLBE59bZlM2CFCNYBpY05opEoh9h+EKyi+sIsshQP5RPSRs-ATyEHK1m5lsiHsr2QUCnCmiSR5o-OYx0NlEYai59QvkHJeGlkX8FgGORTFjFLASuSwCHsGInHgwQKh7AsaSMxZ1zCxhvLwN-HBkX1B5XUWkU4Wqb8AjxA8pmeGzZEyy7CdIeWQPMZrDzM5DIjeUyIy7fDW5fwPeXLKC5DzGaJXYfjNTACezgs68hMZPC3nCjVpX8leZi17lxy5RHoLeaqK8DyiuoYCwwIAtjHntaoUC3VOe0gW2yCgxo1FjPPxHcF+AwUpwArk3HnY1ox-KyHgpTDBSuKaYUMFBKjDBTu6ckGhSjGinVIaFzY4pgLA9A+cGpz7HzBGxkDDT4Q3wOGf01RYcNmw9ClGKimpCdTngwU-0fGKYmyKHAFMEeVuLjqhgEgQ4YKUFLlBghqp8QWqUkBoVqYqc0AE2bmNqxmoYFWogMaZOgAIKtxlCzJGoqJw0K7FhgDMVjJa4mLY5ZiieWaLnnUISxX8ZVEZD5aKL7pGsDVOpCcUaKGp2QssSYGtE7DlAgC3MbIyvGkS+Ar4reAABkfav4+cVkCcldDAJiVYKQJHkWSSsRUEvijBO4nlMEJK47oGUvEnMSJG+EjKM0o7EC8sJUigSCRLvGZKcleSmidaDol-Bml3EqSQsPMEjZp6FSViTaPYmcSWl0PT5sFIEkLCIQrPBZUktylgl1lgk8qWaAkUTKbFSs0eYIx2EyT5Ack3VJorWo-EJFuEHBTIp0nAi9J06AyUBNOVSizJKFC0RBk3DSs4xiihMb8tsUYiuxCvLEdJO6GVDRI3ZceUVWeTSSn60wgIXMtqTCT1JyYsSdYvBUfL7Uywk5TqwEj4rdJfIuWrBQWGm4yEfEUJQKxBUCtcBUKxqQqlmgcBasw44tEypNZAhiMDKryhzinAcqYAeMmcZHOOJ0hAV4wYFdKxZXDCJGoqpIPQWMzOtqVOwtwfotKB4RkpQorES2NUZtjQYYQVwLv0laNhmRKMNQL-HGDGTKw-dRCSY1Emjxf+iE5KfauYlndrcO4pVEsqO7rjPVa3WVFowBRWgcVWefISXSWw7KNhandVgxP4mHLBZSwCbF5wTUaToAGynYdflqTotRJQwZYaGsqltxRJrKjnHTK7lw4bVxgKRWjLRk6rwlbKt5QsCVQULZAmSQxTrNKzarXIeqmxSDLSCypfVPAFcRxIDVcSB1gskNWYBLV1qo1KdUkrGu7FWdSFOrbNSIMd7y0018a7VvEA3WPBc1FSfKTq0LVTVi14a6KcMIrWIyq1tZYoOMvcm-wI13oxNcxJYVSLnVb67eaW3NAPrP1QaiRgcBElvqv1ma8Rf+s9VgbcVo8GtXarLWOqYJQaoxZ72EAgbM1dODJeRLfEfjvx+ANTFhufE4aqJ+S-NW+rPWA04g6G3FYTGd5AgOEmTHfsBs-XMLpUcGutYhsbVdqVFCqKjb0tqwZKsluS-DW8EE1DLSNExV5csL41lLhVP4ejSrCwU3lIMm6Xmsykag1Cx4rC7IBpoKJgU0wamzgOOlr77SCIrjPKHtlU2mgBIum2vqdPM3Ex2st5CmG5UM2UhjNBq7TeOiQJgVXNpoDzRctM2dwW4lmvzZwBs1mb2+HoXTS3CQyKAjIfwYFbZqxFBaHN9UVALzWQB1SDN1mhVTSo-X+kct4qIrR-QlEaqRBEjAzVloMVLorN4W5QCVuEyqiBVwKpTI1oa0ZbrNTebnpqXK0DDFwqax6gqzBItbjW7BKrYEFT7S9eAmWuqWFo-p5bNVBW5zVuBm3Mp5twmYsX5gZEBTPBqQsIY5mnSjawlSmDbekLW3haJ0fWxYanM6pTVXN1WxdFDA20CQXt3W0ktdtkaDbUSyrFMMdoFbeUZt1WqbXpDi1DpHUkK4YVMquVwrbldSRMoVVu2ekvN-29SGDuUaCrAWqy81PEvgCJKNhxZcRD1u4W478dzQ-IqnIyxQ4PMtPSIJ9qhDfaQQyALVvypbyyqxtQwdHVkQbp5RXIpYCbHRzOm19eMp-CBlAxCTIMRQKMEDum0zae5c4i2kQfDHTLTLYdadcpAjoKrlI+dWjHBBfyDBX9ngtpAlmo1wEIKE8sbBqrqJDISBUxjgwwHmkASgp8+CqVcN+XBKU6etQIGXUhz4QQguF4bUnRWKSUU6IWJcJNvTvJCM6fdYHTjCNrZ2Cr2CMeuXfIVqChioUq29ylINqwABOHnXpB8pSCoVqgd-tNqz2eUoVvfEpE4E52Aye1orZUIOsiBOz+UFgAYvZK+6F7PKygBlgyxTB0AB9W68gU3OeRd6RGBg6OKPt4C+VK9IUehtJO0gToLA8KRArwPF4GAx9s+6vQ-mEitsx94i4QHwoEWBoZQtqxXQMNr7XaGdaagUIfs8rH7nowIVHewV4X36JgcMskHDhQ6Y7Agg22Yg4BiB0hba1w63LNFqxrsIU7QVtih0bGnM8UULPjqCWqD+61MGGYlJgEAMW1umH7OkGsRT6Zcx9qJOFPChQ6gBpWo6wbQYGINigPmTg6fVIOSU8t7Ccqr0DzyR7lkDAGGT1RMGzj2BqQD6xzLNCb3eBmN0U59VBuY3cHqkQhp7vynQOYHyY2BpVNtBJHMgIQ0Mwg1VWINlpRJf60oB+W0NwoaDnAjg2wZH0FBNDhh+FOQdzEYArD1VNbpvr6EorplcO3VJrstKWtgVho-XcyEN32szduKW3RACmr4JVlqOgI3CEtEJLg9Gwp0enDvVdCwKiQNAPvHoa-6JszasA0qggMbsYD0LDIwqiQMoGBxKtTInTgiOzQXo0RvHbEeaHxHIph-eUuUYlFM7fehkmElSPaBVM0sK8Lw8a3gPFgkAQ6Ko43BaOFrgjqBNamEZbjcG8dpsO1QIasLf8sRPKsaYexwmMbu5ehl9ZWGqRjSUtjYVVTfB3YNBWA3+4FQyxwnKB7dAAHVYA4K0V8x8AL-Hybh7uq9VclOaj73Ah5DdhfaLUAuMDGrjIEm444PuOPHxBF+Z468cbGTxIAsxCdNZ37QInQAAALwWwGB7jIhqE38BhMUsLdHx9E0aB2w-GgQfxoQHmDJ7sBkj6ANI44CuO4meDeSWE1dTxaVUpAYJWwGCVgBglFWpIBlmSCgRAmwljJ56cyZeMEm2TPCrkzyb5P+6yTYoIAA

Metalinguistic Abstraction 4.4.4

(section 4.4.4.2):

Ifunction is_empty_conjunction(exps) {

return is_null(exps);

}

function first_conjunct(exps) {

return head(exps);

}

function rest_conjuncts(exps) {

return tail(exps);

}

function is_empty_disjunction(exps) {

return is_null(exps);

}

function first_disjunct(exps) {

return head(exps);

}

function rest_disjuncts(exps) {

return tail(exps);

}

function negated_query(exps) {

return head(exps);

}

The following three functions de�ne the syntax of rules:

Ifunction is_rule(statement) {

return is_tagged_list(statement, "rule");

}

function conclusion(rule) {

return head(tail(rule));

}

function rule_body(rule) {

return is_null(tail(tail(rule)))

? list("always_true")

: head(tail(tail(rule)));

}

The function query_driver_loop (section 4.4.4.1) calls query_syntax_process to transform

the syntax of the query to a tagged list representation, where the tags represent the kinds of

queries described in section 4.4.1. Along the way, pattern variables in the expression, which

are identi�ed using is_name, are converted into the internal format list("?", symbol). That

is to say, a pattern such as job(x, y) is actually represented internally by the system as

list("job", list("?", x), list("?", y))). This means that the system can check to see

if an expression is a pattern variable by checking whether the head of the expression is the

string "?". The syntax transformation is accomplished by the following function:

Ifunction query_syntax_process(exp) {

511 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-FnoNFQb1tEOw6yuHQ4IZVrh40RaF-hM59BEgcIYsKJ1KZ5tpOqAOQIGwFGBtARtiacsaNqR9cxINsW0diPtFUixA6YukcOXJYjA5AHo1SJmOhEF5cx8UZkb6O96Uh9hTrHEoGIxTBimxTIUSGvUdL6BIAqRXvoSCdFItQWjorUV-gM5rCZhrncbq51yF4DeuNsAzqNyXHRdt8eQyJLGhW7OgjEGRNADjljohtWuZQCcaikviucbYbbaUaclSw-9XOygdhrEwyKucyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaATOknKsQEiLF6B6R2vIjiOOgpninRFItxnOLHEEh82yY3BBhOgBcs5xggPIImLaAI4aJDcVCSmPQCVDGRf4gCcBNAkQToJsExiYTxIlkSQ+cCAidiPDpziHhJEowBeLqyUSDouLciSMCvB9DwKwsLtkpPQmGiSoJIojn0OIiDC-qJCf4dKliqzEYxEYeMSxOQgmTY+DFckdiKwn8NwAyEwyvRLYmUSnJDab8VS2iil5zOUkAAAxn1Oo6UQ8AWFEjccJcWrYsIgDATx5IpWIGAAFOEiJTWgyU1cJMQYCPjJ0vkpKYcMwAFcTgYUx4CiORGk9UpsiTVl8jimhi4OKTN-BwTynVTewcU87uVIN7O46gzcUqTcmMBpQgokU0rlz0SktThEcU0QtsQilVTopNU+KQbE6iBCTgh4QQJGDk5wlM0UiQjsdDFBF8SpM-IAc1NmmtTVuEiKCCRwo7cIOCS0owCtIECRg5Br7F0ZRS0DLTVpSgs9hIg0FaDq2caV6bdPem+Sv8vQEIV50nCjAgBUIiwqikWn-S7pa0x7lgK2na9HuIvTknyMwaAMtO3AIOLZDGgp4uAwvS0qoNsh2JQRW-cEWQKclEz1u-qLIDQJSh0DTiXgFkRLFpJBAbp8M2fmCI37CD0Q74BeBz2XKE5xBMomMn9K4BvT7pjolGRqnlQSypZkYQgkl1HBBBWZpgLbkeSPL4y4Z703QWBzlFfC2IpIF4B1KH4FAnJ14-ASCKkgCDj+kIrGUP2v7RApY1A6Jg9267PdoAYxEsVnyKL4jf8QgmsdizcAWySRT4JNsb3ohIzJRBQXmNuQZQ9wk5Jsa2Wv3JkJ17Z5aMOc7IjJUCQR7syXgiO4QwAfZDo8frWIDmFBuZW-I6AvDrmBkdCX0hwnf0dkmNs5DY7KKIMYggzQExgNYGHKhlGFdCic5ObnP9Q+juRfogDjt09lxwkR7-cUuHP+5DjuWpc0sSkGp4Q8sxYwlUsky5HHB8WHI-eTyKdYRdG4G8wGr1hFFMF1RP-DeWLLCiGyLAxs4EKbIvkxEt5jc8UcYC2kpAuuiI5uZ8OfnYlX5xXP+YDXG6P8cqYAJOT3Fvnq8GsfjMNOdM1FXyLmJcy4r7Jd6miYh25U0b1menuAMFuEB0W21wUhzGgbbAhbWLBL7lvRx8qeSvL8iRTHAFCToEiyAI4Y2F-0TcL5Lw6oB+gI4skEDKI7GYgZX+PKRZhEWMieKSgr7kNJVmUgNWAgFaekDSwx44mTrYzPIuODANxOkdXkL5MGlD9yxDkzCaAHrHQygR05foHqmLC+SbYWgSuL1JeD9TRgQMtxNOWIV5iBxNsJON4odGmKKRhCqcrQSEVrBbFmCIGSEv8CWKjCOUwWN7MwXNi95rYvYe3FPkkoTgmLYxfQXrxQxUh9ioadaK7HaAgxLwsQN4vihMZvxnEowGBO3AAAZWWnBMjENwQpL0FyX7OmmXRPJukxkbhJIG9ACQYkvQERMElniXUvk9UPJLQZMS8g0ykrgJJujMTFl4dOpQ0uaX4BllQywkFMsikzLtJ4dfSQPQzrahJJwY6SbJNGVUSYl7gXhZFJUk7DHwLQi5RUoamUtHlqkt4ZTBwg9LDlZinSdvILz6TbhQwnTCQgcVlVZifywxSwt8mA1tJTkloV0pQmLK+lppf0axFkQ5KgljkzgfOKOZ6SdhBkkQEZNoWzloVJoE5cYNCFmBrBZw2yOpOsmiS8V5iuwtaIjF-LFlbKoFfuUNK6k+hKBLJTC1XDwt+WWEwlcNKJpWgUaUkDcTh3EDCtNweMUVXC1T7vsLFcq-cYXLC4XNgQ2K7JfyzLESqCVQqtBrKpgBQwP8V2YVoKsuHf8SJ1fLUURxVRENpx0o0JvLIlH-1v0M4vQRxy0Asr5I0dEibsk0lUSI2R8NxcMur7uTcZjQG8dFxthXKTul4+NVt0vgUM1w2YYNT2JeEu1HIby9YdlxkzuSnlLwjVe4BSBQJRupUctapLJ5nMI1cgCMdmqcU3QI1Uqg8kLMtJgdJAFRdpIlNDX4TpF2YompRJtizBBF8uDxS7OjW7KCQzqo5Y9yTWNEpIqa3CJePkmZqbFugDtT0sJWFrbIxahcdF0+XHAK1BgqtW4BrXIhS1Dyy9Y2uOhNTIprarKu2tzV5ShVPakmX2pXkSc8pFRPNeGpEmoAkWRi+NZHMpCAaWF8atBhJ3cmga0JVE8Tt0A0lgbRgUGvmAOqDXuTwRYajNeOqEi5AMNKGyJD+P-FASQJ4EyCTBO2XRA6l3E2jXxNaXNrMN76haqRrzUW4xhm4JIJYzA6wbiuY6p4oGqHWyIR1wy3JQeVz4CBOI0ym2BsqaUtKDYymrZYWLg4IqIIWVbjdMoPJjR+NiQQTSvNmAw1kAA0szUhDpj2qXhSLNslZp-KOax6bjWzQYLQZmaLN7i66G9BhrWbrV0APzewAeiPFVVOS57M5r4SoAgtLmlXtizc2bCG0d6y6nizuJhb+Wb+TzWlD9qO9DA5mgaSJRi3-ZJVQq11R-CXo9A8t1UBoVVuC1uMOxHIAwAVNSF1D6Vbgs5eiHS1iq-YiwWrQgBq1oAitD0M1ZcLi3+AIxhWrzVdAnCFb-Ns2urWNtIQJbXhZMZLfxswBpaRVmLSSnlq805b7U6UOwJtHsgja7NxKl4aSvBUdbbgu8hyswCN7+BZFXWuFhXC4BHaCGaqw0N2zuW3BSlHHfNesNNIuAHtlIP7eUsB2Nz65QQIxItp3I9ShVq22tZuGJabbrApYT7W-kO2lh9tKaPZRQwgEYDGR6sIAVvR3r4gT69+cVsnTNbSsdkJ25bdXDGigrDJxrQyLdsMh46oE4gUAQsHAHiAO69zYbVAI7qqIdWAVRnihx4DByKFvZdDpVDJGQ8mKN4Y4r0Xu31z7l+7WnRdBpZBcwdAOmYWqPWZtLxSbOzQgjrzhrbNdq7KKKjvvCiAMdcgK3Ye3-wvhL44oENlJTME2wAAnOIVy2iUzBhKiQCgP93SVCVUdVUI4DkCRr3uWA7YQmvNJdyII+gUIoFNRluBPd4lMQL81+alQ6A+em9Z3Jnm4CM9hgaSo6MkB8zbgmeiHCStxCyp9JPGA6PoFvAL5NBfa9wDXvD316g0cgd3ZVoD3iUv8ggVReosChlxB1JWy4UR2W2I7PKI+8SmPtfylRntnNbCCosX1ZoY8VEJ9NOyBCfbIImzKBIkVXA5BgQvNK2TKptjFszw8wENnvsOU2ND9d69Rk+BpYGwpYCETAGfo5qgBomh2bkZ0EfDdca9l1G8LeAf0WL+WTWl-Y1G8rF0tQoB6ZgfqtCeQo59CI8lLHw0ccuOcIdDfDFQOPdhNJwYDUhsQ1dqLMhBrbp-tP3Ylf9-+4EMcCAPp6NAoBryuAaagRrsI+B7oHAfAMtR0DqgLWX+piBsGODyuzFuFHzEI1xDN4QvYKLL2B6Hhx0fSeSqMjs7TiyBnJbEJ52dA+dZYrCa2ql0QAsqSgHXt0iNXdarQx2AMWUv132MjEwDHtWB2ewdA0Ah4WVGlDvXSqhIVoa-fyyDZ37j2Uop-V4Z063E39Ve5UkwQo2r6DDV8Ww-9qD2OGDNmaU3CYXS6UhkdmxY0aKkFEiA+AnjBeBs1FbGrdDSATaNYfQYZGDooukwwtTMPf8HN0W6rYNC2Emo2ji+a3JFruijD9CVBfaF1InCRb7WfR36eRyNxNGKt82jvG0bK3Is4cnRlw9bhmO4F9ooigY5MbA6-ZVjox8OhMZEahS3tpYTiDkrmOMjHpIjZgA-oP2-NROYgChQAB1mAkG2lZxBwPgAKiDhxaLZX8p8QjIuemTF-rP2v4qINxnJXcfIkPGQ5zx146DKzScdPjszKUWtEgCJEDobnDgmidAAAAvT2hoGeP+AB6CJ4iF8bqNuc8T-xxyICbwy0HTAhaWXqwGtxuGPDG4O428ZJNIn7GXVW5kXkKNk47isAO4vizQi-MqIDKcE8avZPwmPjZJnkzi35MyYsggp4UzSxpMtQgAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARjoCYAoKOJVURNAfTQBTADbg+ggG4BDYZClJoAcwAUaeDngBKUAG9WoA6EyD4kTNB79okHACNBmVeq0GAPq-2Gvh3gPiZEJScNbVB3T28vX1tkZGFBKWhgl3DI719rYWFk0LcPNKj+GAATQXBAwWKcgG5WAF92GAQUC194KUVFSr5hXnhkgBpQeAALQT52xW09L2NTc0s+AAcpREc1ENAAMi3QMakqjZcAXlPhsYmO2oaOZu4MqRxBHN0IoxMzVv5JruKevsGoAARNBHoIgZpro1OC1QGgAJ52OJ8ZBiUFPF4zQxzT57BJVdqIbJHTSQ+rQu5fPhSNBoRCKaBPaD9EmvbEfBZtDq-f5qQFAml0hlM+AQqG3LgWQX0xmCZkCRExYnOaYRHELfYE1bZTXKQnKkKksk3JqS0DS4Vy+B8aSyZ6srHveYWXX6vXanKk8Wm2G+WCoNSJa2lWDCKSYeQtTFqjlUn7dXp8o5DIH+9DteUhsMRyVi8kS2FpwOZwSh8OR1AKpEGlyO9Uu-HuonKV0eklG70w7hFjPB0vZivQG0ySD2lVsgz1vEHJvZN3t40Us2+aQBKS2eJ8LPlyXR9nOxbxv6JlnOFOrxDrzfbnMtPMmrsWC9X8Y3wdVpV7yex6da5ut5sF0XAtuGfDdX37HcWmHO0vydXEALnNsVS9fMfXufgwzsYopHEAAPJZjFpKMHRjA8uU6BMAWTYEsNsHD8MIwRiNQe8l1hOiGJWCMnngBw0DgqccCkJZVEVZFUT4dFBCGRDPWA9CLE43CYmKeFBJ-OT5xQhTH0Wes-HkQQRQ08jvm5KikzPYEDMDPiRTYkCLAMwQCKIulUFMhDG20w1O0pRY02KRBJRkRj3JI8c6x-CieRPQE3gKLxU1QYLQuEcLmI86BHMU0AgvC5ZjEOKKyNxE8+GMcBAQYXSAoK1zCL4IsvIWCqqsBZg6rNBq3OpYRT02aKD3aspAQAZm631+CEABHUc4DHIays5czKOPajrKBOaFtgcEpu4YSAGtxh2uU9uSNBVX3cqAW2wR5vO8EhiOK7-LNM7FsM+yrQEh1DBWhsZ18rQDoscpMDUb7jKtS7ru-A9dVesH3ihuyYeZP7nCuid4IWEG3rQvTfGMpZ4HhAQHt2pb4Bx4bcQySAsjh97pp6GlrXRkzkdxqdGeZgnUIfALomEZBYCOuC8bjCyNqsjQUw3cWjtyvTjvGJWJdapS7s1lWXpVVnuD1vhVPU0jZk0nzkL8omRf4ESll6WBB21w9Zd5Qb4BTR3ncHVWAqczKWKSC2Ee84GbdBo2pUwRQseWm6NWt5sQY7O2zWgZBqTjgTkCWOnAcWTJsnzwnhbNCGofDFQy-h6Xf2UOuY9R60a7zgv66nN1m-JVgQAgRSMHAbA8CIMhKGoegmAYdjuEkEcjMBOUJC7mKZpEMQF9kSMghJRLvAAfgMI4D68AAuYuwRyM-DGPsXkCOyAlg-ZFbVHMTqxRNFr5JIYV80LfAwl8-QBl7FuSCt5PL7ySqAY+29mpgKDBAssUDQ7WQAUA0AID+BgWvJA12MCkrwNtMONc4EUEDl3DRTBsCcHUmIpaZkN9YEkLChaWUzCaHQFXlg+hQUQotDCo1CK0CVRYLYRlAR6Vg7ZWXjwwBdDFjKVkZFEIEjQDqz4E5ZQKjuJgj4pDHIAwsGwMiCos2xjTFmK8LQpK9DPoXSIQUSRlNHqLVUFTJ60MRQJy0P-BRfDFh6xYcQ0ACCQncN4Uo3wtl2g-S4eI1h4TSFxKMtzDBgSYkOyWE7RALtqFJLCb7dS285B8WUEHERWU1H+PCQokxNjzF9G-jBUcAl27GPqavRR9jwmYGwOsLaABVaAR0s4AHcLAImZFIPCoAAC0CyUmLz4gHM0JTKkwCGO3euiBwCgGUL4QiiAcCCIkOMHRHBSS4yTlKXJwgKYnLOUgC52jFJbOgDs3OZJDB1HCcIIQPADlHP4P6HASxkAlHeY+T5NzHSGB7KjJm8BQDHBWTvCpQdLHXMaU0sxrk+LQD+CvNYqATLWPxYYIO+jeL8ThXiqlNj26MqZbAqpPCyWcP6Nc1CkQ+b8AMu-Z4REUW9LMcfIVI5xhpiJf0UVA1xVKJKGUCoxRah-IBUChFBgHCDM+SmUZ4zkBTMHnpcmSxBCLOWSUvMfyM4cRaZJYVAlGpoACavW5Dcs453jsoN1Sqj6gBLkAy+Kw1j+vfkvKubc47+oIldD1mhWU2Iqs66VAkiKxr9QGpNKMEHSKERlapId5GeoRQKiYmAP5lKXr1JqTESohDzaYyR5Tnj1swIg9AXS7F9NrRUzt-UvbJu6fm0hjiaburHbc-ZhySYQvJm46mcN67eCnCq8o0BKgas1SIIFc7QXszRvEjGXsrproKFOAdzwY0+NhsjAYADd0GH+fuq1OrEVgIgGsE9Gg2lWvRdYm9lTf2c1PRkjQibn230PbE2MAHQOQ3A-+4V8LrFTjvUcADL7vBvsBR+jDP4EGTuUJS9kJ70m-Thk+hRuGvANAYw67gaaxAwA4ZUZQ0lC6WzMlJJm2RuOBrvsGgTt8w2rEcECAAVOxxh27ijSaBEMVjfA5NCgU7OLjYIL2QgAJBeGY9Ml2Q4oV9lQYOPxa64Mb3cU4lCXqv3pjhNjNFcIvFfS5tRkk9G7mLFJku0jyNrHHxDTYy+js5SHBMyiSA5mqEtAElhiDD7sakhTUytAMWzOUKggGZQWjSPkbZZbSjCTaarr5Xugjjnw6rW7cWeLeX0HqJsffAEPZkFvklK-GspJrH0LwRBCzhTWtNPa3yIbuW0G9c9ORy+JdcMNArrCCJYstZRLXUis2bmTaWJ828JF62ZAYHRVlxIsWmtoIEmbX5Tm1CgHUzKSop3QCqaewyTjx3AV3bqxYEDZsMuwMJVF8QnLsDct0eLE7QwPsKenQA8dYU0nlbLWuoSUgTqVQQ8KsjVKQMuTcjUsRzbitJURy3BBHDIPexnQipFwq3Mgep1aRDf8x24Y4b1xDLP5QImrF04VSbcNTmFZT0hU3uu1KTbcrn-OlSIclwQnr8u4hWIKCBpXI3oK4-ZwAoHHP6gAychihr4Cpck9pwA2X8nue486yWbXlZVd9YNyBh3V33y65VEmt3dG+4DycsPUeBASDkCoLQRgdBxpzzjNW54eF0c-nmacdF-hRwty0To2lJh+JDEB3Tt4U54opQhVC4lMLKTKbJznwx06C8wZWxhRBZfoVXKT3xo8ntKkpnBZCtvil1mwhpeWOlRjwAd9ulDDq4Ahi1Rbti5AalKmT7ai0mfQwuoL8UmDiQXKTIT9ucX9fY1Z+gEmpnzH4wpWwVlVaVfOs+RAhv6OZT+VUBypRvB50ivpUP-dutN3kLjZDjtKkPtwC-jKh-rDGhkflbJHM2GhvmnAGLHSEoLvvvrDNbhWj+G6I3rHj+shtojxM8NgUXvAVUPgSbudKgRrOpCPGCDLjoIZrxriOGo4AwU8MLuSEiqMOMAFhTKShDiKG5otgQVniQZ-EqNOi6v-uwVIXEDIRmijJwadOJICpUiQdMCwX5rqKoSoSQQBklloboDoX9sMB6PoZTnhESiSuDuSg+uoUoYCvnjSPwQonASNHKIoKMAoT9mimcPEEoL4baFdK2qAPIRIb-E4UMKEaOrYG4bvsJt4JfEET4SMH4TjAADxvbeEhEnbJGRDwIDLIBSYAAqsQmiiQ8I5occNgv0cIz8eSlQl8QIoAAA1KAGTt4GoAEEoPsubE4doJ0W-m0Z0d0V4L0YEIoAMcoHEYUSkf0vqkCBUcgBAIIBMrUYoPUZjI0Q8ogC0cCB0V0SVoYFMf0eAIMdWDjCMSmMcRMWcf4NMbMfMS3A-E-C-C7mzuoUwW8NQTwj0LEKJGQQUCbudqHDEaAHEbVuuuvPxszC7mEacfAgCQ-KJA8bYigcgGgYoBgcIVgQogsUoi7gEeikjEMRiXAo3HEZSZfOCVpoiaOm6K8bfIxmkIeivKSecPwYuoIfYdypemkHqqUX4YatADECUMGmCHamkPhtqtYkiqoW5neqof6v7jYlOPSaob1sYWCMmpSdSoYS6poXqb9nhm8GyeYSvICfnGqavC3HLuod8dWLETIL8V4P8RIDacCR4Z+gYGCSZpka6f4X6bCXxiXJkUSUUd0t6XjqcTQdidMXiQ4cwojmTnSeoVyeSdcVGWkMfEINaLqKEcGbmZEHSYGfOEMUMMyQUWaQxiceySCpyantyeILycmQKTCbYiUesD8cCKMhKcSlKU8NauaPJg5HWdVvKTYoqSQcqWBsQdfDBhqT+FqYYYiSaU8Pqacd4NqcafoZOa+haeQQeNaWiXaYuP3GAEHlgLgKHhPBHtPHQDQAQccgEC8ogG8lcjAGvJ3h7PFBwCmM8ucvtC3MBa8uMKck7Geq7NcrzBQVprylCEiuBZ+ZckPG5vFGfCXpqG-oYJqE0tuc0k-vqHhQYPqIRUDiXuwWRREZJpRdhXdCeLRSeAxWkCXvzMIG-pxbAkRd4CXsFGgE7FIPCG-oJcJTUUlHxV4CXsKZgGRXJTYtJYYCXsJKMNSLYGgMpmpSMBpRgAUMpQYCXu0bRYYMoHhEMPCNoMcAAHygDzKdGSWGVvZ3QLKmUGDmWWXWV2XzLLJOVUV3RKZDCRCeWgBWVoo+WgDSZhUGDOUl7ADuWHIWVhXeX2WgBgD+WMVP4ACkiVoV4VtlaV2VMVoAcVd0qepl+VqVKeZwVlAVT+AAhKcJVclQVZFU1einVVlf0ECFkXla1dVaADkQYF1exXdFkccO5VVRFWlRNSNWVU-jZf1V5TNfMnZfNfVT1TZZNcFV4NNYVWteiilZtcoECA1YlWlV4IVQYA1YYInmfGSChe+SBZXirk4WirfMJKJJqEMKhV+UPI9d+n9ehY+CiLYAAFali0wfUFBfWfIzXUXPUQVv5yS8rOXeDA2vWJaA3OaY0e6vbxQl6bpqpv7E0Kbo07n8V3SEDQBbohSiXBU0103kwU2U0qV3Q6V8CkCEBkWc3c2s1s0uVP6c0ACitFotAtbNJeAAclINLYlbLdLaWacTjQ9njUgnzu9ccJ9SJJUjNXoaOuremEGITE9aci9R7kYTDWkHDQcoVajelhEUjWhWbibWSCbiUkVObRBVjZ5IBVsSeP-p7YEGpsSg4I8kmeDVINIFlgEGTHGfipjVBfECKLBT+QbgUDXIHdUN4EZu5qYC-EISmf0P-iDhXkXZDsVpFsSsoJjUHIiUMAaUbY1jqZLYYNXVUHXTvsgBDVDdOk3c7W8pbbIRnZEHwW2WTHyXvvicyIuPEKiuPYoGLAkcWvySIWdh8IXWvbDGSFeWapSMHneePOHlPM+c+QQbKhGAgHwI9GoNBMJJgJLENv-ozHYA4C2CnNkM-f1i4o3G6DWeQvEEaMcUCHwGMS5n0TMZcR-QgV-eGJeOBEaOJn-R6N-S3OCsJJTPonxCVJAzxn5lILALADYEzEvKoDskQ6lRgJ0coIQ7AFyUCG0cfIw9gsCHcZ0XQ23UlIwwbHgyjDANxEIE4JA98vHKI6HYI4INMHpiebiOcYoCA6dccRg7hEINg5xnDTXBI+GEIKIxeiA5oECC3AIzo+MIYjgLQ3HC-VYAJpY1MLfMwyXECMg74PFDXNoDsFgkehGW6O49oO4Cg82H46AB1cCIfBCA44crqO4ww+E+EZfYQ9aLfT1g-ZLO46YpfEer7Pkq7DE5400g8BiFUkTqWn41Gcw0o50SY5DGYw4BY9E7nHY8A+MU0m0eA18ZJNJJ8pSKop5MEy0zYm08cdU0IBMHUzA3+NkJ0mU8MZShCM42YpfCM88ECMxaI7DtAJI2M5gDgD-WkPQvIek7-cs6dTRSpgCA01MNWR6H4xs1s+Y4UQ4k8UEEc3mcCAAOTgM1wgOfPIPyOzHuPGObOmM32jiYDqSPTgvWPwnZBPBv2OC6iQujWC1GV3SJDFCjGlGjFZyig+y0gOC4s2RMz7R7PRknOItgt1UWHNhIujrLPbO7PIPkuNi0vXM0uUt0vAs1OgsOBWUtxR0x2wBx3WjCpFTixZTxpLDQvZMFJRiNSFETY9Uyv+xDDFNMSlryuj3eBw0Cs0hCuIBkwAZit7S0h6OStIMFD0JdPyuRMl7hMvROmdNLkESkuLGNQtxIsKizJ4TGsSvyuzogq+DKu7jyuCmKk74klAYFAdM-xFM74lpyKhu+ZPXiv4t-DtxuZw2eszLtA+uESpvTqdJJsHyYYRuZktlAg0WRPyG6j5smtCDps-KySf213YD1vdC7KusXz71vXVgMPMXVtttZQdu5zIP13ltnBAi6ux0GsitgHVuSbdO9tKhateA6vR16vCtGt1tZRmuhuPN0URrjsulO0FsjvxxmlylWo2ZSTOtSuCnH5P72twiOuxukEuuXtaqEb8rEYERLZ50WrvtSueEMz8DyE2u-26gQf7NLEimNRinGqmoJuwiAfgEWB36Yzmsgf1bgcuuRN4F4eWuweODwf9ljKTL-YlPZTv7Mi-RodjlCCYA9bwDZz2DUjFClCUEuvYcWCAdYcVuCgEtGN50HDpv4tMfQSWL+s4GIyNgYcVbFsNADz5wODvjtDgS-VxbmhDldDwB70jx3mwAjAiSGLn6HJCABTjTR7R6AIe20jizKAnTwhDDGD+iYDFD4PmGcXKCuelEeflOPZh1bqVAZPhLzQyCOeCDOeNy6i+fue6aUrHyxelh+dInhYMcOdOdsvZBxf+coxaLqfxDKBbbfrfaXDgSYWBWFeCBKZmkm7vHPyRcUwMBDBOd8BdQwlIpoCQC2DVduaCiZdRd8AtfUvZBlfVdVaRCHrde9cvhclk2VCCk-sHgLfqqslftdn3aoq5f9f2ewBNftfZeqA9cTeHnpAgo7ctmrdLdJQbpBdqq+aRBXubfLe4hui5dndMYFCWmgA-cm6BCMf9BtcjdtfMDBmjg3ddcndzfooDf7fA9HfjcviTfnfmfQ8VdXf3fk0vf52XDNhI8aeUnyHxQI+HuOCg-g9SNcM2JugE9AMo-1nvo49IqXcZfw9Ddg+jfHezeIOfc+AXcpfufzdY+LeOYGZpAFl4-Ejo-xAmLi+U3yHyEU9Ql-6rslbzgy9U9kjy+-cbehnRsmBS8+eC-FCU989HnffHkel5TiXyBGcFY3dCT9uxAfELP4r3wu-PzFaXx4AVsA9CfdHHz+9MfdGXxyUFYIcUegAqdoKjnVcykW9+a2-wBGfIXfox9qcw9VFY7VfFe1BIq6duYZ-McvinUNdLB5goVaforF-QS59AjB+iju15RaK2CBDBRBBDZm88dk9zHwMvhm8txt-EpJlDbKDD8d9TA9+6gT-TEoyz-oG44L9T8ydvcejL-z-t9Jkh2qld9YB6k99w99+AMyT79bnWG2HH8IOy8q92iqsmGr8LCRFX6mxb+d-98ae38Q-396ktwrjhhYdH+MsQAvFFI5AhwmX+Y2syEvAVJSOqhDZoOT+Crg+AxnYlPEEwBroTc-oJYKUm46hkb2q4c1jdy8DbY3+CjdFMvz4A79JCcArQo9zDK4hl+wvUoMF2KBk5j4MARAWQhQHot0BkrH-luXTLv4cB4-MgYhg35ndnuN7XDvexx5Th5C2A9SFBw-ZDBFBWmfdvQOe768-M7rVklbz8xqD5WLcXogkBwDUhckoOUoGGHhCcY0AI3KwSJW6BoAOuQA4uLYzsEKtQADgmwX8GcHFdkGNbRsB4LV4eUqG-gUweYMtQV5vBtg8IY8CN7BCDSlNGIb4K6iQDDE8QaOhBGsG2D7BIgRwakOhYRkPBkTFIQIGYD+CiOgQmcIkKpTFcZqgQDIQkDeQpDlAZQvwdT1gT1DCqJg+IfOFqhCwCCvQsweADDDqBda-tTzg3FGHyAiUfgYwI8GEYRDba2yOEIMJNwzD4Acw4YUsMeBFD3BcQxlr-TCwwdGh4dZodkIKEJ0koSMQ4ZLW6F2VNh2ww4bsLMHaQFhuzdYXlDLp-B9kDWPoDAQ-438cItOfQrclIEj8lAu2MQdQOvh78rCsjBYEwMx4sC1UkTH4VfwH5eD5AAgqRgENmEOAhwale3pQKX5kDR0II3ESjBWBbDCRfAYkRkRpFDBKRZ-KRj3yVIVtwA2oSoG0UiZAguRRIHkcgypgRcmR2IlwJEyVIGAXGuCAATSO0DoibCoOP4UWABHMIxRLI-QjKOWCLt5R2wXYMckXYgjPBNIwxESLt4ZE3Q8okIbAjdDGibRSUU0XSIZETNa68gToWzV1D2ikhVKA8sg35HciMWxg6YvPWdwvDE8PfeQslQeGiYsgKMIzqWCOjUghwgnCTn03E6SghgnrMUZ6zBH05v0DI7HN1wGhuYnR5gekRaOUDZicRDHAli0EboosqUuYugYiIsCFiFUqKTkYGLd7RkThZZOECGJMBhiPhBWC0UWLFTGNRm7fVyG6NrCtjFg8jV0fKJRi6d5hpgpriDyi4uDDs36V7Lpw3GtctxZpTUswNVQKYqSJcVhmgD-5h0fWbXVELOJK7OYnObmWtu6JFxwlCBTnbQMw3CasMnOUIeeqADKIAAJEWnwAACC+AfACLQABKZRQgAAHlpa1AdFGIQILgATARnBhID0SyzizRVInvpACnG3j8JhIzwauOnF4QO2GYvCWWOgAHtVxMgDKKmMlDXi86TErIDhLrH5Z-8oE8CVBJgnwSkJKEluJRNvE0TcJ+Weif-lXE7CqJfAe8dVBkl4spJ0ABZMMPo5boxOakgSPRMImuDhh2iMYXDXIwgibAEVbogmIljJjuJaYpIOZJwC-UCR5gKkSEMwkp9dKrEuiS5K+SsjBhQE6tJuH9AwBTO6KAAAy1ACC26CZJVGJaRC-YPWRAFUHRzxSQptHTAG5iClQFQpDgY4gwA-EHhspiCXKZgEvxY4YpZCa-s8D37FTg20EZKXIUXbgC388hOqfsVlaVhkpR3b+ijGMDSQqpL4fgIEB87EsnxD2dqXkk6lDhkpohDYnFM3D1SupKU3DCbnCHjAJkMgSWNJ1viVpCB-rELNn3GCVSx+pHSaYlIanFBcyBzRdtB2STyF1pfATacIEljKD72DowwI9OemSwCO97a6eEj-b6DzCX0raaNKAYtxSgUQjziiCSCkd4RD-P4nlBBkvT-UN3AgQAKp448OS4XOBif3-joYmU3cePPQMZ41ZtBkQbbNCMhG4lYRGIU-giMJk-hbAp41gRiWPhciCMGJS+MjMlikjpU4-BnrKVYB6YtBRGPjOBwVFMpj4PM10ZjICYyy8CXbRZhABOyCBNBQMhuDLKMF50fhVAsQJCmIjgRMRn-W0AZJ3HOZkRoASgbTJqlAj6ZLYqICCiYGhNruMJO7gMQrGeTRB1M8QeSIbGNiDAps-yTnQtIbd0ZjgW0PCjZoDxpMsc2+BCMn5UzJ+VAocLvzdLBzdpTMsgSEzOCrdDpMAD2S6K74+iDAfM2CBvzl56ZxeWo9LhiL35ByGZU5a9iCkhlRZ+AnkIOfDNNKmEY5ccq9D+ADGCigxocpnqGWvRKia69c9OY3KPJN4LABcy4p7Pt5LARuSwTnnmPnEcjJ2Ao+IBiz5E7yhRRHEUdkBXm-UuokokgtqMIErzJZbzXWX8INl0gjZp8iIuvK0JXy5RHXRUbYT1nLBsST8ormvN+ojcwR6VMALHOkzajFetUfUYsEV7nzjm0AQuZWKtG1QPp3gK0V1HQVeAF5FMF0bWzQUlybhjYNeR6LZR+iiOg83ecJznnmgHkFMXCNlLBmn9qxtI1yaAGbEH98xzmUMAkCHDZSspcoMEINPAjDSkg2Us0kilwXjiSxUbGxNIpdGsKCJJctMKGGIlRheFF2CRdgsiCcLz+846RR2IYYHy95xwsTEfKjR8QeW4LZhabCXzqRNF-CsaQ6JxKhihwOwwxcxDFRz0TAwEsCXwFgnDIAAMiLVQmxjhAUUjYVhN0rZS9Jvks2awQWDETIKpEmSZE3EmlBqJfwWJWRPMCMTDezEhacxDz4cSClXEnJXxP8WBKQl+AMSYbyondAclMknvkZI7rXDYEckl4QpKUm5KGJOi7wM-mJYaTDhEIEIZ0pHEtSUw2U4ZR8IhAoxPaTS+Jf5JaWHDjJ8gUyfigEWFVuintRhcS2YXOS2Ffk-Qu5OiVFK4lRyqkSjDpAQpNwSLKsZSx1GXLWRa4vYSso+FrLxh6JUEnOW2U2JWlFg6IfkJ8HtKzE2kuyWxIeW8snlBE-yQ6JjELLiWAkJRYSKuUG5tSwwpHJinGD3KkWuI15bs3BHfpZoHANzPuL46stgQN6axaJWPE-gSVMAFmWiN-o3LoKNKqFeC3xWYrkGDKpIPJ2RUcsuVdwv-mIsyWl89Rrg3wIuLfGgwwgrgRYIQJlVfC9IagUouMG8ldSZppEjVQxIDbzpRVrkUvjqoJlpAkUL49FN0qG4PjjV9ApFMQwGSs4dVBK62iVnGXrisuwIHVTMtMEJ8MacWJrqpJ4nqTNJq7Q5rRNQBDAYx9q-qW3HDXuK7hn7UeceVoWqrjARSlOSnMyXMLxpqKeiW5lUWyA5EEi3DDeyonirfJJqimd+nNU8Bbxikq1cpIrW2rv00a1nMVOGEuq2UbqxYR6sGXxBvVjwX1V4CWD+re10ykNdYjanEtI1qVVtfKHbUJqlsevZNQQVE7prSiEKqMMap76xJ9l26yJmuqYXGrkGa6nVbQzjXzKOOm69MWpLXSpr1VcajNVRPPW3rcMSKOIDpKDWvZ+JkE6CXBIQnITalbwH9YJP-UiSwlYatSTOpmofrr16AOlQeCBCPwaFq6q9UwokW3J716akOs+uLXmyHssG2JW5h-XVLQluGEjcEtCWljF22U6DYVUI1IqENuIJDSrBFUT0l0aYcGh8gDQ7qbGzMANAvgXKcbTQkrKYVODenlwCCWabtFxs4CuoE0-+X6ZJv+78ABCW4XgLJspCib9h-GhTYJqIKCVNN-QHja4Ik19TmIwYDTaaHk2dwe+SmlGNukUBGQ-g9ykzfOLM3oNUA4NZACNOE1yahVHw6Fmpr81aaQttMTwRisOHINONPm8RRZpk3WblAYWxNBMWpX3K70YWpLV5us36kdelNSLYFsXAjqlWxKUYmlspZv4YtgQZvnpEM2xa2hVm-zS8sxW8b2NFMQzR8g61ybPBfYxYmcMwCZCWhwKzjORnK28skMUMLrQgAa1oAjNiaZrXcLl4hVUqdWkadJqm0VYNtKWvLb6PXKLryQxW06lixTBjbwWYlDTbFpq0BRHNS8FlAtsC3vKIhmwjZU0g5E2VhZSUbzqdvUg3acG7K3ZP0tgSuKhx8akcQeUAQ7aRMwOljqDvXFaiq5rDEuEtt3J7bAtUIQ7SCGQCEsgQ32t-L9qka1BqC1E4hrALwHziQMpHResvWETb1Z6-LDdjO0Na447tBW0wfDE1KrLntutUxG9tMSuRSwcWZ4AD17AwDnglJS5vNvgGUk5iqrbykkPD4SB-ZAcsjohwsA0iVemUpZEcXaLCyEdyUadvqyZ1gELWySaHcOLh3vzlZSOnnajrZ3o7-VU7BnYbrnZ2gytlinFRVqGAG6t2aGfPgWLmTqahK1gtzAAE5CdNvXgBJQJWqBMBEeoPSJQJVUDDETgIYLqvwGBs+NyoStXhjDkgoLALZcKcQMMDiVrBygd5u8xTB0Aq9Q6puTjxL0iVXRagQWZEHr0UwjJIUd+kZO0ijoLAyyefHoK+7F7I91gxPR3vWBDBhIPrVvfMuECbT4Q3wePEcgZBqqAtbO9kbbseD26lWs+kSgvtfwnb3dNKt-DIDn176CdrAAgju1pDsrAgxW2Ig4BiB0gWaRK5zLNDczZt4Q3rX1rSDdE1MjkmzLTiMWqBzKS1IKC5JgEf300c56KbaIKOZAQgYSre06ksmWRX6MASLWtcVoMAoGxQDZFvcPob30tcVXoXXqPJ+6HonVLHU2Oqo46cZZo2erwIevikbqz1p6x9ZYnoNndD04ByA+TGgPAg6QQRJvnXoIPqQgQKBrXTqvNC0Hig1qCQ7ga0E-dRZBQJA+IYkPLIMDHYjAOoaWQ16DAre6PdYiMkvb8UvOnckQcpagqSswuoMKLqrG4jI1iuiAKlR6QOjvt9hgcUoDcXR6S4RoS9nnTvSJA0AEyd+rfriw5qOF7+x5TmwD1oHf9QjMI6iiAMgH8NqKVQq9ncOzQXog4mHT4YEwo9K0EZdI54Mx1VFPJ0xcUVIGcZ6YlmXLUZvcpsPQCl4WRxuMUccOy6ZqPSNjUwq8yz1WtXeeKL0dpx9rQKedAteos8gYbTNLbCRX1PimWIpj847zv-Q9CzHPBJeE-bvqrSv4D2WkVY2NMGGsA0D7K95qxOUDK6AAOqwCPWAq-gVB8AKUQsZI6wqXlG5FSgr3AgeD2JUY8cfuWnGMx5xgOVcZuNQyJg2cB4zszdERpIAsRUdNF3kIwnQAAAL0dqgArj3gDumCe0SPGZdLx5E8AxKwfGgQXxoQHmHF7sAFyQRkI44FOO3GsTEJixq1XOZP4qjisUYrAFGIYtSQ7zMkAPF+OWHaToJ+4ziaZNC0lWoxWwOyc5NzKiTYoIAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARjoCYAoKOJVURNAfTQBTADbg+ggG4BDYZClJoAcwAUaeDngBKUAG9WoA6EyD4kTNB79okHACNBmVeq0GAPq-2Gvh3gPiZEJScNbVB3T28vX1tkZGFBKWhgl3DI719rYWFk0LcPNKj+GAATQXBAwWKcgG5WAF92GAQUC194KUVFSr5hXnhkgBpQeAALQT52xW09L2NTc0s+AAcpREc1ENAAMi3QMakqjZcAXlPhsYmO2oaOZu4MqRxBHN0IoxMzVv5JruKevsGoAARNBHoIgZpro1OC1QGgAJ52OJ8ZBiUFPF4zQxzT57BJVdqIbJHTSQ+rQu5fPhSNBoRCKaBPaD9EmvbEfBZtDq-f5qQFAml0hlM+AQqG3LgWQX0xmCZkCRExYnOaYRHELfYE1bZTXKQnKkKksk3JqS0DS4Vy+B8aSyZ6srHveYWXX6vXanKk8Wm2G+WCoNSJa2lWDCKSYeQtTFqjlUn7dXp8o5DIH+9DteUhsMRyVi8kS2FpwOZwSh8OR1AKpEGlyO9Uu-HuonKV0eklG70w7hFjPB0vZivQG0ySD2lVsgz1vEHJvZN3t40Us2+aQBKS2eJ8LPlyXR9nOxbxv6JlnOFOrxDrzfbnMtPMmrsWC9X8Y3wdVpV7yex6da5ut5sF0XAtuGfDdX37HcWmHO0vydXEALnNsVS9fMfXufgwzsYopHEAAPJZjFpKMHRjA8uU6BMAWTYEsNsHD8MIwRiNQe8l1hOiGJWCMnngBw0DgqccCkJZVEVZFUT4dFBCGRDPWA9CLE43CYmKeFBJ-OT5xQhTH0Wes-HkQQRQ08jvm5KikzPYEDMDPiRTYkCLAMwQCKIulUFMhDG20w1O0pRY02KRBJRkRj3JI8c6x-CieRPQE3gKLxU1QYLQuEcLmI86BHMU0AgvC5ZjEOKKyNxE8+GMcBAQYXSAoK1zCL4IsvIWCqqsBZg6rNBq3OpYRT02aKD3aspAQAZm631+CEABHUc4DHIays5czKOPajrKBOaFtgcEpu4YSAGtxh2uU9uSNBVX3cqAW2wR5vO8EhiOK7-LNM7FsM+yrQEh1DBWhsZ18rQDoscpMDUb7jKtS7ru-A9dVesH3ihuyYeZP7nCuid4IWEG3rQvTfGMpZ4HhAQHt2pb4Bx4bcQySAsjh97pp6GlrXRkzkdxqdGeZgnUIfALomEZBYCOuC8bjCyNqsjQUw3cWjtyvTjvGJWJdapS7s1lWXpVVnuD1vhVPU0jZk0nzkL8omRf4ESll6WBB21w9Zd5Qb4BTR3ncHVWAqczKWKSC2Ee84GbdBo2pUwRQseWm6NWt5sQY7O2zWgZBqTjgTkCWOnAcWTJsnzwnhbNCGofDFQy-h6Xf2UOuY9R60a7zgv66nN1m-JdjuAAKykaQ0FgAIyZg0civFrLlEa+uG98X3EBd3d58SwwAH5QHigUlidlf-aGIPGoizz54GDekuE0Sh5HsfEAn20p8ImfaSGdu54Io0r9AAAuYuYIv5LE0L-beu9N5AheuJDKklpLANJL-ABjUoQgAgIpDA4BsB4CIGQSg1B6BMAYP3CwkgRxGUBHKCQXcYozREGIMhshIxBBJL-Aw284TODYf-QBGJWFJVAOA2IR1IBLA-MiZ+9oYEojREAkkQwqGgIEQAv0AZexbkgreTy-Ckrb0Yc1NRQYNFli0aHayijuEqP4GBa8mjXY6IKHo20w41zgWMQOXcNELHKMWBaWUzIcjcKcWFPx3NzHQGoZYwKqUQotDCqfLKkUQhBNAPooKsTUDxLcok7R4TIk+N8MpYO2VAkCO3urPgTllBFO4mCPikMciXwEc07wRSzaNO4S0rw3ikpWMpo9RapTdGpOcZ9C6YzTrtB+pjRpqSIlKN6YsPWQzHEjLCssrx8yom+FslMjGXsFmrP0bsoyYSFZzPyYspe+8-aeJVCk326lGFyD4soE+2SQ6zMUU0rpXgKqSUkQJT+8iLmIJ8Q4bA6wtoAFVoBHSzgAdwsAiZkUg8KgAALQYrWUwviAczSPLeTAD+ud66IHAKAZQvhCKIBwLEiQ4wqkcFJLjJOUobkUxpXSpADLKmKSJdAEl8cySGDqKk4QQgeAUqpfwf0OAljIBKHyx8AqWWOkMD2VGTN4CgGODil5zwg7tOZT835SVXJ8WgH8KhaxUAmU6WawwQdam8X4qq01jqBHtw9Z6goJ8Im2v8f0ZlqFIh834AZSRygiLasOWU6Wk9xhpktf0GNA042LJKGUCoxRaiivFZK9VBgIXIEcBwFMsL4XICRegvS5MliCExdix5eZRUZw4n0GRiaBKNTQAo+ZrKG5ZxzvHYBV02HbxLmwgBKw1hz2fhQqubc45js0P26hPrmn-LEIC6NzFl2jt7Wu0FKM0kxPSsUpJ3tQWsvDRMTAo553kNeb1JqTESohHXWC+NzyKGvswAY9AXytnNOQQul9qVCoyAOV+lu+iJmXS-ay8llKSbyvJv06mcMF6WwPFm8o0BKh5vzSISVKGZXszRnss5tM1UOqnL+15S7oY0augMRRxGDBitI42otGq1EQDWFRjQibdWgAdYxw1QnObUdhsjdj8zOPpGlTs2Mia3nSb8CJyRdGWlTmY0cRNSmvDcYlbx+jP54NUyesoB1lsqOnN+nDBT1DjNtpM+27g26+AwD8ZUZQ0lC64YZlYJm2RAsZq3qAKdBQZ2rEcECAAVL54iDJKiJagTvTtkkUtCkI3+cLYIrpegAJBeE88il2Q5FV9hMYOBOtY3jkd8Ah9sg7+Ppk4RoDAeqJksacySNz4dVriHQxTVr2NIuREnWFh1ADHZykOFVlEkBaseJaAJAzsmAnIzXXZgoo9EgrbW1BAMygKkIf2769kDnpm02w6GkjZn2vDapD2Ixb47nJJaeAgE72Sx1clOIms36CnWPDJeNxn2r1TbSL9vkNiIKA+ggiasnp9sAJLkphoFdYT6I2XkhemqzZiZNu0wbbxNVixdhKsTh3qurfcadoDZsRUdbUKAXLMpKg9ay1DHLoJUv5eqeLGQhNgsLEk8oM2m6BEWsW+IAN2Ag0i5p32zngu8s86-ae5xJy7uUIHeqoSUgTqVTU1Gq7UuXIfJKfIq75r5m65CULmjSH1WaskWJqXoSrTqZBRxt4fjgfqd9-KVHn4QWSNg28Kcki4POMR0z0xhvqGsuDxHiRI5nhJ+h5WTPIPZf6oobnuxQOo0B-mUXwPYqDAkJxYB4sJ2U+bLT+qjP0io3-eb++AvHSChS+78n98FeVRfur4pvuaCnKYOwQQEg5AqC0EYHQca9e2gPueHhBeU50WnD1f4UcLcKlVJdSYfiQwZc3uNz+XecqFVKqclAh3Z-6nq6vzX9fsrcAP6tcqykbyO+tClw60nsbyKY9+iqf+T+KMzq5YrqDS4AQBI0naHU4AQwtULcRqyAakgBt6t+qBY06BoAXUWBikiuEggaJkSB+BKBUMaBQwk0x+pu4wka2eygyaVoyBt0fIQIbBdomWnBzIKMqmzo6mOmtBIWIBcUAI0eNkFu2e+KsI-BU8Qh-QEhN+iMKc2QOmp6cAYsdISgFBVBsMiikh+MHon+TkgmkM1oWCQCZhmhEcVQVheU50BhGs6k9hTw7u5WEuFgs6ZaPEMkoKUImqow4wpMGGNqyuIoYmWO9eJ+wRYk1Y6ugK3BCwgRKRSoaR2e5c9e3hp0MCm2wR0wfhbKjchRsBwR3abypRug5Rr2wwHoVRcGeElq1qSudqcmxRQwto7+NIkRRuset+coigow2RcQOM++O8YxEx-RsOUWWRSRcivRoACxl+gxFBixBgAC8QSgExBeOMAAPLMQcSMMoAsXZnopgJCsoECAACqxCgDCTQDwjmhxw2C-RwiiIHyVAAJAigAADU4m12BgagAQSg5K5sxR2gIJmWgJIJDu3gEJgQig0JlxYuoO4Ktxpa9xTxyAEAggCKHxigXxmMPxNyiA-xwIwJoJYJqJUJ4AMJqRcJwIKYdJyJXgjJ6JzJmJEqQs9eYsyAIiYiBe-uMC7ubw1hVCPQsQokjhv81h9OkxEqfRWJL23gd6Jcqp4612eiEScp+ctmYJhg7hyAhhigxhsRphTuXJPCBeuqZwSMsJ9p7CjcVxppACKp84sJQwboCxbOkQDQBQ5GVCTpB+FwURFMMR3Rwhmp3SuJ6wkpwIsKMQJQ0WYIraaQpmhaDqmqhRYmzGhRc8k+emP4KphRwOJRYIe2ppTqNRu6VRQZ3gIZ7mFRspwpCpk+uO3AHe1YEp1Y6pwgUpXgMphpXZpZbeSpeUKpRxw5QWzS2pYWupOx02FyRpokbp5plp1pcZ-Qiia53g3pMCEZjcRxR565Qg1ouo-Rw5l5x5cIVWs4q5-pHogZQ2oAYqv8YZESZ5ERo2ZMMZXRQaOGaQJayZQ5qZ0A6ZVqmZTwTa5oruVo2ZwZBa5mLSBZwRRZmmJZge5ZB4lZNRRxdRtZRejqVZTZpRLZHmtFHZE58pU5i4rA0+GCWAuA8+eCS+hCdANAX+RUtK9KjK-KzKvMwBR4YB5awIXKQlSh3AMlPK4wtKTs+yrsol9MyckczYIaYRAmCliAvKM+Ym8UV8u8momWhgmoXSdZkQu8+oFlBg+o1lsuu8gRDloAgRzlpld0J47lJ4XlaQu8-MwgmWwVAiNlrSd0wUaATsUg8ImW0VsV7xSUEVfyd0EFDlEFLSqVhgu8wkow1ItgaAUC+VIwhVGABQOVBgu8QJ7lhgygeEQw8I2gxwAAfKAOiiCclVVXzv0ECBinVQYA1U1S1e1eitit1S5XdBlkMJEMNaAM1bqmNaAIlgtQYD1bvMAINZSo1QtaNR1aAGAJNd5bwQAKTbXzWLVtUHWnVrWgAbV3T751WXX7V75nDNVTW8EACEpwz1u1V1y1P1eqH1J1fVxxF1-1r1oApxBgINgVd0xxxwg1L1S1B1iNsND1vBrVENI1qN6K7VGNn1fVrVSNs1XgKN11+Neqe1RN9xX121B1Xg11BgX1hg2+V8ZImq+lhl5BRxuqv8N8LY+IQw3Nwlj4hMXNAQ3KBlYtlIKItgA8pYtM-NBQgtHAqNrlUtslsk2hqqpI5Fhgot-+koEtelWtiljevYvO8Uu8+GOamWdt+WPV9ZaVvBhA0ABGIU8Vs17tnt5MztLt1Vd0pVfApAhADlIdYdAdgdeV8gZVAAou5SHfHdHS7bvAAHJSDp3bWZ3p0Pm+qc1m2CUW1D583HAC0iRvKo26hIEi3m0y2W1Bim2dZG1D6Aoq1pBq3V261IHHqt2GKYxkjWGPICXS080qpSU1wngZHspOwUyBA+ZWoODCDwhol8B3w0gPxkwmlmpG3KXxAihqUwCp3eBT19CQjeAVZwgfBiKxkq4z2pLtEK5332pmoLZWrKBG1Bzzn0lgn93phGIXkG2n37yLaf313j1y3IAK1K3q5ukGD-1N7don2GAAXRl7mgVQjxA6oAWKBiy2DxIgVxG9Y30YMmRkgsVgBGVYIcW4KL4EK8W8X17JoRgIB8CPRqDQTCSYCSyI4P2Mx2AOBC1aU6EQ4vg-yrJaTvliPgRGh0lAh8CImcKQm8nqRyR8PYleAALqMyPxCCnWFyrCSUy1J8QlQqOLlNFSCwCwA2BMwUKqAfzWP7UYAgnKBWOwBnlAiAnbxeM8IIl0nuMoNJReMGzmMowwDcRCBOAqNCrq41yL2ROCDTAlYjGEX+BonyP3F0mGO4RCAmP+aC3xMRPhhCCxMsrwmaBAgtzFOQzjD1I4BuNxz8OhbMw1yw4+MlxAhIKLDxRtPbBbDcIUY6luhtPaDuCNwjNNPaBA3AiQLtOUq6h9MzFAiQKdLbwsNWPWgcNA7cOSxtOdIAIUbLyrxRh9M7B2YPAYjvJMSfKjNrk+NZMgk1NCATAOANOLO5yNNTDlO-0CKAlKPilwJALXNnxJCjOcldL-N0nPN1NvPCMFZfNApTPlN2YQhdOgYa6JP3G+VCpDAwuvOYA4CaOGB9JZH7OrIwv3FuVDDxQfNTBvnNijN4vQCJMEtEvdMtbpNBDktw7AgADkSjNc8jAr3TPJGJbT1TLLJT4wj0mA6ksri1ThI2OpTwgjjguoCrQTLSu8iQxQCJpaCJWcooPstIDgxrNkTM+0xL7plLGro4crx6bomrzLrL9TsOACtrjYzrzRzY3r+LmrLc9azw885hVIWR68kjjYEbaQyCSZwCFacKiKpCtusIQbclFgahPa38obiw4b38YCPr2Q0bkQsbdxjUCbVaNaCSIc+UqAKaxVKMgoZr0E8A2c9g1IxQpQLh2bSrFgQbCCnjTbmAooLcBwfwQ7QO7SIbvbjcmbCCi4aC+cDg747Q4EItq25ocFXQ8AlD7FeAsAIwIk9SoA40lKQgAU40q+q+oCw9tI4sygJ08IQwxg-omAxQFji8LT2QL7pa779zGupQBGlQBzqS80MgD7ggT7jcuoP7b7xWl528MHpYv7epLS82d7sAEHUHbosHf7KMFSq78QygROAm1OYUhHjaequ8iWFHGWLZ1hwpopWHfADAQwj7fAXUmpmqaAkAtgFHYmgo977HrHhbqu5H4jNFPg0qPHfHL4Z5jtlQYFYaP4Cnuav8uZGFzSmquHAnGHzHzADLxIvHFHj2Ai5GOnMxqnSnSUU4qnn5Jm6FCZaQ3cHouHknwZ6nbwbZBg1hgQQgw7zHIn7HBn6x2e1n3HxncneqgnmHwnhnYnGUJn7nUqZ7kX4E8nS9QHxQ1n3JJglwzYZHiXL4wDAiWR8UcXHl8W+nw5o4+t8D3gbohXlwsjpnrZjnfGkQ2nyHb7unaAQnkHHH8XMnSX9nUnlKFnZwVn7WZWaQ15+XRnsna7rAM3ppWRWRwXNXSTJXvq84aXejqEK3X57XDuc3OH3XxQm3yXdFHn13taAUiV8gB7521nQknjjHoi6LvyQiIpoiV2ACeAyzfnZrn3Zq28QPw7yJpbeJOAFbSboAS7piiFFHqFX5qTuID38AB7ulnWCPK7UXLxLBzXRHhdnW27YmuPQOFH2LwiH3JPHOSwG7eqFPLbL49x4PooQ9eUFStggQwUQQiOl3ObWRAvoXdoKMPPVqa9iO0uvPaJD9uoEvfPUwLcivUv7BqvSgD9boGvyvV9OvfAC9JZIvVRObMXmJri8Qx8pRbRHR5vkOlvovo4VvtZQvVX3Psv-PujIROmzvTwIh4Ojg07aPI2El8U5bsz6bPAADzIl4ry4fhRzLsFfwq4fAh7Vq8QmAC8Bj+cTyPbP5KmAf87TnBgxOHvigpOZfBvQ4eFBEvvSTo3TROvGXgHOaDu28MASfLiqfurGf8bWAtZDuAC-oSw6k+vUaOvrXDnPGKXFGebICOXFRWRw-ajUb38x6y-L588k-T2eZBFuIKCnnt3U4G-88LcEJCQOA1IoDf+pQYY8I-maAInt-cV3QaAnHM7wVqgtUBbz-9-fwb-xHbplkSRi1RtuQ1Zxv4Av5X8G0N-EQC-zMZQD5woA+rqaV-6v8uoIhZkMvQSC8o0BhwJ-nAL-4CB3+wfKkDqUf7zM8BxAwAbFkq5zoQBWrYjqjUCD1J4gw8CCHf38xUCABWrAREwOurn9Hg83L-unF7LIpIBQg8AGGHUCV0pKH7fTNIMtR+BjAjwaJlALVrEo4Q+jPKFIPkBKDBBDTAwc0ykgrkjBBbGLDGyj6sCcBHA+ATvQERIwJBRLErvwPaq6D4A+gpwWoKEHaQVBRLbQXpHlx-5yUjePoLDBF44Rr0JvD3AJib56p9ehvZIsb2t6kDQAcQybpl1b5HIn6H9CIfIDr7utKuHghwEOHypPcx+6vMvsekiEFCW4KwYoeYD4BlCLi9QoYDUP75+8c2hZZZuAG1CVBASBbIEL0KJD9DumVMcDq0NACRDtABbQsnXloErhwwn9eQDMOyEdEDeYgIsGEICSTD2hVRDlvwDW4rD+mubKrtMILb1D6kpQx7hcTdD1DeBBQN0NMLAGlc9BJQpoTcPhbLCtALwl2rqGeEoCzUzZbpkML6F6sz+aJbBvni8Hb5Xec6Xaq4OixhYUYB7UsEdGpBDgJ2pzU1sOxaBDAFWywfIaAAJHRDKcAmZoebh44DQxMlw94c0OUAEjJhWI1AEMEBFmoSRKQ-wgT0x5lU00OqHoWCJB7eAZsWQUVpCJMDQi-B52G4ZSNjTVMXmvPVyN8OME8kvh9wlGNu2UEX8sOQXSDiQK8DccxM27HUWxz1EtkpwPWDIS33yyCIkRWQB0i3EVF4Q+A7HVEMqNZSapH2YmXUPcKUx3pVwWHbQD40gQ8JH2WDEwKAAeIAAJeOnwAACC+AfAPHQABKDxQgAAHl061APVAkQKImAD21IHESbW+FXCChObSAAqKXp4QSxJQ+ZpqKdHdBmRQGWkeYEKGaiZAGUJsWgBbjtisghY-zsWIfrRjYxCYpMamIzFZiexeXBseOyLEbYaxrYnNpqIMFUoqxLogbm6JbHQBj0AoOcagAxQGDI+BGWcQOPnFbiyxM7AwZUmkGC19skQmwEtWRKoiJYGI-sc208j3iYeRQ0sR0K277ZwA+Ysql2IXGCpfxgpbBkYEtYGIYAx7PVAAAZag9eQjAikqhQTjm74RAFUB3xQT-QMEhwGJgfSbhcJWAzAHSQYB+ifwhEpNFAXqTMEzcyElxPbxzxe9n2aEqkic0rCYSH6WRFZpliyJUToBtyaCJhPi4aMUYxgaSIxJfD8BAg0aS1iR06wCT0JQOTCfEWJKoTNwyk4SVhKUzWFIB4wBFDIElhB8Cg-opYSGwdTlJCeDE6XuHyUnsSMJ2XObKcLnTFthkWRfSXwEMnCBJYuoLfr8NQbGADJRkzfmvyPLIICI2OVIZ5O8mSwqJKMUoDAPfYogkg4fZIS73VR6SgpXkkKUk01LNZC+STBfgYDDJgdRGFvEIkVOL5akfwh+QQA3yO7T8OuSUYnBX0l5GFEhDhWoQ7inC2Bm+2afLG6W3i9CzMbpABDFJCkVDYItgbfh5xKwadqpd6cNqsNB7DBspsUr4VVPGYTSfJm-a1oshGlCBPy3nVHlyJ2nGTv4NvBXCEIVTERwIdvYrqLwvFkjOscQtIZX06kYh0pfvJTORib4zMpuzU2ztAGhIfCeRMvdqVaXH5VDWRgdLwLaFqG-MFpBUlxPyTVT1k0EiWLGb-FL6Qy2pSvKvpUiSEyBuppkn8P9KtEDTgOP2DXKDPpEC82R70yGepgn6XwSs7MnzqUWclBCqgIvBGWBOxyOdyMiUxbPwE8j8zvpVUnQIdTABYzEsv8KcKCJGHgivOx3MmQeB5kPS12T0gWV5yvowA6ZnwpYCJyWAhdSRXI7oWcCVnxA9Wgw4YTbKFFaNQOcgbIMbJFpdRZhwRA4ajONkrT1yPMjYcsAtJ0h7pbsjymbK5kLDC+psv2cKMfrrCbpwcxAKHJC5hyTeMslatjKjmEi50vsk4dSiq4xyC2Bs5kmDKe53DkB9ZO4V1ACneAS5FMekT6MrlwyCgPomuYzL9TUUQR9s-oY6IjSWsnAjmeMh-zWgyErIQ869HwUtaR80woYCsVGHik5s5I8U8SVBPaSLyR5JggWB6Bw7yT9p8OPqjIEMnwhvgm+CEN0ykbNgV5jbDlNSA0nPAqJ+I+1pyjeHmAn5DgCmObPZw6pQwCQIcFRIIlygwQUk8CDJKSDxSlMmqeubKOpF6o7M0C+kYyNfmCo2Rs82QCUl-lHZ4ptctIByNrIUS8MIM0uXyM8Y9zbZqyCwSW2Lx8R2Gz8uSZuHaSYL-58k34ZaShFDgVx0CvkeBIjHDi+AyY6FAABl462Yu0cIEQnWEAJPI++QJHPFgTyxlY0oNWK3F1jpxVY7oFRNkXIK2xeXDsTIuI5Ti24fYzRUwJnZ8KBFwi-AIYqr5KKNFlrLRQ0O3E5srx79KoPtmXFeCnR64imJuO0U4LIgU8+IAeKcEQgwBHiqUbxJTBUTglfgiEDfLnr6K5FX8polePcG3jfkAC66siRHq4QqJ9CkIkktKJgCpFBYkxYUtrIow6Q8qTcAqwZHPzCRjiuvlqMeAP1UlN4yukqWwpZKWkLi6-n8DwH2Cukx4t8biLOxILGlYE34YiJHomLxlP45skXirJGCE8z6GVnQoVZNKjBHogTLNHVp6pjR-bb1kCEky0KP5KPKcLspgD9SsuBbKpSpVOVys6lH8zZU4MKGXKkgc7b1ksteV9ybFrkVnvcJzacsVGaolYWM1cCLAAxPosFWf1bbGARlKkocE6LcZ7inF6qFGU6NZ5NjdMaQT0ZBzExeLXR1UbFZ+U1Q2NbifuJsc0oB5ulwl2ox9ia1PH7jDxyXBnv0AZXAgmxMSi-s-haRktUVQwREeSokltxUV1K1rgtPVQ4568agUtKwSgkL1kVG8l6fT2QViY0F88zyBAqawF8-leEAFdovC4CYvReqQlRuOqgqLSVAmYVX7gEkGCO6vqOlaoI5WBLBA3Kx4Cjy8BsqsOUSy1u6pwC8rmk-Ey1oKv2o2r5Qdq15S2UlV6yxB5oTtvfJRAAYmxKKplWitSE7IB52K35l4G3hjt75qa98duO6b5qU1JKq+qWtRWFrRl6a7knCvGBUrFVVY6tZKBbKao4gJ4otbzj4WjiUxaYzMVYreA9rExfaicaIv5VprQ1qNDtQio2zmifwQIEUlUwrUJq8lyqutXKsTVNqlF+SttQJhnWaKxM5ioRSIqUzHrLFNIqro-MpT7UD19i+dQeEXUqxfl6DNMAPH5RHogVX7VdFgU0xvrTQq6Jeav07gtwiI1of9ZwCzadwc2boI9C+rGxbheA76lVJ+s3k6k4NV9ZjNFWQ0IBANM7PyQRHyLWEwNiGtADhvuyoboplhQjSjEIyKAjIfwWpZRq5EEaQNV9N9cgFkkQaEA6ub5X4OMGvrUA5GqMNxtoyezgFBg7phxtkkkbRNAkOTQ8OoVrKP5GmWwoBnI0cEhNpoNjMtzhl8aL+gpb1QKCtQIkTlCrQQkJs43bjag1hbDVZuUDYbtNLy-jV+sAoYZHNKqDzTxvmaULHyLA7AewI0ScC3FvyMzXQqw1IaANXm2jM5oM1sy5q+1OzTJv3SkbyNAkaLTpsO4UViKUaqEEZoNYpgwtZytoUhqs2c89IdGihN6l-HirnFTg68fIHSVDKulrVXTaGW-VFbHllW0xg8vUjtxFNXSNhRKI4VeDmyoCLLbmrhDijW2I2qUfsI5mY4ws8W7wPppaV5bVs9xI1qZvAzKa5WmWbrfX3ryuRSwq2YNnny5FS5w+uDfBoQ0oI2lhCLcDeqPHHjWgo01W1bUSwnAWj6taSjpc0m6Gtbmkx2mxq8j869hY+zweBnSzYy-j-FlKCQMfFGooCIKlxWGS3IMBAhK0cPeoaF1IlYpaSQJZbhzOShPat6r2xQhI3jRDaZt1K0in7xA4lxgGH2xcEZtJ0vbE0221Zb1syxs7H45OsXrUE1TCRnRiVO-mJgACcNmvKKLriq06P2tm3gElWpUG96kTgIYLWrSAozyBoMTUsjOlQWAZicE4qVMMV139lAfLPlimDoDW7PVO-TTgIhl0r8ZwagWad4Ed3K6QoQjK8dpGPQWBsUmBQ-u2QMDu6rxnu9YEMGF2kakqjbYQMfNPmPoZQcq2LS0q6E5a-B62w+bHrirx7nowITrd7XNBZ6T596WrhIryivw9otIXrauLZV9EHAMQOkP7W2WdZZoYmAkSinaDOiK9s8LFoEDZXyNqgcS36dKgZSYAG9XtUADM22gjDmQEITUo7vuJYpsU3e2kMSOflR9+9TaAahfV-gL7-W6yr0I1Oew6ATp5GKla21NgNrO2-mWaDisiD5qBJpaWdZ5ErVprTYOBeVq7vIyj7x95MSfVbLpD7EOe1Uhff1SX3NpUV8artlvqX1igj9haE6TGoKCgHwD+OhVlqgGgYBUDWKW3cHtN2y6VxDqK8U1t+QA63S++lTYCLB1BgIdDIuvoKoR0QB9q1CXgfnroNTalA7C2nSXCNDRrMNmmRIGgARRCM+9q2BSRzlb16p298IVFF3uwCV6tFtTGvRu3hKD7WuWFIrN7h23V7ZoL0abZKO1E8GH1UhHUoUVQ7rkQQhJZoRk0iFSAumJWD1lK1qbV7qDMfChLocqLBEYdqOpg6jRYMtxpDsh6eAoYHbordVWk8+Gv3awFleap5OBQdmkRAsrm5BatiUi35uZJab8IQOO1zhiZBagRzvcEayixN52bmfTLEerCeM3KFwqrj6PkNZRGxpKHWiI3AZZHGjwqfaQAm-pxGrZvlC4fUdNY5H443Tbo5UeWa86n4ihGo3OlGNKgXhgtCY-zpfgDG4mnzLfoUKyKzG4gddNo0MfFx26Z+lzM7fP3axTgIEmWQFrIgxDpHVZTUjeAxkimxrWArAFffwFqV8sJ2ygdHQAB1WAeS1xRMGzjgBS0DTRnQtRGosozUlu4ED-otL7Ragrx6vR8aLFfGW5vx-430sBOVIQTywudJAD6LHooOWRfE6AAABe+tAwL8ZAZJSsTwJwlj4ag7knITnqaE0CFhNCA8wM3dgAIfQDCHHAHxzExfrpMNN-qNLO6HYcVgIlYACJPVqSD5Zkg0EiJ94wCaFM4nRTvVe4hKeBC2ApTMpuJaybFBAA

Metalinguistic Abstraction 4.4.4

if (is_application(exp)) {

const function_symbol =

symbol_of_name(function_expression(exp));

const processed_args = map(query_syntax_process, args(exp));

return function_symbol === "pair"

? pair(head(processed_args), head(tail(processed_args)))

: function_symbol === "list"

? processed_args

: function_symbol === "javascript_value"

? pair(function_symbol,

map(javascript_value_process, args(exp)))

: pair(function_symbol, processed_args);

} else if (is_name(exp)) {

return list("?", symbol_of_name(exp));

} else {

return exp;

}

}

Exceptions to this processing are javascript_value queries. Since the instantiated syntax of

the argument of such a query is passed to the evaluate function of section 4.1.1, its applications

and self-evaluating expressions remain intact, and only its names are converted to pattern

variables.

Ifunction javascript_value_process(exp) {

return is_application(exp)

? list("application", function_expression(exp),

map(javascript_value_process, args(exp)))

: is_name(exp)

? list("?", symbol_of_name(exp))

: exp;

}

Once the variables are transformed in this way, the variables in a pattern are lists starting

with "?" and the strings (which need to be recognized for data-base indexing, section 4.4.4.5)

are just the strings.

Ifunction is_var(exp) {

return is_tagged_list(exp, "?");

}

Unique variables are constructed during rule application (in section 4.4.4.4) by means of

the following functions. The unique identi�er for a rule application is a number, which is

incremented each time a rule is applied.

Ilet rule_counter = 0;

function new_rule_application_id() {

512 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARjoCYAoKOJVURNAfTQBTADbg+ggG4BDYZClJoAcwAUaeDngBKUAG9WoA6EyD4kTNB79okHACNBmVeq0GAPq-2Gvh3gPiZEJScNbVB3T28vX1tkZGFBKWhgl3DI719rYWFk0LcPNKj+GAATQXBAwWKcgG5WAF92GAQUC194KUVFSr5hXnhkgBpQeAALQT52xW09L2NTc0s+AAcpREc1ENAAMi3QMakqjZcAXlPhsYmO2oaOZu4MqRxBHN0IoxMzVv5JruKevsGoAARNBHoIgZpro1OC1QGgAJ52OJ8ZBiUFPF4zQxzT57BJVdqIbJHTSQ+rQu5fPhSNBoRCKaBPaD9EmvbEfBZtDq-f5qQFAml0hlM+AQqG3LgWQX0xmCZkCRExYnOaYRHELfYE1bZTXKQnKkKksk3JqS0DS4Vy+B8aSyZ6srHveYWXX6vXanKk8Wm2G+WCoNSJa2lWDCKSYeQtTFqjlUn7dXp8o5DIH+9DteUhsMRyVi8kS2FpwOZwSh8OR1AKpEGlyO9Uu-HuonKV0eklG70w7hFjPB0vZivQG0ySD2lVsgz1vEHJvZN3t40Us2+aQBKS2eJ8LPlyXR9nOxbxv6JlnOFOrxDrzfbnMtPMmrsWC9X8Y3wdVpV7yex6da5ut5sF0XAtuGfDdX37HcWmHO0vydXEALnNsVS9fMfXufgwzsYopHEAAPJZjFpKMHRjA8uU6BMAWTYEsNsHD8MIwRiNQe8l1hOiGJWCMnngBw0DgqccCkJZVEVZFUT4dFBCGRDPWA9CLE43CYmKeFBJ-OT5xQhTH0Wes-HkQQRQ08jvm5KikzPYEDMDPiRTYkCLAMwQCKIulUFMhDG20w1O0pRY02KRBJRkRj3JI8c6x-CieRPQE3gKLxU1QYLQuEcLmI86BHMU0AgvC5ZjEOKKyNxE8+GMcBAQYXSAoK1zCL4IsvIWCqqsBZg6rNBq3OpYRT02aKD3aspAQAZm631+CEABHUc4DHIays5czKOPajrKBOaFtgcEpu4YSAGtxh2uU9uSNBVX3cqAW2wR5vO8EhiOK7-LNM7FsM+yrQEh1DBWhsZ18rQDoscpMDUb7jKtS7ru-A9dVesH3ihuyYeZP7nCuid4IWEG3rQvTfGMpZ4HhAQHt2pb4Bx4bcQySAsjh97pp6GlrXRkzkdxqdGeZgnUIfALomEZBYCOuC8bjCyNqsjQUw3cWjtyvTjvGJWJdapS7s1lWXpVVnuD1vhVPU0jZk0nzkL8omRf4ESll6WBB21w9Zd5Qb4BTR3ncHVWAqczKWKSC2Ee84GbdBo2pUwRQseWm6NWt5sQY7O2zWgZBqTjgTkCWOnAcWTJsnzwnhbNCGofDFQy-h6Xf2UOuY9R60a7zgv66nN1m-JVgQAgRSMHAbA8CIMhKGoegmAYdjuEkEcjMBOUJC7mKZpEMQF9kSMghJRLvAAfgMI4D68AAuYuwRyM-DGPsXkCOyAlg-ZFbVHMTqxRNFr5JIYV80LfAwl8-QBl7FuSCt5PL7ySqAY+29mpgKDBAssUDQ7WQAUA0AID+BgWvJA12MCkrwNtMONc4EUEDl3DRTBsCcHUmIpaZkN9YEkLChaWUzCaHQFXlg+hQUQotDCo1CK0CVRYLYRlAR6Vg7ZWXjwwBdDFjKVkZFEIEjQDqz4E5ZQKjuJgj4pDHIAwsGwMiCos2xjTFmK8LQpK9DPoXSIQUSRlNHqLVUFTJ60MRQJy0P-BRfDFh6xYcQ0ACCQncN4Uo3wtl2g-S4eI1h4TSFxKMtzDBgSYkOyWE7RALtqFJLCb7dS285B8WUEHERWU1H+PCQokxNjzF9G-jBUcAl27GPqavRR9jwmYGwOsLaABVaAR0s4AHcLAImZFIPCoAAC0CyUmLz4gHM0JTKkwCGO3euiBwCgGUL4QiiAcCCIkOMHRHBSS4yTlKXJwgKYnLOUgC52jFJbOgDs3OZJDB1HCcIIQPADlHP4P6HASxkAlHeY+T5NzHSGB7KjJm8BQDHBWTvCpQdLHXMaU0sxrk+LQD+CvNYqATLWPxYYIO+jeL8ThXiqlNj26MqZbAqpPCyWcP6Nc1CkQ+b8AMu-Z4REUW9LMcfIVI5xhpiJf0UVA1xVKJKGUCoxRah-IBUChFBgHCDM+SmUZ4zkBTMHnpcmSxBCLOWSUvMfyM4cRaZJYVAlGpoACavW5Dcs453jsoN1Sqj6gBLkAy+Kw1j+vfkvKubc47+oIldD1mhWU2Iqs66VAkiKxr9QGpNKMEHSKERlapId5GeoRQKiYmAP5lKXr1JqTESohDzaYyR5Tnj1swIg9AXS7F9NrRUzt-UvbJu6fm0hjiaburHbc-ZhySYQvJm46mcN67eCnCq8o0BKgas1SIIFc7QXszRvEjGXsrproKFOAdzwY0+NhsjAYADd0GH+fuq1OrEVgIgGsE9Gg2lWvRdYm9lTf2c1PRkjQibn230PbE2MAHQOQ3A-+4V8LrFTjvUcADL7vBvsBR+jDP4EGTuUJS9kJ70m-Thk+hRuGvANAYw67gaaxAwA4ZUZQ0lC6WzMlJJm2RuOBrvsGgTt8w2rEcECAAVOxxh27ijSaBEMVjfA5NCgU7OLjYIL2QgAJBeGY9Ml2Q4oV9lQYOPxa64Mb3cU4lCXqv3pjhNjNFcIvFfS5tRkk9G7mLFJku0jyNrHHxDTYy+js5SHBMyiSA5mqEtAElhiDD7sakhTUytAMWzOUKggGZQWjSPkbZZbSjCTaarr5Xugjjnw6rW7cWeLeX0HqJsffAEPZkFvklK-GspJrH0LwRBCzhTWtNPa3yIbuW0G9c9ORy+JdcMNArrCCJYstZRLXUis2bmTaWJ828JF62ZAYHRVlxIsWmtoIEmbX5Tm1CgHUzKSop3QCqaewyTjx3AV3bqxYEDZsMuwMJVF8QnLsDct0eLE7QwPsKenQA8dYU0nlbLWuoSUgTqVQQ8KsjVKQMuTcjUsRzbitJURy3BBHDIPexnQipFwq3Mgep1aRDf8x24Y4b1xDLP5QImrF04VSbcNTmFZT0hU3uu1KTbcrn-OlSIclwQnr8u4hWIKCBpXI3oK4-ZwAoHHP6gAychihr4Cpck9pwA2X8nue486yWbXlZVd9YNyBh3V33y65VEmt3dG+4DycsPUeBASDkCoLQRgdBxpzzjNW54eF0c-nmacdF-hRwty0To2lJh+JDEB3Tt4U54opQhVC4lMLKTKbJznwx06C8wZWxhRBZfoVXKT3xo8ntKkpnBZCtvil1mwhpeWOlRjwAd9ulDDq4Ahi1Rbti5AalKmT7ai0mfQwuoL8UmDiQXKTIT9ucX9fY1Z+gEmpnzH4wpWwVlVaVfOs+RAhv6OZT+VUBypRvB50ivpUP-dutN3kLjZDjtKkPtwC-jKh-rDGhkflbJHM2GhvmnAGLHSEoLvvvrDNbhWj+G6I3rHj+shtojxM8NgUXvAVUPgSbudKgRrOpCPGCDLjoIZrxriOGo4AwU8MLuSEiqMOMAFhTKShDiKG5otgQVniQZ-EqNOi6v-uwVIXEDIRmijJwadOJICpUiQdMCwX5rqKoSoSQQBklloboDoX9sMB6PoZTnhESiSuDuSg+uoUoYCvnjSPwQonASNHKIoKMAoT9mimcPEEoL4baFdK2qAPIRIb-E4UMKEaOrYG4bvsJt4JfEET4SMH4TjAADxvbeEhEnbJGRDwIDLIBSYAAqsQmiiQ8I5occNgv0cIz8eSlQl8QIoAAA1KAGTt4GoAEEoPsubE4doJ0W-m0Z0d0V4L0YEIoAMcoHEYUSkf0vqkCBUcgBAIIBMrUYoPUZjI0Q8ogC0cCB0V0SVoYFMf0eAIMdWDjCMSmMcRMWcf4NMbMfMS3A-E-C-C7mzuoUwW8NQTwj0LEKJGQQUCbudqHDEaAHEbVuuuvPxszC7mEacfAgCQ-KJA8bYigcgGgYoBgcIVgQogsUoi7gEeikjEMRiXAo3HEZSZfOCVpoiaOm6K8bfIxmkIeivKSecPwYuoIfYdypemkHqqUX4YatADECUMGmCHamkPhtqtYkiqoW5neqof6v7jYlOPSaob1sYWCMmpSdSoYS6poXqb9nhm8GyeYSvICfnGqavC3HLuod8dWLETIL8V4P8RIDacCR4Z+gYGCSZpka6f4X6bCXxiXJkUSUUd0t6XjqcTQdidMXiQ4cwojmTnSeoVyeSdcVGWkMfEINaLqKEcGbmZEHSYGfOEMUMMyQUWaQxiceySCpyantyeILycmQKTCbYiUesD8cCKMhKcSlKU8NauaPJg5HWdVvKTYoqSQcqWBsQdfDBhqT+FqYYYiSaU8Pqacd4NqcafoZOa+haeQQeNaWiXaYuP3GAEHlgLgKHhPBHtPHQDQAQccgEC8ogG8lcjAGvJ3h7PFBwCmM8ucvtC3MBa8uMKck7Geq7NcrzBQVprylCEiuBZ+ZckPG5vFGfCXpqG-oYJqE0tuc0k-vqHhQYPqIRUDiXuwWRREZJpRdhXdCeLRSeAxWkCXvzMIG-pxbAkRd4CXsFGgE7FIPCG-oJcJTUUlHxV4CXsKZgGRXJTYtJYYCXsJKMNSLYGgMpmpSMBpRgAUMpQYCXu0bRYYMoHhEMPCNoMcAAHygDzKdGSWGVvZ3QLKmUGDmWWXWV2XzLLJOVUV3RKZDCRCeWgBWVoo+WgDSZhUGDOUl7ADuWHIWVhXeX2WgBgD+WMVP4ACkiVoV4VtlaV2VMVoAcVd0qepl+VqVKeZwVlAVT+AAhKcJVclQVZFU1einVVlf0ECFkXla1dVaADkQYF1exXdFkccO5VVRFWlRNSNWVU-jZf1V5TNfMnZfNfVT1TZZNcFV4NNYVWteiilZtcoECA1YlWlV4IVQYA1YYInmfGSChe+SBZXirk4WirfMJKJJqEMKhV+UPI9d+n9ehY+CiLYAAFali0wfUFBfWfIzXUXPUQVv5yS8rOXeDA2vWJaA3OaY0e6vbxQl6bpqpv7E0Kbo07n8V3SEDQBbohSiXBU0103kwU2U0qV3Q6V8CkCEBkWc3c2s1s0uVP6c0ACitFotAtbNJeAAclINLYlbLdLaWacTjQ9njUgnzu9ccJ9SJJUjNXoaOuremEGITE9aci9R7kYTDWkHDQcoVajelhEUjWhWbibWSCbiUkVObRBVjZ5IBVsSeP-p7YEGpsSg4I8kmeDVINIFlgEGTHGfipjVBfECKLBT+QbgUDXIHdUN4EZu5qYC-EISmf0P-iDhXkXZDsVpFsSsoJjUHIiUMAaUbY1jqZLYYNXVUHXTvsgBDVDdOk3c7W8pbbIRnZEHwW2WTHyXvvicyIuPEKiuPYoGLAkcWvySIWdh8IXWvbDGSFeWapSMHneePOHlPM+c+QQbKhGAgHwI9GoNBMJJgJLENv-ozHYA4C2CnNkM-f1i4o3G6DWeQvEEaMcUCHwGMS5n0TMZcR-QgV-eGJeOBEaOJn-R6N-S3OCsJJTPonxCVJAzxn5lILALADYEzEvKoDskQ6lRgJ0coIQ7AFyUCG0cfIw9gsCHcZ0XQ23UlIwwbHgyjDANxEIE4JA98vHKI6HYI4INMHpiebiOcYoCA6dccRg7hEINg5xnDTXBI+GEIKIxeiA5oECC3AIzo+MIYjgLQ3HC-VYAJpY1MLfMwyXECMg74PFDXNoDsFgkehGW6O49oO4Cg82H46AB1cCIfBCA44crqO4ww+E+EZfYQ9aLfT1g-ZLO46YpfEer7Pkq7DE5400g8BiFUkTqWn41Gcw0o50SY5DGYw4BY9E7nHY8A+MU0m0eA18ZJNJJ8pSKop5MEy0zYm08cdU0IBMHUzA3+NkJ0mU8MZShCM42YpfCM88ECMxaI7DtAJI2M5gDgD-WkPQvIek7-cs6dTRSpgCA01MNWR6H4xs1s+Y4UQ4k8UEEc3mcCAAOTgM1wgOfPIPyOzHuPGObOmM32jiYDqSPTgvWPwnZBPBv2OC6iQujWC1GV3SJDFCjGlGjFZyig+y0gOC4s2RMz7R7PRknOItgt1UWHNhIujrLPbO7PIPkuNi0vXM0uUt0vAs1OgsOBWUtxIsKizJ4RFTixZTxpLDWYgq+DZMFJRiNToaRCKk74klAYFAdM-xFM74lpyLyuTlPWiv4t-DtxuZw0CszLtDCuEQGvTqdK6u+aYbKuZktlAg0WRPyG6hWt7SGu+qJqBPZCetZTdC7KkuLH11OtnCrN9ALNvMBvevtzINhvVgMNR0x2wBx3WjCrRvRnyGJtKij3eBw0ps0hpuIBkwAYites2uNO6uPN0URq5txC-XYCVtBs-JLZapWo2ZSRLkEQKthlT49XhMvROmdM9sStmlymEb8rEYERLZ50WqkG9ueEMz8DyHyuRO6jrsFCXxyXitinGqmrauwgLvgEWB36YzivQtru9uRN4E3vbtLEimNT7uTL-YlPZTv7Mi-SntjlCCYA9bwDZz2DUjFClCUFLs4EHgLuXsMOCgEtGN50HBGv4v-vQSWLyvLvJwzjnsVZ2vkgDz5wODvjtDgS-VxbmhDldDwB70jx3mwAjAiSGLn6HJCABTjTR7R6AIe20jizKAnTwhDDGD+iYDFD4PmGcXKBCelGiflOPZh1bqVAZPhLzQyB8eCACeNy6hScie6aUrHxaeljSdInha-u8f8dsvZDacycoxaIkfxDKBbbfrfaXDgSYWBV2eCBKZmkm7vHPxqcUwMBDD8d8BdQwlIpoCQC2AeduaChmfqd8CBfUvZDOcedVaRCHoRdRcvhclk2VCCnTsHi5fqqskdtdn3aopWcxc8ewD+chcWeqCRepeHnpAgqVctlFf5dJQbrydqq+aRCTtlcFe4huhWfNdMYFCWmgCTcm6BB-v9DBeJfBfMDBmjidfheNfZfoqxc1cLf1cpcvhpctcscbeuftc9fk2Df52XDNj7ekeUnyHxS7d1uOBLcrdSNcM2Jui3dAOHf1nvqXdIptemc7fxfLdJcNdZeINjc+CteGcic5fnd5eOYGZpAFnXfEgnfxAmIo+U3yHyGvdQl-75unHziY-vdkg49TelehlqsmDo+Sdw-FBvfQ9HkTfHkel5TiXyD0cFaddCQMO+dLBZttZvaxAfHFaXx4DOuzfwfdHHwy--vdE7s9kFYvsmoWCEdoKjkecyms9+Zc-wD0fIXfqa-EebdVFY4ecOe1BIpUduam8AcvinWC95goXkfooO-QRW9AgK+iju15RaK2CBDBRBBDbM+YcWDyFh+E92goxB-EpJlDbKDx8h9TAR+Nwp-TFx-B+J-SrJ859KD-5uiZ+F8twl+4kh2qnR-6Hp-bdzHwMvhDBWF51l1VDR-AE1+QdsGSYFZX6mwF8qDt9E9YB6ktwrjhgwdd-1Zd7xTPthM-uze9iXgVJz+qEbODl-Crh8AMfErxCYBrom7+hLClIQewZSu4IT+6sA-frl+7YD98CV+SGr9aF9f9sLC39nelAKfFBk7HwwAb9kJt+6LPfnuxH5bl0y7+Y-vnwT7oFcc5fX7lOU7bn9lgPfK-jTz8zyEj+6kTdr21HRYCtMNbV-gN3QFWlZ2rJdnn5nwHysW4vRBIDgGpC5JQcpQMMPCE4xoBEuzAkSt0DQChcp+VICMuwMKLHxOBrAv4DwIc7IN3WjYQQcTzMpUN-AdAhgZagrwiC2BCgx4PTxkEGlKaqgsQV1C-xftMA8QaOhBBYFsCOBIgLgXoOhYCDaokTXQQIGYASCH2UgmcFoKpQOcZqgQQxMYLeS6DlADg8QR91gSeDCqtAjQfOFqhCwCC4Q+geADDDqBda-tMTg3HiHyAiUfgYwI8GEaKDba2yOENEJNxpD4AGQ2ITkMeA2DbGsQoQaJiyAuNDBvg0wVYITpJQkY6g3ZsT1CF2VihpQ9oeUPoHaQshuzQoXlFb4P8xARYPoDAQb6kdQAOEWnJ30Ow38B+d-GARXyHBV8ZhWPMAVIxFw-gP+ZwIrpE1b719AGMkOYfICb5aFJB6QhwEODUo89y+iGeAUMHmFXDR+edFYCULuF8AHhGRL4a8MuE7D-8SpZ1uAG1CVA2ikTIEOCKJCQjkGVMVTgCIuEuBImSpAwC4wv6OAvh2gY4TYVBz7IGsUw5hMiLeHAjMRKAiNDiO2C7BjkPfeYTUK+GGJ7h3PDIm6BxGyCzEboBkZyNgRMifhfwiZrXXkDBC2auoHkdoKpQHlkGMIiERixoHTF56zuPoYnnT7yFkqXQ2ocIBRj0dSwR0akEODg6oc+mKHSUEMAFbIiBWiwrwEij+HY4IuA0NzPyPMC-DWRygC0UCKNFmiGyKLJpFaJf6yMFgdohVKijBFyjheXgULGJgfY4klRQ4MocGOYhipjGozYPq5GFG1hAxVIeRkKJxEowqOmQugf50W7qdeBSw5zK9io7FigupYs0pqQR5f81UVJEuKwzQBj8w6wrYLqiAzGOdnM-HNzB6xFF7C+Mq4fztoGYbhNWG-HKEPPVABlEAAEiLT4AABBfAPgBFoAAlMooQAADy0tagOijEIEFwAJgejgwjm6JYMxzI94VuXT6QBUxHYq8XcJqEFi0xeEINqaMvHOjoAtbAsTIAyhejEsLcP8VkHPEEtLx-+BcUuNXHritxu4-ccBLp5viPxF4-LN+P-wFiyhb4vgF2OqjoS8WqE6AAsliE-st0yHQiQJG-E3ipG6fWIdogSFw1yM8wmwBFW6K6iJYBosCcaKSDMScAv1W4eYGolcMTxhvXSoBLQkCSvkwIueiYCMDEtEEMAJjuigAAMtQAgtugmSVR5JMrd8IgCqDo55J-oRSQ4DczVpNwRkwwccQYDDjcQZkqAsZMwCX4scGkshAg3s7R87JSgv2D1j0lyEe+QIIds90k7aT9isrSsHpPq7f0UYxgaSK5JfD8BAgwUoBrckB4hS8kYUocHpNEIbEtJm4HST5P0m4YTcCg8YBMhkCSwMOoZStKOIw4hYLe4wFyUnzn6eT8p0EXyQNkWDXsJWdU+QiVL4BlThAksHAeO15FeA+pA0yWHe3Ha5kd2ZA8bn5nGnlSkpuwvOqUGUGicUQSQOftXxMIIpipxgUqUtJomhku2NUvtrAg5Iqc4GZw-+OdKaTdx48r-P7jVhIHeBtsqw1Pg-w2FP8hJT0tIFOFsANjVUCmDEsfHBEEYMSl8RaYNOgGfS4BCA-rqwD0zECiMfGNdriKZTHxoZQ0xsO9zCCuBhgB0-qUtLwIhsTO4MoQEQIoHmFsZl7awrYXGHLBsSdIcCKcLcnnDbQQklKcsLWEfSkyj-a+DtI+FRAQUt-UJh1xhLdcBiro0SbDNz6wQXhPo30ZzOBE50LSpXU6RP1tDwo2aA8aTPrNvjbYVh6KJ4QLIxAqzm+V6fYSsPFmI8f+IvGANLMFFh9JRBgJ4XAIH76k9M3s-0tcJM4nCh+wgX6erP+6Ho1pUWfgJ5BVlCyty2hPWQbKtkHhZRcI+USHJem3xr0+ImuoHODlMYm8FgR2ZcRlk88lgiXJYGD2tF+ZQREbWEfEAxbQja58Ih9oiP9ZlyuoaIkghSNHGlyMZbzMYYSMhTERWZpc36hXL9n7NFg3c0LniIZkDzmZiAYeWDxHnAiDA8c6TBSLx61QaRnUnvuXJqGFyKYgo9kbVFGlj0PQe80+d4APnFyMiHrE+a7NaGNgL5D80EloVrbJy65CHfOfpGJZOAqMs9dPrFEsinh-5tOZ-MSx-ZphQw94qMHZP-xyQ4F0U+SZYjgWAKbGAsD0CN2JZINf6JeGQGVPhDfB48ETB9lpA9CIKUYntXCHZOWnmjKWKA74YJNAD+i9S3M5zKGASBDg7JpkuUGCDingQEpSQOBbhiRTXyQxbmSlNfMFEejGFXyV2VAtkByIOFF2OBZfLSAsKtyNkhYGIqTGOiwxKciMSJjCwTyb0PLcFstNNhL51IyirhdgtGmxiTAyooYcoB0UOjo45IWcVBL4AbjhkAAGRFoHitRakooaeN0p2TKJkkrmXwMewPjSgeEJ8eYBfFISOx3QcJQkp-HIMQJGUNJfmLp7-jcpzETwdEq8U+L-F+ARCdaGQl-A0l6E2ie0KUFRYWhsCTCX0Owm4T0loogoOAviDET2hEITkS0ucUBTRidk3pUMIhCUKHkFMGpZEpXnRK6JxQxifim4WFVuiVCgpbQroqyKhJnIkSWeJmXbLpJCoiFJuCRbuj6FVEnYYWIqF1Khh9E+QEsrSCgi7K1iOiR3QgRmCqgZOMiVxMlACQZF144EaNM1Ge00lAKu4UJPRralqh4uVZOMDOVItqJ1y3ZmwoeyzQOAbmKsdB1ZbAhTFSLXXg3HRUwAgZ3-SJnSBOXwrKW5y3lkiuqHIMiVSQHDv8o5a0r2hX+QRXEqd7UjolvgHMYONBj4zJ5E-flSML0hqBSi4wcSZlOlVxLaGn41AJK3nQcrXITvKVXdJtHfp+x6KNpfF27FqrX+SKYhgMlZxSrkV1tErIMqLHmdgQUqsZXQIJVeAlgcWfzgRPAmoA7VjwavDYkObyqpJmoo1TFLbi+rkVh3FGXnJiGAdjABSr6V9NlWoL6cQNSSW5gUUwLPIwit4F2zfFcrJJ6q8rqAC1U8AOxOE3VXhJzUGrv0Aa1nJ5NiHmq2Ulq7Idau6WCAPVOAB1YYCdXzd1OKYUZSROJ7yE7JQwf1WYEDXRrqhE7anseW-lIdo1pRX5VGDVVoKNlC6yJtOpoVqrkG06qVXKsImULQOc6k0TutuTiqo1pqkOm+O3VuqfxIik3sIHImXrXsXimCZuO3F7jylbwR9WuOfXwTAlPqwiYOtSpxA713EwmKwQWBAhH4X8ggqut-nxq3gx66-PJLPWPj01Gq5zIBoKUPrFx3ivxQEtwwlKcNP6nvgOsOQAbb1GGusT+HA0qwx+-AAQt2nBofIA0i6iMgGgXwLk0wDGzgOKxSFThhp5cAglmno2mhXUCaIvh6FY150F0k9LcLwE42UhuNlQ5mBJu-l3pBKcm-oExuiV8bopzEYMLJuE0Kb0+U0-jSbm3SKAjIfwM5ZpqzGNxlNF9VAODWQCJSONwm1lUMOhZ0aXNsKLzQgGM7RloV7Q5Bhxqc1CLdNQmzgAJB820xOleKqlXeii3KAotiaJGb6IC3ubFwHa06ui1GKxbeWb+YLYEH956Q1NIWgIfpoi1ua6BHm9smpo+S1aItNQ4xWWULU+CEgfgywaIKaXk4o0fEMxfQQXL1aEAZWtAOpt9Zpaqt2PEKqlRK2JTBNg2irPNuS2U8mU42ioRludXgb5KKYXLeCzEqyaQtRWgKGZqXgsorl1Q25YoMWW61yMzylLQUAk47b1Ix2nBn1rsbJbfRkQBxYB3jF9CDygCZbZGLhCKjHFP25xfoSRkGYFsAmSbbuXXJsqoQmWkEMgEJZAhHtb+Z7StOoLvjiGK-U-qBv+w9bF2SwashcCXo91hE29Wei3CLax1S2GbPPqdtW0oqsQmpepVdvRJmJbtBKbHXFmeCL8gwy-Z4JSUuZjaSCaijyhICb7eVtBu7SXUrN9FAgjUr7LZYT0wCjkxiEO5bUCBp0lsy2mbHBcki+1OKix4OxZlqPzZM71tPVHXemwAw5bCdfWt-Dbrp0AZVaqKYSMK3EosC3MAATlqAm4vdIlZFaoAP6c9eAElZFQ-0MROAhgP4mEl2wEECrQyA3Q9BYBbLKTOuXgQPepHebvMUwdAAvW2tfQTqbE2eoUWoARneBs9kekKO-TonaRR0FgZZPPnIHzSDA1euibXvWBDAPdMmoSiwMoXCACFRCj+DKAlWVabl0SpnQjo234KRKI+56Liod34qdkQ++fVWlW5qSkUgQDtSK0XRuYgQSLQtR2vPgIcCCArYoAEAuRdpzyvYh7Dvvd5O1cA8dB-daCtaLozSCe2xq-tzXt7w9LA06ksmWQDpSiwwOpoEAs3Wo3K46-7qGSRSzQ3MZreEEKwrZitJGRyTZuRxGLVAJlr-MvUCCAPLJL9aFNXWiWP3kdCD0BvA--pEouKuWozBFZXsPSmrAOpsSVaB04yzRf93gaDZuFnVbrN1wayxFwZZ5zCaD6kIEMuN9XmgODxQYYGsXmFSBQACRIQHQCL1U9YD1ifA5QeWRH6QxGAHQ25RTDqGs94h4PeRjomPL8UXOtlPSzOUQ6ogxtZkILvdHUTB1cuvgKlR6SjTHtrhoHUoDjHB6S4RoZrpNy8AX6r9DgWMhO0+HNssor21-bEQcAxA6QLNVFaigQPookDKB2NhEpqYYGO1IDHA4d0PTX6Uj9NEJhGzpBBE-eMJbQ0sif2VtmFlLcg6iigNih5dhgMvXYapUiGc6xAybsweDWsHgOSHTg9wd4PjB+Dvq2hnutNXCGmDIKMo4mXJiVH0U20OEcyAhCXd6jQB39pepkNgcoDQBjowMbTnTk0guxvY3od0XQ1DD6hjvX0NeX1KrDTSGwyVh6O8sutJWfnc4aXizQ3DhyOXYfkKreGycvhgE-4aXog6gjAmEI3OwaC5HXt7zL0bMcv1isS8AAIRCjBRQO8QUYpiblD9KhaPVfALICeCYA98WQRfUCA3F6SugoADccgAOBv4GAGe0kHnuBDVGrQeYJE2cpROmjlAjm2wLojujYn4AuJ4oPiZTCEmcoo6EvH3l51bbgQEyRAAAC9wwGLI0JyY2M1HeTcR2kMidRNoAZA4YdSFiZxN6SpTNJ2U8SYABsykx0+yZ1PcmtjZIPk1SoFNzc0T7kUU0-nnGEMToypyQ48lpBSBRipAYkyXmICPBbAAQYoF0FGIABZQUKAGXEXI38AAdgAAc2plMK6b961APTXxr0wSyFM90-TPVAMxLAcCjFlxoZk0xGajN3RFThiUYla0UA8QKTEyzQC6c2OFnWAxZ8xaWf-aqBTT5ikvNWaDN1mGz4ZlMJGdHQ0AnTzp-M-2f1PWsjTgpiLpakpO8ARSk5wM7WZTD1nCFjZ+c82afzinJT0p4ELabzNcm1zu9IczntRNIdfTJeAAGJQ1RixABmsCAAAiF5nqjGbsDxnEzx5p4BgHwAlTCWk0Dk6ub1PumDT-Afk6ieFOVnTqX5hAD+b-NAhAL8pls8-qVPtnsAnZx4N2fvO6meTSFjc6ha3PjnzTd0LCyjt-OjF8LQwcaAAFYnT8Fh84haLPIXNz3p7cw4D3xoB9zTF78ymFYsph2LJJ06leatM3mgQd53i1RbdNqTnzygEc-0DfMYm7oZRCZAkCOghRRivi4yKMTFoEXLz2Jb7QSZEoEBT0jJ5kxi03z6DezCF6iwJdouem0LFZkvIZeMumWUw5l1tSmCsvnMn8rZo88CD4j0doA+SS8HKbUsFn1zlbIS2WZNPZhGLT+QK5jmCvAhQrll4k8wG4uOmUrj57y+lbovCXn4olvc44ACtGX8rKOoq+FaAsKXLTeJm00ScoupWaL1V3y4Kb0u0gMLtJhIOJe3TBnfFUKXgB1aBBkn6iu56kxGYqBziDpzllk0MGzPsmPLfFry4OcEs1Wyz6FkvBuImuoAYrQIGa5ADmvWWeq0V4Mx2a7NXX-AqwbdCSz2vqWBzWlnS2OeytjXzrNIS69NdmtaVR040ZcxVf4uHWfLJZ403Vd3PiXGrd0IG5Naus3W7rkVqs4eeDMnmwzTZvq5VdhuDX4bW5xG2JYkuXmur1pgk71exunUAA6uGFsCQAJYWlFMDuN6DX6ezfZmGyTfiPHXRzI1gSCXmZuYBWb7N0YlzZIPzX8ARl6k2gHiC4WKiSwUAPOISBq2mTLJomzDd+t+WRTYtlm2zaOgc3gQMtnm-day3FAzkCV3ov7EVj0hRiEyMYCIF5ueWNLAtw00LZZAMWxr4tyW6belvc3azo6BgGVfKtfX+rVVwW0Ne9Mi2xr+ANNrEHAvAgRa9gOUwzaBCM3dNrEFMPgAY5qRQAvixIIvrZO62Dr+twU6dbuhJ3sAyAVO0CHTv035LAoIhuXgUCKBRi9HA4uAFGJ0MO7QYd2-tc9tV3hLftkvHXZTs0nm7md0AJmYjvQ3K7R1uO5lYpsNXE7ydhuzPYzvzWA7Jts20CAtuh2l7ntr2yhdXvC3QO75u6MQBzC6iUdTJ+wP+3mv1nAUdllMNLXVvhhVwch6CwdMJYMA7TFd0eyvbJvema7T+O+6yJMCjEn78HK223Ysmd3RitOi5FNeHvfW0rsd8B5lYnu3377YwR+z3QQdz4drkdvm8vbhvDmEbO5ymyjageEPYHKYeBy-cQdT3t7ll3eyA5+tgOaHw16+-pafzLiBMbFwQIzZCh+8s7i1ik1SeUs7iEr3AfACp2MBv5OLPD7B97cvv9BIHPVER1kDEcSOSh81g4Lbb6BoJUHpYOYGacwfR3z7GV0c1lbNNjX9HXFWS+I8kclXF7Ud4m2PbXt0ON7JeVx4Y88eIP97UtzmyHfkoaOBrOD-h96ZizFBs4uj06o9edvqnNT81tJ0BVIsvXonp93h9Q5fOCnEnyT-y4RYhTEWUwqpjUyJyydEW2zKYOKyMASuwAkrtj3x3w+KcJOLsSTvgCk9Lwdqrrz18i6HazvZPgQIznAN2aacRgKgn1yh6A6KfaXUTpT-p+U6fymPAg5jh21yascmAbHiDrZ3bbeu5hHbXd6p67a4oxPgleUO9IkDQBGXHAP+9I8wsQP0LzWcyVA6NfQOv6ijuB8sQ9lUKvYITL0YHd9thNZBDulaCMsC5qFI6qiok6YiiPDNIylm9BylV8d+NIB-jskRsHC-cNS6ZqPSandHWLa27hU3zkTRK0XWtTPIW7N5ngtCm7PimTEUtPK15GFsyXtOvXdKipd6NL2ZMwwPQi6YMvoyJeQKeq27YYhdWCIsgQ0HYALkHnTzlZzXScfmKdzk1nZDgA7ujpndvL2CI8A7ugA7KkNni72bJADx9barv25q9QDavdXQwfV-TsNc6vFJJr8-FDa+vLGhAYoIAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARjoCYAoKOJVURNAfTQBTADbg+ggG4BDYZClJoAcwAUaeDngBKUAG9WoA6EyD4kTNB79okHACNBmVeq0GAPq-2Gvh3gPiZEJScNbVB3T28vX1tkZGFBKWhgl3DI719rYWFk0LcPNKj+GAATQXBAwWKcgG5WAF92GAQUC194KUVFSr5hXnhkgBpQeAALQT52xW09L2NTc0s+AAcpREc1ENAAMi3QMakqjZcAXlPhsYmO2oaOZu4MqRxBHN0IoxMzVv5JruKevsGoAARNBHoIgZpro1OC1QGgAJ52OJ8ZBiUFPF4zQxzT57BJVdqIbJHTSQ+rQu5fPhSNBoRCKaBPaD9EmvbEfBZtDq-f5qQFAml0hlM+AQqG3LgWQX0xmCZkCRExYnOaYRHELfYE1bZTXKQnKkKksk3JqS0DS4Vy+B8aSyZ6srHveYWXX6vXanKk8Wm2G+WCoNSJa2lWDCKSYeQtTFqjlUn7dXp8o5DIH+9DteUhsMRyVi8kS2FpwOZwSh8OR1AKpEGlyO9Uu-HuonKV0eklG70w7hFjPB0vZivQG0ySD2lVsgz1vEHJvZN3t40Us2+aQBKS2eJ8LPlyXR9nOxbxv6JlnOFOrxDrzfbnMtPMmrsWC9X8Y3wdVpV7yex6da5ut5sF0XAtuGfDdX37HcWmHO0vydXEALnNsVS9fMfXufgwzsYopHEAAPJZjFpKMHRjA8uU6BMAWTYEsNsHD8MIwRiNQe8l1hOiGJWCMnngBw0DgqccCkJZVEVZFUT4dFBCGRDPWA9CLE43CYmKeFBJ-OT5xQhTH0Wes-HkQQRQ08jvm5KikzPYEDMDPiRTYkCLAMwQCKIulUFMhDG20w1O0pRY02KRBJRkRj3JI8c6x-CieRPQE3gKLxU1QYLQuEcLmI86BHMU0AgvC5ZjEOKKyNxE8+GMcBAQYXSAoK1zCL4IsvIWCqqsBZg6rNBq3OpYRT02aKD3aspAQAZm631+CEABHUc4DHIays5czKOPajrKBOaFtgcEpu4YSAGtxh2uU9uSNBVX3cqAW2wR5vO8EhiOK7-LNM7FsM+yrQEh1DBWhsZ18rQDoscpMDUb7jKtS7ru-A9dVesH3ihuyYeZP7nCuid4IWEG3rQvTfGMpZ4HhAQHt2pb4Bx4bcQySAsjh97pp6GlrXRkzkdxqdGeZgnUIfALomEZBYCOuC8bjCyNqsjQUw3cWjtyvTjvGJWJdapS7s1lWXpVVnuD1vhVPU0jZk0nzkL8omRf4ESll6WBB21w9Zd5Qb4BTR3ncHVWAqczKWKSC2Ee84GbdBo2pUwRQseWm6NWt5sQY7O2zWgZBqTjgTkCWOnAcWTJsnzwnhbNCGofDFQy-h6Xf2UOuY9R60a7zgv66nN1m-JVgQAgRSMHAbA8CIMhKGoegmAYdjuEkEcjMBOUJC7mKZpEMQF9kSMghJRLvAAfgMI4D68AAuYuwRyM-DGPsXkCOyAlg-ZFbVHMTqxRNFr5JIYV80LfAwl8-QBl7FuSCt5PL7ySqAY+29mpgKDBAssUDQ7WQAUA0AID+BgWvJA12MCkrwNtMONc4EUEDl3DRTBsCcHUmIpaZkN9YEkLChaWUzCaHQFXlg+hQUQotDCo1CK0CVRYLYRlAR6Vg7ZWXjwwBdDFjKVkZFEIEjQDqz4E5ZQKjuJgj4pDHIAwsGwMiCos2xjTFmK8LQpK9DPoXSIQUSRlNHqLVUFTJ60MRQJy0P-BRfDFh6xYcQ0ACCQncN4Uo3wtl2g-S4eI1h4TSFxKMtzDBgSYkOyWE7RALtqFJLCb7dS285B8WUEHERWU1H+PCQokxNjzF9G-jBUcAl27GPqavRR9jwmYGwOsLaABVaAR0s4AHcLAImZFIPCoAAC0CyUmLz4gHM0JTKkwCGO3euiBwCgGUL4QiiAcCCIkOMHRHBSS4yTlKXJwgKYnLOUgC52jFJbOgDs3OZJDB1HCcIIQPADlHP4P6HASxkAlHeY+T5NzHSGB7KjJm8BQDHBWTvCpQdLHXMaU0sxrk+LQD+CvNYqATLWPxYYIO+jeL8ThXiqlNj26MqZbAqpPCyWcP6Nc1CkQ+b8AMu-Z4REUW9LMcfIVI5xhpiJf0UVA1xVKJKGUCoxRah-IBUChFBgHCDM+SmUZ4zkBTMHnpcmSxBCLOWSUvMfyM4cRaZJYVAlGpoACavW5Dcs453jsoN1Sqj6gBLkAy+Kw1j+vfkvKubc47+oIldD1mhWU2Iqs66VAkiKxr9QGpNKMEHSKERlapId5GeoRQKiYmAP5lKXr1JqTESohDzaYyR5Tnj1swIg9AXS7F9NrRUzt-UvbJu6fm0hjiaburHbc-ZhySYQvJm46mcN67eCnCq8o0BKgas1SIIFc7QXszRvEjGXsrproKFOAdzwY0+NhsjAYADd0GH+fuq1OrEVgIgGsE9Gg2lWvRdYm9lTf2c1PRkjQibn230PbE2MAHQOQ3A-+4V8LrFTjvUcADL7vBvsBR+jDP4EGTuUJS9kJ70m-Thk+hRuGvANAYw67gaaxAwA4ZUZQ0lC6WzMlJJm2RuOBrvsGgTt8w2rEcECAAVOxxh27ijSaBEMVjfA5NCgU7OLjYIL2QgAJBeGY9Ml2Q4oV9lQYOPxa64Mb3cU4lCXqv3pjhNjNFcIvFfS5tRkk9G7mLFJku0jyNrHHxDTYy+js5SHBMyiSA5mqEtAElhiDD7sakhTUytAMWzOUKggGZQWjSPkbZZbSjCTaarr5Xugjjnw6rW7cWeLeX0HqJsffAEPZkFvklK-GspJrH0LwRBCzhTWtNPa3yIbuW0G9c9ORy+JdcMNArrCCJYstZRLXUis2bmTaWJ828JF62ZAYHRVlxIsWmtoIEmbX5Tm1CgHUzKSop3QCqaewyTjx3AV3bqxYEDZsMuwMJVF8QnLsDct0eLE7QwPsKenQA8dYU0nlbLWuoSUgTqVQQ8KsjVKQMuTcjUsRzbitJURy3BBHDIPexnQipFwq3Mgep1aRDf8x24Y4b1xDLP5QImrF04VSbcNTmFZT0hU3uu1KTbcrn-OlSIclwQnr8u4hWIKCBpXI3oK4-ZwAoHHP6gAychihr4Cpck9pwA2X8nue486yWbXlZVd9YNyBh3V33y65VEmt3dG+4DycsPUeBASDkCoLQRgdBxpzzjNW54eF0c-nmacdF-hRwty0To2lJh+JDEB3Tt4U54opQhVC4lMLKTKbJznwx06C8wZWxhRBZfoVXKT3xo8ntKkpnBZCtvil1mwhpeWOlRjwAd9ulDDq4Ahi1Rbti5AalKmT7ai0mfQwuoL8UmDiQXKTIT9ucX9fY1Z+gEmpnzH4wpWwVlVaVfOs+RAhv6OZT+VUBypRvB50ivpUP-dutN3kLjZDjtKkPtwC-jKh-rDGhkflbJHM2GhvmnAGLHSEoLvvvrDNbhWj+G6I3rHj+shtojxM8NgUXvAVUPgSbudKgRrOpCPGCDLjoIZrxriOGo4AwU8MLuSEiqMOMAFhTKShDiKG5otgQVniQZ-EqNOi6v-uwVIXEDIRmijJwadOJICpUiQdMCwX5rqKoSoSQQBklloboDoX9sMB6PoZTnhESiSuDuSg+uoUoYCvnjSPwQonASNHKIoKMAoT9mimcPEEoL4baFdK2qAPIRIb-E4UMKEaOrYG4bvsJt4JfEET4SMH4TjAADxvbeEhEnbJGRDwIDLIBSYAAqsQmiiQ8I5occNgv0cIz8eSlQl8QIoAAA1KAGTt4GoAEEoPsubE4doJ0W-m0Z0d0V4L0YEIoAMcoHEYUSkf0vqkCBUcgBAIIBMrUYoPUZjI0Q8ogC0cCB0V0SVoYFMf0eAIMdWDjCMSmMcRMWcf4NMbMfMS3A-E-C-C7mzuoUwW8NQTwj0LEKJGQQUCbudqHDEaAHEbVuuuvPxszC7mEacfAgCQ-KJA8bYigcgGgYoBgcIVgQogsUoi7gEeikjEMRiXAo3HEZSZfOCVpoiaOm6K8bfIxmkIeivKSecPwYuoIfYdypemkHqqUX4YatADECUMGmCHamkPhtqtYkiqoW5neqof6v7jYlOPSaob1sYWCMmpSdSoYS6poXqb9nhm8GyeYSvICfnGqavC3HLuod8dWLETIL8V4P8RIDacCR4Z+gYGCSZpka6f4X6bCXxiXJkUSUUd0t6XjqcTQdidMXiQ4cwojmTnSeoVyeSdcVGWkMfEINaLqKEcGbmZEHSYGfOEMUMMyQUWaQxiceySCpyantyeILycmQKTCbYiUesD8cCKMhKcSlKU8NauaPJg5HWdVvKTYoqSQcqWBsQdfDBhqT+FqYYYiSaU8Pqacd4NqcafoZOa+haeQQeNaWiXaYuP3GAEHlgLgKHhPBHtPHQDQAQccgEC8ogG8lcjAGvJ3h7PFBwCmM8ucvtC3MBa8uMKck7Geq7NcrzBQVprylCEiuBZ+ZckPG5vFGfCXpqG-oYJqE0tuc0k-vqHhQYPqIRUDiXuwWRREZJpRdhXdCeLRSeAxWkCXvzMIG-pxbAkRd4CXsFGgE7FIPCG-oJcJTUUlHxV4CXsKZgGRXJTYtJYYCXsJKMNSLYGgMpmpSMBpRgAUMpQYCXu0bRYYMoHhEMPCNoMcAAHygDzKdGSWGVvZ3QLKmUGDmWWXWV2XzLLJOVUV3RKZDCRCeWgBWVoo+WgDSZhUGDOUl7ADuWHIWVhXeX2WgBgD+WMVP4ACkiVoV4VtlaV2VMVoAcVd0qepl+VqVKeZwVlAVT+AAhKcJVclQVZFU1einVVlf0ECFkXla1dVaADkQYF1exXdFkccO5VVRFWlRNSNWVU-jZf1V5TNfMnZfNfVT1TZZNcFV4NNYVWteiilZtcoECA1YlWlV4IVQYA1YYInmfGSChe+SBZXirk4WirfMJKJJqEMKhV+UPI9d+n9ehY+CiLYAAFali0wfUFBfWfIzXUXPUQVv5yS8rOXeDA2vWJaA3OaY0e6vbxQl6bpqpv7E0Kbo07n8V3SEDQBbohSiXBU0103kwU2U0qV3Q6V8CkCEBkWc3c2s1s0uVP6c0ACitFotAtbNJeAAclINLYlbLdLaWacTjQ9njUgnzu9ccJ9SJJUjNXoaOuremEGITE9aci9R7kYTDWkHDQcoVajelhEUjWhWbibWSCbiUkVObRBVjZ5IBVsSeP-p7YEGpsSg4I8kmeDVINIFlgEGTHGfipjVBfECKLBT+QbgUDXIHdUN4EZu5qYC-EISmf0P-iDhXkXZDsVpFsSsoJjUHIiUMAaUbY1jqZLYYNXVUHXTvsgBDVDdOk3c7W8pbbIRnZEHwW2WTHyXvvicyIuPEKiuPYoGLAkcWvySIWdh8IXWvbDGSFeWapSMHneePOHlPM+c+QQbKhGAgHwI9GoNBMJJgJLENv-ozHYA4C2CnNkM-f1i4o3G6DWeQvEEaMcUCHwGMS5n0TMZcR-QgV-eGJeOBEaOJn-R6N-S3OCsJJTPonxCVJAzxn5lILALADYEzEvKoDskQ6lRgJ0coIQ7AFyUCG0cfIw9gsCHcZ0XQ23UlIwwbHgyjDANxEIE4JA98vHKI6HYI4INMHpiebiOcYoCA6dccRg7hEINg5xnDTXBI+GEIKIxeiA5oECC3AIzo+MIYjgLQ3HC-VYAJpY1MLfMwyXECMg74PFDXNoDsFgkehGW6O49oO4Cg82H46AB1cCIfBCA44crqO4ww+E+EZfYQ9aLfT1g-ZLO46YpfEer7Pkq7DE5400g8BiFUkTqWn41Gcw0o50SY5DGYw4BY9E7nHY8A+MU0m0eA18ZJNJJ8pSKop5MEy0zYm08cdU0IBMHUzA3+NkJ0mU8MZShCM42YpfCM88ECMxaI7DtAJI2M5gDgD-WkPQvIek7-cs6dTRSpgCA01MNWR6H4xs1s+Y4UQ4k8UEEc3mcCAAOTgM1wgOfPIPyOzHuPGObOmM32jiYDqSPTgvWPwnZBPBv2OC6iQujWC1GV3SJDFCjGlGjFZyig+y0gOC4s2RMz7R7PRknOItgt1UWHNhIujrLPbO7PIPkuNi0vXM0uUt0vAs1OgsOBWUtxR0x2wBx3WjCpFTixZTxpLDQvZMFJRiNSFETY9Uyv+xDDFNMSlryuj3eBw0Cs0hCuIBkwAZit7S0h6OStIMFD0JdPyuRMl7hMvROmdNLkESkuLGNQtxIsKizJ4TGsSvyuzogq+DKu7jyuCmKk74klAYFAdM-xFM74lpyKhu+ZPXiv4t-DtxuZw2eszLtA+uESpvTqdJJsHyYYRuZktlAg0WRPyG6j5smtCDps-KySf213YD1vdC7KusXz71vXVgMPMXVtttZQdu5zIP13ltnBAi6ux0GsitgHVuSbdO9tKhateA6vR16vCtGt1tZRmuhuPN0URrjsulO0FsjvxxmlylWo2ZSTOtSuCnH5P72twiOuxukEuuXtaqEb8rEYERLZ50WrvtSueEMz8DyE2u-26gQf7NLEimNRinGqmoJuwiAfgEWB36Yzmsgf1bgcuuRN4F4eWuweODwf9ljKTL-YlPZTv7Mi-RodjlCCYA9bwDZz2DUjFClCUEuvYcWCAdYcVuCgEtGN50HDpv4tMfQSWL+s4GIyNgYcVbFsNADz5wODvjtDgS-VxbmhDldDwB70jx3mwAjAiSGLn6HJCABTjTR7R6AIe20jizKAnTwhDDGD+iYDFD4PmGcXKCuelEeflOPZh1bqVAZPhLzQyCOeCDOeNy6i+fue6aUrHyxelh+dInhYMcOdOdsvZBxf+coxaLqfxDKBbbfrfaXDgSYWBWFeCBKZmkm7vHPyRcUwMBDBOd8BdQwlIpoCQC2DVduaCiZdRd8AtfUvZBlfVdVaRCHrde9cvhclk2VCCk-sHgLfqqslftdn3aoq5f9f2ewBNftfZeqA9cTeHnpAgo7ctmrdLdJQbpBdqq+aRBXubfLe4hui5dndMYFCWmgA-cm6BCMf9BtcjdtfMDBmjg3ddcndzfooDf7fA9HfjcviTfnfmfQ8VdXf3fk0vf52XDNhI8aeUnyHxQI+HuOCg-g9SNcM2JugE9AMo-1nvo49IqXcZfw9Ddg+jfHezeIOfc+AXcpfufzdY+LeOYGZpAFl4-Ejo-xAmLi+U3yHyEU9Ql-6rslbzgy9U9kjy+-cbehnRsmBS8+eC-FCU989HnffHkel5TiXyBGcFY3dCT9uxAfELP4r3wu-PzFaXx4AVsA9CfdHHz+9MfdGXxyUFYIcUegAqdoKjnVcykW9+a2-wBGfIXfox9qcw9VFY7VfFe1BIq6duYZ-McvinUNdLB5goVaforF-QS59AjB+iju15RaK2CBDBRBBDZm88dk9zHwMvhm8txt-EpJlDbKDD8d9TA9+6gT-TEoyz-oG44L9T8ydvcejL-z-t9Jkh2qld9YB6k99w99+AMyT79bnWG2HH8IOy8q92iqsmGr8LCRFX6mxb+d-98ae38Q-396ktwA+9iXgKkpHVQhs0HJ-BVwfAYzsSniCYA10Juf0EsFKTcdQyN7VcOaxu5eBtsb-BRuimX58Ad+khYAVoUe5hlcQy-YXqUGC7FAycx8GAGALISQD0WMAyVj-y3Lpl38iA8ftgMQwb8zuz3G9rh3vY48pw8hBAepCg4fshgYgrTPuxIHPd9efmd1qySt5+ZpB8rFuL0QSA4BqQuSUHKUDDDwhOMaAEbvoJErdA0AHXR-lSAjLGCFWoAUwYYL+AWDiuyDGto2FsFq8PKVDfwFoJ0GWoK8DgowT4MeBG8PBBpSmoEKcFdQv8tHTAPEGjoQQDBRgkwSIDMFRDoWNg2qJE0iECBmALgojm4JnBhCqUxXGaoEEMTxC3kkQ5QDkOcHU9YEpQwqpoJCHzhaoQsAgs0O0HgAww6gXWv7U84Nxuh8gIlH4GMCPBhGvg22tsjhDtCTcQw+ACMM6ETDHgGQ2xp0LsFhYYO5Q8OgkCqGpDHBCdJKEjGCG7NV2jQuyvMMWEnDlh2g7SGMN2azC8oZdP4Psgax9AYCH-G-jhFpz6FbkWAkfkoF2zcCCB18PflYVkYLByBmPSgWqkibPCr+A-ewfIFYFSNXBwwhwEODUr288BS-bAaOm+EoiUYKwBYRiL4BYiMixIoYASLP5SMe+SpCtuAG1CVA2ikTIEIyKJDMjkGVMCLpSKREuBImSpAwC41wThha68gbQHCJsKg5XhRYd4cwl5HUj9Cwo5YIu2JEeNdgxyRdt8LsHEjDEmIu3hkTdBqjPBsCN0NqJNFJRdRpI8kRMzFH+JwhVKXUOaIdH4oDyyDNkUyIxYaDpi89Z3NcMTw995CyVc4aJiyAowjOpYI6NSCHCCcJOfTcTpKCGCeteRnrX4fTm-Tkjsc3XAaG5itHmAyRBo5QMmOREMcCWLQRuiiypSpjiBEIiwJmIVSooGRnot3tGU2Flk4QPokwH6PuEFYDRWYsVMY1Gbt9XIdo6FvI1tFqiUYunUYVoKa4g8oulgw7N+ley6c5xrXBcWaU1IUDVUCmKkiXFYZoA-+YdH1m11RCji-h36Jzm5lrbiiRccJNAU520DMNwmrDJzlCHnqgAyiAACRFp8AAAgvgHwAi0AASmUUIAAB5aWtQHRRiECC4AEwEZwYSA9EsdovUYSJ76QAhxx41CRiLsHTjhxeEDtgmJQl5joAB7acTIAyixjJQh4vOhRKyBISyx+Wf-N+N-EASgJoEiCVBJbj4TjxRE5CfllIn-5pxSwgiXwFPHVQhJeLASdAAWSdD6OW6MTjJIEikT0JVgiBr4PmFw1yM3wmwBFW6IRiJY0YxiXGKSC6ScAv1dEeYEJGeD4JKfXStRJIlWSvkNI9oR+OrSbh-QMAUzuigAAMtQAgtugmSVRiWfgv2D1kQBVB0coUrybELcweSoC3khwMcQYB3iDwCUxBElMwCX4scQUshNf2eB78MpwbaCJFLkKLsgQz7eQsVP2KytKwkUo7t-RRjGBpI+Ul8PwECA+diWJXZzDVLyR1ShwkU0QhsRCmbgSp9UqKbhhNw+DxgEyGQJLGk63xK0aA-1iFmz7jA8pY-Ujn1PCmlTiguZA5ou2g7JJ5CM0vgHNOECSwJB97C0YYDOkXTJYBHe9gdPCR-sVB5he6fNK6lAMW4pQfwR5xRBJBSOYIh-n8TyifTLp-qG7qgNFFU8ceHJcLnAxP7-x0MTKbuPHhIGM8asCgyINtiBEAjcSIIjEKf3BFoyfwtgbcVQIxLHxGRBGDEpfAhmSwcR0qcfgz1lKsA9M8gojHxnA4SimUx8RmbaLhkBNBZeBLtoswgAnZBAcg96Q3EFnqC86zw-AWIEhTERwICIz-raDUlLjnMUI0AHgKJmFTPhJMmsVEBBTkDQm13GEndwGIFj7JXAgmTwLxEVjKxBgLWa5JzoWkNuMMxwLaHhRs0B40mIObfH+GT98Zk-fAUOF35ukPZS08mdgJCZnBVua0mALbJtFd8XR+s7gbiIJn6k9M+c-0loQGyvTL+e-d2aTKnLXsQUf0qLPwE8juyQZppUwoHODlXofwHojkV6K9lM9Qy16KUTXTLkxyK5R5JvBYFTmXE7Z9vJYCNyWCc80xtYmkQw3ZHxAMWrI5eZyKI7cjsg0836l1AFEkFlRaA6eXzLeZKzXhqsukOrJ3kRE55RcojiuFFGzyT50ZM+SrOxKXyius836iN1+HpUwAQc6TMqMV61RtgGosDqqL3nHNoAacwsUaNqi3TvARorqAgq8DjyKYNo2tvAszkFBa2yC7BWkDdFEcO5K84TqPP0jEsnAVGWej31iiWRTwVC2nM-mJb0c0woYTCVGASn-45InC5qaFMsScKaFNjAWB6He7dTxZBgRVqdRkBzT4Q3wePBEyI5aQPQPClGJ7VwgJTvpp-YsSSOsmgBqxB-dMc5lDAJAhwCU+KXKDBBtTwIHUpIJwtwxIo0F-YnMVGxsSOKbR2itCS6NYWyA5Exii7JwpQWRB9F5-BeY4obFLzmxkTNsW6yjR8QeW4LTRabCXzqQ-Fpi7qRaJxK+ihwSwsJcxDFRz0TAn4n8XwGAnDIAAMiLWgmhjhAAUuYQhN0oJSVJzk7WawQWCYTIK2EoSZE14mlBCJfwRpThPMDkTDelE0acxDz50SRlDEgZSxOKWlKKl+AHiYbwIndABlQknvp0L8FRZDhsCESdcLEkSTBlZEwJd4CYXxA5JJwiEJ4L2U9jKpoxBKRcvuEQhVFDyCmGsuaWuSNlJw7RD0O0n4ozFhVbomorGWaLLJOilyfoVsn1KxlTS8FYSJRh0gIUm4JFkWMpYqi4VNImcSsK+X3Cfl8gP5QQrnKAqbEmyjuhAiSFVAycikkyTRNRW8t0VaE1yRaJDGe0BlHijEfCoNzal1h4uVZOMBRVIsURWK3ZheOcyzQOAbmVcXx1ZbAgb08S0SpuJ-DiqYAlM2Eb-URXQV5VdK8FkKvWHINlVSQeTgJBlXcqThX+Gxb0tL5qjBFow6YhOPFH+NXAiwNATeOjh501ApRcYI5PqmDTsJ3qsiQG3nQWrXIpff1ajLSBIorx6KA5UNzPFhqSBSKYhgMlZz+rhV1tErDctnFZdgQ-qx5VoIT4Y04sTXaSUxNknyTV2hzYiagCGAhik1LUtuFWuyVmrP2Pc48mQo9XGAxlkcyOb0s0U9S1azktzN4vYWeQ7FbwG9gRKtXOTw1uMy8VFzcwxqKYZ4oSQmu-R1rWcGUzoemrZSZrxh2as5YIDzWPAC1XgJYEWv3UPLy11iaqcSxrWpV118oTdc2qWx6821BBUTl2tKI0qowYam1Rot-WRMP1-6xtQew-X+raGIGh0hx2-XxiZJa6DtV6sbXdqCJEGuDfYvT7CAlJpa17KxP-GASQJYEyCYsreC4b2JBGriVUsrUyS71M1OIFhtMmExWlFgIEI-FIXvroNGigRQigQ1dqQ6KGsdZgIw39LiWOGuZeUsqW4ZcN8yypbmMXYJSaNhVOjTCsVUHgWNKsP-vwAELdpwaHyANDaojIBoF8C5NMDps4CSsBhU4a6eXAIJZptNpoV1Amn-xPTrN-3TTe2UEqmbKQ5m1YczEM15070Hm00N5un6Ng-NZC2zYFs4AObO4PfZzSjG3SKAjIfwFFXpvUlWbwxqAcGsgE6kmb7Nuqs1Taq025bYUxWhAGl2jKmr7hyDEzdltsXMRrQpWirI1sTQTE5VKKu9I1uUDNa85lYyrVoPaFnqlWxKUYm1spZv4atgQZvnpA821aahvATzbTHy33DoWWmyLV5rW20wNhYme+bEMqGJC0hOy8nLEv5WUskMUMDbXNrQALbE0mK9YXLxCqpUZtnUiLfNvs2XbrtPW04n1pWGLhBtp1LFimFG28sxK822rVNoCgJal4LKW7QVvUmbKtJutcjPSJsocyko3nIHQksh04MtVuyE5bAkyVdim1PYg8oAh15BoCdLHInbOKVEFyFsAme7buXXJmqoQf2kEMgEJZAgMdDNYNIIES18RwdZoVyKWDixAdS6x2lga2SXo91hE29Wevyw3YztDWuOaHd9pFVYhNS3yhHeiTMTI7TEQu4hhUn-5BhABzwSkpcxu0gDKScxVVt5XCHh8JALs12WR0Q4WBiRKvTAKOTGIcyC5yUadvqyV1gELWySCnd2Op13ylEJcLVqrt+1Fqp2Cu-3XOztAjbjt8qt-H7q3ZoZ8+GYuZFuF4ASU3MAATlqAm5xKBg4VaoDgE2889ZezZSFHfpqAhgAalAYGyEXKgZ1eGb2SCgsAtlfJGAwwKXpErKB3m7zFMHQDH0nrK5OPAfeIPcFuqbE0+4VfgMMQ3DQhdSCwMsnnzKCvu-e6vSJUX1171gQwYSD62n2qLhAMiuRR-BlCeqlt-WukUzvuEs7Y90ikSpfueiyqU9SLN-C-tkVVoIetSvKDu1pBarAgg22Ig4BiB0gWaoqh7LNDczZt4Q3rX1rSDFE1MjkmzLTiMWqDPLcMh6C5JgEgP01E56KbaByOZAQgYS0+06ksmWRAGMASLHgBgdRTWo3KkIBspECoP0sBVXoXXj3J+6HpU1LHU2F6o46cZZo7erwEBtClfrwNYGpDZYnENnc8DEBxMuTGIPAg6QQRJvlPt33qQgQNBpZKWNMnmhRDxQFgzQbFC8HsZP3LmQUCoP6GDDyyBgw2IwCOGlkE+gwAvqWHWJNlBK10USpR07kuDp2h0UbuZAm6ixKImtQ7ogCpUekFornZEY7FKAsl5ekuEaEvb+aFyiQNABMnfqgG4s-a1FHAfRQIGkDdB1A0IwKOoosDOBnWQ9lUKvZEjs0F6J2Mp1pGBMKPStBGUaN2C2dVReydMT5FSBnGemJZly1GYoqwjSAJeC0cbi9HojNumaj0g01kIsO6k2hXLH6Ckc7ll5Og1qvebUTlATugADqsB-1ugivEIfAClELGkesKl5RuRUoR9wIfA5AdAqsB9jKKw4wmOOOuyzjFx-6RMGzg3GdmYoiNJAFiKjpou8hSE6AAABejtUAGce8Bkrrjtx63Q8YRPAMSsLxoEG8exIfHxe7AbI+gDyOOBDjlxv4OibBOtVzmT+EY4rFGKwBRiGLUkO8zJADwvjp2yk0CZpMWM6TQtJVqMVsDMnWTzyvE2KCAA
http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+NeX7iykHuyqHlyvQK+Z1DFEMAgEYN6JIMIuKJgJGEhuHcajKhuEgfsDcmhKFFSTZlrrRt-XxLcUYPcVfOcXYIsQA9Ii8MAx3EhZFo3JAwjixOKBzKpqIBViMZRAofoHwLALANKqJJtBIABOQ1lRgP0bsuQ9yTJj0V4JuD0d0dMf0WQ7APPbcBw0zkQ2oU+jAGZKYI4EQwBFNNI7iWI4MKYMBAvCeSufA5MZuJdZMTg7yKYPg-DH9XODHeI8wU0crOo4oJuAjvI2qN6quDgLshRD-Rjo3HOCAzJkYpuGgwJioq46AKGk6NLKbouq48oIqug8E448oL1TJh4I+K3BBPOr46EZuLE4ZF4I-WQ10K-b2B-ZGK4zjMzHzh0YLmSL4-46OHXOWrLsJvLiE+kew5o-0dY6kaqPY4k1NA43YMAycSaD0bAyWvpmmtU4VqU5Ez09qH05Mc07Y5gG02A507OJE1A0nI+J49qElNAMY5dWxbI8UpswozMzgMsRMJiBwfk9CKANM5dXRaPCou0108yb+iE3s8Y1mnY6FJaPA50245uAAOSwNzjqP-NoPPEIOXHfNWP7M2Mv22iYCGjehwtOMGYmrhB-3-VgIIuTX80C2bgdDdB3FKWlQHjwB3HwirgkulRgzHCPjHONBeBXPzqYsHSLpMsvMHNvOzMfOXNQsSOMuwvNU1m0asvcuvNMsI5J0p2wBp3rov54Thg-R3RIs-iS7IQMhuMHbKslOKZyDDP9jy5qt92u01hiASuAhSuIBsxRRyv2hAiyPTQpCoMnOppkFEjqv06xPHZ6ZThppqtcsMgI6YsZDngEjWsKtquoqexFMC5Ni+udnKm75ZkNkxADPetVO741Nki+svxvXytAguqAQ2x-WBunjBuhu2umOKsHnWn6Cy5ZmxrAWMVrN0sMVrTzrEi5umCcSAQHTGbts2uds27zxoO1vkYsOya8JNthR9s-T5tTTDsJujvJOmup0WsyvgHxMcEju6KGv+B-XLvmuWsXRlt0y3S+tcubsLvbsQUduzuUQmJ0IMSFMGYusOvCkE4dZF4etXxetlqVBZtiwPuwlqxEgmKl1xp1TiDhsUGLbvmMWKvxPzpqtoMqV3QSnlRHj6AZucC1T1TgV36PyKskMBpwdIcXOEGuvIeikMhof7gYfcAjOcD4f-bgVkuYC9jwDIAKQnCRq9BgJQcqNA4QeEfJOscksI48fNqmBsfCIWb8fWF3bfpMf2tMYMqG6rhfLzAvCA1QLYSaSgDOrwDn33mwAeo1iqigDjYQSmAprjZ0C2eTZPrwjhhiCSgN7hStCYDdAwkCcm4mpaAedef1Pcu9DCwZQFOcyCAudcBufzrzr+cVGBe0ulHoPxeeclFVjDnOeuePO0apeJeX4EKafHBiC+ruLhiwhFcNSU1F49yVfDwHmdQfHJA6audGAMByCte9aTnv5E1oCQBZCVc2xOewBRe4TteCuNyFKdooNVugSMR9cDc3IsP03dBvveRxwrdsmGy5SKkmiXx5dDdAhZfRdGA8o5d6L9eVfLomhSwHehErdre3BjSbfHQTkBlPdxyLp5ezfmnZxizRCHroDkujdtcdcndnehn-7deXwLeDdSTDcg-jeLpTdXc-ePsSCXdLf3ex2herfddPHaCdq0Yo83I7vogcF5qtfjccGdclm2ie0T3uDI-ld5Co9o9vdKnTl3eZcje08TcY+LczdbfuC3d9AJfLc4-Wp4+wlLyNAFlE8XeC-HCaiy8YkcE0-g909cD8O2R7qY8zdUSq-bcSz49y+E9fdi+eda9o+5zyn-f-EvRSUiAmd4KPetJjtNepCTvcKe8pBdJBB4DJNpRSckuzFeDB-kuzGrFFQ4A0cVT6Bqf3JDmVdjnsnyf6BO-wAmdkyXyJ8adY91FX7TfFf63iQGc2x5-sc3LbMJDNeFpoU6dSSV-CKVeXUR9seFoSFF9ZBpQ4j2B-7IPK+Q-wFEccFIbW8s698J1IaBJT-2Dh3zo9-vTz+T-L+4m+xL999dNEeLqb+ipf578YHR0Lnj8zlGFEcI+n92EI411N2n8gF2Gj9wdU5z8OD3--46s6G86PCEfQeAE955pqOMTcCsH2NoHBIYQAkwnsylJl4pERgUzppGOCYBfUD9Q3B2FdbddI2P-WNu91mTTlD+dgBxK-yjrFgFykAr-sHDjgECJeIXKXkMnpbQAYBnEOAQgO6BIDUOZ-bXkMiCCtAUghoAgTsgIHXdxyD7LARwRwGUD2CcHXgYaEQ6usDoMgjBpW3Z6AdJBk6f1n91t4F5FBarBHMMT1Q4A4QtYRwr0AGDpAbU43UweJRdRoAuuf-XznDjQANZ4mVg8wZxFsElc0GHBckg1jJ5WV6GoMAwUYPqhl5XBNqQIWEAV4SBfBjPU4mEPcG9Yv8aUVUMcGTq3IzBFguQPEJMB2CfOqaKMs4IubZCPB57ODj4J14lcFqyQuOnqiIjxCxAxQnlCVz8EmhKhZVfQZEL3QNZdc9qDoYYPAADApAxrMiN53T4QBBhGkDMFoDCCSMghyNGAMdh6FPYJhdQKYQYNmFhAkWCJCIUc3iZGIvGnQGoWkNOAZCwEx0ckjsOVptCnKAwkQJML6EbDDBPGaYUcyWHmJb+nEMCGTV4T6RT+PIf6I-z5h2JX+RAtfiQOIhSEr+FAsYdQOx60CRY8TD4QP3UQmN-hn-Cwl4LuGrhiwWlF3gII36v8DoaIzgV-iVDwBVQOI53kUTJFZCRA6I8-vYM4FjtwAs6DKD0XiabgWRM8NkchxtCRcaRoAf4coHiYqloUTrRDIMEzwiBhRFzD4VHQsCCQfhEIAUcSLsJeNYOa0MkcoFDTEc1oQojdliPTC4iiii6LUS0PRCLohR5o24GSIpFGBjR6LKUc4GtHbl50Vo2IapFNJoNORrI-FnoNFQb1tEOw6yuHQ4IZVrh40RaF-hM59BEgcIYsKJ1KZ5tpOqAOQIGwFGBtARtiacsaNqR9cxINsW0diPtFUixA6YukcOXJYjA5AHo1SJmOhEF5cx8UZkb6O96Uh9hTrHEoGIxTBimxTIUSGvUdL6BIAqRXvoSCdFItQWjorUV-gM5rCZhrncbq51yF4DeuNsAzqNyXHRdt8eQyJLGhW7OgjEGRNADjljohtWuZQCcaikviucbYbbaUaclSw-9XOygdhrEwyKucyYG9UAFUQAASstIwAAEF8A+AWWgACUqihAAAPKq1qAUkMQnSmILaATOknKsQEiLF6B6R2vIjiOOgpninRFItxnOLHEEh82yY3BBhOgBcs5xggPIImLaAI4aJDcVCSmPQCVDGRf4gCcBNAkQToJsExiYTxIlkSQ+cCAidiPDpziHhJEowBeLqyUSDouLciSMCvB9DwKwsLtkpPQmGiSoJIojn0OIiDC-qJCf4dKliqzEYxEYeMSxOQgmTY+DFckdiKwn8NwAyEwyvRLYmUSnJX+LQJXEeAojjAaUIKKJGwlAiuewU4IdG17CIBugohbYgWHCmasvk0UkrgbE6iBCTgh4QQJGDk5wlM0UiQjsdDFBF90oh4PydXyAFUtuOEuLVsWGikZlTmJHCjtwg4LpSjAmUgQJGDkGvsXRlFLQBlKylKCz2EiDQVoOrZxo+pbUgaZVK-y9AQhXnScKMCAFQiLCqKNKRNPanZTHuWA-Kdr0e4i9OSfIzBoAy07cAg4tkMaCni4DC9LSqg2yHYlBFb9wRZApyddPW7+osgNAlKHQNOJeAWREsWkkEFakbTZ+YIjfsIPRDvgF4HPZcoTnEEyiYy40rgP1I6mOjdpGqeVIjORmRhCCSXUcEED+mmAtuR5I8hdPWkDTdBYHOUV8LYikgXgyI0nsPycnXj8BIIqSAIOP6QjjpQ-a-tECljUDomD3brs92gBjESxWfIoviN-xCCax2LNwAUBelJtje9EbaZKIKC8xtyDKHuFrJNgsy1+D0hOhzPLTyySRW3MaPzP3GS8ER3CGAKLIdHj9axkswoCDK35HQF4bswMjoWGkOE7+XMkxsbJ5m0Idu6PWaaAmMBrBjZy0owroU1nayIyccH0dyL9EAcg573YDtknpknT-ZDY9kkOO5a2zSxKQanhDyzFjCVSyTLkccHxYciK5PIp1hF0biFzAavWEUUwXVE-9C58MsKFTIsA0zgQdMxuTEWLmezxRxgfKSkC66IjvZnwnudiT7nFdx5gNcbo-xypgAtZPcNuerwax+Mw0UEODuPLcY2zLiYsl3qaJiHblTRvWHqe4EPm4QHRbbM+bLMaBttL5tYsEvuW9E1yk5ucvyMFMcAUJOgSLIAjhn-n-RNwlUvDqgH6AjiyQ00ojsZmmneTwpFmWBYyJ4pKCvuwUx1s2w1YCBMp6QNLDHjiZOtjMGC44MA3E6R1eQlUoKUP3LEOTMJoAesStNClE1+geqYsJVJtg+Tm4ZUl4AFNGDTS3E05G+XmIHE2wk4Iih0XQopFXypytBaBWsDYWYJppsi-wEwqMKPjJ0Ii5seXNbF7D24dcklCcExY0L6C9eKGKkI4WYLrRXY7QEGJeFiBtF-YkKA2m-GcSjAYE7cAABlZacEyMQ3DPpITxZ8U44OqE8m6TGRuEkgb0AJBiS9AREwSWeJdSVSwl2k6iYT1okhLLos4jJcxJSXsS8h7izxT4vwACSugQkziPkvkl6SdhwQ0BBnW1CSTgx0k2SXEqomqL3AYC4KSpJ2GPgWhTShxSkzuKVSelLwmlhQvbBZLUl9CnSSXILz6TbhQwnTCQk4VlVZiOEOEFktMWA1tJTkloS5OCVVLdlJIr-MCFYiyITF0ixyZwPnFHMalLwgySICMlvzZyayk0PpIHonDrBZw2yOpOsmiSrlDCuwtaIjEbL8lgK2ZfuUNK6k+hKBIxTC1XDwt+WWE25aV2nJWgUaUkDcTh3EDCtNweMBFXC1T7vtGFmKi2fCLC4XMzlsFQlUisRUorYVaDDFTAChgf4rswrGFZcO-4kTq+WoojiqiIbTjpRoTDGRKP-rfoZxegjjloH+XyRo6JE3ZJpKokRsj4-CmJdX3clnTGgN46LjbBaUndLxmqrbpfAoZrhswsqnsS8JdqOQBl6w7LjJncmjKDBxK9wCkCgSjdSojq1SWTzOZKq5AEY01T5JuhKrUVB5aGZaTA6SAKi7ScKfKvwkoLsxRNSiTbFmBQL5cgi3maquiWEheVaSx7jqsaJSR9VuES8fJONXTlA15qyqbcutW2RbVC46LpS26WqS0ebq5EPaq6XHAnVYQSvCaA4KVT-VWVStWwmrWwqw1t0iNbnIk7VqKiFqxVSJNQBItqFmqxWZSGnW-zNVaDCTu5PnVoSqJ4nboBpIXWjAV1fMKNTKvcngiFVRqxNUJFyBHq91kSH8f+KAkgTwJkEmCaUuiDuLuJ76viX4t9XHrB1C1e9RaotxjDNwSQSxmB3XXFcE1TxaVTGtkRxqYlpig8rnwECVLgpT6opd4t8UGxcNJSwsXBwHUQQsqoGlJQeTGiQbEg0G7+R-CXpvQYa1UO6KMILxoLBoxha3LMGY3sBWNC-KgvtGdzXQmNSEe1mxrGnkcjc3-NsiJV40d5ON-K5xvxsXzW45NSEfjXAsE3SawOv2dTewHE3h0pNIjTqOlDsClhOIJixTYyK6kmbgMqAGGsgECk8axNDKy4Upr5LswXNP5bzWPTcacqXhaDHjU5oEUibfN-2VldAHk0g4epBKkxc9nC2RbotD0ZgEbwxIBaDBTGNtZdTxZ3E4t-LN-MFrSh+1HehgRzYFP01j03NLwpFrJrK0sbKtIOfRYAnFGHDMAqQuoWYG+UNL0Q+WxFX7EWD1a+NjWh6DcthUq9IqWVOTSFqugTgRtDQobX5om2DEMtmwhtNlsg2YA8t8KzFpJTK0haSt9qMzZtHshjb3NjIhZYZONYkIy5DlVLbcA407b+WFcLgOZoIa0qFmOvWyLYo46Wr1hppFwGlspA-b7F-2z2e7KCBGJlt-xTQrCrJgbbiW226wKWFpVv5jtogQ7SmkJB9AoEkHDAYyPVhACt6O9fECfXvzitk6ZraVjslO2ra7l+UMaJdqeXXbtQt2wyNjooaQxQBCwcAeIA7r3NRtUAjuqoh1YBVGeKHHgDLMfm9l0OlUMkZDyYo3hjivRVLe7M6X7tqdF0GlkFxB1-aZhao9Zv4vFKGQ6d6291ZuA12rsooSO+8KIFR1yBLdh7f-C+EvjigQ2UlMwTbAACc4hUraJTMG3KJAKAv3dJVuVR1VQjgOQMqve5YDthWq80qIMYj6BQiAABj2luAPd4lMQL81+alQ6A+el1TdJTnHRM9sg79JIHBm3BS9Ye3ELKn0k8YDo+gW8Avk0ERr3A1e-SbXqDRyA3dPQQwNJS-yCA8FBCwKGXGjXVbMtRHOnfDvN1D7xKI+1-KVD61EqAIuC+fVmhjxUQn007IEB9rShtrEiq4HIMCF5rMyiaVoG2MWzPDzAQ2O+1JTY0gibMdOtxJ8OMszUQQEImAY-RzVADRNDs3IzoI+G66l7LqN4W8HfsYX8sDAT+8SI1G8rF0tQIB6Zh9qtCeQlZ9CI8lLEvUccuOcIQ9fDFQOPdYNJwWdTuu3UhqLMhBrblLE-3f7aov++tsCGOCAH09GgEA15TANNQlV2EfAzFM4M3gWo6B1QMTInUxB2D-B28Ji3Cj5iEaEh+A1tw73Bjjo+k55UZDZ2nFkDJi2Idzs6C86yxWE-1ZLogBZUlAX25ffC2OwBi7Feu+xkYmAZhqwOz2DoGgEPCyp99UCNFefsv38sg2N+49lKIf3uHxIL+t-auKEgmEn15h-Q1fCsO-bA9dhqjZmlNwRGfmB4QvuLNFSCiRAfATxgvA2aitntOhpAJtCtBGZv0KRww6LoWqmGvx2gYSOFNaAwBzOUkFPYEr1xxTq1iUqKWAnjwNHS8zR+o7IkaNtbJiDATRVhGrXDHVQBXE4CVN4XFdT+nR6qUlOl55COCQynZWtCWPFMVj53DOWQqYzMA79H235qJzECPyAAOswGXXGCy8OB8ABUVsOLRbK-lPiEZFz0yZaD2JV-FRGOMmLTj5E847LKuM3G5pWaTjg8dmZSi1okARIgdDc4cFYToAAAF6e0NAVx-wJ8vuOPGRd0VOQKibeOOQPjeGI-d8cLSy9WA1uZw64Y3CnHbjnEbE1Ca6q3Mi8ORsnHcVgB3F8WaEX5lRAZR-HntdJsE4yfsbMmcWbJmTFkA5NcmaWxJlqEAA

Metalinguistic Abstraction 4.4.4

rule_counter = rule_counter + 1;

return rule_counter;

}

function make_new_variable(variable, rule_application_id) {

return pair("?", pair(rule_application_id, tail(variable)));

}

Afterquery_driver_loop instantiates the query, it converts it to a string using unparse_query,

following the syntax described in section 4.4.1. The function unparse_term formats unbound

pattern variables using contract_question_mark. Note that it needs to distinguish genuine

lists from pairs whose tail is a pattern variable (and therefore technically a list).

Ifunction unparse_query(query) {

return unparse(head(query),

tail(query),

is_null(member(head(query),

list("and", "or", "not", "assert", "rule")))

? unparse_term

: unparse_query);

}

function unparse_term(arg) {

return is_null(arg)

? "null"

: is_list(arg) && head(arg) === "?"

? contract_question_mark(arg)

: is_list(arg) &&

(is_null(tail(arg)) || head(tail(arg)) !== "?")

? unparse("list", arg, unparse_term))

: is_pair(arg)

? unparse("pair", list(head(arg), tail(arg)), unparse_term)

: is_string(arg)

? "'" + arg + "'"

: stringify(arg);

}

function unparse(string, args, unparse_arg) {

return string + "(" + comma_separated(map(unparse_arg, args)) + ")";

}

function comma_separated(strings) {

return accumulate((s, acc) => s + (acc === "" ? "" : ", " + acc),

"", strings);

}

function contract_question_mark(variable) {

return is_number(head(tail(variable)))

? head(tail(tail(variable))) +

"_" + stringify(head(tail(variable)))

: head(tail(variable));

}

513 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARjoCYAoKOJVURNAfTQBTADbg+ggG4BDYZClJoAcwAUaeDngBKUAG9WoA6EyD4kTNB79okHACNBmVeq0GAPq-2Gvh3gPiZEJScNbVB3T28vX1tkZGFBKWhgl3DI719rYWFk0LcPNKj+GAATQXBAwWKcgG5WAF92GAQUC194KUVFSr5hXnhkgBpQeAALQT52xW09L2NTc0s+AAcpREc1ENAAMi3QMakqjZcAXlPhsYmO2oaOZu4MqRxBHN0IoxMzVv5JruKevsGoAARNBHoIgZpro1OC1QGgAJ52OJ8ZBiUFPF4zQxzT57BJVdqIbJHTSQ+rQu5fPhSNBoRCKaBPaD9EmvbEfBZtDq-f5qQFAml0hlM+AQqG3LgWQX0xmCZkCRExYnOaYRHELfYE1bZTXKQnKkKksk3JqS0DS4Vy+B8aSyZ6srHveYWXX6vXanKk8Wm2G+WCoNSJa2lWDCKSYeQtTFqjlUn7dXp8o5DIH+9DteUhsMRyVi8kS2FpwOZwSh8OR1AKpEGlyO9Uu-HuonKV0eklG70w7hFjPB0vZivQG0ySD2lVsgz1vEHJvZN3t40Us2+aQBKS2eJ8LPlyXR9nOxbxv6JlnOFOrxDrzfbnMtPMmrsWC9X8Y3wdVpV7yex6da5ut5sF0XAtuGfDdX37HcWmHO0vydXEALnNsVS9fMfXufgwzsYopHEAAPJZjFpKMHRjA8uU6BMAWTYEsNsHD8MIwRiNQe8l1hOiGJWCMnngBw0DgqccCkJZVEVZFUT4dFBCGRDPWA9CLE43CYmKeFBJ-OT5xQhTH0Wes-HkQQRQ08jvm5KikzPYEDMDPiRTYkCLAMwQCKIulUFMhDG20w1O0pRY02KRBJRkRj3JI8c6x-CieRPQE3gKLxU1QYLQuEcLmI86BHMU0AgvC5ZjEOKKyNxE8+GMcBAQYXSAoK1zCL4IsvIWCqqsBZg6rNBq3OpYRT02aKD3aspAQAZm631+CEABHUc4DHIays5czKOPajrKBOaFtgcEpu4YSAGtxh2uU9uSNBVX3cqAW2wR5vO8EhiOK7-LNM7FsM+yrQEh1DBWhsZ18rQDoscpMDUb7jKtS7ru-A9dVesH3ihuyYeZP7nCuid4IWEG3rQvTfGMpZ4HhAQHt2pb4Bx4bcQySAsjh97pp6GlrXRkzkdxqdGeZgnUIfALomEZBYCOuC8bjCyNqsjQUw3cWjtyvTjvGJWJdapS7s1lWXpVVnuD1vhVPU0jZk0nzkL8omRf4ESll6WBB21w9Zd5Qb4BTR3ncHVWAqczKWKSC2Ee84GbdBo2pUwRQseWm6NWt5sQY7O2zWgZBqTjgTkCWOnAcWTJsnzwnhbNCGofDFQy-h6Xf2UOuY9R60a7zgv66nN1m-JVgQAgRSMHAbA8CIMhKGoegmAYdjuEkEcjMBOUJC7mKZpEMQF9kSMghJRLvAAfgMI4D68AAuYuwRyM-DGPsXkCOyAlg-ZFbVHMTqxRNFr5JIYV80LfAwl8-QBl7FuSCt5PL7ySqAY+29mpgKDBAssUDQ7WQAUA0AID+BgWvJA12MCkrwNtMONc4EUEDl3DRTBsCcHUmIpaZkN9YEkLChaWUzCaHQFXlg+hQUQotDCo1CK0CVRYLYRlAR6Vg7ZWXjwwBdDFjKVkZFEIEjQDqz4E5ZQKjuJgj4pDHIAwsGwMiCos2xjTFmK8LQpK9DPoXSIQUSRlNHqLVUFTJ60MRQJy0P-BRfDFh6xYcQ0ACCQncN4Uo3wtl2g-S4eI1h4TSFxKMtzDBgSYkOyWE7RALtqFJLCb7dS285B8WUEHERWU1H+PCQokxNjzF9G-jBUcAl27GPqavRR9jwmYGwOsLaABVaAR0s4AHcLAImZFIPCoAAC0CyUmLz4gHM0JTKkwCGO3euiBwCgGUL4QiiAcCCIkOMHRHBSS4yTlKXJwgKYnLOUgC52jFJbOgDs3OZJDB1HCcIIQPADlHP4P6HASxkAlHeY+T5NzHSGB7KjJm8BQDHBWTvCpQdLHXMaU0sxrk+LQD+CvNYqATLWPxYYIO+jeL8ThXiqlNj26MqZbAqpPCyWcP6Nc1CkQ+b8AMu-Z4REUW9LMcfIVI5xhpiJf0UVA1xVKJKGUCoxRah-IBUChFBgHCDM+SmUZ4zkBTMHnpcmSxBCLOWSUvMfyM4cRaZJYVAlGpoACavW5Dcs453jsoN1Sqj6gBLkAy+Kw1j+vfkvKubc47+oIldD1mhWU2Iqs66VAkiKxr9QGpNKMEHSKERlapId5GeoRQKiYmAP5lKXr1JqTESohDzaYyR5Tnj1swIg9AXS7F9NrRUzt-UvbJu6fm0hjiaburHbc-ZhySYQvJm46mcN67eCnCq8o0BKgas1SIIFc7QXszRvEjGXsrproKFOAdzwY0+NhsjAYADd0GH+fuq1OrEVgIgGsE9Gg2lWvRdYm9lTf2c1PRkjQibn230PbE2MAHQOQ3A-+4V8LrFTjvUcADL7vBvsBR+jDP4EGTuUJS9kJ70m-Thk+hRuGvANAYw67gaaxAwA4ZUZQ0lC6WzMlJJm2RuOBrvsGgTt8w2rEcECAAVOxxh27ijSaBEMVjfA5NCgU7OLjYIL2QgAJBeGY9Ml2Q4oV9lQYOPxa64Mb3cU4lCXqv3pjhNjNFcIvFfS5tRkk9G7mLFJku0jyNrHHxDTYy+js5SHBMyiSA5mqEtAElhiDD7sakhTUytAMWzOUKggGZQWjSPkbZZbSjCTaarr5Xugjjnw6rW7cWeLeX0HqJsffAEPZkFvklK-GspJrH0LwRBCzhTWtNPa3yIbuW0G9c9ORy+JdcMNArrCCJYstZRLXUis2bmTaWJ828JF62ZAYHRVlxIsWmtoIEmbX5Tm1CgHUzKSop3QCqaewyTjx3AV3bqxYEDZsMuwMJVF8QnLsDct0eLE7QwPsKenQA8dYU0nlbLWuoSUgTqVQQ8KsjVKQMuTcjUsRzbitJURy3BBHDIPexnQipFwq3Mgep1aRDf8x24Y4b1xDLP5QImrF04VSbcNTmFZT0hU3uu1KTbcrn-OlSIclwQnr8u4hWIKCBpXI3oK4-ZwAoHHP6gAychihr4Cpck9pwA2X8nue486yWbXlZVd9YNyBh3V33y65VEmt3dG+4DycsPUeBASDkCoLQRgdBxpzzjNW54eF0c-nmacdF-hRwty0To2lJh+JDEB3Tt4U54opQhVC4lMLKTKbJznwx06C8wZWxhRBZfoVXKT3xo8ntKkpnBZCtvil1mwhpeWOlRjwAd9ulDDq4Ahi1Rbti5AalKmT7ai0mfQwuoL8UmDiQXKTIT9ucX9fY1Z+gEmpnzH4wpWwVlVaVfOs+RAhv6OZT+VUBypRvB50ivpUP-dutN3kLjZDjtKkPtwC-jKh-rDGhkflbJHM2GhvmnAGLHSEoLvvvrDNbhWj+G6I3rHj+shtojxM8NgUXvAVUPgSbudKgRrOpCPGCDLjoIZrxriOGo4AwU8MLuSEiqMOMAFhTKShDiKG5otgQVniQZ-EqNOi6v-uwVIXEDIRmijJwadOJICpUiQdMCwX5rqKoSoSQQBklloboDoX9sMB6PoZTnhESiSuDuSg+uoUoYCvnjSPwQonASNHKIoKMAoT9mimcPEEoL4baFdK2qAPIRIb-E4UMKEaOrYG4bvsJt4JfEET4SMH4TjAADxvbeEhEnbJGRDwIDLIBSYAAqsQmiiQ8I5occNgv0cIz8eSlQl8QIoAAA1KAGTt4GoAEEoPsubE4doJ0W-m0Z0d0V4L0YEIoAMcoHEYUSkf0vqkCBUcgBAIIBMrUYoPUZjI0Q8ogC0cCB0V0SVoYFMf0eAIMdWDjCMSmMcRMWcf4NMbMfMS3A-E-C-C7mzuoUwW8NQTwj0LEKJGQQUCbudqHDEaAHEbVuuuvPxszC7mEacfAgCQ-KJA8bYigcgGgYoBgcIVgQogsUoi7gEeikjEMRiXAo3HEZSZfOCVpoiaOm6K8bfIxmkIeivKSecPwYuoIfYdypemkHqqUX4YatADECUMGmCHamkPhtqtYkiqoW5neqof6v7jYlOPSaob1sYWCMmpSdSoYS6poXqb9nhm8GyeYSvICfnGqavC3HLuod8dWLETIL8V4P8RIDacCR4Z+gYGCSZpka6f4X6bCXxiXJkUSUUd0t6XjqcTQdidMXiQ4cwojmTnSeoVyeSdcVGWkMfEINaLqKEcGbmZEHSYGfOEMUMMyQUWaQxiceySCpyantyeILycmQKTCbYiUesD8cCKMhKcSlKU8NauaPJg5HWdVvKTYoqSQcqWBsQdfDBhqT+FqYYYiSaU8Pqacd4NqcafoZOa+haeQQeNaWiXaYuP3GAEHlgLgKHhPBHtPHQDQAQccgEC8ogG8lcjAGvJ3h7PFBwCmM8ucvtC3MBa8uMKck7Geq7NcrzBQVprylCEiuBZ+ZckPG5vFGfCXpqG-oYJqE0tuc0k-vqHhQYPqIRUDiXuwWRREZJpRdhXdCeLRSeAxWkCXvzMIG-pxbAkRd4CXsFGgE7FIPCG-oJcJTUUlHxV4CXsKZgGRXJTYtJYYCXsJKMNSLYGgMpmpSMBpRgAUMpQYCXu0bRYYMoHhEMPCNoMcAAHygDzKdGSWGVvZ3QLKmUGDmWWXWV2XzLLJOVUV3RKZDCRCeWgBWVoo+WgDSZhUGDOUl7ADuWHIWVhXeX2WgBgD+WMVP4ACkiVoV4VtlaV2VMVoAcVd0qepl+VqVKeZwVlAVT+AAhKcJVclQVZFU1einVVlf0ECFkXla1dVaADkQYF1exXdFkccO5VVRFWlRNSNWVU-jZf1V5TNfMnZfNfVT1TZZNcFV4NNYVWteiilZtcoECA1YlWlV4IVQYA1YYInmfGSChe+SBZXirk4WirfMJKJJqEMKhV+UPI9d+n9ehY+CiLYAAFali0wfUFBfWfIzXUXPUQVv5yS8rOXeDA2vWJaA3OaY0e6vbxQl6bpqpv7E0Kbo07n8V3SEDQBbohSiXBU0103kwU2U0qV3Q6V8CkCEBkWc3c2s1s0uVP6c0ACitFotAtbNJeAAclINLYlbLdLaWacTjQ9njUgnzu9ccJ9SJJUjNXoaOuremEGITE9aci9R7kYTDWkHDQcoVajelhEUjWhWbibWSCbiUkVObRBVjZ5IBVsSeP-p7YEGpsSg4I8kmeDVINIFlgEGTHGfipjVBfECKLBT+QbgUDXIHdUN4EZu5qYC-EISmf0P-iDhXkXZDsVpFsSsoJjUHIiUMAaUbY1jqZLYYNXVUHXTvsgBDVDdOk3c7W8pbbIRnZEHwW2WTHyXvvicyIuPEKiuPYoGLAkcWvySIWdh8IXWvbDGSFeWapSMHneePOHlPM+c+QQVHTHbAHHdaMKkVOLFlPGksP-r4L7Pkq7I1IURNj1W-QUneEMFUkTqWp-aPd4HDZfTSNfYgGTABvfXtLSN8jmgREaOJlfBiJ-bfN-adYfG-l8ZJNJE-f1gUJfI1C3I9JgBTDMu0HhHA4-Z-bOiCq-fsX-Z5J-YKYqTviSUBgUHgz-BiIA0xMA8g5OU9Q-bSN0O3G5nDeQ5Q-CLMjQ4RGI9Op0mw75phpw5mS2UCDRZg3RRGrqIo-A0IH8LsrJCnNkIY1lBIz8kQ2kJfPXZo2cECMxbo5Y+IyY7nKgw49WFyUCBA7HdA7fWAa45Jp8pSL1qA14OA9HZAzfbA248o7nIQ7Y2WXoxwRoy6U7Uo9Y-HGaXKVajZlJEucI45sfk-jgy9E6fg8U8-Xk1qoRvysRgREtnnRaqQcg54QzPwPIRgy4o3L03Y0sSKY1GKcaqaiWtlMMPCJauARYHfpjIQ50-Vj08g7o3gas8Q0M44CM-2WMpMv9kA5M-M7TLM2OUIJgD1vANnPYNSMUKUJQR0zgQeG04s1o4KA4KKA6Xcwwucz1pYvQ08xHFUMc66sI1CAPPnA4O+O0OBL9XFuaEOV0PAHvSPHebACMCJIYufockIAFONNHtHoAh7bSOLMoCdPCEMMYP6JgMUDxn5pxcoFS6UbS1GcfGTZUKYiQ-NDIGS4IBS43LqEyzS7ppSsfIK6WMy0ieFmc6S+S9WR6EKyyyjFojC-EMoFtt+t9pcOBJhYFaq4IEpmaSbu8c-LyxTAwEMOS3wF1DCUimgJALYPq25oKLK3y3wBaxYc2Fq-q1VpEIeva46y+Fyey8UIKY0weCG75q+vU12fdqioq86yS7AGa9a-K4BA6z64eekCCgmy2SG2G0lBumHVujutYvk7G+G7iG6Iq1m0xgUJaaAA2yboEL8ymx61a8wMGaOAW3axm0G+ii68m1ax626N6y+L69mzi32zq3m8W2qgW5MSYJcF69DhlPq5E0lPIfFMO79aEx2124IOlgaV4KO6u9q-EOnPWzG6GV4EirmzK0O2652568SNOxe7Wz4DmxKzS8G3O+TY5gZmkAWcu6+4G7C6wIB5TfIfIfu1CX-hu2yvOG+4e6hJB429e2TsB9W9+8UAex+0efW8eR6XlOJfIOiwVgW0JL4ya0sECMVvfLEB8cVpfHgFoy2x83R2ysfOxxc90SQz2QVqM-s6AJC2gqOfqzKQR35qR-AOi8hd+qJ9C-21UVjvq+q7UEiki25op5cy+KdTR3mChfC+ijp9BGp0CDx6KO7XlForYIEMFEEENnh0sxYPIU53B3aCjHZ8SkmUNsoN5w51MC543AF9MV5-Z759Kv5xF0oP-m6KF7Fy3Al7iSHaqe5-ocF4O3MeGJeLC1gHqdYbYdl+QvEAewAyYYCwsJEVfqbDFyoO52huVwV3nSuOGIs5VzLIAfFDs0CDg1-sbcyJeBUjs6obDuKeXn8KuHwBi8SvEJgGuibv6EsKUo87Bow7gm12wxW+-s5sl7tnV3wKl5ISN1oVG2GbiHt7O6UCW8UGTmy+N9ClNzN8UHN0-U11ueme-st9Fz5+gbjslxO-We+sCvOt06E1tze35vIUt+pLqGw0MDD1pmw1m+W5D1ac06yUR35oj5-S3L0QkDgNSLkqDqUGGPCJxmgB66TyJd0GgDax18XAJqoLVLo9T+T38HT+q6g-IUjLVAh4cqlfj48ET5ahXmzxT-4ATyB8z23YLWkOLxz11P14YvENHRBGTxT1TyIDT4ry-VYEz5T1-aAArwIMwFz5szz42Ib-z+qzNYECrwkG8gr8oCb5z7L2Yrb4VUL4T-OLVELAQd79omGOoLrf7XS+YeAMH0Sn4MYI8E4LH4T7bdsnCP7ybpH-INH97-HwT3r-CcqAn0b2FoM-b+HY7+rzrwnUlEjJL48JLZ73Zen-AJnzXzgNn8L9pAX6n3lGXX8Psg1n0DATly+EMDhLThl-Tt+pd6AMl4d0OGl0P3l1YSeRd3V7+9d2qroz38V7l6V8b-IO94e9zxnw4EOGpeRzP-93V6OqPwfyjCsE3yf3wGfxkffyP-v-l1ucF0qVo+ANqJUG0boyBC-8iQ--VBlTB5av89+LgXRkqQMCoNWujge-toE342FQcffIsAP2YSQCb+H-Q-ps2OShMkB2wXYAQIjSj8je9-QxKfzI4ZE3QSA-nklDdDkCGBBQSgY-2f4thGw9A49lSl1DMCeB+KA8qgyAF-9igQIPHtMXnrO4W+5lOQqE2Sr19RMWQFGOi1LBHRqQQ4d5hcyjBaDJQQwGRssHf4GDx+h2b9M-2xz2sBobmNgeYCf40DlABgyAboJaCN05eVKYwad2X4LBzBCqVFD-1EGcc8ySg4QKgxxJSChwWfHwcxDFQtxIAQgWfqUDwi115Aufc4ioAMYpCUYSLGPgTzNbts+W9PUwc5lexIs8hlrAoWaU1Jr9VUCmKkiXGwRwgW49nVyHwCtaohkhtYIoQ9nJZuYMhWgEXHCVXBmttAx8Xrm0UvjksoQ89UAGUQAASItPgAAEF8A+AEWgACUyihAAAPLS1qA6KMQgQXAAmB0WPzD5olg6FUDb+wXOIZBTDpJCbB0AI3tkOaF4QJG4jbQflgeGFFL42QmQBlGcEBgW4vwrIKcI+E9p-8cwhYcsNWEbDthuwoEUuxeFvDfm5wr4cF2yFZ8XhrQt1u0K+E+x3hkoBZN71OZboTGBI1Ecf3MBXCGegfRvnDXIyj8bAEVboqoIlgaDQRu4RkTgF3YP8qRuA2XkcNk66UARPaB4bfznomAjATMKAjACxbooAADLUAILboJklUaUSLz9g9ZEAVQdHOqP9CyiHAbmatJuH1HMhDRnRBgAMIPDGiZRZozAJfixwqiyEO-Z4O5xtEaj36Wo0NsF3kJjDd2Ead0b-XfDai022QIbOnCbzOQ5QYIZ0S+H4CBBGW0ojVs5kDHMNgxxQUQhsTVGbggxXo9Tn8TyiS9xgEyGQJLABa3xK0Qw+hiFhU7jAnRfnHZqmLyQsMhw2o3MvQhWbP0ax8hIsXwBLHCBJYcPYRiwPIrGBixpYpHsI3bHhIMedbPzL2P7GSwbRKMUoKL1pYogkgOzdLhVwLHmoxxfYicYexhKFMqx6GGxByW5ZhiF+u-FDtt1YL4x48Z3IHjVjR7eBts+3X7ilzn7Hdb+T4tIFOFsDVCbuGJY+L-wIwYlL4C4icRfyi62BAespCDqjyIx8YemyAplMfCgkDjOBM4W8e4GGD7jFxSPFJk0nsYnZBAZ3Btg227gETDxyDQrmgLECQpiI4EbfsPw87UiuhqKKfjPyO7XxtxzXKICCj24dVHsf7SoJRx-AwABidgoUT90C6IYAergtwQYFtC-iGy0bYHieLa62h4UbNAeNJgMm3xtsq-dFDxO-F8S3S-Is7gBNX4iSQ2NYqSZcRknkcnOAg6fgd0v6fj9SemHyf6S0IDYZxRXBrpZKX7PiD0IKVcVFn4CeRVJcHErjJH5HaF9Jhkq9D+BEEgCxBS2DDqlNPKoCa6wU4QL+OPKRjRJ0kjgUsA9ZLBn2Jg+8eDDnL+CMpgQ6MulPiBiCwBl42upVK6gwCSC8AjbogNqjqSg0PfQ7oxOxJ0gWJFU36tVP8n4D+ptdG1igNsKjTlg40xAJNOfZTT+RBgZKdJj6mGCI0FU7QDsEWDQdupfTRyRTA4F0C+eBpOgV1BHFeBLpzkjIgY1unKSCgBjB6W5NBJaFvhwIYAa1PEEtdBU0opwFRlnrBdYolkU8BDNpzP5pRpzNMKGDiFRhlxwXOSMuJRjujLE6MhngyzdDVskxxErwFgwFDCASx8Ib4PHghCoMtICrYmSjE9q4QbRiY3fo4MpFfJQAHgvUrciRShgEgQ4G0UaOjFPBYx4EeMUkGXG4YkUz03wW5kpTPSOBHM3kV8gEHIzZAciAWRdmXGPTIgPMrclaNxByzohVghqUDN0ZF9UmN6PgDIzZkawl86kbWULKTEMCwhJgaQQn2UAmzLB0cckNMMhF8A1hwyAADIi09hwQpUWn2OG6UbRAkMUdtIZ43CEhrkC4SfyeGIi7h3QOOWnPMD-TgRGUHOVkKXZ-DsxzEW3gz0DnByw5+ABEdaCRF-Ac5aImkS3xF5RZK+sCDETIKxFtDqoeIgQQjPiBEiW+EIBDl3K9l+ibI0o4eQnwhBMyHkFMJuZzI4m1SXMCfIPvIHpH4phZhVboszLLn2yeRlw-kQh0FEnCl5qs8URIIhSbg7ZKs4+dqW97-5aRwfLeWkG-52VrEgfDuhAg15VAycpIjkecPvkn9b+DAxQZ7RzkgK+RB5A3I-Jb5I5MU4wO+aOAoYH8chtfPmd+lmgcA3MpQl5jI1HRAgbZMjSTg3BwUwAgJG-PpnSBvnILUF6kGRugqfmoMKFSQEFg4IYWjp4FBfJoZLMSF6ciB+MmaE8SCB9CbkeEhAdhM7qZC8eVzYwEAsrAh0XhygEUdZnW4py8IenNRT22-Q9D0UPcnEdVDUVnd+ZZgYwPKBFEYLWOGJcebkLlbAgRRM8gnmQq8BLA4sZrfESiNQDOLHg1eGxPIRFFDBFBsAcxazisVPy6mwPBFMtgD7yLr86o5RXcPtnJi1anMtzBrNRmeRpZbwQpi8MEWcyzxaQJFPop4B3DsRFMXEYUtMXfpQlAyVnO6O97W0SsdiuPg4sHmCBfFOAVxYYHcX9B2lNorpf4rMTyEbRwS1KnUosXWhGlCCqJS+OKkEEDgjc9UaUUUVJA1FUM0GWqw2W6MllB8tRagz2UijVF5I1AEzO+bHKNlCKNQKUXGBWKkliQk5d4seEyyFOwgMkc8teyBzoR6wzYTsNrlvBvlKw35XCIjmBLTlXMxQXEA+VnCAwlQtKY-GBklS9lrMvGW8BuUKL3RDy1OTktvZvLll8QL5fMKDmhzw5uGKuaSrBWhMxlAvGatCrLmExV5QIRFXwonpLo0w4ND5AGk2V58n65cQ4QuQ5Wmg+V-+IcZ3BbhZpu0nKzgKC07jBd1m4qkGWyopiCVpVlIEVTyojIBoF8C5VVcKu5UM8xV-Kk3JKr1UyqNVDPBVcaryjbpFARkP4HbINVeCgYDzRVSVI5XIAExQqmVcwoQU8qBCUqj5N6oQBStoyPCgnqgw9UJjJVwairLGsTQTESFDCpDFDFjXKB413ktweGtr6Lg+lp1RIGIJTBJqHADNHbuDU9UvKCCqqitS714BqraYvqgvv6vbJmr1Vra2mIXzEz4C7RqvJ3tr3Z4dzycUaPiLbOTV3p21tatAPWsTS4DrFma7wIoOrXRrmIwYOtaaAEjtqE1aHJlNmpwD+881zK+SkWuHX0KS1YlOtRWus56RbVS8FlLOqfnBcX5m83WuRg-kQckoDLYtRQy4yCA7VfEB1cmtMY-TJikgj2REJkEHlAE260mXCFA1XNwNXs-QhBwMwLYBMJiaDbutzUeKQQyAUUMetWSnqKGb+G9XxCvUBRXIpYOLO02frBcQMOzResvWETb1Z6LcfxlAxga4471mGicJqVbl0iX1ZiN9QSleGhKKkLbXsEN2eCUldQpjXAXrMOQSAAG3lY9nJTmJKSPpQII1MJ3v5xTRyYxZDdur8YxMAmHGsAigwlSwalA4Q6xZuTwFKIS4oDTDVCAPVsa4mwqUYl+tLWubAmAGVWqimEg0NxKZPNzAAE5agJuILSJRs3h996ZoSLZQ1bkhQHATgIYI8OPEaKIyagIpZEHLaHoLALZeUQu0MDxblAAAclK0pg6AVWnpRpPmU2ISt1feCZEHi3WLDuhiNvj72QijoLAyyefJjznEGAWtgfJLesCGABatwvACSkzIpkiVqZH8GULcsbU58v+65Fvs5uw0yBKZc256MCE81v5Nts2qtN2yjl5QEmo6ktUcmgB9LYiDgGIHSBZpYLnMs0NzAYKoZzJaGtIZIZDGeCBA+lxxcQXPNwyHoLkmAO7fTVAAiTtoIA5kBCBhIlagQSyZZAk25kMKylf261G5UhBDSvAJWmANxHiF3yvQ6HaJQ20PRWKrmpsO5Xc04yzRst3gFFSsq7SXKLlEK02I7IcFNaQecxW7YmXJgQ6nGdIIIlZ227w7EdSyM5rCqlDU6MxYupZGKGJ0vjKJ2U+XpNrJ6nVZdyyGRsigGgYANdmOs7kNpkFfzW5b8wQfVJsoYk8d4YAncmp4HiagwkmhwQf2CWKaIAqVHpAwM81O7LNS9MDTZpLhGg8medO9IkDQATJktv2uLKktRTPb0Ur2uRtQw+3xzrdP2q7fCxGLVBAdnE3Aa9i92zQXocGz2bkID3wrwyTPVQqGqDQ4aqiQo6YlAKkB0c9Ml8K3d9vO3fr7dg3JePnsbgV7R0amt3TNR6QtxZUEYBAOdrUDQRhImASWOGM1U2B7AjgOSOGJJkiZ6ZiBa8Sh2GLAg+AYxNec8UuLSKtMy+-6Uvo31d89I4KYSJTH0T-r4+0xGLVOCkCwBQlOAJmEvFUA7Jn9gvY4qouf2+M2iow8YcCDuKdEn9sAd3mkCBC4NRFuTWIVdpT136lAiDRJriRb1CBpgemZ1XvqUD-bTqxxS-bhCEA37OMcNGuKHXx0JTdkW+iEEioIJoHxghiVvjXFz4RlmDgAkuE1MWK+B4ozB4gVgiPQRk3QzB7QHhLkjCH+d6KMYUb0P28GtGODcIiPqf3WhHoE+ysFPslhsGzEl8I9LmJ0FxxjpWwSlA8H4Y74JmehqYCvqr14HOi9BiYA4Fb4yakmwhrfZSjaK77eGRTEw6DTMOeRxD4xJpG4eOK2HGDh+oQ04f0NGgOirhzQJwcGb0H9OfQfbXHDG4UG7DmAPdf9NIGOBNDQQ+I9o0kxv54ojhqYKGNUURGUjKetI3uv2lpCyjUwQAaVt301x-tjR0ITAdmLMG4DqRlBSWpYNM8ngdgZLbqEIXyaqaT+AtaMVKKjEs4eGxxQSNGI2i55RveI8Ma4WlGRjok1I4wf+krHGwGxt0BsdsOEKoQrAM7XbNK26DlAH0gADqsBWZP8ineAFKKt8HNYVLyjcipQVbgQIOu7aBVOPYAjGbe9SBcYJFXHlJtx+48TwryPHnjyQiNJAFiKjp+W8hBE6AAABejtUALcfp1Qm-gMJ9I-3v5YYmPjbKL40CB+PYk-jgHdgAuVD3h7HAFx3ExMGzhPGCTrVFTHdAb2KxRisAUYmINJClayQA8M48msZNrjmT2iWE+yaFo-1RitgHk3ybnlkmxQQAA

Metalinguistic Abstraction 4.4.4

4.4.4.8 Frames and Bindings

Frames are represented as lists of bindings, which are variable-value pairs:

Ifunction make_binding(variable, value) {

return pair(variable, value);

}

function binding_variable(binding) {

return head(binding);

}

function binding_value(binding) {

return tail(binding);

}

function binding_in_frame(variable, frame) {

return assoc(variable, frame);

}

function extend(variable, value, frame) {

return pair(make_binding(variable, value), frame);

}

Exercise 4.71

Louis Reasoner wonders why the simple_query and disjoin functions (section 4.4.4.2) are

implemented using explicit delay operations, rather than being de�ned as follows:

function simple_query(query_pattern, frame_stream) {

return stream_flatmap(

frame =>

stream_append(find_assertions(query_pattern, frame),

apply_rules(query_pattern, frame)),

frame_stream);

}

function disjoin(disjuncts, frame_stream) {

return is_empty_disjunction(disjuncts)

? null

: interleave(evaluate_query(first_disjunct(disjuncts),

frame_stream),

disjoin(rest_disjuncts(disjuncts), frame_stream));

}

Can you give examples of queries where these simpler de�nitions would lead to undesirable

behavior?

514 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEHsAcFMCcEMAuBLcA7A+o+AjANtADSiQCuio8aAJqAObSIBQIoAZrOALagDGAFvEiI4oAMygAFAGdovFOnEA6MSoCUTNqTTzUaStOnhekgNbQAnsVhzwsatLWgA3k1DvQNxKVj7k0jDRSPDxJG147Bw0PGJiAflBtamg2ZDRoajdY2IAuUGgAR1J4UPMrUH5oeGpJSuqw23tHNWjs7IS6mvDIxyy2mLz4Q2MzS2JsZFDuppaAbiYAX01tXUUueHMsXAJJJ1cYiLRpCjxjEq38aFAAXlA8f0RJACIAKmxLl6e1eZitHQV9KdwKZSJBRhYMABGYhlDAAJj2fVih2OoGkpBw7wINwMRhMsOhoAmoVOvHOWOgcyRMWQbCk6Mx2yu1xZiRoKTSGUR-RiXh8+iSHPS1B+bQW+Twshc1LaKIo01otyGePB8PG8EmMgxFKpPI8tKkCpurMFqWF3L1sT5vjZyTNGVFevF0ElV32lt5jH5RI1U0a1G+MuyS36IY8Yfcf1WfiOcEeBJhljVoAAbiVSJTpf05WjtUyccqRgmfZrSeSmbq2gatYzLsbbqbOQGs5bZIgtqWzngLgRCEGPe5IBrYJJ7sdVYSh8gR7C4cQ03gMy0+wOB8TR12e5TK8GJVL3Xqc0alcN8Um5yXQgydYGPdXjyb2fbmwePABIfptjtXvOXPsf1d+inEdgNVC8FyXFdANXddrwrKkAPcZ1XRbVcv3XBV53TSlHR5CNYnw-CowBUBqH8IdEAESQuAtbJrX0HgWVuJ4gRBSAnn7NoElY0FOOyPJGNZJ40lkWBEA46DQASES4z4to8jgTgRy4YgngAVTQUw0HAAB3fQoDgJA9FAABaEyfUuL5cPw+jSPIpABHmJYcwMhAAS3HF1k2CldnmHMGAoW5XKM9At2eHj2MDHMyECiAYDcvQwuE2MxKslgwGIvRpHYTgeAAZQASQAYQABVAAApPLQAAFiUSE6uWf5jOgCCkGgGREC4RBiGgNAU1o2z-AwWQ8DYDAWvTIy0DoDqutafoEjRTrmD1PIhrQeAuHa445r47jwGBUFhosLgcHAbsIO2k6zu7cAxo2rbZsQNQer6+b5NAIa5Sodtkl4PB4AS9Anve9p8gXDBvrQX65ABoG0Ce17+r4taAjTWBkCZDA-rhkKEZ2569vB850cxy5sdhwG8cR-I3pRz6AmVZA6DQLboZBomJu7JmWbZx4CaR0HcgZyH0DIgFzmgAAPSAbEMPQOb1BIudFmhkAl7tpdl6B5eBgXaeR1aRYB07qHgcaZbl6QFYJoX4lALzoAwTLgZNnAzYwIcEC2kRYGkEGoMkto3Y9s7qAsAO5MA3rDZ5VHhsKDMdG25a7Y8ZWIdkIpet4bbE5zp3jjavn-dtwX6aG-BjFMRWeQz84q94Gv9ZjtP3Hj+jhuwEQ+drhbie7Tui573r+eW8ujaGoRIHuMkAT7rjKEgGeI654oREkF3MC1q2bdTwXA8Asd2zujBLv9wG6FL-eDZaenFLsGn1M07S9LRCxofgKXTPMte2rSpYW8l4r03toYgl9HCoWrENWWyAuDq2QCmJ2W9QFoBaKhDwtlp54AhLA+BKAkHOxWPPP44DYBX1vEhPcVxoEBAiFwSA4AkhEKasDP46DXzuCPDrYIsU-4by3hgMOEd2GHyDh4aWIgaDjT6tOdAvco6SUEV7TajA4D+1EYo6CECxHiNiIImOcjWaj1QS0ShnpvA2iGp3S6DR0R4EJgOBINjsKqykY8OWvC24DFtEKB0fRkL7hlA-EcpDQDPy0rpfQQDEAWBgD-YBOC0rhkWI1aMdwHgYFPufSQWtpCCwwZ4L0NptIYAgbkmWvQ66gCCCETieRQL8PaqkP27ZL4VMgI4A+Wj3DHyyWNHJcs2nkP9nkl6t9AyAOIc1CGhxxZ6ElpbHW1s9bj1vhgwaARECwAzLk1qG85kW1lp7GwNQy4TLkvXRcbVJCHJ3qra+c0J5GyabcsWRzYBlIcQHW+Tk0kkRVlnJOucnr5PWa+Wh40GGxITtnZOoKOH9lso2YU1lqGfTpJIIaANjhd2LiYgmzRCltFsq8lpuLh7QF7oSl6rc0UuiCdmdAqJyXtgJmfbCOIo5kunBS7uVKCXLS6XS-skKXGLmabytly0OUSsRR6WyrKu5dVlRmXCMRAluijqSzO+d4U9KKXy-F0NHmIGFW9dVKSNWpKAX00+2gebCkkA9HWtEimWL8AEWpoQXVVMXt6-sDThzPBeA6+WLMMifGIHasaYbrYRpqOuX1ZjZiIVADa6ZihpBkkwEwmG-0qYAlNW6yFQKC4gzdQcZlFBCU4jLcnPFI8TUg0te4TZULhAQnrSCmlUcEgBo9IMZevUzk5qyeQCmBb4YaKlY2gV7MaUvQNbEbNVBx35txkW6iGxC56pBcuoOQy50lwRSmpEmriVtuKZ6h52BoaTs3XvXaHpuIPDeUcO9G7C2JWkNdc6Fao7x1JljHG37VnPqcRk8cwHyagfhsdU6-7bbeJ8d66yGbWH6BVo3ZuazW4YJzMInEOGhHgHDi2pEOYyySjrWOvND6wNHEkMI8xfBq1skdRkbKtwY0YDjczJ11HHC4R1ZNDewjdF6kkSOmRKYjG9yE8QfjCawWt0mf8mZ5wh78upXht6Gzr0Ox3RgcVuyemvM7jvZZT7nqSckmpv5QCVaOt011Apr4cyXRxK8lzo9VUpyeb8pEjqEM3X85IXz97f2IavDfS6gsROGcuo5zNWGIYwYIAx+GNN8OvhC9FsLtiMtOzg3jULSH979lecVrLZXbHnNbnZkV4p3AacUCrKGX7sst303l8NmACvnXC512r7lBuxaeVV-Z7URulfcvVm+jWqsWtSeldgqXsocG4KAQqpUKpVVqvVOEbWb0jTGvwtIM1bYGY9SLIIp04Ag3cAAH2e3JIaxwMbTSe6AV772AhnXOlUfGqdftvctOtYIE3noxD+xDgIKKMgUamZhkW2A6AMGoBgY+NNECVC2HQN17bQLXYAGSk4qFUM5oOmJEnx+jlLqP1qqKe6+dt6PMfY7ffrJ4LqAEnffjF-pgQWfXbZ4ZzokhYKp3U0Aqe-XXMw4POz+AGOMhc-HDzyL4lZepdxAJvm5XocDQl1TqXvpahm+l3NM9KP0na-C2LvotlJfrmt89KkduSJfWrT9UbNmTe3aGhz9XOOeezcpvDfnQCI9TrK+N1nzvTf1HXK7i3yHPcC9j4+0KC25qoRd1bi37vbcC6GjVubAeC+GeD6rznYe1lPAr5HvG0e9fN7j2Nv9xvq+3bT5qfvxvS9AI7znzAeeldJ770XzUJfM9y4CCHc2VndYg-z8rmvWy6+h+543pfHzrPoDb6j-fKifbqMT5gwz6wwTjeFy64gg+K265P5td25thGX6vdPlPxf08y5f3SWsWvWPUFXXyn29FrzVyxwbzc3CW02NR10Z3SUsyWVXy-3dW9Cf2Q2QO9zoTFgQXQEWW1nQKdyvyDy32gI1zHjgINSeDmUII2k1jQJWTQGP3STuUthOSRzIO-29D6RsDYBpkhEAJIk4OORRAwNsgEJSBpgRFwOMnEM+RKBoMn3IP4MyUEJpjEFEOMg+z3QCzUL4KsUoPr13zgKeG7WgHYJIkdlhWBUMMgQ31uxx0sIMKeGIBpQUKzQMNAObTFw8AgJtGwJl28OiVnUpUVycKCP0Ely8IwxQJ1mlUQNNWiPUJtHd2EwSLwI7RhSsIRV70gK9ShwRTCONiGGSKbVULSOMJvW9XN01EXTKMrlJFw3AIsSKIJzMM10bxwxsOMjsJwykMM1cL6M8NTjKJI0-14NqMp1-0aNCOyL0MZmXlnmphmJVyoNgO6nCWwWQDnj0H6MUAMRYKr2cKwJnyHzKPKQ2OT0TT-wWJt10MUFKXKSgBqMwJMMCBKPeOePCNaTKXIUkF+MKOCLN1+LKKPTeM6UD29HXAhNW1YC3k21yh22KjKkqhqjqhUDLy2R2XailiJ0M2-lp22TVSWLWGMxQTPzUT9mIAk3BSRGkLfXoO4EYWYS3g8INRpN9jBQZOa1xNFgYSYWkRQTYCJIoK6J33HDYFUnoXZNFNSyOOiVS09ipnPz9k3glI0NxS0NlNABELKMEU-3FJux1PbD1OIHkIpJVMw1k3kxMVNPFxcM0NkP1J0LKLsNMxm3QHcW1JtFcO9I8LY2hlHj+JFm9MkEun9JvRDxgLfXi3gJAMumVM+PH1cUOHcSjOwhjLmPuM1GjPDJzlOGtmmntM4GMXZlyyZMM3XAFKASVQ4BZ2rI6LBPqHrL12LPAFkCEREW9iIHBRiBrNu1AibK2gS1SRzDxydipU7XLPkVHhxDQwFzsLHKuhizBXPlzJJ2703OwiyK92MjXKNw0X7L2CHNbNiLNzXPDOPJyRvJcAvPSP0HXBvLKOk2kUMQrOpV3KwklHpKGBnN62HP4N6joDxxkF3KcFpwIGmggoXD9WqVAlXP7Mgo3L-K6VABwEAtkxQzyFgvAv4DQpukgQAB47gwL4KShEKlZ8hYAlJngAAVA6IzNACwSgchUgEuXMVY5ADIPIJ4UAAAanTT0SWi+zoFpAjnG0gREuDMEpEoPQ8E+0uykuzMlDvgHAUnosfieGYvAHYGgB0g4roC4tHmynRF4v4vCWEtEr0RUumjUpkqcDktUlsqUvcAcskrYAjgQvnz1wiiN0d273cyRCcz6mxwOjBBbLaCAVXXxl-NTGosrRJU32+JCGIvOhosAmVgiqBDBA8okR0BLMu3nMrMeDUyUryHG3rDzMyo0sKo6DNz8sKuqpzQaKvCgvVALOStY2tX6GrBjlqunNyIhC-IXOhhSuyBCXqtUg0jOiSBqVUWSTFHRU4VlHYzXJxEbNQpFQVUM3is3n7JPKOtUSXTEo8DvP3NOq2h3AInPRAptBjkiqgFyRW0PMUHy272Cpiz-NCt+E7Lyqirev6kvXW1R0OpkowqmqtDSvqOcoNVypTBeoKr0S7NLLoDKt7kqugmqu71qriKgoPQSC-ElwQr-JQw+kOtgi6svHUuaFbVAHFFFUxSGtJPx1nJhXGvKphpiBmvGzmrQAWpoCWq2gSW1xWt3AZS1Q9BzC2tuB2ubJW32tu0OuPJkpuspDs2giuolVPLOr6qtSNtmOevypBvUzW2RJym212wxIO2xOqkFLwQQUITFO0FhK+LjOoNQVUmdoIWsPDL9sQSdjgRnnnW7gVnYVBKvPmNCHYXU2igxnwWDpYWjG4yg0eCDFcM6GDI8E6AHHOuyFcOJFzvcGJALsk1cOAlLpIGHArqzpZOPhruPnruDhZMhxCGDI7rwD1ELtiFcLImkBnngAsGDMHuHvYp5D7piFcJCVLpCQ9Gno8FcPWDxzKRwGkA8NXv4HXuyn6CXt6RZKEpro8EkClmIAsGgoAD5QBv4RLJ6D6M7ngTIT73Az6L7r7b7TJQAH7K6WSo02h36f7P7v4Xgf73BH7XDgBX6pBz7gGbgb7v4wBf6G7xwngABSGBoBy+hBr+9B8B0ASBlkpiE+7BkB2qy+v+tBgAQhZFIbgZweuEQdAFoduEodQceCeFIqwYYfIfIvcHYbbrQdIuuFfrIdwe-hEYEaIbQavp4Y-okdABvukaoc4avtEeIFiHEaYa-vUZUY4eeGoZga-piB0fcGoY8EJKDCinYyDtdtVJkpuH7Bv0t2qGIDseQQ2xsY-RICTpds8btPABwAACs5AzUnH+gXG-hcGq6-H-bgyn947H7YgPHU6i1vHURUnOt06cdXDEdqBgz8nkmLrl6WSCo0AzR1ZR7NHynKnYlimSmn6nht6MASoCpS6Wm2mGmSmV6kAd6ABRGulp-p7pi61wgAOXgHGZgcmfGcpr0QyYoCyd9yi13IibaCidwcl3FPcbiZTuycWd8bgX8dvT93PnWeyE2Z0cSeXCOeTsIQOfmCAWwVwT2fscwx9pMuPlzJeYwDSD43ZFgBwVKuCfgDTGzQxmEEkG5LeZDoYQID5mpk0W0XIW+dmFiBtLRC9EgCxpMVzI-Kx25oUUAmnhHUkFScEShrsr0WWY-T92cu1uyFJZoHJdhbScSiCdCfkDBUKruZOZGy3MZdiBGs5rGtkW-LDL+QIAoBGroFOGws1nFYmtijbCOiJbxfmEto22tvynRP2yxNqkdpj19IQHkAwGzmOESnWFgBrmK1zMhwexHCfztc0sXif3XBdZcvCQwAUvEtUp8tcfzNCE9cDTqo9cBjJgIH8tR3oXWAThUREGpwko+LTMoF4F4C4uCBuRkHAXTc-uyhEoi3TdqqeEEoSFLdAAErcpEvgDzaFctFLfGOTfDO0C9lkA6gkrISvi7YBbbczGcDfEev0C8tsqeGeFstjfNlkATaRxccvl7cBlkC7aJTkrUCeDKNbcXadl9i4Ai3IXteKIysvjTnLe9Qkg+mxTfWPdAHJz4ixUPdCHXGPacFezDYt2fZYaEjiC+H7ASEDb3cJxLe-cuRDO2VrfbAtfcmtZrmPbkjyHvbKV4oOOBmvdvYHGZ0ehOJINYIA7MRA7Hd9c3b9m3bgF3cl3KWfa9cUUEt9bv1PhdVQWjAP3QI-cUoHBo9sqI57J3f-afZGVw7MWEuo7Xbg7ZD7fCgeGDMviUzQD7awFI9df4hFlAlg-7i4-aieGrujTfXI-3e6tCGfZk7k53bTnji8tw9-fCQAHJfXL5R2bPQ2vK1Lj2N3ZOt3zWMxYAI5s4vOD30rQgtpHX-2fPBHGmmmqACnVI7B5LtJxJVJlQ4x5KdkCAvhFPYgEh1PgvPPKG6aQvxl1P5PYAaJQ3MvJc8v9PJByuxP3O8uyjQXwXeBIX2xLoTljBlkOk-O9jkOEYtYT3wukPW9iAsPd5gZev62PAXH6uhhGvkBhB-NWvc5DBl2Ou0ufEMP2pevLPXDv3PDvr6PmyZZVuPAFIZYyiQvjpP4pYFv2veuMFIUuvqZeuUq5aHH8bbh+w6P7oWdhvD8evDvDbE62vDB1cIFPIhBKvsuLvsArvZYgewVyknvLVFVXuYsS3q7LPQJJdYfFvZAscIFxkn9sflkQeRk8P+g8hKW3uhIm6MfOAceSer5Q3KfUfacngpuIXZvmvsJz2wZRyUebpxv3BJuwXpumv5uieluTLRl-vTPa7pxGOu9frfG4eGesiNV0VIUGOnviVmS0GdvBcwt9vHpEfz01qZRSVTuHqPqXy4kNvDuzSvjGlDvLPJdNvye6KGKtZBbIk34V9WCiRbfUzMzzKOuHeb0nfIA+u6znf3eZqvfwkNIfesNTjFBg+TVUyEuxJEpEBwAhEnZqhkgahbvnS4TbfQ-WfM-xJrjqA8fges-QpP9i+h26q0+zUVvmi0ZAZQ+S-Pbt94zxx4+nhv3wyRJP1MYN54+1yZPhasd0YMBBAaACBYA3VjXIBV57f1r3BIV0YVuwaq0fGcA0gyJppiMj-Sr-m1yOkhuzzGbLysKz+T-ad8nEa2QZ+OVPkF-qAl+r+cozqDU8gIga-ZjA-0xq2JD+asaaHdXV7S0MUUgGBMGm16b9YaI5YNIAIjiu9-uxANAR1RW6G0qEMApAXfy1iM1CIzfbAb1zKKfYqgXARDjAGkTJAAYFgHgoSAYEj11c0gBEGHzuwlFpAIhSzqwKYFY4OBuwUNpjzNy8DRmp9fNtsmoG0CZMAgngjIM2jfgZAIhQXmFxiAKChBCIEfqGSBZVBCEWg1QcQC0HDROBPfOojwL4H9xTBwg2XmIPqASD1BuwXBmkF9gEAwWJWF0GwJqC2C4QuwdQXqBcE6MqByg2CCIWjbpJQhNAtgADE6jg8wkKbRVHEKkRdwbAm0DtrIKiZgI0QkQkiLEKQCpDohmQzaH53hpKDiu-cAdBez0EeDDB3gwQdCw9BxEKhozYITfQKGIAihFQkoTQOlzpCaIeQ5qFLCkRY5aQDyB4CYmKwmCkA1-M6gRnYzgDj+dAU-hAMxoX9UK0w3-rdUSy3Ylhl2Wqs-37gEtsyGMJkDMJ2I3lRBhQuAJgFXpUR9hZZMASAPGRmxLhN-TFhRF9h3CHIRFCiBcLmG3UuB8tISGwF9AZBBKlnJ4GCMmAQjQ2icEoOS1mGkQkATgSzltVazu9y8XfCiGiOOEjCZM4wlEJMPZj-CUR7wv-liICCgRcRN7CnPAPl5vC+uXw24RgHuFEV1wuIwIf0HXBMjuRbQFkb4DZG-D-2XI3ltBElx8jxRgEG8rL2hHgiCmlAy7NK1CjFDCSXA0CHA3aE1Ioc4ZAQHIFMBlJMAlfBWCaPQDEBzuZI87g+Q8zsZ2RJmHhA4hxCCifhlEIipaORFmi0AxAaUYBGtEfC7+9ozxE6NZ4wiCABTSztUKU4Y0VRA2HoUGMdHPQN2PZI-tLCRFGFZiH2bZJdlFGojwyAUNIdQPBCEgyg5gyjOxnToBRixiYCwNaTv7cZHwdoJsFJB1EhBK2aIZouyCu6wg7o6Yt1DmDKA4gseqI3YZ0R35lAnA5bb9u2LKBStGAoARigAAl+mGAAAIJ5Q8o-TAAEqMUCoAAeXGZVRbgy5AXGwEYACAykdfLdC6MBH9tm+pAFMV2PTHfC+uBY1MVLBB5Xisoz424bLwLElBuYX45lGUX-EhBLxokLdLmSXErj1xm4ncfuMPEgTGAfzLsZ+IgnfiXRuZAscUPfEYAexQhTCfFyAloATI0Q1MmaFr7oTmUP43wLeNzLRDnYcQlxlojeFcUEGy6fUU3CNHgS4wCsViSpFrpdDbhdEwXmeLdE8T6+TGG8dsO3Bzj5QwQJ2BEG0C+wcQAABk1ZAJ0gOkEzApNoFrF3IyAGoETl0lKS9BOIZLopJFIqSRKkIUcTaAsmixlJcAT0sZi0nv9I27ULYQ5Ie4GSXwzfUCEP2DKgRvJA3XyRV09aQleoqidyUyACBpAwgCk-sexhCkzx9iZWQyUuSMo6TMsPkxKIZN8hhU9cMgp2DpBKA1wm+-QdtDv1u59ojMmwNycVh-4pT9JeUgMIBmU4ICY+loBIKBGKkYBSpeAGuBgMj6SDsgfUgaTXGj4jTKaJ3SAOhjv7jSypCUqNmUWSB0CHAWSP7pACwhnC-wMklfkVJsAlSlpd4gapimxEjhtwe-fUKzSKCIithV0wgalVuxkloAt-cMGb2giEZVhywlCc7F2p0T3pdEQzDgEOFPgmwHlBIGCNdAeU8gi0wacALWHhYcAUAsUEwDfAXonpmY6kQgLxE5UiQR0-qUtNd7oJX28MyaRbm3D-92A1FN6f2FIELTCZE0jru+QJHSJxhjCeWJcFOEeS-q+0hYQfxAE-Tz+mAS-lsLfJIhqwjwlYaw18TPgYayKNAFJWFFujEZv054WsPGS+iPAC4QGdSyZoa9zpnfEcAuA4QXVWALwS2f2EIxCzbg0sv6WLJKCAykUIMoWbLKOHdS2Qys9kTzPOHaz7ZGs5YUujfAhzIwZ5dqScK2G6z9p9KFCNWDWkjoAgwMaOeLLPLnkLZVsyqYZnlGwjFRpvAgS7NuyRyI25wpKngGdnWpreXsnyirKoiQBJwF4G0c3xBHMQwxcI-uDnPDE89hYCI0IPXPcYIh0R-ZUNhdPJYiF9Z9sAln8zGiczrY3M-uSQEbnhyqR7-clpwMs5TyOZ3ZOeTsEgAXgF5D5UABnJeAjycZ8veuU4HJwdTz5g8tTkrJrk+zORag3lpyIRD8iYg2gb2SKKx7PyNB-QLHm-O1n9BZRobTuRCI77ZSU4iBPzl7QbyIFVIFkoPugH+gPiFYFk3Mk-nQXhkHJn+dBVwO7o4CMIiUo7u4FfRoMSgpUiwHiQzA-t3e7rC3FgvDK-NzYFk5aQOQ9FCTaJoAf0fMNtE+N-owOSBeZKilbQYplwOKQjHQW4Qcwn8mucGNiiKJZFEIH2Rwu+HvzsghwFBThwEVrp0F6i2IDwp2H3j75EIeRSWzbkRiqhUOeEdNg85wAI4OCsjBHB0WYA9FBqGMYwFVE9ClFDo+xB7jkkLjlxGALcWpAAAy-TI8a2LwAaS9cYki8RZP9jSSm5d-B8SHSfGYTLOb41CVjgSU0S0EobUCYPAUn+x8xyEgCZApKVcDoJwSsJREqQnth3x6uXJZhK4EMTmWNQLRNhJ6G4T8JeS0aQ2wsmkSKhXwQXl0oGHPB9eTwQZWRKGGfVVipi4pXkromtKKhjEpAMxNXAWTcGy6ZhZArYXuMbhXCm8qJPPE71mlhy70ftPDLWx4WTsELhD3sVqlOFly9Wq0JWUDC1l8Q1GrFX7LbKPQbS4dPQIaFI4DUFEiSVulUXCT9pgQ7Ub81yWQqjlacuzK8oGFFlbF9ykLreMLGlCBZqIAoNE1uBVjYkMAB5b51UhNI7FXnSWqm3xXaAwZTY4UJZxuVh1KV3nbLliuiGy9aVCMVvv7Cq4orqBI-CRckClhMg+x+CgIOZ2HEe4wcIsHftKtmXDsc+NgcFXlMwDviIsxEktEbJQkiqxVXo+VBtR8aDjbgPSpML2INWM0cwGbein5i9HYrGIHlMZUWLKBESqJJEmZYzRijgg3VvE9AEMoGFckPQKnYicQG1E2qbA96e1ZytYyYyreAuY4HYCdgOT-mGqvBXwsyYXKcQmixcDhykWSydV74sVZhJhoDjLAOIM1RCF7GYSrV7GCNX5gcnRCLmkkZ1RkNdXwEFJAa6gdSpiDer21UyztWRPrbBSFJYaz+vWvvSNrWhsaz6SkirkF9IFWSZQsRM1Xuq-OrCg1RPPTiUAa+eyg1aGwXVejV1fqtBNX0oknrj1kkt1ImpVX2rU1T4y1eWJ8bnRz1kk9OtUtgnbjdxB4vKLhA-Ubiv1CEyJSGvdVjrcGL61VcylYy2QngwIddpiwXWsL01SIG9cmt0n3qRVbC1jC5DwA5LilOIapSEvCW-qkQhG2pcBuDQWSwNOjCDQkug3Zy4NEC0VqrGCapYOkSQuGiUTGRGlZ0hwVjf8HY0YKzc3GzFkej43EJpeMJLgVNIPKClmNg9fjdGEE0Sr-OgmnjQCQU3EJlNFguqiJqrlHpNN-wSTRxpemUzKk4ZdIHQDahY57lYyLgcNNk3Gs0AwTcAPFPE1GaOVbynTUNGY3ualNfms1H1wFWbRQ2fG1zZIqSIsaJN76RTYFv5EUr7lSqALTFok3BywuwWwYX8m9VPAIu8lBLdl2DJha0ggYIBApvC2SBDN3LTzaipU3yb-AsWvifVtS2RjrFWI2oQYK8GMCQVq4fLfYs3izpKtjwQbZhQy1patGn9MrfFIM1NajNFWmbdyzG1BxRt6mbLdF3JXoqCtJg+reFpK165LNNyHRDJIdX0TVlnQjZQOHlpX10ZPIAhb1q87OpoAVmxNqyoA5dIgFMQDxTnzjHjLZRGgNNOlzRDKjPF32osVcNDl5BvU-4bIKNqy3kBngsXPLRtvsXBl9tIgXbajmlhyByAdvSPlwNeTx9ZW8rSWEqx5p1cReHPObrYkO2jaWwtkBiWdvB5yRLtckTHRmw3ij8fo4-dqIVV04UJbx+iqMkN2vriiZqKYH0X-PcARJX4+gCiElVgAJIFK6M0OTEDZ7k6ZulO7nmT1oqfavFP25eUbEh1M7jqnK2HZw3Z7q6ueEqRHWJjuWbbQA5usXtGT8h2iv42MciIwJxAABOJ5nrnHqMCHVMgA6ajj90j0HVfzX2B1GIBoIwamvHgTKqQEXpqw+gWnKpN5oeAQ9EcKzlZ1UhKBc9Paj6QXI9AZ7-2xwVGdkAz1h71Yj2BidLnGT6BzIhpemQ9U0Hu7Q9DEqvSODBTrAruGephXgEoXUL2oAmJNdVsFXAjjdFQ03c8AoUj1B91u65CIFZVSd+9s+rAPiUDAC4JeAQe5WkBijzg4AZ0a2PU1xUUACgOIc7r+ku7XdDASI4jlilk7kBR2swVLrhGrBIJYAh+qpp+2YjWxYKOuMGsXqeBmRzIW+7hdl0+gP6KAP8F+t8C3XuBi9BXDFXMANkED8I1Ye1Tnzz5lIa+SOAoIaqZa7qHJdgSDQjEPXETSM5GPA3gNgFRkD93ZL-bLMsKwjoYXwa6fAdb0RwgDwB8yF6J3WF9oDwBqyCgZQjOBCIs68vRwefrcHzIIXQ1LwmyjSGzI+e9g0PX93FCo4DE87auGZ16JED2XJoSUw53QwudlXfnVIDF3sBP6-UfpQPHXi26+tBQTwkDq+0B7vUZiWNZiyVRUBpAOkR7LvvIBJSfGZ+24Bfo-jQ9r9iSrdvfpihP6X9T6llP2XTp3bvOTh6aLGNcO6j6NkpeomuWyrbrecBldkQcLeHwAOIb4PIHob61GGUANyRw3VVyPjJBdlh3BtYZcmbBpZvsvadGQ1HBoo5OZSYiALEU7BpZQm+oCMYGNIzA5l2XMuuHGOYt7ZGwlnKnN4XN9CwJgZY0YqrnFzdpvYMuRmGWU6bkKxmDo30blTOylgTALfS9qs6V9JAf8gADpMAN1gKrHJgbYB2Bd2kOn+h-XQSARs94Sd-YfoDrzArj9ym41eLuMaDHjzx9aVgFz7vGiuSI+XqQHnDjJygoEFE6AAABetzUAI8diDtK4TzsD400fKA4nfjkkf403joOyA0oAETQLOm8O+GRwNxl40SYRO7sGG2nchfJRwDyVeA8lApi0Cs6BhWAoJ-Q6ydhNvGSTXJ8Lryf5OCnUuVJqyEAA

Metalinguistic Abstraction 4.4.4

Exercise 4.72

Why do disjoin and stream_flatmap interleave the streams rather than simply append them?

Give examples that illustrate why interleaving works better. (Hint: Why did we use interleave

in section 3.5.3?)

Exercise 4.73

Why does flatten_stream use a lambda expression in its body? What would be wrong with

de�ning it as follows:

function flatten_stream(stream) {

return is_null(stream)

? null

: interleave(head(stream),

flatten_stream(stream_tail(stream)));

}

Exercise 4.74

Alyssa P. Hacker proposes to use a simpler version of stream_flatmap in negate,javascript_value,

and find_assertions. She observes that the function that is mapped over the frame stream in

these cases always produces either the empty stream or a singleton stream, so no interleaving

is needed when combining these streams.

a. Fill in the missing expressions in Alyssa’s program.

function simple_stream_flatmap(fun, s) {

return simple_flatten(stream_map(fun, s));

}

function simple_flatten(stream) {

return stream_map(〈??〉,

stream_filter(〈??〉, stream));

}

b. Does the query system’s behavior change if we change it in this way?

Exercise 4.75

Implement for the query language a query expression called unique. Applictions of unique

should succeed if there is precisely one item in the data base satisfying a speci�ed query. For

example,

unique(job(x, list("computer", "wizard")))

515 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.4.4

should print the one-item stream

unique(job(list("Bitdiddle", "Ben"), list("computer", "wizard")))

since Ben is the only computer wizard, and

unique(job(x, list("computer", "programmer")))

should print the empty stream, since there is more than one computer programmer. Moreover,

and(job(x, j), unique(job(anyone, j)))

should list all the jobs that are �lled by only one person, and the people who �ll them.

There are two parts to implementing unique. The �rst is to write a function that handles

this special form, and the second is to make evaluate_query dispatch to that function. The

second part is trivial, since evaluate_query does its dispatching in a data-directed way. If your

function is called uniquely_asserted, all you need to do is

put("unique", "evaluate_query", uniquely_asserted);

and evaluate_query will dispatch to this function for every query whose type (head) is the

string "unique"

The real problem is to write the function uniquely_asserted. This should take as input

the contents (tail) of the unique query, together with a stream of frames. For each frame

in the stream, it should use evaluate_query to �nd the stream of all extensions to the frame

that satisfy the given query. Any stream that does not have exactly one item in it should be

eliminated. The remaining streams should be passed back to be accumulated into one big

stream that is the result of the unique query. This is similar to the implementation of the not

special form.

Test your implementation by forming a query that lists all people who supervise precisely

one person.

Exercise 4.76

Our implementation of and as a series combination of queries (�gure 4.5) is elegant, but it is

ine�cient because in processing the second query of the and we must scan the data base for

each frame produced by the �rst query. If the data base has N elements, and a typical query

produces a number of output frames proportional to N (say N /k), then scanning the data

base for each frame produced by the �rst query will require N 2/k calls to the pattern matcher.

Another approach would be to process the two clauses of the and separately, then look for all

pairs of output frames that are compatible. If each query produces N /k output frames, then

this means that we must perform N 2/k2
compatibility checks—a factor of k fewer than the

516 Generated 2020-08-18 16:40:02Z

Metalinguistic Abstraction 4.4.4

number of matches required in our current method.

Devise an implementation of and that uses this strategy. You must implement a function

that takes two frames as inputs, checks whether the bindings in the frames are compatible,

and, if so, produces a frame that merges the two sets of bindings. This operation is similar to

uni�cation.

Exercise 4.77

In section 4.4.3 we saw that not and javascript_value can cause the query language to

give “wrong” answers if these �ltering operations are applied to frames in which variables are

unbound. Devise a way to �x this shortcoming. One idea is to perform the �ltering in a “delayed”

manner by appending to the frame a “promise” to �lter that is ful�lled only when enough

variables have been bound to make the operation possible. We could wait to perform �ltering

until all other operations have been performed. However, for e�ciency’s sake, we would like

to perform �ltering as soon as possible so as to cut down on the number of intermediate frames

generated.

Exercise 4.78

Redesign the query language as a nondeterministic program to be implemented using the

evaluator of section 4.3, rather than as a stream process. In this approach, each query will

produce a single answer (rather than the stream of all answers) and the user can type try again

to see more answers. You should �nd that much of the mechanism we built in this section is

subsumed by nondeterministic search and backtracking. You will probably also �nd, however,

that your new query language has subtle di�erences in behavior from the one implemented

here. Can you �nd examples that illustrate this di�erence?

Exercise 4.79

When we implemented the JavaScript evaluator in section 4.1, we saw how to use local en-

vironments to avoid name con�icts between the parameters of functions. For example, in

evaluating

Ifunction square(x) {

return x * x;

}

function sum_of_squares(x, y) {

return square(x) + square(y);

}

sum_of_squares(3, 4);

517 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgQoQAWwD6cYKLSZcyQgBpEATxIVqNHHQYp02fMUQBqHTPwrOPZCPGTpeuQGZFAFiLsgA

Metalinguistic Abstraction 4.4.4

there is no confusion between the x in square and the x in sum_of_squares, because we

evaluate the body of each function in an environment that is specially constructed to contain

bindings for the local names. In the query system, we used a di�erent strategy to avoid name

con�icts in applying rules. Each time we apply a rule we rename the variables with new names

that are guaranteed to be unique. The analogous strategy for the JavaScript evaluator would be

to do away with local environments and simply rename the variables in the body of a function

each time we apply the function.

Implement for the query language a rule-application method that uses environments rather

than renaming. See if you can build on your environment structure to create constructs in the

query language for dealing with large systems, such as the rule analog of block-structured

functions. Can you relate any of this to the problem of making deductions in a context (e.g., “If

I supposed that P were true, then I would be able to deduce A and B.”) as a method of problem

solving? (This problem is open-ended. A good answer is probably worth a Ph.D.)

518 Generated 2020-08-18 16:40:02Z

Chapter 5

Computing with Register Machines

My aim is to show that the heavenly machine is not a kind of divine,

live being, but a kind of clockwork (and he who believes that a clock

has soul attributes the maker’s glory to the work), insofar as nearly all

the manifold motions are caused by a most simple and material force,

just as all motions of the clock are caused by a single weight.

— Johannes Kepler (letter to Herwart von Hohenburg, 1605)

We began this book by studying processes and by describing processes in terms of functions

written in JavaScript. To explain the meanings of these functions, we used a succession of

models of evaluation: the substitution model of chapter 1, the environment model of chapter 3,

and the metacircular evaluator of chapter 4. Our examination of the metacircular evaluator,

in particular, dispelled much of the mystery of how JavaScript-like languages are interpreted.

But even the metacircular evaluator leaves important questions unanswered, because it fails

to elucidate the mechanisms of control in a JavaScript system. For instance, the evaluator does

not explain how the evaluation of a subexpression manages to return a value to the expression

that uses this value, nor does the evaluator explain how some recursive functions generate iter-

ative processes (that is, are evaluated using constant space) whereas other recursive functions

generate recursive processes. These questions remain unanswered because the metacircular

evaluator is itself a JavaScript program and hence inherits the control structure of the underly-

ing JavaScript system. In order to provide a more complete description of the control structure

of the JavaScript evaluator, we must work at a more primitive level than JavaScript itself.

In this chapter we will describe processes in terms of the step-by-step operation of a tradi-

tional computer. Such a computer, or register machine, sequentially executes instructions that

manipulate the contents of a �xed set of storage elements called registers. A typical register-

machine instruction applies a primitive operation to the contents of some registers and assigns

519

Computing with Register Machines 5.1

the result to another register. Our descriptions of processes executed by register machines will

look very much like “machine-language” programs for traditional computers. However, in-

stead of focusing on the machine language of any particular computer, we will examine several

JavaScript functions and design a speci�c register machine to execute each function. Thus,

we will approach our task from the perspective of a hardware architect rather than that of

a machine-language computer programmer. In designing register machines, we will develop

mechanisms for implementing important programming constructs such as recursion. We will

also present a language for describing designs for register machines. In section 5.2 we will

implement a JavaScript program that uses these descriptions to simulate the machines we

design.

Most of the primitive operations of our register machines are very simple. For example, an

operation might add the numbers fetched from two registers, producing a result to be stored

into a third register. Such an operation can be performed by easily described hardware. In

order to deal with list structure, however, we will also use the memory operations head, tail,

and pair, which require an elaborate storage-allocation mechanism. In section 5.3 we study

their implementation in terms of more elementary operations.

In section 5.4, after we have accumulated experience formulating simple functions as register

machines, we will design a machine that carries out the algorithm described by the metacir-

cular evaluator of section 4.1. This will �ll in the gap in our understanding of how JavaScript

programs are interpreted, by providing an explicit model for the mechanisms of control in the

evaluator. In section 5.5 we will study a simple compiler that translates JavaScript programs

into sequences of instructions that can be executed directly with the registers and operations

of the evaluator register machine.

5.1 Designing Register Machines

To design a register machine, we must design its data paths (registers and operations) and

the controller that sequences these operations. To illustrate the design of a simple register

machine, let us examine Euclid’s Algorithm, which is used to compute the greatest common

divisor (GCD) of two integers. As we saw in section 1.2.5, Euclid’s Algorithm can be carried

out by an iterative process, as speci�ed by the following function:

Ifunction gcd(a, b) {

return b === 0 ? a : gcd(b, a % b);

}

A machine to carry out this algorithm must keep track of two numbers, a and b, so let us

assume that these numbers are stored in two registers with those names. The basic operations

520 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwgEwBQEMA0iBGAlIgN4BQiliATgKZQjVL6IC87iADIgPyJaIAXCnQZ8eAQFIChANxkAvmTKpMAJk54AjGrlA

Computing with Register Machines 5.1

required are testing whether the contents of register b1
is zero and computing the remainder

of the contents of register a divided by the contents of register b. The remainder operation is

a complex process, but assume for the moment that we have a primitive device that computes

remainders. On each cycle of the GCD algorithm, the contents of register a must be replaced

by the contents of register b, and the contents of b must be replaced by the remainder of the

old contents of a divided by the old contents of b. It would be convenient if these replacements

could be done simultaneously, but in our model of register machines we will assume that only

one register can be assigned a new value at each step. To accomplish the replacements, our

machine will use a third “temporary” register, which we call t. (First the remainder will be

placed in t, then the contents of b will be placed in a, and �nally the remainder stored in t

will be placed in b.)

We can illustrate the registers and operations required for this machine by using the data-

path diagram shown in �gure 5.1. In this diagram, the registers (a, b, and t) are represented by

rectangles. Each way to assign a value to a register is indicated by an arrow with an X behind

the head, pointing from the source of data to the register. We can think of the X as a button that,

when pushed, allows the value at the source to “�ow” into the designated register. The label

next to each button is the name we will use to refer to the button. The names are arbitrary,

and can be chosen to have mnemonic value (for example, a<-b denotes pushing the button

that assigns the contents of register b to register a). The source of data for a register can be

another register (as in the a<-b assignment), an operation result (as in the t<-r assignment),

or a constant (a built-in value that cannot be changed, represented in a data-path diagram by

a triangle containing the constant).

An operation that computes a value from constants and the contents of registers is repre-

sented in a data-path diagram by a trapezoid containing a name for the operation. For example,

the box marked rem in �gure 5.1 represents an operation that computes the remainder of the

contents of the registers a and b to which it is attached. Arrows (without buttons) point from

the input registers and constants to the box, and arrows connect the operation’s output value

to registers. A test is represented by a circle containing a name for the test. For example, our

GCD machine has an operation that tests whether the contents of register b is zero. A test

also has arrows from its input registers and constants, but it has no output arrows; its value is

used by the controller rather than by the data paths. Overall, the data-path diagram shows the

registers and operations that are required for the machine and how they must be connected.

1
In our controllers, we shall use strings to represent machine components such as registers, labels and opera-

tions. In the text, we shall omit the quotation marks around the names and write

register b

instead of

register "b"

521 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.1

If we view the arrows as wires and the X buttons as switches, the data-path diagram is very

like the wiring diagram for a machine that could be constructed from electrical components.

a b

t

rem

a ← b

t ← r

b ← t

0

=

Figure 5.1: Data paths for a GCD machine.

In order for the data paths to actually compute GCDs, the buttons must be pushed in the

correct sequence. We will describe this sequence in terms of a controller diagram, as illustrated

in �gure 5.2. The elements of the controller diagram indicate how the data-path components

should be operated. The rectangular boxes in the controller diagram identify data-path buttons

to be pushed, and the arrows describe the sequencing from one step to the next. The diamond

in the diagram represents a decision. One of the two sequencing arrows will be followed,

depending on the value of the data-path test identi�ed in the diamond. We can interpret the

controller in terms of a physical analogy: Think of the diagram as a maze in which a marble is

rolling. When the marble rolls into a box, it pushes the data-path button that is named by the

box. When the marble rolls into a decision node (such as the test for b= 0), it leaves the node

on the path determined by the result of the indicated test. Taken together, the data paths and

the controller completely describe a machine for computing GCDs. We start the controller (the

rolling marble) at the place marked start, after placing numbers in registers a and b. When

the controller reaches done, we will �nd the value of the GCD in register a.

522 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.1

start

yes
done

no

=

t ← r

a ← b

b ← t

Figure 5.2: Controller for a GCD machine.

Exercise 5.1

Design a register machine to compute factorials using the iterative algorithm speci�ed by the

following function. Draw data-path and controller diagrams for this machine.

Ifunction factorial(n) {

function iter(product, counter) {

return counter > n

? product

: iter(counter * product,

counter + 1);

}

return iter(1, 1);

}

523 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMAhtOAnGKA2AKMASkQG8AoRS5caeJGKAUwzwAcM4ATEaAGkQhxwTDMXJUJiDIyggMSQcOaIAfIiQVJWqgH5E7LjyibtWgFyIGzPIrAjEAKn0dufE6Y+Vb9gNSIAjIQA3CYAvibSsvKWInj+-IEh4WSo6Fi4eACswUA

Computing with Register Machines 5.1.1

5.1.1 A Language for Describing Register Machines

Data-path and controller diagrams are adequate for representing simple machines such as

GCD, but they are unwieldy for describing large machines such as a JavaScript interpreter. To

make it possible to deal with complex machines, we will create a language that presents, in

textual form, all the information given by the data-path and controller diagrams. We will start

with a notation that directly mirrors the diagrams.

We de�ne the data paths of a machine by describing the registers and the operations. To

describe a register, we give it a name and specify the buttons that control assignment to it. We

give each of these buttons a name and specify the source of the data that enters the register

under the button’s control. (The source is a register, a constant, or an operation.) To describe

an operation, we give it a name and specify its inputs (registers or constants).

We de�ne the controller of a machine as a sequence of instructions together with labels that

identify entry points in the sequence. An instruction is one of the following:

– The name of a data-path button to push to assign a value to a register. (This corresponds

to a box in the controller diagram.)

– A test instruction, that performs a speci�ed test.

– A conditional branch (branch instruction) to a location indicated by a controller label,

based on the result of the previous test. (The test and branch together correspond to a

diamond in the controller diagram.) If the test is false, the controller should continue

with the next instruction in the sequence. Otherwise, the controller should continue

with the instruction after the label.

– An unconditional branch (go_to instruction) naming a controller label at which to con-

tinue execution.

The machine starts at the beginning of the controller instruction sequence and stops when

execution reaches the end of the sequence. Except when a branch changes the �ow of control,

instructions are executed in the order in which they are listed.

524 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.1.1

data_paths(

registers(

list(

pair(name("a"),

buttons(name("a<-b"), source(register("b")))),

pair(name("b"),

buttons(name("b<-t"), source(register("t")))),

pair(name("t"),

buttons(name("t<-r"), source(operation("rem"))))),

operations(

list(

pair(name("rem"),

inputs(register("a"), register("b"))),

pair(name("="),

inputs(register("b"), constant(0)))))));

controller(

list(

"test_b", // label

test("="), // test

branch(label("gcd_done")), // conditional branch

"t<-r", // button push

"a<-b", // button push

"b<-t", // button push

go_to(label("test_b"))), // unconditional branch

"gcd_done"); // label

Figure 5.3: A speci�cation of the GCD machine.

Figure 5.3 shows the GCD machine described in this way. This example only hints at the

generality of these descriptions, since the GCD machine is a very simple case: Each register

has only one button, and each button and test is used only once in the controller.

Unfortunately, it is di�cult to read such a description. In order to understand the controller

instructions we must constantly refer back to the de�nitions of the button names and the

operation names, and to understand what the buttons do we may have to refer to the de�nitions

of the operation names. We will thus transform our notation to combine the information from

the data-path and controller descriptions so that we see it all together.

To obtain this form of description, we will replace the arbitrary button and operation names

by the de�nitions of their behavior. That is, instead of saying (in the controller) “Push button

t<-r” and separately saying (in the data paths) “Button t<-r assigns the value of the rem

operation to register t” and “The rem operation’s inputs are the contents of registers a and b,”

we will say (in the controller) “Push the button that assigns to register t the value of the rem

operation on the contents of registers a and b.” Similarly, instead of saying (in the controller)

525 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.1.1

“Perform the = test” and separately saying (in the data paths) “The = test operates on the

contents of register b and the constant 0,” we will say “Perform the = test on the contents

of register b and the constant 0.” We will omit the data-path description, leaving only the

controller sequence. Thus, the GCD machine is described as follows:

Icontroller(

list(

"test_b",

test(list(op("="), reg("b"), constant(0))),

branch(label("gcd_done")),

assign("t", list(op("rem"), reg("a"), reg("b"))),

assign("a", reg("b")),

assign("b", reg("t")),

go_to(label("test_b")),

"gcd_done"))

This form of description is easier to read than the kind illustrated in Figure 5.3, but it also

has disadvantages:

– It is more verbose for large machines, because complete descriptions of the data-path

elements are repeated whenever the elements are mentioned in the controller instruction

sequence. (This is not a problem in the GCD example, because each operation and button

is used only once.) Moreover, repeating the data-path descriptions obscures the actual

data-path structure of the machine; it is not obvious for a large machine how many

registers, operations, and buttons there are and how they are interconnected.

– Because the controller instructions in a machine de�nition look like JavaScript expres-

sions, it is easy to forget that they are not arbitrary JavaScript. expressions. They can

notate only legal machine operations. For example, operations can operate directly only

on constants and the contents of registers, not on the results of other operations.

In spite of these disadvantages, we will use this register-machine language throughout this

chapter, because we will be more concerned with understanding controllers than with under-

standing the elements and connections in data paths. We should keep in mind, however, that

data-path design is crucial in designing real machines.

526 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBBUBOcA2mCmaAUAzjgI4g6Q4CUiA3gJABQiLiaOUIaSmMhU+AEQow6LLjSCANImJkKEagG5GAX0ahIsBMlQZseAPpzylfCLEG0NWs1btO3RAAscAQwAm+KG5iZzeuJ4VFQq6prQ8EgA5hyG7NF8UHj4ALZuEM4wYDgyCYZgbqnUdHYsDlxI6ZnZOEKxUPE4ifx4glT4+YXFoWoa4JE6boSEMNFgTdEFRXXDo+OG2fxoIINgNmVsHJUu7l4+fvhzYxNL6Kva673hA5eIxwsAbm6Y5IY4AB4ADkcjJ4tgZYXKI2RCbCpOVyeby+fwHfwPU6A85rELXfpaKKITBwOAAaxAX0MXzQMFSRAAnqkAEZYGRwL54NyXQgbVi6ZGIZ6YRAAXnuIzgEEpNLpiAZTJZvXZEKQ3L5vP54A8OGAtQ8m3ZAH5EHgMARCFTaZgZIIAKpgPFgOAAdyQErQzKx2QFxBpuAAXO1NawPbtofD8NyQmEMWtsbiCUTMG5qTh-DG45hCDJE-Hpj1SuyRPwuS8+a6hfg05gM7lsbH46yVDLtk55YqlWAVWqchr2drdWh9cXK6XuuXzc3VeqK0nEC65jh3TgvVQfSw-YHg6GInd0nicMTSakYLBHlvPj8jzJqlkcqm+6ys6wYMBEPg+IYcz5RO9vvgjyEbx2ObmIAWL5uG+R6GNy5Cft80q-lsjhIPgNC8gAfMgNasKourJjgE73o+hCGCW77HlBbIwS+E7IoQBY4vihIEX2vZJimY7pqBJaQV8IYLrBOwIXyKFnIQaEsBhVbYXeD5PgkSRGEeHHfrYMF-lAbAFg0kwyQQZ61HkzSaURkzydBv6yg+iEoepFgUFAhCdKEYLsqJWE-h2epwAQJ6IEOVq2kgR7sH8OhQBSjIUa607Up67TCYg6g3JiOgbluDpOggREcaeGTnuWJbMSlUoueRDLUZGdEkmS+D5VEBkMvJ9KMo6UoxeRbgkkKVH8ukx78YgSXbmSe4wAe6XltpF4scmVBSNxSkwVVaWgSlza2V+xk8U4fHIfcXxfJgFIAoYyp4Ht2RTAAVm4zyEBApJfAIM2zawDKZT8Xw9T8U3bRgECsuia5YoinR6a0aBljIhBwFwiikeUdY8EkQiItIWwtMkoMDuDkNoNDq63FifWA2cmU1ONuX1ZKUTMV8EAw8piA+GgDRqXE0kg2kWU6a6-xdDMj7Ilx2YILm4GHt8BaImBLxvHJZxreRIuGJofLcU+80THJCtftxOp9Wr6Wa98xPZZeTHk41lPzkpfp9eVu77qLPwG18Ruc7la2mZtKGKTBxCNFZoi2QzDQyArmgIWt7KeM8lDEsK1P2Zsqi4wlSBR8Biix-g8cub7z6oNZtnUzIgaWfnAdZzTIZgvF4Z9ck-B8-wLuk1eZupYCMjADG0QyNn3ssORIgeINOj8vXfsIMPlyN1Aa0SXhhh63JQ8j1cLmC5yK+XIr4AFrrDXt+lW9RNNj1n+fvUcy3pvigfTXcR75nrxfHa5-7Nn4F3bg9xyU-VWHAsX5KTTjHamFcE5AN-EnROmFiDPxYG5AgRMvIACFPD0xwLmM4KxwyThGBFKKa04phjuOPIgpBTDQxcqZXgDdBDj2RiYBQyg+j-SCpgiezZV7eA4QCIEqJqFw39PsWEPD+B8JRJcLiNd1xuE3IYakjpIDOBns3HKrdEBfx-n3TY5EVS5n5Io9OzhDD6IELLGK88nyETkmYhS3FyKCRKrRaMDEyYTQMuxOxEd7BCM9vAyB89S6iALp-bu9jIFnzfmXD+RcKL8GrA9C+Tk4H90iTBEBGcwHxxiuk2KSTHrQMcrA7CaT2SINUag9BRjlHxMkc6VO+CZxzhisQthSAamZEYvGWmNCEaCE6c4ZGJY-p4x0IM0xHD8ATOwcCBAvShFQhEYcGZyIcFSNGSnCc+EfDRFiB4AiCN+CpCgMXVwhhdkLLgts4kvgDRQBOTQAAZE84RRAHmzwVGPc5uzk7hgSPgAcVydi0IEIIBIyMgV-LuFJYGaMRpQUEdcp8uz9mHIbp5cFzRoqsLGUgVm8LQIAq-EinYSyYSHFWtCrEQFRBBiliUNJfS6G0qgMjEWmzcH4VZQizipKnAou-mi0FGUvKspxTImlQtXyNFAiLeS-KkDksDFS3FWz2JAsVdifpJZIUzE5TC-CNiPwkqZUIwVeycAHJFZi3VBqsTGtcUmBVZrrnKtEaqyViU5FbmiHAC5cBKljXUTfHRG9cxmLUv6qA-qzEzznrhaxfZ0reICY4yizioz0Wde4x12b4z4G8bk3x1z-HRJCeXOJgkiElJwpJfCBLZIflTWU1g5EEjM0aI2rSV9yzdoMgCotD8-FP3LckStEAZDBPHR-BIgCRK1tbQg7s7lKmCDQR4RAfqA11PWQ08KzScWOT6CQrE26Y3dMwMCpwIrBDnrgMMvs9qdD3smQ3V9syBGurJXsCl-gP1rLmVcalOgvi1X4BkPE16kAQYgHiIQYGvgStPaBkAhAVGwbxCHBl0HZA+DgwhtDQyOgcpA1UH1xhLp1GQcG8G+GsOIDDW26VKNO0aTZrRvDkGJGTDLPG92I6epLvPl8Ij7zINTriO-Wyc6fEX0yVubJNNi1n2gV68j8iAoxvYEG3tdGJOMZpoVFjHb+TqW7ezEm5ZMM8Z5sUfjMVH5CYKT7KTMSZPNF7uB+j87IEKczjkhykC1OMBQzBqjQNoi4dvYQKjyM51ka2PwdydQ51atvVplL8XmjPpg-R2zzQ+M2c-VIrV7rDjFcA6iXLt9AX6vS-0hkeqeiJdVnfaqclTXgnNfhL4dyFUvJuaiq16KBDkq-KaJrNWl7fEXj8GbfLv2Ql-YGclC20SJYW3Npky1KrtYWoipbSBAzrcSzbPAwB3Lkho3piaeV9sd0M7TFq4Z+QNUu2gVIhgMjTwsZsKx+EFtHGq2mljP3-6706hRoH4OEBqNPnkxH7J3Fq0SUpJzW1aBBaR7DiYAClD3A8NHLJcdlPY-SUU9Ci7uIVOQeu9B72ru7qA2FKcM4j3oTVeGRnn3gelaO9quhPPUjI1xzV4X321jxrKyt0RssE7qcvvIz4OAIAgG3u0yp7jOMucR3ErR+m4P1WvAL8lssvleSRtrJXW5CbInh3d43vcabcT9Gb-mFv6EcMENbuuUybtWZNlWJ3mju7O8tjBN3v7zeNi8oMn3SkdYUcGbpwPjvQ-f3D67t5MfFReXvQnmCSf5H3tT8bdP8ds-u-4IhPPghYsHkL7+YvW4G-Uft5fNPmGs9Wxzx72PWLkvsCbx2FvTQh-t6bp38v3entV+j-3uvwuR+dnO2gD712O+cZR18KmLve+04795a0dpmfhmCqFPBbpIqzmQ+0m3Ei90IB4R8T5Au+swAIMkV-MgwAgGwDViVtVN-uYh7qbgvjXq1lVtvCrmrhruANLgLoGH9orrnEAQdqrurhDmAJUm1EZmkrnMgR3ngQrmFogISB4MyFuIJDPMxNrr2s9ixtTGxhZpxoINTBzgPCxloiwXCikGwVopwXTJhnvL2kIJhkIUVLvqIVZkIKjkIaZB9u8FlPgCrJyFtGgdAR1h8JgfATgQUkTAUn1LAVgWlJrrriwOgRMCAfGgji-GTBYdPjpI4UXI4Qbo4d3o4QyL9HYR2NWmdhRjYqIGgBSJemDHUibt1tch-gQIRBjBETVp8OgD9vmsmC-qclsIoENIyv9omvhH-tgOkREjBKZOwFkQeICv-iaIgAUVeq0tTujkIkkY6NAKkYHKIiAZ9AUrQUHpNM5pAuRDkK-hIgWMqkkXJrNKZE+MsKdICkkRIhHukjqGUTgNkT0eTkjoxv1n1EEegKEUMY0Mgo4ZsY9NWjIMcfYVeCEBcYuJkasRUTEezPIlYXMcMbLOcScZ8X4ZRF0V8Y9G7ATgUqoEQlzncGzjfgEMEUEKDCAWohsKZM0SkblJCZYBIBckkb4ekusW7P0Z8RQVQRIrZIJL0cxMGhMZElMZRCpkAsCQEfIphnxGkrgCpCIfyLUTFPfqJuhvgB8KCNxKyVsZ-jyYblBoCY0dcoIB4AgDgIIK0psJybVLTOyADgUFUeJnBsUY9BUoIAAKKpB3QUhcZwZ+gAAKAA8iaUIcUmJAEuGipDGm9PyOSphuSawAKYGC6dSbWNcg6dSeoMeuyPftkINC8DAAAF51BKlun0YFjsnDoSlSk5CymJzyl4qIDDyEB9ZQBdLFAjDfw5Hik7C5mxaxCe5clDIFI6jlkFLWyYIlnYQD6IYr5F6MaKk1m9R1n5me7BmwChkRnNnN4UQhm8ARkITtnakWg+Sn7sDyBYJ5aQZeinidmxAgnek7AZlZmZB0lbgWaapMkcAcgzodReQABU4AiIVqJ5yZgZaZG5zIOZy5BZJRQixZXZA+DQA5o+h5Bc7Zr5pZA+vsn5g5IsQm35AcBYIsBO-pF8foFSf55YNxrAx+vkWws5KkLofU3aLSKZa5Tgd52ZzgiWcwRYm4FIukKAaAHgkRuFSAT4tRQMFFVFixie5Bw4rYVqSSsFZALw+ApFMg5K5KZR7kTF1xF8OoglquwlrILmfoxFwofF9MoiQllFv0iW06oS3auGFmd6HAd+aZY6GlfBaA2GrwT5sM1y2lgFJGOG25BQOANohgwajJuiTBAEUOmmRlCGEAkh3B3cohHlqMKQggghcsLGApfUDJa0zJ9M5yVhxgFCzCsZVRMU0VUA5y3h1ECMt6PZMAfZre9GyMiFSkZa9GQgOVeV7Qvm0V-aPgN+mVDct6HB4eqY-Sghnc4SvQqZWyLwOIEABJu59Wwm88cldWxQukgVMJsYuAteTYLY6oUZJkRlFyU1DZgpsRCM8RmFnlQKU0RVF8NVK1ExKSpSBSFS8RggAAsv-rALtIaXNW2CjJpH6FaZzoWU4FihNd9tgEKFQR4Nea9awPfjRFmgNZmMJvLPmPyCNfEQdTfhMaZA2HnkdOxe2GfDqGdTMKaJOSfvikZXOO2eVv4MGKuYDWmSYckM5UpOmgkmxtJuAtSSqfRdWgtR2KZJKdKf9VAg0WfHFeTdgfgNXjZCEAhF6SWjsOTZGX6ThaTVsvhQ+XmSuQEqZPBZ7hBmgGypWWZKBQZROmctQVoWlEwpQK6efAiToXAZLfkufLWQrQ2XXmcD1Y-kBvFfIJQEBawDqHIKBWlfrfwtvEbYoAWHIFBb+Y+Z7j1T9ckOxmjO7SwDqBHX1VHd2qHbbZ7uZkZbHYgDqMDXRMndbR2anQPg7dgNtubELJnTqBlZjjFclNIVDTtBQPsOlbvsbvZNBY9DbfWarQVZrZhinV3QPvIZrT7XNoQOOSulpI+VjZaDjaheQHOU4TkNhQGWLXhXwJuYRaCfjBRk5f2gOPdsxBYPoGiZ0cZpyMGv5VuDkA5U5WtEoe4F0nvTMD1BYU5YIAnf1RnR0E-T0B8abUtfvWtG-cXaWPIR0N4UA2IYICA07WsC7ZQjKcxTBL8NfrgCicfUYLCYvdQAJtcsGolmrQIGSVqm-YQ+0CLVvS+izEtXTZxj-WZetDEG5hWh-OnRNZZuXvQ9ImQbnP2rQ7dvQyZeQLTDraw9Q+w3QwA-qkIywjRV5ImTKaGORNEBAAckfdCcrOo1YKoSwCKpsF7uItSNID6GQiKrVIILyO0ONUIEY59KyvgAAAxoiYmIAp7sR3qqOmIc0hAuOAz0LDIIzmPsAi6fQArv1WMow2OVW7W-h+NuDZbRBRM+M+h+NGPWP+PJO-il7uPjwKKVW+EeMHIKOVWhYqBMDKOeMX28ibB9ROXcS3rxOmhpNeRsoxMwQioZbTjIxHAyDUhPxuCIAACkrjbTZ8t6ljMgPTIzPUAzsefTozHYWjaJAddQKjajgQVgXEjAvDND7m+Aazjlt24TMgAATA4wAGy9A7OfV00HNsHNMAAsTjKghD+zlTDBKgbD+ktz7zae4ToQQAA

Computing with Register Machines 5.1.1

Exercise 5.2

Use the register-machine language to describe the iterative factorial machine of exercise 5.1.

Actions

Let us modify the GCD machine so that we can type in the numbers whose GCD we want and

get the answer printed at our terminal. We will not discuss how to make a machine that can

read and print, but will assume (as we do when we use prompt and display in JavaScript) that

they are available as primitive operations.

The operation prompt is like the operations we have been using in that it produces a value

that can be stored in a register. But prompt does not take inputs from any registers; its value

depends on something that happens outside the parts of the machine we are designing. We

will allow our machine’s operations to have such behavior, and thus will draw and notate the

use of prompt just as we do any other operation that computes a value.

The operation display, on the other hand, di�ers from the operations we have been using

in a fundamental way: It does not produce an output value to be stored in a register. Though

it has an e�ect, this e�ect is not on a part of the machine we are designing. We will refer to

this kind of operation as an action. We will represent an action in a data-path diagram just as

we represent an operation that computes a value—as a trapezoid that contains the name of

the action. Arrows point to the action box from any inputs (registers or constants). We also

associate a button with the action. Pushing the button makes the action happen. To make a

controller push an action button we use a new kind of instruction called perform. Thus, the

action of printing the contents of register a is represented in a controller sequence by the

instruction

perform(list(op("display"), reg("a")))

Figure 5.4 shows the data paths and controller for the new GCD machine. Instead of having

the machine stop after printing the answer, we have made it start over, so that it repeatedly

reads a pair of numbers, computes their GCD, and prints the result. This structure is like the

driver loops we used in the interpreters of chapter 4.

527 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.1.1

prompt

a b

t

rem

a ← b

t ← r

b ← t

0

=

display

a ← rd b ← rd

P

Icontroller(

list(

"gcd_loop",

assign("a", list(op("prompt"))),

assign("b", list(op("prompt"))),

"test_b",

test(list(op("="), reg("b"), constant(0))),

branch(label("gcd_done")),

assign("t", list(op("rem"), reg("a"), reg("b"))),

assign("a", reg("b")),

assign("b", reg("t")),

go_to(label("test_b")),

"gcd_done",

perform(list(op("display"), reg("a"))),

go_to(label("gcd_loop"))))

Figure 5.4: A GCD machine that reads inputs and prints results.
528 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBBUBOcA2mCmaAUAzjgI4g6Q4CUiA3gJABQiLiaOUIaSmMhU+AEQow6LLjSCANImJkKEagG5GAX0ahIsBMlQZseAPpzylfCLEG0NWs1btO3RAAscAQwAm+KG5iZzeuJ4VFQq6prQ8EgA5hyG7NF8UHj4ALZuEM4wYDgyCYZgbqnUdHYsDlxI6ZnZOEKxUPE4ifx4glT4+YXFoWoa4JE6boSEMNFgTdEFRXXDo+OG2fxoIINgNmVsHJUu7l4+fvhzYxNL6Kva673hA5eIxwsAbm6Y5IY4AB4ADkcjJ4tgZYXKI2RCbCpOVyeby+fwHfwPU6A85rELXfpaKKITBwOAAaxAX0MXzQMFSRAAnqkAEZYGRwL54NyXQgbVi6ZGIZ6YRAAXnuIzgEEpNLpiAZTJZvXZEKQ3L5vP54A8OGAtQ8m3ZAH5EHgMARCFTaZgZIIAKpgPFgOAAdyQErQzKx2QFxBpuAAXO1NawPbtofD8NyQmEMWtsbiCUTMG5qTh-DG45hCDJE-Hpj1SuyRPwuS8+a6hfg05gM7lsbH46yVDLtk55YqlWAVWqchr2drdWh9cXK6XuuXzc3VeqK0nEC65jh3TgvVQfSw-YHg6GInd0nicMTSakYLBHlvPj8jzJqlkcqm+6ys6wYMBEPg+IYcz5RO9vvgjyEbx2ObmIAWL5uG+R6GNy5Cft80q-lsjhIPgNC8gAfMgNasKourJjgE73o+hCGCW77HlBbIwS+E7IoQBY4vihIEX2vZJimY7pqBJaQV8IYLrBOwIXyKFnIQaEsBhVbYXeD5PgkSRGEeHHfrYMF-lAbAFg0kwyQQZ61HkzSaURkzydBv6yg+iEoepFgUFAhCdKEYLsqJWE-h2epwAQJ6IEOVq2kgR7sH8OhQBSjIUa607Up67TCYg6g3JiOgbluDpOggREcaeGTnuWJbMSlUoueRDLUZGdEkmS+D5VEBkMvJ9KMo6UoxeRbgkkKVH8ukx78YgSXbmSe4wAe6XltpF4scmVBSNxSkwVVaWgSlza2V+xk8U4fHIfcXxfJgFIAoYyp4Ht2RTAAVm4zyEBApJfAIM2zawDKZT8Xw9T8U3bRgECsuia5YoinR6a0aBljIhBwFwiikeUdY8EkQiItIWwtMkoMDuDkNoNDq63FifWA2cmU1ONuX1ZKUTMV8EAw8piA+GgDRqXE0kg2kWU6a6-xdDMj7Ilx2YILm4GHt8BaImBLxvHJZxreRIuGJofLcU+80THJCtftxOp9Wr6Wa98xPZZeTHk41lPzkpfp9eVu77qLPwG18Ruc7la2mZtKGKTBxCNFZoi2QzDQyArmgIWt7KeM8lDEsK1P2Zsqi4wlSBR8Biix-g8cub7z6oNZtnUzIgaWfnAdZzTIZgvF4Z9ck-B8-wLuk1eZupYCMjADG0QyNn3ssORIgeINOj8vXfsIMPlyN1Aa0SXhhh63JQ8j1cLmC5yK+XIr4AFrrDXt+lW9RNNj1n+fvUcy3pvigfTXcR75nrxfHa5-7Nn4F3bg9xyU-VWHAsX5KTTjHamFcE5AN-EnROmFiDPxYG5AgRMvIACFPD0xwLmM4KxwyThGBFKKa04phjuOPIgpBTDQxcqZXgDdBDj2RiYBQyg+j-SCpgiezZV7eA4QCIEqJqFw39PsWEPD+B8JRJcLiNd1xuE3IYakjpIDOBns3HKrdEBfx-n3TY5EVS5n5Io9OzhDD6IELLGK88nyETkmYhS3FyKCRKrRaMDEyYTQMuxOxEd7BCM9vAyB89S6iALp-bu9jIFnzfmXD+RcKL8GrA9C+Tk4H90iTBEBGcwHxxiuk2KSTHrQMcrA7CaT2SINUag9BRjlHxMkc6VO+CZxzhisQthSAamZEYvGWmNCEaCE6c4ZGJY-p4x0IM0xHD8ATOwcCBAvShFQhEYcGZyIcFSNGSnCc+EfDRFiB4AiCN+CpCgMXVwhhdkLLgts4kvgDRQBOTQAAZE84RRAHmzwVGPc5uzk7hgSPgAcVydi0IEIIBIyMgV-LuFJYGaMRpQUEdcp8uz9mHIbp5cFzRoqsLGUgVm8LQIAq-EinYSyYSHFWtCrEQFRBBiliUNJfS6G0qgMjEWmzcH4VZQizipKnAou-mi0FGUvKspxTImlQtXyNFAiLeS-KkDksDFS3FWz2JAsVdifpJZIUzE5TC-CNiPwkqZUIwVeycAHJFZi3VBqsTGtcUmBVZrrnKtEaqyViU5FbmiHAC5cBKljXUTfHRG9cxmLUv6qA-qzEzznrhaxfZ0reICY4yizioz0Wde4x12b4z4G8bk3x1z-HRJCeXOJgkiElJwpJfCBLZIflTWU1g5EEjM0aI2rSV9yzdoMgCotD8-FP3LckStEAZDBPHR-BIgCRK1tbQg7s7lKmCDQR4RAfqA11PWQ08KzScWOT6CQrE26Y3dMwMCpwIrBDnrgMMvs9qdD3smQ3V9syBGurJXsCl-gP1rLmVcalOgvi1X4BkPE16kAQYgHiIQYGvgStPaBkAhAVGwbxCHBl0HZA+DgwhtDQyOgcpA1UH1xhLp1GQcG8G+GsOIDDW26VKNO0aTZrRvDkGJGTDLPG92I6epLvPl8Ij7zINTriO-Wyc6fEX0yVubJNNi1n2gV68j8iAoxvYEG3tdGJOMZpoVFjHb+TqW7ezEm5ZMM8Z5sUfjMVH5CYKT7KTMSZPNF7uB+j87IEKczjkhykC1OMBQzBqjQNoi4dvYQKjyM51ka2PwdydQ51atvVplL8XmjPpg-R2zzQ+M2c-VIrV7rDjFcA6iXLt9AX6vS-0hkeqeiJdVnfaqclTXgnNfhL4dyFUvJuaiq16KBDkq-KaJrNWl7fEXj8GbfLv2Ql-YGclC20SJYW3Npky1KrtYWoipbSBAzrcSzbPAwB3Lkho3piaeV9sd0M7TFq4Z+QNUu2gVIhgMjTwsZsKx+EFtHGq2mljP3-6706hRoH4OEBqNPnkxH7J3Fq0SUpJzW1aBBaR7DiYAClD3A8NHLJcdlPY-SUU9Ci7uIVOQeu9B72ru7qA2FKcM4j3oTVeGRnn3gelaO9quhPPUjI1xzV4X321jxrKyt0RssE7qcvvIz4OAIAgG3u0yp7jOMucR3ErR+m4P1WvAL8lssvleSRtrJXW5CbInh3d43vcabcT9Gb-mFv6EcMENbuuUybtWZNlWJ3mju7O8tjBN3v7zeNi8oMn3SkdYUcGbpwPjvQ-f3D67t5MfFReXvQnmCSf5H3tT8bdP8ds-u-4IhPPghYsHkL7+YvW4G-Uft5fNPmGs9Wxzx72PWLkvsCbx2FvTQh-t6bp38v3entV+j-3uvwuR+dnO2gD712O+cZR18KmLve+04795a0dpmfhmCqFPBbpIqzmQ+0m3Ei90IB4R8T5Au+swAIMkV-MgwAgGwDViVtVN-uYh7qbgvjXq1lVtvCrmrhruANLgLoGH9orrnEAQdqrurhDmAJUm1EZmkrnMgR3ngQrmFogISB4MyFuIJDPMxNrr2s9ixtTGxhZpxoINTBzgPCxloiwXCikGwVopwXTJhnvL2kIJhkIUVLvqIVZkIKjkIaZB9u8FlPgCrJyFtGgdAR1h8JgfATgQUkTAUn1LAVgWlJrrriwOgRMCAfGgji-GTBYdPjpI4UXI4Qbo4d3o4QyL9HYR2NWmdhRjYqIGgBSJemDHUibt1tch-gQIRBjBETVp8OgD9vmsmC-qclsIoENIyv9omvhH-tgOkREjBKZOwFkQeICv-iaIgAUVeq0tTujkIkkY6NAKkYHKIiAZ9AUrQUHpNM5pAuRDkK-hIgWMqkkXJrNKZE+MsKdICkkRIhHukjqGUTgNkT0eTkjoxv1n1EEegKEUMY0Mgo4ZsY9NWjIMcfYVeCEBcYuJkasRUTEezPIlYXMcMbLOcScZ8X4ZRF0V8Y9G7ATgUqoEQlzncGzjfgEMEUEKDCAWohsKZM0SkblJCZYBIBckkb4ekusW7P0Z8RQVQRIrZIJL0cxMGhMZElMZRCpkAsCQEfIphnxGkrgCpCIfyLUTFPfqJuhvgB8KCNxKyVsZ-jyYblBoCY0dcoIB4AgDgIIK0psJybVLTOyADgUFUeJnBsUY9BUoIAAKKpB3QUhcZwZ+gAAKAA8iaUIcUmJAEuGipDGm9PyOSphuSawAKYGC6dSbWNcg6dSeoMeuyPftkINC8DAAAF51BKlun0YFjsnDoSlSk5CymJzyl4qIDDyEB9ZQBdLFAjDfw5Hik7C5mxaxCe5clDIFI6jlkFLWyYIlnYQD6IYr5F6MaKk1m9R1n5me7BmwChkRnNnN4UQhm8ARkITtnakWg+Sn7sDyBYJ5aQZeinidmxAgnek7AZlZmZB0lbgWaapMkcAcgzodReQABU4AiIVqJ5yZgZaZG5zIOZy5BZJRQixZXZA+DQA5o+h5Bc7Zr5pZA+vsn5g5IsQm35AcBYIsBO-pF8foFSf55YNxrAx+vkWws5KkLofU3aLSKZa5Tgd52ZzgiWcwRYm4FIukKAaAHgkRuFSAT4tRQMFFVFixie5Bw4rYVqSSsFZALw+ApFMg5K5KZR7kTF1xF8OoglquwlrILmfoxFwofF9MoiQllFv0iW06oS3auGFmd6HAd+aZY6GlfBaA2GrwT5sM1y2lgFJGOG25BQOANohgwajJuiTBAEUOmmRlCGEAkh3B3cohHlqMKQggghcsLGApfUDJa0zJ9M5yVhxgFCzCsZVRMU0VUA5y3h1ECMt6PZMAfZre9GyMiFSkZa9GQgOVeV7Qvm0V-aPgN+mVDct6HB4eqY-Sghnc4SvQqZWyLwOIEABJu59Wwm88cldWxQukgVMJsYuAteTYLY6oUZJkRlFyU1DZgpsRCM8RmFnlQKU0RVF8NVK1ExKSpSBSFS8RggAAsv-rALtIaXNW2CjJpH6FaZzoWU4FihNd9tgEKFQR4Nea9awPfjRFmgNZmMJvLPmPyCNfEQdTfhMaZA2HnkdOxe2GfDqGdTMKaJOSfvikZXOO2eVv4MGKuYDWmSYckM5UpOmgkmxtJuAtSSqfRdWgtR2KZJKdKf9VAg0WfHFeTdgfgNXjZCEAhF6SWjsOTZGX6ThaTVsvhQ+XmSuQEqZPBZ7hBmgGypWWZKBQZROmctQVoWlEwpQK6efAiToXAZLfkufLWQrQ2XXmcD1Y-kBvFfIJQEBawDqHIKBWlfrfwtvEbYoAWHIFBb+Y+Z7j1T9ckOxmjO7SwDqBHX1VHd2qHbbZ7uZkZbHYgDqMDXRMndbR2anQPg7dgNtubELJnTqBlZjjFclNIVDTtBQPsOlbvsbvZNBY9DbfWarQVZrZhinV3QPvIZrT7XNoQOOSulpI+VjZaDjaheQHOU4TkNhQGWLXhXwJuYRaCfjBRk5f2gOPdsxBYPoGiZ0cZpyMGv5VuDkA5U5WtEoe4F0nvTMD1BYU5YIAnf1RnR0E-T0B8abUtfvWtG-cXaWPIR0N4UA2IYICA07WsC7ZQjKcxTBL8NfrgCicfUYLCYvdQAJtcsGolmrQIGSVqm-YQ+0CLVvS+izEtXTZxj-WZetDEG5hWh-OnRNZZuXvQ9ImQbnP2rQ7dvQyZeQLTDraw9Q+w3QwA-qkIywjRV5ImTKaGORNEBAAcjaHuCYm1PqZwqiXgMrEfdCaoSwCKr+JsHeqowRLiEhpiVzOMIjMMgjLVOwRgNo5Vbtb+IDAMg4w3E41o3dG474V7uItSNID6GQiKk47yO0ONUICE59KyvgAAAxog2Mp7sTmMHIKOVU2OeNsotU+M-BYoi6fQArv3RMoyxMBM+ieNuDZbRCVMhA5N-B2NeMxP0LZM+il7pPjwKIdPsgZOmIc02PC7FiOOFMbkxgUjlOlO1MpOdPRqBrpMqPWpWNuPziMAqD0CmPKMWPqNpXbhwDaOOW9rKzsh9ROXcS3q1OmghOmhsruMwQioZbTjIxHAyDUhPxuCIAACkiAHzNjjz-SUTMgbzfznzFu-zLmjVLj-jILT8fWaAxAAIAgfjYK1kejf+NIeAc4MgAAjMkw82fLehM24FMzICSxSI0w4oEFYPA8wvgMs4YHs5ozCzoxg9YJ1YQwy7sxowc0c2SUoEAA

Computing with Register Machines 5.1.2

5.1.2 Abstraction in Machine Design

We will often de�ne a machine to include “primitive” operations that are actually very complex.

For example, in sections 5.4 and 5.5 we will treat JavaScript’s environment manipulations as

primitive. Such abstraction is valuable because it allows us to ignore the details of parts of

a machine so that we can concentrate on other aspects of the design. The fact that we have

swept a lot of complexity under the rug, however, does not mean that a machine design is

unrealistic. We can always replace the complex “primitives” by simpler primitive operations.

Consider the GCD machine. The machine has an instruction that computes the remainder

of the contents of registers a and b and assigns the result to register t. If we want to construct

the GCD machine without using a primitive remainder operation, we must specify how to

compute remainders in terms of simpler operations, such as subtraction. Indeed, we can write

a JavaScript function that �nds remainders in this way:

Ifunction remainder(n, d) {

return n < d

? n

: remainder(n - d, d);

}

We can thus replace the remainder operation in the GCD machine’s data paths with a

subtraction operation and a comparison test. Figure 5.5 shows the data paths and controller

for the elaborated machine. The instruction

529 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAJwKYFsCGMwBNXIAUYANIrgJSIDeAUIgyqlCMkkgDzn2O8D8iMD14MAXEyw58RJAFpyZSgG5aAX1q00kvAUIAmAJxkArBSVA

Computing with Register Machines 5.1.2

a ← b

t ← a b ← t

t ← d

a b

t

--

<

0

=

=

start

yes
done

no

<
no

yes

t ← a

a ← b

b ← t

t ← d

Figure 5.5: Data paths and controller for the elaborated GCD machine.

assign("t", list(op("rem"), reg("a"), reg("b")))

in the GCD controller de�nition is replaced by a sequence of instructions that contains a loop,

as shown in �gure 5.6.

530 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.1.3

Icontroller(

list(

"test_b",

test(list(op("="), reg("b"), constant(0))),

branch(label("gcd_done")),

assign("t", reg("a")),

"rem_loop",

test(list(op("<"), reg("t"), reg("b"))),

branch(label("rem_done")),

assign("t", list(op("-"), reg("t"), reg("b"))),

go_to(label("rem_loop")),

"rem_done",

assign("a", reg("b")),

assign("b", reg("t")),

go_to(label("test_b")),

"gcd_done"))

Figure 5.6: Controller instruction sequence for the GCD machine in �gure 5.5.

Exercise 5.3

Design a machine to compute square roots using Newton’s method, as described in sec-

tion 1.1.7:

Ifunction sqrt(x) {

function good_enough(guess) {

return math_abs(square(guess) - x) < 0.001;

}

function improve(guess) {

return average(guess, x / guess);

}

function sqrt_iter(guess) {

return good_enough(guess)

? guess

: sqrt_iter(improve(guess));

}

return sqrt_iter(1.0);

}

Begin by assuming that good_enough and improve operations are available as primitives. Then

show how to expand these in terms of arithmetic operations. Describe each version of the

sqrt machine design by drawing a data-path diagram and writing a controller de�nition in

the register-machine language.

531 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBBUBOcA2mCmaAUAzjgI4g6Q4CUiA3gJABQiLiaOUIaSmMhU+AEQow6LLjSCANImJkKEagG5GAX0ahIsBMlQZseAPpzylfCLEG0NWs1btO3RAAscAQwAm+KG5iZzeuJ4VFQq6prQ8EgA5hyG7NF8UHj4ALZuEM4wYDgyCYZgbqnUdHYsDlxI6ZnZOEKxUPE4ifx4glT4+YXFoWoa4JE6boSEMNFgTdEFRXXDo+OG2fxoIINgNmVsHJUu7l4+fvhzYxNL6Kva673hA5eIxwsAbm6Y5IY4AB4ADkcjJ4tgZYXKI2RCbCpOVyeby+fwHfwPU6A85rELXfpaKKITBwOAAaxAX0MXzQMFSRAAnqkAEZYGRwL54NyXQgbVi6ZGIZ6YRAAXnuIzgEEpNLpiAZTJZvXZEKQ3L5vP54A8OGAtQ8m3ZAH5EHgMARCFTaZgZIIAKpgPFgOAAdyQErQzKx2QFxBpuAAXO1NawPbtofD8NyQmEMWtsbiCUTMG5qTh-DG45hCDJE-Hpj1SuyRPwuS8+a6hfg05gM7lsbH46yVDLtk55YqlWAVWqchr2drdWh9cXK6XuuXzc3VeqK0nEC65jh3TgvVQfSw-YHg6GInd0nicMTSakYLBHlvPj8jzJqlkcqm+6ys6wYMBEPg+IYcz5RO9vvgjyEbx2ObmIAWL5uG+R6GNy5Cft80q-lsjhIPgNC8gAfMgNasKourJjgE73o+hCGCW77HlBbIwS+E7IoQBY4vihIEX2vZJimY7pqBJaQV8IYLrBOwIXyKFnIQaEsBhVbYXeD5PgkSRGEeHHfrYMF-lAbAFg0kwyQQZ61HkzSaURkzydBv6yg+iEoepFgUFAhCdKEYLsqJWE-h2epwAQJ6IEOVq2kgR7sH8OhQBSjIUa607Up67TCYg6g3JiOgbluDpOggREcaeGTnuWJbMSlUoueRDLUZGdEkmS+D5VEBkMvJ9KMo6UoxeRbgkkKVH8ukx78YgSXbmSe4wAe6XltpF4scmVBSNxSkwVVaWgSlza2V+xk8U4fHIfcXxfJgFIAoYyp4Ht2RTAAVm4zyEBApJfAIM2zawDKZT8Xw9T8U3bRgECsuia5YoinR6a0aBljIhBwFwiikeUdY8EkQiItIWwtMkoMDuDkNoNDq63FifWA2cmU1ONuX1ZKUTMV8EAw8piA+GgDRqXE0kg2kWU6a6-xdDMj7Ilx2YILm4GHt8BaImBLxvHJZxreRIuGJofLcU+80THJCtftxOp9Wr6Wa98xPZZeTHk41lPzkpfp9eVu77qLPwG18Ruc7la2mZtKGKTBxCNFZoi2QzDQyArmgIWt7KeM8lDEsK1P2Zsqi4wlSBR8Biix-g8cub7z6oNZtnUzIgaWfnAdZzTIZgvF4Z9ck-B8-wLuk1eZupYCMjADG0QyNn3ssORIgeINOj8vXfsIMPlyN1Aa0SXhhh63JQ8j1cLmC5yK+XIr4AFrrDXt+lW9RNNj1n+fvUcy3pvigfTXcR75nrxfHa5-7Nn4F3bg9xyU-VWHAsX5KTTjHamFcE5AN-EnROmFiDPxYG5AgRMvIACFPD0xwLmM4KxwyThGBFKKa04phjuOPIgpBTDQxcqZXgDdBDj2RiYBQyg+j-SCpgiezZV7eA4QCIEqJqFw39PsWEPD+B8JRJcLiNd1xuE3IYakjpIDOBns3HKrdEBfx-n3TY5EVS5n5Io9OzhDD6IELLGK88nyETkmYhS3FyKCRKrRaMDEyYTQMuxOxEd7BCM9vAyB89S6iALp-bu9jIFnzfmXD+RcKL8GrA9C+Tk4H90iTBEBGcwHxxiuk2KSTHrQMcrA7CaT2SINUag9BRjlHxMkc6VO+CZxzhisQthSAamZEYvGWmNCEaCE6c4ZGJY-p4x0IM0xHD8ATOwcCBAvShFQhEYcGZyIcFSNGSnCc+EfDRFiB4AiCN+CpCgMXVwhhdkLLgts4kvgDRQBOTQAAZE84RRAHmzwVGPc5uzk7hgSPgAcVydi0IEIIBIyMgV-LuFJYGaMRpQUEdcp8uz9mHIbp5cFzRoqsLGUgVm8LQIAq-EinYSyYSHFWtCrEQFRBBiliUNJfS6G0qgMjEWmzcH4VZQizipKnAou-mi0FGUvKspxTImlQtXyNFAiLeS-KkDksDFS3FWz2JAsVdifpJZIUzE5TC-CNiPwkqZUIwVeycAHJFZi3VBqsTGtcUmBVZrrnKtEaqyViU5FbmiHAC5cBKljXUTfHRG9cxmLUv6qA-qzEzznrhaxfZ0reICY4yizioz0Wde4x12b4z4G8bk3x1z-HRJCeXOJgkiElJwpJfCBLZIflTWU1g5EEjM0aI2rSV9yzdoMgCotD8-FP3LckStEAZDBPHR-BIgCRK1tbQg7s7lKmCDQR4RAfqA11PWQ08KzScWOT6CQrE26Y3dMwMCpwIrBDnrgMMvs9qdD3smQ3V9syBGurJXsCl-gP1rLmVcalOgvi1X4BkPE16kAQYgHiIQYGvgStPaBkAhAVGwbxCHBl0HZA+DgwhtDQyOgcpA1UH1xhLp1GQcG8G+GsOIDDW26VKNO0aTZrRvDkGJGTDLPG92I6epLvPl8Ij7zINTriO-Wyc6fEX0yVubJNNi1n2gV68j8iAoxvYEG3tdGJOMZpoVFjHb+TqW7ezEm5ZMM8Z5sUfjMVH5CYKT7KTMSZPNF7uB+j87IEKczjkhykC1OMBQzBqjQNoi4dvYQKjyM51ka2PwdydQ51atvVplL8XmjPpg-R2zzQ+M2c-VIrV7rDjFcA6iXLt9AX6vS-0hkeqeiJdVnfaqclTXgnNfhL4dyFUvJuaiq16KBDkq-KaJrNWl7fEXj8GbfLv2Ql-YGclC20SJYW3Npky1KrtYWoipbSBAzrcSzbPAwB3Lkho3piaeV9sd0M7TFq4Z+QNUu2gVIhgMjTwsZsKx+EFtHGq2mljP3-6706hRoH4OEBqNPnkxH7J3Fq0SUpJzW1aBBaR7DiYAClD3A8NHLJcdlPY-SUU9Ci7uIVOQeu9B72ru7qA2FKcM4j3oTVeGRnn3gelaO9quhPPUjI1xzV4X321jxrKyt0RssE7qcvvIz4OAIAgG3u0yp7jOMucR3ErR+m4P1WvAL8lssvleSRtrJXW5CbInh3d43vcabcT9Gb-mFv6EcMENbuuUybtWZNlWJ3mju7O8tjBN3v7zeNi8oMn3SkdYUcGbpwPjvQ-f3D67t5MfFReXvQnmCSf5H3tT8bdP8ds-u-4IhPPghYsHkL7+YvW4G-Uft5fNPmGs9Wxzx72PWLkvsCbx2FvTQh-t6bp38v3entV+j-3uvwuR+dnO2gD712O+cZR18KmLve+04795a0dpmfhmCqFPBbpIqzmQ+0m3Ei90IB4R8T5Au+swAIMkV-MgwAgGwDViVtVN-uYh7qbgvjXq1lVtvCrmrhruANLgLoGH9orrnEAQdqrurhDmAJUm1EZmkrnMgR3ngQrmFogISB4MyFuIJDPMxNrr2s9ixtTGxhZpxoINTBzgPCxloiwXCikGwVopwXTJhnvL2kIJhkIUVLvqIVZkIKjkIaZB9u8FlPgCrJyFtGgdAR1h8JgfATgQUkTAUn1LAVgWlJrrriwOgRMCAfGgji-GTBYdPjpI4UXI4Qbo4d3o4QyL9HYR2NWmdhRjYqIGgBSJemDHUibt1tch-gQIRBjBETVp8OgD9vmsmC-qclsIoENIyv9omvhH-tgOkREjBKZOwFkQeICv-iaIgAUVeq0tTujkIkkY6NAKkYHKIiAZ9AUrQUHpNM5pAuRDkK-hIgWMqkkXJrNKZE+MsKdICkkRIhHukjqGUTgNkT0eTkjoxv1n1EEegKEUMY0Mgo4ZsY9NWjIMcfYVeCEBcYuJkasRUTEezPIlYXMcMbLOcScZ8X4ZRF0V8Y9G7ATgUqoEQlzncGzjfgEMEUEKDCAWohsKZM0SkblJCZYBIBckkb4ekusW7P0Z8RQVQRIrZIJL0cxMGhMZElMZRCpkAsCQEfIphnxGkrgCpCIfyLUTFPfqJuhvgB8KCNxKyVsZ-jyYblBoCY0dcoIB4AgDgIIK0psJybVLTOyADgUFUeJnBsUY9BUoIAAKKpB3QUhcZwZ+gAAKAA8iaUIcUmJAEuGipDGm9PyOSphuSawAKYGC6dSbWNcg6dSeoMeuyPftkINC8DAAAF51BKlun0YFjsnDoSlSk5CymJzyl4qIDDyEB9ZQBdLFAjDfw5Hik7C5mxaxCe5clDIFI6jlkFLWyYIlnYQD6IYr5F6MaKk1m9R1n5me7BmwChkRnNnN4UQhm8ARkITtnakWg+Sn7sDyBYJ5aQZeinidmxAgnek7AZlZmZB0lbgWaapMkcAcgzodReQABU4AiIVqJ5yZgZaZG5zIOZy5BZJRQixZXZA+DQA5o+h5Bc7Zr5pZA+vsn5g5IsQm35AcBYIsBO-pF8foFSf55YNxrAx+vkWws5KkLofU3aLSKZa5Tgd52ZzgiWcwRYm4FIukKAaAHgkRuFSAT4tRQMFFVFixie5Bw4rYVqSSsFZALw+ApFMg5K5KZR7kTF1xF8OoglquwlrILmfoxFwofF9MoiQllFv0iW06oS3auGFmd6HAd+aZY6GlfBaA2GrwT5sM1y2lgFJGOG25BQOANohgwajJuiTBAEUOmmRlCGEAkh3B3cohHlqMKQggghcsLGApfUDJa0zJ9M5yVhxgFCzCsZVRMU0VUA5y3h1ECMt6PZMAfZre9GyMiFSkZa9GQgOVeV7Qvm0V-aPgN+mVDct6HB4eqY-Sghnc4SvQqZWyLwOIEABJu59Wwm88cldWxQukgVMJsYuAteTYLY6oUZJkRlFyU1DZgpsRCM8RmFnlQKU0RVF8NVK1ExKSpSBSFS8RggAAsv-rALtIaXNW2CjJpH6FaZzoWU4FihNd9tgEKFQR4Nea9awPfjRFmgNZmMJvLPmPyCNfEQdTfhMaZA2HnkdOxe2GfDqGdTMKaJOSfvikZXOO2eVv4MGKuYDWmSYckM5UpOmgkmxtJuAtSSqfRdWgtR2KZJKdKf9VAg0WfHFeTdgfgNXjZCEAhF6SWjsOTZGX6ThaTVsvhQ+XmSuQEqZPBZ7hBmgGypWWZKBQZROmctQVoWlEwpQK6efAiToXAZLfkufLWQrQ2XXmcD1Y-kBvFfIJQEBawDqHIKBWlfrfwtvEbYoAWHIFBb+Y+Z7j1T9ckOxmjO7SwDqBHX1VHd2qHbbZ7uZkZbHYgDqMDXRMndbR2anQPg7dgNtubELJnTqBlZjjFclNIVDTtBQPsOlbvsbvZNBY9DbfWarQVZrZhinV3QPvIZrT7XNoQOOSulpI+VjZaDjaheQHOU4TkNhQGWLXhXwJuYRaCfjBRk5f2gOPdsxBYPoGiZ0cZpyMGv5VuDkA5U5WtEoe4F0nvTMD1BYU5YIAnf1RnR0E-T0B8abUtfvWtG-cXaWPIR0N4UA2IYICA07WsC7ZQjKcxTBL8NfrgCicfUYLCYvdQAJtcsGolmrQIGSVqm-YQ+0CLVvS+izEtXTZxj-WZetDEG5hWh-OnRNZZuXvQ9ImQbnP2rQ7dvQyZeQLTDraw9Q+w3QwA-qkIywjRV5ImTKaGORNEBAAcvGLGO5L9XnFCVYMrEfdCaoSwCKpsF7uItSNID6GQiKrVIILyO0ONUIOY59KyvgAAAxoiYmIAp7sR3qqOmIc0hCeOAz0LZbRCIyVW+FYpfY0RIaeNWMIw2MAA89jKMQgbKn0AKAylVu1v43jDEUT-jSZgTPowTbKLVDcNjAAtCk5k+kw41kx4z6KXj4+wNE7iEhsU+yAUwoxY7+ME24KE44xEyU38OMEM-U+kzkx2M0-k+PAosM10yowcj09cYwCoPQCwIwMo34+o7SI1CNhfbyJsH1E5dxLegM6aOY6aHU2c1lf0nYzIEcDINSE-G4Bbi854zBLesk4824M8684gIk141M2fLetU78-8z1G85U8CyCx2Po1YPA8wvgEs+8ImJo8kAcgixIFxIwLwzQ+5iizs+i-swcmwRc4gAAEyuMABsvQ+Ln1dNqLuzGLBzt2WTMgAALO4yoIQ0S2oyS1o2SSoGw-pEy8Sxo6S45eywM6EEAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAZwI4gIYCcCmAKADwEpEBvAKESsVyhCyQMQCpECBucgX3NElgSIMANxxYMAc3wEANAE8SFajRx0GiQogDUiBYgD0iAEycefaPCRosUQosrVzApBLhwAJgH0cYOCAkAFngSIDjIyPbKyrT0SAC2GFABnhgARsh4aJi4waHhJAC0bCQAPIgADAB05eUAjJzKPMpOlogwcQAOWHCiuWERZA5RKmpIImKS+CH9MmwGiNP5DdRNjuAWgtZQnjBQYn35g8NUMequHt6+-kGLEUPHVAD8C3nI9w8AXCioNjt7WHh2l0elNXkQiMsqKsTqpYlQtn99rVqhDuORyFs8ABWCFAA

Computing with Register Machines 5.1.3

5.1.3 Subroutines

When designing a machine to perform a computation, we would often prefer to arrange for

components to be shared by di�erent parts of the computation rather than duplicate the

components. Consider a machine that includes two GCD computations—one that �nds the

GCD of the contents of registers a and b and one that �nds the GCD of the contents of registers

c and d. We might start by assuming we have a primitive gcd operation, then expand the

two instances of gcd in terms of more primitive operations. Figure 5.7 shows just the GCD

portions of the resulting machine’s data paths, without showing how they connect to the rest

of the machine. The �gure also shows the corresponding portions of the machine’s controller

sequence.

532 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.1.3

"gcd_1",

 test(list(op("="),

 reg("b"),

 constant(0))),

 branch(label("after_gcd_1")),

 assign("t", list(op("rem"),

 reg("a"),

 reg("b"))),

 assign("a", reg("b")),

 assign("b", reg("t")),

 go_to(label("gcd_1")),

"after_gcd_1",

 ...

a b

t

rem

a ← b

t ← r

b ← t

0

=

"gcd_2",

 test(list(op("="),

 reg("d"),

 constant(0))),

 branch(label("after_gcd_2")),

 assign("s", list(op("rem"),

 reg("c"),

 reg("d"))),

 assign("c", reg("d")),

 assign("d", reg("s")),

 go_to(label("gcd_2")),

"after_gcd_2"

 ...

c d

s

rem

c ← d

s ← r

d ← s

0

=

Figure 5.7: Portions of the data paths and controller sequence for a machine with two GCD

computations.

This machine has two remainder operation boxes and two boxes for testing equality. If the

duplicated components are complicated, as is the remainder box, this will not be an economical

way to build the machine. We can avoid duplicating the data-path components by using the

same components for both GCD computations, provided that doing so will not a�ect the rest of

the larger machine’s computation. If the values in registers a and b are not needed by the time

the controller gets to gcd_2 (or if these values can be moved to other registers for safekeeping),

we can change the machine so that it uses registers a and b, rather than registers c and d, in

computing the second GCD as well as the �rst. If we do this, we obtain the controller sequence

shown in �gure 5.8.

533 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.1.3

We have removed the duplicate data-path components (so that the data paths are again

as in �gure 5.1), but the controller now has two GCD sequences that di�er only in their

entry-point labels. It would be better to replace these two sequences by branches to a single

sequence—a gcd subroutine—at the end of which we branch back to the correct place in the

main instruction sequence. We can accomplish this as follows: Before branching to gcd, we

place a distinguishing value (such as 0 or 1) into a special register, continue. At the end of

the gcd subroutine we return either to after_gcd_1 or to after_gcd_2, depending on the

value of the continue register. Figure 5.9 shows the relevant portion of the resulting controller

sequence, which includes only a single copy of the gcd instructions.

"gcd_1",

test(list(op("="), reg("b"), constant(0))),

branch(label("after_gcd_1")),

assign("t", list(op("rem"), reg("a"), reg("b"))),

assign("a", reg("b")),

assign("b", reg("t")),

go_to(label("gcd_1")),

"after_gcd_1",

...

"gcd_2",

test(list(op("="), reg("b"), constant(0))),

branch(label("after_gcd_2")),

assign("t", list(op("rem"), reg("a"), reg("b"))),

assign("a", reg("b")),

assign("b", reg("t")),

go_to(label("gcd_2")),

"after_gcd_2"

Figure 5.8: Portions of the controller sequence for a machine that uses the same data-path

components for two di�erent GCD computations.

534 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.1.3

"gcd",

test(list(op("="), reg("b"), constant(0))),

branch(label("gcd_done")),

assign("t", list(op("rem"), reg("a"), reg("b"))),

assign("a", reg("b")),

assign("b", reg("t")),

go_to(label("gcd")),

"gcd_done",

test(list(op("="), reg("continue"), constant(0))),

branch(label("after_gcd_1")),

go_to(label("after_gcd_2")),

...

// Before branching to "gcd" from the first place where

// it is needed, we place 0 in the "continue" register

assign("continue", constant(0)),

go_to(label("gcd")),

"after_gcd_1",

...

// Before the second use of "gcd", we place 1 in the

// "continue" register

assign("continue", constant(1)),

go_to(label("gcd")),

"after_gcd_2"

Figure 5.9: Using a continue register to avoid the duplicate controller sequence in �gure 5.8.

535 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.1.3

"gcd",

test(list(op("="), reg("b"), constant(0))),

branch(label("gcd_done")),

assign("t", list(op("rem"), reg("a"), reg("b"))),

assign("a", reg("b")),

assign("b", reg("t")),

go_to(label("gcd")),

"gcd_done",

go_to(reg("continue")),

...

// Before calling "gcd", we assign to "continue"

// the label to which "gcd" should return.

assign("continue", label("after_gcd_1"))),

go_to(label("gcd")),

"after_gcd_1",

...

// Here is the second call to "gcd", with a different continuation.

assign("continue", label("after_gcd_2")),

go_to(label("gcd")),

"after_gcd_2"

Figure 5.10: Assigning labels to the continue register simpli�es and generalizes the strategy

shown in �gure 5.9.

This is a reasonable approach for handling small problems, but it would be awkward if there

were many instances of GCD computations in the controller sequence. To decide where to

continue executing after the gcd subroutine, we would need tests in the data paths and branch

instructions in the controller for all the places that use gcd. A more powerful method for

implementing subroutines is to have the continue register hold the label of the entry point in

the controller sequence at which execution should continue when the subroutine is �nished.

Implementing this strategy requires a new kind of connection between the data paths and

the controller of a register machine: There must be a way to assign to a register a label in the

controller sequence in such a way that this value can be fetched from the register and used to

continue execution at the designated entry point.

To re�ect this ability, we will extend the assign instruction of the register-machine language

to allow a register to be assigned as value a label from the controller sequence (as a special kind

of constant). We will also extend the go_to instruction to allow execution to continue at the

entry point described by the contents of a register rather than only at an entry point described

by a constant label. Using these new constructs we can terminate the gcd subroutine with a

branch to the location stored in the continue register. This leads to the controller sequence

shown in �gure 5.10.

A machine with more than one subroutine could use multiple continuation registers (e.g.,

536 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.1.4

gcd_continue, factorial_continue) or we could have all subroutines share a single continue

register. Sharing is more economical, but we must be careful if we have a subroutine (sub1)

that calls another subroutine (sub2). Unless sub1 saves the contents of continue in some other

register before setting up continue for the call to sub2, sub1 will not know where to go when

it is �nished. The mechanism developed in the next section to handle recursion also provides

a better solution to this problem of nested subroutine calls.

5.1.4 Using a Stack to Implement Recursion

With the ideas illustrated so far, we can implement any iterative process by specifying a

register machine that has a register corresponding to each state variable of the process. The

machine repeatedly executes a controller loop, changing the contents of the registers, until

some termination condition is satis�ed. At each point in the controller sequence, the state of

the machine (representing the state of the iterative process) is completely determined by the

contents of the registers (the values of the state variables).

Implementing recursive processes, however, requires an additional mechanism. Consider the

following recursive method for computing factorials, which we �rst examined in section 1.2.1:

Ifunction factorial(n) {

return n === 1

? 1

: n * factorial(n - 1);

}

As we see from the function, computing n! requires computing (n − 1)!. Our GCD machine,

modeled on the function

Ifunction gcd(a, b) {

return b === 0 ? a : gcd(b, a % b);

}

similarly had to compute another GCD. But there is an important di�erence between the gcd

function, which reduces the original computation to a new GCD computation, and factorial,

which requires computing another factorial as a subproblem. In GCD, the answer to the new

GCD computation is the answer to the original problem. To compute the next GCD, we simply

place the new arguments in the input registers of the GCD machine and reuse the machine’s

data paths by executing the same controller sequence. When the machine is �nished solving

the �nal GCD problem, it has completed the entire computation.

In the case of factorial (or any recursive process) the answer to the new factorial subproblem

is not the answer to the original problem. The value obtained for (n−1)! must be multiplied by

n to get the �nal answer. If we try to imitate the GCD design, and solve the factorial subproblem

537 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMAhtOAnGKA2AKMASkQG8AoRSxDAUyhAySQF5XEBGRCqnqgfg7dePAFyIkAKmRoombPiQBaDoQDcZAL5kyqdFlx4ArGqA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwgEwBQEMA0iBGAlIgN4BQiliATgKZQjVL6IC87iADIgPyJaIAXCnQZ8eAQFIChANxkAvmTKpMAJk54AjGrlA

Computing with Register Machines 5.1.4

by decrementing the n register and rerunning the factorial machine, we will no longer have

available the old value of n by which to multiply the result. We thus need a second factorial

machine to work on the subproblem. This second factorial computation itself has a factorial

subproblem, which requires a third factorial machine, and so on. Since each factorial machine

contains another factorial machine within it, the total machine contains an in�nite nest of

similar machines and hence cannot be constructed from a �xed, �nite number of parts.

Nevertheless, we can implement the factorial process as a register machine if we can arrange

to use the same components for each nested instance of the machine. Speci�cally, the machine

that computes n! should use the same components to work on the subproblem of computing

(n−1)!, on the subproblem for (n−2)!, and so on. This is plausible because, although the factorial

process dictates that an unbounded number of copies of the same machine are needed to

perform a computation, only one of these copies needs to be active at any given time. When the

machine encounters a recursive subproblem, it can suspend work on the main problem, reuse

the same physical parts to work on the subproblem, then continue the suspended computation.

In the subproblem, the contents of the registers will be di�erent than they were in the

main problem. (In this case the n register is decremented.) In order to be able to continue

the suspended computation, the machine must save the contents of any registers that will be

needed after the subproblem is solved so that these can be restored to continue the suspended

computation. In the case of factorial, we will save the old value of n, to be restored when we

are �nished computing the factorial of the decremented n register.
2

Since there is no a priori limit on the depth of nested recursive calls, we may need to save an

arbitrary number of register values. These values must be restored in the reverse of the order

in which they were saved, since in a nest of recursions the last subproblem to be entered is the

�rst to be �nished. This dictates the use of a stack, or “last in, �rst out” data structure, to save

register values. We can extend the register-machine language to include a stack by adding

two kinds of instructions: Values are placed on the stack using a save instruction and restored

from the stack using a restore instruction. After a sequence of values has been saved on the

stack, a sequence of restores will retrieve these values in reverse order.
3

With the aid of the stack, we can reuse a single copy of the factorial machine’s data paths for

each factorial subproblem. There is a similar design issue in reusing the controller sequence that

operates the data paths. To reexecute the factorial computation, the controller cannot simply

loop back to the beginning, as with an iterative process, because after solving the (n − 1)!

subproblem the machine must still multiply the result by n. The controller must suspend its

computation of n!, solve the (n − 1)! subproblem, then continue its computation of n!. This

2
One might argue that we don’t need to save the old n; after we decrement it and solve the subproblem, we

could simply increment it to recover the old value. Although this strategy works for factorial, it cannot work in

general, since the old value of a register cannot always be computed from the new one.

3
In section 5.3 we will see how to implement a stack in terms of more primitive operations.

538 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.1.4

view of the factorial computation suggests the use of the subroutine mechanism described in

section 5.1.3, which has the controller use a continue register to transfer to the part of the

sequence that solves a subproblem and then continue where it left o� on the main problem.

We can thus make a factorial subroutine that returns to the entry point stored in the continue

register. Around each subroutine call, register, since each “level” of the factorial computation

will use the same continue register. That is, the factorial subroutine must put a new value in

continue when it calls itself for a subproblem, but it will need the old value in order to return

to the place that called it to solve a subproblem.

Figure 5.11 shows the data paths and controller for a machine that implements the recursive

factorial function. The machine has a stack and three registers, called n, val, and continue.

To simplify the data-path diagram, we have not named the register-assignment buttons, only

the stack-operation buttons (sc and sn to save registers, rc and rn to restore registers). To

operate the machine, we put in register n the number whose factorial we wish to compute

and start the machine. When the machine reaches fact_done, the computation is �nished

and the answer will be found in the val register. In the controller sequence, n and continue

are saved before each recursive call and restored upon return from the call. Returning from a

call is accomplished by branching to the location stored in continue. The register continue

is initialized when the machine starts so that the last return will go to fact_done. The val

register, which holds the result of the factorial computation, is not saved before the recursive

call, because the old contents of val is not useful after the subroutine returns. Only the new

value, which is the value produced by the subcomputation, is needed.

Although in principle the factorial computation requires an in�nite machine, the machine

in �gure 5.11 is actually �nite except for the stack, which is potentially unbounded. Any

particular physical implementation of a stack, however, will be of �nite size, and this will

limit the depth of recursive calls that can be handled by the machine. This implementation of

factorial illustrates the general strategy for realizing recursive algorithms as ordinary register

machines augmented by stacks. When a recursive subproblem is encountered, we save on

the stack the registers whose current values will be required after the subproblem is solved,

solve the recursive subproblem, then restore the saved registers and continue execution on the

main problem. The continue register must always be saved. Whether there are other registers

that need to be saved depends on the particular machine, since not all recursive computations

need the original values of registers that are modi�ed during solution of the subproblem (see

exercise 5.4).

539 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.1.4

A double recursion

Let us examine a more complex recursive process, the tree-recursive computation of the Fi-

bonacci numbers, which we introduced in section 1.2.2:

Ifunction fib(n) {

return n === 0

? 0

: n === 1

? 1

: fib(n - 1) + fib(n - 2);

}

Just as with factorial, we can implement the recursive Fibonacci computation as a register

machine with registers n, val, and continue. The machine is more complex than the one for

factorial, because there are two places in the controller sequence where we need to perform

recursive calls—once to compute Fib(n − 1) and once to compute Fib(n − 2). To set up for each

of these calls, we save the registers whose values will be needed later, set the n register to the

number whose Fib we need to compute recursively (n − 1 or n − 2), and assign to continue

the entry point in the main sequence to which to return (afterfib_n_1 or afterfib_n_2,

respectively). We then go to fib_loop. When we return from the recursive call, the answer is

in val. Figure 5.12 shows the controller sequence for this machine.

540 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMGAjAFGAlIg3gKESMQCcBTKEEpJAXnsQAZDjXiB+Jlt1gLkToMAjNx6tOIsT34oMSALSIhOANTI0mRIoBMWANz4Avvnyz0ANn1A

Computing with Register Machines 5.1.4

after_fact fact_done
1

=

val n stack

continue* --

sn

rn

scrc

controller

after_fact fact_done
1

=

val n stack

continue*

sn

rn
rc sc

controller

after_fact

-

1

=

val n stack

Icontroller(

list(

assign("continue", label("fact_done")), // set up final

"fact_loop", // rtrn address

test(list(op("="), reg("n"), constant(1))),

branch(label("base_case")),

// Set up for recursive call by saving "n" and "continue".

// Set up "continue" so that the computation will continue

// at "after_fact" when the subroutine returns.

save("continue"),

save("n"),

assign("n", list(op("-"), reg("n"), constant(1))),

assign("continue", label("after_fact")),

go_to(label("fact_loop")),

"after_fact",

restore("n"),

restore("continue"),

assign("val", list(op("*"), reg("n"), reg("val"))),

// "val" now contains n(n-1)!

go_to(reg("continue")), // return to caller

"base_case",

assign("val", constant(1)), // base case: val = 1

go_to(reg("continue")), // return to caller

"fact_done"))

Figure 5.11: A recursive factorial machine.

541 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBBUBOcA2mCmaAUAzjgI4g6Q4CUiA3gJABQiLiaOUIaSmMhU+AEQow6LLjSCANImJkKEagG5GAX0ahIsBMlQZseAPpzylfCLEG0NWs1btO3RAAscAQwAm+KG5iZzeuJ4VFQq6prQ8EgA5hyG7NF8UHj4ALZuEM4wYDgyCYZgbqnUdHYsDlxI6ZnZOEKxUPE4ifx4glT4+YXFoWoa4JE6boSEMNFgTdEFRXXDo+OG2fxoIINgNmVsHJUu7l4+fvhzYxNL6Kva673hA5eIxwsAbm6Y5IY4AB4ADkcjJ4tgZYXKI2RCbCpOVyeby+fwHfwPU6A85rELXfpaKKITBwOAAaxAX0MXzQMFSRAAnqkAEZYGRwL54NyXQgbVi6ZGIZ6YRAAXnuIzgEEpNLpiAZTJZvXZEKQ3L5vP54A8OGAtQ8m3ZAH5EHgMARCFTaZgZIIAKpgPFgOAAdyQErQzKx2QFxBpuAAXO1NawPbtofD8NyQmEMWtsbiCUTMG5qTh-DG45hCDJE-Hpj1SuyRPwuS8+a6hfg05gM7lsbH46yVDLtk55YqlWAVWqchr2drdWh9cXK6XuuXzc3VeqK0nEC65jh3TgvVQfSw-YHg6GInd0nicMTSakYLBHlvPj8jzJqlkcqm+6ys6wYMBEPg+IYcz5RO9vvgjyEbx2ObmIAWL5uG+R6GNy5Cft80q-lsjhIPgNC8gAfMgNasKourJjgE73o+hCGCW77HlBbIwS+E7IoQBY4vihIEX2vZJimY7pqBJaQV8IYLrBOwIXyKFnIQaEsBhVbYXeD5PgkSRGEeHHfrYMF-lAbAFg0kwyQQZ61HkzSaURkzydBv6yg+iEoepFgUFAhCdKEYLsqJWE-h2epwAQJ6IEOVq2kgR7sH8OhQBSjIUa607Up67TCYg6g3JiOgbluDpOggREcaeGTnuWJbMSlUoueRDLUZGdEkmS+D5VEBkMvJ9KMo6UoxeRbgkkKVH8ukx78YgSXbmSe4wAe6XltpF4scmVBSNxSkwVVaWgSlza2V+xk8U4fHIfcXxfJgFIAoYyp4Ht2RTAAVm4zyEBApJfAIM2zawDKZT8Xw9T8U3bRgECsuia5YoinR6a0aBljIhBwFwiikeUdY8EkQiItIWwtMkoMDuDkNoNDq63FifWA2cmU1ONuX1ZKUTMV8EAw8piA+GgDRqXE0kg2kWU6a6-xdDMj7Ilx2YILm4GHt8BaImBLxvHJZxreRIuGJofLcU+80THJCtftxOp9Wr6Wa98xPZZeTHk41lPzkpfp9eVu77qLPwG18Ruc7la2mZtKGKTBxCNFZoi2QzDQyArmgIWt7KeM8lDEsK1P2Zsqi4wlSBR8Biix-g8cub7z6oNZtnUzIgaWfnAdZzTIZgvF4Z9ck-B8-wLuk1eZupYCMjADG0QyNn3ssORIgeINOj8vXfsIMPlyN1Aa0SXhhh63JQ8j1cLmC5yK+XIr4AFrrDXt+lW9RNNj1n+fvUcy3pvigfTXcR75nrxfHa5-7Nn4F3bg9xyU-VWHAsX5KTTjHamFcE5AN-EnROmFiDPxYG5AgRMvIACFPD0xwLmM4KxwyThGBFKKa04phjuOPIgpBTDQxcqZXgDdBDj2RiYBQyg+j-SCpgiezZV7eA4QCIEqJqFw39PsWEPD+B8JRJcLiNd1xuE3IYakjpIDOBns3HKrdEBfx-n3TY5EVS5n5Io9OzhDD6IELLGK88nyETkmYhS3FyKCRKrRaMDEyYTQMuxOxEd7BCM9vAyB89S6iALp-bu9jIFnzfmXD+RcKL8GrA9C+Tk4H90iTBEBGcwHxxiuk2KSTHrQMcrA7CaT2SINUag9BRjlHxMkc6VO+CZxzhisQthSAamZEYvGWmNCEaCE6c4ZGJY-p4x0IM0xHD8ATOwcCBAvShFQhEYcGZyIcFSNGSnCc+EfDRFiB4AiCN+CpCgMXVwhhdkLLgts4kvgDRQBOTQAAZE84RRAHmzwVGPc5uzk7hgSPgAcVydi0IEIIBIyMgV-LuFJYGaMRpQUEdcp8uz9mHIbp5cFzRoqsLGUgVm8LQIAq-EinYSyYSHFWtCrEQFRBBiliUNJfS6G0qgMjEWmzcH4VZQizipKnAou-mi0FGUvKspxTImlQtXyNFAiLeS-KkDksDFS3FWz2JAsVdifpJZIUzE5TC-CNiPwkqZUIwVeycAHJFZi3VBqsTGtcUmBVZrrnKtEaqyViU5FbmiHAC5cBKljXUTfHRG9cxmLUv6qA-qzEzznrhaxfZ0reICY4yizioz0Wde4x12b4z4G8bk3x1z-HRJCeXOJgkiElJwpJfCBLZIflTWU1g5EEjM0aI2rSV9yzdoMgCotD8-FP3LckStEAZDBPHR-BIgCRK1tbQg7s7lKmCDQR4RAfqA11PWQ08KzScWOT6CQrE26Y3dMwMCpwIrBDnrgMMvs9qdD3smQ3V9syBGurJXsCl-gP1rLmVcalOgvi1X4BkPE16kAQYgHiIQYGvgStPaBkAhAVGwbxCHBl0HZA+DgwhtDQyOgcpA1UH1xhLp1GQcG8G+GsOIDDW26VKNO0aTZrRvDkGJGTDLPG92I6epLvPl8Ij7zINTriO-Wyc6fEX0yVubJNNi1n2gV68j8iAoxvYEG3tdGJOMZpoVFjHb+TqW7ezEm5ZMM8Z5sUfjMVH5CYKT7KTMSZPNF7uB+j87IEKczjkhykC1OMBQzBqjQNoi4dvYQKjyM51ka2PwdydQ51atvVplL8XmjPpg-R2zzQ+M2c-VIrV7rDjFcA6iXLt9AX6vS-0hkeqeiJdVnfaqclTXgnNfhL4dyFUvJuaiq16KBDkq-KaJrNWl7fEXj8GbfLv2Ql-YGclC20SJYW3Npky1KrtYWoipbSBAzrcSzbPAwB3Lkho3piaeV9sd0M7TFq4Z+QNUu2gVIhgMjTwsZsKx+EFtHGq2mljP3-6706hRoH4OEBqNPnkxH7J3Fq0SUpJzW1aBBaR7DiYAClD3A8NHLJcdlPY-SUU9Ci7uIVOQeu9B72ru7qA2FKcM4j3oTVeGRnn3gelaO9quhPPUjI1xzV4X321jxrKyt0RssE7qcvvIz4OAIAgG3u0yp7jOMucR3ErR+m4P1WvAL8lssvleSRtrJXW5CbInh3d43vcabcT9Gb-mFv6EcMENbuuUybtWZNlWJ3mju7O8tjBN3v7zeNi8oMn3SkdYUcGbpwPjvQ-f3D67t5MfFReXvQnmCSf5H3tT8bdP8ds-u-4IhPPghYsHkL7+YvW4G-Uft5fNPmGs9Wxzx72PWLkvsCbx2FvTQh-t6bp38v3entV+j-3uvwuR+dnO2gD712O+cZR18KmLve+04795a0dpmfhmCqFPBbpIqzmQ+0m3Ei90IB4R8T5Au+swAIMkV-MgwAgGwDViVtVN-uYh7qbgvjXq1lVtvCrmrhruANLgLoGH9orrnEAQdqrurhDmAJUm1EZmkrnMgR3ngQrmFogISB4MyFuIJDPMxNrr2s9ixtTGxhZpxoINTBzgPCxloiwXCikGwVopwXTJhnvL2kIJhkIUVLvqIVZkIKjkIaZB9u8FlPgCrJyFtGgdAR1h8JgfATgQUkTAUn1LAVgWlJrrriwOgRMCAfGgji-GTBYdPjpI4UXI4Qbo4d3o4QyL9HYR2NWmdhRjYqIGgBSJemDHUibt1tch-gQIRBjBETVp8OgD9vmsmC-qclsIoENIyv9omvhH-tgOkREjBKZOwFkQeICv-iaIgAUVeq0tTujkIkkY6NAKkYHKIiAZ9AUrQUHpNM5pAuRDkK-hIgWMqkkXJrNKZE+MsKdICkkRIhHukjqGUTgNkT0eTkjoxv1n1EEegKEUMY0Mgo4ZsY9NWjIMcfYVeCEBcYuJkasRUTEezPIlYXMcMbLOcScZ8X4ZRF0V8Y9G7ATgUqoEQlzncGzjfgEMEUEKDCAWohsKZM0SkblJCZYBIBckkb4ekusW7P0Z8RQVQRIrZIJL0cxMGhMZElMZRCpkAsCQEfIphnxGkrgCpCIfyLUTFPfqJuhvgB8KCNxKyVsZ-jyYblBoCY0dcoIB4AgDgIIK0psJybVLTOyADgUFUeJnBsUY9BUoIAAKKpB3QUhcZwZ+gAAKAA8iaUIcUmJAEuGipDGm9PyOSphuSawAKYGC6dSbWNcg6dSeoMeuyPftkINC8DAAAF51BKlun0YFjsnDoSlSk5CymJzyl4qIDDyEB9ZQBdLFAjDfw5Hik7C5mxaxCe5clDIFI6jlkFLWyYIlnYQD6IYr5F6MaKk1m9R1n5me7BmwChkRnNnN4UQhm8ARkITtnakWg+Sn7sDyBYJ5aQZeinidmxAgnek7AZlZmZB0lbgWaapMkcAcgzodReQABU4AiIVqJ5yZgZaZG5zIOZy5BZJRQixZXZA+DQA5o+h5Bc7Zr5pZA+vsn5g5IsQm35AcBYIsBO-pF8foFSf55YNxrAx+vkWws5KkLofU3aLSKZa5Tgd52ZzgiWcwRYm4FIukKAaAHgkRuFSAT4tRQMFFVFixie5Bw4rYVqSSsFZALw+ApFMg5K5KZR7kTF1xF8OoglquwlrILmfoxFwofF9MoiQllFv0iW06oS3auGFmd6HAd+aZY6GlfBaA2GrwT5sM1y2lgFJGOG25BQOANohgwajJuiTBAEUOmmRlCGEAkh3B3cohHlqMKQggghcsLGApfUDJa0zJ9M5yVhxgFCzCsZVRMU0VUA5y3h1ECMt6PZMAfZre9GyMiFSkZa9GQgOVeV7Qvm0V-aPgN+mVDct6HB4eqY-Sghnc4SvQqZWyLwOIEABJu59Wwm88cldWxQukgVMJsYuAteTYLY6oUZJkRlFyU1DZgpsRCM8RmFnlQKU0RVF8NVK1ExKSpSBSFS8RggAAsv-rALtIaXNW2CjJpH6FaZzoWU4FihNd9tgEKFQR4Nea9awPfjRFmgNZmMJvLPmPyCNfEQdTfhMaZA2HnkdOxe2GfDqGdTMKaJOSfvikZXOO2eVv4MGKuYDWmSYckM5UpOmgkmxtJuAtSSqfRdWgtR2KZJKdKf9VAg0WfHFeTdgfgNXjZCEAhF6SWjsOTZGX6ThaTVsvhQ+XmSuQEqZPBZ7hBmgGypWWZKBQZROmctQVoWlEwpQK6efAiToXAZLfkufLWQrQ2XXmcD1Y-kBvFfIJQEBawDqHIKBWlfrfwtvEbYoAWHIFBb+Y+Z7j1T9ckOxmjO7SwDqBHX1VHd2qHbbZ7uZkZbHYgDqMDXRMndbR2anQPg7dgNtubELJnTqBlZjjFclNIVDTtBQPsOlbvsbvZNBY9DbfWarQVZrZhinV3QPvIZrT7XNoQOOSulpI+VjZaDjaheQHOU4TkNhQGWLXhXwJuYRaCfjBRk5f2gOPdsxBYPoGiZ0cZpyMGv5VuDkA5U5WtEoe4F0nvTMD1BYU5YIAnf1RnR0E-T0B8abUtfvWtG-cXaWPIR0N4UA2IYICA07WsC7ZQjKcxTBL8NfrgCicfUYLCYvdQAJtcsGolmrQIGSVqm-YQ+0CLVvS+izEtXTZxj-WZetDEG5hWh-OnRNZZuXvQ9ImQbnP2rQ7dvQyZeQLTDraw9Q+w3QwA-qkIywjRV5ImTKaGORMAD9u5LlaWGUVwKMMNEfdCcrLo1YKoSwCKr+D6IDMIKgNkOQI+s6sFSkQo5VTIAAPROOyAHmEiaLZD5ibB2OtE0RIYyB-GsAuNsDoCpweAeABRj2-hkIiq1SCC8jtDjVCBgBJPKTAQCAACMaImJiAKe7EAywwW4fVxAjjPoITAAyu429B9pkVo9kcgD1Xk4aQ3qdF5Kk-cM2GKpY3-jKQAHTlOuNVMqQeMWOiBWMymyBwAxXMg126D6nq7tyIA2h+A8gWATODP3AqTv3ADwoqPQCCDLOuDHauCyAgCKKQywA5CMOEADO-ht5CDrO9NJM+gPOCCpO7W-jmOpMtUNzxMAC0aTAK7zaTrK+A2TIQuT5jTz1jvRiMuzRg+zbKkLPopeBTSLBEuISGKL7IOzezP20gPomWOmILnzrNHCKWjzPT1jZLkcfw4wQg3IwyCM8TV5n0wLHzyTggTLOTmz3LLwhzJ+h5vggINRgK-z2TAAhKi9GoGsCzC4g59EpCE6ZDGo01YD49SEU8+EU4S18-Szgfy5gMjGCxC4E8E641q3AiU7OHmDyPyJkzKwGpFlS+M885C7NCq0Imq31Rq7ixiw49cYwCoPQCwIwMo6o6SC8E0GrmgNo1uBfbyJsH1E5dxLej815Ey6aAqy80pCKreokzIEcDINSE-G4BbqW7kzBLeleUW24CW2W4gCeXk7S-8f0oC3Ww2z1OW-8y262xvKiUYAHXUEi2o9G5o3G9kXnFCVYFxIwLwzQ+5p-JG+ozG-U8NGwRmwACy9CEPLvQBjsaOYGTsbsMEqBsP6R02jtRtHuxvxuOW3ZGvRRAA

Computing with Register Machines 5.1.4

Icontroller(

list(

assign("continue", label("fib_done")),

"fib_loop",

test(list(op("<"), reg("n"), constant(2))),

branch(label("immediate_answer")),

// set up to compute Fib(n-1)

save("continue"),

assign("continue", label("afterfib_n_1")),

save("n"), // save old value of n

// clobber n to n - 1

assign("n", list(op("-"), reg("n"), constant(1))),

go_to(label("fib_loop")), // perform recursive call

"afterfib_n_1",

// upon return, "val" contains Fib(n-1)

restore("n"),

restore("continue"), // set up to compute Fib(n-2)

assign("n", list(op("-"), reg("n"), constant(2))),

save("continue"),

assign("continue", label("afterfib_n_2")),

save("val"), // save Fib(n-1)

go_to(label("fib_loop")),

"afterfib_n_2", // upon rtrn, val is Fib(n-2)

assign("n", reg("val")), // n now contains Fib(n-2)

restore("val"), // val now contains Fib(n-1)

restore("continue"),

assign("val", // Fib(n-1) + Fib(n-2)

list(op("+"), reg("val"), reg("n"))),

go_to(reg("continue")), // back to caller, ans in val

"immediate_answer",

assign("val", reg("n")), // base case: Fib(n) = n

go_to(reg("continue")),

"fib_done"))

Figure 5.12: Controller for a machine to compute Fibonacci numbers.

Exercise 5.4

Specify register machines that implement each of the following functions. For each machine,

write a controller instruction sequence and draw a diagram showing the data paths.

a. Recursive exponentiation:

Ifunction expt(b, n) {

return n === 0

? 1

542 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBBUBOcA2mCmaAUAzjgI4g6Q4CUiA3gJABQiLiaOUIaSmMhU+AEQow6LLjSCANImJkKEagG5GAX0ahIsBMlQZseAPpzylfCLEG0NWs1btO3RAAscAQwAm+KG5iZzeuJ4VFQq6prQ8EgA5hyG7NF8UHj4ALZuEM4wYDgyCYZgbqnUdHYsDlxI6ZnZOEKxUPE4ifx4glT4+YXFoWoa4JE6boSEMNFgTdEFRXXDo+OG2fxoIINgNmVsHJUu7l4+fvhzYxNL6Kva673hA5eIxwsAbm6Y5IY4AB4ADkcjJ4tgZYXKI2RCbCpOVyeby+fwHfwPU6A85rELXfpaKKITBwOAAaxAX0MXzQMFSRAAnqkAEZYGRwL54NyXQgbVi6ZGIZ6YRAAXnuIzgEEpNLpiAZTJZvXZEKQ3L5vP54A8OGAtQ8m3ZAH5EHgMARCFTaZgZIIAKpgPFgOAAdyQErQzKx2QFxBpuAAXO1NawPbtofD8NyQmEMWtsbiCUTMG5qTh-DG45hCDJE-Hpj1SuyRPwuS8+a6hfg05gM7lsbH46yVDLtk55YqlWAVWqchr2drdWh9cXK6XuuXzc3VeqK0nEC65jh3TgvVQfSw-YHg6GInd0nicMTSakYLBHlvPj8jzJqlkcqm+6ys6wYMBEPg+IYcz5RO9vvgjyEbx2ObmIAWL5uG+R6GNy5Cft80q-lsjhIPgNC8gAfMgNasKourJjgE73o+hCGCW77HlBbIwS+E7IoQBY4vihIEX2vZJimY7pqBJaQV8IYLrBOwIXyKFnIQaEsBhVbYXeD5PgkSRGEeHHfrYMF-lAbAFg0kwyQQZ61HkzSaURkzydBv6yg+iEoepFgUFAhCdKEYLsqJWE-h2epwAQJ6IEOVq2kgR7sH8OhQBSjIUa607Up67TCYg6g3JiOgbluDpOggREcaeGTnuWJbMSlUoueRDLUZGdEkmS+D5VEBkMvJ9KMo6UoxeRbgkkKVH8ukx78YgSXbmSe4wAe6XltpF4scmVBSNxSkwVVaWgSlza2V+xk8U4fHIfcXxfJgFIAoYyp4Ht2RTAAVm4zyEBApJfAIM2zawDKZT8Xw9T8U3bRgECsuia5YoinR6a0aBljIhBwFwiikeUdY8EkQiItIWwtMkoMDuDkNoNDq63FifWA2cmU1ONuX1ZKUTMV8EAw8piA+GgDRqXE0kg2kWU6a6-xdDMj7Ilx2YILm4GHt8BaImBLxvHJZxreRIuGJofLcU+80THJCtftxOp9Wr6Wa98xPZZeTHk41lPzkpfp9eVu77qLPwG18Ruc7la2mZtKGKTBxCNFZoi2QzDQyArmgIWt7KeM8lDEsK1P2Zsqi4wlSBR8Biix-g8cub7z6oNZtnUzIgaWfnAdZzTIZgvF4Z9ck-B8-wLuk1eZupYCMjADG0QyNn3ssORIgeINOj8vXfsIMPlyN1Aa0SXhhh63JQ8j1cLmC5yK+XIr4AFrrDXt+lW9RNNj1n+fvUcy3pvigfTXcR75nrxfHa5-7Nn4F3bg9xyU-VWHAsX5KTTjHamFcE5AN-EnROmFiDPxYG5AgRMvIACFPD0xwLmM4KxwyThGBFKKa04phjuOPIgpBTDQxcqZXgDdBDj2RiYBQyg+j-SCpgiezZV7eA4QCIEqJqFw39PsWEPD+B8JRJcLiNd1xuE3IYakjpIDOBns3HKrdEBfx-n3TY5EVS5n5Io9OzhDD6IELLGK88nyETkmYhS3FyKCRKrRaMDEyYTQMuxOxEd7BCM9vAyB89S6iALp-bu9jIFnzfmXD+RcKL8GrA9C+Tk4H90iTBEBGcwHxxiuk2KSTHrQMcrA7CaT2SINUag9BRjlHxMkc6VO+CZxzhisQthSAamZEYvGWmNCEaCE6c4ZGJY-p4x0IM0xHD8ATOwcCBAvShFQhEYcGZyIcFSNGSnCc+EfDRFiB4AiCN+CpCgMXVwhhdkLLgts4kvgDRQBOTQAAZE84RRAHmzwVGPc5uzk7hgSPgAcVydi0IEIIBIyMgV-LuFJYGaMRpQUEdcp8uz9mHIbp5cFzRoqsLGUgVm8LQIAq-EinYSyYSHFWtCrEQFRBBiliUNJfS6G0qgMjEWmzcH4VZQizipKnAou-mi0FGUvKspxTImlQtXyNFAiLeS-KkDksDFS3FWz2JAsVdifpJZIUzE5TC-CNiPwkqZUIwVeycAHJFZi3VBqsTGtcUmBVZrrnKtEaqyViU5FbmiHAC5cBKljXUTfHRG9cxmLUv6qA-qzEzznrhaxfZ0reICY4yizioz0Wde4x12b4z4G8bk3x1z-HRJCeXOJgkiElJwpJfCBLZIflTWU1g5EEjM0aI2rSV9yzdoMgCotD8-FP3LckStEAZDBPHR-BIgCRK1tbQg7s7lKmCDQR4RAfqA11PWQ08KzScWOT6CQrE26Y3dMwMCpwIrBDnrgMMvs9qdD3smQ3V9syBGurJXsCl-gP1rLmVcalOgvi1X4BkPE16kAQYgHiIQYGvgStPaBkAhAVGwbxCHBl0HZA+DgwhtDQyOgcpA1UH1xhLp1GQcG8G+GsOIDDW26VKNO0aTZrRvDkGJGTDLPG92I6epLvPl8Ij7zINTriO-Wyc6fEX0yVubJNNi1n2gV68j8iAoxvYEG3tdGJOMZpoVFjHb+TqW7ezEm5ZMM8Z5sUfjMVH5CYKT7KTMSZPNF7uB+j87IEKczjkhykC1OMBQzBqjQNoi4dvYQKjyM51ka2PwdydQ51atvVplL8XmjPpg-R2zzQ+M2c-VIrV7rDjFcA6iXLt9AX6vS-0hkeqeiJdVnfaqclTXgnNfhL4dyFUvJuaiq16KBDkq-KaJrNWl7fEXj8GbfLv2Ql-YGclC20SJYW3Npky1KrtYWoipbSBAzrcSzbPAwB3Lkho3piaeV9sd0M7TFq4Z+QNUu2gVIhgMjTwsZsKx+EFtHGq2mljP3-6706hRoH4OEBqNPnkxH7J3Fq0SUpJzW1aBBaR7DiYAClD3A8NHLJcdlPY-SUU9Ci7uIVOQeu9B72ru7qA2FKcM4j3oTVeGRnn3gelaO9quhPPUjI1xzV4X321jxrKyt0RssE7qcvvIz4OAIAgG3u0yp7jOMucR3ErR+m4P1WvAL8lssvleSRtrJXW5CbInh3d43vcabcT9Gb-mFv6EcMENbuuUybtWZNlWJ3mju7O8tjBN3v7zeNi8oMn3SkdYUcGbpwPjvQ-f3D67t5MfFReXvQnmCSf5H3tT8bdP8ds-u-4IhPPghYsHkL7+YvW4G-Uft5fNPmGs9Wxzx72PWLkvsCbx2FvTQh-t6bp38v3entV+j-3uvwuR+dnO2gD712O+cZR18KmLve+04795a0dpmfhmCqFPBbpIqzmQ+0m3Ei90IB4R8T5Au+swAIMkV-MgwAgGwDViVtVN-uYh7qbgvjXq1lVtvCrmrhruANLgLoGH9orrnEAQdqrurhDmAJUm1EZmkrnMgR3ngQrmFogISB4MyFuIJDPMxNrr2s9ixtTGxhZpxoINTBzgPCxloiwXCikGwVopwXTJhnvL2kIJhkIUVLvqIVZkIKjkIaZB9u8FlPgCrJyFtGgdAR1h8JgfATgQUkTAUn1LAVgWlJrrriwOgRMCAfGgji-GTBYdPjpI4UXI4Qbo4d3o4QyL9HYR2NWmdhRjYqIGgBSJemDHUibt1tch-gQIRBjBETVp8OgD9vmsmC-qclsIoENIyv9omvhH-tgOkREjBKZOwFkQeICv-iaIgAUVeq0tTujkIkkY6NAKkYHKIiAZ9AUrQUHpNM5pAuRDkK-hIgWMqkkXJrNKZE+MsKdICkkRIhHukjqGUTgNkT0eTkjoxv1n1EEegKEUMY0Mgo4ZsY9NWjIMcfYVeCEBcYuJkasRUTEezPIlYXMcMbLOcScZ8X4ZRF0V8Y9G7ATgUqoEQlzncGzjfgEMEUEKDCAWohsKZM0SkblJCZYBIBckkb4ekusW7P0Z8RQVQRIrZIJL0cxMGhMZElMZRCpkAsCQEfIphnxGkrgCpCIfyLUTFPfqJuhvgB8KCNxKyVsZ-jyYblBoCY0dcoIB4AgDgIIK0psJybVLTOyADgUFUeJnBsUY9BUoIAAKKpB3QUhcZwZ+gAAKAA8iaUIcUmJAEuGipDGm9PyOSphuSawAKYGC6dSbWNcg6dSeoMeuyPftkINC8DAAAF51BKlun0YFjsnDoSlSk5CymJzyl4qIDDyEB9ZQBdLFAjDfw5Hik7C5mxaxCe5clDIFI6jlkFLWyYIlnYQD6IYr5F6MaKk1m9R1n5me7BmwChkRnNnN4UQhm8ARkITtnakWg+Sn7sDyBYJ5aQZeinidmxAgnek7AZlZmZB0lbgWaapMkcAcgzodReQABU4AiIVqJ5yZgZaZG5zIOZy5BZJRQixZXZA+DQA5o+h5Bc7Zr5pZA+vsn5g5IsQm35AcBYIsBO-pF8foFSf55YNxrAx+vkWws5KkLofU3aLSKZa5Tgd52ZzgiWcwRYm4FIukKAaAHgkRuFSAT4tRQMFFVFixie5Bw4rYVqSSsFZALw+ApFMg5K5KZR7kTF1xF8OoglquwlrILmfoxFwofF9MoiQllFv0iW06oS3auGFmd6HAd+aZY6GlfBaA2GrwT5sM1y2lgFJGOG25BQOANohgwajJuiTBAEUOmmRlCGEAkh3B3cohHlqMKQggghcsLGApfUDJa0zJ9M5yVhxgFCzCsZVRMU0VUA5y3h1ECMt6PZMAfZre9GyMiFSkZa9GQgOVeV7Qvm0V-aPgN+mVDct6HB4eqY-Sghnc4SvQqZWyLwOIEABJu59Wwm88cldWxQukgVMJsYuAteTYLY6oUZJkRlFyU1DZgpsRCM8RmFnlQKU0RVF8NVK1ExKSpSBSFS8RggAAsv-rALtIaXNW2CjJpH6FaZzoWU4FihNd9tgEKFQR4Nea9awPfjRFmgNZmMJvLPmPyCNfEQdTfhMaZA2HnkdOxe2GfDqGdTMKaJOSfvikZXOO2eVv4MGKuYDWmSYckM5UpOmgkmxtJuAtSSqfRdWgtR2KZJKdKf9VAg0WfHFeTdgfgNXjZCEAhF6SWjsOTZGX6ThaTVsvhQ+XmSuQEqZPBZ7hBmgGypWWZKBQZROmctQVoWlEwpQK6efAiToXAZLfkufLWQrQ2XXmcD1Y-kBvFfIJQEBawDqHIKBWlfrfwtvEbYoAWHIFBb+Y+Z7j1T9ckOxmjO7SwDqBHX1VHd2qHbbZ7uZkZbHYgDqMDXRMndbR2anQPg7dgNtubELJnTqBlZjjFclNIVDTtBQPsOlbvsbvZNBY9DbfWarQVZrZhinV3QPvIZrT7XNoQOOSulpI+VjZaDjaheQHOU4TkNhQGWLXhXwJuYRaCfjBRk5f2gOPdsxBYPoGiZ0cZpyMGv5VuDkA5U5WtEoe4F0nvTMD1BYU5YIAnf1RnR0E-T0B8abUtfvWtG-cXaWPIR0N4UA2IYICA07WsC7ZQjKcxTBL8NfrgCicfUYLCYvdQAJtcsGolmrQIGSVqm-YQ+0CLVvS+izEtXTZxj-WZetDEG5hWh-OnRNZZuXvQ9ImQbnP2rQ7dvQyZeQLTDraw9Q+w3QwA-qkIywjRV5ImTKaGORGqNSE0GrmgKMMNEfdCcrNo1YKoSwCKr+JsIDMIKgNkOQI+s6sFTAKowo5VQjjY6ozREhr4WQiKrVIIAADztDjVCBgC+PKTAQCAABMaIvhKe7E0DqQxQw8BJwEhANobQIQvhAA9Kk7IAeYSPTHALoPqerthAAGK2OAoAC0AAjMxW3kIBYBY4g74aY7U3-jKb0YjMAGjCowUIYOUw45sNU4IAE59Ijuk7IFRuKJgJuiBXAPeGAJsCMxADiNSHGGgDUTk6s6U4gOUzBCY38OMP48MgjJ46U4EwCgM4E6yvgJUyk+TqXlE50y4w47+CM8LpkVwJo9hH1dgHYO-e0xdrY10z0zIH8R2HMxk4SDoLKKaNyIIIeb4ICIgMU9SGU5U91hPvs7tbWGi2Y6IHU4E49CM77OQW9DGnk6JskAiyU2AKU2Ezs-MDgWcy1Q3Ecyc80OizIBc2Eyk30xFti7AM0747SycDU+Y-y60z8x0-8xMCE70+yP09C0M5EgS2M4i8i8xbcwxE4wRLiEhlyywOK386o1K8jIq2C2BviugGACZdshS0i1SzS5HLs-SwE344IPKwq+yCM0gCfrC0sDa2U-a74li-K0Cy-CM-KN6xYHC1RCq1Syi5i9pnULy7ixi6wKY9CyG0AiMzGxUzQAANR+t2tIOC4CCeO5ssvRBCDBsozou6usCl6nNNOWPXMwQjPUiQZrOfMSAyAJNhTcjfNkixO5VR0JNJOSANOOuVsvDZYVtnPNsditvDAfOLt+gxuIQ1GbD1ustJv8u1uav2PXGMAqD0AsCMDKP-NlFvPZGOW9rKzsh9ROXcS3rOteTptioitNuYmsAiq3o+MyBHAyDUhPxuCIBeOICAefswS3rHN-tuAAdAeIAbPgcua3plswdwc9TAf5uAcpu-h6NokB11CdMXsaNXt4fBCdW8M0PuafznuYEkfDRsHPsABsvQhDNHqjxH7z17VmvQbD+kdNRHdHXHbB8rSgQAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAUwB4AcoAoBGAaRMASkQG8AoRKxAJ2ShBqSQF43EAGS6ngfkQCM3HlQBciHIgBUKDNnyFEAWkFEA3OQC+5cmkxYAzAQAs6oA

Computing with Register Machines 5.1.5

: b * expt(b, n - 1);

}

b. Iterative exponentiation:

Ifunction expt(b, n) {

function expt_iter(counter, product) {

return counter === 0

? product

: expt_iter(counter - 1, b * product);

}

return expt_iter(n, 1);

}

Exercise 5.5

Hand-simulate the factorial and Fibonacci machines, using some nontrivial input (requiring

execution of at least one recursive call). Show the contents of the stack at each signi�cant

point in the execution.

Exercise 5.6

Ben Bitdiddle observes that the Fibonacci machine’s controller sequence has an extra save

and an extra restore, which can be removed to make a faster machine. Where are these

instructions?

5.1.5 Instruction Summary

A controller instruction in our register-machine language has one of the following forms,

where each inputi is either reg(register-name) or constant(constant-value).

These instructions were introduced in section 5.1.1:

assign(register_name, reg(register_name))

assign(register_name, constant(constant_value))

assign(register_name, list(op(operation_name), input
1
, . . ., inputn))

perform(list(op(operation_name), input
1
, . . ., inputn))

test(list(op(operation_name), input
1
, . . ., inputn))

branch(label(label_name))

543 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAUwB4AcoAoBGAaRMASkQG8BIRRAKCqtElgRQygH0YpkAnLCOcF24F03OABMQ0EqVp153ZFBDck-QT0QBeHYgAMc+UcQB+RKIlSoh43QBcLTByF8BYIYgC0iAIwEciABU5mKS0gDcNgC+NorKqo7snDxYYAQ+RJEx1GiYWADMBAAsmUA

Computing with Register Machines 5.2

go_to(label(label_name))

The use of registers to hold labels was introduced in section 5.1.3:

assign(register_name, label(label_name))

go_to(reg(register_name))

Instructions to use the stack were introduced in section 5.1.4:

save(register_name)

restore(register_name)

The only kind of constant_value we have seen so far is a number, but later we will use strings

and lists. For example, constant("abc") is the string "abc", constant(list(a, b, c)) is the

list list(a, b, c), and constant(null) is the empty list.

5.2 A Register-Machine Simulator

In order to gain a good understanding of the design of register machines, we must test the

machines we design to see if they perform as expected. One way to test a design is to hand-

simulate the operation of the controller, as in exercise 5.5. But this is extremely tedious for

all but the simplest machines. In this section we construct a simulator for machines described

in the register-machine language. The simulator is a JavaScript program with four interface

functions. The �rst uses a description of a register machine to construct a model of the machine

(a data structure whose parts correspond to the parts of the machine to be simulated), and the

other three allow us to simulate the machine by manipulating the model:

– make_machine(register_names, operations, controller)
constructs and returns a model of the machine with the given registers, operations, and

controller.

– set_register_contents(machine_model, register_name, value)
stores a value in a simulated register in the given machine.

– get_register_contents(machine_model, register_name)
returns the contents of a simulated register in the given machine.

– start(machine_model)
simulates the execution of the given machine, starting from the beginning of the con-

troller sequence and stopping when it reaches the end of the sequence.

As an example of how these functions are used, we can de�ne gcd_machine to be a model

of the GCD machine of section 5.1.1 as follows:

544 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.2

Iconst gcd_machine =

make_machine(

list("a", "b", "t"),

list(list("rem", (a, b) => a % b),

list("=", (a, b) => a === b)),

list(

"test_b",

test(list(op("="), reg("b"), constant(0))),

branch(label("gcd_done")),

assign("t", list(op("rem"), reg("a"), reg("b"))),

assign("a", reg("b")),

assign("b", reg("t")),

go_to(label("test_b")),

"gcd_done"));

The �rst argument to make_machine is a list of register names. The next argument is a table

(a list of two-element lists) that pairs each operation name with a JavaScript function that

implements the operation (that is, produces the same output value given the same input values).

The last argument speci�es the controller as a list of labels and machine instructions, as in

section 5.1.

To compute GCDs with this machine, we set the input registers, start the machine, and

examine the result when the simulation terminates:

Iset_register_contents(gcd_machine, "a", 206);

" done "

Iset_register_contents(gcd_machine, "b", 40);

" done "

Istart(gcd_machine);

" done "

Iget_register_contents(gcd_machine, "a");

2

This computation will run much more slowly than a gcd function written in JavaScript, be-

cause we will simulate low-level machine instructions, such as assign, by much more complex

operations.

545 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwKZQPoCdXJgZylSwAoBbAQwgAsYxUAaRHZDMCs1ASkQG8AoREOboQWJJRp1UJAERpMLAkSyyuJFmw7cA3PwC+-UJFgJEFfPhjIw2XFs4kLVmxjqEsIaPDA8BwkSgxJGpUCgATEigKGAAbJ0trW3coT28ELi49Q2N0pGckjAA3CliQVAxUAA8ABwSXZLAPL1NfPkRBYRwg8URQiKiY+Oi4+sKUtNbMrIMjcDzEWLg4AGsQGowarBgyEnwATzIAIzhYpjga4gpW-D9OoQgEQkQS2MQAXnNLOAg9w5OzogLlcbjMAt1gi9Sh93p9wOFUMBpOF7gFEAB+RDELBwUgHY6nJiyACqYBWYDgAHckMCsNcfIg6F98KhjrFUAAuNSogIcvphSIjeKvTLZOYmBlLVbrDCxChHVDxOUK2L4JjKxUObh8VGPJpQKFvT7OH4kDWxLXq+WK256cGiXqvGFwsAIpH0FFo4SY7G4s3Wi3sThE0lu5GLAOM-KWVlHdlcrg84R8oUkEVi3KtRCUFYVLY7GCwIoVap1UtMSS0ehWlW3HUBGDARAkAgYPWEChgTClkilzL1r2IdsGiAfIdPaJdyq1Yqlcq92pgwcQ3okHjvAB8Q7twn0WNVqEZTZb+FlAenZcXd0H4-1UcI+DHUrWG3N-trNc1pbPKoXNVFSZCCuSBrh8W4pPgO5CHuNqHo2zatkohDEBef79v4g7DswY4KHYeDIaQlbSEwSEqBeeFoUuXrAc265brhepEF2+AaFkHQBDBB4Dl6vqkOWiAkmSFLUlitQ4IkZhQPslxRsysbxmoUGIIYOTzFmOYVLS9IIKh-FEdWEYfkClx0qC3G3s8FxPssL6bNsuxaa05EXGh5wmdpTRURZBoUFsPyPp8lBlmB2YULmdkFkWJa1L2FZUFWjCGTaXAMIBN43o5PjOe5rosX2Xk0aBm7mDUNSxPsbi2PCxDlXQrAAFYUCU+AQNsNRQCQaXpQEFxxXUNQhXUKUlTiEC3DMqkSmYBQ2BouDKChQaJfgcBiBA2oYUBDpILEyhyDNYCyCR80EZaiArWtuizJmDIaRgB0tvqcVSAZ5pqsZII+O9NQQNewhYdEWAKDh6B4QthHxcRzKFJoS2PYQAEBFhrzlBeY4HbOZTRXUKRecjc4VMYHxpa2mU6T2KPY4mN6YndZO2BTBMXs9CWfqqbmfU81ODnyd35mQhYwMWqGU8zoUvYlb0FdttEhZtaIspgjGoMxgxA+gTCi8Ya5eQEEQlJAea-D9bGovoGZqQy+udutmzG795mK22CBMVALE-UwqYMS7KtuyQJuih0k0LHdRCEPDUAs1Db0c6ZX1MMAcrIEwJvmVherhILZifGHSsIJnrQR158Enhg9OoRnWe+H9Xrp-nVcYETgVhZp7lOT2letKl3U9734us0l7MfXHXNKfaPQgXR5l916TvK6ricUMnt4F1l2uIzPN7W4bdv+79OjsZvaLm2b+4stPwi8RHRIAEIRIguf3qkLQMkyzjyZyilm9dluSag4csgAI7lENjXQIkJdrh1kLnI651UDAJVutCa4oFi52dq6KuUR-6YAmC-DI5kaL9EFEMLBhBKrNDyABYO6kW4YCOHSSA1Br792jgGd6i9l6p3llhBEzxPj0JttQDAvCOq4yUiXVs5pUIiPQmlLCEFrLSlfAGd8No2bkTfDI3WXQZZFS3PLI+wgS7ey7L7FiHDZGGO6nPH2qsPZP1tF1GenFz4GKsXrcIBtbY-T3towxhh3HQSUi4w8bihBXxSLfe+AjGFP0mK-aMLI2Sfy8ipFBWYYk0FUbEMBNFIEdVkJk6gsDzTIJumYIpwjsEkEqbgyhBCZZEMGKMWp+p4kZDKb-JArZojIDQOEWUe1CBkEjg-UIGBem5Jlq2GoMQ8RQBGTwAAZEs-kAxhlQHXLCMZFRekWymkgFgJAlpTInosPasgWCwJOfshYiETpkR7H2BpZyelL36YM8O-FLm4C-tQhkpEULfiOc8+WhCBTNPiPlW5WZhydg6pTU5ECLlwq7LAxFMLX6nlRd2GKoLUQ0TeX01AAz8l-iJDiv56SGQ4vIpTNCLzIRNNTNCn+BzB7HO0Ei3oZLZDmmuVyzFZhJHnieYuRlvQiUfLJd8-lnT2VSO-G+fF48mUQpZVeIVEhaHIDgBMuAzD9KSzYSnB23CJyIBEThPVUA9UiKLuI48IqVTSOwZYzCFqFGfGfDKN8MdB4aJUVoseOizl6LgXnUxdiIBMAgqks+cEnWnkBVgV1CMwFIwtSwEGigHnEHIJDAyKbyJHODWlQqU8bFRr9vYkxrsWIsA3tBBNF9wlYBxKQSJAk77hBQDauAcS8HdMSR-BMwTZjUrMLq-V2TuU7QudO21JSAzyoWIuu11T13kOfvUsFjT1UkK3XUqYq6sw1Bch2CAKw53nWiFeuQ56ahUvKUgGoIB8BMMvSsTWBMb1fofe+4p6gMVspDrQ-ATUZBdqNUwL9pqwFYWzZ8XCKaC0S1g3elY268JaiLtLMNU8wm9zfR+vYmGmB1rMXNZATaj7b28fbPx3UT7-LMHdcStqcCGsLctcjiAuG6izbgHNYMCJoYHl+7DsNtB4aUhWuWTj0pVvrdRlOF7MO0c3vRo2viD6Ka9Cx-gk6kAQeLNRm9vLTOoFgY2rVIhCC4hkI2iV86oEccczZ3Ap6GSSZSDhuGvm2lDpvcykhgWKEnrsy5E5LnzlQIuAKzg3nhWnnLmK-8sWZlzIZSsxkp5enSr2k0vsRIEvJZpG3LK34XJpfFXus5oXRhNNq-+Khxnh4eWylcXKJAWs3tTH1uzfNiDAFxLsaDPG2bvXpt9M1gm7xUCzJ8Eyo2sBkHunkB1qIJGpcq+TGKi2fDutrhaw7Okm6hXCi1pweQo7Vn04E3u-qZtMfk8VXgh9HtndsOvA+2nd4mz049k+HEW1EYiU9bt98VtjcHXckdySv4cVA2ekbY2btTFi7ymHa3YHffK-xtHa2NuF1xrFxr8Rcam1Y9q8K1RUAQBAE5F9zD-Uwc+499K9iOEYaoN+4ydZ6tqoGGT2EnxZAHVkGlWmtCHoTfQ4PabNRZvcy9HyJpovtnQOwVLmml3dnVPlwPZ7yuE5J3g2ldXELNfi6KbrwcMvwpFO4wr-1PP+O-Ut2syINuBLrvt16R3FR10u+Nyaj3qu0RW5F-qLZ4urMB7REHjAVnQ9QzgxHr3GvY-OgEu5nAieAjJ-z1ByH7OM8myz9bnPYuBI47IIX70+vNhE-G2Xybiu3Iq69xDwgIYhJUmHRFhkUkZJvxjMksdKPbq0OPT4LBVRNmxdmTAUgRBF9MDACAWIOS7Nz50uv0ROehe9GzwjPfQW8jTgZ0zte4Ai6xdTGI6fZgnb74ZlUG-zP79dr8nNgITsT+kOf+1O7W6w4Q1wFQEEEc70bOPGCGFqP0ImqG7OsgP0SO-0FqHCyBeaEMCusgHCGBDwFqX6Y4RqcgX6RB3kAuZBPGcgM2VBNEq2lQ8UnUN4KQIUb+l+7cn+jO3+YAbBPckS+md09OfBd+ByghM87+Ey1QR+CM3cm8McD2wgMGKhQgHs6hiAPOWhcGWhFw40ihXocaQ2tCiqXYWA+w2SZ0cay+2WUiS0sa+ojiNOokqQi2P4NoC+oyOA60QsG022SabA2+wwchx2aINEvhqA-hxyIRm+IR8asEra4CvQchdI0AnhqokK3hw0+mMBU2hGWhWE9Ai+26Y4zKYRIa3UhKp4HgdUxych26keR8mIURMREETAWh3UK+EM4U5hqQVhJROCkOXRnO6UcanRYxN4UszRm8fIbRZmPRBa4U7+DRpRuMkxUxWxQgExHO2xaIUsQOPc+gqSL+COcYMgjEOIO+KEh+d2ARNEaRHhb0JAVxpw7IqadxoxAQ+RiuhRWx4BkB26LEHRneLC9ATGhihKzhVRm8Jxph4U-6YC7IBopBnwW+O+SkL6-GgGJAVQfgexwgaJ-G2WVQvOV6psN4NEsg4QCA1m46AQ2Jj6oERGO2wRO+ZGfO4RN4V8sgAAomQO1PsLenznyAAAoADyYpVBoOSRRGmad4tqA0nwTSX6kJRJmGY4qYapsJqqvQSpsJASu4qI2JdAgspQMAAAXjIBmhqXzmOBibELCdSbSfQLIAycINiZnPgLMlAFkpwJYEvAEVSTLAGRBmgLnmgYBo3oHjiR+vprzP-OGYeLXmgQlvppiMybMWrtmEmUGZGWabABadaTGUnlGOabtNaWuAmViO2n6IJOSIPiIAgs8EyF+lyBWHmWgKcXqUgN6b6TQAiRUKhjFvLCibePWmOLIAAFTgAHQkrTnukmldKWoEADlMJhlBm2lbRnKbkRmpkKCllF4TlmI1l7kpla6KxHllmUxywnnMRjiUwHxGm9x8hXznmbGBINnCSHLwLlCtm07Dm4FT7I69mrk+nXCDlnHMimi5j7DHSPBYDhCC4ErTKniOlzSIXIXZnHnVTugkqKZvnAKlAkBwVMBNJNK+G4jYWZAPaYiUUM7UW3APZ8gmi-BkUPwkJUVIXjR2aUaqwpo3qobyDoDPornKZUYpo-pYxCW4EUGiXAa-pDlsCoCUgYDkEIF3hIHNzhTCXoF4xYFJy0G6VyUEFJxUFYTEl3RIlKTjlQDjIyFAIgLrQOkhG2XoA7JlzK5Ph7S8qFkwDFkVCUGflbHhr-qyD+WBVqC0bjnFrRAXE+XhzY4QCwImzqgXKEFm5LwATLnsqlBLAQBAkjlcrJElxsWcrBgiD4RkTxXshx6IB4XIjbkRG4ETLyjshjhLFkqOHN7FVJYpTfGbxxXtVXQ3ghLJEBBXw9WyAACy2+sAZUwpYYHoVV4MfIMpxpIZZyPy1VKE+VPwkB4QS5oFnpK5PqGwfVwZHqd4Toxo3wvwPVw1Fxr2Mst12yjVHoGZtZHaFViU35TZKaCYNZFOaYpQtGL52hK5YhTONpyR8izhIm88Na+8JMQRGFcazVYFNJdJx1g4418pRi3BVWvBt+529+Z+bsmQa4upoakI0NRA1NaUENENXpa5kFG5XZV11EoZnNkZHYWAUA15QgmI4aH2El0ansDlRNOkTliCo1j2jxJNDNbEENN4iZgZ+5WuKQ+V267StgsthsQtGIcCgCd59lUB0t+tf5ctY4QCz5Z5vNqZ+1hVRAomKgRtmIztRVuBDtGtF54uKGuBHtiwNkMoKavtyZBZ+oOtDBX1BhZt4y8dxopUKsgoidpuAuKtEd+ZqZlBX1X62dmt4usdvcmI5tXl+ANZ75nN-ejZIkOALZBoTIRqIFm1tNvQ-Z7Nyl5BxaS0Su70bxNxnxYRacFqRqxlFQ9AalGlWJuILBWSvd2gIU6h5BEuO+B1rtKaag1G4MWouRfci9AZXkq92tO+XlnMTQ29Bhx9dBEV0dZ9jl1thtOFwg9QH8rxLs1xHxshG+4J3A+GkIRqdm-NHURqN6q9ID29BOgdu1qaSNLE7Oh9XNKRSA-FfsMD4M4mUMSDbW2JTsxa8DWDRarVPViKjsoMhDGDYmiDJDXK0l5QADvQ2NbpYoWEyAEAAy497wqId05BaUvKFAsChSQjgtA10xvlFyOADeTATgTARwU8FAiAAApIgPI0Yd1Lyu8LArI6owo7nvI2I4OGSk4trmQkcEdPprnGaHtC5LIFo8NEcsI8NDiiQAAAzTDqM3jO5vjyAcPCI42ZCeODgPTQIlI2N1A-IN4OO4D7RqDHTIByDmMeP6YhOCPxOJPRVBNeghPmPpOhOBP6Yh4+NoJJOGM3i+MDKunWY5X4OtWUN+OoFpOIAABMrjAAbDMLU7A+gipuw5wx3sI0wAACzuN6AgMkB9PqXwF6BUNkT1P9P4GCNZBAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwKZQPoCdXJgZylSwAoBbAQwgAsYxUAaRHZDMCs1ASkQG8AoREOboQWJJRp1UJAERpMLAkSyyuJFmw7cA3PwC+-UJFgJEFfPhjIw2XFs4kLVmxjqEsIaPDA8BwkSgxJGpUCgATEigKGAAbJ0trW3coT28ELi49Q2N0pGckjAA3CliQVAxUAA8ABwSXZLAPL1NfPkRBYRwg8URQiKiY+Oi4+sKUtNbMrIMjcDzEWLg4AGsQGowarBgyEnwATzIAIzhYpjga4gpW-D9OoQgEQkQS2MQAXnNLOAg9w5OzogLlcbjMAt1gi9Sh93p9wOFUMBpOF7gFEAB+RDELBwUgHY6nJiyACqYBWYDgAHckMCsNcfIg6F98KhjrFUAAuNSogIcvphSIjeKvTLZOYmBlLVbrDCxChHVDxOUK2L4JjKxUObh8VGPJpQKFvT7OH4kDWxLXq+WK256cGiXqvGFwsAIpH0FFo4SY7G4s3Wi3sThE0lu5GLAOM-KWVlHdlcrg84R8oUkEVi3KtRCUFYVLY7GCwIoVap1UtMSS0ehWlW3HUBGDARAkAgYPWEChgTClkilzL1r2IdsGiAfIdPaJdyq1Yqlcq92pgwcQ3okHjvAB8Q7twn0WNVqEZTZb+FlAenZcXd0H4-1UcI+DHUrWG3N-trNc1pbPKoXNVFSZCCuSBrh8W4pPgO5CHuNqHo2zatkohDEBef79v4g7DswY4KHYeDIaQlbSEwSEqBeeFoUuXrAc265brhepEF2+AaFkHQBDBB4Dl6vqkOWiAkmSFLUlitQ4IkZhQPslxRsysbxmoUGIIYOTzFmOYVLS9IIKh-FEdWEYfkClx0qC3G3s8FxPssL6bNsuxaa05EXGh5wmdpTRURZBoUFsPyPp8lBlmB2YULmdkFkWJa1L2FZUFWjCGTaXAMIBN43o5PjOe5rosX2Xk0aBm7mDUNSxPsbi2PCxDlXQrAAFYUCU+AQNsNRQCQaXpQEFxxXUNQhXUKUlTiEC3DMqkSmYBQ2BouDKChQaJfgcBiBA2oYUBDpILEyhyDNYCyCR80EZaiArWtuizJmDIaRgB0tvqcVSAZ5pqsZII+O9NQQNewhYdEWAKDh6B4QthHxcRzKFJoS2PYQAEBFhrzlBeY4HbOZTRXUKRecjc4VMYHxpa2mU6T2KPY4mN6YndZO2BTBMXs9CWfqqbmfU81ODnyd35mQhYwMWqGU8zoUvYlb0FdttEhZtaIspgjGoMxgxA+gTCi8Ya5eQEEQlJAea-D9bGovoGZqQy+udutmzG795mK22CBMVALE-UwqYMS7KtuyQJuih0k0LHdRCEPDUAs1Db0c6ZX1MMAcrIEwJvmVherhILZifGHSsIJnrQR158Enhg9OoRnWe+H9Xrp-nVcYETgVhZp7lOT2letKl3U9734us0l7MfXHXNKfaPQgXR5l916TvK6ricUMnt4F1l2uIzPN7W4bdv+79OjsZvaLm2b+4stPwi8RHRIAEIRIguf3qkLQMkyzjyZyilm9dluSag4csgAI7lENjXQIkJdrh1kLnI651UDAJVutCa4oFi52dq6KuUR-6YAmC-DI5kaL9EFEMLBhBKrNDyABYO6kW4YCOHSSA1Br792jgGd6i9l6p3llhBEzxPj0JttQDAvCOq4yUiXVs5pUIiPQmlLCEFrLSlfAGd8No2bkTfDI3WXQZZFS3PLI+wgS7ey7L7FiHDZGGO6nPH2qsPZP1tF1GenFz4GKsXrcIBtbY-T3towxhh3HQSUi4w8bihBXxSLfe+AjGFP0mK-aMLI2Sfy8ipFBWYYk0FUbEMBNFIEdVkJk6gsDzTIJumYIpwjsEkEqbgyhBCZZEMGKMWp+p4kZDKb-JArZojIDQOEWUe1CBkEjg-UIGBem5Jlq2GoMQ8RQBGTwAAZEs-kAxhlQHXLCMZFRekWymkgFgJAlpTInosPasgWCwJOfshYiETpkR7H2BpZyelL36YM8O-FLm4C-tQhkpEULfiOc8+WhCBTNPiPlW5WZhydg6pTU5ECLlwq7LAxFMLX6nlRd2GKoLUQ0TeX01AAz8l-iJDiv56SGQ4vIpTNCLzIRNNTNCn+BzB7HO0Ei3oZLZDmmuVyzFZhJHnieYuRlvQiUfLJd8-lnT2VSO-G+fF48mUQpZVeIVEhaHIDgBMuAzD9KSzYSnB23CJyIBEThPVUA9UiKLuI48IqVTSOwZYzCFqFGfGfDKN8MdB4aJUVoseOizl6LgXnUxdiIBMAgqks+cEnWnkBVgV1CMwFIwtSwEGigHnEHIJDAyKbyJHODWlQqU8bFRr9vYkxrsWIsA3tBBNF9wlYBxKQSJAk77hBQDauAcS8HdMSR-BMwTZjUrMLq-V2TuU7QudO21JSAzyoWIuu11T13kOfvUsFjT1UkK3XUqYq6sw1Bch2CAKw53nWiFeuQ56ahUvKUgGoIB8BMMvSsTWBMb1fofe+4p6gMVspDrQ-ATUZBdqNUwL9pqwFYWzZ8XCKaC0S1g3elY268JaiLtLMNU8wm9zfR+vYmGmB1rMXNZATaj7b28fbPx3UT7-LMHdcStqcCGsLctcjiAuG6izbgHNYMCJoYHl+7DsNtB4aUhWuWTj0pVvrdRlOF7MO0c3vRo2viD6Ka9Cx-gk6kAQeLNRm9vLTOoFgY2rVIhCC4hkI2iV86oEccczZ3Ap6GSSZSDhuGvm2lDpvcykhgWKEnrsy5E5LnzlQIuAKzg3nhWnnLmK-8sWZlzIZSsxkp5enSr2k0vsRIEvJZpG3LK34XJpfFXus5oXRhNNq-+Khxnh4eWylcXKJAWs3tTH1uzfNiDAFxLsaDPG2bvXpt9M1gm7xUCzJ8Eyo2sBkHunkB1qIJGpcq+TGKi2fDutrhaw7Okm6hXCi1pweQo7Vn04E3u-qZtMfk8VXgh9HtndsOvA+2nd4mz049k+HEW1EYiU9bt98VtjcHXckdySv4cVA2ekbY2btTFi7ymHa3YHffK-xtHa2NuF1xrFxr8Rcam1Y9q8K1RUAQBAE5F9zD-Uwc+499K9iOEYaoN+4ydZ6tqoGGT2EnxZAHVkGlWmtCHoTfQ4PabNRZvcy9HyJpovtnQOwVLmml3dnVPlwPZ7yuE5J3g2ldXELNfi6KbrwcMvwpFO4wr-1PP+O-Ut2syINuBLrvt16R3FR10u+Nyaj3qu0RW5F-qLZ4urMB7REHjAVnQ9QzgxHr3GvY-OgEu5nAieAjJ-z1ByH7OM8myz9bnPYuBI47IIX70+vNhE-G2Xybiu3Iq69xDwgIYhJUmHRFhkUkZJvxjMksdKPbq0OPT4LBVRNmxdmTAUgRBF9MDACAWIOS7Nz50uv0ROehe9GzwjPfQW8jTgZ0zte4Ai6xdTGI6fZgnb74ZlUG-zP79dr8nNgITsT+kOf+1O7W6w4Q1wFQEEEc70bOPGCGFqP0ImqG7OsgP0SO-0FqHCyBeaEMCusgHCGBDwFqX6Y4RqcgX6RB3kAuZBPGcgM2VBNEq2lQ8UnUN4KQIUb+l+7cn+jO3+YAbBPckS+md09OfBd+ByghM87+Ey1QR+CM3cm8McD2wgMGKhQgHs6hiAPOWhcGWhFw40ihXocaQ2tCiqXYWA+w2SZ0cay+2WUiS0sa+ojiNOokqQi2P4NoC+oyOA60QsG022SabA2+wwchx2aINEvhqA-hxyIRm+IR8asEra4CvQchdI0AnhqokK3hw0+mMBU2hGWhWE9Ai+26Y4zKYRIa3UhKp4HgdUxych26keR8mIURMREETAWh3UK+EM4U5hqQVhJROCkOXRnO6UcanRYxN4UszRm8fIbRZmPRBa4U7+DRpRuMkxUxWxQgExHO2xaIUsQOPc+gqSL+COcYMgjEOIO+KEh+d2ARNEaRHhb0JAVxpw7IqadxoxAQ+RiuhRWx4BkB26LEHRneLC9ATGhihKzhVRm8Jxph4U-6YC7IBopBnwW+O+SkL6-GgGJAVQfgexwgaJ-G2WVQvOV6psN4NEsg4QCA1m46AQ2Jj6oERGO2wRO+ZGfO4RN4V8sgAAomQO1PsLenznyAAAoADyYpVBoOSRRGmad4tqA0nwTSX6kJRJmGY4qYapsJqqvQSpsJASu4qI2JdAgspQMAAAXjIBmhqXzmOBibELCdSbSfQLIAycINiZnPgLMlAFkpwJYEvAEVSTLAGRBmgLnmgYBo3oHjiR+vprzP-OGYeLXmgQlvppiMybMWrtmEmUGZGWabABadaTGUnlGOabtNaWuAmViO2n6IJOSIPiIAgs8EyF+lyBWHmWgKcXqUgN6b6TQAiRUKhjFvLCibePWmOLIAAFTgAHQkrTnukmldKWoEADlMJhlBm2lbRnKbkRmpkKCllF4TlmI1l7kpla6KxHllmUxywnnMRjiUwHxGm9x8hXznmbGBINnCSHLwLlCtm07Dm4FT7I69mrk+nXCDlnHMimi5j7DHSPBYDhCC4ErTKniOlzSIXIXZnHnVTugkqKZvnAKlAkBwVMBNJNK+G4jYWZAPaYiUUM7UW3APZ8gmi-BkUPwkJUVIXjR2aUaqwpo3qobyDoDPornKZUYpo-pYxCW4EUGiXAa-pDlsCoCUgYDkEIF3hIHNzhTCXoF4xYFJy0G6VyUEFJxUFYTEl3RIlKTjlQDjIyFAIgLrQOkhG2XoA7JlzK5Ph7S8qFkwDFkVCUGflbHhr-qyD+WBVqC0bjnFrRAXE+XhzY4QCwImzqgXKEFm5LwATLnsqlBLAQBAkjlcrJElxsWcrBgiD4RkTxXshx6IB4XIjbkRG4ETLyjshjhLFkqOHN7FVJYpTfGbxxXtVXQ3ghLJEBBXw9WyAACy2+sAZUwpYYHoVV4MfIMpxpIZZyPy1VKE+VPwkB4QS5oFnpK5PqGwfVwZHqd4Toxo3wvwPVw1Fxr2Mst12yjVHoGZtZHaFViU35TZKaCYNZFOaYpQtGL52hK5YhTONpyR8izhIm88Na+8JMQRGFcazVYFNJdJx1g4418pRi3BVWvBt+529+Z+bsmQa4upoakI0NRA1NaUENENXpa5kFG5XZV11EoZnNkZHYWAUA15QgmI4aH2El0ansDlRNOkTliCo1j2jxJNDNbEENN4iZgZ+5WuKQ+V267StgsthsQtGIcCgCd59lUB0t+tf5ctY4QCz5Z5vNqZ+1hVRAomKgRtmIztRVuBDtGtF54uKGuBHtiwNkMoKavtyZBZ+oOtDBX1BhZt4y8dxopUKsgoidpuAuKtEd+ZqZlBX1X62dmt4usdvcmI5tXl+ANZ75nN-ejZIkOALZBoTIRqIFm1tNvQ-Z7Nyl5BxaS0Su70bxNxnxYRacFqRqxlFQ9AalGlWJuILBWSvd2gIU6h5BEuO+B1rtKaag1G4MWouRfci9AZXkq92tO+XlnMTQ29Bhx9dBEV0dZ9jl1thtOFwg9QH8rxLs1xHxshG+4J3A+GkIRqYoWEyAEAAy497wqId05BaUvKFAsChSCDgtA10xvlFyOADeTATgTARwU8FAiAAApIgLg0Yd1Lyu8LAtg8Q3g7nrgyg4OGSk4trmQkcEdPprnGaHtC5LIBQ8NEcog8NDiiQAAAzTCkM3jO5vjyBgPCI42ZDiODgPTQIlJcN1A-IN58O4D7RqDHTIByCsNiP6ZKPwO6P6PRUKNehKOsOmPKPyP6Yh5SNoIGP0M3jSMDKunWYATYn80dRGo3qr0+Pb0E6B27WppI0sTs6H1c0pFID8V+whPgziZQxRNtbeOgzFrhNJNFqtU9WIqOygyZMJNiaRM5NcrSXlAAO9DY1ulihOwZO2LxMyOoEmOIAABMwjAAbFkEAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwKZQPoCdXJgZylSwAoBbAQwgAsYxUAaRHZDMCs1ASkQG8AoREOboQWJJRp1UJAERpMLAkSyyuJFmw7cA3PwC+-UJFgJEFfPhjIw2XFs4kLVmxjqEsIaPDA8BwkSgxJGpUCgATEigKGAAbJ0trW3coT28ELi49Q2N0pGckjAA3CliQVAxUAA8ABwSXZLAPL1NfPkRBYRwg8URQiKiY+Oi4+sKUtNbMrIMjcDzEWLg4AGsQGowarBgyEnwATzIAIzhYpjga4gpW-D9OoQgEQkQS2MQAXnNLOAg9w5OzogLlcbjMAt1gi9Sh93p9wOFUMBpOF7gFEAB+RDELBwUgHY6nJiyACqYBWYDgAHckMCsNcfIg6F98KhjrFUAAuNSogIcvphSIjeKvTLZOYmBlLVbrDCxChHVDxOUK2L4JjKxUObh8VGPJpQKFvT7OH4kDWxLXq+WK256cGiXqvGFwsAIpH0FFo4SY7G4s3Wi3sThE0lu5GLAOM-KWVlHdlcrg84R8oUkEVi3KtRCUFYVLY7GCwIoVap1UtMSS0ehWlW3HUBGDARAkAgYPWEChgTClkilzL1r2IdsGiAfIdPaJdyq1Yqlcq92pgwcQ3okHjvAB8Q7twn0WNVqEZTZb+FlAenZcXd0H4-1UcI+DHUrWG3N-trNc1pbPKoXNVFSZCCuSBrh8W4pPgO5CHuNqHo2zatkohDEBef79v4g7DswY4KHYeDIaQlbSEwSEqBeeFoUuXrAc265brhepEF2+AaFkHQBDBB4Dl6vqkOWiAkmSFLUlitQ4IkZhQPslxRsysbxmoUGIIYOTzFmOYVLS9IIKh-FEdWEYfkClx0qC3G3s8FxPssL6bNsuxaa05EXGh5wmdpTRURZBoUFsPyPp8lBlmB2YULmdkFkWJa1L2FZUFWjCGTaXAMIBN43o5PjOe5rosX2Xk0aBm7mDUNSxPsbi2PCxDlXQrAAFYUCU+AQNsNRQCQaXpQEFxxXUNQhXUKUlTiEC3DMqkSmYBQ2BouDKChQaJfgcBiBA2oYUBDpILEyhyDNYCyCR80EZaiArWtuizJmDIaRgB0tvqcVSAZ5pqsZII+O9NQQNewhYdEWAKDh6B4QthHxcRzKFJoS2PYQAEBFhrzlBeY4HbOZTRXUKRecjc4VMYHxpa2mU6T2KPY4mN6YndZO2BTBMXs9CWfqqbmfU81ODnyd35mQhYwMWqGU8zoUvYlb0FdttEhZtaIspgjGoMxgxA+gTCi8Ya5eQEEQlJAea-D9bGovoGZqQy+udutmzG795mK22CBMVALE-UwqYMS7KtuyQJuih0k0LHdRCEPDUAs1Db0c6ZX1MMAcrIEwJvmVherhILZifGHSsIJnrQR158Enhg9OoRnWe+H9Xrp-nVcYETgVhZp7lOT2letKl3U9734us0l7MfXHXNKfaPQgXR5l916TvK6ricUMnt4F1l2uIzPN7W4bdv+79OjsZvaLm2b+4stPwi8RHRIAEIRIguf3qkLQMkyzjyZyilm9dluSag4csgAI7lENjXQIkJdrh1kLnI651UDAJVutCa4oFi52dq6KuUR-6YAmC-DI5kaL9EFEMLBhBKrNDyABYO6kW4YCOHSSA1Br792jgGd6i9l6p3llhBEzxPj0JttQDAvCOq4yUiXVs5pUIiPQmlLCEFrLSlfAGd8No2bkTfDI3WXQZZFS3PLI+wgS7ey7L7FiHDZGGO6nPH2qsPZP1tF1GenFz4GKsXrcIBtbY-T3towxhh3HQSUi4w8bihBXxSLfe+AjGFP0mK-aMLI2Sfy8ipFBWYYk0FUbEMBNFIEdVkJk6gsDzTIJumYIpwjsEkEqbgyhBCZZEMGKMWp+p4kZDKb-JArZojIDQOEWUe1CBkEjg-UIGBem5Jlq2GoMQ8RQBGTwAAZEs-kAxhlQHXLCMZFRekWymkgFgJAlpTInosPasgWCwJOfshYiETpkR7H2BpZyelL36YM8O-FLm4C-tQhkpEULfiOc8+WhCBTNPiPlW5WZhydg6pTU5ECLlwq7LAxFMLX6nlRd2GKoLUQ0TeX01AAz8l-iJDiv56SGQ4vIpTNCLzIRNNTNCn+BzB7HO0Ei3oZLZDmmuVyzFZhJHnieYuRlvQiUfLJd8-lnT2VSO-G+fF48mUQpZVeIVEhaHIDgBMuAzD9KSzYSnB23CJyIBEThPVUA9UiKLuI48IqVTSOwZYzCFqFGfGfDKN8MdB4aJUVoseOizl6LgXnUxdiIBMAgqks+cEnWnkBVgV1CMwFIwtSwEGigHnEHIJDAyKbyJHODWlQqU8bFRr9vYkxrsWIsA3tBBNF9wlYBxKQSJAk77hBQDauAcS8HdMSR-BMwTZjUrMLq-V2TuU7QudO21JSAzyoWIuu11T13kOfvUsFjT1UkK3XUqYq6sw1Bch2CAKw53nWiFeuQ56ahUvKUgGoIB8BMMvSsTWBMb1fofe+4p6gMVspDrQ-ATUZBdqNUwL9pqwFYWzZ8XCKaC0S1g3elY268JaiLtLMNU8wm9zfR+vYmGmB1rMXNZATaj7b28fbPx3UT7-LMHdcStqcCGsLctcjiAuG6izbgHNYMCJoYHl+7DsNtB4aUhWuWTj0pVvrdRlOF7MO0c3vRo2viD6Ka9Cx-gk6kAQeLNRm9vLTOoFgY2rVIhCC4hkI2iV86oEccczZ3Ap6GSSZSDhuGvm2lDpvcykhgWKEnrsy5E5LnzlQIuAKzg3nhWnnLmK-8sWZlzIZSsxkp5enSr2k0vsRIEvJZpG3LK34XJpfFXus5oXRhNNq-+Khxnh4eWylcXKJAWs3tTH1uzfNiDAFxLsaDPG2bvXpt9M1gm7xUCzJ8Eyo2sBkHunkB1qIJGpcq+TGKi2fDutrhaw7Okm6hXCi1pweQo7Vn04E3u-qZtMfk8VXgh9HtndsOvA+2nd4mz049k+HEW1EYiU9bt98VtjcHXckdySv4cVA2ekbY2btTFi7ymHa3YHffK-xtHa2NuF1xrFxr8Rcam1Y9q8K1RUAQBAE5F9zD-Uwc+499K9iOEYaoN+4ydZ6tqoGGT2EnxZAHVkGlWmtCHoTfQ4PabNRZvcy9HyJpovtnQOwVLmml3dnVPlwPZ7yuE5J3g2ldXELNfi6KbrwcMvwpFO4wr-1PP+O-Ut2syINuBLrvt16R3FR10u+Nyaj3qu0RW5F-qLZ4urMB7REHjAVnQ9QzgxHr3GvY-OgEu5nAieAjJ-z1ByH7OM8myz9bnPYuBI47IIX70+vNhE-G2Xybiu3Iq69xDwgIYhJUmHRFhkUkZJvxjMksdKPbq0OPT4LBVRNmxdmTAUgRBF9MDACAWIOS7Nz50uv0ROehe9GzwjPfQW8jTgZ0zte4Ai6xdTGI6fZgnb74ZlUG-zP79dr8nNgITsT+kOf+1O7W6w4Q1wFQEEEc70bOPGCGFqP0ImqG7OsgP0SO-0FqHCyBeaEMCusgHCGBDwFqX6Y4RqcgX6RB3kAuZBPGcgM2VBNEq2lQ8UnUN4KQIUb+l+7cn+jO3+YAbBPckS+md09OfBd+ByghM87+Ey1QR+CM3cm8McD2wgMGKhQgHs6hiAPOWhcGWhFw40ihXocaQ2tCiqXYWA+w2SZ0cay+2WUiS0sa+ojiNOokqQi2P4NoC+oyOA60QsG022SabA2+wwchx2aINEvhqA-hxyIRm+IR8asEra4CvQchdI0AnhqokK3hw0+mMBU2hGWhWE9Ai+26Y4zKYRIa3UhKp4HgdUxych26keR8mIURMREETAWh3UK+EM4U5hqQVhJROCkOXRnO6UcanRYxN4UszRm8fIbRZmPRBa4U7+DRpRuMkxUxWxQgExHO2xaIUsQOPc+gqSL+COcYMgjEOIO+KEh+d2ARNEaRHhb0JAVxpw7IqadxoxAQ+RiuhRWx4BkB26LEHRneLC9ATGhihKzhVRm8Jxph4U-6YC7IBopBnwW+O+SkL6-GgGJAVQfgexwgaJ-G2WVQvOV6psN4NEsg4QCA1m46AQ2Jj6oERGO2wRO+ZGfO4RN4V8sgAAomQO1PsLenznyAAAoADyYpVBoOSRRGmad4tqA0nwTSX6kJRJmGY4qYapsJqqvQSpsJASu4qI2JdAgspQMAAAXjIBmhqXzmOBibELCdSbSfQLIAycINiZnPgLMlAFkpwJYEvAEVSTLAGRBmgLnmgYBo3oHjiR+vprzP-OGYeLXmgQlvppiMybMWrtmEmUGZGWabABadaTGUnlGOabtNaWuAmViO2n6IJOSIPiIAgs8EyF+lyBWHmWgKcXqUgN6b6TQAiRUKhjFvLCibePWmOLIAAFTgAHQkrTnukmldKWoEADlMJhlBm2lbRnKbkRmpkKCllF4TlmI1l7kpla6KxHllmUxywnnMRjiUwHxGm9x8hXznmbGBINnCSHLwLlCtm07Dm4FT7I69mrk+nXCDlnHMimi5j7DHSPBYDhCC4ErTKniOlzSIXIXZnHnVTugkqKZvnAKlAkBwVMBNJNK+G4jYWZAPaYiUUM7UW3APZ8gmi-BkUPwkJUVIXjR2aUaqwpo3qobyDoDPornKZUYpo-pYxCW4EUGiXAa-pDlsCoCUgYDkEIF3hIHNzhTCXoF4xYFJy0G6VyUEFJxUFYTEl3RIlKTjlQDjIyFAIgLrQOkhG2XoA7JlzK5Ph7S8qFkwDFkVCUGflbHhr-qyD+WBVqC0bjnFrRAXE+XhzY4QCwImzqgXKEFm5LwATLnsqlBLAQBAkjlcrJElxsWcrBgiD4RkTxXshx6IB4XIjbkRG4ETLyjshjhLFkqOHN7FVJYpTfGbxxXtVXQ3ghLJEBBXw9WyAACy2+sAZUwpYYHoVV4MfIMpxpIZZyPy1VKE+VPwkB4QS5oFnpK5PqGwfVwZHqd4Toxo3wvwPVw1Fxr2Mst12yjVHoGZtZHaFViU35TZKaCYNZFOaYpQtGL52hK5YhTONpyR8izhIm88Na+8JMQRGFcazVYFNJdJx1g4418pRi3BVWvBt+529+Z+bsmQa4upoakI0NRA1NaUENENXpa5kFG5XZV11EoZnNkZHYWAUA15QgmI4aH2El0ansDlRNOkTliCo1j2jxJNDNbEENN4iZgZ+5WuKQ+V267StgsthsQtGIcCgCd59lUB0t+tf5ctY4QCz5Z5vNqZ+1hVRAomKgRtmIztRVuBDtGtF54uKGuBHtiwNkMoKavtyZBZ+oOtDBX1BhZt4y8dxopUKsgoidpuAuKtEd+ZqZlBX1X62dmt4usdvcmI5tXl+ANZ75nN-ejZIkOALZBoTIRqIFm1tNvQ-Z7Nyl5BxaS0Su70bxNxnxYRacFqRqxlFQ9AalGlWJuILBWSvd2gIU6h5BEuO+B1rtKaag1G4MWouRfci9AZXkq92tO+XlnMTQ29Bhx9dBEV0dZ9jl1thtOFwg9QH8rxLs1xHxshG+4J3A+GkIRqYoWEyAEAAy497wqId05BaUvKFAsChSCDgtA10xvlFyOADeTATgTARwU8FAiAAApIgLg0Yd1Lyu8LAtg8Q3g7nrgyg4OGSk4trmQkcEdPprnGaHtC5LIBQ8NEcog8NDiiQAAAzTCkM3jO5vjyBgPCI42ZDiODgPTQIlJcN1A-IN58O4D7RqDHTIByCsNiP6ZKPwO6P6PRUKNehKOsOmPKPyP6Yh5SNoIGP0M3jSMDKunWYATYn80dRGo3qr0+Pb0E6B27WppI0sTs6H1c0pFID8V+whPgziZQxRNtbeOgzFrhNJNFqtU9WIqOygyZMJNiaRM5NcrSXlAAO9DY1ulihOwZO2LxMyOoEmOIAABMwjAAbDMHU61YU00x3og0wAACyiM6BAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwKZQPoCdXJgZylSwAoBbAQwgAsYxUAaRHZDMCs1ASkQG8AoREOboQWJJRp1UJAERpMLAkSyyuJFmw7cA3PwC+-UJFgJEFfPhjIw2XFs4kLVmxjqEsIaPDA8BwkSgxJGpUCgATEigKGAAbJ0trW3coT28ELi49Q2N0pGckjAA3CliQVAxUAA8ABwSXZLAPL1NfPkRBYRwg8URQiKiY+Oi4+sKUtNbMrIMjcDzEWLg4AGsQGowarBgyEnwATzIAIzhYpjga4gpW-D9OoQgEQkQS2MQAXnNLOAg9w5OzogLlcbjMAt1gi9Sh93p9wOFUMBpOF7gFEAB+RDELBwUgHY6nJiyACqYBWYDgAHckMCsNcfIg6F98KhjrFUAAuNSogIcvphSIjeKvTLZOYmBlLVbrDCxChHVDxOUK2L4JjKxUObh8VGPJpQKFvT7OH4kDWxLXq+WK256cGiXqvGFwsAIpH0FFo4SY7G4s3Wi3sThE0lu5GLAOM-KWVlHdlcrg84R8oUkEVi3KtRCUFYVLY7GCwIoVap1UtMSS0ehWlW3HUBGDARAkAgYPWEChgTClkilzL1r2IdsGiAfIdPaJdyq1Yqlcq92pgwcQ3okHjvAB8Q7twn0WNVqEZTZb+FlAenZcXd0H4-1UcI+DHUrWG3N-trNc1pbPKoXNVFSZCCuSBrh8W4pPgO5CHuNqHo2zatkohDEBef79v4g7DswY4KHYeDIaQlbSEwSEqBeeFoUuXrAc265brhepEF2+AaFkHQBDBB4Dl6vqkOWiAkmSFLUlitQ4IkZhQPslxRsysbxmoUGIIYOTzFmOYVLS9IIKh-FEdWEYfkClx0qC3G3s8FxPssL6bNsuxaa05EXGh5wmdpTRURZBoUFsPyPp8lBlmB2YULmdkFkWJa1L2FZUFWjCGTaXAMIBN43o5PjOe5rosX2Xk0aBm7mDUNSxPsbi2PCxDlXQrAAFYUCU+AQNsNRQCQaXpQEFxxXUNQhXUKUlTiEC3DMqkSmYBQ2BouDKChQaJfgcBiBA2oYUBDpILEyhyDNYCyCR80EZaiArWtuizJmDIaRgB0tvqcVSAZ5pqsZII+O9NQQNewhYdEWAKDh6B4QthHxcRzKFJoS2PYQAEBFhrzlBeY4HbOZTRXUKRecjc4VMYHxpa2mU6T2KPY4mN6YndZO2BTBMXs9CWfqqbmfU81ODnyd35mQhYwMWqGU8zoUvYlb0FdttEhZtaIspgjGoMxgxA+gTCi8Ya5eQEEQlJAea-D9bGovoGZqQy+udutmzG795mK22CBMVALE-UwqYMS7KtuyQJuih0k0LHdRCEPDUAs1Db0c6ZX1MMAcrIEwJvmVherhILZifGHSsIJnrQR158Enhg9OoRnWe+H9Xrp-nVcYETgVhZp7lOT2letKl3U9734us0l7MfXHXNKfaPQgXR5l916TvK6ricUMnt4F1l2uIzPN7W4bdv+79OjsZvaLm2b+4stPwi8RHRIAEIRIguf3qkLQMkyzjyZyilm9dluSag4csgAI7lENjXQIkJdrh1kLnI651UDAJVutCa4oFi52dq6KuUR-6YAmC-DI5kaL9EFEMLBhBKrNDyABYO6kW4YCOHSSA1Br792jgGd6i9l6p3llhBEzxPj0JttQDAvCOq4yUiXVs5pUIiPQmlLCEFrLSlfAGd8No2bkTfDI3WXQZZFS3PLI+wgS7ey7L7FiHDZGGO6nPH2qsPZP1tF1GenFz4GKsXrcIBtbY-T3towxhh3HQSUi4w8bihBXxSLfe+AjGFP0mK-aMLI2Sfy8ipFBWYYk0FUbEMBNFIEdVkJk6gsDzTIJumYIpwjsEkEqbgyhBCZZEMGKMWp+p4kZDKb-JArZojIDQOEWUe1CBkEjg-UIGBem5Jlq2GoMQ8RQBGTwAAZEs-kAxhlQHXLCMZFRekWymkgFgJAlpTInosPasgWCwJOfshYiETpkR7H2BpZyelL36YM8O-FLm4C-tQhkpEULfiOc8+WhCBTNPiPlW5WZhydg6pTU5ECLlwq7LAxFMLX6nlRd2GKoLUQ0TeX01AAz8l-iJDiv56SGQ4vIpTNCLzIRNNTNCn+BzB7HO0Ei3oZLZDmmuVyzFZhJHnieYuRlvQiUfLJd8-lnT2VSO-G+fF48mUQpZVeIVEhaHIDgBMuAzD9KSzYSnB23CJyIBEThPVUA9UiKLuI48IqVTSOwZYzCFqFGfGfDKN8MdB4aJUVoseOizl6LgXnUxdiIBMAgqks+cEnWnkBVgV1CMwFIwtSwEGigHnEHIJDAyKbyJHODWlQqU8bFRr9vYkxrsWIsA3tBBNF9wlYBxKQSJAk77hBQDauAcS8HdMSR-BMwTZjUrMLq-V2TuU7QudO21JSAzyoWIuu11T13kOfvUsFjT1UkK3XUqYq6sw1Bch2CAKw53nWiFeuQ56ahUvKUgGoIB8BMMvSsTWBMb1fofe+4p6gMVspDrQ-ATUZBdqNUwL9pqwFYWzZ8XCKaC0S1g3elY268JaiLtLMNU8wm9zfR+vYmGmB1rMXNZATaj7b28fbPx3UT7-LMHdcStqcCGsLctcjiAuG6izbgHNYMCJoYHl+7DsNtB4aUhWuWTj0pVvrdRlOF7MO0c3vRo2viD6Ka9Cx-gk6kAQeLNRm9vLTOoFgY2rVIhCC4hkI2iV86oEccczZ3Ap6GSSZSDhuGvm2lDpvcykhgWKEnrsy5E5LnzlQIuAKzg3nhWnnLmK-8sWZlzIZSsxkp5enSr2k0vsRIEvJZpG3LK34XJpfFXus5oXRhNNq-+Khxnh4eWylcXKJAWs3tTH1uzfNiDAFxLsaDPG2bvXpt9M1gm7xUCzJ8Eyo2sBkHunkB1qIJGpcq+TGKi2fDutrhaw7Okm6hXCi1pweQo7Vn04E3u-qZtMfk8VXgh9HtndsOvA+2nd4mz049k+HEW1EYiU9bt98VtjcHXckdySv4cVA2ekbY2btTFi7ymHa3YHffK-xtHa2NuF1xrFxr8Rcam1Y9q8K1RUAQBAE5F9zD-Uwc+499K9iOEYaoN+4ydZ6tqoGGT2EnxZAHVkGlWmtCHoTfQ4PabNRZvcy9HyJpovtnQOwVLmml3dnVPlwPZ7yuE5J3g2ldXELNfi6KbrwcMvwpFO4wr-1PP+O-Ut2syINuBLrvt16R3FR10u+Nyaj3qu0RW5F-qLZ4urMB7REHjAVnQ9QzgxHr3GvY-OgEu5nAieAjJ-z1ByH7OM8myz9bnPYuBI47IIX70+vNhE-G2Xybiu3Iq69xDwgIYhJUmHRFhkUkZJvxjMksdKPbq0OPT4LBVRNmxdmTAUgRBF9MDACAWIOS7Nz50uv0ROehe9GzwjPfQW8jTgZ0zte4Ai6xdTGI6fZgnb74ZlUG-zP79dr8nNgITsT+kOf+1O7W6w4Q1wFQEEEc70bOPGCGFqP0ImqG7OsgP0SO-0FqHCyBeaEMCusgHCGBDwFqX6Y4RqcgX6RB3kAuZBPGcgM2VBNEq2lQ8UnUN4KQIUb+l+7cn+jO3+YAbBPckS+md09OfBd+ByghM87+Ey1QR+CM3cm8McD2wgMGKhQgHs6hiAPOWhcGWhFw40ihXocaQ2tCiqXYWA+w2SZ0cay+2WUiS0sa+ojiNOokqQi2P4NoC+oyOA60QsG022SabA2+wwchx2aINEvhqA-hxyIRm+IR8asEra4CvQchdI0AnhqokK3hw0+mMBU2hGWhWE9Ai+26Y4zKYRIa3UhKp4HgdUxych26keR8mIURMREETAWh3UK+EM4U5hqQVhJROCkOXRnO6UcanRYxN4UszRm8fIbRZmPRBa4U7+DRpRuMkxUxWxQgExHO2xaIUsQOPc+gqSL+COcYMgjEOIO+KEh+d2ARNEaRHhb0JAVxpw7IqadxoxAQ+RiuhRWx4BkB26LEHRneLC9ATGhihKzhVRm8Jxph4U-6YC7IBopBnwW+O+SkL6-GgGJAVQfgexwgaJ-G2WVQvOV6psN4NEsg4QCA1m46AQ2Jj6oERGO2wRO+ZGfO4RN4V8sgAAomQO1PsLenznyAAAoADyYpVBoOSRRGmad4tqA0nwTSX6kJRJmGY4qYapsJqqvQSpsJASu4qI2JdAgspQMAAAXjIBmhqXzmOBibELCdSbSfQLIAycINiZnPgLMlAFkpwJYEvAEVSTLAGRBmgLnmgYBo3oHjiR+vprzP-OGYeLXmgQlvppiMybMWrtmEmUGZGWabABadaTGUnlGOabtNaWuAmViO2n6IJOSIPiIAgs8EyF+lyBWHmWgKcXqUgN6b6TQAiRUKhjFvLCibePWmOLIAAFTgAHQkrTnukmldKWoEADlMJhlBm2lbRnKbkRmpkKCllF4TlmI1l7kpla6KxHllmUxywnnMRjiUwHxGm9x8hXznmbGBINnCSHLwLlCtm07Dm4FT7I69mrk+nXCDlnHMimi5j7DHSPBYDhCC4ErTKniOlzSIXIXZnHnVTugkqKZvnAKlAkBwVMBNJNK+G4jYWZAPaYiUUM7UW3APZ8gmi-BkUPwkJUVIXjR2aUaqwpo3qobyDoDPornKZUYpo-pYxCW4EUGiXAa-pDlsCoCUgYDkEIF3hIHNzhTCXoF4xYFJy0G6VyUEFJxUFYTEl3RIlKTjlQDjIyFAIgLrQOkhG2XoA7JlzK5Ph7S8qFkwDFkVCUGflbHhr-qyD+WBVqC0bjnFrRAXE+XhzY4QCwImzqgXKEFm5LwATLnsqlBLAQBAkjlcrJElxsWcrBgiD4RkTxXshx6IB4XIjbkRG4ETLyjshjhLFkqOHN7FVJYpTfGbxxXtVXQ3ghLJEBBXw9WyAACy2+sAZUwpYYHoVV4MfIMpxpIZZyPy1VKE+VPwkB4QS5oFnpK5PqGwfVwZHqd4Toxo3wvwPVw1Fxr2Mst12yjVHoGZtZHaFViU35TZKaCYNZFOaYpQtGL52hK5YhTONpyR8izhIm88Na+8JMQRGFcazVYFNJdJx1g4418pRi3BVWvBt+529+Z+bsmQa4upoakI0NRA1NaUENENXpa5kFG5XZV11EoZnNkZHYWAUA15QgmI4aH2El0ansDlRNOkTliCo1j2jxJNDNbEENN4iZgZ+5WuKQ+V267StgsthsQtGIcCgCd59lUB0t+tf5ctY4QCz5Z5vNqZ+1hVRAomKgRtmIztRVuBDtGtF54uKGuBHtiwNkMoKavtyZBZ+oOtDBX1BhZt4y8dxopUKsgoidpuAuKtEd+ZqZlBX1X62dmt4usdvcmI5tXl+ANZ75nN-ejZIkOALZBoTIRqIFm1tNvQ-Z7Nyl5BxaS0Su70bxNxnxYRacFqRqxlFQ9AalGlWJuILBWSvd2gIU6h5BEuO+B1rtKaag1G4MWouRfci9AZXkq92tO+XlnMTQ29Bhx9dBEV0dZ9jl1thtOFwg9QH8rxLs1xHxshG+4J3A+GkIRqYoWEyAEAAy497wqId05BaUvKFAsChSCDgtA10xvlFyOADeTATgTARwU8FAiAAApIgLg0Yd1Lyu8LAtg8Q3g7nrgyg4OGSk4trmQkcEdPprnGaHtC5LIBQ8NEcog8NDiiQAAAzTCkM3jO5vjyBgPCI42ZDiODgPTQIlJcN1A-IN58O4D7RqDHTIByCsNiP6ZKPwO6P6PRUKNehKOsOmPKPyP6Yh5SNoIGP0M3jSMDKunWYATYn80dRGo3qr0+Pb0E6B27WppI0sTs6H1c0pFID8V+whPgziZQxRNtbeOgzFrhNJNFqtU9WIqOygyZMJNiaRM5NcrSXlAAO9DY1ulihOwZO2LxMyOoEmOIAABMwjAAbDMHU61YU00x3og0wAACyiN6A+MkCgPgPwE6BAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwKZQPoCdXJgZylSwAoBbAQwgAsYxUAaRHZDMCs1ASkQG8AoREOboQWJJRp1UJAERpMLAkSyyuJFmw7cA3PwC+-UJFgJEFfPhjIw2XFs4kLVmxjqEsIaPDA8BwkSgxJGpUCgATEigKGAAbJ0trW3coT28ELi49Q2N0pGckjAA3CliQVAxUAA8ABwSXZLAPL1NfPkRBYRwg8URQiKiY+Oi4+sKUtNbMrIMjcDzEWLg4AGsQGowarBgyEnwATzIAIzhYpjga4gpW-D9OoQgEQkQS2MQAXnNLOAg9w5OzogLlcbjMAt1gi9Sh93p9wOFUMBpOF7gFEAB+RDELBwUgHY6nJiyACqYBWYDgAHckMCsNcfIg6F98KhjrFUAAuNSogIcvphSIjeKvTLZOYmBlLVbrDCxChHVDxOUK2L4JjKxUObh8VGPJpQKFvT7OH4kDWxLXq+WK256cGiXqvGFwsAIpH0FFo4SY7G4s3Wi3sThE0lu5GLAOM-KWVlHdlcrg84R8oUkEVi3KtRCUFYVLY7GCwIoVap1UtMSS0ehWlW3HUBGDARAkAgYPWEChgTClkilzL1r2IdsGiAfIdPaJdyq1Yqlcq92pgwcQ3okHjvAB8Q7twn0WNVqEZTZb+FlAenZcXd0H4-1UcI+DHUrWG3N-trNc1pbPKoXNVFSZCCuSBrh8W4pPgO5CHuNqHo2zatkohDEBef79v4g7DswY4KHYeDIaQlbSEwSEqBeeFoUuXrAc265brhepEF2+AaFkHQBDBB4Dl6vqkOWiAkmSFLUlitQ4IkZhQPslxRsysbxmoUGIIYOTzFmOYVLS9IIKh-FEdWEYfkClx0qC3G3s8FxPssL6bNsuxaa05EXGh5wmdpTRURZBoUFsPyPp8lBlmB2YULmdkFkWJa1L2FZUFWjCGTaXAMIBN43o5PjOe5rosX2Xk0aBm7mDUNSxPsbi2PCxDlXQrAAFYUCU+AQNsNRQCQaXpQEFxxXUNQhXUKUlTiEC3DMqkSmYBQ2BouDKChQaJfgcBiBA2oYUBDpILEyhyDNYCyCR80EZaiArWtuizJmDIaRgB0tvqcVSAZ5pqsZII+O9NQQNewhYdEWAKDh6B4QthHxcRzKFJoS2PYQAEBFhrzlBeY4HbOZTRXUKRecjc4VMYHxpa2mU6T2KPY4mN6YndZO2BTBMXs9CWfqqbmfU81ODnyd35mQhYwMWqGU8zoUvYlb0FdttEhZtaIspgjGoMxgxA+gTCi8Ya5eQEEQlJAea-D9bGovoGZqQy+udutmzG795mK22CBMVALE-UwqYMS7KtuyQJuih0k0LHdRCEPDUAs1Db0c6ZX1MMAcrIEwJvmVherhILZifGHSsIJnrQR158Enhg9OoRnWe+H9Xrp-nVcYETgVhZp7lOT2letKl3U9734us0l7MfXHXNKfaPQgXR5l916TvK6ricUMnt4F1l2uIzPN7W4bdv+79OjsZvaLm2b+4stPwi8RHRIAEIRIguf3qkLQMkyzjyZyilm9dluSag4csgAI7lENjXQIkJdrh1kLnI651UDAJVutCa4oFi52dq6KuUR-6YAmC-DI5kaL9EFEMLBhBKrNDyABYO6kW4YCOHSSA1Br792jgGd6i9l6p3llhBEzxPj0JttQDAvCOq4yUiXVs5pUIiPQmlLCEFrLSlfAGd8No2bkTfDI3WXQZZFS3PLI+wgS7ey7L7FiHDZGGO6nPH2qsPZP1tF1GenFz4GKsXrcIBtbY-T3towxhh3HQSUi4w8bihBXxSLfe+AjGFP0mK-aMLI2Sfy8ipFBWYYk0FUbEMBNFIEdVkJk6gsDzTIJumYIpwjsEkEqbgyhBCZZEMGKMWp+p4kZDKb-JArZojIDQOEWUe1CBkEjg-UIGBem5Jlq2GoMQ8RQBGTwAAZEs-kAxhlQHXLCMZFRekWymkgFgJAlpTInosPasgWCwJOfshYiETpkR7H2BpZyelL36YM8O-FLm4C-tQhkpEULfiOc8+WhCBTNPiPlW5WZhydg6pTU5ECLlwq7LAxFMLX6nlRd2GKoLUQ0TeX01AAz8l-iJDiv56SGQ4vIpTNCLzIRNNTNCn+BzB7HO0Ei3oZLZDmmuVyzFZhJHnieYuRlvQiUfLJd8-lnT2VSO-G+fF48mUQpZVeIVEhaHIDgBMuAzD9KSzYSnB23CJyIBEThPVUA9UiKLuI48IqVTSOwZYzCFqFGfGfDKN8MdB4aJUVoseOizl6LgXnUxdiIBMAgqks+cEnWnkBVgV1CMwFIwtSwEGigHnEHIJDAyKbyJHODWlQqU8bFRr9vYkxrsWIsA3tBBNF9wlYBxKQSJAk77hBQDauAcS8HdMSR-BMwTZjUrMLq-V2TuU7QudO21JSAzyoWIuu11T13kOfvUsFjT1UkK3XUqYq6sw1Bch2CAKw53nWiFeuQ56ahUvKUgGoIB8BMMvSsTWBMb1fofe+4p6gMVspDrQ-ATUZBdqNUwL9pqwFYWzZ8XCKaC0S1g3elY268JaiLtLMNU8wm9zfR+vYmGmB1rMXNZATaj7b28fbPx3UT7-LMHdcStqcCGsLctcjiAuG6izbgHNYMCJoYHl+7DsNtB4aUhWuWTj0pVvrdRlOF7MO0c3vRo2viD6Ka9Cx-gk6kAQeLNRm9vLTOoFgY2rVIhCC4hkI2iV86oEccczZ3Ap6GSSZSDhuGvm2lDpvcykhgWKEnrsy5E5LnzlQIuAKzg3nhWnnLmK-8sWZlzIZSsxkp5enSr2k0vsRIEvJZpG3LK34XJpfFXus5oXRhNNq-+Khxnh4eWylcXKJAWs3tTH1uzfNiDAFxLsaDPG2bvXpt9M1gm7xUCzJ8Eyo2sBkHunkB1qIJGpcq+TGKi2fDutrhaw7Okm6hXCi1pweQo7Vn04E3u-qZtMfk8VXgh9HtndsOvA+2nd4mz049k+HEW1EYiU9bt98VtjcHXckdySv4cVA2ekbY2btTFi7ymHa3YHffK-xtHa2NuF1xrFxr8Rcam1Y9q8K1RUAQBAE5F9zD-Uwc+499K9iOEYaoN+4ydZ6tqoGGT2EnxZAHVkGlWmtCHoTfQ4PabNRZvcy9HyJpovtnQOwVLmml3dnVPlwPZ7yuE5J3g2ldXELNfi6KbrwcMvwpFO4wr-1PP+O-Ut2syINuBLrvt16R3FR10u+Nyaj3qu0RW5F-qLZ4urMB7REHjAVnQ9QzgxHr3GvY-OgEu5nAieAjJ-z1ByH7OM8myz9bnPYuBI47IIX70+vNhE-G2Xybiu3Iq69xDwgIYhJUmHRFhkUkZJvxjMksdKPbq0OPT4LBVRNmxdmTAUgRBF9MDACAWIOS7Nz50uv0ROehe9GzwjPfQW8jTgZ0zte4Ai6xdTGI6fZgnb74ZlUG-zP79dr8nNgITsT+kOf+1O7W6w4Q1wFQEEEc70bOPGCGFqP0ImqG7OsgP0SO-0FqHCyBeaEMCusgHCGBDwFqX6Y4RqcgX6RB3kAuZBPGcgM2VBNEq2lQ8UnUN4KQIUb+l+7cn+jO3+YAbBPckS+md09OfBd+ByghM87+Ey1QR+CM3cm8McD2wgMGKhQgHs6hiAPOWhcGWhFw40ihXocaQ2tCiqXYWA+w2SZ0cay+2WUiS0sa+ojiNOokqQi2P4NoC+oyOA60QsG022SabA2+wwchx2aINEvhqA-hxyIRm+IR8asEra4CvQchdI0AnhqokK3hw0+mMBU2hGWhWE9Ai+26Y4zKYRIa3UhKp4HgdUxych26keR8mIURMREETAWh3UK+EM4U5hqQVhJROCkOXRnO6UcanRYxN4UszRm8fIbRZmPRBa4U7+DRpRuMkxUxWxQgExHO2xaIUsQOPc+gqSL+COcYMgjEOIO+KEh+d2ARNEaRHhb0JAVxpw7IqadxoxAQ+RiuhRWx4BkB26LEHRneLC9ATGhihKzhVRm8Jxph4U-6YC7IBopBnwW+O+SkL6-GgGJAVQfgexwgaJ-G2WVQvOV6psN4NEsg4QCA1m46AQ2Jj6oERGO2wRO+ZGfO4RN4V8sgAAomQO1PsLenznyAAAoADyYpVBoOSRRGmad4tqA0nwTSX6kJRJmGY4qYapsJqqvQSpsJASu4qI2JdAgspQMAAAXjIBmhqXzmOBibELCdSbSfQLIAycINiZnPgLMlAFkpwJYEvAEVSTLAGRBmgLnmgYBo3oHjiR+vprzP-OGYeLXmgQlvppiMybMWrtmEmUGZGWabABadaTGUnlGOabtNaWuAmViO2n6IJOSIPiIAgs8EyF+lyBWHmWgKcXqUgN6b6TQAiRUKhjFvLCibePWmOLIAAFTgAHQkrTnukmldKWoEADlMJhlBm2lbRnKbkRmpkKCllF4TlmI1l7kpla6KxHllmUxywnnMRjiUwHxGm9x8hXznmbGBINnCSHLwLlCtm07Dm4FT7I69mrk+nXCDlnHMimi5j7DHSPBYDhCC4ErTKniOlzSIXIXZnHnVTugkqKZvnAKlAkBwVMBNJNK+G4jYWZAPaYiUUM7UW3APZ8gmi-BkUPwkJUVIXjR2aUaqwpo3qobyDoDPornKZUYpo-pYxCW4EUGiXAa-pDlsCoCUgYDkEIF3hIHNzhTCXoF4xYFJy0G6VyUEFJxUFYTEl3RIlKTjlQDjIyFAIgLrQOkhG2XoA7JlzK5Ph7S8qFkwDFkVCUGflbHhr-qyD+WBVqC0bjnFrRAXE+XhzY4QCwImzqgXKEFm5LwATLnsqlBLAQBAkjlcrJElxsWcrBgiD4RkTxXshx6IB4XIjbkRG4ETLyjshjhLFkqOHN7FVJYpTfGbxxXtVXQ3ghLJEBBXw9WyAACy2+sAZUwpYYHoVV4MfIMpxpIZZyPy1VKE+VPwkB4QS5oFnpK5PqGwfVwZHqd4Toxo3wvwPVw1Fxr2Mst12yjVHoGZtZHaFViU35TZKaCYNZFOaYpQtGL52hK5YhTONpyR8izhIm88Na+8JMQRGFcazVYFNJdJx1g4418pRi3BVWvBt+529+Z+bsmQa4upoakI0NRA1NaUENENXpa5kFG5XZV11EoZnNkZHYWAUA15QgmI4aH2El0ansDlRNOkTliCo1j2jxJNDNbEENN4iZgZ+5WuKQ+V267StgsthsQtGIcCgCd59lUB0t+tf5ctY4QCz5Z5vNqZ+1hVRAomKgRtmIztRVuBDtGtF54uKGuBHtiwNkMoKavtyZBZ+oOtDBX1BhZt4y8dxopUKsgoidpuAuKtEd+ZqZlBX1X62dmt4usdvcmI5tXl+ANZ75nN-ejZIkOALZBoTIRqIFm1tNvQ-Z7Nyl5BxaS0Su70bxNxnxYRacFqRqxlFQ9AalGlWJuILBWSvd2gIU6h5BEuO+B1rtKaag1G4MWouRfci9AZXkq92tO+XlnMTQ29Bhx9dBEV0dZ9jl1thtOFwg9QH8rxLs1xHxshG+4J3A+GkIRqYoWEyAEAAy497wqId05BaUvKFAsChSCDgtA10xvlFyOADeTATgTARwU8FAiAAApIgLg0Yd1Lyu8LAtg8Q3g7nrgyg4OGSk4trmQkcEdPprnGaHtC5LIBQ8NEcog8NDiiQAAAzTCkM3jO5vjyBgPCI42ZDiODgPTQIlJcN1A-IN58O4D7RqDHTIByCsNiP6ZKPwO6P6PRUKNehKOsOmPKPyP6Yh5SNoIGP0M3jSMDKunWYATYn80dRGo3qr0+Pb0E6B27WppI0sTs6H1c0pFID8V+whPgziZQxRNtbeOgzFrhNJNFqtU9WIqOygyZMJNiaRM5NcrSXlAAO9DY1ulihOwZO2LxMyOoEmOIAABMwjAAbDMHU61YU00x3og0wAACyiN6A+MkCgPgPwF6BFNkR9NTP4HwNZBAA

Computing with Register Machines 5.2.1

Exercise 5.7

Use the simulator to test the machines you designed in exercise 5.4.

5.2.1 The Machine Model

The machine model generated by make_machine is represented as a function with local state us-

ing the message-passing techniques developed in chapter 3. To build this model, make_machine

begins by calling the function make_new_machine to construct the parts of the machine model

that are common to all register machines. This basic machine model constructed by make_new_machine

is essentially a container for some registers and a stack, together with an execution mechanism

that processes the controller instructions one by one.

The function make_machine then extends this basic model (by sending it messages) to include

the registers, operations, and controller of the particular machine being de�ned. First it allocates

a register in the new machine for each of the supplied register names and installs the designated

operations in the machine. Then it uses an assembler (described below in section 5.2.2) to

transform the controller list into instructions for the new machine and installs these as the

machine’s instruction sequence. The function make_machine returns as its value the modi�ed

machine model.

Ifunction make_machine(register_names, ops, controller_text) {

const machine = make_new_machine();

for_each(register_name =>

machine("allocate_register")(register_name),

register_names);

machine("install_operations")(ops);

machine("install_instruction_sequence")

(assemble(controller_text, machine));

return machine;

}

Registers

We will represent a register as a function with local state, as in chapter 3. The function

make_register creates a register that holds a value that can be accessed or changed:

Ifunction make_register(name) {

let contents = "*unassigned*";

function dispatch(message) {

return message === "get"

? contents

: message === "set"

546 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwKZQPoCdXJgZylSwAoBbAQwgAsYxUAaRHZDMCs1ASkQG8AoREOboQWJJRp1UJAERpMLAkSyyuJFmw7cA3PwC+-UJFgJEFfPhjIw2XFs4kLVmxjqEsIaPDA8BwkSgxJGpUCgATEigKGAAbJ0trW3coT28ELi49Q2N0pGckjAA3CliQVAxUAA8ABwSXZLAPL1NfPkRBYRwg8URQiKiY+Oi4+sKUtNbMrIMjcDzEWLg4AGsQGowarBgyEnwATzIAIzhYpjga4gpW-D9OoQgEQkQS2MQAXnNLOAg9w5OzogLlcbjMAt1gi9Sh93p9wOFUMBpOF7gFEAB+RDELBwUgHY6nJiyACqYBWYDgAHckMCsNcfIg6F98KhjrFUAAuNSogIcvphSIjeKvTLZOYmBlLVbrDCxChHVDxOUK2L4JjKxUObh8VGPJpQKFvT7OH4kDWxLXq+WK256cGiXqvGFwsAIpH0FFo4SY7G4s3Wi3sThE0lu5GLAOM-KWVlHdlcrg84R8oUkEVi3KtRCUFYVLY7GCwIoVap1UtMSS0ehWlW3HUBGDARAkAgYPWEChgTClkilzL1r2IdsGiAfIdPaJdyq1Yqlcq92pgwcQ3okHjvAB8Q7twn0WNVqEZTZb+FlAenZcXd0H4-1UcI+DHUrWG3N-trNc1pbPKoXNVFSZCCuSBrh8W4pPgO5CHuNqHo2zatkohDEBef79v4g7DswY4KHYeDIaQlbSEwSEqBeeFoUuXrAc265brhepEF2+AaFkHQBDBB4Dl6vqkOWiAkmSFLUlitQ4IkZhQPslxRsysbxmoUGIIYOTzFmOYVLS9IIKh-FEdWEYfkClx0qC3G3s8FxPssL6bNsuxaa05EXGh5wmdpTRURZBoUFsPyPp8lBlmB2YULmdkFkWJa1L2FZUFWjCGTaXAMIBN43o5PjOe5rosX2Xk0aBm7mDUNSxPsbi2PCxDlXQrAAFYUCU+AQNsNRQCQaXpQEFxxXUNQhXUKUlTiEC3DMqkSmYBQ2BouDKChQaJfgcBiBA2oYUBDpILEyhyDNYCyCR80EZaiArWtuizJmDIaRgB0tvqcVSAZ5pqsZII+O9NQQNewhYdEWAKDh6B4QthHxcRzKFJoS2PYQAEBFhrzlBeY4HbOZTRXUKRecjc4VMYHxpa2mU6T2KPY4mN6YndZO2BTBMXs9CWfqqbmfU81ODnyd35mQhYwMWqGU8zoUvYlb0FdttEhZtaIspgjGoMxgxA+gTCi8Ya5eQEEQlJAea-D9bGovoGZqQy+udutmzG795mK22CBMVALE-UwqYMS7KtuyQJuih0k0LHdRCEPDUAs1Db0c6ZX1MMAcrIEwJvmVherhILZifGHSsIJnrQR158Enhg9OoRnWe+H9Xrp-nVcYETgVhZp7lOT2letKl3U9734us0l7MfXHXNKfaPQgXR5l916TvK6ricUMnt4F1l2uIzPN7W4bdv+79OjsZvaLm2b+4stPwi8RHRIAEIRIguf3qkLQMkyzjyZyilm9dluSag4csgAI7lENjXQIkJdrh1kLnI651UDAJVutCa4oFi52dq6KuUR-6YAmC-DI5kaL9EFEMLBhBKrNDyABYO6kW4YCOHSSA1Br792jgGd6i9l6p3llhBEzxPj0JttQDAvCOq4yUiXVs5pUIiPQmlLCEFrLSlfAGd8No2bkTfDI3WXQZZFS3PLI+wgS7ey7L7FiHDZGGO6nPH2qsPZP1tF1GenFz4GKsXrcIBtbY-T3towxhh3HQSUi4w8bihBXxSLfe+AjGFP0mK-aMLI2Sfy8ipFBWYYk0FUbEMBNFIEdVkJk6gsDzTIJumYIpwjsEkEqbgyhBCZZEMGKMWp+p4kZDKb-JArZojIDQOEWUe1CBkEjg-UIGBem5Jlq2GoMQ8RQBGTwAAZEs-kAxhlQHXLCMZFRekWymkgFgJAlpTInosPasgWCwJOfshYiETpkR7H2BpZyelL36YM8O-FLm4C-tQhkpEULfiOc8+WhCBTNPiPlW5WZhydg6pTU5ECLlwq7LAxFMLX6nlRd2GKoLUQ0TeX01AAz8l-iJDiv56SGQ4vIpTNCLzIRNNTNCn+BzB7HO0Ei3oZLZDmmuVyzFZhJHnieYuRlvQiUfLJd8-lnT2VSO-G+fF48mUQpZVeIVEhaHIDgBMuAzD9KSzYSnB23CJyIBEThPVUA9UiKLuI48IqVTSOwZYzCFqFGfGfDKN8MdB4aJUVoseOizl6LgXnUxdiIBMAgqks+cEnWnkBVgV1CMwFIwtSwEGigHnEHIJDAyKbyJHODWlQqU8bFRr9vYkxrsWIsA3tBBNF9wlYBxKQSJAk77hBQDauAcS8HdMSR-BMwTZjUrMLq-V2TuU7QudO21JSAzyoWIuu11T13kOfvUsFjT1UkK3XUqYq6sw1Bch2CAKw53nWiFeuQ56ahUvKUgGoIB8BMMvSsTWBMb1fofe+4p6gMVspDrQ-ATUZBdqNUwL9pqwFYWzZ8XCKaC0S1g3elY268JaiLtLMNU8wm9zfR+vYmGmB1rMXNZATaj7b28fbPx3UT7-LMHdcStqcCGsLctcjiAuG6izbgHNYMCJoYHl+7DsNtB4aUhWuWTj0pVvrdRlOF7MO0c3vRo2viD6Ka9Cx-gk6kAQeLNRm9vLTOoFgY2rVIhCC4hkI2iV86oEccczZ3Ap6GSSZSDhuGvm2lDpvcykhgWKEnrsy5E5LnzlQIuAKzg3nhWnnLmK-8sWZlzIZSsxkp5enSr2k0vsRIEvJZpG3LK34XJpfFXus5oXRhNNq-+Khxnh4eWylcXKJAWs3tTH1uzfNiDAFxLsaDPG2bvXpt9M1gm7xUCzJ8Eyo2sBkHunkB1qIJGpcq+TGKi2fDutrhaw7Okm6hXCi1pweQo7Vn04E3u-qZtMfk8VXgh9HtndsOvA+2nd4mz049k+HEW1EYiU9bt98VtjcHXckdySv4cVA2ekbY2btTFi7ymHa3YHffK-xtHa2NuF1xrFxr8Rcam1Y9q8K1RUAQBAE5F9zD-Uwc+499K9iOEYaoN+4ydZ6tqoGGT2EnxZAHVkGlWmtCHoTfQ4PabNRZvcy9HyJpovtnQOwVLmml3dnVPlwPZ7yuE5J3g2ldXELNfi6KbrwcMvwpFO4wr-1PP+O-Ut2syINuBLrvt16R3FR10u+Nyaj3qu0RW5F-qLZ4urMB7REHjAVnQ9QzgxHr3GvY-OgEu5nAieAjJ-z1ByH7OM8myz9bnPYuBI47IIX70+vNhE-G2Xybiu3Iq69xDwgIYhJUmHRFhkUkZJvxjMksdKPbq0OPT4LBVRNmxdmTAUgRBF9MDACAWIOS7Nz50uv0ROehe9GzwjPfQW8jTgZ0zte4Ai6xdTGI6fZgnb74ZlUG-zP79dr8nNgITsT+kOf+1O7W6w4Q1wFQEEEc70bOPGCGFqP0ImqG7OsgP0SO-0FqHCyBeaEMCusgHCGBDwFqX6Y4RqcgX6RB3kAuZBPGcgM2VBNEq2lQ8UnUN4KQIUb+l+7cn+jO3+YAbBPckS+md09OfBd+ByghM87+Ey1QR+CM3cm8McD2wgMGKhQgHs6hiAPOWhcGWhFw40ihXocaQ2tCiqXYWA+w2SZ0cay+2WUiS0sa+ojiNOokqQi2P4NoC+oyOA60QsG022SabA2+wwchx2aINEvhqA-hxyIRm+IR8asEra4CvQchdI0AnhqokK3hw0+mMBU2hGWhWE9Ai+26Y4zKYRIa3UhKp4HgdUxych26keR8mIURMREETAWh3UK+EM4U5hqQVhJROCkOXRnO6UcanRYxN4UszRm8fIbRZmPRBa4U7+DRpRuMkxUxWxQgExHO2xaIUsQOPc+gqSL+COcYMgjEOIO+KEh+d2ARNEaRHhb0JAVxpw7IqadxoxAQ+RiuhRWx4BkB26LEHRneLC9ATGhihKzhVRm8Jxph4U-6YC7IBopBnwW+O+SkL6-GgGJAVQfgexwgaJ-G2WVQvOV6psN4NEsg4QCA1m46AQ2Jj6oERGO2wRO+ZGfO4RN4V8sgAAomQO1PsLenznyAAAoADyYpVBoOSRRGmad4tqA0nwTSX6kJRJmGY4qYapsJqqvQSpsJASu4qI2JdAgspQMAAAXjIBmhqXzmOBibELCdSbSfQLIAycINiZnPgLMlAFkpwJYEvAEVSTLAGRBmgLnmgYBo3oHjiR+vprzP-OGYeLXmgQlvppiMybMWrtmEmUGZGWabABadaTGUnlGOabtNaWuAmViO2n6IJOSIPiIAgs8EyF+lyBWHmWgKcXqUgN6b6TQAiRUKhjFvLCibePWmOLIAAFTgAHQkrTnukmldKWoEADlMJhlBm2lbRnKbkRmpkKCllF4TlmI1l7kpla6KxHllmUxywnnMRjiUwHxGm9x8hXznmbGBINnCSHLwLlCtm07Dm4FT7I69mrk+nXCDlnHMimi5j7DHSPBYDhCC4ErTKniOlzSIXIXZnHnVTugkqKZvnAKlAkBwVMBNJNK+G4jYWZAPaYiUUM7UW3APZ8gmi-BkUPwkJUVIXjR2aUaqwpo3qobyDoDPornKZUYpo-pYxCW4EUGiXAa-pDlsCoCUgYDkEIF3hIHNzhTCXoF4xYFJy0G6VyUEFJxUFYTEl3RIlKTjlQDjIyFAIgLrQOkhG2XoA7JlzK5Ph7S8qFkwDFkVCUGflbHhr-qyD+WBVqC0bjnFrRAXE+XhzY4QCwImzqgXKEFm5LwATLnsqlBLAQBAkjlcrJElxsWcrBgiD4RkTxXshx6IB4XIjbkRG4ETLyjshjhLFkqOHN7FVJYpTfGbxxXtVXQ3ghLJEBBXw9WyAACy2+sAZUwpYYHoVV4MfIMpxpIZZyPy1VKE+VPwkB4QS5oFnpK5PqGwfVwZHqd4Toxo3wvwPVw1Fxr2Mst12yjVHoGZtZHaFViU35TZKaCYNZFOaYpQtGL52hK5YhTONpyR8izhIm88Na+8JMQRGFcazVYFNJdJx1g4418pRi3BVWvBt+529+Z+bsmQa4upoakI0NRA1NaUENENXpa5kFG5XZV11EoZnNkZHYWAUA15QgmI4aH2El0ansDlRNOkTliCo1j2jxJNDNbEENN4iZgZ+5WuKQ+V267StgsthsQtGIcCgCd59lUB0t+tf5ctY4QCz5Z5vNqZ+1hVRAomKgRtmIztRVuBDtGtF54uKGuBHtiwNkMoKavtyZBZ+oOtDBX1BhZt4y8dxopUKsgoidpuAuKtEd+ZqZlBX1X62dmt4usdvcmI5tXl+ANZ75nN-ejZIkOALZBoTIRqIFm1tNvQ-Z7Ndm-NHURqN65BsgPdagjNrhgdu1qaSNLE7Oxao5qFZy-FfsY94M4mUMM9XKBOTsxak9K9RarVPViKjsoM29S9Ym09e9XK0l5Q+GkI2Nbpyl5Ba9AZXeTAbxNxnxYRacFqRqxlFQ9AalGlWJuILBWSj9KZW46hA9XtrtKaw9oDuRfcoDjiAQA92tO+XlnMTQw9BhXkKD0daDjl1thtOFwg9QH8rxLs1xHxshG+4J3A19vQRqYo-AWEyAEAAy397wqId05BaUvKFAsChSAjgtA10xvlFyOADeTATgTARwU8FAiAAApIgLI0Yd1Lyu8LAtI8o3I7nrIyI4OGSk4trmQkcEdPprnGaHtC5LIBo8NEcoI8NDiiQAAAzTCqM3jO5vjyBsPCI42ZDuODgPTQIlJWN1A-IN52O4D7RqDHTIByCmNuP6ZBP8OxPxPRUBNehBOmOpPBP+P6Yh5eNoIJP6M3jeMDKunWYASb2tXH0+OoEpOIAABMzjAAbDMNU+Pegipqw+wx3oI0wAACyuN6A90kA9PqXwF6An1kS1O9P4H8NZBAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwKZQPoCdXJgZylSwAoBbAQwgAsYxUAaRHZDMCs1ASkQG8AoREOboQWJJRp1UJAERpMLAkSyyuJFmw7cA3PwC+-UJFgJEFfPhjIw2XFs4kLVmxjqEsIaPDA8BwkSgxJGpUCgATEigKGAAbJ0trW3coT28ELi49Q2N0pGckjAA3CliQVAxUAA8ABwSXZLAPL1NfPkRBYRwg8URQiKiY+Oi4+sKUtNbMrIMjcDzEWLg4AGsQGowarBgyEnwATzIAIzhYpjga4gpW-D9OoQgEQkQS2MQAXnNLOAg9w5OzogLlcbjMAt1gi9Sh93p9wOFUMBpOF7gFEAB+RDELBwUgHY6nJiyACqYBWYDgAHckMCsNcfIg6F98KhjrFUAAuNSogIcvphSIjeKvTLZOYmBlLVbrDCxChHVDxOUK2L4JjKxUObh8VGPJpQKFvT7OH4kDWxLXq+WK256cGiXqvGFwsAIpH0FFo4SY7G4s3Wi3sThE0lu5GLAOM-KWVlHdlcrg84R8oUkEVi3KtRCUFYVLY7GCwIoVap1UtMSS0ehWlW3HUBGDARAkAgYPWEChgTClkilzL1r2IdsGiAfIdPaJdyq1Yqlcq92pgwcQ3okHjvAB8Q7twn0WNVqEZTZb+FlAenZcXd0H4-1UcI+DHUrWG3N-trNc1pbPKoXNVFSZCCuSBrh8W4pPgO5CHuNqHo2zatkohDEBef79v4g7DswY4KHYeDIaQlbSEwSEqBeeFoUuXrAc265brhepEF2+AaFkHQBDBB4Dl6vqkOWiAkmSFLUlitQ4IkZhQPslxRsysbxmoUGIIYOTzFmOYVLS9IIKh-FEdWEYfkClx0qC3G3s8FxPssL6bNsuxaa05EXGh5wmdpTRURZBoUFsPyPp8lBlmB2YULmdkFkWJa1L2FZUFWjCGTaXAMIBN43o5PjOe5rosX2Xk0aBm7mDUNSxPsbi2PCxDlXQrAAFYUCU+AQNsNRQCQaXpQEFxxXUNQhXUKUlTiEC3DMqkSmYBQ2BouDKChQaJfgcBiBA2oYUBDpILEyhyDNYCyCR80EZaiArWtuizJmDIaRgB0tvqcVSAZ5pqsZII+O9NQQNewhYdEWAKDh6B4QthHxcRzKFJoS2PYQAEBFhrzlBeY4HbOZTRXUKRecjc4VMYHxpa2mU6T2KPY4mN6YndZO2BTBMXs9CWfqqbmfU81ODnyd35mQhYwMWqGU8zoUvYlb0FdttEhZtaIspgjGoMxgxA+gTCi8Ya5eQEEQlJAea-D9bGovoGZqQy+udutmzG795mK22CBMVALE-UwqYMS7KtuyQJuih0k0LHdRCEPDUAs1Db0c6ZX1MMAcrIEwJvmVherhILZifGHSsIJnrQR158Enhg9OoRnWe+H9Xrp-nVcYETgVhZp7lOT2letKl3U9734us0l7MfXHXNKfaPQgXR5l916TvK6ricUMnt4F1l2uIzPN7W4bdv+79OjsZvaLm2b+4stPwi8RHRIAEIRIguf3qkLQMkyzjyZyilm9dluSag4csgAI7lENjXQIkJdrh1kLnI651UDAJVutCa4oFi52dq6KuUR-6YAmC-DI5kaL9EFEMLBhBKrNDyABYO6kW4YCOHSSA1Br792jgGd6i9l6p3llhBEzxPj0JttQDAvCOq4yUiXVs5pUIiPQmlLCEFrLSlfAGd8No2bkTfDI3WXQZZFS3PLI+wgS7ey7L7FiHDZGGO6nPH2qsPZP1tF1GenFz4GKsXrcIBtbY-T3towxhh3HQSUi4w8bihBXxSLfe+AjGFP0mK-aMLI2Sfy8ipFBWYYk0FUbEMBNFIEdVkJk6gsDzTIJumYIpwjsEkEqbgyhBCZZEMGKMWp+p4kZDKb-JArZojIDQOEWUe1CBkEjg-UIGBem5Jlq2GoMQ8RQBGTwAAZEs-kAxhlQHXLCMZFRekWymkgFgJAlpTInosPasgWCwJOfshYiETpkR7H2BpZyelL36YM8O-FLm4C-tQhkpEULfiOc8+WhCBTNPiPlW5WZhydg6pTU5ECLlwq7LAxFMLX6nlRd2GKoLUQ0TeX01AAz8l-iJDiv56SGQ4vIpTNCLzIRNNTNCn+BzB7HO0Ei3oZLZDmmuVyzFZhJHnieYuRlvQiUfLJd8-lnT2VSO-G+fF48mUQpZVeIVEhaHIDgBMuAzD9KSzYSnB23CJyIBEThPVUA9UiKLuI48IqVTSOwZYzCFqFGfGfDKN8MdB4aJUVoseOizl6LgXnUxdiIBMAgqks+cEnWnkBVgV1CMwFIwtSwEGigHnEHIJDAyKbyJHODWlQqU8bFRr9vYkxrsWIsA3tBBNF9wlYBxKQSJAk77hBQDauAcS8HdMSR-BMwTZjUrMLq-V2TuU7QudO21JSAzyoWIuu11T13kOfvUsFjT1UkK3XUqYq6sw1Bch2CAKw53nWiFeuQ56ahUvKUgGoIB8BMMvSsTWBMb1fofe+4p6gMVspDrQ-ATUZBdqNUwL9pqwFYWzZ8XCKaC0S1g3elY268JaiLtLMNU8wm9zfR+vYmGmB1rMXNZATaj7b28fbPx3UT7-LMHdcStqcCGsLctcjiAuG6izbgHNYMCJoYHl+7DsNtB4aUhWuWTj0pVvrdRlOF7MO0c3vRo2viD6Ka9Cx-gk6kAQeLNRm9vLTOoFgY2rVIhCC4hkI2iV86oEccczZ3Ap6GSSZSDhuGvm2lDpvcykhgWKEnrsy5E5LnzlQIuAKzg3nhWnnLmK-8sWZlzIZSsxkp5enSr2k0vsRIEvJZpG3LK34XJpfFXus5oXRhNNq-+Khxnh4eWylcXKJAWs3tTH1uzfNiDAFxLsaDPG2bvXpt9M1gm7xUCzJ8Eyo2sBkHunkB1qIJGpcq+TGKi2fDutrhaw7Okm6hXCi1pweQo7Vn04E3u-qZtMfk8VXgh9HtndsOvA+2nd4mz049k+HEW1EYiU9bt98VtjcHXckdySv4cVA2ekbY2btTFi7ymHa3YHffK-xtHa2NuF1xrFxr8Rcam1Y9q8K1RUAQBAE5F9zD-Uwc+499K9iOEYaoN+4ydZ6tqoGGT2EnxZAHVkGlWmtCHoTfQ4PabNRZvcy9HyJpovtnQOwVLmml3dnVPlwPZ7yuE5J3g2ldXELNfi6KbrwcMvwpFO4wr-1PP+O-Ut2syINuBLrvt16R3FR10u+Nyaj3qu0RW5F-qLZ4urMB7REHjAVnQ9QzgxHr3GvY-OgEu5nAieAjJ-z1ByH7OM8myz9bnPYuBI47IIX70+vNhE-G2Xybiu3Iq69xDwgIYhJUmHRFhkUkZJvxjMksdKPbq0OPT4LBVRNmxdmTAUgRBF9MDACAWIOS7Nz50uv0ROehe9GzwjPfQW8jTgZ0zte4Ai6xdTGI6fZgnb74ZlUG-zP79dr8nNgITsT+kOf+1O7W6w4Q1wFQEEEc70bOPGCGFqP0ImqG7OsgP0SO-0FqHCyBeaEMCusgHCGBDwFqX6Y4RqcgX6RB3kAuZBPGcgM2VBNEq2lQ8UnUN4KQIUb+l+7cn+jO3+YAbBPckS+md09OfBd+ByghM87+Ey1QR+CM3cm8McD2wgMGKhQgHs6hiAPOWhcGWhFw40ihXocaQ2tCiqXYWA+w2SZ0cay+2WUiS0sa+ojiNOokqQi2P4NoC+oyOA60QsG022SabA2+wwchx2aINEvhqA-hxyIRm+IR8asEra4CvQchdI0AnhqokK3hw0+mMBU2hGWhWE9Ai+26Y4zKYRIa3UhKp4HgdUxych26keR8mIURMREETAWh3UK+EM4U5hqQVhJROCkOXRnO6UcanRYxN4UszRm8fIbRZmPRBa4U7+DRpRuMkxUxWxQgExHO2xaIUsQOPc+gqSL+COcYMgjEOIO+KEh+d2ARNEaRHhb0JAVxpw7IqadxoxAQ+RiuhRWx4BkB26LEHRneLC9ATGhihKzhVRm8Jxph4U-6YC7IBopBnwW+O+SkL6-GgGJAVQfgexwgaJ-G2WVQvOV6psN4NEsg4QCA1m46AQ2Jj6oERGO2wRO+ZGfO4RN4V8sgAAomQO1PsLenznyAAAoADyYpVBoOSRRGmad4tqA0nwTSX6kJRJmGY4qYapsJqqvQSpsJASu4qI2JdAgspQMAAAXjIBmhqXzmOBibELCdSbSfQLIAycINiZnPgLMlAFkpwJYEvAEVSTLAGRBmgLnmgYBo3oHjiR+vprzP-OGYeLXmgQlvppiMybMWrtmEmUGZGWabABadaTGUnlGOabtNaWuAmViO2n6IJOSIPiIAgs8EyF+lyBWHmWgKcXqUgN6b6TQHZiaL8LmPsMdI8FgOEILgStMqeI6XNBOVOdmUXogNVO6CSopnyPAiAKUCQKOUwE0k0r4biEuZkA9piEeQziebcA9nyMOXuagGOQ-CQseZOeNHZpRqrCmjeqhvIOgM+l0hGugipimj+ljD+bgRQf+cBr+giRUPQJSBgOQQgXeEgc3OFL+egXjFgUnLQRhZBQQUnFQVhMSXdEiUpCiTstuu0rYEAiAutA6SERRegFRQYU+HtLyoWTAMWRUJQZsdseGv+rIFxTxWoLRpRcWtEBcexeHNjhALAibOqBcoQWbkvABCaYBaUEsBAECahjFqycePeY4SIPhGRFJeyHHqua6IiMiLadRLgRMvKOyGOEsWSsZexpBScilN8ZvJJU5VdDeCEskQEFfMZbIAALLb6wBlTClhgegmXgx8gynGkhlnI-KmUoRaU-CQHhDunfyMmAU+obB6VcrJH4xGjMimjGV+UXGvYyxOi15rnIgZm1kdqcrBgCSkiNkiQpoJg1kU5pilC0ZGlCDYliFM42llWerOEibzw1r7wkxBHzlxp2UREyw0l0l5WBVg76YyHjX8EkBn5uyZBri6mhqQj7U2mGn5WemAX9nXD+ldnBnLihlPWRkdhYBQClkrnhofbKZUb2JQDjIyF0WIIBWPaPG8ETWnXKQ1lhn5mpkpBaXUVDop7blg3fVN5AJyxUUg3o2GxjhAIHwjXpSJmBkRmplZU6VECiYqCY1CCYhU26W4Fw1vWpkoa4H00YiLA2Qygpqs3k0pla5I075lx7ZNBc2YhsXvasXK7oylQqyCjjIGFd5sQk03hk3JnvWYaS0ilXoC1a2pkMEtVA2tz4A1lXzw1oD97dWHLo2tnaoSxT7I69mWoEADnUBwVIV0HFpLRK7vRvE3GfFhFpwWpGp4XwWoCIXIVYm4gsFZK+3aAhTqHkES477ZU00ppqDUbgxai5F9yJ0BleSp0i0WgMHqAGHF10HCX6jI140IKGzcg9z1AfyvEuzXEfGyEb7gncD4aQhGp2YfUdRGo3qp1D3Z0E4c0ZWppzUsTs6F3PVbRnKfl+xT3gziZQwL1tbYlOzFqz0b1FoOXGWIqOygz71r1ibz1H1cpgXlB929AbVule0lVJbmSUWz1jiyAABU4AB0JKX9W1t17K91fpTCVti9a1Zy4DkZCguts9BtCNWuisXNDNho5QONH9nwlMxNKhW5dZhET1-F7iDZwkdtLZBoTIHl09ztKV51vQIDg5E6WEyAEAAy4d7wqId05BaUvKFAsChS-DX13l0xHFFyOADeTATgTARwU8FAiAAApIgDI0Yd1Lyu8LAlI0o7I7njI8I4OGSk4trmQkcEdPprnGaHtC5LIOo8NEcgI8NDiiQAAAzTAqM3jO5vjyCsPCKbWZBuODgPTQIlKWN1A-IN62O4D7RqDHTIByAmOuP6aBN8MxNxNiX+NeiBMmMpNBN+P6Yh6eNoLxN6M3heMDKunWYAS70OXn3eOoHJOIAABMTjAAbDMFU9PcBVRiw2wx3gI0wAACwuN6BD0kDdPe0SwzAX1kQ1M9P4F8NZBAA

Computing with Register Machines 5.2.1

? value => { contents = value; }

: error(message,

"Unknown request in make_register:");

}

return dispatch;

}

The following functions are used to access registers:

Ifunction get_contents(register) {

return register("get");

}

function set_contents(register, value) {

return register("set")(value);

}

The stack

We can also represent a stack as a function with local state. The function make_stack creates

a stack whose local state consists of a list of the items on the stack. A stack accepts requests to

push an item onto the stack, to pop the top item o� the stack and return it, and to initialize

the stack to empty.

Ifunction make_stack() {

let stack = null;

function push(x) {

stack = pair(x, stack);

return "done";

}

function pop() {

if (is_null(stack)) {

error("Empty stack: POP");

} else {

const top = head(stack);

stack = tail(stack);

return top;

}

}

function initialize() {

stack = null;

return "done";

}

function dispatch(message) {

return message === "push"

? push

: message === "pop"

? pop()

547 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwKZQPoCdXJgZylSwAoBbAQwgAsYxUAaRHZDMCs1ASkQG8AoREOboQWJJRp1UJAERpMLAkSyyuJFmw7cA3PwC+-UJFgJEFfPhjIw2XFs4kLVmxjqEsIaPDA8BwkSgxJGpUCgATEigKGAAbJ0trW3coT28ELi49Q2N0pGckjAA3CliQVAxUAA8ABwSXZLAPL1NfPkRBYRwg8URQiKiY+Oi4+sKUtNbMrIMjcDzEWLg4AGsQGowarBgyEnwATzIAIzhYpjga4gpW-D9OoQgEQkQS2MQAXnNLOAg9w5OzogLlcbjMAt1gi9Sh93p9wOFUMBpOF7gFEAB+RDELBwUgHY6nJiyACqYBWYDgAHckMCsNcfIg6F98KhjrFUAAuNSogIcvphSIjeKvTLZOYmBlLVbrDCxChHVDxOUK2L4JjKxUObh8VGPJpQKFvT7OH4kDWxLXq+WK256cGiXqvGFwsAIpH0FFo4SY7G4s3Wi3sThE0lu5GLAOM-KWVlHdlcrg84R8oUkEVi3KtRCUFYVLY7GCwIoVap1UtMSS0ehWlW3HUBGDARAkAgYPWEChgTClkilzL1r2IdsGiAfIdPaJdyq1Yqlcq92pgwcQ3okHjvAB8Q7twn0WNVqEZTZb+FlAenZcXd0H4-1UcI+DHUrWG3N-trNc1pbPKoXNVFSZCCuSBrh8W4pPgO5CHuNqHo2zatkohDEBef79v4g7DswY4KHYeDIaQlbSEwSEqBeeFoUuXrAc265brhepEF2+AaFkHQBDBB4Dl6vqkOWiAkmSFLUlitQ4IkZhQPslxRsysbxmoUGIIYOTzFmOYVLS9IIKh-FEdWEYfkClx0qC3G3s8FxPssL6bNsuxaa05EXGh5wmdpTRURZBoUFsPyPp8lBlmB2YULmdkFkWJa1L2FZUFWjCGTaXAMIBN43o5PjOe5rosX2Xk0aBm7mDUNSxPsbi2PCxDlXQrAAFYUCU+AQNsNRQCQaXpQEFxxXUNQhXUKUlTiEC3DMqkSmYBQ2BouDKChQaJfgcBiBA2oYUBDpILEyhyDNYCyCR80EZaiArWtuizJmDIaRgB0tvqcVSAZ5pqsZII+O9NQQNewhYdEWAKDh6B4QthHxcRzKFJoS2PYQAEBFhrzlBeY4HbOZTRXUKRecjc4VMYHxpa2mU6T2KPY4mN6YndZO2BTBMXs9CWfqqbmfU81ODnyd35mQhYwMWqGU8zoUvYlb0FdttEhZtaIspgjGoMxgxA+gTCi8Ya5eQEEQlJAea-D9bGovoGZqQy+udutmzG795mK22CBMVALE-UwqYMS7KtuyQJuih0k0LHdRCEPDUAs1Db0c6ZX1MMAcrIEwJvmVherhILZifGHSsIJnrQR158Enhg9OoRnWe+H9Xrp-nVcYETgVhZp7lOT2letKl3U9734us0l7MfXHXNKfaPQgXR5l916TvK6ricUMnt4F1l2uIzPN7W4bdv+79OjsZvaLm2b+4stPwi8RHRIAEIRIguf3qkLQMkyzjyZyilm9dluSag4csgAI7lENjXQIkJdrh1kLnI651UDAJVutCa4oFi52dq6KuUR-6YAmC-DI5kaL9EFEMLBhBKrNDyABYO6kW4YCOHSSA1Br792jgGd6i9l6p3llhBEzxPj0JttQDAvCOq4yUiXVs5pUIiPQmlLCEFrLSlfAGd8No2bkTfDI3WXQZZFS3PLI+wgS7ey7L7FiHDZGGO6nPH2qsPZP1tF1GenFz4GKsXrcIBtbY-T3towxhh3HQSUi4w8bihBXxSLfe+AjGFP0mK-aMLI2Sfy8ipFBWYYk0FUbEMBNFIEdVkJk6gsDzTIJumYIpwjsEkEqbgyhBCZZEMGKMWp+p4kZDKb-JArZojIDQOEWUe1CBkEjg-UIGBem5Jlq2GoMQ8RQBGTwAAZEs-kAxhlQHXLCMZFRekWymkgFgJAlpTInosPasgWCwJOfshYiETpkR7H2BpZyelL36YM8O-FLm4C-tQhkpEULfiOc8+WhCBTNPiPlW5WZhydg6pTU5ECLlwq7LAxFMLX6nlRd2GKoLUQ0TeX01AAz8l-iJDiv56SGQ4vIpTNCLzIRNNTNCn+BzB7HO0Ei3oZLZDmmuVyzFZhJHnieYuRlvQiUfLJd8-lnT2VSO-G+fF48mUQpZVeIVEhaHIDgBMuAzD9KSzYSnB23CJyIBEThPVUA9UiKLuI48IqVTSOwZYzCFqFGfGfDKN8MdB4aJUVoseOizl6LgXnUxdiIBMAgqks+cEnWnkBVgV1CMwFIwtSwEGigHnEHIJDAyKbyJHODWlQqU8bFRr9vYkxrsWIsA3tBBNF9wlYBxKQSJAk77hBQDauAcS8HdMSR-BMwTZjUrMLq-V2TuU7QudO21JSAzyoWIuu11T13kOfvUsFjT1UkK3XUqYq6sw1Bch2CAKw53nWiFeuQ56ahUvKUgGoIB8BMMvSsTWBMb1fofe+4p6gMVspDrQ-ATUZBdqNUwL9pqwFYWzZ8XCKaC0S1g3elY268JaiLtLMNU8wm9zfR+vYmGmB1rMXNZATaj7b28fbPx3UT7-LMHdcStqcCGsLctcjiAuG6izbgHNYMCJoYHl+7DsNtB4aUhWuWTj0pVvrdRlOF7MO0c3vRo2viD6Ka9Cx-gk6kAQeLNRm9vLTOoFgY2rVIhCC4hkI2iV86oEccczZ3Ap6GSSZSDhuGvm2lDpvcykhgWKEnrsy5E5LnzlQIuAKzg3nhWnnLmK-8sWZlzIZSsxkp5enSr2k0vsRIEvJZpG3LK34XJpfFXus5oXRhNNq-+Khxnh4eWylcXKJAWs3tTH1uzfNiDAFxLsaDPG2bvXpt9M1gm7xUCzJ8Eyo2sBkHunkB1qIJGpcq+TGKi2fDutrhaw7Okm6hXCi1pweQo7Vn04E3u-qZtMfk8VXgh9HtndsOvA+2nd4mz049k+HEW1EYiU9bt98VtjcHXckdySv4cVA2ekbY2btTFi7ymHa3YHffK-xtHa2NuF1xrFxr8Rcam1Y9q8K1RUAQBAE5F9zD-Uwc+499K9iOEYaoN+4ydZ6tqoGGT2EnxZAHVkGlWmtCHoTfQ4PabNRZvcy9HyJpovtnQOwVLmml3dnVPlwPZ7yuE5J3g2ldXELNfi6KbrwcMvwpFO4wr-1PP+O-Ut2syINuBLrvt16R3FR10u+Nyaj3qu0RW5F-qLZ4urMB7REHjAVnQ9QzgxHr3GvY-OgEu5nAieAjJ-z1ByH7OM8myz9bnPYuBI47IIX70+vNhE-G2Xybiu3Iq69xDwgIYhJUmHRFhkUkZJvxjMksdKPbq0OPT4LBVRNmxdmTAUgRBF9MDACAWIOS7Nz50uv0ROehe9GzwjPfQW8jTgZ0zte4Ai6xdTGI6fZgnb74ZlUG-zP79dr8nNgITsT+kOf+1O7W6w4Q1wFQEEEc70bOPGCGFqP0ImqG7OsgP0SO-0FqHCyBeaEMCusgHCGBDwFqX6Y4RqcgX6RB3kAuZBPGcgM2VBNEq2lQ8UnUN4KQIUb+l+7cn+jO3+YAbBPckS+md09OfBd+ByghM87+Ey1QR+CM3cm8McD2wgMGKhQgHs6hiAPOWhcGWhFw40ihXocaQ2tCiqXYWA+w2SZ0cay+2WUiS0sa+ojiNOokqQi2P4NoC+oyOA60QsG022SabA2+wwchx2aINEvhqA-hxyIRm+IR8asEra4CvQchdI0AnhqokK3hw0+mMBU2hGWhWE9Ai+26Y4zKYRIa3UhKp4HgdUxych26keR8mIURMREETAWh3UK+EM4U5hqQVhJROCkOXRnO6UcanRYxN4UszRm8fIbRZmPRBa4U7+DRpRuMkxUxWxQgExHO2xaIUsQOPc+gqSL+COcYMgjEOIO+KEh+d2ARNEaRHhb0JAVxpw7IqadxoxAQ+RiuhRWx4BkB26LEHRneLC9ATGhihKzhVRm8Jxph4U-6YC7IBopBnwW+O+SkL6-GgGJAVQfgexwgaJ-G2WVQvOV6psN4NEsg4QCA1m46AQ2Jj6oERGO2wRO+ZGfO4RN4V8sgAAomQO1PsLenznyAAAoADyYpVBoOSRRGmad4tqA0nwTSX6kJRJmGY4qYapsJqqvQSpsJASu4qI2JdAgspQMAAAXjIBmhqXzmOBibELCdSbSfQLIAycINiZnPgLMlAFkpwJYEvAEVSTLAGRBmgLnmgYBo3oHjiR+vprzP-OGYeLXmgQlvppiMybMWrtmEmUGZGWabABadaTGUnlGOabtNaWuAmViO2n6IJOSIPiIAgs8EyF+lyBWHmWgKcXqUgN6b6TQAiRUKhjFvLCibePWmOLIAAFTgAHQkrTnukmldKWoEADlMJhlBm2lbRnKbkRmpkKCllF4TlmI1l7kpla6KxHllmUxywnnMRjiUwHxGm9x8hXznmbGBINnCSHLwLlCtm07Dm4FT7I69mrk+nXCDlnHMimi5j7DHSPBYDhCC4ErTKniOlzSIXIXZnHnVTugkqKZvnAKlAkBwVMBNJNK+G4jYWZAPaYiUUM7UW3APZ8gmi-BkUPwkJUVIXjRDlsCoCUgYDkEIF3hIHNzhSoZoEQBUFYTYHiVAX4QqByCEF4wkGanyUp6YZrhKTjlQDjIyFAIgLrQOkhE6XoA7JlzK5Ph7S8qFkwDFkVCUGflbHhr-qyB2UOVqC0bjnFrRAXHWXhzY7SXwbqgXKEFm5LwATLnsqlBLAQBAkjlcrJElxsWcrBgiCKW3Hyjshx6IB4XIjbkRG4ETLZUpkkmr5mh7SOHN6JVJYpTfGby+WlVMYhLJEBBXzVWyAACy2+sAZUwpYYHoGV4MfIMpxpIZZyPymVqasVPwkB4QS5oFnpK5PqGwtVwZHqd4Toxo3wvw1VTVFxr2Ms212y+VHoGZtZHaaViU35TZKaCYNZFOaYpQtGL52hK5YhTONpyR8izhIm88Na+8JMQRGFcahVYFNJdJi1g4rV8pRi3BVWvBt+529+Z+bsmQ2l+mjxSNRAmNN4b1b1Xpa5kFG5XZG11EoZZNkZHYWAUA15QgmI4aH2ymVG9ielUBCNOkhliCV0nO2NX+Npz5Z5VNqZKQsV267Stg3Nhs9NGIcCgCd57NEtQ6Kef5PNY4QCQtr5uZgZ+5Wus18VRAomKgstmIBtCVuBwtutF54uKGuBptiwNkMoKaVtyZBZ+o4tDBF1Bhit4yPtxopUKsgoftpuAubEb1N4iZ1t1NmGDtX6rt+ZqZXtvcmIStBhNZ75ZN-ejZIkOALZBoTIRqIF41oakI-ZJNfF5BxaS0Su70bxNxnxYRacFqRqtB4U9AglwlWJuILBWS1d2gIU6h5BEuO+c1RtKaag1G4MWouRfc-dAZXkw9YtO+llnMTQk9Bhi9dB7lHtK9BlatMtOFwg9QH8rxLs1xHxshG+4J3A+GkIRqdmNNHURqN6w9T9k9BOdt016CKm7O895NKRSAlGqsX94M4mUM-9bW2JTsxaANLEf9xV1ViKjsoMcDJAoDYmCD39JyP6WMd9vQkNbpdmwDfsKaN6klh5BOLNqsKauD5Q5DuBFB6Ak9IGhg-AWEyAEAAyrd7wqId05BaUvKFAsChSIjdN9V0xNlFyOADeTATgTARwU8FAiAAApIgIo0Yd1Lyu8LAvI+o0o7nooxI4OGSk4trmQkcEdPprnJVeHC5LIDo8NEcqI8NDiiQAAAzTCaM3jO5vjyBcPCJQ2ZDeODgPTQIlJ7T2MyNqDHTID7QxMZVyCWNeP6ZhPCOxNJNeUhNehhOWMZPhPBP6Yh5+NoLJPGM3j+MDKunWYAQwPFVoOcPcMd4S6wIABM7jAAbDMHU9-Q0wE6gXk4gAACyeN6BP3oP9PwF6AYNkR9NNP4HCNZBAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwKZQPoCdXJgZylSwAoBbAQwgAsYxUAaRHZDMCs1ASkQG8AoREOboQWJJRp1UJAERpMLAkSyyuJFmw7cA3PwC+-UJFgJEFfPhjIw2XFs4kLVmxjqEsIaPDA8BwkSgxJGpUCgATEigKGAAbJ0trW3coT28ELi49Q2N0pGckjAA3CliQVAxUAA8ABwSXZLAPL1NfPkRBYRwg8URQiKiY+Oi4+sKUtNbMrIMjcDzEWLg4AGsQGowarBgyEnwATzIAIzhYpjga4gpW-D9OoQgEQkQS2MQAXnNLOAg9w5OzogLlcbjMAt1gi9Sh93p9wOFUMBpOF7gFEAB+RDELBwUgHY6nJiyACqYBWYDgAHckMCsNcfIg6F98KhjrFUAAuNSogIcvphSIjeKvTLZOYmBlLVbrDCxChHVDxOUK2L4JjKxUObh8VGPJpQKFvT7OH4kDWxLXq+WK256cGiXqvGFwsAIpH0FFo4SY7G4s3Wi3sThE0lu5GLAOM-KWVlHdlcrg84R8oUkEVi3KtRCUFYVLY7GCwIoVap1UtMSS0ehWlW3HUBGDARAkAgYPWEChgTClkilzL1r2IdsGiAfIdPaJdyq1Yqlcq92pgwcQ3okHjvAB8Q7twn0WNVqEZTZb+FlAenZcXd0H4-1UcI+DHUrWG3N-trNc1pbPKoXNVFSZCCuSBrh8W4pPgO5CHuNqHo2zatkohDEBef79v4g7DswY4KHYeDIaQlbSEwSEqBeeFoUuXrAc265brhepEF2+AaFkHQBDBB4Dl6vqkOWiAkmSFLUlitQ4IkZhQPslxRsysbxmoUGIIYOTzFmOYVLS9IIKh-FEdWEYfkClx0qC3G3s8FxPssL6bNsuxaa05EXGh5wmdpTRURZBoUFsPyPp8lBlmB2YULmdkFkWJa1L2FZUFWjCGTaXAMIBN43o5PjOe5rosX2Xk0aBm7mDUNSxPsbi2PCxDlXQrAAFYUCU+AQNsNRQCQaXpQEFxxXUNQhXUKUlTiEC3DMqkSmYBQ2BouDKChQaJfgcBiBA2oYUBDpILEyhyDNYCyCR80EZaiArWtuizJmDIaRgB0tvqcVSAZ5pqsZII+O9NQQNewhYdEWAKDh6B4QthHxcRzKFJoS2PYQAEBFhrzlBeY4HbOZTRXUKRecjc4VMYHxpa2mU6T2KPY4mN6YndZO2BTBMXs9CWfqqbmfU81ODnyd35mQhYwMWqGU8zoUvYlb0FdttEhZtaIspgjGoMxgxA+gTCi8Ya5eQEEQlJAea-D9bGovoGZqQy+udutmzG795mK22CBMVALE-UwqYMS7KtuyQJuih0k0LHdRCEPDUAs1Db0c6ZX1MMAcrIEwJvmVherhILZifGHSsIJnrQR158Enhg9OoRnWe+H9Xrp-nVcYETgVhZp7lOT2letKl3U9734us0l7MfXHXNKfaPQgXR5l916TvK6ricUMnt4F1l2uIzPN7W4bdv+79OjsZvaLm2b+4stPwi8RHRIAEIRIguf3qkLQMkyzjyZyilm9dluSag4csgAI7lENjXQIkJdrh1kLnI651UDAJVutCa4oFi52dq6KuUR-6YAmC-DI5kaL9EFEMLBhBKrNDyABYO6kW4YCOHSSA1Br792jgGd6i9l6p3llhBEzxPj0JttQDAvCOq4yUiXVs5pUIiPQmlLCEFrLSlfAGd8No2bkTfDI3WXQZZFS3PLI+wgS7ey7L7FiHDZGGO6nPH2qsPZP1tF1GenFz4GKsXrcIBtbY-T3towxhh3HQSUi4w8bihBXxSLfe+AjGFP0mK-aMLI2Sfy8ipFBWYYk0FUbEMBNFIEdVkJk6gsDzTIJumYIpwjsEkEqbgyhBCZZEMGKMWp+p4kZDKb-JArZojIDQOEWUe1CBkEjg-UIGBem5Jlq2GoMQ8RQBGTwAAZEs-kAxhlQHXLCMZFRekWymkgFgJAlpTInosPasgWCwJOfshYiETpkR7H2BpZyelL36YM8O-FLm4C-tQhkpEULfiOc8+WhCBTNPiPlW5WZhydg6pTU5ECLlwq7LAxFMLX6nlRd2GKoLUQ0TeX01AAz8l-iJDiv56SGQ4vIpTNCLzIRNNTNCn+BzB7HO0Ei3oZLZDmmuVyzFZhJHnieYuRlvQiUfLJd8-lnT2VSO-G+fF48mUQpZVeIVEhaHIDgBMuAzD9KSzYSnB23CJyIBEThPVUA9UiKLuI48IqVTSOwZYzCFqFGfGfDKN8MdB4aJUVoseOizl6LgXnUxdiIBMAgqks+cEnWnkBVgV1CMwFIwtSwEGigHnEHIJDAyKbyJHODWlQqU8bFRr9vYkxrsWIsA3tBBNF9wlYBxKQSJAk77hBQDauAcS8HdMSR-BMwTZjUrMLq-V2TuU7QudO21JSAzyoWIuu11T13kOfvUsFjT1UkK3XUqYq6sw1Bch2CAKw53nWiFeuQ56ahUvKUgGoIB8BMMvSsTWBMb1fofe+4p6gMVspDrQ-ATUZBdqNUwL9pqwFYWzZ8XCKaC0S1g3elY268JaiLtLMNU8wm9zfR+vYmGmB1rMXNZATaj7b28fbPx3UT7-LMHdcStqcCGsLctcjiAuG6izbgHNYMCJoYHl+7DsNtB4aUhWuWTj0pVvrdRlOF7MO0c3vRo2viD6Ka9Cx-gk6kAQeLNRm9vLTOoFgY2rVIhCC4hkI2iV86oEccczZ3Ap6GSSZSDhuGvm2lDpvcykhgWKEnrsy5E5LnzlQIuAKzg3nhWnnLmK-8sWZlzIZSsxkp5enSr2k0vsRIEvJZpG3LK34XJpfFXus5oXRhNNq-+Khxnh4eWylcXKJAWs3tTH1uzfNiDAFxLsaDPG2bvXpt9M1gm7xUCzJ8Eyo2sBkHunkB1qIJGpcq+TGKi2fDutrhaw7Okm6hXCi1pweQo7Vn04E3u-qZtMfk8VXgh9HtndsOvA+2nd4mz049k+HEW1EYiU9bt98VtjcHXckdySv4cVA2ekbY2btTFi7ymHa3YHffK-xtHa2NuF1xrFxr8Rcam1Y9q8K1RUAQBAE5F9zD-Uwc+499K9iOEYaoN+4ydZ6tqoGGT2EnxZAHVkGlWmtCHoTfQ4PabNRZvcy9HyJpovtnQOwVLmml3dnVPlwPZ7yuE5J3g2ldXELNfi6KbrwcMvwpFO4wr-1PP+O-Ut2syINuBLrvt16R3FR10u+Nyaj3qu0RW5F-qLZ4urMB7REHjAVnQ9QzgxHr3GvY-OgEu5nAieAjJ-z1ByH7OM8myz9bnPYuBI47IIX70+vNhE-G2Xybiu3Iq69xDwgIYhJUmHRFhkUkZJvxjMksdKPbq0OPT4LBVRNmxdmTAUgRBF9MDACAWIOS7Nz50uv0ROehe9GzwjPfQW8jTgZ0zte4Ai6xdTGI6fZgnb74ZlUG-zP79dr8nNgITsT+kOf+1O7W6w4Q1wFQEEEc70bOPGCGFqP0ImqG7OsgP0SO-0FqHCyBeaEMCusgHCGBDwFqX6Y4RqcgX6RB3kAuZBPGcgM2VBNEq2lQ8UnUN4KQIUb+l+7cn+jO3+YAbBPckS+md09OfBd+ByghM87+Ey1QR+CM3cm8McD2wgMGKhQgHs6hiAPOWhcGWhFw40ihXocaQ2tCiqXYWA+w2SZ0cay+2WUiS0sa+ojiNOokqQi2P4NoC+oyOA60QsG022SabA2+wwchx2aINEvhqA-hxyIRm+IR8asEra4CvQchdI0AnhqokK3hw0+mMBU2hGWhWE9Ai+26Y4zKYRIa3UhKp4HgdUxych26keR8mIURMREETAWh3UK+EM4U5hqQVhJROCkOXRnO6UcanRYxN4UszRm8fIbRZmPRBa4U7+DRpRuMkxUxWxQgExHO2xaIUsQOPc+gqSL+COcYMgjEOIO+KEh+d2ARNEaRHhb0JAVxpw7IqadxoxAQ+RiuhRWx4BkB26LEHRneLC9ATGhihKzhVRm8Jxph4UqGMW8s7II4tibsY4sgAAVOAAdCSlibIEpC+pagQLMlAFkpwJYEvAETeDRJSRBmgLnvIOgI3oHrePWvprzP-AyYeLXrIIrKyQ7oaOUHLOyWYmOJTAfAEn3HyFfPSdSZsYEoJOSIPiIAgs8EyOxrgVPsjqqr0JnPgGSTQHZiaL8LmPsMdI8FgOEILgStMqeFvjvnNFaTabMUnogNVO6CSoprKcAqUCQOaUwE0k0r4biK6ZkA9piCGQzmGbcA9nyKaQGagBaQ-CQqGdaeNHZpRqrCmjeqhsyVAM+l0hGugipimj+ljHmbgRQSycBr+giRUPQJSBgOQQgXeEgc3IidWWgRAFQVhNgZ2RUPmYQXjCQZhrQeFP+l5KiTstuu0rYEAiAutGOI6bEEpDOVAOMgYU+HtLynQILKUDAAAF4VCUGKlbHhr-qyD7mwCHknlqC0YznFrRAXE7nhzY69nwbqgXKEFm5LwASojEmlBLAQBAlIlcrJElyJmOEiD4RkQvnshx4emuiIjIgZrLi4ETLyjshjhLFkowValwX5onIpTfGbzPnYVXQ3ghLJEBBXwwWyAACy2+sAZU+wlqqFHosF4MfIVBupGFZyPyRFqawFPwkB4QhJ38AQxJPqGw4FSWyR+MRozIpoMFFFFxr2MsTotenpyI+mPo7afoDFpIKpIkKaCYnJ3u2RIopx0lxZYhTOMg6FxBd4XqKAoM88Na+8JMQRq5MB4RtJMssg4QCA1msJNFRGDY3BVWvBt+529+Z+bsmQa4sJepSADlRAKVaU0p0EgFxZBpRpTC8paAzlKREg3J1JTJHYWAhZ+lss72JZnl7sMas5Mhi5iCVFj2jxsVmVbEOV6UXJVJjJfJKQwFc5Q6Ke8CS51mdVQCopm5UB0VOk7VhsY4QCUpllxVvJWuoloFRAomKggpRe5gO+Yl+1Kam1FVw1WuKGuBR1TeslB1xAl1Q1214uo1O+Zce2TQ91QgmI25DVC1X1AUJUlwroUQW5puAufVL1PJVVmGv1GIt6fOsNlVfJDBdVQNBhllcpV1iUypwkhyU12CskRqOpu4dpZyBV1wxpZxze5BxaS0Su70bxNxnxYRacFqRqE5jZqAzZrZRJuILBWSjN2gIU6h5BEup1e1Q5d16gotSW556UCt-8XkktH1FoDB6gBhatdB15+oY1bVxNhs3IPc9QH8rxLs1xHxshG+4J3A+GkIRqdm1VHURqN6ktrtagWVrht1wlpZVG7OKtN62Zfsft4M4mUMwdBOTsxaTVkdRamFMFiKjsHl6JLE4dYmQdSdXKFZ5QjtvQwVoVklrhd0U55kM5pBnwq5RJxZJGTCVQfgexwgVd-G2WVQvOV6psgVglIV9Akl-FQgxJj6oERGO2wRTpX6AVg4V8sgAAomQO1OxV+nyAAAoADyq9fFu4YO+mAMVknwTSU9qVLd45OcYWGmJ9W0ZytqNQ4VUlwgxJN5MAd5TlyRrdNd5aQVfdYVD9Q9+VpJNNRVeNpVdJeNTJ9diNmI9dqN114uj6UD-GLkbpUe2Y4DI1YAB5u095dVz9r9a4ONhlpABNqpOA6pBoTIK9sCW1tloakI1N5J1AYo-AWEyAEAAy3N7wqId05BaUvKFAsChSgjhZpF0xu5FyOADeTATgTARwU8FAiAAApIgHI0Yd1Lyu8LAjIyo-I7nnI6I4OGSk4trmQkcEdPprnGaHtC5LIJo8NEckI8NDiiQAAAzTBqM3jO5vjyDsPCLF2ZAeODgPTQIlLWN1A-IN72O4D7RqDHTIByBmPuP6bBMCNxMJMPmBNejBNmNpMhMBP6Yh7eNoKJMGM3g+MDI-0Pl6Cx2YXx1sMcMd4S6wIABMLjAAbDMDU-7XU746gTk4gAACxuPVOAwdT1MtnwF6CZ1kQ9MNP4ECNZBAA

Computing with Register Machines 5.2.1

: message === "initialize"

? initialize()

: error("Unknown request in stack:", message);

}

return dispatch;

}

The following functions are used to access stacks:

Ifunction pop(stack) {

return stack("pop");

}

function push(stack, value) {

return stack("push")(value);

}

The basic machine

The make_new_machine function, shown in �gure 5.13, constructs an object whose local state

consists of a stack, an initially empty instruction sequence, a list of operations that initially

contains an operation to initialize the stack, and a register table that initially contains two reg-

isters, named flag and pc (for “program counter”). The internal function allocate_register

adds new entries to the register table, and the internal function lookup_register looks up

registers in the table.

The flag register is used to control branching in the simulated machine. Our test instruc-

tions set the contents of flag to the result of the test (true or false). Our branch instructions

decide whether or not to branch by examining the contents of flag.

The pc register determines the sequencing of instructions as the machine runs. This sequenc-

ing is implemented by the internal function execute. In the simulation model, each machine

instruction is a data structure that includes a function of no arguments, called the instruction
execution function, such that calling this function simulates executing the instruction. As the

simulation runs, pc points to the place in the instruction sequence beginning with the next

instruction to be executed. The function execute gets that instruction, executes it by calling

the instruction execution function, and repeats this cycle until there are no more instructions

to execute (i.e., until pc points to the end of the instruction sequence).

548 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwKZQPoCdXJgZylSwAoBbAQwgAsYxUAaRHZDMCs1ASkQG8AoREOboQWJJRp1UJAERpMLAkSyyuJFmw7cA3PwC+-UJFgJEFfPhjIw2XFs4kLVmxjqEsIaPDA8BwkSgxJGpUCgATEigKGAAbJ0trW3coT28ELi49Q2N0pGckjAA3CliQVAxUAA8ABwSXZLAPL1NfPkRBYRwg8URQiKiY+Oi4+sKUtNbMrIMjcDzEWLg4AGsQGowarBgyEnwATzIAIzhYpjga4gpW-D9OoQgEQkQS2MQAXnNLOAg9w5OzogLlcbjMAt1gi9Sh93p9wOFUMBpOF7gFEAB+RDELBwUgHY6nJiyACqYBWYDgAHckMCsNcfIg6F98KhjrFUAAuNSogIcvphSIjeKvTLZOYmBlLVbrDCxChHVDxOUK2L4JjKxUObh8VGPJpQKFvT7OH4kDWxLXq+WK256cGiXqvGFwsAIpH0FFo4SY7G4s3Wi3sThE0lu5GLAOM-KWVlHdlcrg84R8oUkEVi3KtRCUFYVLY7GCwIoVap1UtMSS0ehWlW3HUBGDARAkAgYPWEChgTClkilzL1r2IdsGiAfIdPaJdyq1Yqlcq92pgwcQ3okHjvAB8Q7twn0WNVqEZTZb+FlAenZcXd0H4-1UcI+DHUrWG3N-trNc1pbPKoXNVFSZCCuSBrh8W4pPgO5CHuNqHo2zatkohDEBef79v4g7DswY4KHYeDIaQlbSEwSEqBeeFoUuXrAc265brhepEF2+AaFkHQBDBB4Dl6vqkOWiAkmSFLUlitQ4IkZhQPslxRsysbxmoUGIIYOTzFmOYVLS9IIKh-FEdWEYfkClx0qC3G3s8FxPssL6bNsuxaa05EXGh5wmdpTRURZBoUFsPyPp8lBlmB2YULmdkFkWJa1L2FZUFWjCGTaXAMIBN43o5PjOe5rosX2Xk0aBm7mDUNSxPsbi2PCxDlXQrAAFYUCU+AQNsNRQCQaXpQEFxxXUNQhXUKUlTiEC3DMqkSmYBQ2BouDKChQaJfgcBiBA2oYUBDpILEyhyDNYCyCR80EZaiArWtuizJmDIaRgB0tvqcVSAZ5pqsZII+O9NQQNewhYdEWAKDh6B4QthHxcRzKFJoS2PYQAEBFhrzlBeY4HbOZTRXUKRecjc4VMYHxpa2mU6T2KPY4mN6YndZO2BTBMXs9CWfqqbmfU81ODnyd35mQhYwMWqGU8zoUvYlb0FdttEhZtaIspgjGoMxgxA+gTCi8Ya5eQEEQlJAea-D9bGovoGZqQy+udutmzG795mK22CBMVALE-UwqYMS7KtuyQJuih0k0LHdRCEPDUAs1Db0c6ZX1MMAcrIEwJvmVherhILZifGHSsIJnrQR158Enhg9OoRnWe+H9Xrp-nVcYETgVhZp7lOT2letKl3U9734us0l7MfXHXNKfaPQgXR5l916TvK6ricUMnt4F1l2uIzPN7W4bdv+79OjsZvaLm2b+4stPwi8RHRIAEIRIguf3qkLQMkyzjyZyilm9dluSag4csgAI7lENjXQIkJdrh1kLnI651UDAJVutCa4oFi52dq6KuUR-6YAmC-DI5kaL9EFEMLBhBKrNDyABYO6kW4YCOHSSA1Br792jgGd6i9l6p3llhBEzxPj0JttQDAvCOq4yUiXVs5pUIiPQmlLCEFrLSlfAGd8No2bkTfDI3WXQZZFS3PLI+wgS7ey7L7FiHDZGGO6nPH2qsPZP1tF1GenFz4GKsXrcIBtbY-T3towxhh3HQSUi4w8bihBXxSLfe+AjGFP0mK-aMLI2Sfy8ipFBWYYk0FUbEMBNFIEdVkJk6gsDzTIJumYIpwjsEkEqbgyhBCZZEMGKMWp+p4kZDKb-JArZojIDQOEWUe1CBkEjg-UIGBem5Jlq2GoMQ8RQBGTwAAZEs-kAxhlQHXLCMZFRekWymkgFgJAlpTInosPasgWCwJOfshYiETpkR7H2BpZyelL36YM8O-FLm4C-tQhkpEULfiOc8+WhCBTNPiPlW5WZhydg6pTU5ECLlwq7LAxFMLX6nlRd2GKoLUQ0TeX01AAz8l-iJDiv56SGQ4vIpTNCLzIRNNTNCn+BzB7HO0Ei3oZLZDmmuVyzFZhJHnieYuRlvQiUfLJd8-lnT2VSO-G+fF48mUQpZVeIVEhaHIDgBMuAzD9KSzYSnB23CJyIBEThPVUA9UiKLuI48IqVTSOwZYzCFqFGfGfDKN8MdB4aJUVoseOizl6LgXnUxdiIBMAgqks+cEnWnkBVgV1CMwFIwtSwEGigHnEHIJDAyKbyJHODWlQqU8bFRr9vYkxrsWIsA3tBBNF9wlYBxKQSJAk77hBQDauAcS8HdMSR-BMwTZjUrMLq-V2TuU7QudO21JSAzyoWIuu11T13kOfvUsFjT1UkK3XUqYq6aHhXwE1GQXajVMA7BAFYpqwFYWzZ8XCKaC0S1vdEe9268JaiLtLMNU8wm9xqCAfATC70PpQKDeeftG1+N7tvbx9tEPpRPv8swd1xK2pwIawty1v3Qa4bqLNuAc1gwIh+geUHf2w20ABpSFa5ZOPSlW+tc1OEuSg02o+yGja+IPqxr0GH+CTqQBe4snG53nKgZJ1AsDG1apEIQXEMhG0SvnVAnDanFO4FPQyWjKQ-1wyM20odMnmUkLMxQk9ymXInM07JgpFwBWcAM8K085cxX-iczMuZDKVmMlPL06Ve0ml9iJK5jzNI25ZW-C5bz4q91nKs6MJpSX-xUPE8PDy2Uri5RIJlmTqZivKb5sQYAuJdjXoI2zd69NvpmtI3eKgWZPgmSq1gMg908gOtRBIrzcXyYxTaz4d1tcLVjZ0k3UK4VMtODyFHaswnAm939Y1xDzHiq8EPmt6bth14H347vE2Qm1snw4i2kDESnrdvvp16rg67kjuSV-DibKFiPe64tqYTneXfbILAg7MXECA964XXGTm0vxFxqbTD2rwrVFQBAEATlylgGYf6m9e21vpXsRwr9VBoMXDrCltVAwoewk+LIA6sg0q01oQ9Wrn7B4NZqE17mXo+RNKp9s6B2D6c0zm7s6pLOB4bY5wnJOj60o84hXzmnRSheDkZ+FIp+HWf+sJ2D36cu1mREVwJddKuvRq4qOuzXEuTW6652ieXlP9RbJp-J03aJzcYHk1bqGUHZc3gd4bp3zoBI6ZwG7gIHvQ9Xruzj33tv9e86D9TgSgPw-ehF5sSr1XvevRt6Tv3PMsTtr9F2wS5IqTDtswyKSMk34xmSWOz7Z6KjHp8FgqomynOzJgKQIgHemBgBALEHJynW86T76IoP5PeiJ4RqP8zeRpwo7R2vcARcnOpjEU3wzoMx8MyqMv9Ha+u1+WawEJ2m+7un-hzl9Y4Rrgt-1CxCC9XlsbRa88H6FH3049kD9d7-0FqHC3+eaEMrOsgHCABDwFqUGY4RqcgUGUB3kxkAULC9AcgjWSBNEXWlQ8UnUN4KQIUTse+S+qOR+mOwmkSwmd0yOZBq+By+Bm8JBE+Rc3cm8Mcq2wgN6nBQgHsPBiAhO-Bvu-BpOmQbBXoca5WtCiqXYWA+w2SZ0caXeAWUiS0saT+oO1QqQbWP4No7eoyOA60Qs7+DYSabAQ+wwWhE2aINEhhqAxhxyFhA+Fh8asEra4CvQWhdI0AuhqokK+hw0wmEc70UsLGR8WE9AHe26Y4zKVhIa3UhKp4HgdUxyWh26duR8mIdhDhL+uOeO3eEM4UMhqQ8hkROCd2-BeO3UcaTAlRM8UsGRm8fI2RUmBRBa4Ue+qRURuMtRVRfRaINReR-RaIUs52Pc+gqS2+009ecYMgjEOIw+KEE+b+dwNEXhOhb0JA8xpw7IqayxdRAQwR9WwGBxXod+D+26z+T+r+aBV0-RhKT+8Rm8ExUh56RGoE8s7IBosBnwg+w+SkGOYO4GTCVQfgQxQgPxYOAWVQRO96psN4NEsg4QCACm46AQgJNQLkGaRiZhfx8QPG2JPExepAsgAAomQO1PsOdERnyAAAoADytJSBV2bhIGmad4tqA0nwTSPGTx5+RGY4qYvJwmNEnJTxASu4qIgJdAgspQMAAAXjIISdScTmOHiU8YicifQLIGicIICZnPgLMlAFkpwJYEvCYcuDLKaRemgMHn-sCWnmbkCRBsJrzP-DaYeMnn-q5sJpiJiUNK6dmO6eaXaTKbAHKYqY6e7lGLKbtIqWuIGVfGXsJIcvAuUM8EyFBlyBWMGWgJMaqr0AaUaTQK8RUO+o5p8egLePWmOLIAAFTgAHQkp1k6lSldKWoEDFlMLWnmnKk0Q9m2lekKBRkR7VlmKBkDmen86KwjnRmUxyxjnMRjiUwHwSm9x8hXyTm9FrbJkV4iAIIZmI5lmgGN4fYFlIBFnXAllTGJKmi5j7DHSPBYDhBk4ErTKnh4lzRPkvmNHRnVTugkqsYbnAKlAkD3lMBNJNKGG4g-mZCraYhQUo4wW3CrZ8gmi-DgUPwkLQXPnjTKZ1pmKcbgwybvryDoBUqAnsaEUpqawEwkWgEIHkXqAYo3kZ70CUgYDwFPoWpf7NzhSkX-54xAFJxwG0KkWQFCV3iQl3RQZrhKRfE7LbrtK2BAIgLrRqkWHyVVlQDjKk5Ph7S8phkwARkVCIHbnDHhqyWyBGUmVqC8YKXFrRCzH6XhwA4QCwImzqgXKQHS5LwARtnsqlBLAQAXHllcruElzoWcrBgiD4RkROXsjO6ID-nIjKn2hxVLHyjshjhtFkpqEZ5hXuYpSnEzyOVZV3GDghLuEBBXz5WyAACyQ+sAZUVJYYHosV4MfIzJkpCJMsPyGVqaQVPwD+4QrZZ5ep7ZPqGwhVFpk2d4Toxo3wvw+VZVsxW2MsC12yKVHovpReHa0ViUu5IkKaCYgZMOaYpQvGa5Ah7ZtBaOSp7h8iT+FGcG7s+8JMuJFhwR1hvVZySJKJY1lV12lBC+7cB+dBM2a+s+bsmQclIpMsd1RAcNN41111+pnZV53ZuZs1NhVp2NdpHYWAUAs5QgmI4au2VF0ans4yJBqliCFVgSax4N91clykE5+NXpKQQVSlQ6nuaZ9NJNGIcCgCC5Olj+VeOkdNhsY4QCq57NZpg5-OQ1IVRAlGKggtmIytoVoB8tHpdpb6oBGtiwNkMoKautIZnN+o3NmBu1elO2ildtJUlwroUQulUuKBbE11-uQZCtU5LuRGRtUG5titNONtvcmIYtZcHOiZxJ5A2NIYQke5OAB5BoTIRqp5PVoakIl5xp1ApZnFBGRFp0S07O702xixexVhacFqRqol4U7FBdEsyNepuIuBWSxaS0IUPB8BtOw+w1qtKaagRdZEJy5lCRoBWojiAQPdXNw+UdnMTQQ9ohSkM9Vtc9tN-Nhs3IPc9QH8WxLsCxuxEyWhKxgGkIRqymhNHURqMmPdV9Q9oOBtA16CHGOOHd4V0+SABFqsT94M1GUM79RVl9oMxar1-9RaE9+ViKjssGtifsv9VGb9kDXKtFWMZ9vQ-12pym-pewRGMmVl-pFF7ZYGEGuDxOqD5Q+D7x9pEGQ9LFhg-AWEyAEAAytd7wqId08BaUvKFAsChSfDxNxVN4ZKvKOAQOTATgTARwU8FAiAAApIgNI+Id1Lyu8LApI4ozI8HtI0I4OGSk4gLmQkcEdMJrnGaHtC5LIGo8NEcvw8NDiiQAAAzTDKM3ga5vjyAsPCIA1iHCYPTQIlIWN1A-JA42O4D7RqDHTIByDGMuN+OJCzS056bRN2O6PdT+PGNRNyCCNpPpSW4eNoKxO5NeieMDJakKYAROygNwMsTMOsN1YCS8NMAABMjjAAbDMFUxPWA3U43QPPw0wAACzON6BX0kC9M316AINkQ9NeO-68NZBAA

Computing with Register Machines 5.2.1

Ifunction make_new_machine() {

const pc = make_register("pc");

const flag = make_register("flag");

const stack = make_stack();

let the_instruction_sequence = null;

let the_ops = list(list("initialize_stack",

() => stack("initialize")));

let register_table = list(list("pc", pc), list("flag", flag));

function allocate_register(name) {

if (assoc(name, register_table) === undefined) {

register_table = pair(list(name, make_register(name)),

register_table);

} else {

error(name, "Multiply defined register: ");

}

return "register_allocated";

}

function lookup_register(name) {

const val = assoc(name, register_table);

return val === undefined

? error(name, "Unknown register:")

: head(tail(val));

}

function execute() {

const insts = get_contents(pc);

if (is_null(insts)) {

return "done";

} else {

instruction_execution_fun(head(insts))();

return execute();

}

}

function dispatch(message) {

return message === "start"

? () => { set_contents(pc, the_instruction_sequence);

return execute(); }

: message === "install_instruction_sequence"

? seq => { the_instruction_sequence = seq; }

: message === "allocate_register"

? allocate_register

: message === "get_register"

? lookup_register

: message === "install_operations"

? ops => { the_ops = append(the_ops, ops); }

: message === "stack"

? stack

: message === "operations"

? the_ops

: error(message, "Unknown request in machine:");

}

return dispatch;

}

Figure 5.13: The make_new_machine function, which implements the basic machine model.

549 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9AzlVCdACgEpEBvAKEVsQBtMpF9D1EBeRMEe+gbhp1QkWAkQAHELgAWxAB7kKiIXTqsinSahgAnBQBoWBIqX4q1a3UxC6kAIgAmCTPcFqAvqsQjo8JBJwEmSU3mowwIjEMLjYPHzEGuikSmGWtJi6unD69gCiyBJQAJ7GbABciAAKAPJV9mZptB6ImPS4mKHp6RAI+IhQQVoymKiOiSbJ7t1qSVoEMPQTbI0zVjZ2A0HT6V6e3r5iSDBgMLCo9DAAXpgh1DNzXPECTYjWULYOzmCuO4h7wnAfnEjhiElQUAgcmQmFwuFQAHNMKkZu9PihYfCkZwOFx7FJZPZXmoAPySaQyYl0SowuGIzq4vGBCREtZ0MnMshU2g0zH0nF4k5nGAXa6ubmIMlC86XG5ctk81pZHLEewAVTA6DAcAA7khrABHECw5gnMpEcr2Iy0rHIv4A2hozag3DgyEyQReQ7+FAYHDWBExKCZYhgVAwlF0RjMXpgYNx3BaewAKnAqDhMARP0cybcByBR0QLrdUOINvpkfSTqQ5exjMQ9iRUFZCrJsfjUFwEt5dLruIbHWbEtoZIAbhdjZwAHyURDtzAJrTj+jG8wOhWVTLZfS1zBGYdrdWa7V6t6YI0mxBmtBYbABoOZS2rOjr6tFsEQqGeqje8Tp3BwBAxBYMURjWL0uiOLglZnh8mwxHEvBLOBORQaQ3JkuAjiYMAJyYI43KbkaFzAZgoGICMYzEJR4woZB0EpMOZI0cQdFocOlT-oBpHkQsyGYBBaGNF6BY+k22DzgmrGYIG+CZDBb73nJuRNg036-kgg4SQgHa4NJsnBroRjLsaCkbPqMkPrkg4NMQJl2lQImiD6N44Cc+C6CAwJgMQwbyFAZlwQEOj6H5UBGM8wk-qJ4juVAnnedgYXRGA+CBeiLFxVFGlXql8VeUc2CYPIAkgIVIgpWlXR0G+fGVQF6kxZpTDYHFCWFcVpXleA9VGBI2QQDBWl1XFfUDWYKhOd5iDiUphlloQMh4WBMlxOGyLVY65m+lCeGqrNlnKbZAZrRGjXOX+GZZneq1hjCxD-pmYCtXl7X+OlmwsXVj3XW1BXvdlTWID9z32UV8jBCDL0ef9CBKBYNXbV9OhLN9V3PX93kpIDF1IPQcBwOgIASNg-UwMgiTFMgABGcD0EYQSZBC-jQZtc59Mwy5aFxQG4FTtP04gjO6MzfTPltQWIFz9ZYTheEETMZJbiqfM03TRhHlqupIMLovHEg-6YDTjBPq8lTI4sdkXCk53TfjhPE9g9CoNTbTEM7rvtEYHttKdG33HQsb9NLwNwtxPv0H73su200F-G+0v9rLuHZq8SvKvoEdRw2GrYSn+EMDH9C5aHHTG5gpszJUdXLjj02uaTujk8Ko44MVwTt9ai3LYXnuswHtARFECFBwQcbgx3EMpGzaij3OWij6g4-t9g9nEO34uWG+IQcDOED2q07SdEP0SxFn7fr1PMGzxzuX4ImXD20TJMR+7Re4NHnsT07ReXxINuvG3uQXed9OwH1jsfSIp8boGUyBPP+08B6WDnroLQB1YE7m7j8FaGDv4BgQZvdYksd4znEpJTsrEJreBaBAmedBlb6E7jnY82tWgQ2sBmcQJQJDHwNnCI21MTZqWoY5aKuNfS3l1h1CGf8u67Wwb3WODMeEiyOP3bwc8hiPwJs-Ru5NiBSP8N-IICDlFMzUZvOeqB+qAQfr6Du04JE4DJsgFubcZF7h2ktBREdoIGAPGsQxCBjEqKXlBAh8dtokOBhICQ9BigvWwLLXQ8STgImwAAK1QOOXAEAm5FGIAE9IQQu7BAkI44IpAjDWIGgxW2hYQb6SstnACtgID+28G+S4+BVQgytGeXBd1PGtN0O0uuhYG6NNGl4nuvizGqJZn1QabM54EF0E2NBLU5ohjQPIzxUMTpDPqgAm+eUpYTnceUrgUMwYXyyn8OeYMRCcFeAhIJz0L63KnmnJx2B3nwK+RIOR3jPFzKFqEixZtfkuLcQCi5E9gWzPfpvIBjikGzBauQvSaymzGXhRVE53QxjjkgM4oCEhBrmGofUn0xKl7tNJuS5ZSCtJYuIBSowdUyE6QXBQil2MqVTQmX6JKJpeozJ8e-eZesP4+GdgiJZME56xlBIWLgwZ8DaTAKq-wxy-gnzeRCoxF8VXCjhtfQOt9TXdSQFwBu-yTUIB1QgfxCo3UKl2SCz+SjwXmJZoQxGxDgEznRe6ywrKeVSWAPKow1qjEEoDWGugdLSWMvZZShGSbPDgKPnQjIGdxX2AAEJjAGJeTGhYzSG3Lk+e0oicoaqgIkc8xpSUfTxkGVUjb+kdAvG2mlXCTRaudT5Rt0N8pYzZm+C2qMh0VoBgOmsIrqYi0gHIaZnqkV9yMNGxEiqVm32wv0LgK76UyGwEept9zvAGrPkXeBl7EGvDnnFOxT9HavzBefCGP9PbEEfYm2C6JomhqzVeKB3K4y8r0ruhET6wNsgjVBqSHLQFxyKd0GhubQMIdoCmhlFL02AaTeuMDHgc0dDzUqbchaS2OEQKetdoC3qxT4WXQRFdhH7CFT6RjpYI7toYJ2+wfGZD9IE4uhjq6oQXrFaJ8dLGwCCZncQeT87zWSYQgQBESJHBO07fgZA4UBgjCSoiQTCFwR6AmEZ8gAAyOzFFRjjEMwFAUJmcDack-goZgnulNvsAGfpvnNOxG2boeBG8p3bS04iXT+melMMCzJYRPHxDhbwTJBB0XJYqY3uMn0i84xWxXB0oh6J-OqiK82PFpWCuxViNVyLU8cvolizp-CCWm1Jeq6lsR00msrzXlFpB07nO+RRhE+tQNX6+da5sSr9gI7BfWvV44d6v4XxG50mLsRtPxcq0l5ba3FGRxXq-bb5XPrjbqvlyTDcERwCSnAcVm7JXbskMyjRh7LxcEe892TPTr3hCgQhb9wQANUZfXlN9OiP2-y-fe87v8AN-Cu0gaJSHdLpqMK+zeWHKO3pgc0i+kOcMoJkpsqAxPlILT2TgknP78Go8AVE4NLBMWRr5RAIwkHscBkJc0Q+lGcMMNo6W-7gxmOw31qXARQj8eiP64WSXL2BPzY7T0xsT3BjiaLid1XgOm2G-U0pjXTmqJcp10903AC0sBBMUkQTSRVTMj6zlAkcgki1dMubl3+IKS2Xsidhu8JW6vawcMyY+6kEU4RFTmn803tR7YOOmBftjkorZ2ijDtBPfLCILzznyGKEC+I2yfDZKiNo7deR6b4iG4cMGNYCP9PzToBj99s5AYE-hbp169vafDnrUz5EoNOfcNY+g-pPqjvJiC6zZXtN-KqVke-Mrn0YfbgC-N4trf-SBfeZNDkbfMk-PCabyfg-Z-JNJCH7dEfd-bfm5U0-16Mu7cb-ECYubo3tqLaCBWzOnr2mkNT9WCS2xaz-0lksxCmywcyvD2zi060qxYg3g1kAJOwdR-RMWwP-hfxu0mxYjwIFRAMLDwL+VCW1T0hIPNzqhIPuxFRUWAByApg3Uj29S9l9QWT6E71OX6EIDVUkEyBYN0GQGwEEN1WBzoCJzwIeixgtVoCsUSmeTtRFTkMkJdQlT3Fz1w26DBXeXQ1RGzxAWUF0LUE0OegJXMCX0IxX0zQQzr08GF06FFwLWmWLVLWYNYOl1ALY3l1cEV3t2EN0FEIpksPPy128LEP6QiMk2iPEMsOOQIMt0myyioWCIbk6ggDKnjSanFTBWT33D0PdVQ1gyMG93BXUXRwt3GCync3sD6R+UmXRlbwHwMIkFlX5ShUyjymAX7HsG7WaJFUbTaK3R9SCFlXKM+3QirlqOSPrBE2kzE2GNvFEzGPex9WmO6LmN6KqkWNVxbHSDJAe2tw2NBSlRmJ6PG3qMWP31WJwC33OIqOjyuN2JuL6IaMv2sCOMsBOJFW+NuHYLb0qJ2O6HNg+P2IGISN+NJGhRENYOeNO1lUmMVShTFw8I1C1lPFNwGGKB4RLmrQ41rTIJ9GJkcAhDchh3qllUKMjyVVvgpV70OiTw4IbApS40tTOVg2ZIwX7x7nsFg05KUNvkeG0NVCSGFPZjOUmK0GT1VEMKlLfFEKKkWkKRmDikcS0lN3Bi6jyJ8glFGglCyJKhyJtW8nVKTR1OSiyldSTTmSKSKKKQ5SKXKKKW9yKUmJSDtPSDx0YNvHPjjF0GKDfi-iGVxxh0Eys0znvXDLQxO2KnikEN-Vjl8kTJWnaRgFbhgiJ2eDTP8ng26EUgEkwCzNuGeAiiQnxxcKozfETJFmgBTPaAm0tjCiqQcJmBpM4NZlMKKTnh+H8nHWGBu0TPLyrF2zwHijSVDETPHVmNwzJHAlLPD1fWKJKLUGjIWgDKRyDJDIHOp2mXMPXN9MjLXOPPSF8UYj0MqCXLLPZTgIblNxnMHNtI7PPOPLxzPPfP0ORVXwVA8CCK-38PLmIHbGyD4DgTCkRR+FSDrP8gbOp18VAp0nAsYAiygqPOHhh27PZxwzA3JMpPHT0lXOROgocnfLfFfRryzQAv9JwHlIyyGRRM6NjRQrpjQtFQLIPTOWTzlJFR+B1GwHlM3hVNGFLEYvWkcQCXlMaL4EAkIvC2OhZLgV8y-LWAktpE3hkriguEjkVNIAMU6K0sj1VB0r4AUxlzwBbQXHaQaG5Aen4RArAvYsgvTO0IXzfGT1vzWSbWT0ExktYF0GbAMoNy2WUoizZSKIGWaV-x20lj52n3QSsn5IUQ0uRBOy0gy0irZLSp9zK3UGL2xyStpyirSvbODzH3RCcBcDzEyP4swEEuEu4v6CZLUNvD73xAgClLnh5Lav9HCtVCFMsVFMmD4tvBd03mjA8wssSl7VbXaS0GeD+CmqgFM1lMfk7UW2lBFFlEeMmH6UwvSEx0mFMtOBlDFAaAXymoywIA4y0Eq0Ww5MVW9mEyFJ3XlQAXzHEV0vkuDETxDFio1KgR5lDHWgZ2UjMw436K4GTnlkUK3nCshsYC0E3MqzjMbwGt8yqUOoVBupdkYEAwJ1cIlDFzjPsAAFleBYA4lSg855ZorlJKgpT9hjDJZktcEfqIBKTHA8wWbARxF30SY+9AbuhHkLhuYw4gI4y8aobqKgNNhE4YbtU5ZU43V04aMyasSTwLIMFK4Nx5ia5rZFc1Acpsiypbh4bod74E82UV9XlQdYg8y8d4aajqqfhebMMay8KZD39EozabVqJITOwUgyA5aaj-aLa5b1x1wcpixPxoQ+QkR4bPLE6GQBjAqhw1aohcKOdqdbaedpqdS5qbLyKSi4KupI7-huwMRew07BQ8pdKZrCpi7SVYTugyRe00VC7fbm7rLSUtBe01xq7dwGjOaFLwq27jjgY5Kua-rwth7U6GjirDJJ6-iGA4chbwqF7a6GizK9KjU+hV64T1qQ1pr1qYkeFtVfI1qWKqiJpSNwSa7bQGjJSJQO7Jht7n7FjFS36z7Ojq6xddwNYtbWFDRjR+hrxI8SS+aJZ0Q473R1854EQIA9NeKOBvAG55TXhFtUB+kRM8HgqfTLAHqL8jZ+kHojBqZ2dUBEAABSBjbG91RbDgch1ASh6h9zKhxh-QztKkQYodamK0CUUYyrExewFh9s-BfB9s6rYgAABmxiIZmHWNfkbBQYvRqu9IlEaUGPE07TEesGQAaBwV6WMYGVVEEcUe0daMaOvwRAscuqUaJRscEZMd0a0bdVV1DLdn4c1Use4ZmDUb02+ECMaEysRrZWQdQbZNsaMAACY5GAA2MJsK3BSJ9RqK-BowAAFgUcEAzuICiaEvpMEGXrgXSeibb1sbMCAA

Computing with Register Machines 5.2.2

As part of its operation, each instruction execution function modi�es pc to indicate the next

instruction to be executed. The instructions branch and go_to change pc to point to the new

destination. All other instructions simply advance pc, making it point to the next instruction in

the sequence. Observe that each call to execute calls execute again, but this does not produce

an in�nite loop because running the instruction execution function changes the contents of

pc.

The function make_new_machine returns a dispatch function that implements message-passing

access to the internal state. Notice that starting the machine is accomplished by setting pc to

the beginning of the instruction sequence and calling execute.

For convenience, we provide an alternate procedural interface to a machine’s start opera-

tion, as well as functions to set and examine register contents, as speci�ed at the beginning of

section 5.2:

Ifunction start(machine) {

return machine("start")();

}

function get_register_contents(machine, register_name) {

return get_contents(get_register(machine, register_name));

}

function set_register_contents(machine, register_name, value) {

set_contents(get_register(machine, register_name), value);

return "done";

}

These functions (and many functions in sections 5.2.2 and 5.2.3) use the following to look

up the register with a given name in a given machine:

Ifunction get_register(machine, reg_name) {

return machine("get_register")(reg_name);

}

5.2.2 The Assembler

The assembler transforms the sequence of controller expressions for a machine into a corre-

sponding list of machine instructions, each with its execution function. Overall, the assembler

is much like the evaluators we studied in chapter 4—there is an input language (in this case,

the register-machine language) and we must perform an appropriate action for each type of

expression in the language.

The technique of producing an execution function for each instruction is just what we used

in section 4.1.7 to speed up the evaluator by separating analysis from runtime execution. As

we saw in chapter 4, much useful analysis of JavaScript expressions could be performed with-

550 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwKZQPoCdXJgZylSwAoBbAQwgAsYxUAaRHZDMCs1ASkQG8AoREOboQWJJRp1UJAERpMLAkSyyuJFmw7cA3PwC+-UJFgJEFfPhjIw2XFs4kLVmxjqEsIaPDA8BwkSgxJGpUCgATEigKGAAbJ0trW3coT28ELi49Q2N0pGckjAA3CliQVAxUAA8ABwSXZLAPL1NfPkRBYRwg8URQiKiY+Oi4+sKUtNbMrIMjcDzEWLg4AGsQGowarBgyEnwATzIAIzhYpjga4gpW-D9OoQgEQkQS2MQAXnNLOAg9w5OzogLlcbjMAt1gi9Sh93p9wOFUMBpOF7gFEAB+RDELBwUgHY6nJiyACqYBWYDgAHckMCsNcfIg6F98KhjrFUAAuNSogIcvphSIjeKvTLZOYmBlLVbrDCxChHVDxOUK2L4JjKxUObh8VGPJpQKFvT7OH4kDWxLXq+WK256cGiXqvGFwsAIpH0FFo4SY7G4s3Wi3sThE0lu5GLAOM-KWVlHdlcrg84R8oUkEVi3KtRCUFYVLY7GCwIoVap1UtMSS0ehWlW3HUBGDARAkAgYPWEChgTClkilzL1r2IdsGiAfIdPaJdyq1Yqlcq92pgwcQ3okHjvAB8Q7twn0WNVqEZTZb+FlAenZcXd0H4-1UcI+DHUrWG3N-trNc1pbPKoXNVFSZCCuSBrh8W4pPgO5CHuNqHo2zatkohDEBef79v4g7DswY4KHYeDIaQlbSEwSEqBeeFoUuXrAc265brhepEF2+AaFkHQBDBB4Dl6vqkOWiAkmSFLUlitQ4IkZhQPslxRsysbxmoUGIIYOTzFmOYVLS9IIKh-FEdWEYfkClx0qC3G3s8FxPssL6bNsuxaa05EXGh5wmdpTRURZBoUFsPyPp8lBlmB2YULmdkFkWJa1L2FZUFWjCGTaXAMIBN43o5PjOe5rosX2Xk0aBm7mDUNSxPsbi2PCxDlXQrAAFYUCU+AQNsNRQCQaXpQEFxxXUNQhXUKUlTiEC3DMqkSmYBQ2BouDKChQaJfgcBiBA2oYUBDpILEyhyDNYCyCR80EZaiArWtuizJmDIaRgB0tvqcVSAZ5pqsZII+O9NQQNewhYdEWAKDh6B4QthHxcRzKFJoS2PYQAEBFhrzlBeY4HbOZTRXUKRecjc4VMYHxpa2mU6T2KPY4mN6YndZO2BTBMXs9CWfqqbmfU81ODnyd35mQhYwMWqGU8zoUvYlb0FdttEhZtaIspgjGoMxgxA+gTCi8Ya5eQEEQlJAea-D9bGovoGZqQy+udutmzG795mK22CBMVALE-UwqYMS7KtuyQJuih0k0LHdRCEPDUAs1Db0c6ZX1MMAcrIEwJvmVherhILZifGHSsIJnrQR158Enhg9OoRnWe+H9Xrp-nVcYETgVhZp7lOT2letKl3U9734us0l7MfXHXNKfaPQgXR5l916TvK6ricUMnt4F1l2uIzPN7W4bdv+79OjsZvaLm2b+4stPwi8RHRIAEIRIguf3qkLQMkyzjyZyilm9dluSag4csgAI7lENjXQIkJdrh1kLnI651UDAJVutCa4oFi52dq6KuUR-6YAmC-DI5kaL9EFEMLBhBKrNDyABYO6kW4YCOHSSA1Br792jgGd6i9l6p3llhBEzxPj0JttQDAvCOq4yUiXVs5pUIiPQmlLCEFrLSlfAGd8No2bkTfDI3WXQZZFS3PLI+wgS7ey7L7FiHDZGGO6nPH2qsPZP1tF1GenFz4GKsXrcIBtbY-T3towxhh3HQSUi4w8bihBXxSLfe+AjGFP0mK-aMLI2Sfy8ipFBWYYk0FUbEMBNFIEdVkJk6gsDzTIJumYIpwjsEkEqbgyhBCZZEMGKMWp+p4kZDKb-JArZojIDQOEWUe1CBkEjg-UIGBem5Jlq2GoMQ8RQBGTwAAZEs-kAxhlQHXLCMZFRekWymkgFgJAlpTInosPasgWCwJOfshYiETpkR7H2BpZyelL36YM8O-FLm4C-tQhkpEULfiOc8+WhCBTNPiPlW5WZhydg6pTU5ECLlwq7LAxFMLX6nlRd2GKoLUQ0TeX01AAz8l-iJDiv56SGQ4vIpTNCLzIRNNTNCn+BzB7HO0Ei3oZLZDmmuVyzFZhJHnieYuRlvQiUfLJd8-lnT2VSO-G+fF48mUQpZVeIVEhaHIDgBMuAzD9KSzYSnB23CJyIBEThPVUA9UiKLuI48IqVTSOwZYzCFqFGfGfDKN8MdB4aJUVoseOizl6LgXnUxdiIBMAgqks+cEnWnkBVgV1CMwFIwtSwEGigHnEHIJDAyKbyJHODWlQqU8bFRr9vYkxrsWIsA3tBBNF9wlYBxKQSJAk77hBQDauAcS8HdMSR-BMwTZjUrMLq-V2TuU7QudO21JSAzyoWIuu11T13kOfvUsFjT1UkK3XUqYq6sw1Bch2CAKw53nWiFeuQ56ahUvKUgGoIB8BMMvSsTWBMb1fofe+4p6gMVspDrQ-ATUZBdqNUwL9pqwFYWzZ8XCKaC0S1g3elY268JaiLtLMNU8wm9zfR+vYmGmB1rMXNZATaj7b28fbPx3UT7-LMHdcStqcCGsLctcjiAuG6izbgHNYMCJoYHl+7DsNtB4aUhWuWTj0pVvrdRlOF7MO0c3vRo2viD6Ka9Cx-gk6kAQeLNRm9vLTOoFgY2rVIhCC4hkI2iV86oEccczZ3Ap6GSSZSDhuGvm2lDpvcykhgWKEnrsy5E5LnzlQIuAKzg3nhWnnLmK-8sWZlzIZSsxkp5enSr2k0vsRIEvJZpG3LK34XJpfFXus5oXRhNNq-+Khxnh4eWylcXKJAWs3tTH1uzfNiDAFxLsaDPG2bvXpt9M1gm7xUCzJ8Eyo2sBkHunkB1qIJGpcq+TGKi2fDutrhaw7Okm6hXCi1pweQo7Vn04E3u-qZtMfk8VXgh9HtndsOvA+2nd4mz049k+HEW1EYiU9bt98VtjcHXckdySv4cVA2ekbY2btTFi7ymHa3YHffK-xtHa2NuF1xrFxr8Rcam1Y9q8K1RUAQBAE5F9zD-Uwc+499K9iOEYaoN+4ydZ6tqoGGT2EnxZAHVkGlWmtCHoTfQ4PabNRZvcy9HyJpovtnQOwVLmml3dnVPlwPZ7yuE5J3g2ldXELNfi6KbrwcMvwpFO4wr-1PP+O-Ut2syINuBLrvt16R3FR10u+Nyaj3qu0RW5F-qLZ4urMB7REHjAVnQ9QzgxHr3GvY-OgEu5nAieAjJ-z1ByH7OM8myz9bnPYuBI47IIX70+vNhE-G2Xybiu3Iq69xDwgIYhJUmHRFhkUkZJvxjMksdKPbq0OPT4LBVRNmxdmTAUgRBF9MDACAWIOS7Nz50uv0ROehe9GzwjPfQW8jTgZ0zte4Ai6xdTGI6fZgnb74ZlUG-zP79dr8nNgITsT+kOf+1O7W6w4Q1wFQEEEc70bOPGCGFqP0ImqG7OsgP0SO-0FqHCyBeaEMCusgHCGBDwFqX6Y4RqcgX6RB3kAuZBPGcgM2VBNEq2lQ8UnUN4KQIUb+l+7cn+jO3+YAbBPckS+md09OfBd+ByghM87+Ey1QR+CM3cm8McD2wgMGKhQgHs6hiAPOWhcGWhFw40ihXocaQ2tCiqXYWA+w2SZ0cay+2WUiS0sa+ojiNOokqQi2P4NoC+oyOA60QsG022SabA2+wwchx2aINEvhqA-hxyIRm+IR8asEra4CvQchdI0AnhqokK3hw0+mMBU2hGWhWE9Ai+26Y4zKYRIa3UhKp4HgdUxych26keR8mIURMREETAWh3UK+EM4U5hqQVhJROCkOXRnO6UcanRYxN4UszRm8fIbRZmPRBa4U7+DRpRuMkxUxWxQgExHO2xaIUsQOPc+gqSL+COcYMgjEOIO+KEh+d2ARNEaRHhb0JAVxpw7IqadxoxAQ+RiuhRWx4BkB26LEHRneLC9ATGhihKzhVRm8Jxph4U-6YC7IBopBnwW+O+SkL6-GgGJAVQfgexwgaJ-G2WVQvOV6psN4NEsg4QCA1m46AQ2Jj6oERGO2wRO+ZGfO4RN4V8sgAAomQO1PsLenznyAAAoADyYpVBoOSRRGmad4tqA0nwTSX6kJRJmGY4qYapsJqqvQSpsJASu4qI2JdAgspQMAAAXjIBmhqXzmOBibELCdSbSfQLIAycINiZnPgLMlAFkpwJYEvAEVSTLAGRBmgLnmgYBo3oHjiR+vprzP-OGYeLXmgQlvppiMybMWrtmEmUGZGWabABadaTGUnlGOabtNaWuAmViO2n6IJOSIPiIAgs8EyF+lyBWHmWgKcXqUgN6b6TQAiRUKhjFvLCibePWmOLIAAFTgAHQkrTnukmldKWoEADlMJhlBm2lbRnKbkRmpkKCllF4TlmI1l7kpla6KxHllmUxywnnMRjiUwHxGm9x8hXznmbGBINnCSHLwLlCtm07Dm4FT7I69mrk+nXCDlnHMimi5j7DHSPBYDhCC4ErTKniOlzSIXIXZnHnVTugkqKZvnAKlAkBwVMBNJNK+G4jYWZAPaYiUUM7UW3APZ8gmi-BkUPwkJUVIXjR2aUaqwpo3qobyDoDPornKZUYpo-pYxCW4EUGiXAa-pDlsCoCUgYDkEIF3hIHNzhTCXoF4xYFJy0G6VyUEFJxUFYTEl3RIlKTjlQDjIyFAIgLrQOkhG2XoA7JlzK5Ph7S8qFkwDFkVCUGflbHhr-qyD+WBVqC0bjnFrRAXE+XhzY4QCwImzqgXKEFm5LwATLnsqlBLAQBAkjlcrJElxsWcrBgiD4RkTxXshx6IB4XIjbkRG4ETLyjshjhLFkqOHN7FVJYpTfGbxxXtVXQ3ghLJEBBXw9WyAACy2+sAZUwpYYHoVV4MfIMpxpIZZyPy1VKE+VPwkB4QS5oFnpK5PqGwfVwZHqd4Toxo3wvwPVw1Fxr2Mst12yjVHoGZtZHaFViU35TZKaCYNZFOaYpQtGL52hK5YhTONpyR8izhIm88Na+8JMQRGFcazVYFNJdJx1g4418pRi3BVWvBt+529+Z+bsmQa4upoakI0NRA1NaUENENXpa5kFG5XZV11EoZnNkZHYWAUA15QgmI4aH2El0ansDlRNOkTliCo1j2jxJNDNbEENN4iZgZ+5WuKQ+V267StgsthsQtGIcCgCd59lUB0t+tf5ctY4QCz5Z5vNqZ+1hVRAomKgRtmIztRVuBDtGtF54uKGuBHtiwNkMoKavtyZBZ+oOtDBX1BhZt4y8dxopUKsgoidpuAuKtEd+ZqZlBX1X62dmt4usdvcmI5tXl+ANZ75nN-ejZIkOALZBoTIRqIFm1tNvQ-Z7Nyl5BxaS0Su70bxNxnxYRacFqRqxlFQ9AalGlWJuILBWSvd2gIU6h5BEuO+B1rtKaag1G4MWouRfci9AZXkq92tO+XlnMTQ29Bhx9dBEV0dZ9jl1thtOFwg9QH8rxLs1xHxshG+4J3A+GkIRqdm-NHURqN6q9ID29BOgdu1qaSNLE7Oh9XNKRSA-FfsMD4M4mUMSDbW2JTsxa8DWDRarVPViKjsoMhDGDYmiDJDXK0l5QADvQ2NbpYo-AWEyAEAAy497wqId05BaUvKFAsChSwjgtA10xvlFyOADeTATgTARwU8FAiAAApIgAo0Yd1Lyu8LAnI2o4o7ngo+I4OGSk4trmQkcEdPprnGaHtC5LINo8NEciI8NDiiQAAAzTAaM3jO5vjyCcPCI42ZBeODgPTQIlK2N1A-IN6OO4D7RqDHTIByAWOeP6ahNCMJNJPRXBNeihMWMZNhNBP6Yh6+NoLJNGM3h+MDKunWYAT4OtWUP+OoHpOIAABMbjAAbDMHU7A+giphw1wx3iI0wAACweN6AgMkD9PqXwF6BUNkQNMDP4FCNZBAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwM6pgczAfQE4CmmOYyAtgQBRobY4xipR4jTxgCUiA3gFCIDEhKCDxIAFgWQATSlGQwANtXRZcDJizYIOHANy8Avr1CRYCFKroA3ZIpAEcBAB4AHFbXWNmrc5x6I-ILCohJSsvJKcgrKNGr03lp+uvpGJuDaSIpwcADWIK44rngwZJSoAJ5kAEZwigA0iHCuBHjIfqhcfIKIEAhMiLaKiAC8lqhwEOVVtQ1NLW0dqT0hYoN2oyNj4NIEwAwE0kE9AgD8iK14cHjTNXWNAEQAqmC5YHAA7kjNre3siAxxgQaooCAAuB4cY4nMGISQyaJRIa6AzGUyZRDZPIFHCKZDVAjKPEExSoRrEwkkcgELrQvredbDMY0SaUCmKKkUcn4wmdAwrAgiNZDTbbMC7fZgQ7QnrnS7XNk8jmkLmIZ7ivYHaSYpUApA0YHVUEQqEnQSwyLKZGo9Jmf5kZC5RzFUowWDWRwudxexoOiDiA7ckmdHjQmDARCUGCoHD0pjIMBQJxuShe3Shs0CONQXqjXr9eSJ5OFIYOVNuZaZ1ZIShcEYAPl6-MEhgupIIAIjUZj7OL5dc6e6mezeqYqDzWPyhXZiuDQcpXtxSv7KJlwUFoUjdcbGigqGbAlbvI74cj0fwRGjUFafbTtMz+YZeDzmEFF8wV9alD9AaljUIH5MDei4ASulZmtWW6jI2r5JvS16JqglB4PogQ9Ee7YZpm8o3D6aovG8nxIF6hCqBYUAVC0epAiC4KQgeiDGGiGR+IgDpOjgPyLOwt5uL6yD+oGOpzvMvxLFhWYFvME45FORQlGUXF-Agxacd6FaNEpSwMSOyDFJM45jA63rQWxjrOgpbowB6t78YJf7CbyHD1GuD5uVpPGLkp4pIXeDGQbWpl6a4igVAkOA7K0oUMMQABWyC2KgEAlK4UCUK5bknM0-HuK4pnuM5KD6RAnSpMxdoWHE2DIZeQF4JyBCNBMogQDSElCBuayKFelAPFVYAPP+tXXvVKqNYgzV4K1ZW2hi7GOP1UbeHZv7jeyZKidx-SNK4ED3oII7yHgsEvm+AGfjcP5Cf174NUtTCrj0I6lp6bh5jdL19ru4GPgMn2mKMGXnh5KlepQn1phl5zzWpYmeSmEN8WZ9lrUqG0g4wpqZrCMMumQVk2WDiOuCtQnrT9AXbu1PSoG+8EEIh0THYKjT-eAtY-T0Mi2JAzpTLtqHQoYNroqx3MJq1RT83t7W03BCAIXulC7Y0lqULBsYKwzSsCyigTlXN5k4NeTD3VApMOetmkLMpjCNMAeKYDtMtDpJDL0tIVkWGMJvy+KXtgGbP2nt2sNbbgYMewHg4ZSOUd+DgANGUbGN9vH7AuZlWfZ8jq3zqS1tw-0nPrkKNZU67OeZnLmuJtrSEO8gTuPp7CemBzDFVyc4u81Lyt7XoaFdycwtC22tPU4IOFm48ABCMiIL7o4+BigIGrRJoMUxs2sb75QEAAjg4vP7QIkHdabDy+4NE2H8f00iyx-y+7XrfsHIBBMAkmi+Owp8dWXOE4RETKBfruJIf8Zqi3tEbaobRIDiBnrnMmaN7aO2dv-EcuwBhjDgRLcQOBsFpW+gxEO55exgyITHB8I5dyGUxLJHEM4raOQ5IuGcVCS5n06uXUyldh6CBDhremjNG6YGoQItyNcRE6wgI0OhXDh4YQnvwyRXNpA80lrtfuiiu7GDUYeLe48OyqIENPXcc8F54IQcvCBFg17oENMaeiQs0jQIsNY-0s5CT-3Pj1B4njxA33ZFAp+Hj4H+kIZ-NKgTv4r2SO1SC8IIgxEoLE8Bv8dChIqkgc88hMCvmkLiHqTAyDm0XpIY2TdfE8IBDGVwCgbilKgFwAAZK0oBCJml1i2BUxw+TH45I6pgSgY0amAIvmlB4AEb5jMGavGM506q8QHIk2peSm6FOKabPC0yiAuINqxJZI1VKgTTGswBySQFgXmaxbMCY0ovXGZuSZvV7mJhvk825-xzzvKTGDc5ldIIbIKYcbZaVdl-IOTvf4fzVIvRXBczcVy1Z+TcWErIy4xlIq6v49kszqTZIWUuEkKznlrBBVs15uz8VEtYhQtwJLCSIqBbUlFqS0WHJgRxTAcBjZwCQVdS2qDEAC3alg6JL4+VQD5UQoOpCuzkKVH2Thk83YDDoTJbE05lwsIZTqkklBOGd1LpuQKDZb5+0VkhFWy8+Rj2PJ2M8izhrARTKq0xv0cwAVOkmY5X4hXjX9fVECRAjXRMelWWp5rGzSK1ozW1wj41KwApGw8xi1UXDwFcG4Fi1Tz21Ly-ltjMm5P1I4jeLj0JpBhRYItMrvGKHJVkfx9a4DBKVHS-4baommx7RkzIzbOkpKiP2xIpbVxcosK4Zo5R5AQFyEO+MC7eoztcNC9xSBXAgFQIg5duRWZ2AcEu+duRV07qCRwcGR6aTfIsDDVACUqB5sDU1U9GDxVSR9WMDWwbvwCTzhNU9cTbpjSDhTaNFcMpZ23buudAkD2ICTXXRmqbdGZR7lo6W6HMyjynUgGGpEZWEEFQBoS+6P2VxHN+pDZ1XWXTIw5fdIGAJ3W+hBwBMbM1ZzjShlNRAdqzv3Wm4emG+Y6MHtBh8eHeC1qQI+j0NVxE4pbZfBTBAb6prvUgIj1wqCppU5ifxunCCaaIF2iwzHdygepPBhdcS7H+FZZc4BasrPjsHRZ747hsXOZef45oBKKBebqWHW2ZLDPngaTAXCFZEDtNC-kqlPUrlpkeIFkLqcvLuCy3Fvzax2VRCublgck65ObXC9l34PlKAlaHWrOr2mzIcQWMAa4ZQX2MdRiJDGG0xVUakgJViYxWvtZwEN9+JCwyKpjCV6gnnM26UyIncAeYYZzYmwgC2jUpMGKriw3rijKZ8KHntzbuB26oTE33AWkm9uj3Qhmz15jlr5oXqNvAZAS2r3LbTWiVaWzoqGR9so52h2vIeCDm+YOmsg-G5kIOhnCvKHY5J-DzXXoEAgCANuGKkEsNfadvbblbViLfQh62IZ8thARN9UUap+oPChhj8bVhA6dZRvndGrg+t7QyrCK5dOthjCvtEpnD5oZGz3hzwDB2edoKbhg-nw7EfC7VIE8XmZJccUCaRznrCNpk9FXzh8AvgFC96Q8NtmuzTa8cG2vXsuRUC2V4L7wPSRfqZtycO3OB1OO-I++43WMzRm9p+7+neymB6e97KFnJnn2vcJxR4PrvzcR7V5D1obXPux8EL7kHAfhU9fl6n03Wac1IPVIRL433d6URPL9pxdEQswwHX4D+zgWmGeizca8XfGhgBAIoJtTX288X78QiP1OVdTfR+P0Gzgsc454u3OnM+1Zz-KzXBfEcl-Y9x+z17xV-41038fq4A99blYKNIdojg6Fmw2gTrrmCpK7V9e+C6-79eQ4gAD9VHMMRT-P9QnB4MRAAr1IDBDNbLrXqfdSAkcZoehQNXqXrSAyCHPJwADdKB8XcUyHfDzBOFwZfQ-XArOCxXbFnEgg-VfPHKgnoXfY2FwKfB6TOLuK2BgwQV9LggQFWXgxAMnAQijAQ5A3Qdgs0BRJrGGChRMPACoRtBqeRbwKnaESCXvRQsaZQscELFgtoaAJlUkTvcpQgVqayNqSuMhGMIfEfYwiRCCWpUwggcw0ZYfOYGw0fB1TCT1SCPQobQwpCNWSfQqKgp-LnKDYeEcKULvOJPMFFFgnDE4YFGMTQGKUZFguJEPARc4JwlwuhRoAQzKDQmQ5VbWeQ9ImIvNQo4nNyBRAomoh8cmLI4eWEXIxTYoo2XfCopMb6eoho-ogQOoonAYk4cmO7LOQwH6beTdGiI0KgeCK4EfG8SfbbWkXwrvfQpMdaSgBYuoUEeqFY6onoMIg3CIho2-e-OJJCfIg3VYk1NRYFFQ+4vRVvI2fdQKSuUEHMfdPMDwhiGY2DRBZwLoYYwQH4kbRpSgZwcnBdQWB8SCB4aQBADTLeaEAE2df+RgmbEgNwuzRdTE7CbNBUB4AAUTIFSgqGgIXVhAAAUAB5GkyAx7R1T1J6KSGVPKMYK5YTZ4mmU9PMNzU9RIyCDk54-RQHHoGYhgKyOwGAAALyoAJIEHBMQD+IygRKRKlAeFRMlIxUQE9lQAaSgC8QoHQCbgsPVNqVNMfVfEj0BLz1t1FQvSoJxk-htI7EzzXQdJ91FQxJdLYjdPNMj2lNgFlIVO9LjxDJgDDMVP9Onmr3eFr0ICPklUBH3QhF9EDNfCmLUNqQNKNP9GkKNj-V82hC+MfGtTzAeAACpwB+pDhqztS0S9T8z2gTSsyLT4SrSOzI9YIIz88Kz65-TrSgzM85Z+y48XoTsZF6EXpB5xTs5YRp4RzXw+iDEEyiIOoUyNUCNiz6NN5XEBRAFWzjTxAmsWQpgnQKgho+g8BpBVCjzNxzwPCapbz7zmjHTIpJRpQs4lyj47BKArzGgrkrlTDrh3zdAGDzhQKsdwLOgGDYQLzAKCBrzF5UkwK7zSomtkNrUlMLoh0-0rdBQN09TeNcLg1D17BOzTU1hCLxyr0vkgdDYOIpQPgcBUC38GQP9k4OJCLdpECpJgCeLHBCKICfoRwVSH1T1awGJyyoBKkmDaYUzeZfi3DZLBQ+k1J6FXkIcoyYy-dT0b4ji3IuN3iHg9LupwyUh1LvV6Mqk5iJweoId+KMFyR-EICFdxFUhmyhk7BsgIBLiSzCVM0Q4kKtDhkLp7LQQPdEAvytQlSki7L5AHKISYs2QepwrCN6NRlCVnJjKq5g0orb0MplETEqDp5wqHgABZYfWAEKSkiULUCKuqWEJkiUqNQBPZQCE5PyyYe-aQJs6tXUoZScHEIK4LRbKSEUZkdAVkcKwq5K6K54yCaa3pOKqUI4bOOUIkm4SqgiRMnTfcyEf05Ha9JtHM4ajEGgnHRUyahkTVH9OmZNG1AeIGbEl8hRBKx8tYRE5Ewa3DJ7Kgpg66sgt3HQq9YU2pEGxUsUw8wQGYk89ss07MzNSCFcj0y3eMPAKACcxAc4LjbgS1WuXC21eSh-IgniJS++Yq4ndY0gmGxiYcnszPXcPyhzUtP3O+BmVqXG84JSk7Mm9m5bKm7mj02+A+ecpm5GjGkXXqgK68L-OqXmlAEfPqhW4NKW903sujbq1oZW0awoDWxcgM6W4M7wNm9Aqg84ZAgWypG25kVwFocUOQO20vMQyW429GyPBAq2qk3ITW0cy3S2razS5AuMna78Dsx4fazc5MhwHc5BKUA8oamipARGs8pi1iGGVAwqsabnDaXYpYg4hIz9BkQNWAliggNiji-464bArxXO6kUyXg1AvqVW+WkS+jSEPC5ZMZNczKRu00n6Vu1mkfMLDobu926EEe82sexSrm3mY6rODwZvHYhWRY-Y5ggfROmkDjTcQNJrLGtKQNIdVuo+7ukLX9Oymcn-QDQe6i7hQBHC+udWHW7-Qne+srGYmuQqm+j+uy8Kp5WWJ6vjJCK+3WhjfXT+yi49fyWpX6rU7Ct+uqW+oSVjUs763clGXqcBi6bu9BwlG0XgEcTACAIpcukYaeo2VAjKCHZAG+AJBhnGvKxopy4zYEG+agRoaoKmZARAAAUkQB4YkMyghxGE4eQG4d4fpx4ZYczFeSk1Fy-mqEGioL3leVnQeHEcKlAkYcKj+UoAAAYUgRGHxdcZwrcyHCE-rxCqDFor5gkepNHCAyBIQhoRk+o3HhleoVGTG7G2dep6H3GfHIQ5GMMAnGHgmHHbHs4HcLGX5fGwnMxLGilNSNNVwf7r7nr1YrGwCgnEAAAmQxgANlSEyYgeJpftIfIa60eBUcaAABZjGDAj6cmamUZUhcHlkb7qn2LamGd6IgA

Computing with Register Machines 5.2.2

out knowing the actual values of names. Here, analogously, much useful analysis of register-

machine-language expressions can be performed without knowing the actual contents of

machine registers. For example, we can replace references to registers by pointers to the regis-

ter objects, and we can replace references to labels by pointers to the place in the instruction

sequence that the label designates.

Before it can generate the instruction execution functions, the assembler must know what

all the labels refer to, so it begins by scanning the controller text to separate the labels from

the instructions. As it scans the text, it constructs both a list of instructions and a table that

associates each label with a pointer into that list. Then the assembler augments the instruction

list by inserting the execution function for each instruction.

The assemble function is the main entry to the assembler. It takes the controller text and the

machine model as arguments and returns the instruction sequence to be stored in the model.

The function Assemble calls extract_labels to build the initial instruction list and label table

from the supplied controller text. The second argument to extract_labels is a function to be

called to process these results: This function uses update_insts to generate the instruction

execution functions and insert them into the instruction list, and returns the modi�ed list.

Ifunction assemble(controller_text, machine) {

return extract_labels(controller_text,

(insts, labels) => {

update_insts(insts, labels, machine);

return insts;

});

}

The function extract_labels takes as arguments a list text (the sequence of controller

instruction expressions) and a receive function. The function receive will be called with two

values: (1) a list insts of instruction data structures, each containing an instruction from text;

and (2) a table called labels, which associates each label from text with the position in the

list insts that the label designates.

Ifunction extract_labels(text, receive) {

if (is_null(text)) {

return receive(null, null);

} else {

return extract_labels(tail(text),

(insts, labels) => {

const next_inst = head(text);

return is_string(next_inst)

? receive(insts,

pair(make_label_entry(next_inst,

insts),

labels))

551 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwKZQPoCdXJgZylSwAoBbAQwgAsYxUAaRHZDMCs1ASkQG8AoREOboQWJJRp1UJAERpMLAkSyyuJFmw7cA3PwC+-UJFgJEFfPhjIw2XFs4kLVmxjqEsIaPDA8BwkSgxJGpUCgATEigKGAAbJ0trW3coT28ELi49Q2N0pGckjAA3CliQVAxUAA8ABwSXZLAPL1NfPkRBYRwg8URQiKiY+Oi4+sKUtNbMrIMjcDzEWLg4AGsQGowarBgyEnwATzIAIzhYpjga4gpW-D9OoQgEQkQS2MQAXnNLOAg9w5OzogLlcbjMAt1gi9Sh93p9wOFUMBpOF7gFEAB+RDELBwUgHY6nJiyACqYBWYDgAHckMCsNcfIg6F98KhjrFUAAuNSogIcvphSIjeKvTLZOYmBlLVbrDCxChHVDxOUK2L4JjKxUObh8VGPJpQKFvT7OH4kDWxLXq+WK256cGiXqvGFwsAIpH0FFo4SY7G4s3Wi3sThE0lu5GLAOM-KWVlHdlcrg84R8oUkEVi3KtRCUFYVLY7GCwIoVap1UtMSS0ehWlW3HUBGDARAkAgYPWEChgTClkilzL1r2IdsGiAfIdPaJdyq1Yqlcq92pgwcQ3okHjvAB8Q7twn0WNVqEZTZb+FlAenZcXd0H4-1UcI+DHUrWG3N-trNc1pbPKoXNVFSZCCuSBrh8W4pPgO5CHuNqHo2zatkohDEBef79v4g7DswY4KHYeDIaQlbSEwSEqBeeFoUuXrAc265brhepEF2+AaFkHQBDBB4Dl6vqkOWiAkmSFLUlitQ4IkZhQPslxRsysbxmoUGIIYOTzFmOYVLS9IIKh-FEdWEYfkClx0qC3G3s8FxPssL6bNsuxaa05EXGh5wmdpTRURZBoUFsPyPp8lBlmB2YULmdkFkWJa1L2FZUFWjCGTaXAMIBN43o5PjOe5rosX2Xk0aBm7mDUNSxPsbi2PCxDlXQrAAFYUCU+AQNsNRQCQaXpQEFxxXUNQhXUKUlTiEC3DMqkSmYBQ2BouDKChQaJfgcBiBA2oYUBDpILEyhyDNYCyCR80EZaiArWtuizJmDIaRgB0tvqcVSAZ5pqsZII+O9NQQNewhYdEWAKDh6B4QthHxcRzKFJoS2PYQAEBFhrzlBeY4HbOZTRXUKRecjc4VMYHxpa2mU6T2KPY4mN6YndZO2BTBMXs9CWfqqbmfU81ODnyd35mQhYwMWqGU8zoUvYlb0FdttEhZtaIspgjGoMxgxA+gTCi8Ya5eQEEQlJAea-D9bGovoGZqQy+udutmzG795mK22CBMVALE-UwqYMS7KtuyQJuih0k0LHdRCEPDUAs1Db0c6ZX1MMAcrIEwJvmVherhILZifGHSsIJnrQR158Enhg9OoRnWe+H9Xrp-nVcYETgVhZp7lOT2letKl3U9734us0l7MfXHXNKfaPQgXR5l916TvK6ricUMnt4F1l2uIzPN7W4bdv+79OjsZvaLm2b+4stPwi8RHRIAEIRIguf3qkLQMkyzjyZyilm9dluSag4csgAI7lENjXQIkJdrh1kLnI651UDAJVutCa4oFi52dq6KuUR-6YAmC-DI5kaL9EFEMLBhBKrNDyABYO6kW4YCOHSSA1Br792jgGd6i9l6p3llhBEzxPj0JttQDAvCOq4yUiXVs5pUIiPQmlLCEFrLSlfAGd8No2bkTfDI3WXQZZFS3PLI+wgS7ey7L7FiHDZGGO6nPH2qsPZP1tF1GenFz4GKsXrcIBtbY-T3towxhh3HQSUi4w8bihBXxSLfe+AjGFP0mK-aMLI2Sfy8ipFBWYYk0FUbEMBNFIEdVkJk6gsDzTIJumYIpwjsEkEqbgyhBCZZEMGKMWp+p4kZDKb-JArZojIDQOEWUe1CBkEjg-UIGBem5Jlq2GoMQ8RQBGTwAAZEs-kAxhlQHXLCMZFRekWymkgFgJAlpTInosPasgWCwJOfshYiETpkR7H2BpZyelL36YM8O-FLm4C-tQhkpEULfiOc8+WhCBTNPiPlW5WZhydg6pTU5ECLlwq7LAxFMLX6nlRd2GKoLUQ0TeX01AAz8l-iJDiv56SGQ4vIpTNCLzIRNNTNCn+BzB7HO0Ei3oZLZDmmuVyzFZhJHnieYuRlvQiUfLJd8-lnT2VSO-G+fF48mUQpZVeIVEhaHIDgBMuAzD9KSzYSnB23CJyIBEThPVUA9UiKLuI48IqVTSOwZYzCFqFGfGfDKN8MdB4aJUVoseOizl6LgXnUxdiIBMAgqks+cEnWnkBVgV1CMwFIwtSwEGigHnEHIJDAyKbyJHODWlQqU8bFRr9vYkxrsWIsA3tBBNF9wlYBxKQSJAk77hBQDauAcS8HdMSR-BMwTZjUrMLq-V2TuU7QudO21JSAzyoWIuu11T13kOfvUsFjT1UkK3XUqYq6sw1Bch2CAKw53nWiFeuQ56ahUvKUgGoIB8BMMvSsTWBMb1fofe+4p6gMVspDrQ-ATUZBdqNUwL9pqwFYWzZ8XCKaC0S1g3elY268JaiLtLMNU8wm9zfR+vYmGmB1rMXNZATaj7b28fbPx3UT7-LMHdcStqcCGsLctcjiAuG6izbgHNYMCJoYHl+7DsNtB4aUhWuWTj0pVvrdRlOF7MO0c3vRo2viD6Ka9Cx-gk6kAQeLNRm9vLTOoFgY2rVIhCC4hkI2iV86oEccczZ3Ap6GSSZSDhuGvm2lDpvcykhgWKEnrsy5E5LnzlQIuAKzg3nhWnnLmK-8sWZlzIZSsxkp5enSr2k0vsRIEvJZpG3LK34XJpfFXus5oXRhNNq-+Khxnh4eWylcXKJAWs3tTH1uzfNiDAFxLsaDPG2bvXpt9M1gm7xUCzJ8Eyo2sBkHunkB1qIJGpcq+TGKi2fDutrhaw7Okm6hXCi1pweQo7Vn04E3u-qZtMfk8VXgh9HtndsOvA+2nd4mz049k+HEW1EYiU9bt98VtjcHXckdySv4cVA2ekbY2btTFi7ymHa3YHffK-xtHa2NuF1xrFxr8Rcam1Y9q8K1RUAQBAE5F9zD-Uwc+499K9iOEYaoN+4ydZ6tqoGGT2EnxZAHVkGlWmtCHoTfQ4PabNRZvcy9HyJpovtnQOwVLmml3dnVPlwPZ7yuE5J3g2ldXELNfi6KbrwcMvwpFO4wr-1PP+O-Ut2syINuBLrvt16R3FR10u+Nyaj3qu0RW5F-qLZ4urMB7REHjAVnQ9QzgxHr3GvY-OgEu5nAieAjJ-z1ByH7OM8myz9bnPYuBI47IIX70+vNhE-G2Xybiu3Iq69xDwgIYhJUmHRFhkUkZJvxjMksdKPbq0OPT4LBVRNmxdmTAUgRBF9MDACAWIOS7Nz50uv0ROehe9GzwjPfQW8jTgZ0zte4Ai6xdTGI6fZgnb74ZlUG-zP79dr8nNgITsT+kOf+1O7W6w4Q1wFQEEEc70bOPGCGFqP0ImqG7OsgP0SO-0FqHCyBeaEMCusgHCGBDwFqX6Y4RqcgX6RB3kAuZBPGcgM2VBNEq2lQ8UnUN4KQIUb+l+7cn+jO3+YAbBPckS+md09OfBd+ByghM87+Ey1QR+CM3cm8McD2wgMGKhQgHs6hiAPOWhcGWhFw40ihXocaQ2tCiqXYWA+w2SZ0cay+2WUiS0sa+ojiNOokqQi2P4NoC+oyOA60QsG022SabA2+wwchx2aINEvhqA-hxyIRm+IR8asEra4CvQchdI0AnhqokK3hw0+mMBU2hGWhWE9Ai+26Y4zKYRIa3UhKp4HgdUxych26keR8mIURMREETAWh3UK+EM4U5hqQVhJROCkOXRnO6UcanRYxN4UszRm8fIbRZmPRBa4U7+DRpRuMkxUxWxQgExHO2xaIUsQOPc+gqSL+tOFQ-6YC7IBopBnwW+O+SkL6-GgGJAVQfgexwgtx-G2WVQvOV6psN4NEsg4QCA1m46AQTxj6oERGO2wRO+ZGfO4RN4V8sgAAomQO1PsLenznyAAAoADyuJVBoOSRRGmad4tqA0nwTSX6TGABmGY4qYtJVRERMslJLJASu4qITxdAgspQMAAAXjIBmp8QyXcSESyUCSCfQLIOCcIE8ZnPgLMlAFkpwJYEvAEYCTLGqRBmgLnmgYBo3oHs8R+vprzP-LqYeLXmgQlvppiFCbMWrtmBaRqfqbybAPyUKUaUnlGHybtEKWuGaViO2n6IJOSIPiIAgs8EyF+lyBWC6WgKcaqr0IqcqTQKYeFKhjFvLNcbePWmOLIAAFTgAHQkqFmyncldKWoEBplMI6kakilbRnL1l6nWkKDelF55lmJBktlWla6Kwdk+mUxyxdnMRjiUwHycm9x8hXy9mbGBJhnCSHLwLlDRnnGiYqBT7I7JlICpnXDplnHMimi5j7DHSPBYDhCC4ErTKnj3HxC+G4iXmOmdnVTugkqKYznAKlAkAnlMBNJNIPkXnjTPk+kAUM6Pm3APZ8gmi-C-kPwkKAVPkE6Uaqwpo3qobyDoDPpVnKZUYpo-pYzoW4EUFYXAa-oZkVD0CUgYDkEIF3hIHNyZnEVoEQBUFYTYGMUVAYWEF4wkFinN6XFKS5lQDjIyFAIgLrRjh3lCXoA7JlzK5Ph7S8rukwCekXGYawKjHdThr-qyAqVqVqC0a5nFrRBxhWlxYdTY6sXwbqgXKEFm5LwASVnsqlBLAQCQEbn5rZkkzHgwWcrBgiD4RkSmXshx6ICvnIiNmslBUoQhXmVLFkqOHN5ZlcopRaWbwmXyihUclg76ZXxJWyAACy2+sAZUWJYYHogV4MfIxJXJWpZyPyMVqarlPwkB4QFZ258pVZPqGwKVSWyR+MRoR5vwSVmVZlr2MsToteEVHodpwZHa-liUi5EZKaCYQZFOaYpQtGU52hVZYhTOwpA1nqzhIm88Na+8PlCEt5IRMBSJy4MswJoJHVg4ISyRDY3BVWvBt+529+Z+bsmQa4LJO5okX+wpHJ38EJVZe5KpdZCZmp91zZcN+pHYWAUAg5QgmI4aH2uF0ansolH1Ok4liCV0nONE+1RAgNykPZSN1pKQrl267StgRNhs6NGIcCgCI5IlUBBNTNK5xNY4QCk51N6prZWuLV7lRAnlqgc14tHlKawtlp+pKGuBrNmIPVUtCtrptN+o9NDBc1BhnN4yBtxopUKsgoRtpuAubEO1N45pItfZ8eGlc1X6mtot4uetvcmIXN8l+AQZs5cN-e4ZIkOAUZBoTIRqW5dVoakI0NB5rhd05BxaS0Su70jEOIO+sVYRacFqRqtB4UVFNFdBXkzBYQWSSd2gIU6h5BEuO+rVktKaag1G4MWouRfc5dapXk1ddNO+8lnMTQjdBhnddBelOtPdYlfNLNIFQg9QH8JAadpw7Iqah+d23A+GkIRqdmKNHURqN61dW9jdyFoMxaZ1LE7O7d8NTZkIKFfsytTV4mUM59bWTxTsx9tifsZ9uBZ0iKjsoMJ9JAt94M99Ran9JyBF5Qa9vQj1Mpdm78ySc9Ls6di9shG+LC9AdwZNi+6RmAb08DFhC9mdG+6V09HRiuhRWx4BHl0BJDcBEsdJR8hKzhQNfcJxYo-AWEyAEAAyud7wqICddBaUvKFAsChSwjaNaV0xSlFyOADeTATgTARwU8FAiAAApIgAo0Yd1Lyu8LAnI2o4o7ngo+I4OGSk4trmQkcEdPprnGaHtC5LINo8NEciI8NDiiQAAAzTAaM3jO5vjyCcPCJPWZBeODgPTQIlK2N1A-IN6OO4D7RqDHTIByAWOeP6ahNCMJNJOGXBNeihMWMZNhNBP6Yh6+NoLJNGM3h+MDLSnWYAQv2f1-0cNcMd4S6wIABMbjAAbDMHU01egipo04XfgXk4gAACweN6Bb3-3+M716AAOnQNPTPNNCNZBAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9ANqgI0120zCgCcBPACnyJLFWUwBpEYwBnKLgSkQBvAFCIxiCpiggKSAA6oYFOoWLYmLdpx78A3MIC+w0JFgJEAcynZJFmD0zK0EABac2EzBfXNMAkeKe0rIoqK7uNABEVlA2XvZQjpF8NLY+LHz6RibQ8EioXFwwFmBx3hqYNAVFJdjalCC5CP6i4pLBSC6YqAAmNFCKuFWFxaX1FI1mYHyZhsbgTfkjtQBuqLggOJgAHnLDNWPcDYv+iK1i7TKd3X0DMEN3Q9WjdUcTJzNZ86Z5iLhwcHQIDk2DkFBgyBoXCoyAIcFw7DgckcqCm-CE50QEAQPEQa1wiAAvIhqnAIFCYXCEYgkSi0bNApcQviiYTieAephgO4epjAgB+RCOChwZTQ2Hw9iRACqYHQYDgAHckLSKKjfpwSYVMLDcJgAFzJPnifWILq9fqDGj4z5zHJTP4AoEg+jEFQMLjsV2MXwtQLYo549ZErVcMnutQVL2qXB6TFMpAstnssCc7lgTC8wICoUUEXKb3pDwy1Ncnl-GMcJZcHUEPWGvjGsSmx7W9azbILB1oLCg8HIGCwFZbXY0HZydjONwZ6Mev3iGDARA0ezYAM8VDkUij8czDHZ8TrqBYkNHzexcfYfGbMe7BkHoJXZcCQkAPix+kCBiFscwHCXK5cHgMbbnsu7zgeR5VjoIb-ICwLAQwEaxrOaiXt6t5yLaD6PiENAvu+9RcJ+4jfsQNb-suq62AkjigZhe4BA+UEUCGMRlLRThhNOHg0Q4FCgWUDH3geCbPkS77sQGiTkFwqSZGcX4-hRTEHsKoqYVKsrykqSDjpIIzmFAVDIlWoa1vWyQkWIRidj85g9jgqrqgg9HjpO3HuKhKE0siar0vuh44seSKwU6CFghCNDOVMglIgxiJ+S53AiViwUkmCZJcCGaBgRJoS9pFA5DiOYEeeEM4VnOrBNjhOExXkcVJamcngdZuFIPh+WoHIci4FQrzYByjj9Zw3gAFaoGsXAQOCchQDQtV1YESIeXscj5XsfDsD1IoQPwHbfIsoajKk8T8UW7BhjIEB+IFFxSE+uAJFEzwlJE7B8YkAlRog10ULdh32r8jnYG9YArkc5U8d5nq+XSeRw3IEAQWlgYDBQMRsdYX2ODQU5eSdtRpBUkM8NhQWBtepUhuDV7rJs9H1KlUHU9gJhErVq4Na545thspWNjhgqgzzpR82z7mhBVHjenDYv8LVpqg0Vg4wMO9GS7s0OE3LqViV1b73dmNaxNJZC8JamNSOwbMmPhqWBL0ayQDgyM0MjCmYgYXzA+YzubrdoLkp7xum2uCAyZbyPsK2UmRxbcme58Zx2cdoOJDwZNQDrlVy4lCM4uwwD4BY7Ch6paO4gGPRq+YxKZ2bCC11M2epYuVFAWL9E13X0yo-66W97FHPEqLSWxXzw95DVy1z-P0sw1V5EF-5iOO20j14QRxsLwe4fm7JNAl6gZdoy3jX2xTe8PgHrvBx7KO6IpN-Zj73vKX+leBOpyj1FKAAhXoiBG7QWOA6TU1QLIGist7O0XZfiNyhJgAAjpsV2qMxLPSzpERuH0-qoPQYDX2CCjKYB4BHVMfd+jkNiOMSYeRMFb2uBaVsjdXg8HeFMW0aduwYBwAQNUkAXDZ1zrLGMcMT5nwrpiKCnJcTEkEYHFw2B5ELWZu1DugFEJoVHGoxitUoJETCvBF0MZkJw0LOhcx+iN4PQ6OJI239X5iC0fHcgidj6lwMS45aB8E5HxjmAuMvi36f13qE8Qd8g7u09u1UJRhImIHfkpciX9aq-1EYgSIQCeiICUcIsBXCNTVmgQ2dqtkjoOgKa4ZCTCHHYIWpEGpLh8HeiBqQpALTVG0JoN0+hJxjZiXNLcK0-S3gMOaB0+ySBVwDAsFYHoeAXo8GQDnEBXRsDzPqU+VcCglBQigGsgQAAyE5ZobiHOOayBumz5kkJmZ4CwNAKg7JCI0qIth8GvIecdai51vpuTvEM5hHAgLzMWcsrOUtIhfOmcdXGAlLy2AYiChxIzLT3GEr8h0Z5yD802G8pAHzIh4qgPg6m8KIFATJUCrCaLdngtPpCj5MKyWwN4b8Wll5qaosrsMy5rY2rwMeRhV5DL3kvUiN6b5vocUaiAlYncwL+WgrmcyzMUKFowplVS34SqzFIV3BKlhoysXCs5Q5fh2ALBwC2XALJBM84SPLijY2cjaFsTtVAO1ai26aIAquA1NBbERLEEYo42ViRwWdDooY+dl4kGsUhWx8TN4OMNu+fxHjAkQC0JG1KZFfyUW0Yi+iobnHhvSrYbGsREX408pVMtyKvAhtodfbMBsd7ZqjknPNlhrCH0trYDtRaVIZLzBpf+2TcmWG9XAIpkzZmlN1DAwtcwqm-FtfaupJq-hSu3T6tpMY9XmEPb63p56OHgMYXujFcd53XuKVM+V5g5DxQ3BAdARK-oDC-VEd9cgOWbrfSALgIjP3oFtgzO6qqHGQYA2B1pKRKWvqQKDLgU1KjTqdR4SDrrUYsS8LWji-EG0yyun+9A16yhFjbvrUFmaw3zzkEhw5YQoMDqbjm4dXgO032iW7EOT8lo4Xfpa9D1qDI+skI6xteGqMEfddW4jxJ2L1tw5RjjNGSa+Ho+1Lt+VK3zx7Z42w5cP1Uf43vQTD84kvxvuJ4QIGkCYeHGdCwP6SVucwPgkdaHPA8FFJUEde6SXSeC35vjAXIM6a8HR2LAzuF3sFVaRLEyPgBfiuKuDT0pVIllRkAL3MJ6NT5sa3LIQ9mKGUMas5YKtkaqWR8jFu4pQFdPSqUrvNdjYHit3Cr8ZQX3qtBigbd4eEufhmvHrIJnItWit18WKqhsONbONrCAWVaOGAKKSEOH5Ow1XslJGbrK5QTCA6YkfldsUGQGDRY-rMRaJK4XZbexLuMIHpTXEn3XKjwKk5Jb9E-tgDEbPJJkOE0KzsR1Rx75BAOciaD9m4B8LP1s7Ep+SOXEpNIuE4zmTp05OATdvbi6-krrrL59dEnEBk7u1UQZlXiVSoZ8gfBoPOv0523th7rdmYpdYVaZmXs6egx2JgCAIAR6dKyQmzTOPIcHiCVIrTX7ErohZxci0gvkzZPBpEWqItrXgzkxRxN8s5CnaFg+U0GK9dsmyXg43gOtm9IOxb6H1vi6lwI0rHXfRHfEmaUI1wRvhZu5aebpeCa1f05RgHh3RwXxO+iPOiPD4Te9nPTH3WLqE+24PPby5wfsk+czwebPOAfN58qvhwvSfS8p5udkiLkhK-Zmr3EILsnPdLwb57JvuuW-68iOzzvOZtsUFu-tqGi988ek1-7nCpoifz5LDpZUFOHTGVMpA7Uq7ykivTtapLeQaHbCgD+-ZyhEhX-YGAEAuBcDc-P65e-6iW-a+T+TYrGXJ5tgpcZdL40dBdtdWwNET8HRw539ltgDZcIZp1MoztMRw5ID58UCxcptgQehUQcAiJs5LEC9cNCN0pkYSMNNDtslkZYFB5AwpFKCAU8ZFdIgpE6CftjxIMcp5MohIMOCq1AwkQo0F8MwogFYBC4dbtSBuJFocJ6h8pYCACysgDpdEC5C55-5RMxAJdVCQD-s5dtDsw4D3cr824Ic9584jDAhNNrDxAY47CxA1dHDf0OMLCF5hCZh3DAgiJucoFV0aBpIRQX86JP8xEWgxIdhKBLs405Igj4Q9QBIwiXCDwiDYYd5jMXFcD8Dr05IiIjtRC-A01QkxIiJijHNucMMqMupK49QuCqMQwn8X92o-Z5A2NthThapuDrsasaBth1dv1n5aoxJIgegEBfMKlMRWj6d4pvtXFA0gImihhIMfE55MlIgABRZAeaKgVwr9U0AABQAHkDjJDUli1MjOCQFQpiQMUVjyjAhuiQE0srMHj00nwfU5ByjElSIpjOkqw1Z1gYAAAvSoOYvY9ARo5-XAcokYsYjMSISYwIaY2uLgBQKAWpFgQoU+WDYY0FLEzDKwVvcfJDSfLPenJDIw5WchQkv8MfQDMkqvGYraKklAGknE4kzgQE56UExkrvAE2AIE0E-CVk9Y7SBUbfSQNBT1TUSDQ0ScdkqwddRkUFVE9E1wLbKTZg5QHLTEOotGXtEMSIAAKnAHBkzGNMRL+MeTVNRExMVNxJwjEgJI5LHxiD5JzCHS4FZJdKJLH1Ng9P5OpiMwNMThDGpmfh+PnjX0nScAdPYBSOzE3wlKQClM2FxE1FBkRWPy-FWyfFtIxJcAC1JHJCwCoE+il1FB6C1zzKq0WOhLOmxAoGrKL0j2GnTEzG0LXzQXWBoDLPYAxQxUkCbJbJmGsMFCHMrObMVgXlNBLL7MwHLOeKxWHKrIOgC3cV7Q804h-XrWiCkGA2mNMyPkRWgwFl3O1L4IPJQxg0qOtQzEVGwFwxqNkXIIgB4N7D3NoJZnSkYLHi1LsDIzYNLkkKgieKqI43Rz1KkA2QIOUNchrGlNdihOaOguPCgE2WENghehJS5MFJ5Jryo3wUTOWiYwQ0iDwpgCFJpw7X1LLQGGp2wqzhJVoIIy9ClXYN91PltGtOOnWH+AgByPrV1PkIAnnN+nosID1FTxTDTB5HBJVMAsBQYr1BDFvzoBel+izMvNeW2hIpvkkup1hzHXSXnkyV+kiAAFln9YA+pdi5KMw8lszsljK8SHFYVtSwYX8yR8CegrTczkT-iY0EJhLfRmNWZgxiRxLfAKylLQipKii3Knwkwnd2yeQjDBRzKYrslxTdInlOIGxWSRssUbRlTxBpjJc1CwTwr0pjE1NB0Alo4RNRLO51AGzfCFL3iQhRjxj-KHwTLmMfD4L4C1DQCIZf9eAZgoL55Ii9DEhpr+q4FAqbT7B1SRFfTHSHxnSHTiSNwKByUMr4chACFuMtygkMK4LOEl1sBEKiFErIdZqECwTIyfSdqx96h+Kn1rrbqyBbpAyxBBREKQyLqvrFgbrCFfq6SCEUEXroy2TsS-S09+KfLEhSNvp-rEBBRkbBLUbEVXqEa6S091NtSMbBRgqQQ8a4aNrOSjhPqJDDqsKnFYK+trdaZeoyBbhMKfdfI9Bkl8baTdqiLDrIN+bXS096b55BQQbhDRTYz8Z4ycq5QUzPBpSMzJMZYczfiVSHECyNToCQZrVnyy0Kgrc4Z4iQikioiyDAxcMPycAHynzeDUppDuhaljbfB8pHDnzIhsahKSaUh3aMgEyF5A7yFUpvaPqX8Wa3suBkhFsQlxAI7aao6TCfrXYjQ559hoFAjI5gjEjTD1lSCGMHFcMYsMYFpSC91va9ryUUhudia4qBIvTyMl5Q6f1NzPEG7OIW7CY27udw4y1m7FdQ6zzCUw4GqeM5Iu6yNh7PLXlR77quqkAeqESAsoi1RoBYjL91lhzMB1ZNr5jWqljt7VjRJQVd796XloTH9oTC0CckqQh16Yi5ZMUHgrbg7M78jLcMiXCoIMwr9r0Qx70ra3iz6HFVxOExoXkojr1WzX5BQL73Mv79KVdejQYrFyBqBoGAHp0UHlchqdBtold8Hv64Gb5TREHKh1LQY4DsG6EU8P6SGSHfDGGmGDw9Yhj54DBadnMoILAIAllbbCRMRQZnzaoSVUB8FmkpHa7vDxAPlwsdR8Eqh2ACAd5UBEAABSfJPSheElQkZR1AVR9R1vNR3Rh8D5UTXBWhbAAgD6IwpBD5eKSIAxohlFaRohslGgAABhmHMeWmjwwmiAEdUV6q8KMLN1wTaRemcckA5zcdbR9uSFiqiDsb8bkYPEickZSY8f8bqkibsZydrryZwlzyCfYTSZKaTP4aWXhJov0AHs8ubpqcdotySfYAACZvGAA2WYRpxuyhLclp1gwpxAAAFl8YafLpoGGfk1mGnsBWaZCdYMkcyCAA

Computing with Register Machines 5.2.2

: receive(pair(make_instruction(next_inst),

insts),

labels);

});

}

}

The function extract_labels works by sequentially scanning the elements of the text

and accumulating the insts and the labels. If an element is a symbol (and thus a label) an

appropriate entry is added to the labels table. Otherwise the element is accumulated onto

the insts list.
4

The function update_insts modi�es the instruction list, which initially contains only the

text of the instructions, to include the corresponding execution functions:

Ifunction update_insts(insts, labels, machine) {

const pc = get_register(machine, "pc");

const flag = get_register(machine, "flag");

const stack = machine("stack");

const ops = machine("operations");

4
Using the receive function here is a way to get extract_labels to e�ectively return two values—labels

and insts—without explicitly making a compound data structure to hold them. An alternative implementation,

which returns an explicit pair of values, is

function extract_labels(text) {
if (is_null(text)) {

return pair(null, null);
} else {

const result = extract_labels(tail(text));
const insts = head(result);
const labels = tail(result);
const next_inst = head(text);
return is_string(next_inst)

? pair(insts,
pair(make_label_entry(next_inst, insts), labels))

: pair(pair(make_instruction(next_inst), insts),
labels);

}
}
which would be called by assemble as follows:

function assemble(controller_text, machine) {
const result = extract_labels(controller_text);
const insts = head(result);
const labels = tail(result);

update_insts(insts, labels, machine);

return insts;
}
You can consider our use of receive as demonstrating an elegant way to return multiple values, or simply an

excuse to show o� a programming trick. An argument like receive that is the next function to be invoked is

called a “continuation.” Recall that we also used continuations to implement the backtracking control structure

in the amb evaluator in section 4.3.3.

552 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwKZQPoCdXJgZylSwAoBbAQwgAsYxUAaRHZDMCs1ASkQG8AoREOboQWJJRp1UJAERpMLAkSyyuJFmw7cA3PwC+-UJFgJEFfPhjIw2XFs4kLVmxjqEsIaPDA8BwkSgxJGpUCgATEigKGAAbJ0trW3coT28ELi49Q2N0pGckjAA3CliQVAxUAA8ABwSXZLAPL1NfPkRBYRwg8URQiKiY+Oi4+sKUtNbMrIMjcDzEWLg4AGsQGowarBgyEnwATzIAIzhYpjga4gpW-D9OoQgEQkQS2MQAXnNLOAg9w5OzogLlcbjMAt1gi9Sh93p9wOFUMBpOF7gFEAB+RDELBwUgHY6nJiyACqYBWYDgAHckMCsNcfIg6F98KhjrFUAAuNSogIcvphSIjeKvTLZOYmBlLVbrDCxChHVDxOUK2L4JjKxUObh8VGPJpQKFvT7OH4kDWxLXq+WK256cGiXqvGFwsAIpH0FFo4SY7G4s3Wi3sThE0lu5GLAOM-KWVlHdlcrg84R8oUkEVi3KtRCUFYVLY7GCwIoVap1UtMSS0ehWlW3HUBGDARAkAgYPWEChgTClkilzL1r2IdsGiAfIdPaJdyq1Yqlcq92pgwcQ3okHjvAB8Q7twn0WNVqEZTZb+FlAenZcXd0H4-1UcI+DHUrWG3N-trNc1pbPKoXNVFSZCCuSBrh8W4pPgO5CHuNqHo2zatkohDEBef79v4g7DswY4KHYeDIaQlbSEwSEqBeeFoUuXrAc265brhepEF2+AaFkHQBDBB4Dl6vqkOWiAkmSFLUlitQ4IkZhQPslxRsysbxmoUGIIYOTzFmOYVLS9IIKh-FEdWEYfkClx0qC3G3s8FxPssL6bNsuxaa05EXGh5wmdpTRURZBoUFsPyPp8lBlmB2YULmdkFkWJa1L2FZUFWjCGTaXAMIBN43o5PjOe5rosX2Xk0aBm7mDUNSxPsbi2PCxDlXQrAAFYUCU+AQNsNRQCQaXpQEFxxXUNQhXUKUlTiEC3DMqkSmYBQ2BouDKChQaJfgcBiBA2oYUBDpILEyhyDNYCyCR80EZaiArWtuizJmDIaRgB0tvqcVSAZ5pqsZII+O9NQQNewhYdEWAKDh6B4QthHxcRzKFJoS2PYQAEBFhrzlBeY4HbOZTRXUKRecjc4VMYHxpa2mU6T2KPY4mN6YndZO2BTBMXs9CWfqqbmfU81ODnyd35mQhYwMWqGU8zoUvYlb0FdttEhZtaIspgjGoMxgxA+gTCi8Ya5eQEEQlJAea-D9bGovoGZqQy+udutmzG795mK22CBMVALE-UwqYMS7KtuyQJuih0k0LHdRCEPDUAs1Db0c6ZX1MMAcrIEwJvmVherhILZifGHSsIJnrQR158Enhg9OoRnWe+H9Xrp-nVcYETgVhZp7lOT2letKl3U9734us0l7MfXHXNKfaPQgXR5l916TvK6ricUMnt4F1l2uIzPN7W4bdv+79OjsZvaLm2b+4stPwi8RHRIAEIRIguf3qkLQMkyzjyZyilm9dluSag4csgAI7lENjXQIkJdrh1kLnI651UDAJVutCa4oFi52dq6KuUR-6YAmC-DI5kaL9EFEMLBhBKrNDyABYO6kW4YCOHSSA1Br792jgGd6i9l6p3llhBEzxPj0JttQDAvCOq4yUiXVs5pUIiPQmlLCEFrLSlfAGd8No2bkTfDI3WXQZZFS3PLI+wgS7ey7L7FiHDZGGO6nPH2qsPZP1tF1GenFz4GKsXrcIBtbY-T3towxhh3HQSUi4w8bihBXxSLfe+AjGFP0mK-aMLI2Sfy8ipFBWYYk0FUbEMBNFIEdVkJk6gsDzTIJumYIpwjsEkEqbgyhBCZZEMGKMWp+p4kZDKb-JArZojIDQOEWUe1CBkEjg-UIGBem5Jlq2GoMQ8RQBGTwAAZEs-kAxhlQHXLCMZFRekWymkgFgJAlpTInosPasgWCwJOfshYiETpkR7H2BpZyelL36YM8O-FLm4C-tQhkpEULfiOc8+WhCBTNPiPlW5WZhydg6pTU5ECLlwq7LAxFMLX6nlRd2GKoLUQ0TeX01AAz8l-iJDiv56SGQ4vIpTNCLzIRNNTNCn+BzB7HO0Ei3oZLZDmmuVyzFZhJHnieYuRlvQiUfLJd8-lnT2VSO-G+fF48mUQpZVeIVEhaHIDgBMuAzD9KSzYSnB23CJyIBEThPVUA9UiKLuI48IqVTSOwZYzCFqFGfGfDKN8MdB4aJUVoseOizl6LgXnUxdiIBMAgqks+cEnWnkBVgV1CMwFIwtSwEGigHnEHIJDAyKbyJHODWlQqU8bFRr9vYkxrsWIsA3tBBNF9wlYBxKQSJAk77hBQDauAcS8HdMSR-BMwTZjUrMLq-V2TuU7QudO21JSAzyoWIuu11T13kOfvUsFjT1UkK3XUqYq6sw1Bch2CAKw53nWiFeuQ56ahUvKUgGoIB8BMMvSsTWBMb1fofe+4p6gMVspDrQ-ATUZBdqNUwL9pqwFYWzZ8XCKaC0S1g3elY268JaiLtLMNU8wm9zfR+vYmGmB1rMXNZATaj7b28fbPx3UT7-LMHdcStqcCGsLctcjiAuG6izbgHNYMCJoYHl+7DsNtB4aUhWuWTj0pVvrdRlOF7MO0c3vRo2viD6Ka9Cx-gk6kAQeLNRm9vLTOoFgY2rVIhCC4hkI2iV86oEccczZ3Ap6GSSZSDhuGvm2lDpvcykhgWKEnrsy5E5LnzlQIuAKzg3nhWnnLmK-8sWZlzIZSsxkp5enSr2k0vsRIEvJZpG3LK34XJpfFXus5oXRhNNq-+Khxnh4eWylcXKJAWs3tTH1uzfNiDAFxLsaDPG2bvXpt9M1gm7xUCzJ8Eyo2sBkHunkB1qIJGpcq+TGKi2fDutrhaw7Okm6hXCi1pweQo7Vn04E3u-qZtMfk8VXgh9HtndsOvA+2nd4mz049k+HEW1EYiU9bt98VtjcHXckdySv4cVA2ekbY2btTFi7ymHa3YHffK-xtHa2NuF1xrFxr8Rcam1Y9q8K1RUAQBAE5F9zD-Uwc+499K9iOEYaoN+4ydZ6tqoGGT2EnxZAHVkGlWmtCHoTfQ4PabNRZvcy9HyJpovtnQOwVLmml3dnVPlwPZ7yuE5J3g2ldXELNfi6KbrwcMvwpFO4wr-1PP+O-Ut2syINuBLrvt16R3FR10u+Nyaj3qu0RW5F-qLZ4urMB7REHjAVnQ9QzgxHr3GvY-OgEu5nAieAjJ-z1ByH7OM8myz9bnPYuBI47IIX70+vNhE-G2Xybiu3Iq69xDwgIYhJUmHRFhkUkZJvxjMksdKPbq0OPT4LBVRNmxdmTAUgRBF9MDACAWIOS7Nz50uv0ROehe9GzwjPfQW8jTgZ0zte4Ai6xdTGI6fZgnb74ZlUG-zP79dr8nNgITsT+kOf+1O7Wd0iqXYWA+w2SZ0cay+2WUiS0sa+ojiNOokqQi2P4NoC+oyOA60QsG022SabA2+ww1QmyGaoakIeBqABBxypBm+pB8asEra4CvQ5BdI0AWBqokKOBw0+mEc70UsCmR8WE9Ai+26Y4zK5BTGN4hKp4HgdUxy5B26keR8mINBdBEETAD2fcK+EM4UEBqQ0B4hOCkOuhnOvccaOhlhN4Usahm8fImhZm+hBa4U7+yhEhuMNhthvhQg1hHOfhaIUsQOPc+gqSL+COcYMgjEOIO+KEh+d2hBNEHBmBb0JAsRpw7IqaiRFhg4ghU2hGeR6U6w4Q1wFQEEBRneLC9AshR8hKKBIaR84RQ24GmGoE8s7IBoX6Y4W+O+SkL6-GgGJAVQfggRwgPRy22WVQvOV6pschMssg4QCA1m46AQgxj6HRJMxBfR8QX6x26UV8sgAAomQO1PsLenznyAAAoADy1xSOg4ISrBmad4tqA0nwTS+xTRCsmGY4qY3x+mNE7xPxASu4qIgxdAgspQMAAAXjIJQUIJMYgLsT8TREsSsbIGscIIMZnPgLMlAFkpwJYEvIQQsWcsSRBmgLnrICRsUvppiHSfprzP-FSYeLXrSQlgyfxi5A4WrtmKyaSTSVCbADCfCY3oHlGNCbtPCWuMyViO2n6IJOSIPiIAgs8EyF+lyBWIKWgBEaqr0HiQSTQK0eFKhjFp0egLePWmOLIAAFTgAHQkp2lYkQldKWoEDGlMKUmkmIlsESC6nsla4KASlJ7WlmLyk+nUkcmKyhmSmUxyzhnMRjiUwHxgm9x8hXxRmJTFFojKnCSHLwLlAam04VAppT7I4GlIBGnXAmmRHMimi5j7DHSPBYDhCC4ErTKni7FzStntl8lF6IDVTugkqKaZnAKlAkBNlMBNJNJ4G4j9mZAPaYhzkM4Lm3APZ8gmi-DTkPwkLzltnjR2aUaqwpo3qobyDoDPrunKZUYpo-pYznl5qkCyCxnAa-qmkVD0CUgYBGpbGvHPA-RjjsbPkPoQCPEPAWocLAW0IXkcIQXeSXFXowXhT-peRdE7LbrtK2BAIgLrS9GkFKQYVQDjIXABRxYdS8oikwBikVBfqwK5ndThr-qyDUW0VqC0YYXFrRDRFPh7TY7gXwbqgXLwVm5LwARunsqlBLAQDlGiYqCcpJasElzbmKWJTcXyjshx5DmuiIjIh+n2j4RkQ8XshjiuFkpIHN7mlcopSMWbwaXRFMbPFEYBBXyWWyAACy2+sAZUFxYYHoIgRlxAfICFlZy4ixxa0lPw5R4QrpYVQggxPqGw1lSlRG+MRoDZvwllDlWlaJMsTotew5yI3Jbl2g-eKpIk5Z3IGZ3uvBIo+pOJ7p9OjORA-5Hqd4XqKAoM88Na+82xCE3ZpBghBx5JkIGJ9AcVTxYO+m7+1+LVd+YAJAZ+bsmQa4PxVZokX+CJoJ386x7pNZhJ3pgZfpNE2ZNJHYWAUAcZTe4aH2t50ans4ys1uFiCV0nOKRn+LV21ykkZgZwp+o0lWFQ6KeRZr111QgmIQCiZJFFRl+TkL1hsY4QCaZv1JJ0ZWuUVslRA8lxA4NGI5gO+0V2NKaqNbJNJKGz5eNmISVONWApNQpHJKQgNM2VNAu0NpFyu6MpUKsgoHNSutoP1NVZ1MZmGrNX69N6N4uLN3JMNZcyu8pWZgZ5VBZapxZBoTIRqFZ4JG1B1dZaBd0f5xaS0-NTAmR8RORMhacFqRqKFX5qAP5f5Xkq2lQ8U1G4MWoIUFhf5EuhNWNZZlN6gRtXKPhPcQdxJXk3tTNO+ctnMTQagvWyuEdPGcgUdFoz1oNhs1VTF78ySGRLscR2REy5BSRtGp1PGdmF1HURqN63tld8dBOFNQVqaPVLE7OYdZJVBvQJ5fsjd4M4mUM7dbWgxTsxaLd-dRaz5Z0iKjs3VtiPdoMqGbdk9JyD55Q+GY1yxE1dmpRcllR2h1R1dVtd4QFyGC9oF7OtJ4FeMUFScImi9Hesg8F19d4yJtdotz9lknNzcEscgLN69vQztYQWSJMd4xUb+cNVWn1t+529+M1T0+md0zV0DP2XSnUR8s1h+Rc3cm8MceRMGeRHseRPOeRcGeRZFmQ2DXocaYo-AWEyAEAAyNt7wqIBtydaUvKFAsChSXDV1tldh-FFyOADeTATgTARwU8FAiAAApIgOI5Q91Lyu8LAqI7IxI7nuI3w4OGSk4trmQkcEdPprnGaHtC5LIEo8NEctw8NDiiQAAAzTDyM3jO5vjyAMPCKYkUP6YPTQIlImN1A-IN4WO4D7RqDHTIByD6MONeOJCzQS6ebhNWOaPdTeP6NhNyC8NJPpQh4uNoKROZNeiuMDKb3WYAQj2T1j30OMMP2cNMAABMtjAAbDMGU03egippU7+Q-ak4gAACz2N6CV0kAdPV16C92nQVNuMX2cNZBAA

Computing with Register Machines 5.2.2

return for_each(

inst => set_instruction_execution_fun(

inst,

make_execution_function(

instruction_text(inst),

labels,

machine,

pc,

flag,

stack,

ops)),

insts);

}

The machine instruction data structure simply pairs the instruction text with the correspond-

ing execution function. The execution function is not yet available when extract_labels

constructs the instruction, and is inserted later by update_insts.

Ifunction make_instruction(text) {

return pair(text, null);

}

function instruction_text(inst) {

return head(inst);

}

function instruction_execution_fun(inst) {

return tail(inst);

}

function set_instruction_execution_fun(inst, proc) {

set_tail(inst, proc);

}

The instruction text is not used by our simulator, but it is handy to keep around for debugging

(see exercise 5.16).

Elements of the label table are pairs:

Ifunction make_label_entry(label_name, insts) {

return pair(label_name, insts);

}

Entries will be looked up in the table with

Ifunction lookup_label(labels, label_name) {

const val = assoc(label_name, labels);

return val === undefined

? error(label_name, "Undefined label in assemble:")

: tail(val);

}

553 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwKZQPoCdXJgZylSwAoBbAQwgAsYxUAaRHZDMCs1ASkQG8AoREOboQWJJRp1UJAERpMLAkSyyuJFmw7cA3PwC+-UJFgJEFfPhjIw2XFs4kLVmxjqEsIaPDA8BwkSgxJGpUCgATEigKGAAbJ0trW3coT28ELi49Q2N0pGckjAA3CliQVAxUAA8ABwSXZLAPL1NfPkRBYRwg8URQiKiY+Oi4+sKUtNbMrIMjcDzEWLg4AGsQGowarBgyEnwATzIAIzhYpjga4gpW-D9OoQgEQkQS2MQAXnNLOAg9w5OzogLlcbjMAt1gi9Sh93p9wOFUMBpOF7gFEAB+RDELBwUgHY6nJiyACqYBWYDgAHckMCsNcfIg6F98KhjrFUAAuNSogIcvphSIjeKvTLZOYmBlLVbrDCxChHVDxOUK2L4JjKxUObh8VGPJpQKFvT7OH4kDWxLXq+WK256cGiXqvGFwsAIpH0FFo4SY7G4s3Wi3sThE0lu5GLAOM-KWVlHdlcrg84R8oUkEVi3KtRCUFYVLY7GCwIoVap1UtMSS0ehWlW3HUBGDARAkAgYPWEChgTClkilzL1r2IdsGiAfIdPaJdyq1Yqlcq92pgwcQ3okHjvAB8Q7twn0WNVqEZTZb+FlAenZcXd0H4-1UcI+DHUrWG3N-trNc1pbPKoXNVFSZCCuSBrh8W4pPgO5CHuNqHo2zatkohDEBef79v4g7DswY4KHYeDIaQlbSEwSEqBeeFoUuXrAc265brhepEF2+AaFkHQBDBB4Dl6vqkOWiAkmSFLUlitQ4IkZhQPslxRsysbxmoUGIIYOTzFmOYVLS9IIKh-FEdWEYfkClx0qC3G3s8FxPssL6bNsuxaa05EXGh5wmdpTRURZBoUFsPyPp8lBlmB2YULmdkFkWJa1L2FZUFWjCGTaXAMIBN43o5PjOe5rosX2Xk0aBm7mDUNSxPsbi2PCxDlXQrAAFYUCU+AQNsNRQCQaXpQEFxxXUNQhXUKUlTiEC3DMqkSmYBQ2BouDKChQaJfgcBiBA2oYUBDpILEyhyDNYCyCR80EZaiArWtuizJmDIaRgB0tvqcVSAZ5pqsZII+O9NQQNewhYdEWAKDh6B4QthHxcRzKFJoS2PYQAEBFhrzlBeY4HbOZTRXUKRecjc4VMYHxpa2mU6T2KPY4mN6YndZO2BTBMXs9CWfqqbmfU81ODnyd35mQhYwMWqGU8zoUvYlb0FdttEhZtaIspgjGoMxgxA+gTCi8Ya5eQEEQlJAea-D9bGovoGZqQy+udutmzG795mK22CBMVALE-UwqYMS7KtuyQJuih0k0LHdRCEPDUAs1Db0c6ZX1MMAcrIEwJvmVherhILZifGHSsIJnrQR158Enhg9OoRnWe+H9Xrp-nVcYETgVhZp7lOT2letKl3U9734us0l7MfXHXNKfaPQgXR5l916TvK6ricUMnt4F1l2uIzPN7W4bdv+79OjsZvaLm2b+4stPwi8RHRIAEIRIguf3qkLQMkyzjyZyilm9dluSag4csgAI7lENjXQIkJdrh1kLnI651UDAJVutCa4oFi52dq6KuUR-6YAmC-DI5kaL9EFEMLBhBKrNDyABYO6kW4YCOHSSA1Br792jgGd6i9l6p3llhBEzxPj0JttQDAvCOq4yUiXVs5pUIiPQmlLCEFrLSlfAGd8No2bkTfDI3WXQZZFS3PLI+wgS7ey7L7FiHDZGGO6nPH2qsPZP1tF1GenFz4GKsXrcIBtbY-T3towxhh3HQSUi4w8bihBXxSLfe+AjGFP0mK-aMLI2Sfy8ipFBWYYk0FUbEMBNFIEdVkJk6gsDzTIJumYIpwjsEkEqbgyhBCZZEMGKMWp+p4kZDKb-JArZojIDQOEWUe1CBkEjg-UIGBem5Jlq2GoMQ8RQBGTwAAZEs-kAxhlQHXLCMZFRekWymkgFgJAlpTInosPasgWCwJOfshYiETpkR7H2BpZyelL36YM8O-FLm4C-tQhkpEULfiOc8+WhCBTNPiPlW5WZhydg6pTU5ECLlwq7LAxFMLX6nlRd2GKoLUQ0TeX01AAz8l-iJDiv56SGQ4vIpTNCLzIRNNTNCn+BzB7HO0Ei3oZLZDmmuVyzFZhJHnieYuRlvQiUfLJd8-lnT2VSO-G+fF48mUQpZVeIVEhaHIDgBMuAzD9KSzYSnB23CJyIBEThPVUA9UiKLuI48IqVTSOwZYzCFqFGfGfDKN8MdB4aJUVoseOizl6LgXnUxdiIBMAgqks+cEnWnkBVgV1CMwFIwtSwEGigHnEHIJDAyKbyJHODWlQqU8bFRr9vYkxrsWIsA3tBBNF9wlYBxKQSJAk77hBQDauAcS8HdMSR-BMwTZjUrMLq-V2TuU7QudO21JSAzyoWIuu11T13kOfvUsFjT1UkK3XUqYq6sw1Bch2CAKw53nWiFeuQ56ahUvKUgGoIB8BMMvSsTWBMb1fofe+4p6gMVspDrQ-ATUZBdqNUwL9pqwFYWzZ8XCKaC0S1g3elY268JaiLtLMNU8wm9zfR+vYmGmB1rMXNZATaj7b28fbPx3UT7-LMHdcStqcCGsLctcjiAuG6izbgHNYMCJoYHl+7DsNtB4aUhWuWTj0pVvrdRlOF7MO0c3vRo2viD6Ka9Cx-gk6kAQeLNRm9vLTOoFgY2rVIhCC4hkI2iV86oEccczZ3Ap6GSSZSDhuGvm2lDpvcykhgWKEnrsy5E5LnzlQIuAKzg3nhWnnLmK-8sWZlzIZSsxkp5enSr2k0vsRIEvJZpG3LK34XJpfFXus5oXRhNNq-+Khxnh4eWylcXKJAWs3tTH1uzfNiDAFxLsaDPG2bvXpt9M1gm7xUCzJ8Eyo2sBkHunkB1qIJGpcq+TGKi2fDutrhaw7Okm6hXCi1pweQo7Vn04E3u-qZtMfk8VXgh9HtndsOvA+2nd4mz049k+HEW1EYiU9bt98VtjcHXckdySv4cVA2ekbY2btTFi7ymHa3YHffK-xtHa2NuF1xrFxr8Rcam1Y9q8K1RUAQBAE5F9zD-Uwc+499K9iOEYaoN+4ydZ6tqoGGT2EnxZAHVkGlWmtCHoTfQ4PabNRZvcy9HyJpovtnQOwVLmml3dnVPlwPZ7yuE5J3g2ldXELNfi6KbrwcMvwpFO4wr-1PP+O-Ut2syINuBLrvt16R3FR10u+Nyaj3qu0RW5F-qLZ4urMB7REHjAVnQ9QzgxHr3GvY-OgEu5nAieAjJ-z1ByH7OM8myz9bnPYuBI47IIX70+vNhE-G2Xybiu3Iq69xDwgIYhJUmHRFhkUkZJvxjMksdKOGTrHCNcCoEEI7vTZzxhDFqfoidQ+z2QP0kf-QtRwzfeaIYK9kBwvfDwLVfrHEauQX6L-eQFzfnjcgZsP5oqtyo8VOo3hSCFJ2x6VWVQDOTOa84AP+PckS+md09OjOzOXSEBM8gBOkRAVQoise3cm8McD2wgMGOBQgHs+BiAPORBcGRBFw40mBXocaQ2tCiqXYWA+w2SZ0casWsyMApAUiS0sa+ojiNOokqQi2P4NoWCaBx060QsG022SabAIAsQww1QmyGaoakIOAEhZmYAchgImh8h8asEra4CvQihdI0AwhqokKohmyTA+mS+U2hGRBWE9AaB26Y4zKihTGN4hKp4HgdUxyih26keR8mIahqAkhthHOnO7BEM4U9BqQTBThOCkORBnO3Uca1hKRN4UsgRm8fIIRYRURBa4UyBYAfhzhuM6RGRlRQgaRERVRAQUsQOPc+gqS0+00E+cYMgjEOI8hKEqBoyRqdwNExhQhb0JAXRpw7IqafRVB7i4RUsCmlRs+8+26LEEEU2d2V0lRhKvBIaR8zRtB4U-6YC7IBo1+nwOhsQSkL6-GgGJAVQfgtRQgZx-G2WVQvOV6psnhMssg4QCA1m46AQ1xj6oERGO2sh8hZGfOx26UV8sgAAomQO1PsLenznyAAAoADyaJD+oO+hRGmad4tqA0nwTSX6HhwgzxqYZJuxaINERJNJASu4qI1xdAgspQMAAAXjIMoU8ZhmOBcTSTRD8X8bIACcINcZnPgLMlAFkpwJYEvFIV8WcnKRBmgLnjvoBo3oHjcR+vprzP-KqYeLXjvglvppiMCdkWrtmAaQqeqaybAOyVyVqUnlGGybtFyWuHqViO2n6IJOSIPiIAgs8EyF+lyBWDaWgC0aqr0JKdKTQAcRUKhjFvLCcbePWmOLIAAFTgAHQkqZminMldKWoEBxlMIqkKk8mGESARlGla4KDOlF5plmJenllqnGmKwNkumUxyxNnMRjiUwHyMm9x8hXytmJTJFoh+nCSHLwLlDBm06JnH5T7I7RlICxnXDxmtGJKmi5j7DiG4jhCC4ErTKngXFzSPBYCHmWmNnVTugkqKYjnAKlAkC7lMBNJNJqEHnjTXkukfkM5fk-m8jMg7moB7kPwkKfmXnjR2aUaqwpo3qobyDoDPpFnKZUYpo-pYwIXH537IXAa-oJlsCoCUgYC35r53gb7NzhSIW754wH5JzP7UU4Vn5JwP5YTPF3RHFKSplQDjLFEp6zmIJGmIACmog8XjIUFPh7S8r2kwCOkVD34VFVHhr-qyCyXyVqC0apnFrRAdFSXhzY4QCwImzqgXLn5m5LwASFnsqlBLAQDLFJlcoGElwmi-DcEiD4RkS6Xshx6IC3nIiVn2ieW9HyjshjgFFkruXsY4UnIpQTlHw6WhWbGDghIGEBBXzuWyAACychsAZUyJYYHoHl4MfIOJTJSpkIPywVqatlPw8+4QBZK54pRZPqGwjlSWBh+MRowFbl2gx01VEySVr2MsTote-lHoZp3pHanKwYAkpI-pIkKaCYXpFOaYpQtGQ5xBRZsBTO3JnVnqvBIm88Na+8JMMhZ5cagVKhvQwp9AjVKVYO+m-FO18BJR2eD4mQa4NJq5okIBRAX1aUm1m1EpJZG5ZZNZlZNEY56pHYWAUAnZQgmI4aH2aF0ansfFQWeQAlCCoC31fcQxwBcB3Jg5LZNZdp+otl267StgQCIC60CNGIcCgCPZvFC+mNTktNQlY4QCJNw51p8pbZWutV9lRAomKgDNmIwtDlx+pNAttZ4uKGx+EtiwNkMoKasthp5NHY8hZce2TQytkl72OyutAUJUlwroUQElpuAubEm1N4+pctMNmGytX6Gttpxpb+k1rNJtXpo5NZ-eC1M5QZBoTIRqy55V11a5oNMp1AhFt+xaS0Su704xPRUx7hacFqRqjFFQ9AJFZFVxuIX+WSCd2gIU+Bt+Eu8hdVotKaag1G4MWow0D2JdcpXkFdKQlNb+6gFBbdL+alFNOt-FnNhs3IPc9QH8YxLs3RkxEyihGxtGUNPGdmsNHUAxsWFdK9ddBOitA1x1LE7OLdipkdKAoMe9JAO94M4mUMh9bW1xTsxaZ9B9x+Z0iKjsp9tifsF9YmT9A1JymF5Q+GlVvxd1hFxRlhN6BR0xIlWhBO-FfRRc5O1eCMdmz1hNoB524BZOQuvQqYYiW5EaVNQ604f1YBJRXafkc2AQTsuDkOFD1ORmWEyAEAAyWd7wqId0t+aUvKFAsChSvD8NcVmR0lFyOADeTATgTARwU8FAiAAApIgFIzMelLyu8LAhIwo9I7nlI4I4OGSk4trmQkcEdPprnGaHtC5LIKo8NEcnw8NDiiQAAAzTBKODjO5vjyDMPCIimZAuNegPTQIlLmN1A-IN7WO4D7RqD9VyBGPOP6b+M8NRO2M6PdT+NGOJMCPJPpQh7uNoIxOZNegeMDLAPWYAT33P1n1MMsMd4S6wIABMDjAAbDMGU7vR-SxJU6RdU2k4gAACxON6Ar3n2eMDF6Bf1kQVPDPVM8NZBAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwKZQPoCdXJgZylSwAoBbAQwgAsYxUAaRHZDMCs1ASkQG8AoREOboQWJJRp1UJAERpMLAkSyyuJFmw7cA3PwC+-UJFgJEFfPhjIw2XFs4kLVmxjqEsIaPDA8BwkSgxJGpUCgATEigKGAAbJ0trW3coT28ELi49Q2N0pGckjAA3CliQVAxUAA8ABwSXZLAPL1NfPkRBYRwg8URQiKiY+Oi4+sKUtNbMrIMjcDzEWLg4AGsQGowarBgyEnwATzIAIzhYpjga4gpW-D9OoQgEQkQS2MQAXnNLOAg9w5OzogLlcbjMAt1gi9Sh93p9wOFUMBpOF7gFEAB+RDELBwUgHY6nJiyACqYBWYDgAHckMCsNcfIg6F98KhjrFUAAuNSogIcvphSIjeKvTLZOYmBlLVbrDCxChHVDxOUK2L4JjKxUObh8VGPJpQKFvT7OH4kDWxLXq+WK256cGiXqvGFwsAIpH0FFo4SY7G4s3Wi3sThE0lu5GLAOM-KWVlHdlcrg84R8oUkEVi3KtRCUFYVLY7GCwIoVap1UtMSS0ehWlW3HUBGDARAkAgYPWEChgTClkilzL1r2IdsGiAfIdPaJdyq1Yqlcq92pgwcQ3okHjvAB8Q7twn0WNVqEZTZb+FlAenZcXd0H4-1UcI+DHUrWG3N-trNc1pbPKoXNVFSZCCuSBrh8W4pPgO5CHuNqHo2zatkohDEBef79v4g7DswY4KHYeDIaQlbSEwSEqBeeFoUuXrAc265brhepEF2+AaFkHQBDBB4Dl6vqkOWiAkmSFLUlitQ4IkZhQPslxRsysbxmoUGIIYOTzFmOYVLS9IIKh-FEdWEYfkClx0qC3G3s8FxPssL6bNsuxaa05EXGh5wmdpTRURZBoUFsPyPp8lBlmB2YULmdkFkWJa1L2FZUFWjCGTaXAMIBN43o5PjOe5rosX2Xk0aBm7mDUNSxPsbi2PCxDlXQrAAFYUCU+AQNsNRQCQaXpQEFxxXUNQhXUKUlTiEC3DMqkSmYBQ2BouDKChQaJfgcBiBA2oYUBDpILEyhyDNYCyCR80EZaiArWtuizJmDIaRgB0tvqcVSAZ5pqsZII+O9NQQNewhYdEWAKDh6B4QthHxcRzKFJoS2PYQAEBFhrzlBeY4HbOZTRXUKRecjc4VMYHxpa2mU6T2KPY4mN6YndZO2BTBMXs9CWfqqbmfU81ODnyd35mQhYwMWqGU8zoUvYlb0FdttEhZtaIspgjGoMxgxA+gTCi8Ya5eQEEQlJAea-D9bGovoGZqQy+udutmzG795mK22CBMVALE-UwqYMS7KtuyQJuih0k0LHdRCEPDUAs1Db0c6ZX1MMAcrIEwJvmVherhILZifGHSsIJnrQR158Enhg9OoRnWe+H9Xrp-nVcYETgVhZp7lOT2letKl3U9734us0l7MfXHXNKfaPQgXR5l916TvK6ricUMnt4F1l2uIzPN7W4bdv+79OjsZvaLm2b+4stPwi8RHRIAEIRIguf3qkLQMkyzjyZyilm9dluSag4csgAI7lENjXQIkJdrh1kLnI651UDAJVutCa4oFi52dq6KuUR-6YAmC-DI5kaL9EFEMLBhBKrNDyABYO6kW4YCOHSSA1Br792jgGd6i9l6p3llhBEzxPj0JttQDAvCOq4yUiXVs5pUIiPQmlLCEFrLSlfAGd8No2bkTfDI3WXQZZFS3PLI+wgS7ey7L7FiHDZGGO6nPH2qsPZP1tF1GenFz4GKsXrcIBtbY-T3towxhh3HQSUi4w8bihBXxSLfe+AjGFP0mK-aMLI2Sfy8ipFBWYYk0FUbEMBNFIEdVkJk6gsDzTIJumYIpwjsEkEqbgyhBCZZEMGKMWp+p4kZDKb-JArZojIDQOEWUe1CBkEjg-UIGBem5Jlq2GoMQ8RQBGTwAAZEs-kAxhlQHXLCMZFRekWymkgFgJAlpTInosPasgWCwJOfshYiETpkR7H2BpZyelL36YM8O-FLm4C-tQhkpEULfiOc8+WhCBTNPiPlW5WZhydg6pTU5ECLlwq7LAxFMLX6nlRd2GKoLUQ0TeX01AAz8l-iJDiv56SGQ4vIpTNCLzIRNNTNCn+BzB7HO0Ei3oZLZDmmuVyzFZhJHnieYuRlvQiUfLJd8-lnT2VSO-G+fF48mUQpZVeIVEhaHIDgBMuAzD9KSzYSnB23CJyIBEThPVUA9UiKLuI48IqVTSOwZYzCFqFGfGfDKN8MdB4aJUVoseOizl6LgXnUxdiIBMAgqks+cEnWnkBVgV1CMwFIwtSwEGigHnEHIJDAyKbyJHODWlQqU8bFRr9vYkxrsWIsA3tBBNF9wlYBxKQSJAk77hBQDauAcS8HdMSR-BMwTZjUrMLq-V2TuU7QudO21JSAzyoWIuu11T13kOfvUsFjT1UkK3XUqYq6sw1Bch2CAKw53nWiFeuQ56ahUvKUgGoIB8BMMvSsTWBMb1fofe+4p6gMVspDrQ-ATUZBdqNUwL9pqwFYWzZ8XCKaC0S1g3elY268JaiLtLMNU8wm9zfR+vYmGmB1rMXNZATaj7b28fbPx3UT7-LMHdcStqcCGsLctcjiAuG6izbgHNYMCJoYHl+7DsNtB4aUhWuWTj0pVvrdRlOF7MO0c3vRo2viD6Ka9Cx-gk6kAQeLNRm9vLTOoFgY2rVIhCC4hkI2iV86oEccczZ3Ap6GSSZSDhuGvm2lDpvcykhgWKEnrsy5E5LnzlQIuAKzg3nhWnnLmK-8sWZlzIZSsxkp5enSr2k0vsRIEvJZpG3LK34XJpfFXus5oXRhNNq-+Khxnh4eWylcXKJAWs3tTH1uzfNiDAFxLsaDPG2bvXpt9M1gm7xUCzJ8Eyo2sBkHunkB1qIJGpcq+TGKi2fDutrhaw7Okm6hXCi1pweQo7Vn04E3u-qZtMfk8VXgh9HtndsOvA+2nd4mz049k+HEW1EYiU9bt98VtjcHXckdySv4cVA2ekbY2btTFi7ymHa3YHffK-xtHa2NuF1xrFxr8Rcam1Y9q8K1RUAQBAE5F9zD-Uwc+499K9iOEYaoN+4ydZ6tqoGGT2EnxZAHVkGlWmtCHoTfQ4PabNRZvcy9HyJpovtnQOwVLmml3dnVPlwPZ7yuE5J3g2ldXELNfi6KbrwcMvwpFO4wr-1PP+O-Ut2syINuBLrvt16R3FR10u+Nyaj3qu0RW5F-qLZ4urMB7REHjAVnQ9QzgxHr3GvY-OgEu5nAieAjJ-z1ByH7OM8myz9bnPYuBI47IIX70+vNhE-G2Xybiu3Iq69xDwgIYhJUmHRFhkUkZJvxjMksdKPbq0OPT4LBVRNmxdmTAUgRBF9MDACAWIOS7Nz50uv0ROehe9GzwjPfQW8jTgZ0zte4Ai6xdTGI6fZgnb74ZlUG-zP79dr8nNgITsT+kOf+1O7W6w4Q1wFQEEEc70bOPGCGFqP0ImqG7OsgP0SO-0FqHCyBeaEMCusgHCGBDwFqX6Y4RqcgX6RB3kAuZBPGcgM2VBNEq2lQ8UnUN4KQIUb+l+7cn+jO3+YAbBPckS+md09OfBd+ByghM87+Ey1QR+CM3cm8McD2wgMGKhQgHs6hiAPOWhcGWhFw40ihXocadmchdI0AP4NoC+oyOA60QsG022SabA2+wwchx2aINEthqA9hxyLhm+Lh8asEra4CvQZhi2lhqokK1hw0+mMBU2hGWhWE9Ai+26Y4zKbhIa3UhKp4HgdUxych26keR8mIXhPhEETAWh3UK+EM4UiqXYWA+w+RKRXalRnO6UcaFRbRN4UsRRm8fIpRZm1RBa4U7+TROCsenRXRUxQgHRHO0xaIUsQOPc+gqSL+COcYMgjEOIO+KEh+d2DhNEYRFhb0JAWxpw7IqaexrRAQcRiuCRUx4BkB26LE5RneLC9ATGhihK+okE1xu4BOd0-6YC7IBopBnwW+O+SkL6-GgGJAVQfgcxwgYJ-G2WVQvOV6psN4NEsg4QCA1m46AQ0Jj6oERGO2zhO+ZGfO7hN4V8sgAAomQO1PsLenznyAAAoADybJVBoOQRRGmad4tqA0nwTSX6nxSJmGY4qYYpmRHhMsQpspASu4qI0JdAgspQMAAAXjIBmhKXzmOBCbELKdibifQLIAScINCZnPgLMlAFkpwJYEvA4ViTLA6RBmgLnmgYBo3oHjCR+vprzP-O6YeLXmgQlvppiMSb0WrtmEGU6Z6WqbABqdqT6UnlGOqbtNqWuAGViO2n6IJOSIPiIAgs8EyF+lyBWHGWgKsaqr0NabaTQENrQqhjFvLCCbePWmOLIAAFTgAHQkrdnmkqldKWoEANlMJulOm6lbRnKTkemhkKCplF4dlmI5lzkhla6KxLlpmUxywrnMRjiUwHxKm9x8hXzrmTGBIFnCSHLwLlClm04VAppT7I61lID1nXCNlrHMimi5j7DHSPBYDhCC4ErTKniGlzSAXAXRnLnVTugkqKZnnAKlAkB-lMBNJNK2G4jQWZAPaYiYUM7YW3APZ8gmi-BoUPwkJYVAXjR2aUaqwpo3qobyDoDPojnKZUYpo-pYxMW4EUGsXAa-pNnhT0CUgYDkEIF3hIHNzhTMXoF4xYFJy0GyV8UEFJxUFYTImAmYZrhKTtlQDjIyFAIgLrQGkuF6XoA7JlzK5Ph7S8qJkwDJkVCUGXlTHhr-qyAOVOVqC0btnFrRAbG2XhzY4QCwImzqgXKEFm5LwATDnsqlBLAQBPEtlcrBElxkWcrBgiD4RkQBXshx6IBwXIjTlyk5W7HyjshjhDFkpLRxQqVlWkAnIpR-Ezz+UVVXQ3ghLBEBBXy1UCQACy2+sAZUzJYYHo2V4MfIPJypLpZyPyDV90O+PwkB4QQ5r5lpI5PqGwKVSWwR+MRoP5vwfVbVGxr2MsToteRVHoEZuZHamViU15RZz53Ip53uURIoNZG17KYhTOOpe1nqPxIm88Na+8JMThEFcaJVb5Akpp+JaUXV-JRi3BVWvBt+529+Z+bsmQul+mhxqNRAONnV38hJI5H5dpE5VZzpy4rplNnpHYWAUA25QgmI4aH2HF0anshlyNOkxliCHVj2eNX+Opx5a5tNoZKQCV267StgvNhsTNGIcCgCe5BlUB3NMtd5fNY4QCItr165npCVy1RAomKg8tmIBtSVRtKaotjp85WuKGuBptiwNkMoVtutYtWuEtO+1lnMTQjtBhyt4y-txopUKsgogdpuAubEJ56UgZNtG58emGjtX61twZnpDBN1Kt1l+AOZ55lN-ehZIkOAJZBoTIRqL5M1oakIZNX5NOze5BxaS0Su70ZxOxlxbhacFqRqylFQol4ldBXkzBYQWSDd2gIU6h5BEuS1FtT5Dt6gI9SWrl6U89-8XkE9ntFoDB6gBhq9dBnl+oktRlGtctMFwg9QH8pxLs2xFxshG+7x3A+GkIRqdm9NHURqN6E9L9agONtd9tC1wNLE7Oy9N69Ffsv94M4mUMQDBOTsxa-9EDRauBZ0iKjsoMcDYDYmgDiDJy3F5QD9vQOJeJQ5tdd0dRqQjRUifVcay+2WFD2gsaPxyC-AWEyAEAAyXd7wqId05BaUvKFAsChS-DjNzV3RdlFyOADeTATgTARwU8FAiAAApIgDI0Yd1Lyu8LAlI0o7I7njI8I4OGSk4trmQkcEdPprnGaHtC5LIOo8NEcgI8NDiiQAAAzTAqM3jO5vjyCsPCKEOZBuODgPTQIlKWN1A-IN62O4D7RqDHTIByAmOuP6aBN8MxNxM+X+NeiBMmMpNBN+P6Yh6eNoLxN6M3heMDKw0+V6AwOINoPeOoHJOIAABMTjAAbDMFU3-bYqA7Ux3gI0wAACwuOVOAwdQsNsPwF6DoNkQ1NjP4F8NZBAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwKZQPoCdXJgZylSwAoBbAQwgAsYxUAaRHZDMCs1ASkQG8AoREOboQWJJRp1UJAERpMLAkSyyuJFmw7cA3PwC+-UJFgJEFfPhjIw2XFs4kLVmxjqEsIaPDA8BwkSgxJGpUCgATEigKGAAbJ0trW3coT28ELi49Q2N0pGckjAA3CliQVAxUAA8ABwSXZLAPL1NfPkRBYRwg8URQiKiY+Oi4+sKUtNbMrIMjcDzEWLg4AGsQGowarBgyEnwATzIAIzhYpjga4gpW-D9OoQgEQkQS2MQAXnNLOAg9w5OzogLlcbjMAt1gi9Sh93p9wOFUMBpOF7gFEAB+RDELBwUgHY6nJiyACqYBWYDgAHckMCsNcfIg6F98KhjrFUAAuNSogIcvphSIjeKvTLZOYmBmUFYVLY7GCwIoVap1ZVMSS0ehMWIUI6oWK3PiomDARAkAgYR5NaJgTDKkjKzKGtHCS3PCAfRCu6222rFUrle21MHOwKQkg8d4APk9egC+ix+tQjJNZvwGG1utilVqgZqjv8Ia9jKt+A9S1W63TOr1JAzevwWurWeVVczudFPK6ol64Y+0ZS+Fjwnj9aTxtN5qUhGI2ZVQbuIc9TygzA9CjseGnpHV0iYU5Us437eDzohPYj0fXlqINvwGiyHTjCZZTpD2NxuaJpPJVKQypwiRmFA+yXMWzKskc7JcieiCGDk8ytIgUoVLS9IILOn5IVQGqMIsTYNkClx0qCr4PMuhFlssawbLKuyoa0h4XO25xEWhTQwUWFBbD8pafJQKp9lh0qbNsZDyjAioYbhO6anhma3AwnaLsp9E+IxrFgOEd4OjBZ5IL2UbmDUNSxPsbi2PCxCmXQrAAFYUCU+AQNsNRQCQSnKWiFxqlxJA1IJdRcEwXE4hAtwzPBEpmAUNgaLgygzuwnBMPgcBiBA3CkaGvSxMocgxWAsh7vFW4OLhqXpbosy5IhyEYAVZpWj5UiyXW+osSCPgETUEALi65HRFgChrugG4Jdu2G7syhSaElMgpB2ARFq85Szh6BV+mUSo5gtQ5kVaUJbRgxgfB55qqehdordteYeZidUXbYV3+jdzU4Y28kdcRXVcB5fJ1bR4mSc9R2qlhLW4W1tx7dl+kXllAQspg16oLegxDegTDXcd4DhjBAQRCUkAyr8PUPqi+hijVDKExQxObKTvVZUjFoIDeUB3j1TBCiQV5s6jHN+b1oodJFCx1UQhCNYQb1TVDX1sQRwDasgTBk1lRaWuE4lmJ8kvIwg2utNLUAweOqYYI9GFazrvh9c6muG7bONIHxFDCVbdo260imeX7-vg+9cn1groIw+C3Zw4JBYB4uLMo2jysUKrS6ac7xh4+HscE+ERMZQzQvk9nzqUxTz5JjHaLvqQKREgAQhEiD68WzQLEyzgQVBagw3B4oLPreyoAAjuUxP27Dix5bI+tFYgLIj6jGURX3iH66zafG2vEwtD4496fyAw81vVqTLvy-U2YdVHHSkDUCbsutfhTBJyn6uV0WCLPJ8190zQGCf25XaRoUzmjahhAB+YPJFgHJRCsGw2q1ifsHZsvoEEQPxl2HoUdDKV2LsIc2fMbQCzvC-SBeDPLx35mjLmLcOYYLwSORMCNyE5zziTQuWcGEeQDqXJ8o5mFCGrvfRAsgG7hEQD-W+tDT5mHbpYTunJu4U2qghBkkiaCIMzHvSOk8payHUdQWebVz6qLMAY-+qApbmO3nkbRWCD6CiGCQaxJ8d4ZBMVFJA5pojIDQOEdMeVCBkCgNzUIGAfF2MhOaGoMQ8RQGCTwAAZIkhxex4mmxhHrMJPiqamKQCwEgc1Ik5SniwWeRTcmeMZGmfcM47QOiyvvbxyc-EBKlmDWQZSPELFqVgQ8BSGmV33v0RxowdKVIWF6OmblrrFKQLlPRUybSz1mRMxC5olk+jnHmRpOjmm+NQP4hZbkOmbKUWLRCmzDzXXbLs+xIzBhjPnGshkCCil3MhMcuQbVynaG6estMYD6lBg+b0fZrSvkdJ+f815TZDwIMGaiYZApHnxHGSoqpdVkBwHCXAYRMlIZILfqiD+liVyfGxbiixUsgEBHNqAuFdp0ECNTs8GBnxyzUVbDWeWyD4VNhIOgzhE8DLRkoUQ6hEAmADhgowl89KaklQPEyslZDCzkRYCNRQSriDkEmrJXp-TcCCtVfQkV8NxXs05lKlAo0E6CxYItYc5cWVCNriIsRKAcVQDgNItxXj8jyLZIo2VswV4MkpT6zReo5m6LcvIb1cAjFNhhWYSNOKAG80TeZVuUxQUhBRTzdNObUj+o7BchkNQmKECoCsWNNaIArDkFWmo5zw1mBqCAfAd8G0rCxi9et0RG3Nq7YY9QqyMXi3dhUfADl5pNUDlNXtasmbvw1bgLVY0tx6ohilIdKwS0bjKibJ1Qh96ipZX7Tt3a0m1qYIQq1cVkCnuLrTemPUOHcMXKXCtl9p12EILiedMtF2yWXYgYlS113IE3b0ndQde2HtmtoE9ukdEXtwbHS1xCn1q2rful92c335w-WTHQj5i4-v4O2pAs7FRPtjV82QdHUCz0dS8swAEfU4AY-muNcguNAbY7gVNtH91IfsHNW9jaS0yLaEMnRDyeaIZsVMUThFCl-L40xi4vzODqfOqxBiwKdkKfsdE2JtzknVPCS0w5bS3IPIdESXT6nPa+iYu50zSLFOFqcQ8rz0wOM0iM2pFsqFNJ3kC3xnmgXgtCRlMQYAuJdjuoJR9EOhFOpPBXePTiCxPhEWS1gMg9U8gnphgqy2oXLo5ioGpll+WGInTdh7GrT06t5AfowL9LDs68setDDy574a8Ao318weQXbhnI8R9hZHxvkN4c6-hmHBFYBxDXBdojG5FZS36tugaWTBqUXGSdiE9slacLY7TU9LtkFnvV3e8X7tleNgtPjSmnELXJr+iQ-7qioAgCAZreThG8vS4tibi4aEvz3XewiBozOQgeR92EnxZAFVkHdBL9VEixTS-qwln1Ee5b+qktHsIREzxxxLMl+KicZfaqTxAcOIO9XJ6jq0EYqf6JvjQbHi57r-oMQz3dyClYqzJ4uPkXPCA84x+mwXIZhfCXTWLoOvKyac5RZTjHLHlfOlVzOudGul37ulyGWXuvueZJEYJnAhu0TG4A9x4DITQPlQt+z36MuKe2-RyI+7TuAgu-u2bx+JOLjdQ537t123vwUmpAd1eIExxHYUdBeLdVVM+CiNUDJyPegxJgKQIgVQPdgBALEWIBnXFTfL4A23ReC0DCAX9lPYWqhA5B2pDOH2W9N2+9z+LLNc+1Z76DsAwjuKrtRCzHm7rZ+-Zo4gdY4RrgVAHCbAiEOid5fIj1WDOqJri9kD1U7-UDov2P5uFQ8GpqyBfpf-azxe0egJXIXtL-WUrmjx-onOQQbH-feYrSobCdyRcFIQSMfevYzbvYHKfSAv2WuXrXHQHRAvvMHNAulOAtSRvE9X2frJ+HA4QdLUgoQLmCg1nKXag5dag6PTIIg50GVbPf9IFG0LAfYaNLMOaaVEsWNEvUgMBPg2hIbDvAvOkaAblfUfPCvYqDKCSTKSuKrKvGvOQ02ceCOexHARQ+jNQwEAw2VF1NbCeSQ+rGQu8I+AvIKKHEMHfJnA0HBagosegCvEtD0JTGw4VRcJpNMDwGyQpAvEtX3FhTEXQ1AJQhwuwvrIQvVYSDg1IbgtwzAd1ag6HTyGVJgdI2OKGTIHIoQPkCIqIuInPPAhAII9whabIjI2otELImIuo4QPI8jNA-QUNDvDuYNEga8HEGvGcRvbrO4fecw6QqGHotmPo9kPpQYgo4QaIvI6OOYtEdfTfEtO8AcRwoYnw4uJpEsHY-2dotg4SXtXsSudkFcd-T4AwmGC+JAa9O+KoPwRoq4iDSzKoeHRtIuEMfeWQcIBAVjHuVEO4iDJiLQ-BEBNMAw6TOtcE50IRWQAAUTIFcn2Dnn3T5AAAUAB5TEn-PhJhUwqDA6H1fyT4B5XtM1RGfdD0ZTAjA4ieUk4VQwM7AIEEugcSUoGAAALxkDhPRNrQ9BuOGx0T+IBNkCBLZLyUQG1nwBiSgA0U4EsGTmUJFPsSVNnTQDt3P1HRDxVwg1HTQP+ksU1KTED3P10zQMxBbXDCNKQhNJVO1I5NgC5N5L1KN2LE5Nyl5NtP9j5ARMT1-BEAXjZTE1rS5DVAdLQFDW0MhFlPlJoGOIqDg3eXOPQFTitQ9FkAACpwACpDlsyJTgTpT4zrhFSozVTfCdENTHTzSFB3TncMziE7SaytTzSkYGyPTrpo4mzbwPRrpyMWSA5-SNsPxWzcJliRFAzk8cAQyVwmQ6peks9lFYzehSyFTqB4tnAfgSBpR9gFDcQtJY1zRoTdDDzbhetMRLIkR6AUQ-Z-SR5ShdzUB9zUkHkzysAjz8iA5MR3ygdzzQj7zmQdy9zuYnEPyvz4sH0cNelY04N5B0A20QTsM0Zel+0to4KT8v9ELx0B0ky2BUBKQMBP8D8Doj9WtkysLz8IAf8iwb8KKt178n8VZaLyJXi6pTiYILim4wlx9bB55R4MohTq9YgYZuKoAwl-8OU8omNnSYBXSZ191Z5JznQL1TjZA5KFK1AX1uLDVohIIzT+MmML9cstQp5n9n4VYOxiyqlSglgIA1iUytNTDzZtzfhRC9KdR2QFc19NJERkR+SI478BivLDK4ivlRDFysKikgoVK-ZPKDKzU5UK40ChFRDZAABZavWAEyNEhEG8w5EQYKrAPkfE4cNUyETpE-eqGvH4TfcIIs1k4QEEzlSsJy-TRrciV4dab4dy7QYqYq2zRK4VfebqwPa85EK0rEUc0gdK6c-JE-aCO0r7UYEUGM5q6UjAkHPkzqg6dlW1A2CVQWMjM6SEtgESnfNVTyX4-4+gRqkMZKy9fBcojrSfLA6fOXOhdQKkzBSELaogGbDyIcoQYG1nEsggBMu+cc-k-ecc7UmtLAKATs4QTEDDOeO1KhY6m1CSrfF6jAASxeKqaHEYhA7ambWCFsisp0q0Oy2Tf1fG4eQS1jKa+eHsnGumqbAm4mD0eeQcym5Uts3nOyuqogRi4gZGoQTEYWhy0W3pfm007U9cXpCWjERYKiNqk-eW2s3nFIWm4AqaqS6MMbdmqSoyS4TSKISSmoAiRgvmv0+0gWs03nb-Fm-dLWwWjHfW-2TEE262u0oRccr8MkJPBaucsCAlZcpqs9HRdcxM87SUf9T-Q1OaG262pgXo04aY8JGwjWciAlAA4SegIiki243EcAjRZO7QQSCgz-THWqmWyi4qtQJ9caMqWwnAyupUmCWu3WmvarbLJoZu221EHummvuvihmheYmbkP2eoBRCYzgzOgYgvIYtDdUonUfQaNyAlWNWuhGpG76qC0aQ1e1O8SHTuys363oaCtGJWrC8+6qmK0fY+6q0+h-A1R+-qw6coceFCwWO+4q9+3CC+2widVcpAMUu6+LVq+BAVXlEQ5yklLq6ET4NyngsqRwteyEMaqnCa28nHIRBB5KKcvygq8RNqMCLogypav3HmEUMUfgIsZACAfxfO94EexOwAjyJjCgWefRPhg+5gtEL5JjHAB7JgJwJgI4eGCgRAAAUgkVioDiY3eFnkkcUcElkcD2kaUZDC+S-WnjJQwCOCKjQIHi+SYlkFUdsIKX4dsM2RIAAAZpghHFxRcEF5AWH-5xSmC0CGpp4jE8pLGxG1ABr8pQmiq5ATGXG-H8dp9MdhNkAontLXGQx-GTGwmAnfH-Z1cPG15ondHFxPH-FbrWMOwWYT7Ma7xmHWHGcRFeGmAAAmRxgANhmAqdfqqd5i8ch34aYAABZnG9B97unamIYZgAHW636aniK6mEmsggA

Computing with Register Machines 5.2.3

Exercise 5.8

The following register-machine code is ambiguous, because the label here is de�ned more

than once:

"start",

go_to(label(here)),

"here",

assign("a", constant(3)),

go_to(label(there)),

"here",

assign("a", constant(4)),

go_to(label(there)),

"there",

With the simulator as written, what will the contents of register a be when control reaches

there? Modify the extract_labels function so that the assembler will signal an error if the

same label name is used to indicate two di�erent locations.

5.2.3 Generating Execution Functions for Instructions

The assembler calls make_execution_function to generate the execution function for an in-

struction. Like the analyze function in the evaluator of section 4.1.7, this dispatches on the

type of instruction to generate the appropriate execution function.

Ifunction make_execution_function(inst, labels, machine,

pc, flag, stack, ops) {

return head(inst) === "assign"

? make_assign(inst, machine, labels, ops, pc)

: head(inst) === "test"

? make_test(inst, machine, labels, ops, flag, pc)

: head(inst) === "branch"

? make_branch(inst, machine, labels, flag, pc)

: head(inst) === "go_to"

? make_go_to(inst, machine, labels, pc)

: head(inst) === "save"

? make_save(inst, machine, stack, pc)

: head(inst) === "restore"

? make_restore(inst, machine, stack, pc)

: head(inst) === "perform"

? make_perform(inst, machine, labels, ops, pc)

: error(inst, "Unknown instruction type in assemble:");

}

For each type of instruction in the register-machine language, there is a generator that builds

an appropriate execution function. The details of these functions determine both the syntax

554 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwM6pgczAfQE4CmmOYyAtgQBRobY4xipR4jTxgCUiA3gFCIDEhKCDxIAFgWQATSlGQwANtXRZcDJizYIOHANy8Avr1CRYCFKroA3ZIpAEcBAB4AHFbXWNmrc5x6I-ILCohJSsvJKcgrKNGr03lp+uvpGJuDaSIpwcADWIK44rngwZJSoAJ5kAEZwigA0iHCuBHjIfqhcfIKIEAhMiLaKiAC8lqhwEOVVtQ1NLW0dqT0hYoN2oyNj4NIEwAwE0kE9AgD8iK14cHjTNXWNAEQAqmC5YHAA7kjNre3siAxxgQaooCAAuB4cY4nMGISQyaJRIa6AzGUyZRDZPIFHCKZDVAjKPEExSoRrEwkkcgELrQvredbDMY0SaUCmKKkUcn4wmdAwrAgiNZDTbbMC7fZgQ7QnrnS7XNk8jmkLmIZ7ivYHaSYpUApA0YHVUEQqEnQSwyLKZGo9Jmf5kZC5RzFUowWDWRwudxexoOiDiA7ckmdHjQmDARCUGCoHD0pjIMBQJxuShe3Shs0CONQXqjXr9eSJ5OFIYOVNuZaZ1ZIShcEYAPl6-MEhgupIIAIjUZj7OL5dc6e6mezeqYqDzWPyhXZiuDQcpXtxSv7KJlwUFoUjdcbGigqGbAlbvI74cj0fwRGjUFafbTtMz+YZeDzmEFF8wV9alD9AaljUIH5MDei4ASulZmtWW6jI2r5JvS16JqglB4PogQ9Ee7YZpm8o3D6aovG8nxIF6hCqBYUAVC0epAiC4KQgeiDGGiGR+IgDpOjgPyLOwt5uL6yD+oGOpzvMvxLFhWYFvME45FORQlGUXF-Agxacd6FaNEpSwMSOyDFJM45jA63rQWxjrOgpbowB6t78YJf7CbyHD1GuD5uVpPGLkp4pIXeDGQbWpl6a4igVAkOA7K0oUMMQABWyC2KgEAlK4UCUK5bknM0-HuK4pnuM5KD6RAnSpMxdoWHE2DIZeQF4JyBCNBMogQDSElCBuayKFelAPFVYAPP+tXXvVKqNYgzV4K1ZW2hi7GOP1UbeHZv7jeyZKidx-SNK4ED3oII7yHgsEvm+AGfjcP5Cf174NUtTCrj0I6lp6bh5jdL19ru4GPgMn2mKMGXnh5KlepQn1phl5zzWpYmeSmEN8WZ9lrUqG0g4wpqZrCMMumQVk2WDiOuCtQnrT9AXbu1PSoG+8EEIh0THYKjT-eAtY-T0Mi2JAzpTLtqHQoYNroqx3MJq1RT83t7W03BCAIXulC7Y0lqULBsYKwzSsCyigTlXN5k4NeTD3VApMOetmkLMpjCNMAeKYDtMtDpJDL0tIVkWGMJvy+KXtgGbP2nt2sNbbgYMewHg4ZSOUd+DgANGUbGN9vH7AuZlWfZ8jq3zqS1tw-0nPrkKNZU67OeZnLmuJtrSEO8gTuPp7CemBzDFVyc4u81Lyt7XoaFdycwtC22tPU4IOFm48ABCMiIL7o4+BigIGrRJoMUxs2sb75QEAAjg4vP7QIkHdabDy+4NE2H8f00iyx-y+7XrfsHIBBMAkmi+Owp8dWXOE4RETKBfruJIf8Zqi3tEbaobRIDiBnrnMmaN7aO2dv-EcuwBhjDgRLcQOBsFpW+gxEO55exgyITHB8I5dyGUxLJHEM4raOQ5IuGcVCS5n06uXUyldh6CBDhremjNG6YGoQItyNcRE6wgI0OhXDh4YQnvwyRXNpA80lrtfuiiu7GDUYeLe48OyqIENPXcc8F54IQcvCBFg17oENMaeiQs0jQIsNY-0s5CT-3Pj1B4njxA33ZFAp+Hj4H+kIZ-NKgTv4r2SO1SC8IIgxEoLE8Bv8dChIqkgc88hMCvmkLiHqTAyDm0XpIY2TdfE8IBDGVwCgbilKgFwAAZK0oBCJml1i2BUxw+TH45I6pgSgY0amAIvmlB4AEb5jMGavGM506q8QHIk2peSm6FOKabPC0yiAuINqxJZI1VKgTTGswBySQFgXmaxbMCY0ovXGZuSZvV7mJhvk825-xzzvKTGDc5ldIIbIKYcbZaVdl-IOTvf4fzVIvRXBczcVy1Z+TcWErIy4xlIq6v49kszqTZIWUuEkKznlrBBVs15uz8VEtYhQtwJLCSIqBbUlFqS0WHJgRxTAcBjZwCQVdS2qDEAC3alg6JL4+VQD5UQoOpCuzkKVH2Thk83YDDoTJbE05lwsIZTqkklBOGd1LpuQKDZb5+0VkhFWy8+Rj2PJ2M8izhrARTKq0xv0cwAVOkmY5X4hXjX9fVECRAjXRMelWWp5rGzSK1ozW1wj41KwApGw8xi1UXDwFcG4Fi1Tz21Ly-ltjMm5P1I4jeLj0JpBhRYItMrvGKHJVkfx9a4DBKVHS-4baommx7RkzIzbOkpKiP2xIpbVxcosK4Zo5R5AQFyEO+MC7eoztcNC9xSBXAgFQIg5duRWZ2AcEu+duRV07qCRwcGR6aTfIsDDVACUqB5sDU1U9GDxVSR9WMDWwbvwCTzhNU9cTbpjSDhTaNFcMpZ23buudAkD2ICTXXRmqbdGZR7lo6W6HMyjynUgGGpEZWEEFQBoS+6P2VxHN+pDZ1XWXTIw5fdIGAJ3W+hBwBMbM1ZzjShlNRAdqzv3Wm4emG+Y6MHtBh8eHeC1qQI+j0NVxE4pbZfBTBAb6prvUgIj1wqCppU5ifxunCCaaIF2iwzHdygepPBhdcS7H+FZZc4BasrPjsHRZ747hsXOZef45oBKKBebqWHW2ZLDPngaTAXCFZEDtNC-kqlPUrlpkeIFkLqcvLuCy3Fvzax2VRCublgck65ObXC9l34PlKAlaHWrOr2mzIcQWMAa4ZQX2MdRiJDGG0xVUakgJViYxWvtZwEN9+JCwyKpjCV6gnnM26UyIncAeYYZzYmwgC2jUpMGKriw3rijKZ8KHntzbuB26oTE33AWkm9uj3Qhmz15jlr5oXqNvAZAS2r3LbTWiVaWzoqGR9so52h2vIeCDm+YOmsg-G5kIOhnCvKHY5J-DtG-X0f-SjIaxBfPQkgoG3qv76OQiUw1ELMMB1+A-s4Fphnos3GvHTxoYAQCKCbU16nPFmfEO8EOq5U30fc9Bs4AgEAQBt3Zt9QzashflZriLiOYuJdS8Dnm4q-8a5y9e5rtH5WCjSHaI4OhZsNosMDZgqSu1fXvgutjwDkOIAA-VTmMRtu-2vrVGIl3XqgMIbW113q+7fcjmaPQonDxeu+8gm1kNAH0oPl3KZRXHmE4uHF5Lni7ddvL0zlnGGGfVfZ4xYnruSvjYuD5w9fP+3UG556K+hvggVbN4EGI2vOcKNt-mKVTvPQFFNZhhQxMeAKiNoavI7wIZ8tbsaRPsaU+xwhar20aATLSS0-KYQVq1k2qVzITGNnHOt8SIgrUnfBA9+jPZ3MY-nOHWYU9ZBVfQ2N9ITVrzwquezf5xDBaz1GhKSKUOnOJPMFFKvHDE4YFGMTQGKUZKvOJLGSRc4S-a-OhRoHvTKRnf9DiEfZgcfEApMPNLAvbTKBRTAsgtycmZAgRWENAxTHAqnNPd+IgpAygqgzggfafb-LgzKcmO7LOQwH6beTdGiI0KgeCK4DnG8XnbbWkF-OnNfJMdaSgKQuoUEeqOQ0gnoX-Vhf-RsQA4eQ3Y3OJJCDA-Q+Qk1NRYFafawvRSnI2fdQKSuUEHMfdPMe-BiMQ2DRBZwLoU7E4DwkbefZwN9BDQWB8SCB4aQBADTLeaEHw2df+AfGbEgW-OzRdFI7CbNBUB4AAUTIFSgqH9wXVhAAAUAB5co33R7R1Iw13ReZocA4BYTewmmU9PMNzU9KAyCGVVwew-RQHHoMQhgKyOwGAAALyoGyIEGCMQC8IymiNiKlAeASJGIxUQE9lQAaSgC8QoHQCbn3yWNqQOMfVfFFDVF8IeFz3OF8Nzxxk-nOI7C2DGEh0C1uNFWSIeLYieKOMuIeDGNgAmOmJuOznOCBJgBBJmJ+OnnVEIi+A6iPklUBH3QhF9D+NfBEIJ1qW2N2P9CHyNj-Xxx6DcMfGtTzAeAACpwB+pDgqS1jEjNi8T2h9jMTjiojTj2SATYIwSs5zgZFUAfizj-jXi1Q5Y+TwTGQHATtBS8wXpB4hjs5YRp4RTXwOCDF4T3hETCBkSNUCMiT6NN5XEBRAEWS9jxAmsWQpgnQKgho+g8BpAZ8cTAFzx78aoHSnTaDMxzhIpJRpQs4VSj47BKBbTGgrkrkd9rgvTdAG9zhIzxdozOgG9YRrTQyCA7TF5UkozHTSomtkNrUlMLoh0-0HheSQteNCzg1D17AOTTU1hSyJSr0vkgdDYOIpQPgcAicrcGQbdk4OJSzdpQ8pJ3d+zHBSyfcfoRx5iH1T1awGIySoBKkK9aZkTeZPDb8FzBQ+k1J6FXkIdIToScAQ8NSuCuNnDASwBxjupQSUgtzvV6MqkJCJweoIchyMFyR-Efc0FqlUgmShk7BsgIBTDiTCVM0Q40zF9hkLonzQQekxQJQtRZjoDHz5BnyQiYs2QeooLCMscxlnIdCu5g1YLb0MplETFc9p4oKHgABZdnWAEKEoxCqUbUYNWEWo4YqNQBPZQCE5QCyYY3aQRk6tDYoZScHEUC4LRbKSEUZkdAVkKC4itCuC+wyCWS3pP0rUT4qi6kR4AibUnTI0yEH45Ha9JtbE0SjEIvSXGY6ShkTVH9OmZNG1AeIGNI90hRZC00zcGIuI4S3DJ7XPCvaytXSgQXHgq9Xo2pEKmYwYk0wQMQ80tkw4rEzNQnbksUh4eMPAKASUtyc4LjbgS1WuQs21Jck3FglSVc++UisgxQzPa8ecxiYUjK3pS8+MDnBzUtY8u+BmVqPKh8c4Vck7cqrq5baqvql42+A+RUlqlKl4tq-i4C68O3OqAan0lADnASla4NOa54nkujXi1odas0c4cSwoXa5U34+agE3cQCsLDoE6k4c4cPEaypV65kVwFocUOQd61wdGf61CJUtyR4m6zKkPT4-dPa0Utq6PT40a8PWE3Iy6dkvS14AypEhwfU5BKUY0kS+spAJKy01s1iGGInYisaAGjadQmQrQyAz9BkQNQPdsggTs7s7w64JwBPCm6kUyNvSPJakC0nK9Hm4LU8tyUWz+H6SPO6zq6PK9cPaWoPdq+QTqlc3q3mYyrODwJxSQhWaQzQyvFnHGmkDjTcQNJrbKtKS3QzSPK2snELEnI6+qQUh3ISSWodAs+udWQ6+3L3D2is325ZV2-2x8qCp5WWJyvjJCJ2v2rrXHGCsZGs49fyWpXy1YwkjiEKkvHJJBC3eOwIvglvORRADvUoxDRWpHYBGXTK-qJ66GI2RaTrHHSw3vDBDKWEcKh6AE6+KGZrfpaJUjFug7f6n85uAWDu4dRHTKwJeu-unAQJIewDFhMuieh8Tu6u-nHk6VdtPumGNtJelBESNe7GKemutq9TOeh9J9Q+pjd9UVPaSeru+nTKkzDTPew0pgPTW+8aCjB+7080M+rezKqHD+lrVoOPDrV7L3EevrR+9erNHNJBLUoib7XeSiE8X7XW404wXgEcTACAIpJmkYaEMmoPDKCHZAG+AJah3Kgih8fc4zYEG+agRoaoKmZARAAAUkQHYf7wYf8RGBYeQDYY4cuPYfoczFeSkyvmiQXsGlzz3leVnQeCEcKlAhocKj+UoAAAYUh+GzRF6ZwyzCHCE-LdADHu4rBA4r5gkeoVHCAyBIRcdeoqH1Gw1NGLHc9Fo+ozMRlPHLGuZrHepqg-Heo6HJHMoD7jGX5QmvHMoTGikViNNVwa5iLXaCGiGC7fHGgAAmHRgANlSDScfIydMa9xocaAABY9GDArb1ZymutUhY7g7nKGmsmW7fH9AgA

Computing with Register Machines 5.2.3

and meaning of the individual instructions in the register-machine language. We use data

abstraction to isolate the detailed syntax of register-machine expressions from the general

execution mechanism, as we did for evaluators in section 4.1.2, by using syntax functions to

extract and classify the parts of an instruction.

The instruction assign

The make_assign function handles assign instructions:

Ifunction make_assign(inst, machine, labels, operations, pc) {

const target = get_register(machine, assign_reg_name(inst));

const value_exp = assign_value_exp(inst);

const value_fun =

is_operation_exp(value_exp)

? make_operation_exp(value_exp, machine, labels, operations)

: make_primitive_exp(value_exp, machine, labels);

return () => {

set_contents(target, value_fun());

advance_pc(pc);

};

}

The function make_assign extracts the target register name (the second element of the instruc-

tion) and the value expression (the rest of the list that forms the instruction) from the assign

instruction using the selectors

Ifunction assign_reg_name(assign_instruction) {

return head(tail(assign_instruction));

}

function assign_value_exp(assign_instruction) {

return head(tail(tail(assign_instruction)));

}

The function assign is the matching constructor for assign instructions.

Ifunction assign(register_name, source) {

return list("assign", register_name, source);

}

The register name is looked up with get_register to produce the target register object. The

value expression is passed to make_operation_exp if the value is the result of an operation, and

to make_primitive_exp otherwise. These functions (shown below) parse the value expression

and produce an execution function for the value. This is a function of no arguments, called

value_fun, which will be evaluated during the simulation to produce the actual value to be

assigned to the register. Notice that the work of looking up the register name and parsing

the value expression is performed just once, at assembly time, not every time the instruction

555 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwM6pgczAfQE4CmmOYyAtgQBRobY4xipR4jTxgCUiA3gFCIDEhKCDxIAFgWQATSlGQwANtXRZcDJizYIOHANy8Avr1CRYCFKroA3ZIpAEcBAB4AHFbXWNmrc5x6I-ILCohJSsvJKcgrKNGr03lp+uvpGJuDaSIpwcADWIK44rngwZJSoAJ5kAEZwigA0iHCuBHjIfqhcfIKIEAhMiLaKiAC8lqhwEOVVtQ1NLW0dqT0hYoN2oyNj4NIEwAwE0kE9AgD8iK14cHjTNXWNAEQAqmC5YHAA7kjNre3siAxxgQaooCAAuB4cY4nMGISQyaJRIa6AzGUyZRDZPIFHCKZDVAjKPEExSoRrEwkkcgELrQvredbDMY0SaUCmKKkUcn4wmdAwrAgiNZDTbbMC7fZgQ7QnrnS7XNk8jmkLmIZ7ivYHaSYpUApA0YHVUEQqEnQSwyLKZGo9Jmf5kZC5RzFUowWDWRwudxexoOiDiA7ckmdHjQmDARCUGCoHD0pjIMBQJxuShe3Shs0CONQXqjXr9eSJ5OFIYOVNuZaZ1ZIShcEYAPl6-MEhgupIIAIjUZj7OL5dc6e6mezeqYqDzWPyhXZiuDQcpXtxSv7KJlwUFoUjdcbGigqGbAlbvI74cj0fwRGjUFafbTtMz+YZeDzmEFF8wV9alD9AaljUIH5MDei4ASulZmtWW6jI2r5JvS16JqglB4PogQ9Ee7YZpm8o3D6aovG8nxIF6hCqBYUAVC0epAiC4KQgeiDGGiGR+IgDpOjgPyLOwt5uL6yD+oGOpzvMvxLFhWYFvME45FORQlGUXF-Agxacd6FaNEpSwMSOyDFJM45jA63rQWxjrOgpbowB6t78YJf7CbyHD1GuD5uVpPGLkp4pIXeDGQbWpl6a4igVAkOA7K0oUMMQABWyC2KgEAlK4UCUK5bknM0-HuK4pnuM5KD6RAnSpMxdoWHE2DIZeQF4JyBCNBMogQDSElCBuayKFelAPFVYAPP+tXXvVKqNYgzV4K1ZW2hisHvp+Nw-kJAENfe65Ckgy1Sr180AYtkI1cQY0zeirEyLYkDOlMrgQOtAioG+8EEIhlC3Y0lqUPNz2vbdKR6IE5UYuxjjXkwUbeHZv7jeyZKidx-SNMAeKYI0f3tSO9LSFZFhjGDcEINjfgQ0w4GdmeMYeSpXqUFjOOcPdJyY4T9M4KYeYg2pYmeSmdN+C5mWC0LZn2TDSpw1TjBkwKm1QQ27XC2aj0E4mL17pQyPIKjj5Ezxpi1tLis9BdCatUUN13QDGXC4YDEYY9CuCDhJNQI8ABCMiIPjo4+BigIGrRJp22kZ3-Pj5QEAAjg4V2M5B3Xgw8+ODRNUcx9NNqh+RBBMLGLPE-jCSaL47Bx51YQIp9he7kkpenSx9rmTg1RtJA4gu1DQmw0jKNo3dGNSbsAxjC3pviDgQ9pbuZOnt2S4kn2k+DhlI67oZmKyTiM7d45HKLjOS+GwIAXbo7RsCLP30IAh6ua5gy-n4Lyt56rv0QI0a9H+f9sdkOj8PibK65s3qW2torYw-8Wx2zbA7P+Jxna7ndp7Uebcfa1wsP7dAhpjT0WhExWarEUH+lnISMussE5pQeEQ8QKd2T1wqkgahE8c5pSYTXEuOh2qQXhBEGIlA2GJA4QzTODcMExnkJgV80hcQ9SYGQV2XtJA4AkWQzc55XAKBuHIqAXAABkui4ThHKFAeRdYtiKNBlrERDCOqYEoCdLh5dMQ9QeABFOJ1rF+xjPtOqvEByONlueCRUiZHgzwq4oguCgasR8SNVSoE0wBM3DwxEyg-Ih1EUgbMCY0qljanA+OLjsmJhTnk+hXiX7xiLDTRJBSnFBK1iEih-ZHjFKgFEgh-w2mqTySuJJawUmfXSdE-4M4HF1PIS49k7jqTlNYueXsNSKz9KQA0yRhxQlpXCdMuZoylSqRnLU6E3CjFDIrLsiwnNMBwGUXADuItobzlJH3RmI5J4vhuVAG5k8XYzy7As-ZNND5n0fAMNeMlsTTmXDvRZbh56EkoIfBiMtNyBXls-H66t3o+z5HgmBJ5-neOGsBFMwK4E9BHABF8b5Ylfm2uNWl9UQJEERSw1cD4T6mQxdfNWSFsVX1furAC7KWz4pBQgyGaoPbamubctBQjqIByNHRMm+DOkWFlV8khihVFdRcZquAtClQXKQAa5h4MzXsMyLqiuvCoiWsEdak1iBXDNGMQJXINqJryAgLkXqrrXAdKzkgVwIBUDt3jL6xoZSVneo9f6sNNCOCUDKZ41inNUAJSoIgh5QlI25BeQPJ8RBqVJkZd+ASjy42+qLmWogDVflk05fLclitQ3hvdVGxAAqb5IWFV-QWgCza3RAQOh8tsMk2M5qRL5hB7n0qaj6gtLr+5wMpSWsYe1iVLUrXmpdtb3wNunk2pxaLGytuFtywVfaiBozdfmkVj8h3XVHVbR+E7jDqqQJmj0R0vXNIeD+ggKdhVpv+DO64VBhWxoAxBwgIGiDOvzQe1aY1O25Freg-wEzkmnL4chq1yRnVuvGccpxAHmgzIoM688ks-FevUZovp+iATiMaRs5pKS0yPEo8RhYylcBeXcHRo5KKBl4aiCkkT5y+Pc2pnC7y0gkLSf8ThtYn0VPOs5gsYA1wyg5oXbvCW-GOiFrXVJASrExg6b0zgSz7BfkMVnrRkzPN3D2Z0IzClFnMhs3ABzJuKnqCZE7n+MBkCjY70lrijlp7T7cDQhFgQHncD61Qs+4Bf030RYnehMVF6Lh4CuDcHNDxpUutaLpvAZB5V+31Fg2iuD0KToxDZ6rwXkgwZcW1sgKcUvOp63ZzIvzY2DL4ceq2IzLlNxcAQCAIA-B+YYfcnehnwtJZXT3LWi6PWaVcCGNTtqRtbDGH1KwA0MrnE5v1edu6HJRf2y8jKsIUnT1FGqZOl2zIcXDgZu7YsRLNDhnfJ7D4XtGLeydtU1CHhfc5tQ27osnnA97iu00mZwcIkh+Yh4BrYcPiu03A1iOq07z+s9wxWPvBmNO0B-HmZCccSAyTvdu20cU9e9T97ESmCQfp2aRnjg4PZslYZ-NoOMeU9kNj07PX+cnEF0USremWf3fFntuG5OweFeK-c9UhEvi1dYhRKimDHqByDZk77jhCMOevM4HRsaNEwBuPbhRYAQCKB1WBjBjrFtu5G4dqXjmWvzL9zzObC29bgED2R2Wn1p4++-W+W38nI+Lf1jm4qjNn4J8ldnybX7EAFGkO0G33gkJr2R6F-JdIpK3VLQtOqFakdqluk1wQI476N-LYZh4d8O+SQZPmgLoter5sH6CnMQPR-Q16tFyfkEqtOErelB8u4uUp-D2n+bGeY-rcQetzms3d-R+W+tnoqfcAB+ngLSL6uL+CAXY-gQ70X+IBB+-8X7+ge6Dv2aT+JPa3eFPeRMPACobVBqD+CvL1Z3G4XsMaaAscZ1FwZgSzEApCN3IaVqayWvS-QlEgT3ZQN3B+KsJxQgHA39D3L3Roag73PFY8EFSCVAtoaADA1JOQVAwqdbF2OGWGeLd-EcKUB3WtPMQZLg5FQWSCc8TQGKexVA2tdHf+c4CgggXA3gxod-TKOAitDiRZMAiA4QpMHNLQjbNyT+TQswh8fgpQx+WEVQ9QnQzmK-eQkQ2-RLKwzwnFbgrwtyfg7LTKQwVVUPf4JVUEWma+K4L3G8LA3NKUWkZgh3VgpMWGCIsAuoUEeqLA0wnoDQozAQzwkvMvWtSvCvavOImkSQyBaQivKoo2IIoAjNJdQKOBUEHMEfMYOghiYNF1RNSgZwLoDwk4Dol1JjZwHbX1VCDKSCB4aQBAYDYOHoHogNFojKZzGMOg9DUgzKZ2B4AAUTIFSgqGrVyFhAAAUAB5M4yfPLRggrbzBkL5PKMYFJB9OonoEYz6N49bSCJ4uoiBFsaEHohgKyOwGAAALyoC80EBGK6OmKcVmPmIeEWMEB6OxlQA0SgGIQoHQC1jwLINlhxMzVfG53bRoXW3ODJPW1hCJLxNJMowpJdTdVsO11pJJKhweBBNgDBMhPlwJz1FBO6khNrGpJ1wVH13eEN0IGjhYWonzQhF9BzmJMqLwTj03HRMxP9EaKbnLVIx6DaMfF7TzAeAACpwB+pDgTTkSgSrcNT2hsSlS8ToTj4nE2SOwOTYI+SGdDTeVRS3TudlYvT+S8lTIEtMV148kAYAShZYRnY3TLCksJSiIOoZSwUtodTt0g5VSxMkA7SsTxAgCWQpgnQKhsDrglMGMNiiCao+g8AKzwtzhIpJRpRBZYzo47BKASzGgUkUkKDyzSoWT+Tey5t+zBzJcizOyCBSyvY+E+y6zSogCe1eUjpFovVy1cdBRLcbEr1e0Vy6po07AHA1zt1x9Nzk1U0QjpsOIpQPgcB6VViHiBgG8jIMzAIRp-UIBJ8u8UYAsOJ1yB8yYRwRimj40yYDSoAlEr8cBHoZSro8w4T9TBQLE1J15mkAMuSYAeTHAJ8EyvCz0TjeoMKsLIRH1MQkLGVlF8RQQJweoAN28XlyQXEB8tt75UgbSbE7BsgIBijdTZkQVZ4JzEDbFFpKLlUadi8NRmzpBnSTgKL5BlU8wdDmkhLp0TyTpnIcijY5KqKVTx18t1tnYhKHgABZT3WAEKY4iULUYSuqWEG4wE2LWWCJN8m8TiyYMvaQa05rJYq3ScHEXi6jEFEcEUZkdAVkIS7SsSuoyCEK8xJsrURkwy6kR4AiSUpARlE0UUsbJEOwUi6Mj-K3E-BbKEoKqScFTdJ6HlN+L+dYwgr3Xg7YtyGYuYqULyzMH+EFS-bfQTZwdPM-SgTnZA5NMdF02WIq68Wsf47M1E206MTU9uN0mSyCf0jk+MPAdpRk-ChLHc5c7FCC8vYuXzGC9OXSpLRI9PKEqMv0x09knHXcTizDIRaCtOF6VqIMhXVOSOUM5CqC461690z6q6mMtiG690nHNy7i68JvEad62UFAL3dyqGxla63E2607LdFyvAWGwQc4PywoZG4Glau67wB6hfRkmfFtZCimoqFocUOQJRIHDXVCfK1k0GgMpdbGs4E4lG5U7nMmoWc4falC0UuM0GlK14NKlMhwNMiorM7yjadUua+0gsy89Mjie8iisaYzOGeCKIzI5RLgotAYelX8xwG8u8-7SaoE64FfYhTW6kUyF-e8vqBGyGoXbdQ6e26jXCzKL2nOMmZ2+6r3LmBGRgQ6X-BiQOkm4O36l6q6SEcLDwbBKgXWjImI1AmvUi5a-7IAtatKelL1Z2vOw6Z1DGkS8MlvKtP2r1Jc16Mu5vQzaupDGlbdF+Xcxu1uoSmNOBHauuluzGyulaTu2ZA8+wU60azcRE1q7UjiG7P7VvB7OTRgMzOvR45APAWCHvE8wzfqQ9NDCbVegYPJYsPMXe4+mmRPQ+nMY+9mEYNYymVzeTdwc+isOHQLR+nq5+w8z0PiCo8o6LMcxAGkpuF0MgKyGyGmF+1wGvZHE9WWLajKXu9WeQDewUUehwJbA2OojLEdLLIYj9XgXgEcTACAaRE2u+noTme8jKADZAFOKheh9pDS6w2ilxQgXrRoagRoaoU+ZARAAAUkQB4f-0ygAxGBTi4aEd4fex4eYczGaTASThYWbkGnW3DmaTdQeHEcKlAgYcKjaUoAAAYUgRGHwEcZxcdSGJ4kS-91sbsk5aEepNH2HIQho7E+pXHbFepqgSK5HMp7G6G3HvGSLTHMx7GfGgmHHbGhZicLHC4fHom3JLHpEWrgNVxn4KKK6SGyH-tHhAnEAAAmQxgANlSAydbqyasb7wicQAABZjGDA86voqn-tUh664lKmcnW8PH9AgA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwKZQPoCdXJgZylSwAoBbAQwgAsYxUAaRHZDMCs1ASkQG8AoREOboQWJJRp1UJAERpMLAkSyyuJFmw7cA3PwC+-UJFgJEAGzhwA1iAAOGO1hhkS+AJ5kARnHNM4dsQUpmD4PALCiBAIhIgAbhTmiAC8iBT4+HAQbp4+fogBQSFhepE4UGJICUnJtYjgACaowNINgpHCAPyIxFhwpB7evkyyAKpg1mBwAO5IhVjB8Eh0aRmo3uaoAFxq7R2IW4jUqBQNJFAUMOYk1VxceobG0EsWVrYO5hReqNef3+b4Jh-H5aTjhPZRGJQeKJFKrTLZYHmUGMCxfH4lCHlSowmp1RrNVoQyLdXr9EhIlEjcZNFr0Bpo-6IFbpfDrLybHZcYnCQ4XK43RL3AxGcDPMyUayoRzOMgwWBxaWoAAedhIKrsTEktHoQPRAPBkRgwEQJAIGGioQuYEwGvVqrufB5QktsQgcNd1ttqow1RAMg1wv2Qmx4lNPGSAD4oqVhPoegDUMyTWb8BhKXbA4bg57mVb8HDLDZ7On9RT9YDGSCNaX-va7HdY-tQ0gSBHo3RCPgm4h4xik8bTealIRiBhMw7s-tc1g4QpsLhlMRyFQdaiRypxz6WPXG86RBUw22UtH55aiDb8Bp7ogIX3E07gz0sH1SBrqRMprMeqqcBkXlA7iBHm8Lspyag9oYjxiiEiCStK8yLAgW5qu+cGrtIer-JWiHFFOkJWgUdiFm8JZOC4JC4UsKEYAEu7+IECx4T2uYUE4WQFqklCoSe6FSjKLjyjAiooeqWoYbqVYGgw+5PsGVHITWiFgA0V5Zj2LbhrxbF2OY7gYHQGAElgel0KwABWFAJPgEDOHYUAkLJcnCAE4lqsRUaIGqXBMGxfQQGEwrQSYLysjAyBgBoi6jlgVKIJkYgQNwj7CJp5jKHIYURbITAbmO7CcEwCVYElQWiiFEoUPxWWRZ2UDiVIklIjhjFIaETB2BA+G5hcWAKHO6ALngMUro1qI1UNKJmlae6RLmfpKqqcITQtol1UGwjzYk-oYMYKT7uaClgKJq2Bvu3TwbRrUhCd22LZq6FjVhGIMUUSxhPuhyXeRcoKvdgrmDtaHaphUmYmUohHu2KX7GymDnqgl7nBQfXoEwq3GG2G37KcCSQNKnUkJ1N53g85XikguMUPjjjZMTMPxYNCNI51TD8tcZ4IBeUBXsTja3sFFN8dKRCENNhANWuz0Aq9THvUwwCfMgHVdQzuaWg0QlmKkovwwgmshOLUDY8mQ5pkdoka1rYCOhEOZQgRBvUXtXFVQh13UXaVshDJzl+-7j1S2DstteDwaacenl2wHT5wxaXOIzzJCKxQyuO9bu3gFjPYxx0VM04TxM6Leuf7PokEJmyDORGSpB1SMABCpyILreaEFgIBCyyawbNsEF3iKTywbrbioAAjv6+P4WlGWyLrOWMxPiOlWTQ8AaghDxyp1vnBvmB1R3FPT5DSDHKcyMCrrBlWofIR7oLsGXV4CyQNQRuS6DzUK0rKvdQ7TSxFSM-amNAMAAIcutHsg5Uy1mrKqEg4Dbb7lzHVTirxiwfDLF-KSNEkQIL3rNcOJ8tJRycgHaBnMbSJyvCnZASDS5+zjszJOrM248xNgwoQ94q7R04TjBoeMkq0yJl1HOnDDB8K4RXfs1dhC13fogWQTcGTANfmw2+Lxu5sl7lySCg8YIvFUTQcs-xj6HiQOlMWsgjHUAXkiMqa8zA2LAXvEgziD6dzvgzTSZ8zjszcS-UBHij4OIMWYc0FxkBoAaOmDKhAyD1RbscDAkSzE4nNHYS4AwoAJJ4AAMjyUcE4Zx4nGxSHUKAyTImrzCUgHcBVkq8JnlYlgC8GmhIqssNMeVYoTgbN44hETU7RNiWLNCshWkdKFj0miO5AwDPMUU8+-j1L6M6QRQg1MHILTSWGSxDlZCei2QvHZNT1nmiOTaUS8ymmDLTJEkZ+z6wjEuVAfuD8XivJogtXcCycS+IvtcVZHyzB4PaX8vZs8kRtO0FM2C5oMzwJuViO5KThmoBiU88Z0K4UvERZgusyKIaLIBSsycZyhaXWQHAFJcAFEgyahWX+at-57znDSqANLwFGxNtAhF+pRKIPwnNB2qCSIYNgb8JlOCax4KFWIkMxDI7RiYQnFmEAmCoJNtwgcKZhzRU3HaIVsiXQOxYANRQBrlwMvXFa3p25cD4MIIQ5sSroaqqoeqpglDuZXhYC63slcky8Jri+ck9dFHKJQByuA6jPGaMpj3DkfdtUinJrBaltKTE-F2RY2embOV2P1LiswBauWuLLdfdu8aEC5qWX4y4HMY1VqgBo2tJakB2DopsiA1g609usHILtdh3nppeHYEA+A34DvRndftFxe1DsnbY9Qpy1mUrdhgfAVkZARptUVBd1hmW8JnLgC1Q0lykH3fFQ9LbJoNJ5SbCO0MQ0xwnVOtwh7vVMzVUnf1HCY75yEYXURZCy4Usfpuv8nKcD0okqiGdXlVYnrNWe1I84emjSDgOu9mgH3rSfW63ir6A4et9VFNOw7P1UD7QBgOQGCZ01ESXUu5c02OKQNuxUFG61PNkFx1AC9-UQZeNB-oMh-UQrzS0ve4mhO4A7TemjuHcBTRw8ErxtySXFMBdR3tLa2020U3RcFWmcR8YCDCsEInwnmw9opJFDopPMjTJkmAb4nMFJc2iqJGLRkOQBYGEYlnjP2eOkpNUFsiWpWIaSxtJAAVRcnKFt6DmHDKVUpRMLKE63+KSw2GzEhN2MWAP0Vwe74PSxaql9qSG-6ESoLBVIJWysYEa0sHlUC9V2Zq6Jdr7aTUbOhP146LthZXV63aEbH9dRgckf7bBR0w6usWcqvgLH5sjczpFG8DHhFFw2+I6RD4SPPlfAopRzcWtYDIHGruibtHJv7pEKCY6zDXdcCN3js8PsLy+4VryxBSs3baxTHlzm4sCgI8XddkH+IqlQBAEAN0OMKOwdeubkjWG0IPTRhiYQIc6fWuU1IsgaqyHOuNmqcGnrByIpWYmn163g9qKT+elPLojwq7TxbdhKw47q0zgFxPWeKJsRTp8F1N02Jp0HbBAvGdPkOMLmaJPFFlol8GKX-Ey2y8-tKxXwZldE9V6L-jO7Nf7G19KATevJKIcN-sY358Rd1AmbJnAluOjW4XIQcTduENfsF0r5nrvSe-Y58VoHZWA9Vfx7-Jn8iI1jE-DMZYN8a1IEAsBLRYEU0A8uhpjrRBlRlLM2GNzpAS+JLACAcw5hFNF+QtX8H5fT4m+dQDpv4XlSI+R87LOxO28t3i5A2HLw47d63H3lHg+rQdX8vhOO-iI3sWY+Psw9gGjBGlKgo2lZ0fwfq7ETq57MPXtkJ1Z7m0Ha0LP3arDoNZC0Ov6awiA64Q2rkAO1-Q36ef-gzkCW1-00mB3HFXEcifDql4knwzwpmnyR1n0ijA3rjA0ugR0QIH06UgNzinxb3Wl9lzi-kxyEH3RIKQ0IJjhx3IJnXIICECkoI6C1QL03QzBtCwHcGzWRAaU1XzDrUry4LimYI3yQBVFbUa0lSvGr1ykR1QGEkaQhD5TTFr3r13lL3oSIUWRwCSnkJIBUPyH0O1SDUG00jEIWGgEkN02rx8kOyfH3yqxfXINzHoFLxbThFJTELozkk0nNHbjMj0LEJbW5EkW6G0LkO41QSYHIOcgEMujYNbU4JcP3nn1sPmzSK1SiLSLkmajuGiN5BEB0O41iM3W7wCNcIINSKyKyIyMqKqMiByJh39n0FTRBQezzxIHPD6HrzHGkMDmkHBFMNL3MMwGag6K5i6M2FimkLyMiHsLBkcLqK3x3xbSvEiLpxtS8IYR8PzAVVzmaJYP4gHWPF4U2GhA-1SH0J7A4y8mXRIGVHCFqPOK8iyTuNx17RJifE0lkAaAQEEz0UiGuKo2FWECULYDr2uAHQ0OcnkVkAAFEyB7J3AlNe1DgAAFAAeVRN-xe2MNOxFUIk5Q8mZ0hN2MiCeP8RJLA00kJN2IkTjAhGuLoCEkSBgAAC8ZBgShAnjLj9wvifj6BZB-jhBrjNZ8BMkoBjFOAMhU4FDPjiEpTt00A1dL9l0vdJcbip0wMvoN5FSkwzdh01StcvI6Jgi-ZtTpSlSzcmTYAWT2TDSrc8xmT0p2S2wtSztyQU9Jg08RAl5YgVgB0dgtQdSZTU1iUcRRTxSaADjpRMNTMIRTiCJfU4RZAAAqcAGqDFFMwUhk2pRACM4ISU4MtATkg8HEBUmU5UhQe073RM6hN08sy0t3OGash0haYjWsy8OEBaYuOk-2Q4eRBs1EGY4QT0r8Opcef0P0orfiHpXRAeMMsMfMiU6gAHVkLIEgKUdwGQ6ILAVSOtc0fQqKHcvcshboAkOkDFMhfsieRIDc1ALc5nAFbQ-oPc3IgOboJ8xHF8j6AOQ4Nc7ITctmeLZ83cwKAHH1ahCjS9OtTDeQdAUda4sjSCnpWdQGWUmLLQh-fjeC1dOdaMtgVAaYDAL-Y-aEU-V2GcrCq-E2XMO-CimMrCl-Gih2J4y6I4k2BMypXfOAm6NkJefGOEHk+o9AJJd2NBJ5Pja0mAW0m3Q9BeYcuw91Q9OQKSmStQANBMmZC4ZNQsDKPjK-X+IEWeF-b+VOPcHM9ZRISwCAZY2M2FQbaBf8vQ7QGQ4aTcbSzYCMfEFSQkekEsiGNynor4TYOEAQp5Hg8bOysEHyBSgOLS4K3QfcHVQbUNc7CK2QAAWTr1gF0iRNpFaBEECqwEOGxPpLlMWXdyKra3ryyB3waGzJewsqFiLHeAvRGjjKfC2hqHhHXIiviuTS8M0mqDV3PKJH9lJDDVIHSvGC9O-FnN2D7OZ38VuFDOFNzIwORw5MGxQXzHPWYV5lAygO6zBNUK1X8owpxG+N+IauDGSrxJBJ4s9l70wOQkxhVy7DuDbFJIurDA2qIC+qSvnLWvWSXMLItPQpWzLKLL1KbN6jeTA26DW14EZj1k9RYQ1VEoM0zy3QnOXkSrSMGJnw5J7PrOhuVLqisqxvgL4sniShbK6EXnbK4qpt4txoEtSD4pJsWsHOVKstqqIDapUHpqEG6D5psoFp6VJvBsrMGh6WFsQG6BapLElu5rJqtKtEpuAIRv-yjkxvoOWjsECBUnOGSXoPxxvF7LknNN1OVJ-21oHSlptrNy1vGr1r5zdIHOho-FmvHN9OhBWBtTnMaoXKQFBpXJEPGy-xmQaRakrE6N8EmJSU8JZUIhtQAP4noCIpIquP6HAOMWju0F4hIK-zJxqvFoYqKrUCgpihRBsLmwLqlJNhLopvrwmzlhiCrvoKbsANkBbuRCnxprxoWuchIFZHaPju6KmLEJm24EI0WRtQB02SwAcg2OcxLqXreXUEUwwztS3nI2vQbohtLLDAgqRh3qKsf0kkPvvje041lt3v2svttSqoip2QZiQrPvvovoPt3vaVQv9Dnsuv5L+Ijomjw20FHv-AihZqWDrUh2uAmm7xvuuJWjuj6ygeOiQfWxRW02WXi38UQcevbTKn4FzGQAgBiTTuSAhEui-33D4woAXmsSYc3sYPqL0tnhwDIAXlHqYC8GhgoEQAAFJEB+G2Gnw+NkgeGKA+GBG1d+GYqJGMonI5494MAvAcowMR4nk6JZApGbCdxmGbDXkSAAAGO4RRv2GXPBeQChsBa6u4cRnGDBuQN5IysWXRrhtQVyzKbxwquQDRixpxvOFxsneTZAAJ9S4JyIanZhnxueKJsDXXGxq+QJyxp8WxmJYB9SvQOOGZR+8hyhyrRRRhpgAAJlMYADZhQ8mH7f0rxCniLim4nEAAAWcx3JuGkgRpjYvQc+y9PeyCnp5pxh+4IAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwKZQPoCdXJgZylSwAoBbAQwgAsYxUAaRHZDMCs1ASkQG8AoREOboQWJJRp1UJAERpMLAkSyyuJFmw7cA3PwC+-UJFgJEFfPhjIw2XFs4kLVmxjqEsIaPDA8BwkSgxJGpUCgATEigKGAAbJ0trW3coT28ELi49Q2N0pGckjAA3CliQVAxUAA8ABwSXZLAPL1NfPkRBYRwg8URQiKiY+Oi4+sKUtNbMrIMjcDzEWLg4AGsQGowarBgyEnwATzIAIzhYpjga4gpW-D9OoQgEQkQS2MQAXnNLOAg9w5OzogLlcbjMAt1gi9Sh93p9wOFUMBpOF7gFEAB+RDELBwUgHY6nJiyACqYBWYDgAHckMCsNcfIg6F98KhjrFUAAuNSogIcvphSIjeKvTLZOYmBlLVbrDCxChHVDxOUK2L4JjKxUObh8VGPJpQKFvT7OH4kDWxLXq+WK256cGiXqvGFwsAIpH0FFo4SY7G4s3Wi3sThE0lu5GLAOM-KWVlHdlcrg84R8oUkEVi3KtRCUFYVLY7GCwIoVap1UtMSS0ehWlW3HUBGDARAkAgYPWEChgTClkilzL1r2IdsGiAfIdPaJdyq1Yqlcq92pgwcQ3okHjvAB8Q7twn0WNVqEZTZb+FlAenZcXd0H4-1UcI+DHUrWG3N-trNc1pbPKoXNVFSZCCuSBrh8W4pPgO5CHuNqHo2zatkohDEBef79v4g7DswY4KHYeDIaQlbSEwSEqBeeFoUuXrAc265brhepEF2+AaFkHQBDBB4Dl6vqkOWiAkmSFLUlitQ4IkZhQPslxRsysbxmoUGIIYOTzFmOYVLS9IIKh-FEdWEYfkClx0qC3G3s8FxPssL6bNsuxaa05EXGh5wmdpTRURZBoUFsPyPp8lBlmB2YULmdkFkWJa1L2FZUFWjCGTaXAMIBN43o5PjOe5rosX2Xk0aBm7mDUNSxPsbi2PCxDlXQrAAFYUCU+AQNsNRQCQaXpQEFxxXUNQhXUKUlTiEC3DMqkSmYGkYAUNgtvqcVSAZ5pqsZII+GtNQQNewhYdEWAKDh6B4coxDkPFxHMoUmhBjIKQAQEWGvOUF5jnNtgvdFdQPUpz1zhUxgfGlraZTpPZfReiY3piM1g7YEMAxeS0JZ+qpuRtTzQ4OfIzfmZCFjAxaoZDemXStAa2qihV0eZAQspgjGoMxgyHegTCQ8Ya5eQEEQlJAea-NtbGovoGZqQyfOdhAgskML5kM22CBMVALHbUwqYMcrzOq3LO2ih0k0LDNRCEAthAo1dq0Y6Zm1MMAcrIEw8sYQ8E63uEhNmJ8puMwgnutObUBefBJ4YPDqF6gHPjoWlWFR17thA4FYWae5Tk9gnrSpd1ud56Fy2Jdb6221jSn2j0IG067+eDorTMsw7FBOx7icYFzj21zeUsC5sQs7To7Fd2iYui-uLJ08IvFB0SABCESIL796pC0DJMs48mcopouzJmDK+3sqAAI7lALu1AQ6SCxMoci+7ITAsifzMyxN4oLL7SuuonUSoIQlXNHkc+gRIT9EFEMH+f8JirwyK-Pe01U4YCOHSSA1AZ4F1RkldGiAm4txdrqd2CJnifCQdLagGBCEdV+qiUOrZzSoQobHG8WEILWWlK+AM74bRo3Im+BhPMuiX1oiFGuw9hChy1l2HWLEcGMNEeleu2sWbq2XlTORI9x6HhEWo4QPcZZ9z1vw0RhhtHKSUpxCeWihDTxSHPBeJCUHL0mGvaMLI2Rby8ipN+WZ7E0E4bEIBNFr5m1kD46g99MGwIlmYUJ5Df4dRiVAwB5kaKgMGKMBJ+onEwPFlNJArZojIDQOEWUN9CBkCgBrUIGACkBMEa2GoMQ8RQHKTwAAZK0-kAwynB2dIvKpBSckLBYCQO6tTK6LBvrIFg4TRmDKzIhXAZ0sC6UXMkupp4ClFJKWbfiUzcDbyNlmUiKFvzDL7Gs8ZqTUz5TmQyYcnYOpfTGZCIJHVZD3K7OEp5tyzCtg+d2GK5ya40Xyc3LZry-xEn+QcrxdyJwPPIl9NCFyQECjSfEG5u8olXw4aMlFvQIWyHNDM7QkTcmMlPHQnsQLqbrOqWC1AxSIW7OJWShYVKZxvhpRXVFAxrlXh+RIBByA4DVLgGg-SRdKbOx2uZLCFCcKiqgKKihQcQ7HloeeHsfDJ5uzvCwz4z4ZRvmLhy9hv4+HlwEeMoqW4FGSKURAJgEEPEaKPAhU8xzlnaribIr0WEWDHUUIsgiF1C4kRDWRU5uASCWrSjTEK9qVZqydSgE6DddYsE7tBN1lisRYBxKQGxAl57hBQEquAjjoF5JcZvBMZjZiwrMCKsVfjnkEsmS25V4TzRsqzF2lVcSSADv-ivJJwLBFXPASOxJUw+0MhqC5DsEAVjtqQMulYchF01BhXApANQQD4FQRujmAM12IA3Vuw9YT1DfKxeSma+Amr3UWugq6J7EB4Keu7QNnxcJerDRgjdo68JajVQVQRtrdV5wPUevY0QV1MAkcmjQuBs3D10bLYWVrc6j0OQyGa4llU4AleTRKH6v17R-bgINp1Q2SofghlYIHbraHA0pBNxU825yTVI1DuCl1MfQ13TD+jsNDy7nh-gTb13Pv4+ewlT7izhKzYKkQhBcQyCzfiq+kyiOaZU2htTwGUigbuvBqgzHZ0xx050sBowTOZOrQBfDZgXJ4oneMwlFwSWcHnb808EdqWrM85CepjTkXtIpfSwpjLtkdVSX2IkPn-M0nTllb8LkgshdpZctFqZUnZf-C5mTJcPLZSuLlEgRXz2phq2pvGxBgC4l2MWhjmC1rwy2rKmuWEqBZk+CZZrWAyCzTyGqpSNDAvpfBjFfrMcgHfrvPNnSydQrhSK04PIltqxdRMbXYuXXDHANXNXCT2iVtJ3AGuQeontoGMHnt3DZjc1pWsa+2QpbP1NZa1WhY68YxuO3hxe9Cwhsta21MWzhLwcjfCZd1L32sDDdG5dtVtmp2jAeiLVzQrwrVFQBAEATk91oOLu1p7+3lE4MY5ZtydZQu9FSQ9XpsgPqyDSrDBBH1SPho6-TmV2MvR8mZ-qdcsIBJ305+tioB82tkbRp1moa0aefp2mlEXaKWewk+CE5BNAOcwxl4g-XqD5d8+Lqr4WGu7Po51wJAdhvBxc-CgO3nGDi7W5vJrgY2uJeyCU6gJ3XoXcVED+799THBc29F4QcXuv9M4GD2iUPdgNMkfN0BqPauhdoh95EP3uvYdkGTwEVPxeI8UyMhcbrufeT5sLWgwS5IqQ1oAVmKSMkAeuLjO4hrCDrMIB-lUHpjP90RaICPpgYAQCxH8WpwfthJ+ULFxjrXYuF9ObyNOQnxOspcxZ2Pxe4CqG44vSdRfO+ick+u8WvyPXUSK1THf0aOPSvrHCNcCoEEg5rXJ2RoBLCbaWjADdrWQbaYHKjO8HBEAyNc6MAnBSAvVZ4DdMcSVOQDdJA7yYyAKN9egOQLrLAmiYbSoeKTqG8FIRNC-LfDOKoXfG-MAcg3OGxSnGaAna-ffbFJg2uS-ZfNVHOLua2SnAIBjYQ4QdWMQoQGnSQi9KPGQmvTIAQr0F1fvcKKlLsLAfYPxS0FRc9BpGAUgOhO6Z1fUKmM-aoVIfrH8G0YfCpEQGWImbUGuKbNgWfYYCwv1NEGiHABw4sEZNw6fNw11WCaDGiCwukaAaw1UdFWw4aSnX-RXauGQrCegEfUdMcK5DwnDdKEFU8DwOqEZCw0dOvLuTEHw1ARwhI87KnCLGadQ1ILQ1IzAYtGQ-bbqF1JgVog7SmTILooQPkcoyo-QwiAfGgnwQotIh6TotomYtEDo6o2YtEVaEWPOfQDxUHLMDeNxEgRiHEOfFCZfHbJw-gMIkfCIzAVaHY5WPY9kZZQ4vo4QKo5Y4RB4tED-L-UdFiCCRXI447UREFUw7I2uNY1QsPJjUCGudkA0VAz4GfOfJSPdT9a9EgKoPwBYoQGEz9CLKoWnFdFY5cQRWQcIBAIPBtAIRE7dCEkGDVU8OE+IDdTwm8aeWQAAUTIHan2FkMsz5AAAUAB5HkrAjiV7POfaKyT4VJBkoE4QTE1MKUynGiZVGobI4xXcVEREugQmUoGAAALxkEWxlKYzHDpOyJoiJJJNkDJOEERM9nwAaSgF8U4EsGbmOJvBoidKfTQFZ1gzCUp0xB9Mp1xl-k9MPHt3AJ8z9M-RchKOF2zGDJdNZ01NgG1L1NL2dyjC1Ovj1LXEDIbz9Gb2EiQBwCfmeCZA3S5ArHjLQHWJ5V6FtPtJoFBLoxUBGVJXMihNvGTTHFkAACpwAPpGUezLT1TsVEB6zrhHSqzXSCTxkPSEywyFA0yQ9OypFcy5yvSwyGYlz0yvphEVzmIxwvpB5VS84+Rp51zEpXiBJSQW8RJizyhSy8cKgvV60d5aykBxyHTqA1MTRfhcx9gI1HgsBwgGdcswtaS3DUMgKQKYyy9EBqp3RGUnszyT5SgSB-ymBUlUkfDcQYLej85MRsLCdcLbhhC+Rfz0LUAALj9RgcLgLxo1NkM+MvVz0AN5B0Bd1RzeMWYvVT0yhpyL5xk2Ktzb0z0mz6BKQMB0DAD3ZgCU5wo2KICvIsIYD5Lny4DSBZBEDlL3ZMTH1wSvIOyoAqlL9H5T4ZZjS3ClIjKqka8nwb5CUkyYAUywTLNwkryvQoNL1ZAnKXK1B0MOyvV6Ve97KzYYcIBwlhZ1RJlED7ZHYAIRzyVSglgIAPiAMPNqTmwKLjCRB8IyJohe9494LXRERkQDTqINLgr2QxxhizQb4crCMNLWy-MUoPLc4gqCr2RjtzFNFKdp4crZAABZWfWAMqTksMD0XKpZPkIUtUt0wkoK5Kn4L-cIYckHck0co1DYdKtsvNf6I0ZkU0HKjq+ULq00wRJ0e3BC5ESM-q7QEMISVvKagiBMXMzHYUUodDE87BUc9g4nfU6DZhUw2jDNFNY7Fwuk3-RkmcyEc0+gNawcHq6DBsMY2begzgxg2PVWTIG7BUwRP6ogXGm8b676m0ggBs1BC88qk7CQKc1nDsLAKAbcuCqDXgc-P2B1XWZRYy7-VG2wMy5+XQK804+g-U48tcumsMlIZK0dLJfm4+cyoPSMx+Pcnm2W6tDAAWgWMcR+cW08uM50jc-3Ja1KogZs4gZm70cwOfZas2r1CWw20M-3f9DSy2oQTELa82rAB2kMxM-UGWwgyMuyrjPpNOXA3yS4V0KIWy5XenNib673A232zcpjN2jELkldH2+c-3QOvOTENWmvXM88qch628oshWuJWSSVV89a61SET8xsjYgjBBdAoKu6JXNaXY04W46pDwuVd2SVNAhBCSqSsjIm603EUg3xNu7QEKSQ9AtnG2029SvKi29QGevzaYvODe3+LyBe6WufcOGbJoNQarZXPeseny-2w+0yiugWbkXOeoTeK4jQ7ug4iw34iDWcsjYzA6DqSVc9Behmpm9QRHF21e5ZUGwDK6He89JilmcBpZaBgyWBxHRWIKqB9rHevi8oIBbi3WRB+jBXZ6siUZHBoW98gSYk+Gn8xIeabBi9OAMQF+aHSZdnCNCBnQ-AJhrAF+MUfgLCZACAYpQe94VEGadAtKQlCgcJEJWRkBpQpYhyvTVkcJJwJgI4WmCgRAAAUkQE0cUfSkJXeDUYoA0a0d6U0dapvAhT21kA-iOHvkpwPghRclkBMeGmGTkeGn+RIAAAZphDHBxQk-E5AhHilqGg9FDKced7Ge0b43GcAS9PGY02c1AOG5BHHAmYm6HGC0mMnvHrHc5YnHGCmQGinuo3c3x7G4lEF-KgmAh5BhHyELSAJ0HKqoHwnR6+d8nEAAAmPxgANhmHac4c6eabANKcQAABYAm9BgHh0JmAC9BCGyJxmRHiG0msggA

Computing with Register Machines 5.2.3

is simulated. This saving of work is the reason we use execution functions, and corresponds

directly to the saving in work we obtained by separating program analysis from execution in

the evaluator of section 4.1.7.

The result returned by make_assign is the execution function for the assign instruction.

When this function is called (by the machine model’s execute function), it sets the contents

of the target register to the result obtained by executing value_fun. Then it advances the pc

to the next instruction by running the function

Ifunction advance_pc(pc) {

set_contents(pc, tail(get_contents(pc)));

}

The function advance_pc is the normal termination for all instructions except branch and

go_to.

The instructions test, branch, and go_to

The function make_test handles test instructions in a similar way. It extracts the expression

that speci�es the condition to be tested and generates an execution function for it. At simulation

time, the function for the condition is called, the result is assigned to the flag register, and the

pc is advanced:

Ifunction make_test(inst, machine, labels, operations, flag, pc) {

const condition = test_condition(inst);

if (is_operation_exp(condition)) {

const condition_fun = make_operation_exp(condition,

machine, labels, operations);

return () => {

set_contents(flag, condition_fun());

advance_pc(pc);

};

} else {

error(inst, "Bad test instruction in assemble:");

}

}

function test(sequence) {

return list("test", sequence);

}

function test_condition(test_instruction) {

return head(tail(test_instruction));

}

The execution function for a branch instruction checks the contents of the flag register and

either sets the contents of the pc to the branch destination (if the branch is taken) or else just

advances the pc (if the branch is not taken). Notice that the indicated destination in a branch

556 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwKZQPoCdXJgZylSwAoBbAQwgAsYxUAaRHZDMCs1ASkQG8AoREOboQWJJRp1UJAERpMLAkSyyuJFmw7cA3PwC+-UJFgJEFfPhjIw2XFs4kLVmxjqEsIaPDA8BwkSgxJGpUCgATEigKGAAbJ0trW3coT28ELi49Q2N0pGckjAA3CliQVAxUAA8ABwSXZLAPL1NfPkRBYRwg8URQiKiY+Oi4+sKUtNbMrIMjcDzEWLg4AGsQGowarBgyEnwATzIAIzhYpjga4gpW-D9OoQgEQkQS2MQAXnNLOAg9w5OzogLlcbjMAt1gi9Sh93p9wOFUMBpOF7gFEAB+RDELBwUgHY6nJiyACqYBWYDgAHckMCsNcfIg6F98KhjrFUAAuNSogIcvphSIjeKvTLZOYmBlLVbrDCxChHVDxOUK2L4JjKxUObh8VGPJpQKFvT7OH4kDWxLXq+WK256cGiXqvGFwsAIpH0FFo4SY7G4s3Wi3sThE0lu5GLAOM-KWVlHdlcrg84R8oUkEVi3KtRCUFYVLY7GCwIoVap1UtMSS0ehWlW3HUBGDARAkAgYPWEChgTClkilzL1r2IdsGiAfIdPaJdyq1Yqlcq92pgwcQ3okHjvAB8Q7twn0WNVqEZTZb+FlAenZcXd0H4-1UcI+DHUrWG3N-trNc1pbPKoXNVFSZCCuSBrh8W4pPgO5CHuNqHo2zatkohDEBef79v4g7DswY4KHYeDIaQlbSEwSEqBeeFoUuXrAc265brhepEF2+AaFkHQBDBB4Dl6vqkOWiAkmSFLUlitQ4IkZhQPslxRsysbxmoUGIIYOTzFmOYVLS9IIKh-FEdWEYfkClx0qC3G3s8FxPssL6bNsuxaa05EXGh5wmdpTRURZBoUFsPyPp8lBlmB2YULmdkFkWJa1L2FZUFWjCGTaXAMIBN43o5PjOe5rosX2Xk0aBm7mDUNSxPsbi2PCxDlXQrAAFYUCU+AQNsNRQCQaXpQEFxxXUNQhXUKUlTiEC3DMqkSmYBQ2BouDKChQaJfgcBiBA2oYUBDpILEyhyDNYCyCR80EZaiArWtuizJmDIaRgB0tvqcVSAZ5pqsZII+O9NQQNewhYdEWAKDh6B4QthHxcRzKFJoS2PYQAEBFhrzlBeY4HbOZTRXUKRecjc4VMYHxpa2mU6T2KPY4mN6YndZO2BTBMXs9CWfqqbmfU81ODnyd35mQhYwMWqGU8zoUvYlb0FdttEhZtaIspgjGoMxgxA+gTCi8Ya5eQEEQlJAea-D9bGovoGZqbdYUVEQhDw1ALNQ29HOmV9TDAHKyBMCb5lYXq4SC2Yny20rCAB609tefBJ4YPTqH+4Hvh-V6fth4nGBE4F1ux+5Tk9gnrSpd1xcl+LrNJezH2u1zSn2j0IF0eZpdeorbYIExUAsR7FBe7e4dZdriPNze+udutmzG79OjscPaLm2b+4sk3wi8fbRIAEIRIgIf3qkLQMkyzjyZyilm9dluSagdssgAjuUhvJ4EkK7Xbsgh0d52oHfKvrRN4oLCHNurpE5RCvpgCY+8MjmRov0QUQxQGEEqs0PIAFJoLDukcOkkBqBrzLk7AM71u69x9vLLCCJnifEwWPagGByEdVxkpaOrZzSoToehNKWEILWWlK+AM74bRs3Im+NhusugyyKlueWs9hDRwYu3FWncSBEPYdI7qrdlaqx+kwCCojpGcSXlI1RetwgG3Hj9EgJta6qMMEY6CSl9GHkMUIVeKQN5byodg3ekwD7RhZGyE+XkVL-yzB4mg-DYiPxoi-DqshQnUA-uaP+N0zBxNoWAkgqSIEoOgTLWBgxRiZP1N4jISSL5IFbNEZAaBwiyj2oQMgDtt6hAwJUyJMtWw1BiHiKADSeAADI+n8gGPUqA65YRNJtj3C2U0kAsBIEtNp9dFh7VkCwD+CzpkLEQidMiPY+w5KWRUnu1Tal234qs3Ap80FZlIihb8cz9nyxgQKfJ8R8qbKzMOTsHVKaLOfisr5XYP6-I+QfU8gLuwxUeaiGiRyqmoBqdEv8RIIVXOCQyCF5FKZoQOZCPJqZ3nnxmRXeZ2g-m9CRbIc06yyWgrMMw88ezFy4t6HCk5SLznUtKcSlh343zQrrnil5BKrx0okNnZAcAWlwFwfpSWBDva-V9hORAdCcJSqgFKuhkdGHHgZSqVhYCVGYRVVwz4z4ZRvmdhXIRfCRFWK2ksiRn9Q5dgUSxLRu9bQL1gkeBCp5blYENQjR+SMVUsBBooHZxByCQwMoG8icz7VpUKo3dR8jNEQCYHIt1qsWBD2govRxaUXFPQEpvcIKANVwC8ZA8pvjj4JnsbMdFZhJXSvCeSnaKz22aoSQGblCxe1avScOpBe9slPNycK+BY6slTEHVmGoLkOwQBWF2860Q11yGXTUNFySkA1BAPgHBq6ViawJhus9O7j3xPUCCol6Ds74CajIVxeCDJnsVY-LCEbPi4UDbGiWTAz3jrwlqSO0snWNycSXI9J69hbvPSgUGGjFH5t0SXUehsJ4WKnl1G889rlW3CuJTVOBZVxuWkh79yq7x-pQ1G-CKggPl1AykcDcNcZQchM62Dxd025vQ7gb2K6kMFtnthsxk9TZ6LFK2pAL7ixzWQBuylSnUAf3zWKkQhBcQyHzSy7tr8yP6a07gRdDJ2P6k49oRDVAVjjuKW0KdSz8XwOs8ghdOmXILKM8s1+FwaWcEs-S08ccmX-n8x0rpOKBmMlPJU9le08l9iJEF0LNJc5ZW-C5CLzLXNCoGKmPJ+X-yoIU1XDy2Uri5RIGVjdqYGs6b5sQYAuJdjvrlWzd69NvpKtISqqgWZPgmXa1gMg908g6tREw8L2XyYxWGz4Y1Kcht5AzuAMcdMFsMyW3kR21YCO2ObtavrmHU1yxnid5bOlB7Tyk0bPDsnbHzw4kW5ezisA4lIO+2QFbEBjY67WrZDb-Gnw4o+pdbWOtOEnTCmWlKgcTY-rd3wOnkeTbR5Hfz7nRjcenlDkj0VUAQBAE5A9uDrXdeuyd9KnqiEgZo8ZOshXeh5Nxs6ASB1ZBpVptnB6XWqM9bcv17mXo+Qc-1GMz4b8wG85pqFcKIdKPAYrr1mohDPbfrSpLl5nPYSy7iQrwc-PwpxNV+Xa1jPAe-V10MyIBvxnyGrSbr0ZuKjDst-goyJt7dS4Rlz2QGm3dog9xgDT3vP3M79zePXAwney9MzgUPARw-J7fWWmnX7bfi7RPHx30ug+Y9T96JXeYYcTaj-KoyFwxf29LYQEMQkqT1q8wyKSMlD4xn8U2onZg7rzp8KAqooz-OdJgKQIgo+mBgBALECJOmh86Wn-QovbOQj6+l0vopdbpyk-JwPcAOON-b3gQw-vinQbL72wfinx-31+QG6iVuqZH+jVNsRsw6xwjXAqBBe2d6anKjH9FVH6SNMGAiVjKGWQH6CHf6FVIhCAwDGnWQIheAh4FVM9bbKjOQM9DA7yFnHAiWOQPrAgmicbSoeKTqG8FIEKVuG-ffMne-MAGg4uVxY7cvJgw-O7MpNg5uRg1fSOIuYeZ2TggIbrcQ4QLRKQoQRnWQzdBzEQ5uOvTIZQtEHRFrbOXlLsLAfYcJM6HRcfWLFhJabRfUb1L-JAaoVIYbH8G0EfRpHAdaIWDaWbPVU8OfBfRw1bNEGiZw1AVw+ZefQELwxfH1LiWDGiGwukaAew1UV5HwpgTgwAnrGDBQrCegUfcdMcfFGwzDG8WFU8DwOqeZGw8dPPWeTEAIoIiCZIunAICfCGcKHQ1IfQrI8BMtBQho9KHReonor0KWSo4ePkGo5TJo2NcKG-Mo7I3GfogYgYvo2nBYtEKWQnEufQQJS-OSfxEgRiHEBfFCVfQ7Nw6I0fWIzAN6PY9uA49kINY47otEVI9XdIgYn-P-cdFiOo9XE4go2eWFCwh1YeTYrQ8Ka9R+dkA0bAz4MIpSA9QHW9EgKoPwZY4QaEwHWLKoJnBzF7aiGWWQcIBATTZtAIeE3dUCWDObNgEI+zNdXwm8VeWQAAUTIHan2EULXT5AAAUAB5Lkgg97X1fjBAu8TVAaT4PJM9P4oQdE1MKUoEwVXoMUoEmxXcVEeEugQWUoGAAALxkFDTRKQzHFhJTXxMJPoFkBJOEHhIDnwE6SgDCU4EsB7jcMKJlidJfTQGL1vVL3dwRJPU4N5ivk9MPENwEl3V9LD0BxcmGIl2zGDJdKD01NgG1L1MjLTyjC1N2j1LXEDKxG+z9EEnJFbxEG-meCZDPS5ArATLQC2MVKQFtPtJoFBIqEAz83lkhNvA7gCgEgACpwADoEVezLT1SylVUCAmycEPSXSDTHVIRpyvSwz5B0B0yy80N8A8yFzQzndFZVyMzKYrt1yxxKZp5VSS4+RV4tz5ijEizhJZkv5yhyzxVSNo0sA+9Id6zxy7TrhmztiTRfhcx9hjpHgsBwhWcEdDlPCaTnDcQwLYyMzqp3QEVjsLy75SgSBAKmA8k8kYLQLxp4KoycLSdYLbhxC+R-yMLUAgKz9RhcK4LMtGMgFuyVNwYN1ANlyoB90xzBNmLA0L0sY2LXy8CVz71L0Wy2BUBKQMA5UKTdQwDRws4XzmMY1YCIACCsIkDFLWyhK0DPZ1KsCjStKI8kM1wlJOyoBmlGDb5751pjSQizL0AJkc4eykVKVkyYBUyKh8DryejnVr1ZB3LPK1AJNOyE1og4xQyAsOokc1Lv11QVl0D3ZPYAJRziVSglgIAPi2yyVPs-V6hTQzCRBlL7j5R2QZdEBELkRZy-DXyWlSrIqJikVCq7psqQsUpHj-jarwqyqVSPthSvsftSVgwBIABZefWAMqdksMD0Iq8GPkAUtUt0pZC5Yq+6BfH4P-cIEcj860sci1DYVq10k1O8J0Y0b4X4QqsK+qi7GWU68ZSqj0Tgn0As0gQq28kswNBMPMvHYUUoCTM8xAeE6oO-fU3KzhCwiA9c57IEqksIwA+k5cM0ok7awcBxXKhsXfDbYG5go-VggPTuTIUyzgs4kGomwjM+Ukscxsn8qcmso6vEpZLcoPDsLATip62WYqXgF1Ji91PDJgCy--TGpyayn+K6OnEm5g-U08zcumpM-UdKpzPfEWw2PcjET+G+K7AWxWjbZW2yz4W+aW88+M50xc53dKjaogSAlQVWzEc2zKy2wNGWk27c2XADV8m2xYGyGUR2o2pmpclIBWsg9muvTW5pEO40UqFWQUMOzXUXNiAGuPY2kM5mpDD2s9J25OpcoOkuTELWuvPMy8um5vYskSHAMsg0JkOVd8xasRJZamh06gcSmShNJaDXd6fY04O4lpfIujZ4OVHA8KegKSmSrySgsIMJFu7QEKWQmS2QO2rK929QSekLHyt01a1uryWegOhfHOTmJoNQerTXTe3AgK+Wneqyh80W7kYueoY+a43Qzuo4mw34njXoOVHTFmjqOVDdWez+g+hit21aqGmnZe+mp+XoHNZiwB8GaA+NWqhZBi1uBNYB4XWa06Qq35cyHi3m6BqAkB+Bslfi8oV+pAAk5GnTR7XDEhF-VDDNRRT1VMSB3mk2UUDoQwfgLCZACAGpfu94VEO6GStKSlCgD+WJURzi9qm8VylZHAMgD+JwJgI4RuCgRAAAUkQCUfUPSkpXeHkYoEUeUa5yUckcHCRQIzl0QSOCOk4JVyRRclkF0eGjmTEeGghRIAAAZpgtHBwLc3x5BuHaFka1DOCHo34Ek9p7HZG1BjpkB9pomiq5ArGvGQnEhZo57zNYmXGTHupQmrGYm5AJHsn0ovc-HAEkmimvR-GalzTNMAIkHaqoauGeHUH0mmAAAmdxgANhmHqaAboZYiaekpabycQAABZPG9BP6SBBnv69BcGyJGmAnUCRGsggA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAQwCYDdmQKYH0AOEAFIQJSIDeAUIrYgM7ZS4QJTZhT0kQA0iUZDAA2RAOZMWbDlx6l5AbkRUAvlVCRYCRBOYAnbGJj12eogFtkEABYww2fgbG4wyc9nLU6iA1BB6kSxs7bCIAIl1cJ2NTMNIiJxc3DwVVdXBoeCRkenoYMTAowyT3Ihy8gtw7Ez0QTIRPGjpffyRrbDQiQREy3PzC6qha+rBFNI0RlD7KzGEQPGwAD3xeioGwGrqtUcplbxaAxHbO7tFT1f6qjaGtrPlSVLUJ7cRhODgAaxB8Aj0YcyI9AAnuYAEZwYT8OD4bB6ZDbeiNbysa6IWaIAC8U3ocGIwLBEKhMLhCIeTVoByQ6IxNMQ4FQ2GAIVQ5O8iAA-IhYXo4GZ8eDIYgwgBVMAfMBwADuSGhsPhWUQdmx2DBwmwAC44qzvOqjh1UF0hKJZmMnhkXm9Pt9cMJkKDsKJbfbhPR+E6HSUPJRWSiTGjkMJMdjcUR3cJPW67Q7Eal9kxWv7AzSsfTGcztXROdzeaGo+HXO5+CKwAymfZUK884rsrkVaC1ZrSBnaLrzibHulNArLB88Pg-uYYLB0AtlkQlvh+EFbPZI87Ed7vDBgIgiMYpNcsMwJ+PlvJF2zaL6oIgIEHj1vcBPcLN5rv8GTDxT44ciOQMQA+U+xugqLku7BFRXNd6BtPMrzHCd9y8J9j2rEx6CDS0vh+MNc3nOcPWvNCoMfJ9KVXd8v0Gegf1oP9o0A5dV3XaITFhCCVlwg9DzgvQg0iOjTAsKwZwcHxDBiBjryce8xifAS-FfIidEkFF2E4bg9AePZf3-RgWLZbMzAnItRXFKUkAnAw+m0KAgRhatlVVDU4jIxA1DNLttB7PBZRJLJGPvKdeJCTCXSJOVSU0uDoSQ94UN+f4iHc+UEEY3BoTEwKPIQGMfTSk9kH7XFEKxSwmMxL9XKiwdh1HJifOCWdK3nUheGbCSJNi7YEtiktuFw+yCLfIqUHwfBhCBK5cFTPQhrsZwACtkEwegID+fAoCIRqmu8aEfJWfA+pWer+p5CBETJJzJnKfoEkE+i9AjBg4H8CAvRg58pKQYQYnCM6CjCRxLtMG6cXulJxnNbtkF7XBPrANdriqvj-NdRAWqyBGyBCzKBGQPRdA4yQuNhHjqv4yGimcAtQkGcS6Dg28KqDYmaa8in7OpgN5lwDRMUa9ckfincGagxrORKnnCj51mKthvzaujFK4o2JsJN1Er+3+IcYBHLz+eWSWarDdK4xewi+qetlGGYeSZG4QQsaYfgGY0N88MPNBMBwAhiDIJRWRUDtnlB8HQThSBrGhkwdf4vX+GAW0xH4VGTbghk-SxQOsBsXAk+WpnWWokCwOdLzM+gxq4JI8KrVQvN0Jl6Xw2wqui6dtkepkk21qa3PIgtxSiGj5AxGL9uh+8M2NwU2RCH4Eim+Hw8KIAzTZ6al2077D2IBnpff1Woefe99TALbuhtNDqAiwAITQRBU+D+CbkmJVyjrBs7O94HnKQG+bGr4QkWaF9XrvTCF-aw31a7HU7JMEBGdsAmCINAwYwxth-2egmY4BpzgIOuEgu4EC-baHXIIMQEhUA2neiYcwZ8BDtFwEQlBkkEzrnwEIPkUBKHkAAGQcL1J0ChUB3y0igDQohvsQbaFEmTehBE3pwLCE4MBkjREf0VKBPG10dxQU0gRQh-cSFkLgbpIU8i8FiKQGohKolNEmwIugw0PQurv0mBeTgRAaZSIAa8IBzioBgLcUoh+oFvFeSsaybRoEiF6JkctQxYRvGvxOi8IJ14aZiS0R42x5wHEJIVGhSRaTDZRPCGGBRyQTHKPXGGYJe58mMPCbo7ApDCkxOKWUyYlT67OlSdY9J+o7GiCyZAl4JUxBwFoXAU+4d4Zxw3mjVEmcOKjKgKMzOp8m65wqeBHcjdF5U3RmXLEyFrRoUjrXBKaFG72QNgmXqn4GByWkD3Sed99ZqUokBGiqjfrCTHNso+R50ZOBxvoL5ZhpxS3MSJQwRALmNRbn1Ue3cJ58FkubB5sgnCU3IgfHZtAT6DAvlfEZYy744IITWRgNlGz2UclQQZCoiVLJ-u4gpQCGVwDAWGVpLw2UwLgTyxBtwGg1MOBko04hFmjIFSMU0dLtD4CSiYKwHxmUJkVRAD44R5X4HibKpA+AQD0BDmqj4dtxYqsOMazVBrQHxD8Y4oZYM8D0FmuTGGiAwU1WNdM+hbFDBApJkJUFvlPWCHVVcEwJNPSrKbnC25fyh76sNYCUNJqUVj0thdAem9h4rzdoQOQlzd7+IdeDEySyDATPdcG-iXrEDxwyqiQFWJOIgoJnDBgKbw3AtJskaN3UPE3K-PG9uCK0VKUMHHBVKbMVb1zQ9d2BbVJLz3moXVDAXWZvNYA2RzqRxgIxcWhUZbeShAxcK7dy05GwPLdgfdhguUKmNV2yNZNk1Kq7aSnY3TDaip6E+qVyCH3aCSnk79CZClhGhCU9wQGkDc2JHLKpD5z0qIICw1JXDUMRIafo5atioJFig7BxGCHWrXiSiLRiW6eEYLFbYyjuFiMMeWIlBDHUYqkc8iEq5hxzjMYfIelyjqCCwmALyAE+Kq2EymSRoKyNvWzL9FYF4WJiRib0OYCGIxVn2XWaBfjZRpX0OROjZTnkOb5WEwZszCBJk7y3g52uCMRYvMPLGodS7HO0Bs4UB2Kk51r0XfZtae9vDzw0vGvFbqwiXwrGp8TJLBVwfJc-W9TcaX4L1aJ8ThnkEoYg-FjTYCfPEcK5pnzqyUO-tEBTFS9r-ajmwBAEArVMuVpOR6-iwWvO0CeX3WOHalVEgXGBkVvSKaYlpGESGYRBZVvBpDStnWZPQhRhvRqupbETeTEKdgJhZsSSFsJvbWc3XLac8NqOMdvUbZo5VnbwCg42AO0+I7Acnsh0k+dk5-WbuKzu9tqbbKXuHje3gNlS3q0ybILdrb1wBFYjCLu29c2SrI8h9Jwb6q-tPk2+N+Hk3EfHoMCDtkYOigmBPRj9ttaYf-bhyYBHQoyuk+8OTsr1OpYnNWzjw8uoothyFPpCU0pEuTHMpZR+tZKU6sy-NvAAGshdCWPwlDzCYBmHYIsKhYAQDCF-oJ5LmwRi0JV5V0bbR8eM8N2LsjiwmstfM+Ac3oSPHnGztk7Qo9Fe83t811rzvJM5RmSbUe7u3XB7q57pA3xUDwgV9cbgJEZOdZ9ejQg-q1FtqlmEQgr8TOon65n1t52wj9fz7s1ExqgydfCMaiv-zUSrZr9W8ILmG8MMOOpq8vEVoSUGPCyQPvRZ+8d-FB2wX8XBZKksB3AeP596XsP032vVkNS3pHbrdBltb963wXfiBfsH69Qf1b8h19Pmnjbkq7TOB6CBD-G6081focqWTKeifiMq7hNAfO0Zlfa4-QPTqyPQ5zATri6764AH8LGb-yGwGDAEjhECQGCgoHpbYrxoETf7KZ-4uh9LQF7TBanwIx6ytwH5wT2Da5dpBgZIq7ZpNRhK4A1CTTIEq5doKxeacgIHYAgHEH8AH5rTq5Brgy35DAP6UHMCSYCE9btzTz8EyFrSkEcGOa6jcG8FCE8TgzD6sFUEUzyEKEGGHhyGeaGFPikFey7zpb1baBPw2REDyQ8j64MRa5UKp7ehYHa4-7MB6z2FsCOFqjXQuEX49Z8FOZkGmGx7x5dpJ6J4p7Vr0EObaKJ6FpbwqDEZo4pq9QmxqgnjV5YgoH2Ry6JohyLCeAmF0B5F1roaLD8DGp1YSQERhCoAIC3rUqshFFJSwG0B6YuB66iB1FdFaR6A8hmBhAACi5gS0QIWOHwuoAACgAPJzEd5hYYHBZwRLLbRYi2J1EpGmwppBjnC7HBYESbF7FqBhbtGmLVhqwBgwAABeoQgxlRBRsKHiTRLRYQbR3gcuqAxgzCUA387guQ-coBDRHiwJzqEghOzO1qrOr2da1qwWSssCUJgED2Wq8JoOdanRyJ7qqJoJMJYQdgtxb0jxWJZONxsAdxjxb4eJJ8xYBkouBgAAjvMH6EqMapqFOASRIFYTxkgH8fQACTYNfsJlnqBqyDkaeGOkGGEAAFTgCQwNLylfFXHKJCkikhyQmgmDEEQ6nQkPa6AUls4ymcCWx4kGnolTZmwmmUk0zGxmnjx5SJjzBKAXHDz87DE5hWn6E9aMki5mLYBsnXpWQlRqJUpvwCmICanwiinWHkohi9hAhAG8ioAjau6GwQF9EXSsB6DpnKGHZ0glhpjlj2b85skBhEDJn8C2K2IIFplHSFlNScj1lNaNnNn-blBJnYApkYw9ANn5lHQ25dxjqZqBrUZZ4RBMCy7XGjrmk9xqKmpzBglwEJhTm2m2pmpingz2CSi4C15p6ogZ6Walqtq54QAd5wRF6nl4BTnl5NxwSVEZFKpvj2TSlCIJ7G6tSMAhk4BBivHeAfk0LN4HLvQQYknUlklOoppgLSFrSDozHhCQUwA0lpYzrSnmKCD1jomeJwIFaXnepuhALl5Xb9xjDqmnT664hRESmlI4rvKrAhjv4CRGBXS0J2hqhM6phlgNKDFxhsV-TYVqhBgaGFIsXhmtqSL1TwVLxYWcVAwSThaHzBYnwsVhAACyeusAg00xpYzIrFgauoKx284JhsV6glDEAYbwEA8eqAaplxPx1xhyPwdFMGDFLMSYwYxALF8lOF9BBE1ItIPF6YQ8WY3pZg6lwuhkhlV0jYeJ1WriAYM6HptAcus+-uTxHleyie-qiK3AnsXM4BoEKBxBg87cjRzR9gDlT4ylDFS42CSWEEc+TuUMDOXA8gb5JxHiGVLWTx5xUZdAvx-xcZ2pvJq5bmEJ41RJiqegPiwWnIiFFAdyqKC5SK-An5H6TVv58wOACRw8Hhc+-VDklp01D2gw1lW1JuO1HAD0dptAnIv5jpm1y+N1-5WIv57pp1IJhpU21lNF7AAaV091HIKA1FtlgNai31aJRJLallegINnILlQNpg0NhJ51m4+urGcmaUiNJGeUHmm1oF-UMIJYXQIF+AzmlNKkqVTUKJP11piO9eC1MxaNv1iO7eLNRNlN9JEVFg41ekYogZAkIZHJgQ1akZjla5hwsZgJ1gO5eAte5iZMVNCMDhEIARK+quCc6MnWLeu52A+5h5hRvIPe38ytyQfUu+te024NtFIKcQ457Fkifpa0FtwJTcNtF1WN7e8QZ+9kXtmN4Yr1wZu1d1nZbIqwqWvhd+GtzhKu4cM6+p1aNus1y0bhFuUmfEde1sPi8QxGcNga6aPc527tE1neSAo5a13AhdV02eNUZdMqcuo85i+V9d-EZdy58w9C85zp4guMJeUOsVf0Ltrpil0tSAHx1VCtpucCX2Q93OnGaUZFA29aBefoKIfxKmAg16G4W9Su2cS4xV2NqUI+Kwm9asDQgxcEF98++tbkS9Z9Md+9tmsls832eYVNON8sex7m9Vs8vdGav2ZpL9vmzuM6XmAWC6ns5Ry61KaxEkAuVCMWV8J2tuCoUuFKOFkt280eO9cCb1D01GEGJ2YChDQMeDJ2e9l9UMVDw+1GiVdDjVRmHYVAcEYgEApCetGIrIJUtejUEGyAYCwCwjedwRbIhSEGBg5gYCZQ-AoIMkyAiAAApNfDJcPBBhiLI8gPI4ozCQo+o2Ye9DvGEFQ6CN9MFidqGO9ElGEFo3tKJCI3tN4kQAAAz3DiMSQgI-zhAcOkJVXoWeNPiLamMco2MrBXoyMONQrTZxA-RiDhDmMePBYhNCPxOJNxCGNrQhPmPpOhPn7BYQ5oSmO71JNZNPgRCcMZyfFjAt0grF2yB+MHlD2xP8AABMrjAAbGSHU-DQ0zXVU6Xrk4gAACzuOpBp3iCDPxGpC11-Rt1NOl5CMPBAA

Computing with Register Machines 5.2.3

instruction must be a label, and the make_branch function enforces this. Notice also that the

label is looked up at assembly time, not each time the branch instruction is simulated.

Ifunction make_branch(inst, machine, labels, flag, pc) {

const dest = branch_dest(inst);

if (is_label_exp(dest)) {

const insts = lookup_label(labels, label_exp_label(dest));

return () => {

if (get_contents(flag)) {

set_contents(pc, insts);

} else {

advance_pc(pc);

}

};

} else {

error(inst, "Bad branch instruction in assemble:");

}

}

function branch(label) {

return list("branch", label);

}

function branch_dest(branch_instruction) {

return head(tail(branch_instruction));

}

A go_to instruction is similar to a branch, except that the destination may be speci�ed either

as a label or as a register, and there is no condition to check—the pc is always set to the new

destination.

Ifunction make_go_to(inst, machine, labels, pc) {

const dest = go_to_dest(inst);

if (is_label_exp(dest)) {

const insts = lookup_label(labels, label_exp_label(dest));

return () => set_contents(pc, insts);

} else if (is_register_exp(dest)) {

const reg = get_register(machine, register_exp_reg(dest));

return () => set_contents(pc, get_contents(reg));

} else {

error(inst, "Bad go_to instruction in assemble:");

}

}

function go_to(label) {

return list("go_to", label);

}

function go_to_dest(go_to_instruction) {

return head(tail(go_to_instruction));

}

557 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwKZQPoCdXJgZylSwAoBbAQwgAsYxUAaRHZDMCs1ASkQG8AoREOboQWJJRp1UJAERpMLAkSyyuJFmw7cA3PwC+-UJFgJEFfPhjIw2XFs4kLVmxjqEsIaPDA8BwkSgxJGpUCgATEigKGAAbJ0trW3coT28ELi49Q2N0pGckjAA3CliQVAxUAA8ABwSXZLAPL1NfPkRBYRwg8URQiKiY+Oi4+sKUtNbMrIMjcDzEWLg4AGsQGowarBgyEnwATzIAIzhYpjga4gpW-D9OoQgEQkQS2MQAXnNLOAg9w5OzogLlcbjMAt1gi9Sh93p9wOFUMBpOF7gFEAB+RDELBwUgHY6nJiyACqYBWYDgAHckMCsNcfIg6F98KhjrFUAAuNSogIcvphSIjeKvTLZOYmBlLVbrDCxChHVDxOUK2L4JjKxUObh8VGPJpQKFvT7OH4kDWxLXq+WK256cGiXqvGFwsAIpH0FFo4SY7G4s3Wi3sThE0lu5GLAOM-KWVlHdlcrg84R8oUkEVi3KtRCUFYVLY7GCwIoVap1UtMSS0ehWlW3HUBGDARAkAgYPWEChgTClkilzL1r2IdsGiAfIdPaJdyq1Yqlcq92pgwcQ3okHjvAB8Q7twn0WNVqEZTZb+FlAenZcXd0H4-1UcI+DHUrWG3N-trNc1pbPKoXNVFSZCCuSBrh8W4pPgO5CHuNqHo2zatkohDEBef79v4g7DswY4KHYeDIaQlbSEwSEqBeeFoUuXrAc265brhepEF2+AaFkHQBDBB4Dl6vqkOWiAkmSFLUlitQ4IkZhQPslxRsysbxmoUGIIYOTzFmOYVLS9IIKh-FEdWEYfkClx0qC3G3s8FxPssL6bNsuxaa05EXGh5wmdpTRURZBoUFsPyPp8lBlmB2YULmdkFkWJa1L2FZUFWjCGTaXAMIBN43o5PjOe5rosX2Xk0aBm7mDUNSxPsbi2PCxDlXQrAAFYUCU+AQNsNRQCQaXpQEFxxXUNQhXUKUlTiEC3DMqkSmYBQ2BouDKChQaJfgcBiBA2oYUBDpILEyhyDNYCyCR80EZaiArWtuizJmDIaRgB0tvqcVSAZ5pqsZII+O9NQQNewhYdEWAKDh6B4QthHxcRzKFJoS2PYQAEBFhrzlBeY4HbOZTRXUKRecjc4VMYHxpa2mU6T2KPY4mN6YndZO2BTBMXs9CWfqqbmfU81ODnyd35mQhYwMWqGU8zoUvYlb0FdttEhZtaIspgjGoMxgxA+gTCi8Ya5eQEEQlJAea-D9bGovoGZqQy+udutmzG795mK22CBMVALE-UwqYMS7KtuyQJuih0k0LHdRCEPDUAs1Db0c6ZX1MMAcrIEwJvmVherhILZifGHSsIJnrQR158Enhg9OoRnWe+H9Xrp-nVcYETgVhZp7lOT2letKl3U9734us0l7MfXHXNKfaPQgXR5l916TvK6ricUMnt4F1l2uIzPN7W4bdv+79OjsZvaLm2b+4stPwi8RHRIAEIRIguf3qkLQMkyzjyZyilm9dluSag4csgAI7lENjXQIkJdrh1kLnI651UDAJVutCa4oFi52dq6KuUR-6YAmC-DI5kaL9EFEMLBhBKrNDyABYOWZWzRGQGgcIso9qEDIJHB+oQMB0LATRVsNQYh4igKwngAAyYR-IBgsKgOuWE7CKh0ItlNJALASBLW4TLSBHVZAsFgaohRCxEInTIj2PsBCZa0KXgwph4d+JaNwF-ahDJSIoW-Mokx8tCECkGKMfKeiszDk7B1SmaiJ6LD2rIfxXZYFBN8a-U8ETuwxTcaiHhp46GWI0X+Ik8T7EoL8ROAJ5FKZoVMSEohXj4g+J-ooweKjtDBIgWE80Oi6kxLMK2c0ulFwlMhOY+hqBGEZJsU05BN0zAdO-G+JJ49IRlNTJUhxZg7rIDgJwuA19+7RwDN9B28ssIImeJ8ZZqyMD7I6rjJSJd2nnh7Kc9CaUsIQWstKV8AZ3w2jZuRN8tzdZdBlkVLcc8faqw9k-W0p9YJHgQqeJxWBULfIvg8CcIhkAg0UIY4g5BIYGRheRZR3yx6-JCf8uBecuy+3dhAJg3syWqxYBvaCZ9DzywCFfFIt975HKgHAJ+kxX7RhZGyT+XkVL8FyQyTlazzT1N6Bk+QKyuWwKla0pAEqTnYJIKq3BlDum9FmSQzV+peUZBGb-JANQXIdggCsaVSBLUrDkOamoOTRlmpAPgagexohWs1gTG150vX2tkDUN11A1Bpl9cq0K4V8BNRkGyjZBk7Upx2bqJFLBUVgwIpiiWTA7XkLRawOGuNpZEqnsymewb3WeqoCsKloN55+zpT8vu29bY-T3s27qJ8FkSBbnYQguI41PQTctANyawFYXTYc0GMLs0DzzSkPCWoi4lshMS8tfdAU0sbbgFOFqA30qPq2o2HaD5dRvN20VLrzqxrmsgP1sqY3FlgXSyN4kuU4DvQ+sJ77B0vtwCa6pC79RLrhsBihUwdUhE8amcDz9KGAYWC5VRUHQlQIuM0zgiGaGnnLsYrp7izGnj4TAPiXTRGMlSRY-pViOplL7ESDD2GGR4ZnC5Vj-5UN6tGGUjj0xI0cbLjlcILE+OodTHxyNfNiDAFxLseN+lJZbNjh5bZE6kVUCzJ8EysmsBkHunkIuFzjykzbllHsmmfB3JvFhSzOkm5RtbpzBmMU7NgCjtWc9R9vOD3evTMFN5CplsPj54QbnG7gDXAfY9u8TZntC9BJSnFz4bqxFgHEpB42yDvuERAOm5M8rwUgN+MZBVfw4lUhY+W9NOG1YRkJsrqtkFgW55jZgmsGcLrjLjMGSHFrPT2xz05UAQBAE5F16yY4jqYF5hLQgQWL2Xkm4ydZ6szM8d12EnxZAHVkGlWmfaHoKaxUpoyFw1NpT5GUzbMjoHYL2zTIbud1mKbZn5mo71Fvjsu+IyIN3ttHDpJAUN+2huA5th647ObfMJyTt9m8V2Nv6mkdtiVD3BwHfChKl7J23vw55r9ouzoBJPtQOjr0mOKik5x9D5bJsfvXeR8T2xA6cDk7RJT-tH6h2EA86Omt+OvSI4GP9gSTX2cBE501mnA8pvncF2iPkrLh2CXJFSYrhqisP2knBflH8ExSb7VqwuRAqhSNQyR0gpu2FgBALEWIbWNcQaytbona3dVI4RpG435mqgjbG2vSL3X3dIFTOcyrWYnY+-Jn70b42g-Dr8imgITsw+J9GqbQb6xwjXAqBBCO70puKfU3eH6GbZ2vbFxAcr-0kWLfL+iiG0PZCLZr4iu8dqxyKbkHatv3kVtd5O3IfzfeaK6cqPFTqN4UghSj5rvIw24+B7AFPnubLZt3WqP7+PijV8z2j7YV3uNu6bxjrNgIr3z-CA9lfoQX3b-+oFw-87mQT9eggo7ob4yuxYH2G8wM2gTAH+Fu-C-+Z0H+ka1QqQmmP4NoWCZux060QsG0qIlyp4tu9u8BUiYC0yvQOASBxYKidugIGBDuSWjKCK4CvQUBdI0AsBqo5SWBw0s2Beb2ZaD+WE9AZu+aY4syUBnagWRGGAHgdUKiUB+a3MPmmI+BqAyBrBIWc282oBd03+qQf+XBOCw6D+ih3UH+M2OhN4Uskh3mfIMhchlumK4UB+Yh3Bx+ChBhBheh9hDhaIUs8WPc+gwqEeVspWcYMgjEOI9uKE1ufOdwNENBMBb0JAARpw7IsKIR2haI8hUscsiRg42eue+aLEEEeOI6AhR8PC+okEaRu4n+d0dqoE8s7IBonenwpBSk16laHqVQfgzhQgtReWoBVQuaB67h1EMssg4QCAZOSWqIjRLkOBwgaBbAxB1aVq1mPcV8sgAAomQO1PsI-lanyAAAoADy2xfeHEFBqWSMSKXKA0nwZSdq+R7RAaY4sGvRs2NE5xBK0E38AQ16dAgspQMAAAXjIJMbcTWmOPUWlDRIMcMbIKMR8aaogJnPgHwlADQOQP-DGmgICVQRIKiUvIeFtmLiGhLhjnliGrNrzNiWgMzo6oSRTnlhMaSdmOSbibdl8bAD8f8dSRzlGN8btP8WuPSUsaSGriJDgAgs8EyHalyBWIyV4bgUgPCYiTQIbuFLOihlUegLeK7AFAJAAFTgAHT9LalQljGwnynXDImcCWA4kYk0QWlolMmo7oAcmS4ankr0m2k4nM6KxOmcmUxywunMRjiUwHyGAzxK7pZ+juloD6Fzaq7CRKLwLlBim9rKmN4G7vGEqQimlInUCRomi-C5j7CIG4giZ+qtikFzSPBYAlleaYjVTuj9JeZK7AKlAkAFlMBlJlL4HFnjTGHpSYidkjbdm9kI7MimhtkPwkJdlVnjSRrUqal3rgx+qzryCOmf5brzkwo+pYxLmN496rnhrblKkVD0CUgYDd4l7PBl7Nwpn4QqAOrV54x15JyD43ngxyCt6Pkd53HXlU4BpRaojVGyL5pGq2BAIgLrQgnEFKSAVQAcLnZPh7SyoskwBsm-k1qwIlE3jEoVGyDIWoVqCHqAU4rRB+EIXhyNbV7jrqhhKt6w5LwATGnVKlBLAQCZEql1KUElx5m1LBjIrgycLyjsgo6IB1nIgYn2i3nBGCW4mdGkZmh7RLRxSvlZqqIpSYV9zEXSWdrJZMqzZXyKUCQACydusAZUGxYYHofFBEfIhxu4YJAxOKzFPwue4QRpFWMJ1Sz4Mo7FWGlB+MRoo5vwBlmlfhnaNEToeJolHos2Po4ZpABlsZ6uVlKgCY9J3GwopQh6IZwg16W+ceAJflSKjy06pK85cWJMJm6BsxH+4lGZvQEJ9Ablg4OllBDY8+7cseAe9mkWjOD4mQ-5vc4RnVRAA1zV6Zd+JpBACpHqkZKBghISs1npgMUA3pQgmI66JK6CZVlKQFB+whCZiCV0ihQ12+AJwZbpjJzOKQzFwFRW+1CChsq1GIcCgCfpsFee7VWUYFh1Y4QC51vcZJlpFJeJO29uzlRAmaKgT1mITlrFENMKF1QN9pAkuEMK0NiwNk3ljeiNdpV1+oN1I+MVA+xUvAQF8FxopUKsgocFH2bktoykONHpINveRNdqjNwNt2hNvcmI71Qm+A-JcVKJSNIYQkSVIpiZBoTIimaZ7ldVcpU1ZpOZ3hiyfa3eOKS07270MRQR8R-BacSKimL5x5qAp555DRuIE+yJ6t2gIUt+3eoNLFbFjeYa1tWG0ZPcrt-8Xk9t119uQmzm+AYaL+SkPt+Nfte131j1w5SR78gq0RLsgRcRnCUBoRq6vQimkaHYWAHUxeqG9tWdK16gn+qNjeW15Kc6UMntfqc55dJdklTeA8Vda5M6pdDaLElentW55QYC65tdLd9dFd2KpdqiXdR1ctAkQxjVR5GA4OwOMumyRkX2eWyeted4pyY4s9NAaq4c4eDYlV9BcK2CCxtcRVRRTytkb4U24yM4XyR9YVfy7BOhJcNdC8Scx9BhvdwKO1EB6lykxxv9es4QBsba9sNxvc2VoWJ8RxEKqWyuvOAkOWiAm91AhW+ieugqMtdlg2yD-+36UCyDiqAYn+yD29HUJDB+fq6VJA5Dn1xqYo-AWEyAEAjCht7wqId03eaUsqFAsCsgRwvDhdb+rhiFP6rIsCTgTARwU8FAiAAApEg2pX3LKu8OIxQJI9I8TlI4o4OBkuendmQvw0IzeM9hki5LICo8NMonw2oEwPEiQAAAzTBGODg4NvjyDMMnKQmv6zYPTQKKp7RmM4DNaWO4D7Q2PIpyD8NOM+OJCzQ7b-rICRMEXONei+OGMRN+PeO9zY5uNoJRPaM3juOMKT1k4AROw4pt0aoeOV7xNMAABM9jAAbDMOU63UCn7Ewyw7jgJOkwACyON6AF1VNdMSwzB138WVOdNnndPxNZBAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfSgQwObYKYAmaANqlABQpQC2UANIlABZ4Y4CUiA3gFCL+IATnighBSVGgAOmGIMo0onAGTLELTAQW1OAXn2MWbbAG4eAXx6hIsBELzZyYTNTydeA+6PGJSVcgBEwtgBDM6u7GaW1tDwEujBZHiCaHgAHlLk6VLufALC3vHG+ER+FNkMQQ4BkRZW4LF2iVTJqRlowVkZuZ4FYkgaWlgwxF05tdENtkgQCFSYYBQAbpjEIG7cefx9PmWBs2Dzi6GIK2tuUfU2ccjoB0dQbZnZPfki-bfFhCRkY5X3WGOEyujRmc0Bj2yaDO6zGr227x8g3Iw1GL2BMWmvkwACM8KNwhsPG9Cr5fgFiLj8SdCRipjdJJS8cQnnDNr1EUUsLhvnsKogKVTiDVLpibkz8U8SEK2cSEaTkai4XTrnZ8I9mlBkuRqJgIEwYGA8AxgmhaeySR9dfrDXhAuqOg4koIauRTbTRfS7JgUCgYNgwI7sGaXHafX6A2hDVRBCBQfCvB9FbJRuH-YHo1BY-GVaDEGnIzDWNlyAWM4cs3Hpu5EFtE0i8JoUSnmyNS7701GK9nq+xc1jiHA4ABrEBSaSCGDUSgAT2oOLgxAYcCkyUw0xQCYBp1WiF0+d9cAgs-ni+Xq8E67im7MHNJZz3BnABDwwFtBDrngA-IhkoI4PIKBzguS4CgAqmAw5gHAADuSArmuWKGgeKB4POxB4AAXDUn4CJh6iNkMLZnH2nqqkgg4jmO0rMuQErECgDD0SGEQWvw24Pvu4ZHnRQosca2LMjedY7EgnFPmAL5vkaH6eN+v6CP+8jMYSlQQVJ76CfiyBIOGaE4hh2HsLh-D4UqJFkXmurDqwUiTtQMCwEsxYZH8iDWgaRpMUKm5scgwCIOQkgAgskKueifmeNuEB7ogIWLFKRZwrecnyh85B6AAfHFKX8OYv4MXg-mBYyfElhFcpydumYoLFlGjuO9G8UJ3nMlKTXorlcmiYFWU6VQKBdfl+KocVQUJE6LQpOV3QJlF4JCLFDqatqHm2iak1atN7SdJ1Jn1kgGV7tlDoHFqiwoG6kS1p4w2FZFAh-gBbkBBBUGwUg2TCB2dhQDOq46Sh+mGSKdaWJM5HuZgNloAhl7TKy-JrV5WkMeeiHXluC0rnVQ4NROU7kHDV4IFKK5wuj8OY1126YHZR61fuurPMdUMw3ZU6OTAzmIwwyMCfRm50PtqWi-wxMI1CxOSZde13ulfV01IxAzl2aDPskKuGsGABWmArCgECTlIFAi2LngrnzdPkFIrOZOwDB0-+ECbv2Nxlm6m2tKpiAoHAYgQESImcmS-gBGWJwrSkPt+wHFx1GKdjWawHuZlbNoo4LlMk4cDBSBAWMVowmCCOqS0iEGzo6nqnkCWWQb8UFFakXWHGrOsTyxfXRaspmtTzUXPfWHu+2SBLcSsj3Lz7T+yewxeOeT+3LlSOntetSN2cbsZYv4XPHMOU5K-kFPGRr+tqPCfLPhHbo2WVZ4qGPGdeAXc2pciAwQ-gBl-ei5oKxIC2WPPna6YNLJYgAQsQO0gQEFz8k-NAL8375wYEqU6CBzpQEuqA0itYIZWWhqwLU-g05QwzgLHyW9rwMGAJSbAed4GVWiggAgXM7D7hIc-Vh7CwBNyoH-fgMAArjXnhjUmJYDhsN7A9diC0pG8LQMPJmRCxFUwka5BR0xhbm10Xozw-MN5o0QOPOYgjuoh1vvfM2+jfYV2Qdg8gdCcAMC0RPawv8uq2NSlAoBsCbYFxMDdbxqVzBDQKqNB+j1FLPTIQEAAQpoRgeAqD9UrHmZCel0JYVBrdBOXokBcMoHgAAjusIBCYep7ACFwk4qEymv0Dm7X6KTuGSV4SiVpXYYxVjiJUkOyY2xcO6ek3sECbhzxxJeSATB+H0HIevS+tD6GMMLqkl8qT9xTOgUwNAGyKB9y6sIkq6BmIln2X2WRcUFo1VxlRRqMos6o3ajKC55jr6HT6lEkJQiREYMWK-RxzjsCXO+T8x+9jMGApwRABgNV3ngsQHdSJNifm+JgfnAJCLwWWERQIMJYMIlFTBU9eQcTEkEEQNsmZaSewMl0r6YGOTzHgxBFial+pmr4n6aSapHKmAnHos0pA-K9mtPIKKzMdKEA8qTIRVsoxJXdl6TK4ViApDk3mBAYcsqfBauHIEDVUhQYEKxFIEAKBZn6q-svXVSB9WGotQK9gJ9bXjKTqolA+s7RkMMb7LA2rVl+W3MEcuGovbyD9fqkZDdCRzJbh83qrMwV6PNZahQephwMH+Vgy6wQE2IvRcArFXj9EEtNRM1R30oAAR9RWc+KNrXqqYa3Baob9zLQjdXChDBo2ZljaGeN5iepWKuXoxBDi80ODzpqgNOrsX6KLf40BQTUVyXLTwNlNwvXOU9iCvyVTyQ7rwJHBwarq21r3Xa0OFAqhUFraekF7r7Vzpje6QdfblXxgPQM+VSpP09JzM+kxmRzSVUPWHFcNJQxqrHgvSW4Vug-tJJIGQcg2SqE+NyEoPx-DIheJUKDarTGBilpkEjTxr2DNGMiCj6JiPwYnmRtcMsiaMY0TkZDHwlR0e6MB-eyRgAAWnL6muF8nkkcYs2tZUB8x5n3BeITghqBoD1NMeNRyRFwfEaR1yam+lzQELTUESjwCxTnrxzI+mEANuNGuvF+iJPscOAukdXzgkObkwjDx10l2YpXR5xFBLbpEquaSuZlQKXqsE8J2lKqJAMtQtk3J+L8mQ0U8J0s37wMh2qRl5TJxrNgDVfllTRX41cYbE2JUfcwEVo9TDdIeAIAgG8wUiLSyFkX3s3i1BiBgW9rneeXyOWFTyr7o+fc4cOwBgCDPNmKcZt8NEz2zrK4pOgP2vhZEE39BTdqfNueRSVuLKc1Jgb0mtsESbLtgwAR+VzbFrPVR-KOt+qeRdzbu9rtaFu1N7AcAMBwEe6LZ7MMAdA7e2JzOVDLvfZ283SbApj0g9SmD1gx6oerabV90W23xuI72wKC9whUdyXR46e9wgseLJxwXK7COBFI4CKVsn8kBOCCUyJ+tXWYctRAxt+n33wtxLetBOCcW8x-QBpkxl2SjL8dUVK+LnS0hKEq0gND8gtRq7CCAYgxBYNfoRjrg5iPRtypu83YDyuTNNZa215b5vg6khq9btLeZEG24Q811r7if5kPpi2iFjw3dUDzs7OrW67BjgIOuVgNU5lSaefzGTzaw2Vymt2xZLOIApbkUXYFGeo7Z4vgEYF+frlF31eZ6HdoAj6sr9udbteKGBEk5XnqSnUg13IKPIud87GPG90xtIvvHd9-0WnVFc97d+9JonPhPXJcm-SGbgROiQlZ2X4Y5fqDl8DeX9a5f62+yb9SvCxXMMzmLEEDOLlLIfbwo1+q2Qyk+JP4rMJern01eXmgDRCNKrvMsIIHNzEHJ4McqImAPrqMKbqCvtD1KAXgOAU4LAXrgbiyqFmCj1Gvv-o8ILAqsAQ7IFmLEnkYr5IPimqLNuEaGriMrFIqGvgumLD1JIDGNrE4GviMjvHij+MgagTVAwMvrolrtXNfmVLfvfnQcPjziIZ5rovCsIQoebILH2PIaZPYGAbumIXPCPggFwfQX3MoSoaYZAV-iQRoT8moaumWiyh7pAnLgZHaGdP+Abq0KbrZrkLgX-mpoAQxOQK4YuBhCkJ4VYfwOQZfF8uEZ4LHvHiMpdEIZ1qnqWnimwV-qkSEuYGqnPA6gmBhLJjXvuDAQbl1Ivuqk6uQGkDWPtEUa-uhmkINpmmAqwSHAEAQAgCekNHWOUUakdGClAZICUaMPqggfouFgEAAKLUAmwzj+qZr4QAAKAA8osZXiFiNMSqituDWrbPuMiKMZkY-HOrFP+nOiwZaD4LsZkbiqlp4OUYaFzKsDAAAF52iGb8B1HDGZE9TtGdEBDdH3EFKIBsIoAyBQCcquC+g4AQGiw9RQler4DM5poCqoo-gomop7wpKIlFRE4s5QZonqrky8G6JYnQlIl4mPGwDPFvFs6g46RPGkBvEZSYkKRKSBBi4fT2ANKpLIT6rYR8zYkwn2GJqgngn6hX6sAl5gZ1gFFV65qxQBAABU4AZYhASpAJPRwJYp64kJQp+AHxB07k+puJd26odJaO8p0KrJCJMJzOT8Fp9JRYyaVpF0sURYQStx+i+E4Wtp+AJhDmr0kE4uSAwgPJsmyEc8UcCuYMLuHwOpEJTAwG3Ex4NkM4G0swggBAI2cZPgQxsBnsmZ2ZJJT2iAGs0khANiPpZSqw5AaZDAyIyIoBAExZ6htiP4TZzWLZm4a6+EKZdZeA6ZxcbYzZWZrswGOa0Ke6zo16JeAQ5paqE6UKb8UcNq5ws5XaDeIgroRYORqiRoMEaA-M-RraRc+cteMMc5+cTeC0ReKil5m5Fe5i24dRuRc6GUXUcpzACexuE89S5SgcsU3xspIghgrALe+4ew1SVJMANJGOc6JwMRqUo6DqAQMFcFNQBa-AcpUcbAzhdUvweWeeqyTE5IFeyyHAtQWpkMqwg4EA8R0pMGVyUB-ZPsuFWAzhegEkGkMkhpHI2AzoeFGEsUYhewPsUZXatIDsSFei7FuIGEC6yKWx4xMS8gPsAQAAsvrrAMrHMTxYQPYAJVNPhOsXcXCW0bhbRUePHgQJqXkkCZDPVNRIxaxGCm3MQF3IeMeGxRGkJfHK0feLuETuWe+ISeFupZyRLtGThN6T9kQSRCKQIOUXPlqCeWLNVF-hnpOiWqPFpugMMUnmMbJW0R0UaHZaLEpWOgIPobpuPv7nwoztgn2B+aij4ePu8TcbGQ5XmAmXqeSbCalPCSafaVgIIFAI6fJKOlwEPkgsuY4n1t+SMtKoGP+Y0v5Z5m1Q7h1UijacNZSRWLRUtfFmgKtUAhNQID+PUi6YtTVSdaUgBbiXYiUp6btf1czlZfRVqJnltOdfwD+B9QxRGq9Ticzp2kZT9YSU5eOFHMDXaftfMAbmojnCgL9YgD+BBffGBfPIzPmFIKuJJCiEYOtsNtdF6ebGSSDXiY3oSfqrDRSXdh3oSYtetqyb6SaWpMGVyWGesLyUgPzDGfZZcUgL1UmQ4ZWjDMebhYSFJsTfKW4SERgMwcGgtPzBeawAeUeXXi1fcQBD3pylLaGKzD1seeHAbtZV9VHK6AbREAGbotbSkuYibZmIdR3i6qfl1E7QdYjbdadYHDFbou2Els4YEZgvLR4Wvl4cOiHPzMBvMGNaXkaNeibXHeNS6mqmDYJdlX6vbdepOW-BnVntnb5VJbHRXLhVnXXhtODd7KGGuesAmEuQCvnWXV2kXdXdHDBnXetWlD4H8WVZKWgBDjWjTuJrDqAsrUXPsktIDjWmKqQu7pAXlf4ayG8lchlQNHcvjE1E8mcu0E1G8j8ZYn1I3bmgEnChYeEpsWNJILhecq0kValCGg4MXq3ZXYZYJVCJ0AfYgUfazCfVOX1nnY4vmlgVfSSqpR1gkkkkPXACvvSkDPLpXqytHkgDAw-tetUjA4KkKOnTPYDvsuQDA0ddlrmQMH+i2EQzVS3JYDwNuNgBAEQKrboHWHPMeftNUpgCcPdlw6nefnJFBeSMINQCcKWAwDiIrIgAAKRUrSW2LVK6AiOYBiMSNE7iOyOix7Bmw1JdI4ihCopFJ7DkwBAKMkGdDcMkHxQUAAAMfY6juir2TU85DDey-xZ+qKHsNSgqvwRjQjNQVdgQnDpjDggQujtjfDYsHjnD-j5jdj5sHjuj0TqdsTYsaDjjwyoTyTckTjRApVJ6LciC5dc1l09DjDb94cJwAATFYwAGy1AFO+XZUlOa2rbcMMAAAsNjZgKdhDzjKRPABdW0s1TdjiTTfq5TkQQAA

Computing with Register Machines 5.2.3

Other instructions

The stack instructions save and restore simply use the stack with the designated register and

advance the pc:

Ifunction make_save(inst, machine, stack, pc) {

const reg = get_register(machine, stack_inst_reg_name(inst));

return () => {

push(stack, get_contents(reg));

advance_pc(pc);

};

}

function make_restore(inst, machine, stack, pc) {

const reg = get_register(machine, stack_inst_reg_name(inst));

return () => {

set_contents(reg, pop(stack));

advance_pc(pc);

};

}

function save(reg) {

return list("save", reg);

}

function restore(reg) {

return list("restore", reg);

}

function stack_inst_reg_name(stack_instruction) {

return head(tail(stack_instruction));

}

The �nal instruction type, handled by make_perform, generates an execution function for

the action to be performed. At simulation time, the action function is executed and the pc

advanced.

Ifunction make_perform(inst, machine, labels, operations, pc) {

const action = perform_action(inst);

if (is_operation_exp(action)) {

const action_fun = make_operation_exp(action, machine,

labels, operations);

return () => {

action_fun(); advance_pc(pc);

};

} else {

error(inst, "Bad perform instruction in assemble");

}

}

function perform(action) {

return list("perform", action);

558 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABABzsgFAZygQwgawEpEBvAKEUsQCcBTKEapbPfdAIlWXcIG4yAvmVCRYCFCEwALLLgIAaRADccAGxC1i5KjXqNmctp0lSe6Fes38hI6PCQBzegH06DmNlrV0AWzxSYMFpFN2cwHB9NUgoqOgYmRD8IAKCOJyhXWndPajNQ8Mi+QWFwO3EcTEwYBzBMhzCI2nQKqprnQOxqEDKwLRjKOP1EKVocABN0XBhVZsrq2o6oLp7CIptSsSQW+ecLDWdaAA8MbbbF5c2tRH7deKQR8cmcaaeX04WwTu7L1esS0XsiFUcDg+BAyGcyGoMB8WAAnj4AEZwVSKNBeHCbTB9HQQBDYZRqRAAXkQLTgEHhSJRaOQGKxRR0gwSFhJxNJ4DGtGAgVoYxuOgA-IgvNQ4N5MAjkajEOwAKpgfBgOAAdyQ6OomMBgTJlVoSNUtAAXDwBVQjcNRhMpjMLL9irZNkCQWCIaocIjaDN3Z7VJhFD6vQ1CtFcfioITVCTdZgKehA6pg8EgR6vdj+Ey9CyieyOWAuTygvydEKRdQxd4E0nFPL89zeWMU77EDqWvrEYaTYQzZQLTbzGo1v8eokcPhaJDoT4YLAlBOjhgF4okilkwnsaGqDBgIh0B5nHjPrgwBkF+gF6tNyXEIeCRBo7fj6fjrs1Bpz8dGdfbkN0MRiQAfDeGZUAIIp+rQLY7numDOFWZ4Xji36Pi2R6YNGwKguCcGpt6uH+k2QYLjhvofsg9rfj+CR-iSQGLJgIGUGBaaQduu77m4HhQF4BzHGRl7aMh4Y0NG6R1FxXi+P4vIhFkEnULxEJuPxX7XsySA0YBiBiYe3Enpg6DUHw1w6MxEFXiWorimRNYKkqqpIAudBzOIUBwnSqExu2nY8IxiBCOsALiH447OBqWoIIpNmjskMmEX6tL0vYG6CZQKFoBhLrYVCMLoOFmyKWFi6folmoMn5KE4FCFLoaSfiLrRo6hTl06zvOfHJiucXroQ8g9pRlH5fYhXhfmBmIX56m7v+QFVcgqhwu0tScl4C2BPUABWOAqJgEDQsgUDoP1A06Ggy5VegyCNRgvVktVEDYkOjqAu8hlyTk1aILGjAQFEqVUUgqhcRw7zsLJ2TcQpBTJt91C-U9GyAiFE6vYs52xUEAb4aVEWfIoyAQEhaXCbg1DpKJLicTkUkY8m7x1Eme5HhRVAoXs7VXaS9Ps1FiyqTewk8yIJL9fuQ2RWePMXv1wrI0VSUS3xUvHOjq5Y76BHi583aURacstTOMBzlFyvIKr3X4fzU2aUB-06JgLi6bQ+lPGT9CKEL4B-vzOjjCokATgTl2E7wJmgX8z3lGM-u-ZClIE0TX2OwgelQAZBOKP2Okp87afB6sxkOojwVjhO3HYEz2Dm5j8Wa3SZXJYowDug4+OExZKGHmMhviKS5cZF3PdgJXUD82xMHyw3isYIPPwWWGR4C-mQ-OMLdWl5PuNRbP9h9Sd+8HzFau1zj5X9dbM3z4fJYOwPOcu83OCt0v3cFSI3t+dfJZ+zgAdx-nodjoHwEH5MyDsr6UCst4NGsoABC4xED91Ql8EcrY9QGmNL5G4AVhxOn7lgWgABHDQAdE5TSBhXdg-cwZJ2Ic7eGEdi5IH7geBAr97CTFoNgJaKDLgWSmg8a0zwZgsPON8ew9pAojjloiTUkAZAwK6jXdcTcW5t0TihLkBJSSyN-skZwWjDp8z8uPfc8E+KGIEv1FC9FMpYTdLheM2N4qFQTOgSxPtYhZg0pfO2X8tzQWzieXOBlH4OCsf4-et9WHBJdhnZBadPGRLAZBPxkTfbRz0YHeOIcgGHyEOk8O2DwLgLSWWCsI8azwMbLo+RCSLjai2OgjsmD+Y4MjkgWpyQnG+jId4oEwN2BdNMOrL0CMgqdLkfowx6Bhk8KWOIhAfS7iWkeP2OZYiVjjNQbBXADgnBjDgsDbAPgoCZxGM4PZyyhj7mQM8CUUBTnEAAGTPNWRME5o82R9wuXsxhEzdAOHQNDa5CQKGHXYG4GhIL-k7PEh9BCn5+H9P3Hsg5RyK5LllFC7ZToqaQ0KspC8yKVmCNeDMCaRcAWPl-oddmoLAaDJpSeGh9LYVOn3My58xVyIkpubsp+6LwXRXYFyrBUinRcsKuzfifKEhkv7JSiVgI3EgrlYyyhCZoWNFxdqWC5ieUMpbAK-ZfIMWHSxewLVurxAGpIl6WV-0BFWnJSpdlSMN4ODgJcuAlSj4Ww1uojuwlDGiW9VAb1MzjE3FMfq3CUUPEQKXgSWxpJMKuntXhQNLjiJuI8Z-LxKybZJzvrEvO8T6JtJKaxaCHF3oErPImspKE3AUwyPiySSjkwdoUsRZS+bz79OLdEp2cSICKCCanAybgWZMWrUmqBfr2DVO0uGuA9TFlIDQQ7DBXZQHFFwYCL1PqeljPVQMyhx6I00ITDaxwa6DFcMOle71my+FOv6Qq4R6AX3zIaUsu9iA0DAp1ee4V7A0DasKO68QYt65b0Rbyj9Kzbn3Nla841lzBVmuFWSi8NZIOAa1iNDAxHiXIaGF+l4ZKyOfkkYe8QtGISjTGAZJjRr+zsZg0gfWXhgDilhIo6SyjnFawIgnYNi88BOlJPXfj1AfDOGkxw6NOhY2bwKmeZTAGk2VR6KvcA0Y5ZMeaD0auwQ8mFOviooD8Gz6UQvo1EgYcrNkn0+-YyP8-5BwToA1zIDiksQXeWayMDl0ILkwJjdqCmk7paVg0yVKRyRYU6Z99NxyGDJSz4Gh2nejcZQHxgTSmegjyNVRmYfNC7KpLqFI4tAIAgDfkwv1Nmu2KEs65+JYTFAsAULZlKGXP0ur5t82UoMZZNRRnMGofr2snwG+o-qFoyWjdzLKahk25b4KE7TUZCVFuIB6ygQmy33llbG0MqZpgtsb2GXN4Ta5nHHYTmd1bzNLsvvYLd0KL6Ht7YW693W521vsllJgbatBvuUVlhvCHc5-vHz6-gJbwP3vYH-GDyFT7xRQ5+xOZyEa6CI7isj1H34VsjY++tzgRWFPQ+-LD5qdPBNHnM-tuu4nTvA8XWFuyyo1TRbwe5VisXvKtIK3LN9HDuKHC+RRhIdyYDeFl2cxAYAQCqFUIB6XkVVcXYV-cKnGOCu69qPVxrzXh6jcN4g790aavMBcGb3iDWmvDXfjA+6idon9i92KEO1xHeIHBGMTEE56IjwIm1x7GjhIEzbfCyGNNj6cAgAl1mwkwmJ57SnuK7AwkZ+JovZHRnHscGR0X5NEY0C1X9akCDdnkpV6mvJg4-gjqUUWI1aJLuLfu8iu-SzaNLNy371b0rnWtxHn-bUfXfM95fxUVPyg7WV8ncX9fHr6+yfr9r6sTfJZK2S43vBE81A4SnsTNDRQlbz1K8rPGm-CT0xJadEcJY0nM0GVV7JX6Rs-oY1a1YINctdOE5cIlvwpo6B-8EdQCZR4Cq0gsykpoP9NRoBv9XVVdbpLMo8OdfF18UIgg5d5lowFUP8kkBopp9xOh1pgUP95kdZClhQYDaAAC8CXNXNKAH8pJQoz8lhL9iCMgYF18uCTpK0OsxDKIeomD0kLRWD2CeCpcZ9N16CSCF9OCpCpCJDNCtCSweo-N94BA2k38XpmlDR0BdIxQtceJf969ADUC5d0CMh1xLCU5rDDQFJf9RCSwOCeonMfDvxQ9w95kDJ6IOdzNKDIlqC0IC1-FjCT9QpkcaJ-pDQIxS9SR4C-IOkJBpB0BDgrh+oMiUA0NDhetDBC4HN+l2AxgEAod90dAciuAUjRZgCwhNcZhkdICTpF12AABRHwA6OEL6QwC0AABQAHkxiq9TJ50ykF4CQI1OZzsui4ib5DBox+xVjLMpoli1iClQIbgcjAhDY1AYAAAvJoROe2DYzIjotYqaGouo9gBoqgHI7uTAO5KAbpSISoJ+QAqolZX4iHJwS7ZAEwBnE6YUcE6QSzPWLhEEyCGnLgSEgaaE4DWQgaeEv40EmnE42AM4y41EmHVCU4oGS4v8OE8payWseyQXOgOhFNAwVgE0ZcBE-4kwzMFZD4r45IRIgnetSSNVVI+gJeKdaMdgAAKnAHeD5ElJeKOKYUQB5MxB+PZKcGuMLSGGBP+M+3oGJMZzFJCSpJ1NxKx1vgNJJPZicyNP0mjHZlDgOIPgtEXVNOTECKoFpIFyQAZI0CZKmyTy8D3WwSG25I8F5KkAK3JEpHHDhD-3FFYyNX3HgLejxGoETLyWFBWkLD5DyRdOITUHQFjMUDJTJRgITMekxLRPO3LPTOxE6wtGjKLNoDjLtxeFrMTMA0nRCTeghi8CNVz3YHSHFQYyd1LSnV7Pkg9jfABK1ISEHItMIAHEsEAzliCBVGcC7RaIWIjAT3XlCkHIJirxQmz33IFL7O8ALxbmPOEmKLlmSP5jSMQQuRdwdjoQDmjCyJuCfKgAuVrwwmBnA3xJgEJInEr0kL0Omh70MA4GAtAp4FnSBFFJ7SwxaQAornAyPPUQDEGUL1USfntEVIBTUGBAgBCNz2FNaN3CbOfxQtwBaUxzzALAbE1LUkFK8I9ENGjB4OFWfzlgop1V6g9Ovjos4qsH6hSSTR0EXWf3YAAFlNdYB5phjmKixAV5ILQZjDjAShhscLylMtcKRw8xgFTEtGilT01sIBKQxm1BYcwYw4xaL2LULDRKCppWR1tsyGxLNhQZLGhbJFRvT1KcguwqSKtlzEKnSjslTx8rjdNhJU1tJk4y105cku82iUzK1WKSxHjaighTLvxJL5jp9eFhpx8PcvZ0dEklyoi5zHJDg3duI-x9iQzzKAUVTviZA3Tsqpo3TLsWBqAoBLSSxhRi1nMR175y1x1nyI8VD9M3ySEGFhKAYRQGrLcrjHSTT1SkSsdFgSK-1N1nAFr6E8cD5hQ3ybTfzZrSrIpjqPzSQ3zNrnTEhtrLsSKjLuJAzcgfKyRDKyLPqe0tqcSdrSQhzKZ2LhrSxLKlJ2KgbETLs9qtcNNm8fr-ytJnMrqio685pnZrQ-zkBOdjIorgc+qadK8frkc4bdSacxNIaqBhRMba8qTXTtqAq6SfSiE-SIwdQu1gyzK6rlTwzVTIzTDasJwtyULoZOdFArCURPDLkKDJMCQu0y9Qp1zNzy9+Y29RhulJbGhGoV8tz2B3r-rzz5I8hnKQUIL949bfj+YjbEbExaalz98-IHajx9rXzOaTrTR95Zg4sLDZabCvCP9IirZ+ku0CsBrDou0jUjbo6zAuzwb9LR0855tbbZyBh+luyXYxJc907LbBKo7k75IYkJyC79Ln96ULIJqUqf0S7qYK7S6rbIwNBw6Vknj8r+SjrIcSca4ycTs49F5W1SQ872K89+7DB5kGZoYyt27fwCDCkYSZAB6c684Z1aqBovNY4fM0r4ju7Cdcc+6YZDAg1-oW0sgc9x75tkdp78hGg57Joh1F70la6Jy3B8ZgMujN7KJt7skAFdCjC-hRyvpe6Z0wNBl4codwZAND7idwHbdwM4HoHAVANb7FgZ6H70G5r0suTKMXUtip6zd6MyAUIHAIBDkVbiQbg5Ytz+pwMcAaEhkmGhqhLpDALBk6ActFBmhFBERL4cBEAABSRAfhw-AacDYkGhXh0RgRsbfhth78YVIBKhJ9ZwREMGSzfBYVYDdgKR26ZSZh26LldAAABgLnEe-HuzcSHIoYMWeIP0s1eioRvWBl0a4Z4HBhBk8cBQ4A0YsacZm2HmNpoUMf8cUZOmcY0a8ZcccYPj+xsZYXCcsZ0FscOTyqh3tGiRQtToMnIcocexrEYcUAACZTGAA2IobJ5y3Jn9Ox+bZhxQAAFnMf4GjrqYKdpiKDHpTsmryfqcKfG18iAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfSgQwObYKYAmaANqlABQpQC2UANIlABZ4Y4CUiA3gFCL+IATnighBSVGgAOmGIMo0onAGTLELTAQW1OAXn2MWbbAG4eAXx6hIsBIjhTyYTNTydeAoSLFJSVcgBEDgEMzq7sZpbW0PAS6A54gpi2YGh4AB6OGVLufALCouLI6DJy5NkqapJYuIQkZOQaWhUMQVIBERZW4DF2CUkpaZloDuT9ybFDOdx5-AU+6nia5FgwxI1LWuODFeydUT0p9lKJEwhTIydJYAQoY1dnqRUznvNFq+vbkxWR3TaxiHwUDQwmwZES5GomAgTBgYDwDFBaDCbhe+W8RShMLheECQJBeDBVESHXISJR+z+vSQmBQKBg2FS5JcuNp9MZaDhVEEIGpuVeGKQTRWsnWbIZqS5UB5fMp0SO4o5ADdMMQQKxsuRFZKwNzeSl3IhZl5CkLNiK1haxXSJZzddL9bE9nLDgDiHA4ABrEBSaSCGDUSgAT2oACM4MQGF8ECh+QIIDGoIgVcRELpEGy4BBg2GI1GHilY2YBabk6q0wZwAQ8MAcQRjZ4APyIRKCODyFAh8ORxABACqYE9YDgAHckNGJDS6Xgw8Q8AAuDoNgTzxbLD7kFN7X7yt0e72+4iYUN4dZHk-EFAMc+n5EsuP8BP2sup9OZ7M34h31zX4+novGm8SAphW6ZVjWdbLvwzatu25Cft+CK9gO1a1vCBCIJ+yBTigM6hnOi7sFBiCrhuW47q6dhQp6rBSP61AwLASoapk5SZAwWKwvCv4XrGaL8DAwCIOQkhPlQmBgMCmq7PxniIGJSYQGm8mJhJUnDCm6psTkxZyXMgrCXoAB88m6fw5gtpeeDIEJInoAh0mZHssmeAp2FUCgynul6PokH+Z7+VemH+Rcn7aduxFAYZaYmVKKBmYgFn-tZgnCZIoLgoIUzhQ+cluYIyn4hlxLyJxOKIoSmUXKCOUJSWCzkMZgIiGgT5QHgkl3IIERGp4SVWS5AiwfI2StAOQ6jkg2TCDadhQEGJzYRm06zguHQJZYBz-FRmA0Zcpw7Kxo2IGV3HBbx+YHbEfEePGibHF5+6+XRAb3Fd5zZJc4WXQM12dK592YHRWaeemUJZDFJ27bR9GMTAzHZUhp1IZ+sZ0MRemY-wE4XOMNx3LsCVRY1kNA1IxBBnaaDgYIFNwtgaAAFaYCqKAQP6UgUBjWOeA4HFA+QUiQ447AMEDbYQLGLrbThEpkpVJWIQwKBwGIECord+mln4FABNqIReES7VZSiyuq4I6vS9SUN7dqIn2vz2JnajP2PEFUgQLlblYIIQKFS1xXG5C0JcUh2oEgzKL21QEUA8+mksULb42sqqrqtlUr-Xd8dp6w1hpsRkg45qCdTERWPNtRrDF6xpfHcjPH-q7hbl5jq5V36AZwwjJe51Mjuh43l5Z1rDVNZrcm4cCbUdVAdw+0CDCl9YjUj3JmgqpAtHZh7PXGuYFEyxmBCb+r0g757slT61CDtZ1gsQAwG74jP9+79uRpbdbHftf4UoD+Vc6TdjjvV1AwYAR5sAMF3rJNyT4CBwzsOmX+08EAIJSNHJQCVUp2X2r9D6rF4GILAM5CeccqAqRuMQtA+cwbQzwY8bKRCUjox5mw9hngG5AMvM3P6dV0SlhJroEyZCOF6Wvq-Oe5AIE4AYMwyYK9Y5iJ5hvCSZ8PYPz3sozGB996WVwoNfgw1MGtAAEKaEYHgChUoZRHDhMtXCq1CIbS6LuOaViKC4QAI7qi3rlKKOtAgoINt43xltD7WxQTfKhGCok2MdAgfxBlhQbjifaWxTorZHA7qGa4MITFQydijQK4DIHQMvhPNy1YKHplyWopgaBqkUEztg2ykgHKsSaaQ4ibk4qPR8oefy8ESncNCkMrpa96pFCESI7mYicEv1vrPO4MjsDdO0RwiRSy36P3cnPSZGzzL6OsqIw5nhVFb3Ppo-hhzLBnIELovqxzDEtkEG2eQ-9ezmIwnUyATA9kZLsPYtkeECLrX3q4yiSBfn5M-Ek7WDQAgwqYAbOFESjjIsaR48gmL4l8lklFFJoocV5IaXig0WSAQ1QpASgygSAiggNhSdFAJ0oK2NojJytLSzVBwPgIggTjoMsJOCr+RxA6JGqoScK3KFhEstITSFR8FJqU3LneFCx6UqskgbBOlKgXoG1epLIXKJ5RV5bUAVDQhVGtFVSI4RqLgJxlWa5J5oNyKrFW6IZNLXUIv8AET8TL7wsoNX5C8nLph+oWBa-l9R-BCqDfq3wIVPphWeNGoo8r1ievtQCDu2A4AYDgAUrhLtEAwMqfdJphUi1QCLU0zBa8cHtNTZ0jx6zMa9PtKDTCT1BkXmGRdUZabxkdoOaPaZTUtmSWWQ-BgcU179QMS29AEqsqagmS8-KhJ-bAnXcHIpFUjaSs+jVCZNyTRj0hjOu+UiPYMEWbO++oIlFHOSi84xnyAjfMBHWuAAKEmTgcaCtaS6uh5rsIW4tQ7TwaqKPS6D9bUX+WTX+4tWL-BIaLeSp0sqs3uuJdhu0epZShqQFIUY4kICeng0gajnpAiUfaGhqQIAUBMAUNCT0S91X4fo1gGjTH2MovYGqtUbhyM21YCgFmuJPlcIY+Ur291QR7ojplQ9g9EAMZI-uwkiEm1r2JuPOZWM2Mca4zRx9LVJFdUJG+jZFz1EXwnWw3RXqdp7RmvW4QpaQ6AKUxWipxod3YHUwexTgnPR6YjoZzOxmDIzJeew29c7QTQKo9Fxz2jnPb2ub1DZHmeCQfo3J+Waz+OYURbJ5iBtX1SZ8+2XEr6qv0qa8IerDmpO6alHFqOvX0lAbo2uLQG5BukYpVJjuGQ8AQBAIMNxYACnlq4WZ+5-AH2IFWcraL+YbqATdcsTOoFez62IpXehdsFMBediMhw7tPbEVXMKE7+h0wBGCRd6TGBsU3aPdwoKD3SmyOC63PSL3zRvYMEi0lARvs5NJf5gH5adtg+e6Nptp2AjYfhxXH72HkfafLbvDHr37R6Bh7VvAePMaXb2tTongW9vo6xpD47FPscdZpwj+h3OmdnSC6TtnmPocfauMAds1Bad6Xp7RRIkvBCBn+8T+7UhHvg7kquL9DtkKDmHGOQDkSFopRwqB5xSrv70NwwgFYGQlBVdKPIdq6R6CIDACAYgxA0M29SC75pnPM1mg5zHKTvuhhzYWwo8AWOg+MGJS0y3Rxr7h9m-NxbMfPnAxC54a+G4s8Sz3p5pAPoCDJFYHFTBQVVu3Y1qF+6HsIvsohFwgIHtwXkKTKspvJ7Sq19aKsjv2cKEMeUsjQIDGh+Pnug9sftfAgThQFPq9RRFdpBDuQQuz5hE6Zaqn9IkeM-LbM--MzM2D-p+jzLTfGzw-+6baw7RLt1sCAbi-zbj93-bbKV-pTX+Ht7CP56SLrTb0IOSSSCBBiwZfimx7IHZTIUayDyAISwEgFJ4Aj25JDQDhr-h26u4VTqzwx16eCrrIie7rD+6dp6RRTCCEHMRODkGhDkFLrPKnIr5TSu5YHAioxWh4FKAMBmZV5Dx8Q75sFYxuTwiu56bKQpL25uZYzmroDcj0xOD256aa4bLNi0F4BEFCGFYbaeBO7Bx7TgHShQGSHAifJf4GHsKLoCE2E8yox7DWErheB0G4hGEdy+6qFSGZz2EOEBEkE9qiz6GBGYxOEmChFYzmDgbF4garTkBtRthe6Sr+4ALwi5BRSYHQjcGBSJG3zJFzhZRpEuGeB6FOGQxiEbKl7l56Z3BxTCHpGSalHUEGRxSXrKIxGgEM7RYkwTxzhJij7pge5e4JRLYVoibkDpCGjERDEVpIFTG7bcZaKYxRQBAEAIA04uKeDjHMZ9GFxtLoAjHrAMZUE8zGIBAACi1AnMQYOm0Wq4AACgAPKPHL5PIfpVHT7Pj1pJyY6nEdECBzHjbZaAmTpIC-GXp3IPLGjjFwhwyqgwAABeuIuUue0Wykxxl6axGx8IAQ2xAg4xCCKAMgUA+SrgdIOAxBqxBkFJsm+A2OFmKKZmzYTJZm7cVi9J1k72vYzGMuPMrJowGhbcJ0nJVJ2O8JsAiJKJ-J+OkpMA0pqJ7Jry7ygQ40BuSAwgPiHiS0DGi4HEYp+A4GCBiAxJpJMI3RrAB6vqxoAxlCd6vaAQAAVOANqIQE6fibCVCqaagOaZxnSVSWiQIgsAGQyTyTjiILKXTvacssqaGdyVTpGS-s2AnJUTGZ1MpAnJEdCRwtrm8nBPGf4Rtv2PrpNF4NqdYkgB3Ouhbn1IdqWGackBaegXYO+OQDREGAQe2LcCNpIMcfLAmIID2XMs2OBGhIQHMtrj4qqO2XgJ2ZjsKLQd2VLMKdGYuXNsuauRDg4lmLOfORuEuUOVLFJk+g6RVplCNgehGVAHauMWli+s3oILxhJpeY+RPpGWJnqpaciHgCOGgOPips+I3nQt5m+W3hAMvm5N3iBVaWBYPmvG5HMR3Axo1AlHacwBXkNtSGgKEh1OrJieQWhSIIYNXOrl5A0PSvKYqThdFgbC0VjMlihQEFRaQDKc6ERUmOumwPhNydVv4PSu3spteIioPiDmsp0F6UfKqO6BALUdafeC8jgm2bAVxVgDxZTmBDcBBOhEGa0b3txXOMpEYYErAdWW+RSKLPRWIqpceHOG5suicmZsYrAQEAALKe6wDkx3GoR1iGyZSrjvEwkKEGTCr6XSVZjl4ECel1k7HeneQHgaYlROAKVsFuQgTJwqzZgqWPkGXNHBWljpWVhaXjn1gcIwT5nyAuXqllk1lLi5mY5kSqiOY5nbbelp4Laonbr3R9Lpinlzq7yXqkH9mLq6VyQ4mbHRU6KsEn5YWHSH5X4bAh77JibyHBlFDtXtSoXEQtUtVEm+lNn+mGnUmtGljxnY7iSCA3ksnRSiG76oLPr3q7IYV6aAqpC4V+JgnsJZEX4dWoWJRxlHUSn2jSUvVAY4V4DalbxRmy675eJpnPXh7vX4XpjeLZkA2Ulhkw7hWyXtSJXGzQ1yTNjY1yWPno1cnY5FSPkE1Nh9oDJ42JBk3inhlSgg2L7U0CDNiz63XPVc0ZhSAnA3ArBGDA7HBFj-X1VnXhmT7XUMaM2Y0fZs3XU83q7KnGKFl64TSG5anqiVmFKhy1lBVrVICNlklMDfnj5cUohA7q5yIFERhFG-au6AUULIxz57Twh-kAVjHtjr75KW0siQzv7j56xe4RW43rqkj+3hBFlsJR1WJrzB0s1e4MKFikgAEJSJ3A3J2I0Q1hI05bkCBagrQ8X5EQH22pH25NGOZRTIw9Y+wUDIwjbB0XU3krUnkBw5V2ZaaAJx0jZ9X3yU297d1nS91obXxcVd1cJx3Pnqi5T3lSKD2aZT05UUgz15VG29i4lbEtlVn0IS5S4C7FLDqL7KawKAzWzpj71K5oA5GxBNqtJpTxAFjfCsS32JKjVuRv2pC0I-Y1yOBf1NFAFhFP5q6gIAT5XXq3VWUZjYWKKRF5ZXIDVRFFYbTTVYw65UBmIWJX3UBG52Jm6rTL6bSlYVoK4H1f0jYCVkNK4GwUNSY4M33Uix71lyqEaWgJaREQZuTYAQBECu26DGgdzj7ET0qYAGxIriOt1AOeCBLtYzgGxagMChhNSYCIAACkiAyj0jWM9KugCjmASjKjp2yjllOjDQ3Mn2HiaAoYIQZmKC8EDQowAQejIRNUEjIRRq5AAADM6No3pMitAXiLw40hNYAWZnbJ9qio444MKtLq49KnrB0MeoEDY74+EynMtok8k+46Y+whEzY9k63bk2woTmFJY1QNYx0MU5jDjsE1vVU2YOPZ3dsgvcE63mIwwAAExeMABsnQTT+lXdPDfD-evYBTiAAALD440-XeQMM-+bXp0IvYrEM206M4kxEEAA

Computing with Register Machines 5.2.3

}

function perform_action(inst) {

return head(tail(inst));

}

Execution functions for subexpressions

The value of a reg, label, or constant expression may be needed for assignment to a regis-

ter (make_assign) or for input to an operation (make_operation_exp, below). The following

function generates execution functions to produce values for these expressions during the

simulation:

Ifunction make_primitive_exp(exp, machine, labels) {

if (is_constant_exp(exp)) {

const c = constant_exp_value(exp);

return () => c;

} else if (is_label_exp(exp)) {

const insts = lookup_label(labels, label_exp_label(exp));

return () => insts;

} else if (is_register_exp(exp)) {

const r = get_register(machine, register_exp_reg(exp));

return () => get_contents(r);

} else {

error(exp, "Unknown expression type in assemble:");

}

}

The syntax of reg, label, and constant expressions is determined by

Ifunction reg(name) {

return list("reg", name);

}

function is_register_exp(exp) {

return is_tagged_list(exp, "reg");

}

function register_exp_reg(exp) {

return head(tail(exp));

}

function constant(value) {

return list("constant", value);

}

function is_constant_exp(exp) {

return is_tagged_list(exp, "constant");

}

function constant_exp_value(exp) {

return head(tail(exp));

}

559 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAGznA1iADgfWQQwCMBTZACgJOQGcAaFI0nMfAW2IEpEBvAKEQGIICalEQA3fMkQBeRPmrU4ECo2TM2xepVLUOAbn6CATsSghjSSdJm3E4ACbFgMMMQdHBggPyJix4zhjVSoNdnoAIgBVMCcXNwcGKkRXeUViVkJkYgAuCI5PL0QcxCh8GHJrA14AX15QSFgERABzMxxTFphRfzJWfAgAC1ctRE6wzh5C03NLRH6hkbIItqgO4i6e43yycZZ2arqG6HgkBWoYFrB1lomyc8vr11FjEBOELj4vGYskQeJ8A4yGUKvdFI8cM8oK93mAOId6uBYWkLlccNYQMQcMQAB5YMGop5gF5vJpwniIaZmX6If6A4Hlcgg8gPNFQmFk+EI45klBoTC4LDGGCsMjUACemTgyHocCw-nwZL0Uy8wmJYmsshRyjFksI0tl8uMitOekM32pc01tjkjmcIw8RR8fgCQV1UpliGiYHQYDgAHckHKFbzUucMllcvlCl4SnSgcyyFVuUjef10Fjg8aydi8WRcVh6Athm5tGo6IgsyaRJ9CmrRJWsFrUBhsDghSKyFWcwWcHL83iOIaQ6bqqqRGJ8ELlNQtf18cRZAA+eb4DPt4WsGCwcRYgv5osDEujHQ0Icxp2Xord0653BV2LUAdYeHmkyWpBkLgyFdTrDIcVIWuO1jAA1xbgAK3wSRqAgYUsCgMgLyvS85UPfEmx-RB8SHeRpwgPQU0aU4UUeXYNm6KB-AmeglAsCBJi+d9ZiQZBKOWVkwAiehOko6j9lGOjjAYojkXTLFOLIKFD0WUskl0Yds1NegsAgWtx3VUp8GMVYtVWG4+OCYsRnoTibjuKFXzrCcJCkTE7y1MyMT3PNLLfAR6w1OysQaWRkJSag+yNatrn3Zy7wKK9fHEoKRwQO8k28u8ZOPMsqArG8a38koYo7Lcdxc-FwoLFKTPks93LGD9EC-ZcVUvah2jVKiwCgJ8yh0sx6HChovzHS9AUkSAsVUshVIMSkvBqQwjlTEjBvwYb2xUcb6oERq1ma4hWqfVT6ETfStp2sa1NfSlZuI5oYqo0QpPVUq5NPDLgqVehgAIFoVLUtahBstUHG3Ei5BuzaEABsk7tEfqBBgYAau6WKlPi-d-sBj51MvTzftiNHrl8uQYsy0K81RslaH8lDKcvYzHvLRSQrNfyfjmWqsKYqnKY2nAjrash3vwT7sfB29eqsjmqYWpbRvG-RJvFy9psKGo-BoRd2aKfxAmCaSvQAIUBUpiAbdlSRIsN0kybI8mhxA6gu5EQbFYgAEdMWGjGBGZ1j2IiEHuMQRrXe2kSZsRS6kBB7mwdx4EjbWE3YQ9qqWNpAEE0ZWPRCAklE9EtM1yxQhjUgQZIagB6TzpxB+cF1b1axpwGzkIvFqGHBG8QtzClh+HAtPBKO-hH6NON9VZzkFsBTwNQQgU8q72nqgyEHm2LRT1mV3V+Wih7shDoQFreZroet+3hqmoP7beb2lIx9Xs+BGV3Q1Yph-5AcIaGOWk774fuo38EIrKaKtGrD0EJrN0OsIj60SC3Eut8c6hjOBbSM1tKp2zDsiOBQxZ7ICTl7FAPtsGDH9qePOJFiHtzjmQShCdOQ-QIfGBkoJaHqg5KcKy9tQyBTKC0NoDg8DsVEKwcupR-g4F4fg6qCMsDlGCMIqAXAABkSjU70gUd+OwUBxG8NDjyEinQyACSkSnNit0IidH9sYvRc1mgI14lsBKBYTE0gRrw-hgjbolS9JY8hzQHFUWMAvQxziGHVSYYmZxfikCeUWohZyLi5hmMQhEWJrV-YJJseHAKUd1RxKcYOMJKc3ECw8ck58kQ0lQHyFk5EVSF7OWfIkv4admHkCibU3kp4jGaGaYQ8xp4rG9M6WbPuagCkviKa4nhpT3CeMQt4iIgzonz17N00J6tGGtMiYOFZMUWhwAkXAMuFc0pzzrtZTSHc9KHKgIcjuZcba7wRv3fcK8wEeRslCcefJWy4G6U9M56g1kzxXpVNeNIN4Bwvq1K+u0ID0G+TbJ+qsUhwykoFAJ1E3lxxPv5LGnQ9LtCxUZI8ZUSXBI2MvXFv9k6Qu-CuLmPN4X0H3rC46nQxaAJAS-K8EDtb3T1gbA5RyEHQlNnY5BjVLZRmRbUXgmDeQirubgvp5SVi3LgKQtQKzlX3OoXq7O4rE5TLmBEjOhq6EcJWVgfsogBjoD6faiA6Bli2qwDU+V+jmhYBANQUuzr0DdW8k6soLq3V+pIRwRKyBMR7ILjgag0FiAnNXLJQSYag3YW+vXGyhK5D6RJX0MlclA1GvMgJR5NsCFQtPuLX1-qxSZtZTCw+T5OW0olh-VuI0VpqXBRzRWXCSIxVMKIIIKadY0wzQ6r6ScCUbCJWsIt07aKZvLXsTQVbKo1oZR8jmTLL4co2CpO1mauUP0ll-aW-a5bbyHQq71SAk27nIi0NVPsX3EH9pykZ-i44TrfR+8xY67mmB-RsFZZaoQVq3dBthErySbPCdsjO8HEHWr-UGfExjTXe3MXKIZBwsM5KJhMvpMi5FNMQConJ7i5nlKYc4yIhGVlkd7P2djhTkMp3NaCJhXGXycMVSRQTiNFoOCfIJvpiZpMkdyv4YAQRRRTpLZXdK9NXrZvnTZAYvI5BGiU8YVgOA9OnEeZVZ5gVBP3FzvurGZn4r41XOuGzjmwCnNfgA7egLGxxWJLS3ddVuB3u8+5nAotZZXt7T-WWXnKZAO5c-fd-LU3QINoZ5TYr2GSpRBGbInqppetsUgTLxnbP0J4zSdVZXWD+3czaxTynTOwkeXhtR6dQSWQmsV7JMVcTEAgCAHMT7U2+dXaF7zKEb41zXbOxsyoqtmtaZZWQdgIicQiP5aKCbJKqfTUC56FZxrZQ621m0Xo-bbZc1iR2+3UrlSO29D6c7TtMNWxdiIxCttRRuzgYhqaJu+dm9pt7K31SaLkBqo5P3Lw7fXHqwHanDuvavHGcHUM1tQ6-bDp08OsRfqRwdgOzbQdo7Ox99boGJ246KPj9Y47TBE4e4G1Hl50f0kp1D2rtOvD09q8zsqvm5THbUqd1LUCYi+gDEgK1zQoDinlLfPLMq0G9bEgmuXYBY44kUe12RMBghUV1-QMAIBkB4JI1riRuJO4Q-a+9iHVuEOwlzIN4bItwBtaWxHDOXdh3NC5tbgbQ2Rte51vhJOXNEwR8CLe9XvJsAOEVFib5ZcKzjbUzpzSqkl0GS2MW4nERVKFcEFjGueeV3I69DXUvnzNKBrnGp5Yga6-YwbCLpv6blhE2oG3ghRnsRHiQleKEdUg8u57Did3YftfxekvF-r0-Q+e-DiP7e1vjd26huTM+gL4teFXQfwQe1j8CFm2fkns7L8i-hLvy8SL5MJtea1Yw4pcE0TFYtqkKcDfBH7gJIinfCRrbsaNAIvLoDrqIqYAxDALuEnFZswObkyLbnileAQjAcQHASmmbhbqbsgcijyvugQqAXphATQG0lAbhPFunodnunWihFjG4LrkalqBEqgQOpTAQgjC8OBEYrbkapFAAr4JgdgbQZNlNn-sWuuC-tCO-swfHIKpflNlTEivQMofLE9PCBoQICUKIa+lITFFrvwSwZZOoSoRYQ-nfOYZYZTFoXFoOnKgHlKvlims1IEBbtRFvhXLWCQbrmAWsE9GQO4dKNkEEt4ToYIOIVocFpEUUEninkak+N8ijmmseJ2mfNwWPJwfevGuuIGrVOrNkGII3nILgcgJVE+thJGmQDiJ8BIetJmlqFITiHNi6j1ugdVBEA4AgN+ugoUFUe6oUf5IgeUU2g6mgVTKlhEAAKKsAITihX4uolAAAKAA8isW3sAslgwSPGIHcphGdoGhkY0Q6lqImMcTkRCnMAcTkf-IAgMSVrfIDFIDAAAF4ppJxeClGIDlE5EELdG9ERD9FeBVEAzUCyJQA4LsCKACyMRMzVQwlJptBY5egNokLxa+DonxY5RGzImLifbuq85w7YT9hCGUy4mwkomfauAvFsQfHEl47PGwCvEfFfg4kuhazLBS5+iBhVRByjxLHoB5BFh4lwlyrXFIDgmQlDBP7rhFq4ZFFmDYxtpagRAABU4AnE7g6pwJjx2S0pio0JYpbQXxzENISJcJqJKwZgjJdOKpcKHJlp1J62G0dpTJzkwWDpO0Wozkss9xHMJQqWzpowcRXoPJMu-JmIgpo6FEWwauRWkpiAhpUJgwJG5wOoGY4oPEg2QQkmFGgUYxMBeZegXmvgdo8Q7gXmQZrsUgZAWZ9ATCTCxZxg+Z2h4svgzZuZrZpZ4sJQGZKgDZWkoILZbZJGbKbab6hkfSRaNp1SUGracKU5Wwwasa8JSZs5bp0amSCeI6Cabg-oOA06wxex2aTe8pcZgSbqEAbe5eH055WIs5teNsWMPxMUBRNsxRYiqek+t4gcbsDEWofxhQX52imYWAPy5S6qtJLJ9JBOma-sYZToUKBREQMFMArJ36XIlUX5FKZQkYzY7ENWN5c62gPstez2AsVk+pyIUgqAEAiRCpvS+6u8A5PS4QVUmwgSEiRA2QkO9gsQ9oCQZpToeFvFBJ2EVG5SgBf2TFBw54thKEYlkYtKKKoCux4CrowQMlEQAAsubrAP+IsXEA6JxYZCUFsQ8Z0SnBYpedRHRcoCng4HqYmYIFUZPG2HJeuZjDZNaNqCoDJcpXxf8dVNaHYBWQ6JiZyW6DpRGXySStbByXxpUFIBerbDRbyCHsNp8fZl8mPHnsyrFiMeigjGMUiiJUUACT0W4C5QrEQRpTDL+cjMvh7k5l7o7qIIRF+FceaXMFlVRN1f5AGelaCU8SmcaVSd5aJYiSaQSa6R1NUlFbWtCqDOytfAit+UajltcP+cHJwD1RzH4TPp8f6U6bNdaVCHRVtYhomi7ABd+lFYHF6WBdda7rtcNFqIHKdYGfMOdZ9g5QxVRPnoEu6c6ADYxXZcYGdZNdaYWpDaDQIL4B5bgCStDfiRdXkhbuJkqAjYgL4J3mzJtQTXhPKLEMCOIiLoaGaCNVTJSejZ9q3o9ZmmjVaZ9r3rjb4C9SLhycGbNZEHFUgKYAKWIKkNOgmVZb1VKd0DKWmbuVdAmseRSgJE9iqR4WETbrrtng2NOg+cwMQIeceTbIPgCDgkrZoHVGfseRthbo5UDSSjsGbQcDYVTI7UbDbFbZdVjezdGrfpVB7ZjeoNbu9QxNGFTASK4cEQfGrV4bbj4dWoiWpiRvasYIhNOn0lbcnfOYNc4a0MSpDbkpORNq7X0hOUuXDVxb0EXfncYgucuvnYVVXRXUEjJQkj9IemtU+OXYZIXg9sXauXGjul0dVX0XLUgLlJuIDLuBMqco9ggSVYFPUvuFErlZpBAFqIvXiOiN5E0iFevHuhAOgkQYga8nmMvQwVjN8s2PyG2AClXCff8jPB0giXvXVN8ofclogRSkvbsivQ2MYJXpDT3eSvnb2CErsrvfSnVKXRyh0UlqigwalosgLX4HiGOhcPLorouObNKqgm3hgrwFjC0BAAIjrTIIUDFMef5OqvgP7F9rQ-Offk6FBT7KYHVvQPcPQIQHuvgIgAAKSIBcOMN2E+wyD+wcMCPcOolcMKWXjlKvy+xxz-bcTxaOzlL9gRCiO4SGJ0O4RVJkAAAMXIQjV4AO3SKwxD7cQJd+8WkkvspC7E6jrD+QOZLQHEzjnFywhA+Q1jHMtjNDLjnj3jxjA04IVwgTATdjPjVMiOZjkcXjUTV45jAiw93jhgXMFKhVRDJD1eG2-sAATPowAGzVDpP11Hq8xZNHk5NeP0AAAshjaTC1e8FjadhgXdjimTLTOTNDBgQAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfSgQwObYKYAmaANqlABQpQC2UANIlABZ4Y4CUiA3gFCL+IATnighBSVGgAOmGIMo0onAGTLELTAQW1OAXn2MWbbAG4eAXx6hIsBInxQ0w7GTzzqmCExhg8DZ2hgmNR4nLwCQiJiSB5ePnjkAEQOTnguVG6J7OQBQSHsZpbW0PBImCgoMNhgqdiBwQnlldVoPlSCICUIYXwCwqLi6nia5FgwxORNVTVtUB1dYOwFFlbgC4hTLQBumMQgrHgAHlKTFdOtYO2dtovciL38-dFDI2MTb6fNM5dz16VLyyKaxuiGIcDgAGsQFJpIIYNRKABPagAIzgxAYcCkbkwNxQPQiEAQVEQO2IiF0GwqcAgSNR6Mx2MEuNK+LMESegzJFIM4AIeGA8QIDwiiAA-Ig3II4PIUMi0RjEIkAKpgCFgOAAdyQWJxIJ8VJQeFRxDwAC4siKImaXloPmSloVVjZSqDwVCYcRMCi8BMvT7iCgGP7ffV8twRUSfqTdhTDTTyCHiGG-KDvb62SLOUhufpKXyBUKrQIJVKZYn08m8qmVWB+YLfAQ0wHkGUKsaUaaLexi-wbfbdoDnesPBDWFI4dQYLAtgdjuQjlIGLFvL5g5X8RGIjBgIhyJIo1RMGBHIuF8cllvRfxD1BEBA47fj6fjmgyftz1JltfHlFBuQ9AAPnvdkBHMSVAzwZBd33dAkzQM9F0vcIf1vVsqBQOMwUhaESErCsAyDZtQ0XPCA0-R1e0iAYkAAilgNmFBQP4cCMygnc90kZxXEEBD5yQglUOJO9BDjFJuIydxPFXVMJKgNw+JhZwKO-H9sz3ID7BENAo3kk8UByAp7giVjIKva8y3kRcGFrdUtSQRdhDOOwoERbFW0NDsuyyZjEEsIEXTsUdWF1ZkbkUz9l2k+J10Ixk9VZQSb2ExAsSw91cIneFyFClkEEUtAsQo+KwsS3y0MwCcaUwykPBOKDdGA4LYXhacYFnCLUxXGLiMDdg6Con8hty8LSNyusDIE3z1LoxqNikKRiERC40ALQQlp8OoACtMB2FAIDhKQKEGoaIixKKTikejEBOfr5ulCB8SHYoQU2MAcjSHiUwYFA4DECBQnM6jnlIKgkjexJ-E+yTvsQX7-tCJ0XtdZq3v3H4oriNdeqIkbWQYKQICS+8UqwQQHDE7S5Lcchuuxt7ahTdGqEowkUvfOcrspBmOYi2ZVOS6NeesCkqMkPH8rPXmkKoiVmolmopd2fZFMxmTYozEq8suHshptZqsqnGdOfIaXjjVnqk0zDk-1ozSUOvI1HF0vB9NGTByZEBhhfAACBdFTQdkgcdaUJoyRXMJHgVdQPjwB6RQ6JoGnZ0hA9KgAzCYYD4Uhdt2w8de4ApHTAxwwPAwdmC3satrW8QYYAvWwAmk4dknoyjAg2rsSl5KoVO62797+d8jjYMKpltYizuh+Qqi0Jn8KRdq0uQsn0b50X0oBtO3e94iOnU1r1L17KqiZvtk797h7S84z8hG5wBgt-y6w-d86-r1j4OE-IMOTGMp-a8kcI4QSNEDCIllmb0CVAAIU0IwCud5ZjzH1G2I0JpzQ+QjisZGLkkGUDwAAR32MHYm6lQYUESH3KAkMb4kNdgDZ60d8H9xfu9GhFwrgLHIbbW07txijCQVw34PDmGBRiKvNAKJmSQCYNA6uR8NwNybi3YmaF+QkkpDIuOTA0CaIoCPEUY9JDwTPAYueQ00KMXSjhT0+Fj5mNfEmcgFj-Y2xohpa6bcgHbhgrnNOrt76P2wJY3xu8U530zhABgjF3HhL8mAqCPiEkRG-vHQmf8iYfwSZYVJLFfKmXASk-gUCq5wIQTouR6FRFoM8pg7shTcEsKQFUrwBFfS8M8ZQpIbSmB0KTOI9YfT9EEJGSgv43QgbqQ0HaWQExxk-FQf8IZIJmrYDgBgOACjECHw1oGNRQMNFILEpsqAmyDHQP9iYuClYIpuIgQIaxPwapujsWRX0HSDm9QKi4txOTfyeNmsBSJgT84xJqdbMCSToKcXQNTXi5ikFhOvGhZwlNHAItptFbGCKCrKX+efPhwKb7OzBffLOWkyUniCQZZwrNoVsUeaUwQ0p5DlMSPApsGytk1OWXYA0TQvJYP9v5Hgw4QQ8vOV8rpIMyBJClXAAZlZVmukVaMsG6qJk8OmXw2ZAiJhaqWZMxYqq7BSCKkeCAEJZWDCtRCJIFqpDYOLiCKQIAUDyPtd7ZWgM27qXtY6j1-TsgczNZIsuKBdoJHKXsuGWBrWHLbmitIGLag8WxVjVM9qRGM2rFc-2F9vFXyGu6z1ChPAQgYAEmlbt6XxOvukkOWSG27xAa6lGUinLnOEDsuN3qbqt0jCldFlJxLQ3klJLNP0E0QlzbkBoBbprEsvqk0Ftb77OAJpa2dDLwlNt-v-QBQD23irwUgKNs4PqhN1d0+ViRL14DofSqOEjIhUBlAkelt65Vg0SN2z9z60jhvjZW+daQmY5u1TcW1SB9UfCg8asRr71hFWrLB0E96sR0PQyh-U6AFadQvD+wYkgZByAoogVQyB0BYFwIQEg8r9VIRsthkDhGxonA48R-1erhhzMEfq7jX5KIdrsMJieOIJo5VPpLHjWY+EfGEyBg2bhgAygRLGnFSi4onwSsSJNw7oyeBBJSJk6nBDUDQCZ0oVzR4wXFrJxW84bPdGJmzYzCw0DL12VI4TkwFiKJ3vkkL-Bj4KyhdeItc0uDHvya5mob8jIHsyUektp0QEmRhSUyUrLywcq5TdNTGm+Umo8kKzB2CTLNLfeZjTAWYMkaQD0xIdXLN0ISyBtrVmEtXKa-wj4-Nw5iYjXOPAEAQBLxaTs4+cb0v5MpSEmdlbGSbl454-V-MeSUkSBDWWvmy5oy09OnGq21FURtJtn4egDDUKQYkfbzUaF9u0-s3GUgiJLcHbrH8l3+N9bzEqPpD2hpyykX0l7J3j5fbDhd-hW3AfJDOUqx7UjFWQ-Vqd77cOrss220qR9IOfxg8jdGjHPUB2w71vD67+P-1IMA6jsuAHe3Hcx5TomOP-sI9u91on14SfjmK5Z8nNdlEnyIlT37uW2U7NshqbUpX1iuXcoK9sDSXUSs7WXaDtn5KHCUP18j8h9cwLACAYgxAQO6-yqbvr63ni46UHh10NvnPjcm6UbzvstsO8GIN67Lu7Apzd3xD3U3h4Yxug9YmKcA9UAJjHgBNX1jQgILiVgjFoFEVm9p9RKVCZpqxXG1rEAqtPJSiEovE6aYl5CeXwWJJ7VxkPkke1Df24kixK81viQIsd-UhZhC0lyBi2jHNEPSGN7h692-EtVcS3NSODP1+035v8FD3b-mwXP613X756d++s776W-v71+-u9LB36KOJQfRsfOTEEwQiIvmwziUb2Q8h4LVliS8kDRw5gTMH8DJTcoYAZ2o-VjEHN0BzdLchEDcUVRR1JhBwCr1YDFR0DRVssiVPEADmRoBgCDV4ClAGAS1s83tV0gE0JfADcRE4x4MADW0hp1JJB2hNpyAaDHB+Z98IgJQUC8AIDyC4tQtjdsUy4zETxn8OCACRFSDQt5CBA4k5CFDrwrYlgeCBAbR+DBDRDmo3dpDaDt9hCVDQslDjCTCBA1Dk995zBRUU9Xp1dOwEhdJpRLcFJQCD8ZIeh1I8CgCrZyAXD0RTReJQCNCIghC1Di0VC08M8REDJGI3tFEmDfEWCXkAUT0VMpFA1iZTQ7xm9KR0DfJz0bpg1yBDgwhzDQNrU4xRDDhltrVw5mC+FEgCAEAn0mkIhiinU6IcsblAgLcJh7VEChooFEgABRagI6REKoiEG0AABQAHk5iO8ssmUcsPMSRzkuZ+Ehj0iIh8jGB5kK0Gi9i+hFMsR0i8kwIRRiifA2pdgYAAAvBIdzAQA4wonA54FotoxIDogQYoruFAGQKAdpEICoHASApozxMEqNfAOnMtfpEtCUBEktfWCuWEhqXnbDJEm6IqH7XeNE8EuExHO42AB454-nU6CUUkmAckl41EmXcseXeySIBhEkA0e1C0ZcdEiEuwjxZ4QE4ErwO-A7VgLFdDIGXI9udOV5RIAAKnADekIDlN+JuJaUQEFNxFBJ5PwFeMBWeBhIhLpwcEpNB2lNpQZMNOJNuydlNKpJjD2AamAliyiTjA5gASuP3htCgStNTDCIEGZMV2EDZOQXvwRUaRwX5MGE1JBKYBFKaATDHERDAJlAIDWwU08UkHQI+iJEEDTPxLNILAbEICvm9JIV2HICTIYH1X1RQNTKegLPtNrPG3rMbOpwTNpCrMOMETrLzKehFJrRlOvR4gwyxWSBEE12KPXSHIRR9UdNHJr3kAfQnNDV9UyLLl8E1DQFb3z2jELxXmZ0XMdTL39jQirwPLFKPMSHr1PJSgOOamyN8ilOYEzyny9yNAYWDjjA+IiGfKMG7ywnlRaxpLpLQHb2UJMJJUDUSBAtIApIBCfJEEiHSEnTYCcMArBha0JjoTDmDHvXrxUQ4GWDVLfV2DBAgFiPFIaD1NhU+ATB-2Qq+iwCcJu3zDrELEbBopthQvcO9FNBqM-0THlQYuaiovyH6n9M-jxWYtNFbSKWSRLSgQYsSAAFkLdYBFppj6whRGLJIbQVjrioSvi8UyKaQM8CBVTqtOj1TsIPR01JIODqLmVO87xcx4xaQGLpK+LEZPiuRYxAciyix95Sw8t5BlLVQ7IgzFzuwGT4MjiHQ+T-j1Tl8Jt5Iej54UobEx1b5yVolW0+jsy4kuKzjPFvjfBLKfx5LnLtw3y5MV9EtfYncnoAJTj9TBgUrJsXjLjIykq30YztSiTIS1I+FfS6cjxBBaEcSSVYtpzaUsls4jBQ8PzSEmFWq94fDDhw8uq-JLSdTMSdtZgyKRF+UahlrGEn0cSPzvFDBXzuFwozqvzKQPyPTdrBq6dTKKL5J7LJ07SBcNhLczKvqEVXqMTjSqZFzfrRQJRbLcJgavTdk9q6dDrLdJNSpiRIbeCJdrqXyJ5XlKpsQ6xRh-yPtVsjJPTTpCTQbEd29LrZ0QajTEd+8cScbu8GSfS9qbIIqFckBgz9h2TJEs0IyrKSqBTUAhS4z7DtdWBW88Vqx3siJAi3CQjGCjkUpD4W8pFNztztMWqbiZRh92lZaGhrp19e8PrKKIbsgjb8gILd5raK5-Ze9kbkx+9shL9fInafgjqlriEVqn02zRRPhhUAi05XDgjy4DckjC0RrtMRTxqKBD4MNe946shdaRsqVvqFIolM1Md7aMNBy5rx0eKp1c7FyUxRMtdg9wbi6B4hy417a5z9hY8cqN0DIi6M166y70NG6fKoykAyr2jJa7BlIJS-dmt71nAcNqKRSuIy7EJ5M+6aNjB8AiAelrIlRJ6QM8VSJlIkJ+s4rBEpoh6kAnwTxTY1z+sWtT7aEe7rd0Br6iMvx+tJA6MV7GMwZ17Ehr7Jz1SH7SIOZKMx6Bsjij706XFR6Mzf0qEkwp78gZ7bkAxH6MMX6cA3617zYlQYGQMnF7FyI96gGD6JhQHxU0JsAIAiB1bdARRmpW8qIWtMA6FEgURGHaEJKhoekWthBqA6FJgGAURNJMBEAABSRAfh6-U6FrXQHhzAPhgR-Hfhthn8HpE6O7fuZh8Rn8Z7HpIqRIKRu6ZSJhrIZ+YSZ8cgAABgBA0evAhxcWSHIf0R+KvxLTRmoQGXlR0a4aMeQvBi8YMeYcsecbOGqB8ahmwF6SyEUd3hcfUe8dcacf3nR1sc4X8ciZ-DsaIFaPKsohTjxWzrIYodeyVAYYYAACYzGAA2ZYHJsuvJ+xkvGJgAFgsbMHjvIHye1qzWWHbphlqYKZO12x8iAA

Computing with Register Machines 5.2.3

function label(name) {

return list("label", name);

}

function is_label_exp(exp) {

return is_tagged_list(exp, "label");

}

function label_exp_label(exp) {

return head(tail(exp));

}

Instructions assign, perform, and test may include the application of a machine operation

(speci�ed by an op expression) to some operands (speci�ed by reg and constant expressions).

The following function produces an execution function for an “operation expression”—a list

containing the operation and operand expressions from the instruction:

Ifunction make_operation_exp(exp, machine, labels, operations) {

const op = lookup_prim(operation_exp_op(exp), operations);

const aprocs = map(e => make_primitive_exp(e, machine, labels),

operation_exp_operands(exp));

return () => apply_in_underlying_javascript(

op, map(p => p(), aprocs));

}

The syntax of operation expressions is determined by

Ifunction op(name) {

return list("op", name);

}

function is_operation_exp(exp) {

return is_pair(exp) && is_tagged_list(head(exp), "op");

}

function operation_exp_op(operation_exp) {

return head(tail(head(operation_exp)));

}

function operation_exp_operands(operation_exp) {

return tail(operation_exp);

}

Observe that the treatment of operation expressions is very much like the treatment of

function applications by the analyze_application function in the evaluator of section 4.1.7

in that we generate an execution function for each operand. At simulation time, we call the

operand functions and apply the Scheme function that simulates the operation to the resulting

values. The simulation function is found by looking up the operation name in the operation

table for the machine:

Ifunction lookup_prim(symbol, operations) {

const val = assoc(symbol, operations);

return val === undefined

560 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAGznA1iADgfSwJxgFsAKAZwE8iAjOZAGkTiwFN8BDWBMgSkQG8AUIhGII3KIgBu7ZIgC8idmTJwI5KrQZNWHLmF4BuYaPwsoIfEhlz5dxOAAmLYDDAtHJ0aID8iNvhw+Bo0dIwARACqYOhgcADuSMxsnPBIbkoqLDTILABc4Txe3oh5iAAWLOyOJFDsMMgkNjw8xgC+gqCQ+ihomLjI7NQsjYPDyGSMYyM4YOxELHxC3uIGkjYKmarq08iz8yxTQyNGxWYWVtKyCvZOLm4exd5+AUEku-sLEdHOru6OKGOcgyyjI2WouQKRRKojKdQaTVkrUEHS60DSiCI7HQLDwhCIMFgUlxLAAHlgSGSsIwsRByg8juNeAJijBgIgSDAyDhVmQ6mAoDgqZTyS0WTCRLzJBBNlL2AKheScDYQCwRVhkRLEOdLEgSHx5AA+MTGbxtfwTFiINkcrk4D7Cqli5YSqXWtZkTaoDDYe1A95AyaA8aKgb+p2aiU6y76hTGtx8sim0Tmk5Wm2c7lmADmXKgbFD6udT1Ebvwm2z5hwObzbBItPp7kYNb5Bap1ZY2aLkZh0b1BuNlcFq3zArIJHwrUQxVTlvFEtewSp3xicUS-nJZhUGKgFFY7q24MhhWTIg6qPA6IQiCHHdzreCDYZ2s7n0W85Efcx7DpDxI4VvFt83wQoJ1fOYFmRC9ugxUEYGzMA7zfEg4IQnAEygfAQCvMAljOcxdQqKoanhRpUMQjCsJwlp2k6S8enI5VZFVQtGMo7D9CWadvC-SpqlqepGlIlDtzQ9jqJolE6Jg69yLA+9gLfRhVEsCB3xdT8CMuZA83-cjwmbTta3wJTEBU-A1Kg6ScO-HEcDkjCaR-RtDmDE5GGSPQ0iDLAIDwlYJEQOp8CHCsqyAusnybLZ4MQnNkIwySArWK5kBYqlNkYlUSXJTk1h7MRAuynAugUEsRDtTzUgQQtiqdcrED8LE7Kq-RauYnLqW-X9ot2INWu86EJTKZrcQIYhCRgYl2rSzqnJ61y+oKr9YyND8SjBYcEFHKBx2CodGGKrp9QK7xqhkSAxvUXypxnWi0QYxwLrUvBrr89bNp5baWDHEhfMYYTbxHH7dr+vyaOnaCbNGnB8z5PK+XmlzGXcnQUn0INgEGbNGBu9a3VWRxJuvRQ4a2sAif0BGoAKjNKt0arEOFQnidw-zXUClm2tKxQYYGmrmYQSm0noBqtXF8WosWwMPIZjHTtMLT+zjdaJfFz7gd+rH2BxwqKdZkrwBO081fF875Re3ywdu03xbaE3ZzBVXREXamIgAIWqIKWD5d0+SonoQSyHJ8hPGcpIencfagcgWAAR1VS72c0i4kB0+HwjJgyzPjxPLPu+io75L79apsn0LWAO0mTl9U6I-jhPL8TOKsyPrxh6gOEgco3e65G3ImRhtd1vGNL133nF9xRO4t8ocEnmPEpNunuQdXKF+LLU3Qwz1FG9fo-XGAMmRRvZ212EgN4VlPCNW40x9tmEMyB76texzfH9NjXX9B-6-d26+n9ECOytA-IBMJzaXVetbE24Czxi1NvbGcFonZgJEK7RyiBwiewBDPbu-8q7XiDmCEOUIHYR0LtePBdJj4jBrl+dOMdwjUPKNnXYrdKFIBYfPaOJBuHN2rutXixEBIIn4ZXDi1cOEyXSNyOo2ZKyOHtLpPkRAoAA0qLDHW9ClbWm5FgeowRVE00QAAMlMfXGoxiDT2CgJo+RBcZEvi7BBdS+E66MP-DmbOrjpE2TtBFEyjpRRCN0XaeRijlHw2XFg7xfieiBNDHeIsoS658RIoJbsjibJygFIiWaOiPG6XCLkqA2dsrxIxHaUphYnSpMIuEnWkTPExJKRIeUZTKnXhqe2bKKSx7CIbpkiM2SegX18fU7SxTdg+IOF02Rh8ZjBI1JMhZESPBRJjq0mZ8yB5JIvnUgZuj0miMaCMihTiYbZjgLDOAvcpanx8u9MeboF4VhuVAG5C9qa03ZJmRZZ917Rw-jCbeHovR9F9BfPqp99n+ivrAxWdc7453Jjtccf8d4FRAdaP5ASjIPkLFfZ2kpAo5jCoKQJ9ZnLPkSe2HMl9gWAJWgOVFJd0Vg0YC-AUINxw5iSimFBoCGoYLWB7L21zbkEMkUQpAoIjyh2xVJayPRJWfNocgQphFPEAQ+XANhQJdlqq+bw41Fd-YytwqsyxpySBmoEQgSSUMehYGYOQOoEB0BasuHyH86B-yuqwGHZ1GIsAgDID3X1nrDodW9UgKN-rwhhojaBCpoyMQwzIOwYk9yaXRQTbjZ5xQyydgpXeYy1KFrKQ9egc1lLwIHB+ctXRKK0Gm2TZGmtXKqya1BvywBatIGWzegOrUSCQ3t2xLiLcnyzC5qrWZLtiBR7FrJaWxQgECXAUrf3BNdakKuKbSbFlKs21q2-jy36OZcZuoTQK8BQ6rowO4kA8dggVUYizTm-l1qdVfpYNnfl6brwzqCGqH9RyikZ1A2YQDnZdl7owgextiGJHUWtSc4SqGLUSWA0kCkEzIPauKcwWZkE8N6JwPzJmuVDnuIafowxKTzGUfWUozxJynQRFI7s6jSS3V8bozxY5IjhInME6KJ1H7rwSdwFVCm45ZNxqCpkpTFGYa6GAEEUgmCHkD36nLbyhaa5uh-D0RQmntP2Rwj85eeLuSyZQhJEl49JBmbSIbJAvMp1UcMwLXK7mEBIwZAguBQCYVoy8twZlLbWX8BfWFkQgXELHSnI+6BN1DAJbgUgs0QqXOisRlgnBy62BafwEQaV-i5XBwhABpVE6kCWYq05ziv7inNaINnZLuzOvWapolDDonMmJVuo12yOUWAQBANzThvcIt6dC4lkQf9h7Vr9bLZkRHLgnMG3YRQ4R9INSaj5hyYq+7Pgi8wJ5Q0YRlF2-lG4B2s7HYm7DXhum83SxPjoTG2NjMNXuyIvb9hmFdzpOEV7Hdwc90+wuiLa3l1+UBzakHB3jWQ61Cduyxr539wizdFHD2+Q2IO-+zHEpse4n-Xj58Bake3ZKED-iaPYnRzAxTmEVOOx8jA7T-NS7CdamZzUVnSayvac5yUbnnX+ffdRtdgHwv-D4ECMETBURVwJHSGhnou59zEIVWQi50MfMOrALUMkJjttNaY-mUk6jEBgBAMgTVFHzfvYdz8obLP8ru91x5skU2ZseeOoNm3KmERLxNz0T6Hug-TdmxbzBBA1A10+sJFPgQ-JZZjxibAjhOC4h3tTIMC2vsmcCr5MtVK9NJogGHZKvth4163ZFL7ERh6N9LIFBNmwpb-gTd30lKVrv96+-+ajZBh+10IuVoUzkSANQwirOPAf-PB6T0v02jklswwTyHmqbcLdLe8B7+3i98qi3CzLU-ogHl35WxAa-n81uP8XRt9-12Wgv6fh6XZMMDoAo+AFAGqpkWK1qBiMAwQHwrijAWKFGVuHA0AAKe0VuhkakU0biZ+9mswLuQkVuIKJQX4ZgmBOazurujAFBbuyCaYLmX4SBZmqBtqF+PAjAS2pejycW7+bo7gDudamwmGhBiKEsX4do-sbgLiVudajOQCfgpBLAWBnB2Wy2y6TGgBQIQowBoBfBgomC7+qhEsWK7BhhWoS0shn8ZQChShUBj4Zu6+FuuhMhJhphrhFU-+LhbhEoS0ueiCDW0mNWJCdWJAI4gQruBYF+wW7geEDBDuyBgofUIR20YRuQJkkRBhJQyhS0p6GREoBeReda44O8jyURiwIhcCYhHo5Rj8bQABPmCasYY8uQkgfeig1BJsx+y64aPcpIXEDUrRah0BJApI62nqNsUYui4QjgCAAG5C3gnRgajRy+uB1B7qfqRBWors4QAAokQFgLuB-p6mUAAAoADyxxM+eWdBZ6PeKUnyWAghIid61RogAxWGNao6N8lw9x5RHQZoxQnRbgk0sgMAAAXmqDXN4AMe0Q1F+FMTMeEHMaIJ0UTGQAYlADQgsCoDrNgRMXXFiVmpWE9lgh2lLljl0RGktiND7ISVaPtiSaRktn4IsRYXdpiDSTicSeEECbACCeCWSZTu6MCTpOCfqFSSrmrv+NELENri+AnNHAeAmgUDSByZWEqsJnXKieiXSOpj5lSoRsUM0XrOipsOEAAFTgDkQeBmmIkAmcKIBamcCYmqm4m9i6IEmcn0kATmAClc7Gm8rikelElembS+mCnZSnr+ljibDZRZZ-G2xlCuxBmuS5GiCa4ynrhmDym+wZAwyBLG7-EamESOkYnlAUaghqAkA4gUAYFBCOBbb0aXB2irGkF1m8ChZ+B3B-CPBqyJkJyyBVksA1k2onKtn4D1ktCsl+mjlTZtlTlM5bCVnVkAyZJjkTlGo9o-x8pt6TjWpUremdIUYXocqBIxoFJ7k7mD4+k8D5Kqh1F2TuDxA4AD6V4pTV7eZ2T7m+Qz5ugt4fnTqXnhBd4FRugDGZo1r6gmxGl2LF4OE4BgjymXSbAwneDQWaJj57y6Q6o8kwB8nU41rZyplagooNHclgDClgn1b3ooDmDOLGRaJ1ZehYUdYN7GZTDFJd5DzvzIh2lOKyCoAQAFH6lzIuYZgVnqBwF0WEp1B1ak4OAUz3D-CQkTEKQRFDC5CbC2HvC6SSV5mXm+JsFEW2yJIyW5CAI4o3HoKq5vCSXhAACyLusAWAyAFADpilHgUlwEZQlxKYsJkxiS-FagRejgtphZyJ9p+8vowlkELmboGwig4lJAklJl6lZRfldc8VtwCl3ZngpsLw1lwQtl0pa4SA+ZhQ4pmGmSzQ6p4VTiB++YSxW8gUO8ZavaGKOeyxto3IqxWKylbpdc8J7goVEoFlS28epIm+oeRsxOACN5nxs+lw9VEJvx4c8x9pJZzp2Jap9B7pLpXJvq+AZSTJHIcWbKbVnKQUmiHuCFecaVqhsRm+y1wCgZe1XpGE-FdahCiEN1P0akYZzwOccckZMFn1lq8Fucv1dJgNcZL1W1dJoOgVgl+Y5aD4-1vgSgruQVyNgSsNtJXJm6qlIEx1kVuAONps1JcNXJ71ruvm6M3kaNIgfgGF98l1uIGFSgWArAFMtQ6FWABmRgz15N7JlNIZBFx1CauNnpoOU+DNjUrNvmZA4pSZLpK4GZpVENOZSAUsBZvlRZlwG1ZZeek6dkA+iSri-NjAoRdAqRnu1uq6KUUs4+D5LAT5L5HRQQC+NCZtBwKsj+A+h2mNSNAFhNoE3tkEnhohO5b4pw3g-t1NewMtN53+JscdawH111ENl05VasIkQRuQSRwB1tER6BF20Rza+JX2R5wUMcUsym-tB1nSkFRtSABN9F51emYdrpC1Ldm5l6oMrdD4O6tKUdBlR54UUd7dHenlBYklFSH0vdHKA926HdI9cyZ5d5x6kx0xQ1upLUfmNGFIMSemV2+9DZTekgzAEKPouA40pAsmvmRYssdN0WJspmqeEAu834h9KsGm+Ik000jopRXBv+iW998m9ZWSjZysa07AnNLlFcOAdw+ALlkhOAAAVtmsoBAIQPsdvqA11FiBSA8WtBSGwRzdnrwFZIIG6NmBAEoo7fIMUDDAPg1DquwNnMwhw50iA6hcxdBtkNnChIwNQKyuwIgAAKSIAiM8NmHFLyCCPsDCOiPEkiOGWyPwwIKZzRw4DUAGRLZkzaXwxurhDyNkMMqcNkOlIkAAAMk5MjMILCGq-4tDSi29VF9jJQckmcbCukxjZgXWZjnYekhQhkXYFjP+S2Xj7DoT-4ujETpsXjujMT3j8TasuOF8WjxccTaj4sAEdD88CJkkn0iS51Ljz5U9h22cAATNYwAGzIjFMT1bl2r5N15JOIAAAstjxgDdLT9DFexgS9BYpTrTFT7DrQQAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfSgQwObYKYAmaANqlABQpQC2UANIlABZ4Y4CUiA3gFCL+IATnighBSVGgAOmGIMo0onAGTLELTAQW1OAXn2MWbbAG4eAXx6hIsBInxQ0w7GTzzqmCExhg8DZ2hgmNR4nLwCQiJiSB5ePnjkAEQOTnguVG6J7OQBQSHsZpbW0PBImCgoMNhgqdiBwQnlldVoPlSCICUIYXwCwqLi6nia5FgwxORNVTVtUB1dYOwFFlbgC4hTLQBumMQgrHgAHlKTFdOtYO2dtovciL38-dFDI2MTb6fNM5dz16VLyyKaxuiGIcDgAGsQFJpIIYNRKABPagAIzgxAYcCkbkwNxQPQiEAQVEQO2IiF0GwqcAgSNR6Mx2MEuNK+LMESegzJFIM4AIeGA8QIDwiiAA-Ig3II4PIUMi0RjEIkAKpgCFgOAAdyQWJxIJ8VJQeFRxDwAC4siKImaXloPmSloVVjZSqDwVCYcRMCi8BMvT7iCgGP7ffV8twRUSfqTdhTDTTyCHiGG-KDvb62SLOUhufpKXyBUKrQIJVKZYn08m8qmVWB+YLfAQ0wHkGUKsaUaaLexi-wbfbdoDnesPBDWFI4dQYLAtgdjuQjlIGLFvL5g5X8RGIjBgIhyJIo1RMGBHIuF8cllvRfxD1BEBA47fj6fjmgyftz1JltfHlFBuQ9AAPnvdkBHMSVAzwZBd33dAkzQM9F0vcIf1vVsqBQOMwUhaESErCsAyDZtQ0XPCA0-R1e0iAYkAAilgNmFBQP4cCMygnc90kZxXEEBD5yQglUOJO9BDjFJuIydxPFXVMJKgNw+JhZwKO-H9sz3ID7BENAo3kk8UByAp7giVjIKva8y3kRcGFrdUtSQRdhDOOwoERbFW0NDsuyyZjEEsIEXTsUdWF1ZkbkUz9l2k+J10Ixk9VZQSb2ExAsSw91cIneFyFClkEEUtAsQo+KwsS3y0MwCcaUwykPBOKDdGA4LYXhacYFnCLUxXGLiMDdg6Con8hty8LSNyusDIE3z1LoxqNikKRiERC40ALQQlp8OoACtMB2FAIDhKQKEGoaIixKKTikejEBOfr5ulCB8SHYoQU2MAcjSHiUwYFA4DECBQnM6jnlIKgkjexJ-E+yTvsQX7-tCJ0XtdZq3v3H4oriNdeqIkbWQYKQICS+8UqwQQHDE7S5Lcchuuxt7ahTdGqEowkUvfOcrspBmOYi2ZVOS6NeesCkqMkPH8rPXmkKoiVmolmopd2fZFMxmTYozEq8suHshptZqsqnGdOfIaXjjVnqk0zDk-1ozSUOvI1HF0vB9NGTByZEBhhfAACBdFTQdkgcdaUJoyRXMJHgVdQPjwB6RQ6JoGnZ0hA9KgAzCYYD4Uhdt2w8de4ApHTAxwwPAwdmC3satrW8QYYAvWwAmk4dknoyjAg2rsSl5KoVO62797+d8jjYMKpltYizuh+Qqi0Jn8KRdq0uQsn0b50X0oBtO3e94iOnU1r1L17KqiZvtk797h7S84z8hG5wBgt-y6w-d86-r1j4OE-IMOTGMp-a8kcI4QSNEDCIllmb0CVAAIU0IwCud5ZjzH1G2I0JpzQ+QjisZGLkkGUDwAAR32MHYm6lQYUESH3KAkMb4kNdgDZ60d8H9xfu9GhFwrgLHIbbW07txijCQVw34PDmGBRiKvNAKJmSQCYNA6uR8NwNybi3YmaF+QkkpDIuOTA0CaIoCPEUY9JDwTPAYueQ00KMXSjhT0+Fj5mNfEmcgFj-Y2xohpa6bcgHbhgrnNOrt76P2wJY3xu8U530zhABgjF3HhL8mAqCPiEkRG-vHQmf8iYfwSZYVJLFfKmXASk-gUCq5wIQTouR6FRFoM8pg7shTcEsKQFUrwBFfS8M8ZQpIbSmB0KTOI9YfT9EEJGSgv43QgbqQ0HaWQExxk-FQf8IZIJlLVi6SDMgSRnB0I2VHCRyB0DU14ohC80y+GSCwLgQgJBtnWSVLs1ZroTkFWUkhC5njZkCImFNZphynwnlNsrQGbcKHbMSIC2h3sQXPLsAeYSz5OrnLBZc9A1z8BEB6Q8yFiKTzYOLiCKFBUOYUU+c8b5Hw-mEtdC4jZ5LBg9MSEmPZDQ4USDgpWZFX4GUcuMJiu5YMcUsvZb1AqLiPmoq+cMOZgjqXDhBM1bAcAMBwAUYgQ+GtAxqKBhopBYkVVQBVQY6B-sTGcoDBFNxECBDWJ+DVN0diyK+g6dqsVpEXFuJyb+Txs1gKRMCfnGJNTrZgSSdBTixzobyVOfOa1JT24kmcJTRwJzabRWxq80iykvXnz4X6m+ztA33yzlpItJ4gkGWcKzMNbEbWlMENKeQ5TEjwKbMq1VNTlnwvQV5LB-t-I8AVa6DtRrXWbMZRC0dcABmVlFdO0ZYMF0TJ4by-hOdDUqpXTcSiNK7BSCKkeCAEIJ1ICPRCJIB6pAEuHfukAKB5HnphXsUFWY+Hnsvfe-p2QOaiuaigXaCRymarhlgY9Oq25oWTZScS0aaYgfPSIxm1ZTX+wvt4q+Q0pBfoUJ4CEDAAkVrdtW+J190khyyaR3eIC92SLLk5I1wh1UIbA-hm6rdIwpWg2W2oPF01Y1TIh2YyGGioemvmy+qSA1Efvs4Amh7WM1vCeR3+-9AFAJo0OvBZ7AMfVCWuplAHZx0OrQc9YDGZQJGrQZiFFnhAmbSKKoTPwRMhFw8ekR3bbhSopTKn57mISecmYsP9UimTABlAiYDGalFxRPglYkEHOPRk8CCSk4XItoFS6UU1o8YLi1PpLec2XujEzZilhYaBl4aqkQrCKJWwCKJ3vklr-Bj4K1DdedDc0uDqfyQ1qrvsjIqcyWpzDp0QEmXDQmspGMKlNgy4IagXbgseSaH27BJl-nrEWwiBrp7QQQt23Q-bZmQS7aywsU1a7KXzLE0XW9dG5x4AgCAJeLT1XHxA+N-JpaQk-VY4yTcPnBjfP5jySkiQIayxq2XNG0WBNatxlIIiYcqI2jBz8PQBhqFIMSDD5qNDmMxaR0DlRT92O6x-Bjvz4O8xKj6fjoacspF9OJ4jnG5Pm6U-R-wunOPp1M5-Czsu072fq05zzvWfOscQ6VEZvAQvrwi9YAr8XPUn1S+pzLlmcvEh2cVwTqRBv1fY012j6XmPdf08SMdo3Zddum9i5rE+qOia89m1QGyqo7LahW+sVy7kDTrYaTe7TsPWDbpy-JQ4Sg10yDkEI2PDAwAgGIMQUVUf8ox8MbLkHSArdKDO66LPitDgvbe6UQbw889vs8R8IxtHC1Bcq0cCv72a9e5ug9YmKcG9zaqtkh74foQEFxJH+10CiJfZi+olKhMU28ckvxiXtuICbdtSlEJi+00gcSCEjfgsSTnrjIfJI57D+JrvFiB1Z-Egdcv+pCLpzpLkDFtGOaKdS98Xb1Xt+mGq5MNmo29XsO8rsft+Bv8c9TVmtP5a4ICatEcECs4ED-sECn0ECb8lhYDRQ4li8gopEzETxBBERXVYY4l49ZB5B4JqxYl7VRUjg5hUtnVAwk8YFhAAZ2pX0-FI1Ag093hGCwkus+EOC8AuDyBU908U9+CB1ps81PFGDmRoAWCDIPgc87pMMp8kdJMgE0JfBY8RE4xKVBDvVTp1JJB2hNoJDGCREqcEkJRRDxDGIGAEDd4E8pIy4iC5hSD9DHBylXDWtTo4kXDAihorYlgAi+xIhODZw-4qD00y5S9rCDD+YQjQj0jID6C0iMifxwiAFMNzAB1ttXp2xMFyBdJpR08FIc9FEeh1JFDmCrZyi05KjTReIajIiBAtCcYdDAjR9x8REDJnDJdD4qNwlzD7VTDP5Cj8Cns0AP1iZTQ7wT9KRJDiBfJw9sMH1yBDgwg+sIgVibp4jDgAc8Nw4hp1JEgCAEBFcmkIhNiioysBBzU+D08AshDTooFEgABRagI6REUDPDG0AABQAHlgTL8ps60E1ysSQjUuZ+Fz0xiBBDiPgkSpi+g+F4TTC8kwIRRw8fA2pdgYAAAvBIJ4-gQ4tY0wy4643wRIO4gQcPLuFAGQKAdpEICoHAbgtSPhTkgDfAPXLY-pTDCUYUzDfWCuAUhqHHK9JXU6MUx4iUjVKU7kvXQk2AYksk+U5nVsIk0gMkgCZUr4n3DUP3YQBhEkA0c9C0ZcVU-AIojxZ4FktkrwWYiPJfGNCQtlIGJY9udOB1RIAAKnADekICDIZPxJaUQBdNxA5PtJ5OEM8X5LVJtwcB1OF39MrWVJTMFJtydgzN1I5m8SzP0jjA5gAVxP3htCgVzNTE6P4FsjNKQAtP2CtLmJOUaRwSdMGFjPZKYHdKaATDHERChiJEEAIGBzr2eEkDWI+nHMnLsN1ILAbEICvhrJIV2HIBHIYG+W+Q4JlEXIiOvglH3Je0PPxHGxtCHNpB3MYDuwPInKendMIwDL0x4gOzTWSBEDD2jOkzfJOWfX2E-Lg3kESALJ-VhXdOal8E1DQDPzn2jAXxXno1AsvXX39jQm3xQtYC-IP0wpSkOP-VYwAl8j9OYAn24XCiNAYWDjjGpJFHIqMBvywm2SZQ1JgC1NV1YzoQbJ-ALQ-USA4q4qyCU1BBEEiHSBjTYE7AakOzBiZUJjoTDmDAhQPy50oijMOV2DBAgAGLTXpQTTHhvO9JCChikuqO9FNGx3zDrELEbApNFFeSwFkrjHcMTG2VoI9IMrZX6j4v3mcqssRioiKWSUwygS8sSAAFk09YBFoAT6whRJKeIbRIS8SLi+F9dQKst08aRx8CBIytt7jozsIPRPSaZDL552ZYxuZqRaQvLArZKqN1JcxeQ7LVzhR95SxG1yxIrTT7JkrJJuxlTbtBEHRHSmToyQC3tyT60r8Q1F8olKNTCXi5y4lHKeykAribjCqfxQq5rtwllgsf9QC-9fZC8npSLMN6jy9QDyScTuzJrDk+z4yuSHS5r1I6y9cjxBBaFRSvEetm8lrS0KKW9qLiFSEmEMSAq+Fpr5JSK-IcyEz1SfgdKwaq8aLIbDcur6ESzQbv9MbGE5KaLKyka3qZTIcdK8r5JyrBBCzRQJQqa9KaaTkybpS9dYMLK6b-rSrcJWbqyVTyaUajx08J4EtLh6aIgJQWLAbQaZb5psQ6xRhmKUcgcjIqzTpJShb8yeL-rz02bUyccH9-q5aUdjSer3AEzvc1RmzIhLTkFJEBMuyirMTPEXqBziiUYpEz9XlqxkciIKj0Q2jy5Y9EKSRD5T8pFYL4KYsrr7iZQEJX9faGhroIC78mb9LQKsh3yYYNlsjd5k7OT-Y79Zg0aH9sgsDfIS7UbRaCaIaibLQ95Pg+1mjiCg7qjGDai0M+SYt3SfqKBRi1079+7s750qZsqlqQNC7EzgZBhXzK1yBOa+Mp7sqNknNx6uaB43yV7N6vLf1k5b5i0DIl7l8d6vo86YwX1u7PFtr6T3SipKrNr5KqEsRWV8h3SCtxbuUDtJB3KPlVAjl+VbkelvkkIbJX7RU6sxoTgoGUVpzQc-MPhvlYGvxd1Ht4tSoisYRxpJycpCsy8eV897zBEUGhweA0JsAIAiAI7dARRmoz8qImVMA6FEgUQWHaE-Kwi2LbNjQ6FJgGAURNJMBEAABSRAQRnA06JlXQPhzAARoRuXQRzh3I7ZE6XHfuNhyRn8InHpIqRIGRu6ZSVhrIZ+PFCgAABgBC0evDZxcWSCof0R2uwMwzRmoQGW2T0eEGoBMckvBh8aMbYasZcbOGqD8fMt6VEusYDhCfemMfCbcecf3jFzsc4UCeUaGnsaIDpMV0ohTleSWsoeoZJyVGYYYAACZzGAA2ZYPJieo+xehxvfTRxAAAFksbMH7oaaKYE2WBPukoKcaeKahx8iAA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAcwKZQPoCdXJgZylSwAoBbAQwgAsYxUAaRHZDMCs1ASkQG8AoREOboQWJJRp1UJAERpMLAkSyyuJFmw7cA3PwC+-UJFgJEFfPhjIw2XFs4kLVmxjqEsIaPDA8BwkSgxJGpUCgATEigKGAAbJ0trW3coT28ELi49Q2N0pGckjAA3CliQVAxUAA8ABwSXZLAPL1NfPkRBYRwg8URQiKiY+Oi4+sKUtNbMrIMjcDzEWLg4AGsQGoxYigAjVHit3dj8JgO9h24+TqEIBEJEEtjEAF5zSzgIElPY85OdvfwZgFusF7qVnk8XuBwqhgNJwlcAogAPyIYhYOCkL4-RCyACqYGhsPo4UWf0edFe+FQZG2sVQAC41AiAvTECN4g8Zjl5q1EJQVhUalgYGQYLAihVqnUpUxJLR6L9DgDLgEYMBECQCBgbk1omBMFKSFLMirEddblBEBBnlaLRR9ZVasVSuUjbVAWbAiCSDwngA+K16AL6VFHVCINUarVYw3GvzM4Q6u4pfA2pardabMmfMnHUmHR0bL5umqZIOe4G9H3PAMp8tCEP-cORzX4Ox4QjEQslk3+T1Jy1YG0KdvKYjkKjyxgiDsqQvtnses2VpDV-0odDahBEfX4DRZDrB0NU01mtEYktMPFgFZgOAAdyQUpwiTMUAAnjVm-lLNTaQy1HrRBDG5EwfD5CgBQwOAvywChWm7GUIKkBV83+JgYOIeCfGVPtzV1RAYLTZY1g2IURRITC4IQqVoOld0MNg7DbiXW0CIoIV3lTF5KGlGsIKg8jRXFSVaiNWVJ2kRV-i4BgE09BShCo5jbFo5SCT3OMgJXDVfQDDialid83FsKFiCMuhWAAKwoEp8AgYUaigEh5MUxEYIkuoan4upZPMTiIABLk5jAswChsDRcDHLBsXwOAxAgC48K9XpYmUORwrAWQmCUTsYvYTgmDihLdFmXJeX5CpMs1XUJJQ6cvjzZTWjzGoIHjAIBzZCgsAUYdN1ylQJ3qphMvbc4asIMsES6h5ykLG0xrm0S6hSVjZpdCpjGeVytWanxu2WwsuFclFKrorCaLEo6kLlKS0KORjLpwk6FNZc6hLFGAJUOzbCzqqdpKOVidLXANkoCKlMB1HcoD3aJevQJgjuMH1WICCISkgQUPjag8EX0bIQoWTH7USjA2pIPHT0QKGt31VBdypiAmHZEgRxhxm4eZ6YdA6UCFnOohCEmqAAfuxqnuonCmGALZkCYankq6nVwi+swXmF6GEDV1pRdYls9qYq66lV9XfA6-sLTY3WDu2njIIqfaEG7M3WjktzPa95DAYeprjZeoCgVEKs9Jp72zTpzmmbligFZt82MFR6aI8U0nsYp3H2r51zvcJgnj3DCHhHPUgUivAAhCI2VQZNdUmcCKWcP86UZViQOJ3ktZIKkAEdymxy2hB0tKRdkLXstp1B+8ZxLgvK8Ctfp22ECiWvMAmFofCHlKQjCSI2aXze8mmgWKsdjBtjgyBqFF8XUMlxBY-jpWZut6E7heK+yeoDAP+ctaQFDZthjGJf+vZXJdRTMRDMRZsyP1AXAw4JBwHoy6CHVcYdi6pyEC2Dm24uZ7mfhAnBnso4EKZm1JgKY0GkMbGGcOpDETp3JpTPGQcmGGCYcIfOR4myMKEKXO+OIq4km-jfCM9ct5mCbr+GkrdAIEzKjycC4iaA5kODvEe6VZBqOoJPL488VFmD0X-deJBTHHymDTHS-QD5DAsdfGgJlmgnyMaFJAWpojIDQOETY6VCBkDFmyUIGBvFaIwRGNsNQYikECVAHgAAyRJfR949ygEE30EIQkVG8UTBeZgWAkAKklBE2ix4sEniU9xCwtSDS7LGd0NjIleLjr4-xIskKyEqTU3k9SYq0SKcaZpPQ94DDZlpZRHi2KEHtM5ZaETRmLB0QOOZk8Fn5OMZ4tsqyHSNNLCMkErSfGoD8aPZyXTdlQEUWfcCVz5zLR7Ic3odjBijEmbcswxZqnPKQOcuQXwqnaF6Y3EBZJEJNOSjpY57T-ldMBSCr54LaLFmGVCyJryJnukRRIC+yA4BhLgMIu6D9cyK3ajTLq-9hwEqgAS-++sgHqlbFmAshpUECJmZaaBLx0ykVZXsDR6EHrzmLKgjhw9IlgyntrBmlCWaSMIACIC9CTzANHHlbsHLsFcpnP1RQUU8rDV9v0+cRTxWuVBmHchcruZUI3LK2Ge4WApx4YXTlQjy4iOrviwlirUjSM8T+Kk8iALt1mJ3cCvq6VCtiIskE-z5C0rgAYskOKUDJrMSLaNBKrHb1+ak8ZDic0uIDW4zZ0yagwXSVQFY8beizIgCsOQVaag3MjWYGoIB8C30bSsZGm161ID7S27t+j1AbKmYLC++BbIyC9SS6cfbyU7y6iwfVGqhqLqKtEJtpbxolP1iDKVWDc5uS7T2mtTamD4Ntc63ArrSEsJxjzCVbl86fNxVBF8dKcDEskqhZdiBX6dWtuul4I5+nGvun2-dmhD1rWPUs6VOqyGbmjtzFgitq19sfTg59mdX2HhwR+-gHbh1zsisgIdyyx6zolJPF1FaFg-oxDIF1BbE2sZwIxh9zHeSwZSAe7QV6VilobhkAtmKHGCakeWqdvJq0-PRUsxNMEgWcHTUbZ6Lt9k0a1DEmApBhnJKiWEtppyOnOVecaK86n03O1Uk6atjnjpSbSWzV5rm4wOYDrp5zTENKUT805g5KmQRs28+6fj4EPrEGABiMg-6Rp+ylipVqFLlbWyoLyF4sEEtYDIBgHLPhGUInVVFuoJWMg71A+xPISdwA2nOpVpweR76MDPdw1Oj9HPKstSe-ivBiPdfMA15OfMCNsOziNzhKr3U6s9bVb1JJ8uJf9RJoNlIW6oEUcGBT4E1uFba9Y8LqUdFHbIJParvgYudvi4l4reR9buaLaMRDOdP0CVEqgCAIAEIFLAMIx+27ZujYUva5+O7a2MVwmUjFaS1rgheLITKshTrfeK4kCKC6AMNTJYRGoGXXqelZK8pHEIUcTwx0LcxuOUu9aJ7LeWK7XJk8R7qLJKO9Ho4UmdC+ejku+0flD4D7U2eFsiBT7JSbCW889PzqCOahcSwJ3jCX5POfI5xPR3bNOZ2Ufp77ID6u3qS5e5TnE3G9d88x9blXgHd39rFyTs07OBjS5R5d+XZpFeCge8do3qulSw9Z2bpbhArz4lvA+INriu6fm-Nt0Nbc7tfoqHm1eRAqgJILYZ0g2fglgBALEONaeNuBrCdUABWuztjKl5z8vmenO-f+3bcAL26-dXe43g7Zg6bN8dK3gHHevUBR3nTNmY-0Qzb70gdY4R4IZ91HuFMQM8yLtXdbNqG6oOg9kG1PbiZrbP134ardeOrzPyP-hO4fbmt47kH2m-uqYLcR9tIOQfWX86QK5UScLkCkKQ-EA+cmV0w+7eQOXW-qHsns501QEBLsgOgBqcg+he+ssBEcks0BAQ26OBwgVC+BQgUORBtMTumB3sb+mQFBqoK+6a50MY+oWA74sa2INCeesSrBJS1CdB5e1ecE0AAqRwa8OeOUv2qA30pSqozKWoxepeIhCStW6CSyOAiUkhxSJesQTAchZeBc-COqOk-BOWQh8MDihefk0BoseYjUp6OCXU9AOepaNomK1etCik0KbYHglkxS1eparupCKIqhEhEoVhTApB56nBDByKTBLBDhG8y24R4OikNCYRSRCkNh-hOCrIQR6h+eE4UEzePhjha0qRaRZRuCdBpR5RnoNhOcXs+g4aX2zcoaJAMM6IpeXYheHW8YhhOeAhmAjUrR247RdIMUXRiRAQoRfsthaRC+S+paq+K+6+3Rb6pC0KK+qxec9BM6Tu1YyUdIlo9+LwOhQEgOwGY6JAVQfgYOwgRxwGnBVQ0OTa+MCkOksg4QCAu2KqCIZxraexu0MhbYOhomJCnsQisgAAomQE5O+GQbWqyAAAoADyCJL+fCDCqGx+BEdK3kLwryuGmxQgdxbMBJ0BOkOJb6XCPCPxWykiX0pQMAAAXjIEoUSU7jaCcQNksu8Z8bIN8QEGcWrPgDElAOopwJYHHFIRWJEuKbOmgNrgfmOj7opCiBetQNAe9LXHKeGJbgfuptAaqdWpkaTnyFqZKQqXQPSWlMycqbbpabAAycyT6BqaiFgOiKQNeDHo+CIDPHXHCU2oyLKGaWgOGsHEskKSKTQOXudFBspgiAcWxE6jaLIAAFTgCZSnIpl8k0nTIRnwRinBlSnLgymFkKkKC2kK6JmEIumynmm6lQwVm27LRDZVm7g2jLR8xUleyshCK1loBVHcKel3jek4C+ncrp6brECp5KJhkgh5minUDl7ODvAkACjvhiE3BYDhBw6zm9CyGaGRSbnbnGmIgohmREinJdY9n9ylCrmoDrnm6vKqEYjHmZA4EohPm-YvkAg4GsjLkfBrmswOLPlblBTl63pOpUbRQ0ZQbyDoDtpnE2qQX9IDplBFm7wzjRRP7wUTqDrRkXz0D3gYCLr-F1Z3A74Ozfrn7jgH4QAv5dSn6UUVCwXX7rTWx3HnQjqsQJlQChKD59wDyJQcmaFAQ8WhJv5pjpSJr2kwCOkVDP4DlpHSojqyAyVyVqB4YJmmrRD-iSUiyJqH4ronA6LX7M5xzTQ5kkyl7vDzGxnAqcotj-nFLaBiGzidE7B0hc6IDnlwismIjaUeU6n3FGafDpTcF27UWkDVKyQTGpwBX-huGqpFzQFCLhWyAACyJesAhksJhIcImFeUrIaJ1JrxkS3SkVxW1lEAS+4Q2Z+2AptJfKmYdlmmnKG0jwLwTl4V8Vnlb6OkDw2uPlxIBprp7pzlhUOI0ew5SA-SbcLp0mownIoZwgZxCBf2RApFVsBEPKDq9MkF7CAJUYQJB5NCflu5SAPJ9AdVnoSVnKtB8eB0a1beSBHemuSqmQPohJGFT1G1iVM5K1tJ85BZEpIZnKOkfZOpMusyWA1yI1KGMqe1hCzMrMfFYBB0Als8pU4OvRw+LJnZNZpZupKQpQ3w-F08glNunsKIfcLZvFy+D1LsGN2MNofc+N3ZppINkNKOJNNlRAk5qgI1PN1VfN-SBNnNZZA0kVjZp5iwJEzVkVYt2pFpuoJNF00stw0tAQKIEl64w2dNdE7+BkjMB84lTOhOyqwEitdZUNTumtwg1NTuVt8pup3+I1+tb+LpvZhZUeN401Pp5Qfpi6059Vyhc5BAkZi5c+mOJFpqJS-seYbRcAHRYxrhlK1si6D+UEhFxFj+rEf+YQ6isd2g-ERBJFqOVVtlUt6gRdmmilpVbl+U2g-WuBj+qlKtpeat6WagwWzdwgZdxNHdZNM82MTIns9QO2QxTBSdoxVeohH+9AeG4NeO5e0Nzkm+BaZdq93d6akGFVGGe4oONd6FOkEFSNu9Dd0GqER9p85GCNpq+9l904R9qF5QE+6GFC3M59WFh9FV1SL9WNodvQl1XxUdTVZEwoSW+A74NISdaWLUW+BEA1nVbwHwUDMDWhhOOmTQSGIISD2SQ1l5tuQiaD2wsDk1vtsemD6tW2zR-4c1ZuC1HIpQN9-AXUyAEAfiGdTwCI50JFrkiaFAk8uiQj1yMV6RUlOiOAV2TATgTA2wYcFAiAAApIgPIzQeI2PE8JPLI6owo9rvI2IzUelGeuPOvJfNlNAd3P8tWrIFo35EUsI35FciQAAAzTDqNmiC7FjyAcN-y8nUHQHVTjwGLpQ2NSNqCuUZQRMzhyDbAaWGNuRBOCOROOMJNpzY5A7CMpOiNpMKTK7eNLxxMBNuQ+N+IfFXXTR0z30f17jsOcOX44jJOIAABMLjAAbDMFU3vTU+zL4-vnE0wAACxuN6Cr29P1P1QzBf2aoP11M50pao6ARAA

Computing with Register Machines 5.2.3

? error(symbol, "Unknown operation in assemble:")

: head(tail(val));

}

Exercise 5.9

The treatment of machine operations above permits them to operate on labels as well as on

constants and the contents of registers. Modify the expression-processing functions to enforce

the condition that operations can be used only with registers and constants.

Exercise 5.10

Design a new syntax for register-machine instructions and modify the simulator to use your

new syntax. Can you implement your new syntax without changing any part of the simulator

except the syntax functions in this section?

Exercise 5.11

When we introduced save and restore in section 5.1.4, we didn’t specify what would happen

if you tried to restore a register that was not the last one saved, as in the sequence

save(y);

save(x);

restore(y);

There are several reasonable possibilities for the meaning of restore:

a. restore(y) puts into >y the last value saved on the stack, regardless of what register that

value came from. This is the way our simulator behaves. Show how to take advantage

of this behavior to eliminate one instruction from the Fibonacci machine of section 5.1.4

(�gure 5.12).

b. restore(y) puts into y the last value saved on the stack, but only if that value was saved

from y; otherwise, it signals an error. Modify the simulator to behave this way. You will

have to change save to put the register name on the stack along with the value.

c. restore(y) puts into y the last value saved from y regardless of what other registers were

saved after y and not restored. Modify the simulator to behave this way. You will have

to associate a separate stack with each register. You should make the initialize_stack

operation initialize all the register stacks.

561 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.2.4

Exercise 5.12

The simulator can be used to help determine the data paths required for implementing a

machine with a given controller. Extend the assembler to store the following information in

the machine model:

– a list of all instructions, with duplicates removed, sorted by instruction type (assign,

go_to, and so on);

– a list (without duplicates) of the registers used to hold entry points (these are the registers

referenced by go_to instructions);

– a list (without duplicates) of the registers that are saved or restored;

– for each register, a list (without duplicates) of the sources from which it is assigned

(for example, the sources for register val in the factorial machine of �gure 5.11 are

constant(1) and op("*", reg("n"), reg("val"))).

Extend the message-passing interface to the machine to provide access to this new information.

To test your analyzer, de�ne the Fibonacci machine from �gure 5.12 and examine the lists you

constructed.

Exercise 5.13

Modify the simulator so that it uses the controller sequence to determine what registers the

machine has rather than requiring a list of registers as an argument to make_machine. Instead

of pre-allocating the registers in make_machine, you can allocate them one at a time when they

are �rst seen during assembly of the instructions.

5.2.4 Monitoring Machine Performance

Simulation is useful not only for verifying the correctness of a proposed machine design but

also for measuring the machine’s performance. For example, we can install in our simulation

program a “meter” that measures the number of stack operations used in a computation. To

do this, we modify our simulated stack to keep track of the number of times registers are

saved on the stack and the maximum depth reached by the stack, and add a message to the

stack’s interface that prints the statistics, as shown below. We also add an operation to the

basic machine model to print the stack statistics, by initializing the_ops in make_new_machine

to

list(list("initialize_stack",

() => stack("initialize")),

list("print_stack_statistics",

() => stack("print_statistics")));

562 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.2.4

Here is the new version of make_stack:

Ifunction make_stack() {

let s = null;

let number_pushes = 0;

let max_depth = 0;

let current_depth = 0;

function push(x) {

s = pair(x, s);

number_pushes = number_pushes + 1;

current_depth = current_depth + 1;

max_depth = math_max(current_depth, math_max);

}

function pop() {

if (is_null(s)) {

error("Empty stack in pop");

} else {

const top = head(s);

s = tail(s);

current_depth = current_depth - 1;

return top;

}

}

function initialize() {

s = null;

number_pushes = 0;

max_depth = 0;

current_depth = 0;

return "done";

}

function print_statistics() {

display(stringify(

list("\n", "total-pushes = ", number_pushes,

"\n", "maximum-depth = ", max_depth)));

}

function dispatch(message) {

return message === "push"

? push

: message === "pop"

? pop()

: message === "initialize"

? initialize()

: message === "print_statistics"

? print_statistics()

: error(message, "Unknown request: STACK");

}

563 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABAWwIYGsCmB9AzlVCdACgEpEBvRAKETsQBtMpFdEBeRMEBhgblr0mLbsgBGmAE7YADiFwALTG04AGAfUbMUqAB7YAJphlQFHROsF1hiCCEmTMYKIeOnzlzaEiwEiOYrEuuQUVpqs5jKoMJJBADSspBrhdKIS0gFKKlwg4lKy8lmIANSIAIzJKXYOTi5GJmac1Y7Org0l5ZXhaPr17pxoptg9xM21baYJgwrDeklhAL5h3tDwSDJwMmSUYZowwIjEMLjY3LzEuKQhuymIUpJwsQBEAKLIJgCerAREiDDrmye8xudAWdwYuEwO1u4QgCHwiCgm3MSlQBgu8xhmmyBBgDAxXRhY1afUatnsLTqbjMAFpOiDwo4oPYkEiZIT6EtNFz6CtfEh-jBYKgGDAAF6YbahGHZM78BlpfKZZQeDl0HoTMmeW7EqntNQCBlMlmIJ4GBCYJ5dHl0PlrfySf4ufCoWD4GAQXBShkGY4yBioD4XKCOsAAc32QYZWMYxygxCeAB0wE8Ek8kQQGDTldlUzk8hlCso4tGY5okym0z0YMhcjTSeY8xrSVdMZzluBVn5fbgolAIApiMhlLhUGHMNcYcbJEhh7hR+OOOxOE9Mk9S3QAPz+QobxAALhQI7HUOXK42MnXZcQ24vZD3h7nC9Py9NguFoolV7L2-fMBF4qSqQD5HvOJ5LueobOgQbqwJ634xreUF4DBcYel6wHXoe9yPEOx7jmmACqYDoGAcAAO5II4ACOIDKFAh4AMoACoAIIAMIANJAtaYTTkgPZ9gOAgLEAA

Computing with Register Machines 5.2.4

return dispatch;

}

Exercises 5.15 through 5.19 describe other useful monitoring and debugging features that

can be added to the register-machine simulator.

Exercise 5.14

Measure the number of pushes and the maximum stack depth required to compute n! for

various small values of n using the factorial machine shown in Figure 5.11. From your data

determine formulas in terms of n for the total number of push operations and the maximum

stack depth used in computing n! for any n > 1. Note that each of these is a linear function

of n and is thus determined by two constants. In order to get the statistics printed, you will

have to augment the factorial machine with instructions to initialize the stack and print the

statistics. You may want to also modify the machine so that it repeatedly reads a value for n,

computes the factorial, and prints the result (as we did for the GCD machine in �gure 5.4), so

that you will not have to repeatedly invoke get_register_contents, set_register_contents,

and start.

Exercise 5.15

Add instruction counting to the register machine simulation. That is, have the machine model

keep track of the number of instructions executed. Extend the machine model’s interface to

accept a new message that prints the value of the instruction count and resets the count to

zero.

Exercise 5.16

Augment the simulator to provide for instruction tracing. That is, before each instruction is

executed, the simulator should print the text of the instruction. Make the machine model accept

trace_on and trace_off messages to turn tracing on and o�.

Exercise 5.17

Extend the instruction tracing of exercise 5.16 so that before printing an instruction, the

simulator prints any labels that immediately precede that instruction in the controller sequence.

Be careful to do this in a way that does not interfere with instruction counting (exercise 5.15).

You will have to make the simulator retain the necessary label information.

564 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.2.0

Exercise 5.18

Modify the make_register function of section 5.2.1 so that registers can be traced. Registers

should accept messages that turn tracing on and o�. When a register is traced, assigning a

value to the register should print the name of the register, the old contents of the register, and

the new contents being assigned. Extend the interface to the machine model to permit you to

turn tracing on and o� for designated machine registers.

Exercise 5.19

Alyssa P. Hacker wants a breakpoint feature in the simulator to help her debug her machine

designs. You have been hired to install this feature for her. She wants to be able to specify a

place in the controller sequence where the simulator will stop and allow her to examine the

state of the machine. You are to implement a function

set_breakpoint(machine, label, n)

that sets a breakpoint just before the nth instruction after the given label. For example,

set_breakpoint(gcd_machine, "test_b", 4)

installs a breakpoint in gcd_machine just before the assignment to register "a". When the simu-

lator reaches the breakpoint it should print the label and the o�set of the breakpoint and stop ex-

ecuting instructions. Alyssa can then use get_register_contents and set_register_contents

to manipulate the state of the simulated machine. She should then be able to continue execution

by saying

proceed_machine(machine)

She should also be able to remove a speci�c breakpoint by means of

cancel_breakpoint(machine, label, n)

or to remove all breakpoints by means of

cancel_all_breakpoints(machine)

565 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.3.1

5.3 Storage Allocation and Garbage Collection

In section 5.4, we will show how to implement a JavaScript evaluator as a register machine. In

order to simplify the discussion, we will assume that our register machines can be equipped

with a list-structured memory, in which the basic operations for manipulating list-structured

data are primitive. Postulating the existence of such a memory is a useful abstraction when

one is focusing on the mechanisms of control in a JavaScript interpreter, but this does not

re�ect a realistic view of the actual primitive data operations of contemporary computers. To

obtain a more complete picture of how systems can support list-structured memory e�ciently,

we must investigate how list structure can be represented in a way that is compatible with

conventional computer memories.

There are two considerations in implementing list structure. The �rst is purely an issue of

representation: how to represent the “box-and-pointer” structure of JavaScript pairs, using

only the storage and addressing capabilities of typical computer memories. The second issue

concerns the management of memory as a computation proceeds. The operation of a JavaScript

system depends crucially on the ability to continually create new data objects. These include

objects that are explicitly created by the JavaScript functions being interpreted as well as

structures created by the interpreter itself, such as environments and argument lists. Although

the constant creation of new data objects would pose no problem on a computer with an

in�nite amount of rapidly addressable memory, computer memories are available only in

�nite sizes (more’s the pity). JavaScript thus provide an automatic storage allocation facility

to support the illusion of an in�nite memory. When a data object is no longer needed, the

memory allocated to it is automatically recycled and used to construct new data objects. There

are various techniques for providing such automatic storage allocation. The method we shall

discuss in this section is called garbage collection.

5.3.1 Memory as Vectors

A conventional computer memory can be thought of as an array of cubbyholes, each of which

can contain a piece of information. Each cubbyhole has a unique name, called its address or

location. Typical memory systems provide two primitive operations: one that fetches the data

stored in a speci�ed location and one that assigns new data to a speci�ed location. Memory

addresses can be incremented to support sequential access to some set of the cubbyholes.

More generally, many important data operations require that memory addresses be treated

as data, which can be stored in memory locations and manipulated in machine registers. The

representation of list structure is one application of such address arithmetic.

To model computer memory, we use a new kind of data structure called a vector. Abstractly,

566 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.3.1

a vector is a compound data object whose individual elements can be accessed by means of

an integer index in an amount of time that is independent of the index.
5

In order to describe

memory operations, we use two primitive JavaScript functions for manipulating vectors:

– vector_ref(vector, n) returns the nth element of the vector.

– vector_set(vector, n, value) sets the nth element of the vector to the designated value.

For example, if v is a vector, then vector_ref(v, 5) gets the �fth entry in the vector v and

vector_set(v, 5, 7) changes the value of the �fth entry of the vector v to 7.
6

For computer

memory, this access can be implemented through the use of address arithmetic to combine a

base address that speci�es the beginning location of a vector in memory with an index that

speci�es the o�set of a particular element of the vector.

Representing list-structured data

We can use vectors to implement the basic pair structures required for a list-structured memory.

Let us imagine that computer memory is divided into two vectors: the_heads and the_tails.

We will represent list structure as follows: A pointer to a pair is an index into the two vectors.

The head of the pair is the entry in the_heads with the designated index, and the tail of the

pair is the entry in the_tails with the designated index. We also need a representation for

objects other than pairs (such as numbers and strings) and a way to distinguish one kind of

data from another. There are many methods of accomplishing this, but they all reduce to using

typed pointers, that is, to extending the notion of “pointer” to include information on data

type.
7

The data type enables the system to distinguish a pointer to a pair (which consists of

the “pair” data type and an index into the memory vectors) from pointers to other kinds of

data (which consist of some other data type and whatever is being used to represent data of

that type). Two data objects are considered to be the same (===) if their pointers are identical.
8

Figure 5.14 illustrates the use of this method to represent the list list(list(1, 2), 3, 4),

whose box-and-pointer diagram is also shown. We use letter pre�xes to denote the data-type

5
We could represent memory as lists of items. However, the access time would then not be independent of

the index, since accessing the nth element of a list requires n − 1 tail operations.

6
For completeness, we should specify a make_vector operation that constructs vectors. However, in the present

application we will use vectors only to model �xed divisions of the computer memory.

7
This is precisely the same “tagged data” idea we introduced in chapter 2 for dealing with generic operations.

Here, however, the data types are included at the primitive machine level rather than constructed through the

use of lists.

8
Type information may be encoded in a variety of ways, depending on the details of the machine on which

the JavaScript system is to be implemented. The execution e�ciency of JavaScript programs will be strongly

dependent on how cleverly this choice is made, but it is di�cult to formulate general design rules for good choices.

The most straightforward way to implement typed pointers is to allocate a �xed set of bits in each pointer to be

a type �eld that encodes the data type. Important questions to be addressed in designing such a representation

include the following: How many type bits are required? How large must the vector indices be? How e�ciently

can the primitive machine instructions be used to manipulate the type �elds of pointers? Machines that include

special hardware for the e�cient handling of type �elds are said to have tagged architectures.

567 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.3.1

information. Thus, a pointer to the pair with index 5 is denoted p5, the empty list is denoted by

the pointer e0, and a pointer to the number 4 is denoted n4. In the box-and-pointer diagram,

we have indicated at the lower left of each pair the vector index that speci�es where the head

and tail of the pair are stored. The blank locations in the_heads and the_tails may contain

parts of other list structures (not of interest here).

0 1 2 3 4 5 6 7 8 ...Index

the_heads

the_tails

p5 n3 n4 n1 n2 ...

p2 p4 e0 p7 e0 ...

list(list(1, 2), 3, 4)

1 2 4

5 7

4

1 2

3

Figure 5.14: Box-and-pointer and memory-vector representations of the list

list(list(1, 2), 3, 4).

A pointer to a number, such as n4, might consist of a type indicating numeric data together

with the actual representation of the number 4.
9

To deal with numbers that are too large to be

represented in the �xed amount of space allocated for a single pointer, we could use a distinct

bignum data type, for which the pointer designates a list in which the parts of the number are

stored.
10

A string might be represented as a typed pointer that designates a sequence of the characters

that form the string’s printed representation. This sequence is constructed by the JavaScript

reader when the character string is initially encountered in input. Since we want two instances

9
This decision on the representation of numbers determines whether ===, which tests equality of pointers,

can be used to test for equality of numbers. If the pointer contains the number itself, then equal numbers will

have the same pointer. But if the pointer contains the index of a location where the number is stored, equal

numbers will be guaranteed to have equal pointers only if we are careful never to store the same number in more

than one location.

10
This is just like writing a number as a sequence of digits, except that each “digit” is a number between 0 and

the largest number that can be stored in a single pointer.

568 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.3.1

of a string to be recognized as the “same” string by === and we want === to be a simple test for

equality of pointers, we must ensure that if the reader sees the same character string twice, it

will use the same pointer (to the same sequence of characters) to represent both occurrences.

To accomplish this, the reader maintains a table, traditionally called the obarray, of all the

string it has ever encountered. When the reader encounters a character string and is about to

construct a string, it checks the obarray to see if it has ever before seen the same character

string. If it has not, it uses the characters to construct a new string (a typed pointer to a new

character sequence) and enters this pointer in the obarray. If the reader has seen the string

before, it returns the string pointer stored in the obarray. This process of replacing character

strings by unique pointers is called interning strings.

Implementing the primitive list operations

Given the above representation scheme, we can replace each “primitive” list operation of a

register machine with one or more primitive vector operations. We will use two registers,

the_heads and the_tails, to identify the memory vectors, and will assume that vector_ref

and vector_set are available as primitive operations. We also assume that numeric operations

on pointers (such as incrementing a pointer, using a pair pointer to index a vector, or adding

two numbers) use only the index portion of the typed pointer.

For example, we can make a register machine support the instructions

assign(reg
1
, list(op("head"), reg

2
))

assign(reg
1
, list(op("tail"), reg

2
))

if we implement these, respectively, as

assign(reg
1
, list(op("vector_ref"), reg("the_heads"), reg

2
))

assign(reg
1
, list(op("vector_ref"), reg("the_tails"), reg

2
))

The instructions

perform(list(op("set_head"), reg(reg
1
), reg(reg

2
)))

perform(list(op("set_tail"), reg(reg
1
), reg(reg

2
)))

are implemented as

Iperform(op("vector_set"), list(reg("the_heads"), reg(reg
1
), reg(reg

2
)))

perform(op("vector_set"), list((reg("the_tails"), reg(reg
1
), reg(reg

2
)))

The operation pair is performed by allocating an unused index and storing the arguments

to pair in the_heads and the_tails at that indexed vector position. We presume that there

is a special register, free, that always holds a pair pointer containing the next available index,

and that we can increment the index part of that pointer to �nd the next free location.
11

For

11
There are other ways of �nding free storage. For example, we could link together all the unused pairs into a

569 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=A4UwTgZg9mC2AUVjwEQDcQGMAuMD6AziNigJQA0ABADYCWB28YIA5qtgBYh5cCGAJgTJVmbACQAdbCAAe2WtgDeogL54AjGIqVR8SdLkLlrNQCYtpUgChQkGAiSoMOfERLa6DeE1bsuebF5aaiFtXX1ZeSVVDS0RXwjDaJM8c0tSIA

Computing with Register Machines 5.3.1

example, the instruction

assign(reg
1
, list(op("pair"), reg(reg

2
), reg(reg

3
)))

is implemented as the following sequence of vector operations:
12

perform(op("vector_set"), list(reg("the_heads"), reg("free"), reg(reg
2
))),

perform(op("vector_set"), list(reg("the_tails"), reg("free"), reg(reg
3
))),

assign(reg
1
, reg("free")),

assign("free", list(op("+"), reg("free"), constant(1)))

The === operation

list(op("==="), reg(reg
1
), reg(reg

2
))

simply tests the equality of all �elds in the registers, and predicates such as is_pair, is_null,

is_string, and is_number need only check the type �eld.

Implementing stacks

Although our register machines use stacks, we need do nothing special here, since stacks can

be modeled in terms of lists. The stack can be a list of the saved values, pointed to by a special

register the_stack. Thus, save(reg) can be implemented as

assign("the_stack", list(op("pair"), reg(reg), reg("the_stack")))

Similarly, restore(reg) can be implemented as

assign(reg, list(op("head"), reg("the_stack")))

assign("the_stack", list(op("tail"), reg("the_stack")))

and perform(op("initialize_stack")) can be implemented as

assign("the_stack", constant(null))

These operations can be further expanded in terms of the vector operations given above. In

conventional computer architectures, however, it is usually advantageous to allocate the stack

as a separate vector. Then pushing and popping the stack can be accomplished by incrementing

or decrementing an index into that vector.

Exercise 5.20

Draw the box-and-pointer representation and the memory-vector representation (as in �g-

ure 5.14) of the list structure produced by

free list. Our free locations are consecutive (and hence can be accessed by incrementing a pointer) because we

are using a compacting garbage collector, as we will see in section 5.3.2.

12
This is essentially the implementation of pair in terms of set_head and set_tail, as described in section 3.3.1.

The operation get_new_pair used in that implementation is realized here by the free pointer.

570 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.3.2

const x = pair(1, 2);

const y = list(x, x);

with the free pointer initially p1. What is the �nal value of free ? What pointers represent

the values of x and y?

Exercise 5.21

Implement register machines for the following functions. Assume that the list-structure mem-

ory operations are available as machine primitives.

a. Recursive count_leaves:

Ifunction count_leaves(tree) {

return is_null(tree)

? 0

: ! is_pair(tree)

? 1

: count_leaves(head(tree)) +

count_leaves(tail(tree));

}

b. Recursive count_leaves with explicit counter:

Ifunction count_leaves(tree) {

function count_iter(tree, n) {

return is_null(tree)

? n

: ! is_pair(tree)

? n + 1

: count_iter(tail(tree),

count_iter(head(tree), n));

}

return count_iter(tree, 0);

}

571 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBO4oH0A2BTAhgN2wGcAKKAJ22wEpEBvAKEWcUqhHKRiPTBE0xlKNJizEB+RAAZRY5gC5EAQkTd0AB1wxyQqtQYBIZpICMsuQuSowGHAWIkAFngAmumrQDUicxeYo0LDxCUigtQQo9agBuBgBfBgYAmyD7Uk1tEkxuKBITABpEACZqQuyiXIBmQoAWanrooA
http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABBO4oH0A2BTAhgN2wGcAKKAJ22wEpEBvAKEWcVElgWVTAxim3JlK2ADSIwtRi2mJKUEOSQwi6MCEyYhVakxl6A-ON17pALkQBCRMvQAHXDEEVtiYyemGkAakQBGBgCQeuYoaOh8AmQOms40Im7uiXqhPOH8ggAWeAAmWnHi1NQA3G4Avm5yCkgpvOl5YgAMxQzlDDVYeISk9o4kmMpQJL5iAEzUYv1EgwDMYgAshcVAA

Computing with Register Machines 5.3.2

Exercise 5.22

Exercise 3.12 of section 3.3.1 presented an append function that appends two lists to form a new

list and an append_mutator function that splices two lists together. Design a register machine

to implement each of these functions. Assume that the list-structure memory operations are

available as primitive operations.

5.3.2 Maintaining the Illusion of Infinite Memory

The representation method outlined in section 5.3.1 solves the problem of implementing list

structure, provided that we have an in�nite amount of memory. With a real computer we

will eventually run out of free space in which to construct new pairs.
13

However, most of the

pairs generated in a typical computation are used only to hold intermediate results. After

these results are accessed, the pairs are no longer needed—they are garbage. For instance, the

computation

accumulate((x, y) => x + y, 0, filter(is_odd, enumerate_interval(0, n)))

constructs two lists: the enumeration and the result of �ltering the enumeration. When the

accumulation is complete, these lists are no longer needed, and the allocated memory can

be reclaimed. If we can arrange to collect all the garbage periodically, and if this turns out

to recycle memory at about the same rate at which we construct new pairs, we will have

preserved the illusion that there is an in�nite amount of memory.

In order to recycle pairs, we must have a way to determine which allocated pairs are not

needed (in the sense that their contents can no longer in�uence the future of the computation).

The method we shall examine for accomplishing this is known as garbage collection. Garbage

collection is based on the observation that, at any moment in a JavaScript interpretation, the

only objects that can a�ect the future of the computation are those that can be reached by

some succession of head and tail operations starting from the pointers that are currently in

the machine registers.
14

Any memory cell that is not so accessible may be recycled.

There are many ways to perform garbage collection. The method we shall examine here is

called stop-and-copy. The basic idea is to divide memory into two halves: “working memory”

and “free memory.” When pair constructs pairs, it allocates these in working memory. When

13
This may not be true eventually, because memories may get large enough so that it would be impossible to

run out of free memory in the lifetime of the computer. For example, there are about 3 × 10
13

, microseconds in a

year, so if we were to pair once per microsecond we would need about 10
15

cells of memory to build a machine

that could operate for 30 years without running out of memory. That much memory seems absurdly large by

today’s standards, but it is not physically impossible. On the other hand, processors are getting faster and a future

computer may have large numbers of processors operating in parallel on a single memory, so it may be possible

to use up memory much faster than we have postulated.

14
We assume here that the stack is represented as a list as described in section 5.3.1, so that items on the stack

are accessible via the pointer in the stack register.

572 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.3.2

working memory is full, we perform garbage collection by locating all the useful pairs in

working memory and copying these into consecutive locations in free memory. (The useful

pairs are located by tracing all the head and tail pointers, starting with the machine registers.)

Since we do not copy the garbage, there will presumably be additional free memory that we

can use to allocate new pairs. In addition, nothing in the working memory is needed, since all

the useful pairs in it have been copied. Thus, if we interchange the roles of working memory

and free memory, we can continue processing; new pairs will be allocated in the new working

memory (which was the old free memory). When this is full, we can copy the useful pairs into

the new free memory (which was the old working memory).
15

Implementation of a stop-and-copy garbage collector

We now use our register-machine language to describe the stop-and-copy algorithm in more

detail. We will assume that there is a register called root that contains a pointer to a structure

that eventually points at all accessible data. This can be arranged by storing the contents of

all the machine registers in a pre-allocated list pointed at by root just before starting garbage

collection.
16

We also assume that, in addition to the current working memory, there is free

memory available into which we can copy the useful data. The current working memory

consists of vectors whose base addresses are in registers called the_heads and the_tails, and

the free memory is in registers called new_heads and new_tails.

Garbage collection is triggered when we exhaust the free cells in the current working mem-

ory, that is, when a pair operation attempts to increment the free pointer beyond the end of

the memory vector. When the garbage-collection process is complete, the root pointer will

point into the new memory, all objects accessible from the root will have been moved to the

new memory, and the free pointer will indicate the next place in the new memory where a

15
This idea was invented and �rst implemented by Minsky, as part of the implementation of Lisp for the PDP-1

at the MIT Research Laboratory of Electronics. It was further developed by Fenichel and Yochelson (1969) for

use in the Lisp implementation for the Multics time-sharing system. Later, Baker (1978) developed a “real-time”

version of the method, which does not require the computation to stop during garbage collection. Baker’s idea

was extended by Hewitt, Lieberman, and Moon (see Lieberman and Hewitt 1983) to take advantage of the fact

that some structure is more volatile and other structure is more permanent.

An alternative commonly used garbage-collection technique is the mark-sweep method. This consists of tracing

all the structure accessible from the machine registers and marking each pair we reach. We then scan all of memory,

and any location that is unmarked is “swept up” as garbage and made available for reuse. A full discussion of the

mark-sweep method can be found in Allen 1978.

The Minsky-Fenichel-Yochelson algorithm is the dominant algorithm in use for large-memory systems because

it examines only the useful part of memory. This is in contrast to mark-sweep, in which the sweep phase must

check all of memory. A second advantage of stop-and-copy is that it is a compacting garbage collector. That

is, at the end of the garbage-collection phase the useful data will have been moved to consecutive memory

locations, with all garbage pairs compressed out. This can be an extremely important performance consideration

in machines with virtual memory, in which accesses to widely separated memory addresses may require extra

paging operations.

16
This list of registers does not include the registers used by the storage-allocation system—root, the_heads,

the_tails, and the other registers that will be introduced in this section.

573 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.3.2

new pair can be allocated. In addition, the roles of working memory and new memory will have

been interchanged—new pairs will be constructed in the new memory, beginning at the place

indicated by free, and the (previous) working memory will be available as the new memory

for the next garbage collection. Figure 5.15 shows the arrangement of memory just before and

just after garbage collection.

free

free

Just before garbage collection

mixture of useful data and garbage

free memory

Just aer garbage collection

discarded memory

useful data free area

working

memory

free

memory

new

free

memory

new

working

memory

the_heads

the_tails

the_heads

the_tails

new_heads

new_tails

new_heads

new_tails

Figure 5.15: Recon�guration of memory by the garbage-collection process.

The state of the garbage-collection process is controlled by maintaining two pointers: free

and scan. These are initialized to point to the beginning of the new memory. The algorithm

begins by relocating the pair pointed at by root to the beginning of the new memory. The

pair is copied, the root pointer is adjusted to point to the new location, and the free pointer

is incremented. In addition, the old location of the pair is marked to show that its contents

have been moved. This marking is done as follows: In the head position, we place a special

tag that signals that this is an already-moved object. (Such an object is traditionally called a

broken heart.)17
In the tail position we place a forwarding address that points at the location

to which the object has been moved.

After relocating the root, the garbage collector enters its basic cycle. At each step in the

algorithm, the scan pointer (initially pointing at the relocated root) points at a pair that has

17
The term broken heart was coined by David Cressey, who wrote a garbage collector for MDL, a dialect of

Lisp developed at MIT during the early 1970s.

574 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.3.2

been moved to the new memory but whose head and tail pointers still refer to objects in

the old memory. These objects are each relocated, and the scan pointer is incremented. To

relocate an object (for example, the object indicated by the head pointer of the pair we are

scanning) we check to see if the object has already been moved (as indicated by the presence

of a broken-heart tag in the head position of the object). If the object has not already been

moved, we copy it to the place indicated by free, update free, set up a broken heart at the

object’s old location, and update the pointer to the object (in this example, the head pointer of

the pair we are scanning) to point to the new location. If the object has already been moved,

its forwarding address (found in the tail position of the broken heart) is substituted for the

pointer in the pair being scanned. Eventually, all accessible objects will have been moved and

scanned, at which point the scan pointer will overtake the free pointer and the process will

terminate.

We can specify the stop-and-copy algorithm as a sequence of instructions for a register ma-

chine. The basic step of relocating an object is accomplished by a subroutine called relocate_old_result_in_new.

This subroutine gets its argument, a pointer to the object to be relocated, from a register named

old. It relocates the designated object (incrementing free in the process), puts a pointer to the

relocated object into a register called new, and returns by branching to the entry point stored

in the register relocate_continue. To begin garbage collection, we invoke this subroutine to

relocate the root pointer, after initializing free and scan. When the relocation of root has

been accomplished, we install the new pointer as the new root and enter the main loop of the

garbage collector.

"begin_garbage_collection",

assign("free", constant(0)),

assign("scan", constant(0)),

assign("old", reg("root")),

assign("relocate_continue", label("reassign_root")),

go_to(label("relocate_old_result_in_new")),

"reassign_root",

assign("root", reg("new")),

go_to(label("gc_loop")),

In the main loop of the garbage collector we must determine whether there are any more

objects to be scanned. We do this by testing whether the scan pointer is coincident with

the free pointer. If the pointers are equal, then all accessible objects have been relocated,

and we branch to gc_flip, which cleans things up so that we can continue the interrupted

computation. If there are still pairs to be scanned, we call the relocate subroutine to relocate

the head of the next pair (by placing the head pointer in old). The relocate_continue register

is set up so that the subroutine will return to update the head pointer.

"gc_loop",

test(list(op("==="), reg("scan"), reg("free"))),

575 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.3.2

branch(label("gc_flip")),

assign("old", list(op("vector_ref"), reg("new_heads"), reg("scan"))),

assign("relocate_continue", label("update_head")),

go_to(label("relocate_old_result_in_new")),

At update_head, we modify the head pointer of the pair being scanned, then proceed to

relocate the tail of the pair. We return to update_tail when that relocation has been ac-

complished. After relocating and updating the tail, we are �nished scanning that pair, so we

continue with the main loop.

"update_head",

perform(list(op("vector_set"),

reg("new_heads"), reg("scan"), reg("new"))),

assign("old", list(op("vector_ref"),

reg("new_tails"), reg("scan"))),

assign("relocate_continue", label("update_tail")),

go_to(label("relocate_old_result_in_new")),

"update_tail",

perform(list(op("vector_set"),

reg("new_tails"), reg("scan"), reg("new"))),

assign("scan", list(op("+"), reg("scan"), constant(1))),

go_to(label("gc_loop")),

The subroutine relocate_old_result_in_new relocates objects as follows: If the object to

be relocated (pointed at by old) is not a pair, then we return the same pointer to the object

unchanged (in new). (For example, we may be scanning a pair whose head is the number 4. If

we represent the head by n4, as described in section 5.3.1, then we want the “relocated” head

pointer to still be n4.) Otherwise, we must perform the relocation. If the head position of the

pair to be relocated contains a broken-heart tag, then the pair has in fact already been moved, so

we retrieve the forwarding address (from the tail position of the broken heart) and return this

in new. If the pointer in old points at a yet-unmoved pair, then we move the pair to the �rst free

cell in new memory (pointed at by free) and set up the broken heart by storing a broken-heart

tag and forwarding address at the old location. The subroutine relocate_old_result_in_new

uses a register oldht to hold the head or the tail of the object pointed at by old.
18

"relocate_old_result_in_new",

test(list(op("is_pointer_to_pair"), reg("old"))),

branch(label("pair")),

assign("new", reg("old")),

go_to(reg("relocate_continue")),

18
The garbage collector uses the low-level predicate is_pointer_to_pair instead of the list-structure is_pair

operation because in a real system there might be various things that are treated as pairs for garbage-collection pur-

poses. For example, in a Scheme system that conforms to the IEEE standard a function object may be implemented

as a special kind of “pair” that doesn’t satisfy the is_pair predicate. For simulation purposes,is_pointer_to_pair
can be implemented as is_pair.

576 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.3.0

"pair",

assign("oldht", list(op("vector_ref"),

reg("the_heads"), reg("old"))),

test(list(op("is_broken_heart"), reg("oldht"))),

branch(label("already_moved")),

assign("new", reg("free")), // new location for pair

// Update "free" pointer.

assign("free", list((op("+"), reg("free"), constant(1))),

// Copy the head and tail to new memory

perform(list(op("vector_set"),

reg("new_heads"), reg("new"), reg("oldht"))),

assign("oldht", list(op("vector_ref"),

reg("the_tails"), reg("old"))),

perform(list(op("vector_set"),

reg("new_tails"), reg("new"), reg("oldht"))),

// Construct the broken heart

perform(list(op("vector_set"),

reg("the_heads"), reg("old"),

constant("broken_heart"))),

perform(list(op("vector_set"),

reg("the_tails"), reg("old"), reg("new"))),

go_to(reg("relocate_continue")),

"already_moved",

assign("new", list(op("vector_ref"),

reg("the_tails"), reg("old"))),

go_to(reg("relocate_continue")),

At the very end of the garbage collection process, we interchange the role of old and new

memories by interchanging pointers: interchanging the_headswith new_heads, and the_tails

with new_tails. We will then be ready to perform another garbage collection the next time

memory runs out.

I"gc_flip",

assign("temp", reg("the_tails")),

assign("the_tails", reg("new_tails")),

assign("new_tails", reg("temp")),

assign("temp", reg("the_heads")),

assign("the_heads", reg("new_heads")),

assign("new_heads", reg("temp"))

577 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABDAzgfSgQwObYKYAmaANqlABQpQC2UANIlABZ4Y4CUiA3gFCL+IATnighBSVGgAOmGIMo0onAGTLELTAQW1OAXn2MWbbAG4eAXx6hIsBImqYA1q2HYyeeWEzU8nXgMRiEUQIBCg8MCgURF1EACIAKnBMFBQYbDBCBLizAOtoeCQCVBkoCCZyH1ScX24+AIFhUXF7PGr8GIM4-Cg4+oaGgH4QsIio-oGBAC5W9rxO2LiUET7JyeGAN0xiEHndAD5uEcix6NitnbwTREs1gZmPQTh5KpQahgm7u7iAVTBHMBwADuSGEAEddlRkEgHM40K53IIpnF2LkBLdGiIxEUSpgykwzJZ8rYkFI4FIFJgII4-BMmtjEFQqY5yHEyVIUYSrOACnYpCAUBUmdSGBddrSAvSWsKWWyBUwUeQxb4ucTCogUig4BByM4AJ4MYShQQEFASzHNCToMAgYjEchG56m9ifAbDcAEPDAGCZAiuhoPCHbXV4A3qPCacgaLSOk1m9gur4CYbRh14Y3O-33DWpbUhsNYGD22PO1EWHgAegriAAKgBNAAKAFEACKIBsAeQAkgA5GtNgBKAGUeDxQmAoT2fgBZABCg7Q9ebMXiNuoACMPDkxwgobOOx2ADKLxtNldxddwODEbfjqFDmsD3sAcRPy8WVEEPuwt93UHbj5vmeixSFAgi-hO-4NgOHavkuwHxFITw-mYd7-lOh7HvB542naEFQj8PYtk2ABivatkB54el6PqEPh6EdmgABqACCh4-E2aB1k2NaUYsgJoMqaB6isqF-ogs4wQA0k2PZoAAEk2LEDrx2GLOuTzOGAaAaIIvRmNyNjqrCrCgYI0hgeQMAEAAHua-BSqSsjyA2gHwQw1l2Vyhm8jCTisLhxAWfI9lCFiLQyHI5AYVhp4MIFZaWD5JL2P5aACUJIlQMF5ChY5iCRfIPaMax7GcdxqlxYgCXeWqdgmdIyE5Z5eXhU5UXQbBQEebZiWjnVflwhpcBaTpEZ6c1vV1JKbUFc55CSR2MlyYpymVc2PVeeWyXqj0aB4EE1AYHqUh4OQB14NQrWWsg1ogBuHjnYdnDDFOc4LthUxZpIl7XhGYBPZdL0SQesXLl9aySJ+36A1diDDA+T49nBp6IBDkySIFsPAzFlHowMkjUd6vrY-DiCEcRZE9hRn1Zo8zywwwcRdmAFzWYwJ2EIgF3UJy20DYgQKCJgUg5Tz10MoV5B7Tzx2ndjDDi7VPIpeAQsizlZkSy0hb2lrytGXYkhmeQWvTRaDLG-NZuqFmACEVtRamWsqMo9uO-Iuum2BCaILbaxRhGWhm-osRvfOA6UQAPlHWbOz7Cwg0e0ex2s8eCHoBiIy+Kdx0H3sZ4nrmR9hMd55GIcGLjpep5M6eZ7EFOkeRLa52n+eV7EnUo8uZftxXCeh4gxXMWxHFcTxbd1x3g8GIty0KUpKlAX1O1G3dD3mSbZv+BbLTG5ZNtqPXifhx9p4G75t1oL9QXbwnu8ObNB-yEf4YD4XQ-7sn8GXylUNgW-JrB+dJn7oHvoXVQ79g6z1iNnZGQE-7qhfsAwuj8wo3RfgXV20DsFFzchffmKtkF3TtKg7WVpyF+2PjPT+VcfiYUQUQw2lCia0SIBAih19OHUNwZ3cmRFm7U1br-ZhV9jZNR4eg-KWC34nyHt3JhSUBaYzgIJbYuxhIiCodIsBVCoHyKriVMe5VJ6iOUcQ9eN9NIRDGpgCaUjQGYPAYfBOBjaENwktJWSi81pKNHFWdsX5qAwFgBseYA1oiYDAAQY4TJIgoFHGhAqwTQkwHCWgAa6VvBtDQPYtJbQVykCoOQf0Us4jFBQFIYgmA9RxAYAARnYHQMp804j03Ao05prSopxAANT1MQAAJm6ZMcpABaQZIyWljLadkBg0yenyDiBWKZoyBjlIAKRrJmRstpocdlLNZHbfQhzZm9IADxnL2Zc3Q1yGjlP2PcgIjy7kLPWQ8tpdtBlNN2Z83pMdnkCHKaoNZPAyw7kgikmAISwmsDQtEqIRSyClMmMUigcQ2G+kGViwgHyAjotZA4ZgaAGxdjiPwBgxKmCkq7ImBoZZJhr0GqZVJcLMmWIBjC6pXDCVsjZekvAgzuXEFXgLZYohRYRA2HIBAPhIi5XNvwZJSEYVpIyVkrwVQYhZgcBSaMDBVWwsFRylh2Sqh5K-LANojKBAqoFRqzl6jLhnF1SLcgWq9iHClg1I16rWADQ9Tk5piBgDbGWPitYfr2WapyWaNEyrxLRpNQiyI5rCm6DdfqoOhqHXwr-Ii+NEx7VqvZam7KypXVrD1eQYAMRvXzVTF7YACYGBhuIBGv5dxk0ZPLUWmaN0pZSyzJMEWp0Ymmzzaa3y6aUAfCTEmHt+bIKItnZGr4Y6IjBynVkyt86F3dqneW51kJW0joGDVMRKVgA1KgOEbS6KMBqPCdAZ4KByDMFYNGOdhhWC6x-R2+g56D1fF9WBTJYAGBMj0kAn0no7JKsCMEYAwg9iMiwDBsA2A0BwbwDZBNobOXhmIKdeQgHQoBBgHW8gDtwHzXIxRyY+V1aixNuRgjARzDcw7fMdBaxkm4ZsiuFDeArjAdDah4Tkm+mIAaRxyYySeYrlTOx8Tn67GmgANqCYALrKYOqR7G8mBjqf-dpmJeG9OxBYCRx6XsGPGYaPlMD5lgBcos1tNYGJ+DeeI4Z1TA6GQibE0lQJ04WIAGF5LkWZYgPa4571RDTG4KgHguEIlS8snofMLEsMZNohLpxkuIlFBo2ouiboZfCMsiViplRiqIw1GUir0FBH-DKFcgUDJ5CI-yQU5AENcEQFmDrsQpY2Sg1gakqJhtrHyhUhAQqCNJR63l9kLXvrUcxrae0MpfZ8cmB01kTZqCgT1Oh5kiBxnjIKuSPmWYuMHWWIh-j4koDkn05GPbjmAijcYLIXbU2aQ-b3kgd7UhHO+ZWwIFRYA0nbBgAALzOox-gf2utZnmwQRb25OOjlW1fSppRyiVDaG8fAqOMEMleDUROcpBSrCTMMPrTBxMzBpx0IebI7vieZ+SXKbPZjk72F0H08PSDI8Z18YYYvYAI+RwLhd7Oye065zKKXdxhgykF0djneAmZ-ABMCUEeAIRtH-Ndi71I+Z46cQyIneJyhIPqmlTIQI0AOHKLRDbARklDi7AALQQg1Krj04j+6Dzbu1SaIArhD3gFL1XWRSAgFHxNUKb04Dj2lUPyzM8-ltenqEf2mtA9ygR5JMp4QRlSOkbSSFtTZ7hLn1kVfhCajr41bUae4n-mC03lwCfESsmCz35JTw4D-liPHxPYeJ+9EL73oQV5srsltHiVljfp856H5l1k8-pDknX+ELvqfF-j5X9XqgzxN+x+3833fSe4gH+ENf4Qp+x-iWwBAavs-BBnECBRSzD5VHzbVQ3XX4D5RQAgGiUGRn2HyWBgLABRAgMAJKTiGvAIDgJ3z-1ZEwJQK7QJRRTiDd2wIf1wJILwCBAIOAOIOEGIG1A3zQASx9F2DIMHwoPoMYJPxYJtCFTPTWD5XCFO3YN-wQOEI5AELRWIMwKYF6CpRwIQNkIX3pX4HP3EjwykAHzEL33aRskkIrw0NZm0Jb3aVZk-yhTwDFDxGeB0OqwAMJVoPQM0MGU0NQL5WlVcNZncOIIuFENML8KkIGD5V4LYIUPIIQNCP4J8PQOsH8MfzDziKCIaD5XsWwBvHCI4IQLSJvGSKIPQPACsPiIoMKI2BoMEOILiMyLsMSPABQImHUKhUwBABshqP-2RRKScIxVf2KIQMCJiIxUeF6N0KGLyIEFSOGKf0wHKOkPQPXEmLD3mLGMgOINT2qNMLPwGNZCwPWISOWSwOWLQMGIWOWWiMIPGMqJOJH3qICEaKhHU2-RML2NZAeKDhQAsPuKMH-SeIoNMwB3eMXwlWYNGASQ-SMG-WqJfXexCkBIKxBKSz+KLB-QaihIZgTEMKhTdw0wAPgN0KxO-Q+P-CxO+PvyyLxKoLYCRJ7yBMK1BPxLeMhPTGhNylhOylpKS2JP+MZNfRhIxKhAb2w0eNJLaOTyagJLuP-AFMpI7R+IQKlP-R7za1-Rw0gkEBABnWWDN0gDQwxwJWCHU3JAcJRT5VlxgHl1YHV3OJAwDj0EOGaziFNPNJQMXwNKkAAM3QnVdJ-VRPMkNMXyVNzzYHXCCB1S+EJT5QjybEGUjNQNmIxRT0GRT1jOCMqJqR-DbTTOTJSLoJX0GXnyzPyO6MvzX1vVvzzOLKP1LNPwLIuPQJf3Nxvw-0NEv1f2hNvxrJWPQLbxrzSAyCbKt0cGrw7z7IbwgA7KOJePBLeMGVeM0DNCtIqPQMRI7RnK+P+PHL5XpLnMGS3OdAXLjNZE5KpPigpP-Q3OIKlIJNzTgEFLePPPQPlP+MTKajPMX0DKwGDLQw9JjD2KDKCAYG-zaP7UxD-z-K-KkHHR-NAo-P-O5msOhKArfN-JgvAsguK0yzAoYGaNaNzyLQmHFQwwoEpwv0nyApXHEwCG-PIGwqAsVngtsNwsX1+zhJOFBJTwYHUx9E-HVJJDQE1N2G1KYoEBpPhPfWC33IXRcxykzzvVsUfXe0EiZLfVRWtNUoCFnNNFZGy3HLUvUrXKRK0pWB0t0rRyxClVZllTAHlSIv3RMutKkrMgkrsuCIiGwGYAdBbL2PjHRJGxYsS3fWlWqLMhyiCCw3cvrL-28scwFgPxLKYNHIgx9yTBItXzAik1E0MoXxBwchX1byMo8tIv1nEwDN-PRRXAisRBQGysFiYCLHmBo22ztHQuqxIDIH2woujyhXZM+y0C9lTEDPRQTHYEyp7wXQEw8xXDVmFlY0smCxGp8tUo0vfW6CMvM3gys1mzUu6q5ySC8FrwyCyA1xA2GAakChyk4BmHZOqryFQzyoX0qDSmCpNkE0QBkyaSEq+GXOWu0rWss3SrOhWqyo6qflArKtiC9gGrauqt8zWC+vms0ymo1hNjmsBpQKu1kysw6tOp23OshyzBis8rf1v0Sspz1P-FirStiHn3muqpKtBrIHKs8siuqqBFqpDIatIWLFKratJoU3EhetiERpmvkApozmus6qhGVBXCWvht03Fv4CbQB0DkjEhqoCGrurqzKw+ruFFulv0o7Vlo8x03lrCnpqhHBqVtVqUGhoe3xqI27OHPryeB-zcySrDOCAYJgKCj+3tPV21oCFZrqsQA5vSh23IE9u2D4qB3atUuSSlus3zgju9ujpNqo2DpQRNnq15q+HGvg0mrABYxynqxNt93EixLMj1r-X+MNvWpLuEu0RU0YOTuZBPPdyKtUsex424BhqTCTqjsuwtqLHDqbv7umxtq818rZNEoKtX0rPiudubMKrnpPwSrc21pEtYqS3rKJtP0XuylbMbNXrAHXr8qKwdv2qdu1Em2ZCHIvtPwg21vyjw3TBAHCHL34AmC43wqI22AjpPxb09UpzTuotzB1E9UNGQswE-M8VxQIEp3fKgZDLG3oxRXAdSgiL30AeMoPQQegch242ewOwGCOzQbiGnFtFgGqXO09GJi5lz1GvREx1mmf1-N-u4LomW2-rywYJGhAFFgAeDRewlv-AuBXE1DzDQdwaCEftmlEaHlgd525kECeE8ByQN3+EBBBFNsRBREF0VqHouAWsYYJxSmfogFfpRyEaL3-C4qRViHi2nqTMc2AcavtFsfjCsac2Yex0yFx0mE7sIfE3tS32hG4pnTMdfsKFNWVq0HcaMa+FHPfvEyfpshfrfu1qhy4cJ1xHxFJzmHgdmj1zp2g16EUZKcFyKa51sd-pVLCd4v4oiAgCFTKdN3rSOE4tVJ4qiYae1JXE1OuB7uzEqa6DYZgP-r2KOvWA1DtHYbaIqZV05y6D2nocUZ4ccD4bmaVyF1V1FxXTIXJA8DxEKHeMUcNLaaGy9LEYgq3TBNYENIYD9IGfmbmGKaB0mbdAHOeeFzpwOeFhJBOYXWGC9J12UYZj13UaNy0fBEhAtxu091qt8cX183ygd3xGdxZQ9ypARbOkDM9R-XueODAmvCCHMnCBsiUEQ2SXhdom0KxOpcyHL3xwEBrVcHTTafpYBtGaYPoeGtZcAYgdArxcXw5dZGqf2dIyOd3EVEeYmBFYdL2aClsbVI1NNwEqacVE1Euk-PIASyeDtA8AwDw3oFSi90yB8rtxaA5fRYuz0getNfKwtb8ntdb0IsVAazy2Wd-PZPfQ5YFcRHTS4Qcc3vfU9dwN9e0YwqwetaBMDO9btexb9cjbUcQHq0Qw3v8ulm0Rb3DdxeDVK0uCQpugW18etdDeHxzYTwDcQ2cyxe90BraMVD5eDW8krGrBYiHCHCbDnEPEHH6h-tSC1aCB1bCD1ZJcNfJYUPtdChivTDwEFSskggAygae0pz4YICYPcYXaoCXc3A7UnexZkcwUXc4YCEde5nJeFmgBIGXYNt1eJYNbJeNaNDnfCXdaviNcveyhqV3ffUfYgaacFWnaIxs0M3cYYG-ZXaOCzGSUyHJdqan1wUfYhTmz0Whiww9SNfg9UM1zCgA-CS3aiENXmgagg6CjGEED1Aw7g9sY8kXZDVI-jEF2ffnZ9TSiVa6YQCo+ylsZDTifA5veAp8yZafhukfcTlgcQBjmvixiQ6zGGGY-w8Cnih22w4CAeAvapC-YE4-SVqQ4YBA7S2tbXY3cXYI53ae33dolChVTvziyzeePDbZDPz5L7zTJXDLb30c-z0JIHOz2daWDeYlMQDOe3389+clYnHu1LqhSBJgDwC0NiFi86fCdSfMd4usBc-QdYHi+0IifS85QIxrYpBgDadi-i6sicrUoanK-Y5nUfasmwd0oY8q+cuZdrcyBa9a4KggE69a-z16+cplAG7sr9PHLietYalq5JA-SNa4Slj-eqhU+tam6ifq54+rdmlTB4+W+S94ry6iesAI64S9m26vXVCS7qaif24QGiZo5SW1FCiBJO8gmvLHOuDO5dzhFI-2kiAo-DpvfTVo+3bm-owB7QfG4+6QDWY2dI-+5-f493arfQTju2DEdAbh4OkB8CAE+Q9BxTdR-kYs1ob9DWGGCO2+9Ib+BofYWx93auxu01Y3CCF0bWBmC9kMYm7Smu+0kDTu+a5NYTe64zJwGvpFGC7dOs-EiEwTsjFO7Pel5GYvvebJgakdoI8s469p4s-F5-STKzBmAV8WHCCoGV5OrSmN4oDu-Df54Jf6+69U+mEQEN-iA0miXKFN6y+sTd4qCt-a-1y173dDTTMNTHP16d7p2wDUXew94akj-e3V4F9ogR+1719Z-D7V0wHCRj7SjeHw99-tdF8cBD4d-4AN7pwPuEGz4fyJoT-DaG-t7D+d7ZA8GAGeF5jk899I1b8EGoFr79+T8D4JdT8mDL65wIHulFh8GoGeDqUQECRYgIE9FiXe2mYYKBGhUiG-F-VaGn4o5TaUv-w78VQOE8YCCJxqUo485arjcc6WpQOqvP9qUzf3q9entv-1oBP9oEE0C2G1OkB1Cca200+R2O7r8A0bG5QmYEDjmDk5j08cwywJnvwU55wg1e+fQXjbwlb-Ni+lLN7GkWCD2N7OYbfvvAM7xNsfAR3ILkJE0Jo9ey2kKgfoSO6ZchI1gFcJIHC57cGB9AqQCX2TCe92BV3TgWVn2j6ENe-vDAYc3+Y8DS+nfKdJoSVBCDNCoggfnhRMbqgu+bfTFigIvpu0Gg6bIrBhh6D5tNEh3eJg0B-5u9TIAAt7ptSE5nt1BPfTQawEdrWtHav+dNCA1oHwdlWJILhPo3tCuCVuCAHyrliviuCuBHgzvIEOPpQdAsLQPwTpyHoBDduhQIai4O0FkD-eXA3lMQUdp5lK2aDLIda3H6nYPcl0GfjoPyh8pihk-MoRR0GRxA7+TML6jlj7Z5ZzBf-FPKbDHJptT6bFHrv9iHpBsM2SZdEjYOGwhCUoDUC3n3wL4B98WmA45sL2wDYDke4kccMUBSjg1zcwJGJGkk45y9KMW2dAPwJu5yD1hew4+pLy6oIANhB3cANoROHaQzhNwi4UoOBpdc0UAnB5gsN3C48BgAsewUdCmHm4dBawPQaCTt5C0co5w-LgDFSHiZ2hTTf-l0Jmy20mGg6FvhoOBFUB3unGAhrxjpigt5AoA2cJoEYDm5IB3g9UJbkZ6fke8lgCYeqAt47DbhnHZkVEN8H5wvY7I5IUELfYpRphMIlIRtxuhCFzcgyIUUEOQGsBXekAH3i90T6a9+edvJMjgKhSehzaiAWUeUDQAajLekERfBMBcboBvucgvUTHT5pQp3GRSK8Os1Fiw9+epo-Qte13bkBzRfwhoACMxEOCGo2oioNnWQDUYhhRWfPBaJAzgiks7FSASoKTABMCRqlREZYJRHj1-GwnLxhiMEDd8gRaUP0d1nRD4jPGIAhUXEFJGxI-RlI6AXANpHM8kWkPLUcLDlG6iQRforwdAM5GRgvYLYjkfyPVB+i3R5ubIXMQbHu8GA5o6UWgDj5wAZh6Ar4fbzVFQg9R7nSfGoj1GMC0xxol0ZjzNEDjiK-NRdjaN4b2ib2GPQPk6KPGuj3RjmfKMfztK9DIx-QiHp-QLEbjAy24tWruKhSuB3OhA8tsQNfHOjXA-Y98VeNmg3j8sU9YNl0IAp3j30rgc1niKezxjDsRIhPiWLJGR8n0FYq+DSIHaID6RdYycU2JKSESORIohkPEJIm8jLhpbKPlOPNFkSWgfKDCdH1HEDjxxufM6GgKT4DkVhxacSF+IIEv8iBswqvLYzcGeoKBeY-gF6MzFYic+mfSxkQwKjyhKQYvYMaCTgna1ExyIwAbbliGkhvR2YuEBxPHEV9OJCouvkDl4nRcoQAkuzkJN-EiSgc8HcSTkkklpiZJWYxwVfjbKgj66EEjNq4ENT849sWkggL-yRGdCnGYw6HCJ0liGTvJZk6Ns5LEkZDVJg5UiRVnIlcilaokqicENaFXwOJzVA1oAwYlQ9iCHEvIYK2bZ1izJJU8yGVKymMS6CDZSvomxaqANxxgI6cdxPEF-NFhc41YU0SvhjYEpmnQoGuKNFHC0Ajw4QRSAml8jPGySRaTz3uHCk5pcg1aUoLGEfCmus4x4YJ3TEMgwJQ2VadExmzaSop1g8wFJJuAFilJRYqgEzFLEFRDJWElKDhIQF0jaxjIvkONN8hHdypiHJWjx1RF-SDJsknvuQHJCDj4yhkwZLDJbYCxfUsghgYoMVFiCceiGDccejkFuEPxUIWznjOdHKhzo+hQ9idNtIhBHMT4xCYGPTomiAe+MimYTJsb7jYg0Pc8QdBPHmcyOzo2HgTJAk3QwJ7jO6XGIZlWR0A-4ikATOWn8TvxDkzzn+N-KaFf85M7gZTJaBgT1JW9VEXTK7qPSUJGMsAZCyQCaFX8aQOwFAFgFfTB2SAz+nWMkAyyNZXCSQFgFwCEBWqJSE2a4BaGxYZZ6stwsDPiFCy6pCeIND4Dhn74E8O5WqRDOvgkzZZFM4Ge7JwD4AiAhKE2eWn9kCwk5J6M6MHOalIBQ5rM61uWnkEFtgZIRAtJEEGSF1M6WtHsVYjPGuzU56AD2RnO9kUATZpHXOURjPGbj7QRcs9qXM1nWtYeaHbANHLiB9zJsX4LDM3IxabT0ZIgzGcoO+ESDjmVwqEB9k5m2iNmRqGGT8KeHOj+cbhTeQNN+GZcRYztHEu6i9QyDS0JqfGTtIY6NcAgK80WOFxiQBUy5Hk3rAlIahfy-JcUloPzhrQJdvUuULCqOXjAnsBAdgoBWlC-nLdjhJ8+aW3OLnXxO5XswlKmAvnxA7sS88XlvNOFnyKQX89sb1SVqpgqFBU2LF-NmkStf5x8shafO4HAyvYVC61vzialns+Ud2eKPHMKkpQuZjUGFJQD1Abhrwl8iLmaHnEiMCe8AvMCgGkWXhiAciyQXdPyhyMDACjUnkoxUZSKZFmi+IIbk0ZIBHhVY3CT9LD7xDDGq8QJA2BYhdgBwiADsM2AHAsQawXYDsD2BHCttoE0IeINMQ4oA4QlF4PoCqmcg7CiW+rQQB0QoD1A2QzkepBMGKlxAoiKILtGryyVhBWCQqAfsnliWYBgALVb-DMX4DTDCU-OOIAchDSAS4go+RpRHPDyB4oyQ1LtH2Nh4Xgh82kbAPYnXA1BgS+rXyDMVSVyA8k5Sg1pUq7T1T8lm-PgjkomA9TalFIOID6T4pGUBWk5L9NOVaXYAR8qGHJabVZDTEulqywyeHRRR1KtltWQ5XsulIAldlzSk5Y8qiWXLKK2glhu8VeUtL8UeS0AhOTqU+gf8ZkU5U0oBX4pmJU4ppdkoTDgoDIsWaiIIGIB6ggEAAK0z4pAIAX4UCMwQYIoAxAZ0NesDLSJnBDgY6dFSqTQCor0VWKnFdAXxUUA3MWFQQNgCLQJyoRFK2tNEOwUUq2mrtGtFCMcoagOV8CusYXUcgFy+VXCQVSfwbmzUAYFKhhQCJ3Sco5VwM6VW1FlU8qJV5AelRiqwxoBsVWwZlTAAJUQAiVJKuVQwsCQABWAAHQABmRANOC7YdgBwdYd1SxB7AsRnwXbWSDWFEXqgtlwgYAEqAP6bQuEPpBGgXWmqTQ7IxtOsfcpEBRqeSm0fNqFDjWirLILUDahcHHE+kKhs0TTCmoTlgqdEZ7BypZDzWvwE4b1VeHHQP7MKjSnRQsqyHDVegcUFmNFcauwxmrcVLKwlXAGJXCAM1CFCNckT5Rpr5CiAI1YyvNV4rLVbJG1ROrnUzriCVaiFQwEXUmqh1Fqq1euvMngqfYLoCFGFkizRZqYiATtjWB+ANhIU-JcDCF3qCOFO1cQWtZ0hHT6rOVhqvtQyoPVMqV1x6sdbau-VfLayGKbGmQl3W-rANA601SBpHXWrwNE62DXfHPVdo+Up1Z9EIKyjBR0ldwfdYOpQ2rrR146s6HhoLlaJUqGcfFLhseqSIwIvaz0P2qXXDqKNaGqjQ9ThBSkXYOG4gr6JsTaRdI9G4jWsFI3Ibl1qGk9XxplGia7EDibDRMBNIbxNwW8VjfuR1WWg9ViGzjUerXXobOJGmg1i7EY3br0At8IjTpsTUyqyZ0mw9aBuM28afoV4LDQxss3oEAEC87DPBruC6bsQ+m9jUBrI2ybuN8m3zUAgs1CafNLiLTT+sC32bdVjmgzcBoi1ga3NCW4KFBs7IYpXGtmkdEFvEAhaPAYWmTVxqy22rCtsWtTVZrpVE92ERW5LRrAc1lYANoWpDc5rk0mapZjW6nr6Fy1br4tXefzdpuK0pa9NaWrrYZpc2Uaat4CFjV5ri0FbrQ+Gy4HRpa1rAStdAjrU5vI3VaJ1qiWjYRrq2fqfoSm8TdtsmC7aytHGjLVVtc2LbrEI0WxNdos1IqkkSaKdCFwnL1b0Cj-OpLmmfmOoWEbokoBfxG2DEiRz5UHQGk1UdJodrIAZCDuNRg7AZA2BgHqGplCYZMOO7zRikmRo7-U06abljsQA462mQmG7ATtW2sh5k0KdHQjvB0U6qdJ-ITAkEp3I6VkcO5nWTsmls7cdc-bnYTtZDbISdMaTVULup2IBNkou+nfUtOSS6TUgaGXRzsTh06AdGKE5G8iZ2k61dE2bnbLt10K7tdrIK5Crox3k6jd7Ow4EJguRm7P1FyPXUugF2cd1d9uxAC7qd3QbWQTyK3Szsx227hdhwLXZ+v2Cu6NVrOkPbLsj2+78txyPnQbs1XS9DgdsOyGLriCApA97ugGJ7vD5Sdw9fuuIKClz2G7sdwuqBATq+3Pr-wgFP7R+pL1e074ztNjeVu62HbntE60cm00SZDVa9ySQCnewSVJKVKfStwAMqGUjLQgYykkJJv4BrLblGylvR-g+WxVl6ZZPLSQIyDHLRMgydZUSkergYIVIaCuQAAZt9eS6ArAXA7L6j9-Gk-axrP21yKAl+5InkvwKvL58VSnfQDBYZ-1l0sAZZcUpYauCf9yRWFSeJjmAHZpxAIgK-goa0rSCUhMA3fR-25KflGBs5ZQWoKQHaJ0B7oD-h4aSF1kRBkgFeA5Bdoal9+pXXcg+U37kCHy6Fd0uHEVBelgFG9Jat-2f74DB+2g92uACQq2lu5F5TgcYPOlMDtAmA7M2yWgHjOJ+aML-qgO9KuCYzO5vAavxIGfQ6UKghMoUP7LNAC+t6VDN76H7Nlrah5a8tEPCGjliBWAh8pQMf6flX+kFRssEO2HDyp5J8gwaQKSGJgeStQ0wTkMB9WQBh6UsoYIOqGDoszTAloeIDcdtITh3ZJiikDrsT8usYw0vpKR3LLDOynA0eRXK+GHD1hvQ1fp+USG79ORjZTuuf2vKJD2+lQ8ePIMkGJlQRk-HEcQMJHkDeh6gyCPMMZ06jOB-Atvp6XNHAKhUHgz8tIKvKRjMKgg00vaNAHClEyiY2kqkN148C8BuQvweqNdrW1Eazww0KnLbkPlcx-FDQb2MOlrNV28aBJrOPbGVC+KMY66LiDbB28BAPUB7jgDhIDigK6Y70ZwMAqu0gSN3IEG4Lqhu+c0OQBMECQ-A0jG+eIKPluw+hqsTqgIz8uBUDHIARG5g+8uSKBIIs5Ic7J+mCXRJl+ESlfmCan4z8rlphm5VcbnUrK1KTSmw44bKOzHHj-h75dIYwJcmqjFAXIzyWrxCGPlzQh438fxTZHBT7hvIwvmG6snvDVJdk3gc5MEAdj2+wk3+G8Hb9hoWkd+HpAxO8nlCuxmUw-sU1vaxNdx3E8kWlPHz9jwpqw+8JwN38JTRxk09vrtNCmEKTplk20vFNqmjjTh+Y0+mSwyH1DcSlY6gfeNBwvj0-X48YbyUzG3DDpqdT2rFMf93TfBxowsbaVLHIzyy1A5wdIBUG6TWYhk2aayU1NRyRx8+p4JrPlHeTEhaqU8oVLOGmzmZ0o+7jbP-HeThRv5S6cuikGNju+hoUOZbPHHDDpoKYx2anMDnFT7ucUr2c2O4HsSE55s7aeuXmHV9DZ7-YTTbJr78DoZ+FQUsLMXqDIimIkXEtHYeAx9EwdpLDq7RemNlHSI4z0Q+WjEjz8fXpVun2jwVCg9RCFMkk3CT7rz97RJbEH+38Bml6QNAA6rQANIAALJJsmWCBkLI5--WEt7yIpyAiF9syufmICn7TX613DjVP34XRzIRjg9PvwANJIjoZ3pZMYJOBIawLAUNMS2BBb88VEYY3hqDiw0W8AsJwJIVGDoABOcS6JYYASXRLnAQOuUEFhFhiAQl6sICH-BlLgATJQAuEmC7rhMVml0IOADUtQBlL2-LdMFzrSkmBSwsagE6sQB1g4AIAEINEhMvhIvwwAc7OuHOyaBigWGewDfn4uCBhl+AEy88DCjxn5gzAVAIAUyC2WOwggEyzyDgDUBrK2-AUPMDgDAATL1Q0obv0o6cBd2wIBgJuG77zByTJlspdVkQDPgIs6J6C4MsCs1A6LGF85RKNf3kBpLFF--YRewsKoOry5yi6ebCKhHULQyei9+eaNMWyDhUUa81beOtWV0CqF1Z1dZDdXFjbQGcyuaovjGBLo1r81OMYtpLW0YwqsNWFYsRIOLQILi+3l4uYAArQVwSwEBOvQnEl7ViS1JYkuyXaq8ly63aBMuqWNQwADS9AC0vpXdL+lhy5EA1DGXHrgSUk2ZYyvb8rL3gWy-ZcctIEXLHgKjB5a8uL8t+u-eYPVfushXElwgcK4YCiukAYrHi+KzDerCJXkrYwVK89gytZWJ+OV8oflZiNAgirXofy2VdpsA3Kr1V2q-EEJs1AZrRplc1hYrl9XZr3VmWx9f6v-6trrxwqAAHYxr+1ia4damvOQNbs15s9-vWvLW5rDACuSMiVsrXTTxFzDTactuLLgDQ1g63IAdWa3CDk1lI4VFduzXpbbV96nLYnPvn7bKtnmahbot7X3bOtz285CauS3RzWFta5-wDuvKNzwdwa0UuGs+MziEwJo6rajspKs7xhwJNlZpN-cQ0gSemylZX49A+L1Q8y9AiiQxIBhMpH0okh5ObX07B+5oxVdmWbEu0ud0OyBZ0Ni38AoyoIOMujMzLzIcyoS4gBLu1C8rDACu5ACStV24A9k2uxP3ruPFyTzd6IK3ZztRHmjv5qwhogi7OkLzRhIgCPpJZ3mAgZhIgKfZ2Dn3B94kP7VSHMbUBj8Z0b8spztBEWJgWy+5qstfVul+7P+YBy8l+1ulwUQFtYSO3AtiMIAn97+9RWuYxI-7ZipvfwCHvaQb7HgJ87EvweCBwHYFhJV2g6RkOSWFDmJFQ48CwODIKMrnvRXMgis0gyOHef+CfsgAbCrDv3toRFZKcdeZthBwktZJtE4lRWbh7w8xazD2lkeBgEqvkDsPfAhbBkNI4QpWttoimFh7I+xa5ddHIrBpOfpMeX6DIMbV-pBI0e2FHOWFpR+QCGTn6AAbD5QsegU421jvh3I+6v2PEL7+8x4RXOiGO-eZYK-gaw8fBO5HLSswIEk0yIAAA5GZHieNJz9AADkQB6Yzri3TePXdIDaW4AYN6ANEB9CI3kI1lqG+SJ74+gIuQAA

Computing with Register Machines 5.4

5.4 The Explicit-Control Evaluator

In section 5.1 we saw how to transform simple JavaScript programs into descriptions of reg-

ister machines. We will now perform this transformation on a more complex program, the

metacircular evaluator of sections 4.1.1–4.1.4, which shows how the behavior of a JavaScript

interpreter can be described in terms of the functions evaluate and apply. The explicit-control
evaluator that we develop in this section shows how the underlying function-calling and

argument-passing mechanisms used in the evaluation process can be described in terms of

operations on registers and stacks. In addition, the explicit-control evaluator can serve as

an implementation of a JavaScript interpreter, written in a language that is very similar to

the native machine language of conventional computers. The evaluator can be executed by

the register-machine simulator of section 5.2. Alternatively, it can be used as a starting point

for building a machine-language implementation of a JavaScript evaluator, or even a special-

purpose machine for evaluating JavaScript expressions. Figure 5.16 shows such a hardware

implementation: a silicon chip that acts as an evaluator for Scheme, the language for which

this book was originally written. The chip designers started with the data-path and controller

speci�cations for a register machine similar to the evaluator described in this section and used

design automation programs to construct the integrated-circuit layout.
19

Registers and operations

In designing the explicit-control evaluator, we must specify the operations to be used in our

register machine. We described the metacircular evaluator in terms of abstract syntax, using

functions such as is_self_evaluating and make_function. In implementing the register ma-

chine, we could expand these functions into sequences of elementary list-structure memory

operations, and implement these operations on our register machine. However, this would

make our evaluator very long, obscuring the basic structure with details. To clarify the presen-

tation, we will include as primitive operations of the register machine the syntax functions

given in section 4.1.2 and the functions for representing environments and other run-time

data given in sections 4.1.3 and 4.1.4. In order to completely specify an evaluator that could be

programmed in a low-level machine language or implemented in hardware, we would replace

these operations by more elementary operations, using the list-structure implementation we

described in section 5.3.

19
See Batali et al. 1982 for more information on the chip and the method by which it was designed.

578 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.4

Figure 5.16: A silicon-chip implementation of an evaluator for Scheme.

Our JavaScript evaluator register machine includes a stack and seven registers: stmt, env,

val, continue, fun, argl, and unev. The stmt register is used to hold the statement to be eval-

uated, and env contains the environment in which the evaluation is to be performed. At the

end of an evaluation, val contains the value obtained by evaluating the expression in the des-

ignated environment. The continue register is used to implement recursion, as explained in

section 5.1.4. (The evaluator needs to call itself recursively, since evaluating an expression re-

quires evaluating its subexpressions.) The registers fun, argl, and unev are used in evaluating

combinations.

We will not provide a data-path diagram to show how the registers and operations of the

evaluator are connected, nor will we give the complete list of machine operations. These are

implicit in the evaluator’s controller, which will be presented in detail.

579 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.4.1

5.4.1 The Core of the Explicit-Control Evaluator

The central element in the evaluator is the sequence of instructions beginning at eval_dispatch.

This corresponds to the evaluate function of the metacircular evaluator described in sec-

tion 4.1.1. When the controller starts at eval_dispatch, it evaluates the expression speci�ed

by stmt in the environment speci�ed by env. When evaluation is complete, the controller will

go to the entry point stored in continue, and the val register will hold the value of the expres-

sion. As with the metacircular evaluate, the structure of eval_dispatch is a case analysis on

the syntactic type of the expression to be evaluated.
20

"eval_dispatch",

test(list(op("is_self_evaluating"), reg("stmt"))),

branch(label("ev_self_eval")),

test(list(op("is_name"), reg("stmt"))),

branch(label("ev_name")),

test(list(op("is_variable_declaration"), reg("stmt"))),

branch(label("ev_variable_declaration")),

test(list(op("is_constant_declaration"), reg("stmt"))),

branch(label("ev_constant_declaration")),

test(list(op("is_assignment"), reg("stmt"))),

branch(label("ev_assignment")),

test(list(op("is_return_statement"), reg("stmt"))),

branch(label("ev_return")),

test(list(op("is_conditional_expression"), reg("stmt"))),

branch(label("ev_cond")),

test(list(op("is_lambda_expression"), reg("stmt"))),

branch(label("ev_lambda")),

test(list(op("is_sequence"), reg("stmt"))),

branch(label("ev_seq")),

test(list(op("is_block"), reg("stmt"))),

branch(label("ev_block")),

test(list(op("is_application"), reg("stmt"))),

branch(label("ev_application")),

go_to(label("unknown_expression_type")),

20
In our controller, the dispatch is written as a sequence of test and branch instructions. Alternatively, it

could have been written in a data-directed style (and in a real system it probably would have been) to avoid the

need to perform sequential tests and to facilitate the de�nition of new expression types. A machine designed

to run JavaScript would probably include a dispatch_on_type instruction that would e�ciently execute such

data-directed dispatches.

580 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.4.1

Evaluating simple expressions

Numbers and strings (which are self-evaluating), names, and lambda expressions have no

subexpressions to be evaluated. For these, the evaluator simply places the correct value in the

val register and continues execution at the entry point speci�ed by continue. Evaluation of

simple expressions is performed by the following controller code:

"ev_self_eval",

assign("val", reg("stmt")),

go_to(reg("continue")),

"ev_name",

assign("val",

list(op("lookup_symbol_value"), reg("stmt"), reg("env"))),

go_to(reg("continue")),

"ev_lambda",

assign("unev", list(op("lambda_parameters"), reg("stmt"))),

assign("stmt", list(op("lambda_body"), reg("stmt"))),

assign("val", list(op("make_function"),

reg("unev"), reg("stmt"), reg("env"))),

go_to(reg("continue")),

Observe how ev_lambda uses the unev and stmt registers to hold the parameters and body of

the lambda expression so that they can be passed to the make_compound_function operation,

along with the environment in env.

Evaluating function applications

A function application is speci�ed by a combination containing a function expression and

argument expressions. The function expression is a subexpression whose value is a function,

and the argument expressions are subexpressions whose values are the arguments to which

the function should be applied. The metacircular evaluate handles applications by calling

itself recursively to evaluate each element of the combination, and then passing the results

to apply, which performs the actual function application. The explicit-control evaluator does

the same thing; these recursive calls are implemented by go_to instructions, together with use

of the stack to save registers that will be restored after the recursive call returns. Before each

call we will be careful to identify which registers must be saved (because their values will be

needed later).
21

21
This is an important but subtle point in translating algorithms from a procedural language, such as JavaScript,

to a register-machine language. As an alternative to saving only what is needed, we could save all the registers

(except val) before each recursive call. This is called a framed-stack discipline. This would work but might save

more registers than necessary; this could be an important consideration in a system where stack operations are

expensive. Saving registers whose contents will not be needed later may also hold onto useless data that could

581 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.4.1

We begin the evaluation of an application by evaluating the function expression to produce

a function, which will later be applied to the evaluated argument expressions. To evaluate the

function expression, we move it to the stmt register and go to eval_dispatch. The environment

in the env register is already the correct one in which to evaluate the function expression.

However, we save env because we will need it later to evaluate the argument expressions. We

also extract the argument expressions into unev and save this on the stack. We set up continue

so that eval_dispatch will resume at ev_appl_did_function_expression after the function

expression has been evaluated. First, however, we save the old value of continue, which tells

the controller where to continue after the application.

"ev_application",

save("continue"),

save("env"),

assign("unev", list(op("args"), reg("stmt"))),

save("unev"),

assign("stmt", list(op("function_expression"), reg("stmt"))),

assign("continue", label("ev_appl_did_function_expression")),

go_to(label("eval_dispatch")),

Upon returning from evaluating the function expression, we proceed to evaluate the argu-

ment expressions of the combination and to accumulate the resulting arguments in a list, held

in argl. First we restore the unevaluated argument expressions and the environment. We ini-

tialize argl to an empty list. Then we assign to the fun register the function that was produced

by evaluating the function expression. If there are no argument expressions, we go directly

to apply_dispatch. Otherwise we save fun on the stack and start the argument-evaluation

loop:
22

"ev_appl_did_function_expression",

restore("unev"), // the args

restore("env"),

assign("argl", list(op("empty_arglist"))),

assign("fun", reg("val")), // the function_expression

otherwise be garbage-collected, freeing space to be reused.

22
We add to the evaluator data-structure functions in section 4.1.3 the following two functions for manipulating

argument lists:

const empty_arglist = list();

function adjoin_arg(arg, arglist) {
return append(arglist, list(arg));

}
We also use an additional syntax function to test for the last argument expression in a combination:

function is_last_argument_expression(ops) {
return is_null(tail(ops));

}

582 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.4.1

test(list(op("has_no_argument_expressions"),

reg("unev"))),

branch(label("apply_dispatch")),

save("fun"),

Each cycle of the argument-evaluation loop evaluates an argument expression from the list

in unev and accumulates the result into argl. To evaluate an argument expression , we place

it in the stmt register and go to eval_dispatch, after setting continue so that execution will

resume with the argument-accumulation phase. But �rst we save the arguments accumulated

so far (held in argl), the environment (held in env), and the remaining argument expressions

to be evaluated (held in unev). A special case is made for the evaluation of the last argument

expression which is handled at ev_appl_last_arg.

"ev_appl_argument_expression_loop",

save("argl"),

assign("stmt", list(op("first_arg"), reg("unev"))),

test(list(op("is_last_argument_expression"),

reg("unev"))),

branch(label("ev_appl_last_arg")),

save("env"),

save("unev"),

assign("continue", label("ev_appl_accumulate_arg")),

go_to(label("eval_dispatch")),

When an argument expression has been evaluated, the value is accumulated into the list

held in argl. The argument expression is then removed from the list of unevaluated argument

expressions in unev, and the argument-evaluation continues.

"ev_appl_accumulate_arg",

restore("unev"),

restore("env"),

restore("argl"),

assign("argl", list(op("adjoin_arg"),

reg("val"), reg("argl"))),

assign("unev", list(op("rest_args"), reg("unev"))),

go_to(label("ev_appl_argument_expression_loop")),

Evaluation of the last argument is handled di�erently. There is no need to save the environ-

ment or the list of unevaluated argument expressions before going to eval_dispatch, since

they will not be required after the last argument expression is evaluated. Thus, we return from

the evaluation to a special entry point ev_appl_accum_last_arg, which restores the argument

list, accumulates the new argument, restores the saved function, and goes o� to perform the

application.
23

23
The optimization of treating the last argument expression specially is known as evlis tail recursion (see Wand

1980). We could be somewhat more e�cient in the argument evaluation loop if we made evaluation of the �rst

argument expression a special case too. This would permit us to postpone initializing argl until after evaluating

583 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.4.1

"ev_appl_last_arg",

assign("continue", label("ev_appl_accum_last_arg")),

go_to(label("eval_dispatch")),

"ev_appl_accum_last_arg",

restore("argl"),

assign("argl", list(op("adjoin_arg"),

reg("val"), reg("argl"))),

restore("fun"),

go_to(label("apply_dispatch")),

The details of the argument-evaluation loop determine the order in which the interpreter

evaluates the argument expressions of a combination (e.g., left to right or right to left—see exer-

cise 3.8). This order is not determined by the metacircular evaluator, which inherits its control

structure from the underlying Scheme in which it is implemented.
24

Because the first_arg se-

lector (used in ev_appl_argument_loop to extract successive argument expressions from unev)

is implemented as head and the rest_args selector is implemented as tail, the explicit-control

evaluator will evaluate the argument expressions of a combination in left-to-right order.

Function application

The entry point apply_dispatch corresponds to the apply function of the metacircular eval-

uator. By the time we get to apply_dispatch, the fun register contains the function to apply

and argl contains the list of evaluated arguments to which it must be applied. The saved value

of continue (originally passed to eval_dispatch and saved at ev_application), which tells

where to return with the result of the function application, is on the stack. When the applica-

tion is complete, the controller transfers to the entry point speci�ed by the saved continue,

with the result of the application in val. As with the metacircular apply, there are two cases

to consider. Either the function to be applied is a primitive or it is a compound function.

"apply_dispatch",

test(list(op("is_primitive_function"),

reg("fun"))),

branch(label("primitive_apply")),

test(list(op("is_compound_function"),

reg("fun"))),

branch(label("compound_apply")),

go_to(label("unknown_function_type")),

We assume that each primitive is implemented so as to obtain its arguments from argl

the �rst argument expression, so as to avoid saving argl in this case. The compiler in section 5.5 performs this

optimization. (Compare the construct_arglist function of section 5.5.3.)

24
The order of argument expression evaluation in the metacircular evaluator is determined by the order of

evaluation of the arguments to pair in the function list_of_values of section 4.1.1 (see exercise 4.1).

584 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.4.1

and place its result in val. To specify how the machine handles primitives, we would have

to provide a sequence of controller instructions to implement each primitive and arrange for

primitive_apply to dispatch to the instructions for the primitive identi�ed by the contents of

fun. Since we are interested in the structure of the evaluation process rather than the details of

the primitives, we will instead just use an apply_primitive_function operation that applies

the function in proc to the arguments in argl. For the purpose of simulating the evaluator with

the simulator of section 5.2 we use the function apply_primitive_function, which calls on

the underlying JavaScript system to perform the application, just as we did for the metacircular

evaluator in section 4.1.4. After computing the value of the primitive application, we restore

continue and go to the designated entry point.

"primitive_apply",

assign("val", list(op("apply_primitive_function"),

reg("fun"),

reg("argl"))),

restore("continue"),

go_to(reg("continue")),

To apply a compound function, we proceed just as with the metacircular evaluator. We con-

struct a frame that binds the function’s parameters to the arguments, use this frame to extend

the environment carried by the function, and evaluate in this extended environment the se-

quence of expressions that forms the body of the function. A little extra work is needed to

handle function bodies with a single non-return statement as these should return undefined.

In this case, we set as continuation the label end_without_return, which will overwrite the

contents of val by undefined before jumping back into the dispatch loop. This has implica-

tions for tail-recursion, which is discussed in section 5.4.2. All other cases handle returns by

themselves as part of the normal dispatch loop.

"compound_apply",

assign("unev", list(op("function_parameters"), reg("fun"))),

assign("env", list(op("function_environment"), reg("fun"))),

assign("env", list(op("extend_environment"),

reg("unev"), reg("argl"), reg("env"))),

assign("stmt", list(op("function_body"), reg("fun"))),

test(list(op("does_not_handle_return"), reg("stmt"))),

branch(label("no_return_wrapping")),

restore("continue"),

go_to(label("eval_dispatch")),

"no_return_wrapping",

assign("continue", label("end_without_return")),

go_to(label("eval_dispatch")),

The only places in the interpreter where the env register is assigned a new value are compound_apply

585 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.4.2

and ev_block. Just as in the metacircular evaluator, the new environment is constructed from

the environment carried by the function, together with the argument list and the corresponding

list of names to be bound.

5.4.2 Sequence Evaluation and Tail Recursion

The portion of the explicit-control evaluator at ev_sequence is analogous to the metacircular

evaluator’s eval_sequence function. It handles sequences of expressions in function bodies

or in sequences of statements.

Sequences of statements are evaluated by placing the sequence of expressions to be evaluated

in unev, saving continue on the stack, and jumping to ev_sequence.

"ev_seq",

save("continue"),

assign("unev", list(op("sequence_statements"), reg("stmt"))),

go_to(label("ev_sequence"))

The implicit sequences in function bodies are handled by jumping to ev_sequence from

compound_apply, at which point continue is already on the stack, having been saved at ev_application.

The entries at ev_sequence and ev_sequence_continue form a loop that successively evalu-

ates each expression in a sequence. The list of unevaluated expressions is kept in unev. Before

evaluating each expression, we check to see if there are additional expressions to be evaluated

in the sequence. If so, we save the rest of the unevaluated expressions (held in unev) and the en-

vironment in which these must be evaluated (held in env) and call eval_dispatch to evaluate

the expression. The two saved registers are restored upon the return from this evaluation, at

ev_sequence_continue. As returns immediately end the function, skipping any trailing state-

ments, we inspect each statement to see whether it is a return or not. If it is, we jump to the

entry point ev_return_from_seq and abort the loop. Sequences that do not contain an explicit

return will eventually dispatch to the aforementioned entry point end_without_return, which

will ensure that the sequence ends with val holding the value undefined.

The �nal expression in the sequence is handled di�erently, at the entry point ev_sequence_last_stmt.

Since there are no more expressions to be evaluated after this one, we need not save unev or

env before going to eval_dispatch. The value of the whole sequence is the value of the last

expression, so after the evaluation of the last expression there is nothing left to do except

continue at the entry point currently held on the stack (which was saved by ev_application

or ev_seq.) Rather than setting up continue to arrange for eval_dispatch to return here and

then restoring continue from the stack and continuing at that entry point, we restore continue

from the stack before going to eval_dispatch, so that eval_dispatch will continue at that

entry point after evaluating the expression.

586 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.4.2

"ev_sequence",

assign("stmt", list(op("first_statement"), reg("unev"))),

test(list(op("is_return_statement"), reg("stmt"))),

branch(label("ev_return_from_seq")),

test(list(op("is_last_statement"), reg("unev"))),

branch(label("ev_sequence_last_exp")),

save("unev"),

save("env"),

assign("continue", label("ev_sequence_continue")),

go_to(label("eval_dispatch")),

"ev_sequence_continue",

restore("env"),

restore("unev"),

assign("unev", list(op("rest_statements"), reg("unev"))),

go_to(label("ev_sequence")),

"ev_sequence_last_exp",

assign("continue", label("end_without_return")),

go_to(label("eval_dispatch")),

"end_without_return",

assign("val", constant(undefined)),

restore("continue"),

go_to(reg("continue")),

Tail recursion

In chapter 1 we said that the process described by a function such as

function sqrt_iter(guess, x) {

return is_good_enough(guess, x)

? guess

: sqrt_iter(improve(guess, x), x);

}

is an iterative process. Even though the function is syntactically recursive (de�ned in terms

of itself), it is not logically necessary for an evaluator to save information in passing from one

call to sqrt_iter to the next.
25

An evaluator that can execute a function such as sqrt_iter

without requiring increasing storage as the function continues to call itself is called a tail-
recursive evaluator. The metacircular implementation of the evaluator in chapter 4 does not

specify whether the evaluator is tail-recursive, because that evaluator inherits its mechanism

for saving state from the underlying Scheme. With the explicit-control evaluator, however, we

25
We saw in section 5.1 how to implement such a process with a register machine that had no stack; the state

of the process was stored in a �xed set of registers.

587 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.4.2

can trace through the evaluation process to see when function calls cause a net accumulation

of information on the stack.

With one exception, discussed at the end of this section, evaluator is tail-recursive, because

in order to evaluate the �nal expression of a sequence we transfer directly to eval_dispatch

without saving any information on the stack. Hence, evaluating the �nal expression in a

sequence—even if it is a function call (as in sqrt_iter, where the conditional expression,

which is the last expression in the function body, reduces to a call to sqrt_iter)—will not

cause any information to be accumulated on the stack.
26

If we did not think to take advantage of the fact that it was unnecessary to save information

in this case, we might have implemented eval_sequence by treating all the expressions in a

sequence in the same way—saving the registers, evaluating the expression, returning to restore

the registers, and repeating this until all the expressions have been evaluated (for simplicity,

ignoring the handling of returns which are not needed to illustrate this point):
27

"ev_sequence",

test(list(op("has_no_more_stmts"), reg("unev"))),

branch(label("ev_sequence_end")),

assign(exp(op("first_stmt"), reg("unev")),

save("unev"),

save("env"),

assign(continue(label("ev_sequence_continue"))),

go_to(label("eval_dispatch")),

"ev_sequence_continue",

restore("env"),

restore("unev"),

assign("unev", op("rest_stmts"), reg("unev")),

go_to(label("ev_sequence")),

"ev_sequence_end",

restore("continue"),

go_to(reg("continue")),

This may seem like a minor change to our previous code for evaluation of a sequence: The

only di�erence is that we go through the save-restore cycle for the last expression in a sequence

as well as for the others. The interpreter will still give the same value for any expression. But

this change is fatal to the tail-recursive implementation, because we must now return after

26
This implementation of tail recursion in ev_sequence is one variety of a well-known optimization technique

used by many compilers. In compiling a function that ends with a function call, one can replace the call by a jump

to the called function’s entry point. Building this strategy into the interpreter, as we have done in this section,

provides the optimization uniformly throughout the language.

27
We can de�ne has_no_more_stmts as follows:

function has_no_more_exps(seq) {
return is_null(seq);

}

588 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.4.3

evaluating the �nal expression in a sequence in order to undo the (useless) register saves. These

extra saves will accumulate during a nest of function calls. Consequently, processes such as

sqrt_iter will require space proportional to the number of iterations rather than requiring

constant space. This di�erence can be signi�cant. For example, with tail recursion, an in�nite

loop can be expressed using only the function-call mechanism:

function count(n) {

display(n, "\n");

return count(n + 1);

}

Without tail recursion, such a function would eventually run out of stack space, and expressing

a true iteration would require some control mechanism other than function call.

The exception to tail recursion in our evaluator is due to the implicit returning of undefined.

Function bodies that do not end in an explicit return dispatch to the end_without_return

entry point which destroys tail-recursion as every function call must have its return value

changed to undefined. Removing the return from the count function above will thus lead to

exhausting the stack space. (Note that it is only when a function actually reaches the end of

its body that this extra stack space is consumed.)

5.4.3 Conditionals, Assignments, and Declarations and Blocks

As with the metacircular evaluator, special forms are handled by selectively evaluating frag-

ments of the expression. For conditional expression, we must evaluate the predicate and decide,

based on the value of predicate, whether to evaluate the consequent or the alternative.

Before evaluating the predicate, we save the conditional expression itself so that we can later

extract the consequent or alternative. We also save the environment, which we will need later

in order to evaluate the consequent or the alternative, and we save continue, which we will

need later in order to return to the evaluation of the expression that is waiting for the value

of the conditional.

"ev_cond",

save("stmt"), // save expression for later

save("env"),

save("continue"),

assign("continue", label("ev_cond_decide")),

assign("stmt", list(op("conditional_pred"), reg("stmt"))),

go_to(label("eval_dispatch")), // evaluate the predicate

When we return from evaluating the predicate, we test whether it was true or false and,

depending on the result, place either the consequent or the alternative in stmt before going

to eval_dispatch. Notice that restoring env and continue here sets up eval_dispatch to

589 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.4.3

have the correct environment and to continue at the right place to receive the value of the

conditional expression.

"ev_cond_decide",

restore("continue"),

restore("env"),

restore("stmt"),

test(list(op("is_true"), reg("val"))),

branch(label("ev_cond_consequent")),

"ev_cond_alternative",

assign("stmt", list(op("conditional_alt"), reg("stmt"))),

go_to(label("eval_dispatch")),

"ev_cond_consequent",

assign("stmt", list(op("conditional_cons"), reg("stmt"))),

go_to(label("eval_dispatch")),

Assignments and declarations

Assignments are handled by ev_assignment, which is reached from eval_dispatch with the as-

signment expression in stmt . The code at ev_assignment �rst evaluates the value part of the ex-

pression and then installs the new value in the environment. The function assign_symbol_value

is assumed to be available as a machine operation.

"ev_assignment",

assign("unev", list(op("assignment_symbol"), reg("stmt"))),

save("unev"), // save variable for later

assign("stmt", list(op("assignment_value"), reg("stmt"))),

save("env"),

save("continue"),

assign("continue", label("ev_assignment_1")),

go_to(label("eval_dispatch")), // evaluate assignment value

"ev_assignment_1",

restore("continue"),

restore("env"),

restore("unev"),

perform(list(op("assign_symbol_value"),

reg("unev"), reg("val"), reg("env"))),

go_to(reg("continue")),

Declarations of variables and constants are handled in a similar way:

"ev_variable_declaration",

assign("unev", list(op("variable_declaration_symbol"),

reg("stmt"))),

590 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.4.3

save("unev"), // save variable for later

assign("stmt", list(op("variable_declaration_value"),

reg("stmt"))),

save("env"),

save("continue"),

assign("continue", label("ev_declaration")),

go_to(label("eval_dispatch")), // evaluate declaration value

"ev_declaration",

restore("continue"),

restore("env"),

restore("unev"),

perform(list(op("assign_symbol_value"),

reg("unev"), reg("val"), reg("env"))),

assign("val", constant(undefined)),

go_to(reg("continue")),

"ev_constant_declaration",

assign("unev", list(op("constant_declaration_symbol"),

reg("stmt"))),

save("unev"), // save constant for later

assign("stmt", list(op("constant_declaration_value"),

reg("stmt"))),

save("env"),

save("continue"),

assign("continue", label("ev_declaration")),

go_to(label("eval_dispatch")), // evaluate declaration value

Evaluation of blocks evaluates the body of the block with respect to the current environment

extended by a binding of all local names to the special value no_value_yet.

"ev_block",

assign("stmt", list(op("block_body"), reg("stmt"))),

assign("val", list(op("scan_out_declarations"), reg("stmt"))),

save("stmt"), // temporarily store to stmt

assign("stmt", list(op("list_of_unassigned"), reg("val"))),

assign("env", list(op("extend_environment"),

reg("val"),

reg("stmt"),

reg("env"))),

restore("stmt"),

go_to(label("eval_dispatch")),

The function get_temp_block_values can be implemented easily using a map: (locals) => map((_) => no_value_yet, locals).

591 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.4.4

Exercise 5.23

Extend the evaluator to handle while loops, by translating them to applications of a function

while_loop, as shown in exercise 4.7. You can then paste the declaration of the function

while_loop in front of user programs. You may “cheat” and assume that the syntax transformer

while_to_application is available as machine operation.
28

Refer to exercise 4.7 to discuss

whether this approach works if return, break and continue statements are allowed inside the

while loop. If not, how can you modify the explicit control evaluator to run programs with

while loops that include these statements?

Exercise 5.24

Implement conditional statements in the explicit control evaluator. Note that proper handling

of returns inside the consequent and alternative blocks poses a challenge as the current im-

plementation only supports returning from the outermost block in a function. One way to

implement this is to add a new register returning that keeps track of whether the current

function is returning. Change ev_sequence so that instead of checking if the next statement is

a return statement, the sequence loop inspects returning to determine whether to continue

or return. Also note that it is possible to nest several conditional statements, so a return can

appear at any depth.

Exercise 5.25

Modify the evaluator so that it uses normal-order evaluation, based on the lazy evaluator of

section 4.2.

5.4.4 Running the Evaluator

With the implementation of the explicit-control evaluator we come to the end of a develop-

ment, begun in chapter 1, in which we have explored successively more precise models of the

evaluation process. We started with the relatively informal substitution model, then extended

this in chapter 3 to the environment model, which enabled us to deal with state and change.

In the metacircular evaluator of chapter 4, we used JavaScript itself as a language for making

more explicit the environment structure constructed during evaluation of an expression. Now,

with register machines, we have taken a close look at the evaluator’s mechanisms for storage

management, argument passing, and control. At each new level of description, we have had

28
This isn’t really cheating. In an actual implementation built from scratch, we would use our

explicit-control evaluator to interpret a JavaScript program that performs source-level transformations like

while_to_application in a syntax phase that runs before execution.

592 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.4.4

to raise issues and resolve ambiguities that were not apparent at the previous, less precise

treatment of evaluation. To understand the behavior of the explicit-control evaluator, we can

simulate it and monitor its performance.

We will install a driver loop in our evaluator machine. This plays the role of the driver_loop

function of section 4.1.4. The evaluator will repeatedly print a prompt, read a program, scan

its declarations and appropriately extend the environment before proceeding to evaluate the

program by going to eval_dispatch, and print the result. The following instructions form the

beginning of the explicit-control evaluator’s controller sequence:
29

"read_eval_print_loop",

perform(list(op("initialize_stack"))),

assign("stmt", list(op("prompt_for_input"),

constant("EC-evaluate input:"))),

assign("env", list(op("get_program_environment"))),

assign("val", list(op("scan_out_declarations"), reg("stmt"))),

save("stmt"), // temporarily store to stmt

assign("stmt", list(op("list_of_unassigned"), reg("val"))),

assign("env", list(op("extend_environment"),

reg("val"), reg("stmt"), reg("env"))),

perform(list(op("set_program_environment"), reg("env"))),

restore("stmt"),

assign("continue", label("print_result")),

go_to(label("eval_dispatch")),

"print_result",

perform(list(op("user_print"),

constant("EC-evaluate value:"), reg("val"))),

go_to(label("read_eval_print_loop")),

When we encounter an error in a function (such as the “unknown function type error”

indicated at apply_dispatch), we print an error message and return to the driver loop.
30

"unknown_expression_type",

assign("val", constant("unknown_expression_type_error")),

29
We assume here that prompt_for_input and the various printing operations are available as primitive ma-

chine operations, which is useful for our simulation, but completely unrealistic in practice. These are actually

extremely complex operations. In practice, they would be implemented using low-level input-output operations

such as transferring single characters to and from a device.

To support the get_program_environment and set_program_environment operations we declare

function get_program_environment() {
return the_global_environment;

}
function set_program_environment(env) {

the_global_environment = env;
}

30
There are other errors that we would like the interpreter to handle, but these are not so simple. See exer-

cise 5.30.

593 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.4.4

go_to(label("signal_error")),

"unknown_function_type",

restore("continue"), /// clean up stack (from apply_dispatch)

assign("val", constant("unknown_function_type_error")),

go_to(label("signal_error")),

"signal_error",

perform(list(op("user_print"),

constant("EC_eval error:"), reg("val"))),

go_to(label("read_eval_print_loop")),

For the purposes of the simulation, we initialize the stack each time through the driver

loop, since it might not be empty after an error (such as an undeclared name) interrupts an

evaluation.
31

If we combine all the code fragments presented in sections 5.4.1–5.4.4, we can create an

evaluator machine model that we can run using the register-machine simulator of section 5.2.

const eceval =

make_machine(list("stmt", "env", "val", "fun",

"argl", "continue", "unev"),

eceval_operations,

list("read_eval_print_loop",

〈entire machine controller as дiven above〉
));

We must de�ne JavaScript functions to simulate the operations used as primitives by the

evaluator. These are the same functions we used for the metacircular evaluator in section 4.1,

together with the few additional ones de�ned in footnotes throughout section 5.4.

const eceval_operations =

list(list("is_self_evaluating", is_self_evaluating),

〈complete list o f operations f or eceval machine〉);

Finally, we can initialize the global environment and run the evaluator:

Iconst the_global_environment = setup_environment();

start(eceval);

EC−eva lua te input :

function append(x, y) {

return is_null(x)

? y

: pair(head(x), append(tail(x), y));

}

31
We could perform the stack initialization only after errors, but doing it in the driver loop will be convenient

for monitoring the evaluator’s performance, as described below.

594 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQBTANwEMANpD7wuACjTwc8ADTdoPAJSgA3s1AbMXeJEzRQiNAH00XAeCO9BwpNADmEqfEXqNb9wH4Nk6a-fuALgNjaD4ccR9nP38NLwFkZABrSAAHEwBPHAAjZAEjfiEIzJy85AtQ8MdpRTkuBRcYwOCjWFRJPmh4IwATLlgBPkwRFGgqqMa3Lys81vR4Dq7e-sHh1DHa+uiYoMN8wcQ+LIEuHr6BoY5RyIaJ0CmCvcwDo5Ol89Wrpw2lLf8d4z4aDQiDs0HCnTGNwm90ERkBwNB4Pg63kP1uoH+LVQ3UQl1hXAAHiktECRpDfp5uA9Zji8XlCcSuKS1pFvlDGpiBtlunxLESScCWU52TEvDg+IkTmwEGSuVkeUYUitwqJMGhITIKejbnKFTluukNVrtY06mjbpjTABHSB1WARYXGu5U2HW21wCJcG12k7tURI9XXNlOzFHZCwRLk9EwvJhiMos0iv7NLQ6PQmeb+urI65OmNGVO6aAZkRcJEJzbozF8FIpASIWAfKO3Lw1uuG6Y2cTSy58xnMz7VNmak0xeuSIxlPaFdWDOyB4VspNNLiYbCYFEAIgAqtBEtBkAB3fRodKdPgE0AAWivLqEpc3igA3MwAL6sGAyzhtgSGthyOc0GUNQ3EQcBQDEXZiUQHBcUQHgpU-S4xDYRRgN+Qs9FAH90kVJ5YKQBCjB7Ml-2wzB52fPxX24ARTAMcDIOMVocBSZAYG6YikNImA0NUX5ZkkUASUgAR4FAABeO8uxQ7jUCMfU-14kdR21QlRGgTizUQbAwWzMQnVU-wSPkpUhhVVd1VQlSjJNQCbNs9ETOLbTdPLVC0JfGJMP0XYfOnW0xBEsTl1FYTtCLAKTlmDTkWC8YTSCDiuHARBoC4bovI0GizHokD-FXddZOgOQdz3A9jwgOT9HgdIUi4a9bxwx8stAd932c0Bxy6KcCltdUGTQNl+P8HzQAPOEKIGokgONLxoFEgRjSCJUdLETtSxQnSJzndaZpqVEakM-xusnCw+qZIKmS6QC9pSIClxfDrqrvLFNLg1B8X5JlBUHWRDpGtwxt2eBMECjbRDEGk+0wPCMo1Q7QsmaTNuhhlYcEhHE0MoIIfENH+ThMSsfqJ6P3YEZXrdH0xiGgH8o0MCIN2MsUlqkwvXde1ab4hnRoirDktS9LMuiHK6IapmmKMAYJz9Mt9MiID0JNMa8a2tUunl8slZqRNWra2i8q1QTxNSzWM2kKLJNAY71fNuXMwViFdZkfWtSlvyBeLC6Ncdq2Lt546xodrWnCig33HF43Ve9qnOZp473BJMPSwDHm3dJrV3yjt9ya-fRTqnGB4RBEWxAqJkVaBuPdgWgQBArsIq61ebFq1Fa+DWzcACoS9JUEMp7zc5CLix+4Rcv5kQRvK+V58AEh3Dzzq0EbYt2MWM4VkuBdqkBxnGN2amPUhauYlN0AlZtk-7RLLNOj35xI5rtNfOMVn2dvh1pFmk024bsdIIbY6jdAkOvSckAt7LAuCMKy21U4PxzE4ZWDlHJrw6JA6B7xd5iHFJKDm3pT5J0cvzR2adsxP3nlRKORsGp82TrXZibR5idFODApsuZ-5dUMMiU2Cx2E4JGBkbIuQz5AOaPwJ4hxjiCJ3mSLho44i8LEFI54si3jyPkqeURjdrhI2TPXAQBt2r50uK9OMkZWT02iJfRSNtLEKWQAaSEBtL7xEbHRG+EDN5yNgW0MQikaFuEvhPMuGUMBSTHkYMJg8wEeMEEBA2as+qbUUmgtSBINJaQUDpVA5YEl0TkLEkWdNExUWehTTg0wCze3vs7ZB0hhp8zGvgk4-lfYkJRpDfy6MfoKMXF0245SyadRqaXREisvg2PcJfC6Nt1YTL0mw32QZDoGyWSIkoUUxBLKRFssRayLpsmSXHC6oyXo1LUTI1429-F-WadETZOjtm+2uS8PxHwDl6MGRMdW7yNF3K+asxch0MkaHdjRDQZjKY1P4WwzR9yKxKAPthAexYXm5B2fC7BWiMXFEOb800qTIY4s+b2EFQ4wVakhcwZgIAqpVPQFgXABASDkCoLQRgdAABMMLODHzMBYCGaUHDXFRcDEIkBsirkhBoAAPvKwyx9QairlaARVyrjA5FyFwDocrNXajrotdVCqlVGuMELNK8NrgXKZc0eYdg7AZRlio6x8AAAWJxHXn3Cm-Zoq0NzioAGTBtAF6vgYDxUSRjaAT13q+B2DtQXZolc5UtKYUYR1zrOLdS3JXFqK8XqYtKOUZu6bohjQjWA6ePzqgVP5e-OE6KdbCgPpKrNiac2uskFuPZ2ZC2VJTf2thJaK2vyLOGvVNau6N2rWIWtZ9PJFvtSOrolLnDtrjvOxdi79ENs6rsMliLOFtoZh27NLq83WM3MeoFlxB2NtAHejhvYx3ivPdu6dC7Z1iB3b+-dB6XovqEfJDd58q3ft3QB4Uy6h3mN2AC25r6Bn70-f6kGXar1uumZuJD5KRiPs6vhk9b6CV1s3ehyd-6Z5-qgzB+tcGn0kfvcI8DW7-U0cbnu2DQH7W7F1LyPpA5x2aEzZe3NOGmmgE3IJmG-TUBEZenJsyzdVRPwg3HcUKQJDkbOkYSucguNLuTeYuTilRN+uo-R2jPHGOmcpl7N+9TW1ob8BerDkne03v8trAdfGU29O+iJj97mv2Rp-bR-RDmBXMPenSeTIWz1hYw8YCTPbGn-SGbe7EH1Qj0mC79JT9qCbEjhlG5LE6sKnS0OAFEDAAvmNKxjAJoWquF14bUur1ieWNcps1ommXNP+pqylFEABmPrsXCFcx-pRlLk7MNOuw953D39ispraTNmmusOOTrzZudbchdYxZPAnD0LnKHprcAtrCxnosrpTaHS7LsUHDesxFk7j3zEpxe-AKh72sJ2f+1Nptn9cLfx5ntrCxqG481O80WWiCGlQ6ozDqVcPgfKwR7sSxlmrPo87ctrzmXSqWI2+YrbeO2tiZGyozc5PjvCgR44izNPacfZnVF2DOOAS1nrI2ZC7OPPE4y32-nDYPgU8ps5RLv1LOQYi8DpjnVbrC-C1z7jDHnAq5ehNW6yB7qA6bUYsQhuknfZlwgyaDhzfG6nRFu3CPfsG6N9Dmqv6nd53pWAZyGBwDYDwEQMglBqD0CYONp9IMwbiAJL6sal4Y1SVBraBHW3nJiFUxZNUch0kzPazw3tOXWLsU0lxJlI8hlZ+0JZXPzj0gnMt9NlibEOLl4LiheP4nPNi-AKVFvpfOLOWl5wWX1f1Od4lXHUbdW++gAawj2XFnwBd7pxOWrKE5C9cX9VSwuS3L6RX1PtfXQN9z8m2niU7S6m+xitmVf+36cdOsFwEez7UCxVBymG-L-VEv4f4TulnmscjJs-oUCPvoGAbaG9LFH-oUAAfoMZoHF-naPEMCPYHvjwHksssiImMfpOourSp1M9gHuWngRmpxt+kQZcnAGgScFkH+OZFwM0svIwv6oGihEwY3u+JfPGpYKxOzK5PktmDbEYi+J1OnkwbpronTBdEBPgVhBwSWrIS-hbvBjLkwd8lZEwcBKwQXvOqQeEF-oYScHIZwc3LoTdmwQQb+iYSgVkqApgdgTrORioUUqAFkICCcOQZWtPnUHYJ6tISUPIUnl1P4YEQUH-NGKABwZIeWsoXIJEQdJ4aYJgQYhiGEfYIEcocoAADyZEBEepwFRHahTBrjIAbibgAAqCQoA4o0A6Q5Edg0qlCV8qQdYiAGUQQm4oAAA1LbKQm4JIE8PYGBIaDkX0TJqVJMUMv4MMaKmMcUWhEnLjOUZUTUcgBAFwIeE0S0Y-G0RLl0TJjMYMd4KqqMeAOMa4coP0W-j0f0bMe4PMRcYaEkV-vEEkKkN8jsiWo8u4GMgoDLAkDpj4RMKvOvEEbkG4fIQwo0B2qbjkY8c6GaECYbgZKcW4KgcgOgXYE4QfhCOUkiUECWpJLGvOoiRiV4POkkUiRoMSRCXutcXIIum8S-NlB7IxGaKScnl6vwWzLhEITgb6n8msZCQIKVLuDkBxONM3IWhMNHPQsdJfCYTbCQVIe7LHP6hgqMCYVoeYUYeCo5LqWYXYcEjEDnG4BaRzlhCiR8SCVnOod+Oit8asuRokYIH8W4ACTwKifaSirCRoOCfqgkaAEkaihMPCSahSUZFMICXaeiYMViTiXicIQSfUOkcmCSaEeSdcY8V4KYF0NSYku6QIBmdsFfAyQBkyXGr+qydnAMY0FLFyaEXweDimUKeGaaKKb8TJpKYPjKeEI1GipPEiHKY0AqZ2RfCwlgM3KqdbiYetFnJqZOtqfqb6K4WuUdBiV6ZoSaToWaf4FaW1L4f6racCYuUoGTD7oygXP7oHmyiHpyuHnQDQFHsYNBARPBIhEysVPbktt2nmmRJuB+XBAhBATEfhKBScDBHWA0k2KhO7g7prr+Q2pfCBYRN+beTbHmhSAdtWm-m4NWqOFuWOPTrWgRRoLWsReCgdoGhRTEV3JgNRbhfTt1PRd1MxY0AdrDgIG-jxeiCRSdPTjiGgHWHwOkG-iJWJY0bcIJe4AdoVBURRYpUxdqHJW4AduKJ6nCFkGgCPFpR6jpRgBMOpRoAdr0fRW4GIASHIOkMoBJAAHygCXj9EyWmWF7IibhXiWUaDWW2X2VOWXi3huU0X07DxyAxB+WgB2WSSBWgA9zRUaDuUHbAA+UQQ2XRUBXOWgBgAhUsVF4ACkaVUVMVjl2VBViVoAyV9OSellJVWViesadloVReAAhDGnVRlaVXFe1VJM1flZ5bkcVV1Q1aAPkRoP1VxfTrkRJD5fVbFdlTNRNdVUXg5cNf5QtZeE5ctS1Z5Q5bNRFe4PNWVVtVJJlbtWIJuK1Wldle4GVRoK1W4HHhSFRGhZBRhe3mRjIZJFqNpnRpGnIOhV+Z9XAq9dOUDURLLsgFkAAFZ9D-Y-UTB-VsALW0XvVflv7GYeTuX+AQ2YW7xg1zAQUwRQVvTtD7FRIqIHZWoixv400ZQ43bkaX06EDQDCy4gSURWs3s21SM1M0eWXUGVGCkCEAUVC0i181M2aUiCGUACi9FQtstkt25B2AAcnwKrWlerarWWYMYTUJHjWTawlrK4YjY0MjQtQYQdIbTihbm9STR9WSnIWbTEBbWVVjWhIDejURLbVRKrvzrhIbRnmRHON1AgdhAHUYGlDEppKuL+KKkYDDXwPwGvE8GzAmapIbTBccEiPBcpEMqHbws+P4E3mdjoGkIKeWOHepI4ZXfpF0iAppJnt7fjcIiGbSRoDbSwgIjkYaY0I3WAkHbvtDXDQgHTB3cTZ+T7d3SsqocrW4K2QIQKfvqmc-HnMcOJHwXYPEJ4fSCvTgTfBFBXfvVXS+E+pAKYLDNBBCMSLgGzBmCMXYHICPfDefJ1PAMgA-Wqi-QgMBAvBSB2gPm3hnj-QlNwpuLkUA5pFeM5GtSQpiEPT+aAy4EvP4F4BA3jTA9VHA6g00FBIxWbrDa-cwLg8jJuAANr3Fxqf3PEODzrIM3FTEyYkMmj9Ef1f32CRaNwMOTGbgAC6m4LDmZ5xdgixyDJi0QUlAwhoXlN4cj8jCjijSjleJot9AhHDdgvDAAOtAFQ+w7Q4Q6PZurcTo+Bc6l0LfXYOZO2VXQoTVLydvdDfiCfdmAjgWXhMgFY2EDY-pKCQvQ4zvc41gfieJFJGaAjuY7UqI5ILKuKLAB6tanIFoLiZXOHXEwk+lJdZE8k7wquI+FdCkxYQjpsskwZuWpsmlMMZAAXOHcZhU3MGDDU1-pshdH2Lss6ZUynjU6oA2daYgTZlrrRvU1U00+8QkMkGkB+WKc-fVPcjCbYtOQUDbPCOGNM6AIbquB8BbtYVhEs6EfTd0K3NwN2W6b2eVEePoBs-cgYPoPCGWC8AEI+B3EhVw3Abrvah8RMzLIcGYGIAMFkLlKPD83kKk6inMoIMs0CKs-82YGU+EECwC3RAeWNHs7Ggc0cypX88C3C8wWc70MLBlF1MCzc8Ofc8cI86FEECyYIF-ltobQyHdHIOk4k0S4i-M+4J7HFuTV0AywyEHBMJfLADbGSgyDsny2yQTvoGIFlbACYnQgxMzMYDCwViCUSPy40JfJ05El1OM18cq1i2ywi7C6K-q3yweTs1K1lVq3K7lJLEfMYDkzE7DLy2q8KSEtOUxVJNk1wNE6qHgnwPEyy466qH2FE3dMuhGXHNKwtZE3fo-EFMXWLPKwGcc0VAyBKec5VMJr9HGnVJLLc0CGS1wBSxI46foFtlc18i6ykEywGxk7i8q3TJWwTWC9OYbthbq5M-hGbrM1W0SJOKqykAdM26DW4tOTWNgLANq39Q1GVXSy3W07i8y+lEa0i33apCO-JKK5W5pNNEO8i1G1lThFHcWMlJgPHRgUnSnbAGnciB3YbrWzpikAtTpgdBO+GNjqXcOWXAU7k7DIZlfOxJgPaOHQdksm-sG6uDi8dkByB5fgQkspBHMLW4Gyu6y4C+s727vIDbAL6rwXONoDbN6767E3WyyyUz6zi0h5IBG+60Ta0wyJC5PFFG050weeC4UOXi7f4LsJuy5ESHAdAXy0cxW1h8Igywx0SCh-W6u022J20JS3UVfnhA7cDRJy-n2NJyy42we-6tG2VSm+43G-9j+hRNoCWdAWwNK+a24JGvwBdikLAJnrh0+L021MU90PZ3fI58576kZx-ldo58yb+rGwF-G452hIm2W0pwQqIL2p01p2h42zM5s9hxAAME-TEbh620TTSHljbHF10Hl8hGxwbJywO6l+JwJ8VyMOq1Obl7lr2CjVJKJ5V1u9V41yMOu-zcuw28C3J21+gDZ30xBFlSm0ZP550FduABl3IDV-JFZ7RxiXZx0N505xF65x3a+DaxLJOamxUdR-9JuAAEKRpxrXQ3MjMIYFumDZDktjnsnReFcSDnYgd2MC2biFdv7fxf6FdvS0hkh-edONOXC1MDMLrXQntXe1e0vKdZBDBwBFEJdKeod9eGvpeJo4d4fTm9BCRSTw+reGW4-IilfRDlfKttPE91f+CatzDaufN6vAsGsYcU8mtM9U-DeSujcLXjeqRSyhdTfxszeJrU9M2TexTqhBeXcg4StGQTm8+OQrcOfrcucT3HkYnbdJu2t7eYvI8ndncE+I-S8g+OY3dFsltixfuG-xPM+lnvcHbW8epv7Ktf6O+nC9pu-A-VOg-vfGae8NPe8w-O4+tNxGH29P4+tv6pO85RN-uLtqvvf-kra4FSegGR9f6QfOv9vJPhu+-g9msI44qCdcCgf044pv6Bwx8isCd8uJ9pY955rpsybl9f7V9pC+y18UGc6vMF9fv6ugtd-VasXAtR9FNfsCbYvVvh1J8k6MsybKvgWs-9umsJ+D-9NK6-q9-RdbZ2Cf0f2HeJdo8YcRc5dCTE9Ed7+f3E+HcHnk+T8Ccc97e0+SD0+dvfOIu290xL9pD6sc8StjT6cnK4vQLrADkBasDyE5crpn0p7XRRedHISMkyI7aBY+Trf1qjySY+s4+orHPn-y1AACsqwA8LqANAAC8JeBTJbobG14ptdeyHGTKd26AkDL+xvQPgKjN53di2D3Y8u+CfS78s0yAW3qXyLy8CP6zvYFl-mEFX9roYgCQVDy6Y+81+LzRdDIK95NMEcbEHTO0AjDh1NBkYYCobnAopAL6RRHQRZxL7vcdBl1QwWgCd6KBi+sPAhGgGTriBkevXJnAG0SBY9T+4kRAV62QGZ80BMnK+PMAjCyComVHNjrp0nSAC9u2oKwcYOCEeCSByA4zuqGSYUCjISvNbr51l7yl4O1+SQBUWcG0DXBQQ9wZ4L5iXwfBSQ0-JgNQElCdBoQ0pmmgiGnI9OY3JEoQJM7JNAaaJHQekNUiZCTgPnDbm51HCa9uBq8JweQPD5F5HBYFDAXYAz7XRCh0whQQdhTiFCIOPrL-A0M6ZhC00uwgPt0wUH3YEhsgk3qgHeYpo0SA-E8o-iLz6C5A0fcfsYD47x8h2dfRUAQ1r6hoHUDfFRPOj5alR9BX+N4dux0xgjV+dwu7OD3obyd+O+7UEfCNDY7tug6oSER8IUGLoMR9goYauHAAVEcAB-FHoEOS6YdBudME-hUPHYpopIszAkZgBwBwgO8pPDlvawq73I2mAbUHm6w0CXxuRwiZrjFxOAYjdkBcQ-t135o6h+uKXOZpz3wE89RhpCAUQtxgDStXOgwxUCr0TYa8duMcLskVD170CYi+IwkcwJTRpRSW7AzgaYk6j0jCRYo+QdCI6xF57RjIt-CqOgBf43RTIz0Tfzz4b9aMLQ22Nv2U6Eg+gUCQUdVGJFkiShavdEFL2F6ZcTBmHdlvoW-RsduSMmcDiJ2U6IcXBZHJLjKNTFY9nm86TMaEU+7XRBG0IYUVmikEFj0B6HdwubjkBJjSxEwIIOWLmD2VY0DOBHvExrGNAxQcPAcUj2KGFij+7hdsVl0U7diaOWYzcBIKHFhQd+l-YkSULJERcyxGYnsYuLmGv5cxDgqYY2MCEpjtxnYl5hWL7EbCtAK4tBnWNvFFDJAEo0oRGA7Ecgrxe4ysT6PvGUg6WpoxkRuMnGycZmlI3Ds8xoEvizm+4C5uaPMS1R6oJLO5uwIt6hiCEKg5CKICyTh0OC2E-6EYi-yYThE+E-0ScN3E0cccRw3sOGNgCRjVRowTMViN-Sk9ou7jYie1wjFNc1RyPW+tlz5juNF0vEydlF3PopAeQogWQeqC1agSSR1qbHkTUc5ICahJHDcCUOAqwBOBypDLspJQF+t1JSYrSdOR0E2xeul1HQUZKJrm5TJk4y6nxz0qRCsIDIywHWwzo8ciaZVdidRKq5cSoxowY6Al2OhbZaJ9E4sBniGQcTiwpEtjpKPkoyihkrgqvKAKGTtihkJgoZHbhxrgC8h7-Y1p0EwCGgKeAHcAe9w4JFTm4YAunvYVBjcjcpdECHlkgwH2gvyvqcrqbnwlwCRuWgZqQhAriLQnhi0CAcmzwFxx1IQwBAHVPVC7p1IB0Y6Idy-79d2htkS+OlCySyCbYO6GaTkO8iZoDGq0roGx1pJeBupXAL8vNLkDxjO6BDLbKz3ymGh9psgi6VKKZrgCnpz0uKWy2WKnEggJ0s6bEWU6RSK46kWQbNPelSjXpSosGc2KSSQzDyEAr9ihJeBQwP82ABuFB3wmH90IasLJONK6CNtkZ+U3IMcFhgYyJ6506GUtP5qpAJJ0FOnuTNjGTjOejkYGHT22nahXwuIksPGF9Qb03xiQUQotANh2ijB1lXQlqBMl0iCGGVPoZt0jb+pNw3QVAK-gkb-EXo6g6NimzalRkEhnUgqKKU3Cy0l6fMoIKQAADypATgbQioFKlpyH9Z9lJHJI6y2ZEsmstzncFMyC8dsiVkeSPKHpoAcEQQIgAABe4gXkXzIFkNx-+ccBWUrM3AqyvSL0KSiIBt7hAgQiaMwSm1aQ-R05i4uIX+OHExEjBEiVOY4OdS5z9Bx0LwOrIzJBAS5OcysWlADn1gQ5+csKI3KQCByQ50rCRJizKiwTKoWgb0EJEtE6DHmTLbOc6nhkWtQASc+APExyn+Dbh8lQjikJti9wSkQ8OOdEE6izyU5E8jOSNP9R1yy5lY8xq3IfEpDi5+8-cdoHPlhR5kBnd-ILwRpSRzk6vUcKsSKjHzcWE9PuRVEgIJxh55bZTpnwt65xp5u8j1MUyhZOdJQDecKK0EwBojp+GORuN1IqLILDIXgdFtqFxg2hBAYgOBUZm-Tzp0FSC+eEnCpLfoyFmCj+cOVWZELXZaCvoBgs-bRdSBV2TPuHX8FLjb5Ow5IWFy6G1DVQpg7hcItlSHY+FdgnKelEPBGAzJCkg2kKxa4gLxFlRRzpZKEhJibJBCHhYZPY7GSEhOi30AkPVHRBeZfBSKdtg9ARzjE5iwjnwWsmU1e03Ff2R3ObkmL3Bb+S6VZQIGmLNw7cg4B4sfAUDeZ0A+YC8GwpU16cGirHqPHpyGS2xGXZdNvJeiCAEkkkxeRYT25SwVmTnADuEpuS9ipIBzMOYwlUmdpIlkstaHmgA5bYslRheehiUKUvBOe8vO2KKQA6bgAAsqJCQDtgZ5KUa1AwNAUyY2lh8ydJuGgHpLwwpYboFvPAUJyPmb-BpQfIFaLMIWUkPJaH1xYtLjg8os5JsrRax0CWhzbhJiy6W7h+5AC1SRSwkRIEaWU8pZSmhCmQww5z-F+dUJgIgDOeWsuHOALKUF4Y56UBZeOWGkmgrFryvyf9TAQAqzFy5G0gSC4mhzvZlvVWfakgV4J95YcrOWnJPl9j2gmAeAHfORjRCVAV8ARc-Ml7EDLF3k7RK9xL5sz0Q2M5FeqPflVg6i18huXMHSXnCWBGKBlSStiAUqrQio2ldD3pVEJ7Qh9K0K5yPKXjv5i4mZYLmvyqShVzoZVaWD0mrgr5eK2dn2OI5-t1VcQFZWot1Wlz9VUkAJTyobgcitmxq1MWKt5JOKI69UJuo4vuhgTi68qz8YqsrEWTK5fM81fXL7H2SHVHqtAD3NFLfyM21y8KEPPEiWjeuYCy0s6JnmGAlQc8qBV+y2xmToBc8MCXNxRlEz0ZM0rwXJPSjGKDM2xeRbZIPLOS9UNvfNbOTKpdIzJm4TVZkrUX5Nm1BpWGfzAqVzwDy7azpryrDW2Cvc7gEdTaryBWL1s6RdprdyRkxRUZxM+sY1IrUl9HJwC1Hm43mBEqAh8k97u2sJXErbB4gvwWou+XxsShvatZQXg4XxtDVdQkCeFEHUWF+FKkuPikMPVoc71oi1FJ0PVDPr9Jr6u9QdEr5prgVysr9mo3vrOS0ohgkntACQ0eMBCiixNShqgQ2w4NyG1Dbhtv7sjTciGqBLrKkbiVLqcjbpBUXO6Mi0ocyxqN5VKiWyC8YhLXrtxTbkaZGSjHjbxvkYqMjIJGixoHjZjaNdGkxITWJpY0jczIpgJDkhvhk8FpyfQGpPZJtjmKVEvwBlIBF+BgcpoPRWyABCmimUDssubNoRg0Btjd85my4RkjwqAgDMn9OcHsR5aFY4E6q7ck8Kc3Ga7NCS63HOAM3og2x-miiCZvpwT8doFEFzXLkIw+KJgAEBajxVeZ8BIuvmovC7n00mgMBkWyiJqC03AA5wum+nG2ULqSBAt-gOQNEMIlpbPKkaGGsgGjoBbtQlWgoEZu3pHtawoCXZBRHFJxb3pwBR5UdHy1BDpAEEH7kVqLzPY-MnQcraAGC0WxptzgGrZdV+yLa9KFW8KOQiQQPQJtnlCLcjlHJuAwBSrQEAdvvzLbJFUqzxdtp6LHYGVf2HbcNumA3ld4LKPACqD4BXhYAOkOiecGo2YBdtl1QVOYEsAkpRUBm47RzBB0ip7AYWovHXFlKjhIdqTC7SWn0wFoYgx2PTFOBR2A6AlAIFtAOkaCQ610cO2rYTtHTkZAtAECnSbV0Rk7Lqa6KKOVpp0jlswUUBnR2udJo6Lot279qCBdL-4LtR6GerinuQebTikOkDHik53S7ORJaCXYMSLU8qEUrGbRORll2i6CMYGF-IIwXj66l4yu7ltrp9hC68diGfYDchN166Ddc2yRJbo+SkZauF2ljChnV26JFdpCd0tIkd1q78U9Ol3Q7sBRu7Td4BPrRttd2gZQ9toTnc8j0y867dce3RBzuF0nbuQQmNzYpkh1yYbNXoi7SpmVA141Q1Oolunq+FMF1MnO8zPXlm3uAgWZeoJKntqTOZFtfOpzJFEW2c6gs-YIrEdslYxbbN5uuLAD0+gqsBQsWqGXXuaDzd8sA+vPXjpn2whGQ8yqfQNmX2a74sIwWEIJBZ1PytIhMQSBvpH2z7BAxKjbQNlP1DbSK8O4wOtluCQ6fuF2rbHfsx11jH9Q+hSB4kSC17X9uOL-ZztZw16gtHhL-U4gNCc7tSWCE3XpXD1T7IDviJ3Qpwu2KymQjmwsh0G6CyIfInuxyMdgWqtVpY1OZQIakn0WprF3MeQiQdIO3B296YRbRIFS147okG8lfXbuYOhB0UDNJvT+ElwPpf9fODooLmd0f7EGBcHA4ZoDQLtnIseyOqIYfSwG+9x7OQ8Iev17bmEJeYBtVD4rqHW8ZeaQxdrHyF71MfOwwxXssic6zNLjGbVZqZQ+NOgFh3fIpB-02GC4YByakJSLw10y8ddGbZZu4AOFvDVhpbXjvTxaHiddY-Q3SlUOXUGeaQSuMzr73IoAqCh+Sm-x52-4SGtumIGjpx3xFBkBu0hpiXTJ5bojvC4TZ42sY+HiVKRu3ZE0saVGgjEB5AfUe8ZVHxDRkO7eUa8ZMiqjV+-wAymdTpQngQrL1AIFmaRrSj0eW0NoazQx5OdPFGY9VqiMeHPKuG4iBURPZIa38axhDVhuCOlGL6UHa+sSuKSX0VO9h5AxmukaSUrj4lKvbwmd5F1og+tcSCpupDFq0Znrf+vJU00xApl06UHUvpGJ4zgSAm9wD6L+YqI0S1qpucHM8URgQlplRDodicCPHe00JnYxsaE2PhYpo4IvgbOIBXg8YNzJDRS09q-BnueaaEwsYOg58UT0gRExkkd629LqEMDY4rJBXkmYgyJs0GieRDQm6j2Abo3YbPVcn-AyJgoHyZ7bmSfEUCaAzibfXmTUTjB7I1MPpNnq5ADKf0GxCGBPBfwQQwodQxG3wBfgyJyIFKehPsGlkGUBU3SclMqnxT6KVkwoAtM6ZNwXhnJME1XoKnLpdpwQLaZD7qmAzDgd0y6YdPgnAJRIqk26fcYtGejQR4M86Z4CMmMIywrQEqYZNImnTOWToGlGmOrtLBwJ2pGgD6UhKMkEglk+6YeCQKyzyx9wMBSLPxQwTbgCE9GcuqHGr6wJnE0iXxOy1CTxJi6BSwWGXV7TYp9wBWf1b-HI0gJvIMcd9JlnbYvwKs7CBrMZJKTUJt08DuFRg77A3Z2yHSfNPhm3AzJyc7wCh3bn-TY5helILbP46cWiZoM0eY0AnmmeVZ+81eY0AMoqiWgEQGEXgDABeCXqK+M3ApM3mNzQO4wJHrxR7mjIB55Ux+Y8JjjKzZ5qC+LoQvrn0Tm5rlsbWt1NKxMIZw8whZfMf83zcuqXOhbAuYWILzaNnTNtpOBnCLplYi78zfNrpazMQDC-yawvN6O9TsUcnhcVOPmiLSF08z6WwMUWXF4Fu84vrH0KZdGAluC5meEuE9kLPpGkOxf8CcXpTd5nPZnvku4n8LGZ0U0xZEuvmzzgmDS+4C0vUnb9gq+iwRfgsmWVLolwhJZevOSWqLd58nPZaMspmYgzFxuG+e8umVrL3Fng0IcUw+WhLTlxHqpbhAS4Ir8l0yhOdfMwBrlc+rNHm1rNLmzz-kAPLgFcsZInxl1GKHmdfx9H6zuV72M2Y0BmnUT8Szy93vH2RXhz0V8s+uNEsrmM1ycmwTjRys+lTA0OyUxkglP+nWrhF9q3wIKYlWP8ZVty9Cj+NnmC0I17M8Na1C3nYjOLZnVFcPOtXeTT5xgVNbpOlWFo5V0yv1e+bp6ar-O0YJuBgC8BXTMRsIPKF5Dj5LID5xiytcni+WGrXFp6w3pr07XHLX1n9nhjGsC1oToRivAJduB0n7ryZoG5mb2thmELFZ467NdOvzWlRrFhK1LgyQHiZruZzG6ZQJuhmEbIN0EO2fSjJnfr2lwCB9eBu-BSb8NmC+4DqsMnab0JszXpYZtKWsz31nM7YHzPNjWTPpH8D0EQBD5rNPN1Gx1bMvVnurWarGxdfFs4gpbth3PddeKt3XqbCprU0BZ007SCh6Zsm6zds7ZnQ6j1900vRtxsUDryJtgFsJDOjnNTYAeNC9qq496RgoFjy39c3AeoHN+uKLfslz0OSDLgllmwdYCuM7I6NZhC6TcdvnXFrYt-nDbmi2575z+NtU5bf5ug3zTnNt089gC1RXI7El5ELef21p2Q7Mt8O3Dd1tR3TLJFs8+LaRw24sbpN-a1nd6k62Hrudym4LbmsFmcbdYZkXRJwCiQtVxd5K3LabsK3RKPV5W8nfisj2A2Y9ie5JIC1FW0z4gHu+TdTPG2d7nd-ex-RNs52Kbt1y2wXcZ3dB6tjWiiGbe3J+neKUVnOwheRMs2r7-xnLWHYjv13ZbU1ly+Lec3V2vb8kO0ovf8DD28grdze6aezMnXhbgD1O6velTfMctWNlK7Pa6vz2lbCFlW8g9gBj20HN0e+1vYPuM6etD9m6xQ+3pW26tDW4sMXfDvMrAz9p1q6-dMra3E7k1-fpOePZx2k7kD-h4rcHFrnKLftqCFIa0MKXAzid5S7FcnOG1moZdyE55ZF0aG9D0j2u7I5gB+X-A0d4vLoc4jKPp7AD1K5mzCm75EJZ1ko5A6UcB1rro13ip-aUNSPobb0pmnSe4f9r9zgZjh2Q5Ps72EH5Vnh-wPRtE3pjeDv41A2McOPz7VNh65-dMNqZ3rUVuR33duu8mkn1mhM2k90f23szWTiG26Y9MimfTUouu73fYeUOor+1t+9mfzvFPLqS+QG61fSe2OrL4j7SygZCDIB0DmkLA9VcRvGWmTjdlixNH8iHghgtYcHQhe1vBOqHmDlizUgEcdO3Am4CZ3Uimdthwd8Tge5jaHuOFDwuID1L4nEumPeH8t7B5msHFjmLr1oa66TYWcZOEnNNpp5dtmwPbebIzus+s7PNHY4HAtxp7eam18X-MrV0uyFa6c2WeLdBsF3RfGuM3-LYzwK1Vecz5WmRDzlRxXZO1baGkD5yF6M+cvy3yDJwVuwyHbtqnI7Xdw+2Gb2cLPDnA1+7c84uf8DOreQVZ78HufMuMb+Z4+ysNNucPt7rzqh+-d1uf3Vt8L-7AS7-usu4r86wR5VaZdXbiHfYRx-A95ev5DnZeY556jOdDO5X7LiWzg9ucVW-nOrk5-q7fjquBbw1p+dyzEClKhX5D-Z5E9CfTXXXNjrUBdcZyAu879V954AYNDfO9HbN1a+DdvPwG5TiB9ACG8YNM21Tu1nKm7dZgVF9g+pg+0aciB+v+7wLqS1ac4PzKoro5l56bc-ulO2joM-mk-fKfVuGLypjx4-cDN1PnXgT3y4a6uccuRHvVjJBdfUs0v23rt4CwhH8OgP9ADIolqqATfd2j7qp7u88-peavRBs9-7uwkltevuTDTgN7eZkvlY43-9y51g67cmue3yb7pA1HdvL7eDXALl0vehhLB13Wt4V566ofa3Z3ZCNt4+bEe+3tLUxkJ4JZLdEuFHJL6GIJHOyine3d77EINlXChAMKNr-1xzfee7vT9+7jt0e+Nc3Oe3t7yB2edA9tBwPCH3N9u6ku7ud9wz0N24CWeou57WHiB0q5otlxRyezj++86Z0K6KPB15m-XaHcHjQyQehqBO4GBTvN3QLkj55aZ287OP8dtU++6eJqmF3Ob26wy5FusXadRgBgBg5nvLPaPC9z2me+JNrp+PhQHDwx6Z2aeAnArxT0bc-dyea4Lr6l78FbNSWk9ryXXTDcMu72HzbDwSy2-dfhOhbG7kukvdQt42lPIrz+6F6+olAqHpxRSz87nc73qXZ7vj0hggA0bhPOq0T4h5OPvOovbGdz8w9hv1u+bA7wV2V+s+OmBbKnlyzG609mOMPqzgzySgagxvjPtoUz3859J1fLPJtyr4whdd2exMDnnj058jOqO-brnrFFJ6K+-2qnAHy88jYRv1PbX4Novk6-8+BmWXkH3D2pa109fwvXnz+2Rei+5BYvgxeL5R+8BUuePKXpwfa+NrpemKmXgHdl+I9Ied3+3v3dtdm9wkSvCXuYrJ7pfTugnS70tzV5Jd1eD3bLzt5h708HQGUxJtrxdE6+fmwAstNYuGgwP1h7AS5tK--IyvWOiPt1u1-ifx8XNCfebSwGsXq+HuWLk8fEDT6ieQPyfx4EGvJCJ+9fQfET-9yADAD9A9U+gVIOHM4KsphHJ7pME47fxk+LH7PqKVT5Uq0+YfJFhn-SCZ+Kv1nqv6n+uGuvOfPLHZ84xqZ7Oi7LqfZmc-t0wBDmFvz96H5WZ-NaQHgc58B8z6VfWARA7J2OVsBePcB7QezaILmtskHZGnZbmTHa83CO3fvGgDtZQ-7xLvSojnxyG8dhD2TmHSfmYB8eJne+-ucZjT2vKZpaMn0hXBgBrKhkF-3AXGsQAAHIAAgpX7kAL53pZf+Ad4KZB9KCu10HlGysGJN+RuFf+KHIAvyOQe-6a0StIyr+EAr4pz0SAwIPDiQAWxNKbt0Dr+gAAA7MXXcAF+oU1Bk0AX-fod+S-YM4fxX8r-Hdl-2+Rv2msr-EBK-rnUg0f9uOGhK-E-6wexAEAz++nHhBqMcYyjL+aA6-twJv7b+o4Lv4vQhXONgH+F-uX4P+VfgAASZgPEBva53JIDjYlfv-47+b4EAHoBe-pIA0AEAc9LD+Y0Mf5wBDcJsQYuSAfAA0AqAbf4xAgAZgHogBfhX5F+0rHIAAArGgH5+zAIwHXQ4AQdAAAbMXQMo+AFP5v+C-uJAHMoAAwHQBhXLgEHQAABzsB25AX5byzALwSQ8Ofjyh5+9AU+iRovQBuB8AueJYTagBAXHD80w-mzZZiAAAynEZgc6BZA+Ab8DAI3QLoG7I14PPi54kxA340B6gDQA8o1AYf4YB2-pIGj+FGjoGyoK-qwEHQWjJuAr+kxCwGSQUQcXRKBZ9KerrQvvjSwvgIGlBw-qafqVD2mT4EAA

Computing with Register Machines 5.4.4

EC−eva lua te value :
undef ined

EC−eva lua te input :

append(list("a", "b", "c"), list("d", "e", "f"));

EC−eva lua te value :
[" a " , [" b " , [" c " , [" d " , [" e " , [" f " , nu l l]]]]]]

Of course, evaluating expressions in this way will take much longer than if we had directly

typed them into JavaScript, because of the multiple levels of simulation involved. Our expres-

sions are evaluated by the explicit-control-evaluator machine, which is being simulated by a

JavaScript program, which is itself being evaluated by the JavaScript interpreter.

Monitoring the performance of the evaluator

Simulation can be a powerful tool to guide the implementation of evaluators. Simulations

make it easy not only to explore variations of the register-machine design but also to monitor

the performance of the simulated evaluator. For example, one important factor in performance

is how e�ciently the evaluator uses the stack. We can observe the number of stack operations

required to evaluate various expressions by de�ning the evaluator register machine with the

version of the simulator that collects statistics on stack use (section 5.2.4), and adding an

instruction at the evaluator’s print_result entry point to print the statistics:

I"print_result",

perform(op("print_stack_statistics")), // added instruction

perform(op("announce_output"), constant("EC-evaluate value:")),

. . . // same as before

Interactions with the evaluator now look like this:

EC−eva lua te input :

function factorial (n) {

return n === 1

? 1

: n * factorial(n - 1);

}

(t o t a l −pushes = 3 maximum−depth = 3)
EC−eva lua te value :
undef ined

EC−eva lua te input :

factorial(5);

595 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=EQBwTglgdgLg+mApgZwK4BsbADQCgAEh+IiYAZgPZgC2AFBSLaJLHMjAIYDGA1m5zAjsIXZMACU47PgD0M-BwAmixIvzR2YVF0EUoBIiXJU6DJhyhQKqKF0RxrMEKixT8XPewswmAUQDCALSIAG4c6KgcMIj4YRGIAFwSUgaEACQAOuiKFDDIaYRy+Mgc1DEcyPgARoiUSEA

Computing with Register Machines 5.4.4

(t o t a l −pushes = 144 maximum−depth = 28)
EC−eva lua te value :
120

Note that the driver loop of the evaluator reinitializes the stack at the start of each interaction,

so that the statistics printed will refer only to stack operations used to evaluate the previous

expression.

Exercise 5.26

Use the monitored stack to explore the tail-recursive property of the evaluator (section 5.4.2).

Start the evaluator and de�ne the iterative factorial function from section 1.2.1:

function factorial(n) {

function iter(product, counter, max_count) {

return counter > max_count

? product

: fact_iter(counter * product,

counter + 1,

max_count);

}

return iter(1, 1, n);

}

Run the function with some small values of n. Record the maximum stack depth and the

number of pushes required to compute n! for each of these values.

a. You will �nd that the maximum depth required to evaluate n! is independent of n. What

is that depth?

b. Determine from your data a formula in terms ofn for the total number of push operations

used in evaluating n! for any n ≥ 1. Note that the number of operations used is a linear

function of n and is thus determined by two constants.

Exercise 5.27

For comparison with exercise 5.26, explore the behavior of the following function for comput-

ing factorials recursively:

function factorial(n) {

return n === 1

? 1

: n * factorial(n - 1);

}

By running this function with the monitored stack, determine, as a function ofn, the maximum

596 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.4.4

depth of the stack and the total number of pushes used in evaluating n! for n ≥ 1. (Again, these

functions will be linear.) Summarize your experiments by �lling in the following table with

the appropriate expressions in terms of n:

The maximum depth is a measure of the amount of space used by the evaluator in carrying

out the computation, and the number of pushes correlates well with the time required.

Exercise 5.28

Modify the de�nition of the evaluator by changing eval_sequence as described in section 5.4.2

so that the evaluator is no longer tail-recursive. Rerun your experiments from exercises 5.26

and 5.27 to demonstrate that both versions of the factorial function now require space that

grows linearly with their input.

Exercise 5.29

Monitor the stack operations in the tree-recursive Fibonacci computation:

function fib(n) {

return n < 2 ? n : fib(n - 1) + fib(n - 2);

}

a. Give a formula in terms of n for the maximum depth of the stack required to compute

Fib(n) for n ≥ 2. Hint: In section 1.2.2 we argued that the space used by this process

grows linearly with n.

b. Give a formula for the total number of pushes used to compute Fib(n) for n ≥ 2. You

should �nd that the number of pushes (which correlates well with the time used) grows

exponentially with n. Hint: Let S(n) be the number of pushes used in computing Fib(n).

You should be able to argue that there is a formula that expresses S(n) in terms of S(n−1),

S(n−2), and some �xed “overhead” constant k that is independent of n. Give the formula,

and say what k is. Then show that S(n) can be expressed as aFib(n + 1) + b and give the

values of a and b.

597 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5

Exercise 5.30

Our evaluator currently catches and signals only two kinds of errors—unknown expression

types and unknown function types. Other errors will take us out of the evaluator read-eval-

print loop. When we run the evaluator using the register-machine simulator, these errors are

caught by the underlying JavaScript system. This is analogous to the computer crashing when

a user program makes an error.
32

It is a large project to make a real error system work, but it

is well worth the e�ort to understand what is involved here.

a. Errors that occur in the evaluation process, such as an attempt to access an unbound

name, could be caught by changing the lookup operation to make it return a distinguished

condition code, which cannot be a possible value of any user name. The evaluator can

test for this condition code and then do what is necessary to go to signal_error. Find

all of the places in the evaluator where such a change is necessary and �x them. This is

lots of work.

b. Much worse is the problem of handling errors that are signaled by applying primitive

functions such as an attempt to divide by zero or an attempt to extract the head of a

symbol. In a professionally written high-quality system, each primitive application is

checked for safety as part of the primitive. For example, every call to head could �rst

check that the argument is a pair. If the argument is not a pair, the application would

return a distinguished condition code to the evaluator, which would then report the

failure. We could arrange for this in our register-machine simulator by making each

primitive function check for applicability and returning an appropriate distinguished

condition code on failure. Then the primitive_apply code in the evaluator can check

for the condition code and go to signal_error if necessary. Build this structure and

make it work. This is a major project.

5.5 Compilation

The explicit-control evaluator of section 5.4 is a register machine whose controller interprets

JavaScript programs. In this section we will see how to run JavaScript programs on a register

machine whose controller is not a JavaScript interpreter.

The explicit-control evaluator machine is universal—it can carry out any computational

process that can be described in JavaScript. The evaluator’s controller orchestrates the use

of its data paths to perform the desired computation. Thus, the evaluator’s data paths are

32
This manifests itself as, for example, a “kernel panic” or a “blue screen of death” or a spurious reboot, typically

on phones and tablets. Most modern operating systems do a decent job of preventing user programs from causing

an entire machine to crash.

598 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5

universal: They are su�cient to perform any computation we desire, given an appropriate

controller.
33

Commercial general-purpose computers are register machines organized around a collection

of registers and operations that constitute an e�cient and convenient universal set of data

paths. The controller for a general-purpose machine is an interpreter for a register-machine

language like the one we have been using. This language is called the native language of the

machine, or simply machine language. Programs written in machine language are sequences

of instructions that use the machine’s data paths. For example, the explicit-control evaluator’s

instruction sequence can be thought of as a machine-language program for a general-purpose

computer rather than as the controller for a specialized interpreter machine.

There are two common strategies for bridging the gap between higher-level languages and

register-machine languages. The explicit-control evaluator illustrates the strategy of interpre-

tation. An interpreter written in the native language of a machine con�gures the machine

to execute programs written in a language (called the source language) that may di�er from

the native language of the machine performing the evaluation. The primitive functions of the

source language are implemented as a library of subroutines written in the native language of

the given machine. A program to be interpreted (called the source program) is represented as

a data structure. The interpreter traverses this data structure, analyzing the source program.

As it does so, it simulates the intended behavior of the source program by calling appropriate

primitive subroutines from the library.

In this section, we explore the alternative strategy of compilation. A compiler for a given

source language and machine translates a source program into an equivalent program (called

the object program) written in the machine’s native language. The compiler that we implement

in this section translates programs written in JavaScript into sequences of instructions to be

executed using the explicit-control evaluator machine’s data paths.
34

Compared with interpretation, compilation can provide a great increase in the e�ciency of

program execution, as we will explain below in the overview of the compiler. On the other hand,

an interpreter provides a more powerful environment for interactive program development

and debugging, because the source program being executed is available at run time to be

examined and modi�ed. In addition, because the entire library of primitives is present, new

33
This is a theoretical statement. We are not claiming that the evaluator’s data paths are a particularly con-

venient or e�cient set of data paths for a general-purpose computer. For example, they are not very good for

implementing high-performance �oating-point calculations or calculations that intensively manipulate bit vec-

tors.

34
Actually, the machine that runs compiled code can be simpler than the interpreter machine, because we

won’t use the exp and unev registers. The interpreter used these to hold pieces of unevaluated expressions. With

the compiler, however, these expressions get built into the compiled code that the register machine will run. For

the same reason, we don’t need the machine operations that deal with expression syntax. But compiled code

will use a few additional machine operations (to represent compiled function objects) that didn’t appear in the

explicit-control evaluator machine.

599 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5

programs can be constructed and added to the system during debugging.

In view of the complementary advantages of compilation and interpretation, modern program-

development environments pursue a mixed strategy. JavaScript interpreters are generally or-

ganized so that interpreted functions and compiled functions can call each other. This enables

a programmer to compile those parts of a program that are assumed to be debugged, thus gain-

ing the e�ciency advantage of compilation, while retaining the interpretive mode of execution

for those parts of the program that are in the �ux of interactive development and debugging.

In section 5.5.7, after we have implemented the compiler, we will show how to interface it with

our interpreter to produce an integrated interpreter-compiler development system.

An overview of the compiler

Our compiler is much like our interpreter, both in its structure and in the function it performs.

Accordingly, the mechanisms used by the compiler for analyzing expressions will be similar to

those used by the interpreter. Moreover, to make it easy to interface compiled and interpreted

code, we will design the compiler to generate code that obeys the same conventions of register

usage as the interpreter: The environment will be kept in the env register, argument lists will

be accumulated in argl, a function to be applied will be in fun, functions will return their

answers in val, and the location to which a function should return will be kept in continue.

In general, the compiler translates a source program into an object program that performs

essentially the same register operations as would the interpreter in evaluating the same source

program.

This description suggests a strategy for implementing a rudimentary compiler: We traverse

the expression in the same way the interpreter does. When we encounter a register instruc-

tion that the interpreter would perform in evaluating the expression, we do not execute the

instruction but instead accumulate it into a sequence. The resulting sequence of instructions

will be the object code. Observe the e�ciency advantage of compilation over interpretation.

Each time the interpreter evaluates an expression—for example, f(84, 96)—it performs the

work of classifying the expression (discovering that this is a function application) and test-

ing for the end of the list of argument expressions (discovering that there are two argument

expressions). With a compiler, the expression is analyzed only once, when the instruction

sequence is generated at compile time. The object code produced by the compiler contains

only the instructions that evaluate the function expression and the two argument expressions,

assemble the argument list, and apply the function (in fun) to the arguments (in argl).

This is the same kind of optimization we implemented in the analyzing evaluator of sec-

tion 4.1.7. But there are further opportunities to gain e�ciency in compiled code. As the

interpreter runs, it follows a process that must be applicable to any expression in the language.

600 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5

In contrast, a given segment of compiled code is meant to execute some particular expression.

This can make a big di�erence, for example in the use of the stack to save registers. When

the interpreter evaluates an expression, it must be prepared for any contingency. Before eval-

uating a subexpression, the interpreter saves all registers that will be needed later, because

the subexpression might require an arbitrary evaluation. A compiler, on the other hand, can

exploit the structure of the particular expression it is processing to generate code that avoids

unnecessary stack operations.

As a case in point, consider the combination f(84, 96). Before the interpreter evaluates the

function expression of the application it prepares for this evaluation by saving the registers

containing the argument expressions and the environment, whose values will be needed later.

The interpreter then evaluates the function expression to obtain the result in val, restores

the saved registers, and �nally moves the result from val to fun. However, in the particular

expression we are dealing with, the function expression is the symbol f, whose evaluation

is accomplished by the machine operation lookup_symbol_value, which does not alter any

registers. The compiler that we implement in this section will take advantage of this fact and

generate code that evaluates the function expression using the instruction

assign("fun", op("lookup_symbol_value"), constant("f"), reg("env"));

This code not only avoids the unnecessary saves and restores but also assigns the value of the

lookup directly to fun, whereas the interpreter would obtain the result in val and then move

this to fun.

A compiler can also optimize access to the environment. Having analyzed the code, the

compiler can in many cases know in which frame a particular name will be located and access

that frame directly, rather than performing the lookup_symbol_value search. We will discuss

how to implement such name access in section 5.5.6. Until then, however, we will focus on the

kind of register and stack optimizations described above. There are many other optimizations

that can be performed by a compiler, such as coding primitive operations “in line” instead of

using a general apply mechanism (see exercise 5.38); but we will not emphasize these here.

Our main goal in this section is to illustrate the compilation process in a simpli�ed (but still

interesting) context.

601 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.1

5.5.1 Structure of the Compiler

In section 4.1.7 we modi�ed our original metacircular interpreter to separate analysis from

execution. We analyzed each expression to produce an execution function that took an en-

vironment as argument and performed the required operations. In our compiler, we will do

essentially the same analysis. Instead of producing execution functions, however, we will

generate sequences of instructions to be run by our register machine.

The function compile is the top-level dispatch in the compiler. It corresponds to the eval

function of section 4.1.1, the analyze function of section 4.1.7, and the eval_dispatch entry

point of the explicit-control-evaluator in section 5.4.1. The compiler, like the interpreters, uses

the expression-syntax functions de�ned in section 4.1.2.
35 Compile performs a case analysis on

the syntactic type of the expression to be compiled. For each type of expression, it dispatches

to a specialized code generator:

function compile(stmt, target, linkage) {

return is_self_evaluating(stmt)

? compile_self_evaluating(stmt, target, linkage)

: is_name(stmt)

? compile_name(stmt, target, linkage)

: is_constant_declaration(stmt)

? compile_constant_declaration(stmt, target, linkage)

: is_variable_declaration(stmt)

? compile_variable_declaration(stmt, target, linkage)

: is_assignment(stmt)

? compile_assignment(stmt, target, linkage)

: is_conditional_expression(stmt)

? compile_conditional_expression(stmt, target, linkage)

: is_lambda_expression(stmt)

? compile_lambda_expression(stmt, target, linkage)

: is_sequence(stmt)

? compile_sequence(sequence_statements(stmt), target, linkage)

: is_block(stmt)

? compile_block(stmt, target, linkage)

: is_return_statement(stmt)

? compile_return_statement(stmt, target, linkage)

: is_application(stmt)

? compile_application(stmt, target, linkage)

: error(stmt, "Unknown statement type -- compile");

}

35
Notice, however, that our compiler is a Scheme program, and the syntax functions that it uses to manipulate

expressions are the actual Scheme functions used with the metacircular evaluator. For the explicit-control eval-

uator, in contrast, we assumed that equivalent syntax operations were available as operations for the register

machine. (Of course, when we simulated the register machine in Scheme, we used the actual Scheme functions

in our register machine simulation.)

602 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.1

Targets and linkages

The function compile and the code generators that it calls take two arguments in addition to

the expression to compile. There is a target, which speci�es the register in which the compiled

code is to return the value of the expression. There is also a linkage descriptor, which describes

how the code resulting from the compilation of the expression should proceed when it has

�nished its execution. The linkage descriptor can require that the code do one of the following

three things:

– continue at the next instruction in sequence (this is speci�ed by the linkage descriptor

"next"),

– return from the function being compiled (this is speci�ed by the linkage descriptor

"return"), or

– jump to a named entry point (this is speci�ed by using the designated label as the linkage

descriptor).

For example, compiling the expression 5 (which is self-evaluating) with a target of the val

register and a linkage of "next" should produce the instruction

assign("val", constant(5));

Compiling the same expression with a linkage of "return" should produce the instructions

assign("val", constant(5));

go_to(reg("continue"));

In the �rst case, execution will continue with the next instruction in the sequence. In the

second case, we will return from a function call. In both cases, the value of the expression will

be placed into the target val register.

Instruction sequences and stack usage

Each code generator returns an instruction sequence containing the object code it has generated

for the expression. Code generation for a compound expression is accomplished by combining

the output from simpler code generators for component expressions, just as evaluation of a

compound expression is accomplished by evaluating the component expressions.

The simplest method for combining instruction sequences is a function called append_instruction_sequences.

It takes as arguments two instruction sequences that are to be executed sequentially; it ap-

pends them and returns the combined sequence. That is, if seq1 and seq2 are sequences of

instructions, then evaluating

append_instruction_sequences(seq1, seq2)

603 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.1

produces the sequence

seq1

seq2

Whenever registers might need to be saved, the compiler’s code generators use preserving,

which is a more subtle method for combining instruction sequences. The function preserving

takes three arguments: a set of registers and two instruction sequences that are to be executed

sequentially. It appends the sequences in such a way that the contents of each register in the set

is preserved over the execution of the �rst sequence, if this is needed for the execution of the

second sequence. That is, if the �rst sequence modi�es the register and the second sequence

actually needs the register’s original contents, then preserving wraps a save and a restore of

the register around the �rst sequence before appending the sequences. Otherwise, preserving

simply returns the appended instruction sequences. Thus, for example,

preserving(list(reд1, reд2), seq1, seq2);

produces one of the following four sequences of instructions, depending on how seq
1

and seq
2

use reg
1

and reg
2
:

seq
1

save(reg
1
) save(reg

2
) save(reg

2
)

seq
2

seq
1

seq
1

save(reg
1
)

restore(reg
1
) restore(reg

2
) seq

1

seq
2

seq
2

restore(reg
1
)

restore(reg
2
)

seq
2

By using preserving to combine instruction sequences the compiler avoids unnecessary

stack operations. This also isolates the details of whether or not to generate save and restore

instructions within the preserving function, separating them from the concerns that arise

in writing each of the individual code generators. In fact no save or restore instructions are

explicitly produced by the code generators.

In principle, we could represent an instruction sequence simply as a list of instructions.

The function append_instruction_sequences could then combine instruction sequences by

performing an ordinary list append. However, preserving would then be a complex operation,

because it would have to analyze each instruction sequence to determine how the sequence

uses its registers. Preserving would be ine�cient as well as complex, because it would have

to analyze each of its instruction sequence arguments, even though these sequences might

themselves have been constructed by calls to preserving, in which case their parts would

have already been analyzed. To avoid such repetitious analysis we will associate with each

instruction sequence some information about its register use. When we construct a basic

604 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.1

instruction sequence we will provide this information explicitly, and the functions that combine

instruction sequences will derive register-use information for the combined sequence from

the information associated with the component sequences.

An instruction sequence will contain three pieces of information:

– the set of registers that must be initialized before the instructions in the sequence are

executed (these registers are said to be needed by the sequence),

– the set of registers whose values are modi�ed by the instructions in the sequence, and

– the actual instructions in the sequence.

We will represent an instruction sequence as a list of its three parts. The constructor for

instruction sequences is thus

function make_instruction_sequence(needs, modifies, instructions) {

return list(needs, modifies, instructions);

}

For example, the two-instruction sequence that looks up the value of the name x in the

current environment, assigns the result to val, and then returns, requires registers env and

continue to have been initialized, and modi�es register val. This sequence would therefore

be constructed as

make_instruction_sequence(

list("env", "continue"),

list("val"),

list(assign("val", list(op("lookup_symbol_value"),

constant("x"), reg("env"))),

go_to(reg("continue"))));

We sometimes need to construct an instruction sequence with no instructions:

function empty_instruction_sequence() {

return make_instruction_sequence(null, null, null);

}

The functions for combining instruction sequences are shown in section 5.5.4.

Exercise 5.31

In evaluating a function application, the explicit-control evaluator always saves and restores

the env register around the evaluation of the operator, saves and restores env around the

evaluation of each operand (except the �nal one), saves and restores argl around the evaluation

of each operand, and saves and restores proc around the evaluation of the operand sequence.

For each of the following combinations, say which of these save and restore operations are

super�uous and thus could be eliminated by the compiler’s preserving mechanism:

605 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.2

f("x", "y")

f()("x", "y")

f(g("x"), y)

f(g("x"), "y")

Exercise 5.32

Using the preserving mechanism, the compiler will avoid saving and restoring env around

the evaluation of the function expression of an application in the case where the function

expression is a name. We could also build such optimizations into the evaluator. Indeed, the

explicit-control evaluator of section 5.4 already performs a similar optimization, by treating

applications with no arguments as a special case.

a. Extend the explicit-control evaluator to recognize as a separate class of statements ap-

plications whose function expression is a name, and to take advantage of this fact in

evaluating such statements.

b. Alyssa P. Hacker suggests that by extending the evaluator to recognize more and more

special cases we could incorporate all the compiler’s optimizations, and that this would

eliminate the advantage of compilation altogether. What do you think of this idea?

5.5.2 Compiling Statements and Expressions

In this section and the next we implement the code generators to which the compile function

dispatches.

Compiling linkage code

In general, the output of each code generator will end with instructions—generated by the

function compile_linkage—that implement the required linkage. If the linkage is "return"

then we must generate the instruction go_to(reg("continue")). This needs the continue

register and does not modify any registers. If the linkage is "return_undefined", we insert

an assignment instruction before the go_to, which assigns the current target register to the

constant undefined. The target register must be treated as modi�ed in this case. If the linkage

is "next", then we needn’t include any additional instructions. Otherwise, the linkage is a

label, and we generate a go_to to that label, an instruction that does not need or modify any

registers.

function compile_linkage(target, linkage) {

606 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.2

return linkage === "return"

? make_instruction_sequence(

list("continue"),

null,

list(go_to(reg("continue"))))

: linkage === "return_undefined"

? make_instruction_sequence(

list("continue"),

list(target),

list(assign(target, constant(undefined)),

go_to(reg("continue"))))

: linkage === "next"

? empty_instruction_sequence()

: make_instruction_sequence(null, null,

list(go_to(label(linkage))));

}

The linkage code is appended to an instruction sequence by preserving the continue reg-

ister, since a "return" linkage will require the continue register: If the given instruction

sequence modi�es continue and the linkage code needs it, continue will be saved and re-

stored.

function end_with_linkage(target, linkage, instruction_sequence) {

return preserving(list("continue"),

instruction_sequence,

compile_linkage(target, linkage));

}

Compiling simple expressions

The code generators for self-evaluating expressions and names construct instruction sequences

that assign the required value to the target register and then proceed as speci�ed by the linkage

descriptor.

function compile_self_evaluating(exp, target, linkage) {

return end_with_linkage(target, linkage,

make_instruction_sequence(

null,

list(target),

list(assign(target, constant(exp)))));

}

function compile_name(exp, target, linkage) {

return end_with_linkage(target, linkage,

make_instruction_sequence(list("env"), list(target),

list(assign(target,

list(op("lookup_symbol_value"),

607 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.2

constant(exp), reg("env"))))));

}

All these assignment instructions modify the target register, and the one that looks up a

name needs the env register.

Assignments and the two kinds of declaration are handled much as they are in the inter-

preter. The three functions use the function compile_assignment_returning, whose parame-

ter return_val lets declarations return undefined and assignments return the assigned value.

In compile_assignment_returning, we recursively generate code that computes the value to

be assigned to the variable, and append to it a two-instruction sequence that actually sets the

variable and assigns the value of the whole statement to the target register. The recursive

compilation has target val and linkage "next" so that the code will put its result into val and

continue with the code that is appended after it. The appending is done preserving env, since

the environment is needed for setting or de�ning the variable and the code for the variable

value could be the compilation of a complex expression that might modify the registers in

arbitrary ways.

function compile_assignment(stmt, target, linkage) {

const symbol = assignment_symbol(stmt);

const value_code =

compile(assignment_value(stmt), "val", "next");

return compile_assignment_returning(symbol,

value_code, target, linkage, reg("val"));

}

function compile_constant_declaration(stmt, target, linkage) {

const symbol = constant_declaration_symbol(stmt);

const value_code =

compile(constant_declaration_value(stmt), "val", "next");

return compile_assignment_returning(symbol,

value_code, target, linkage, constant(undefined));

}

function compile_variable_declaration(stmt, target, linkage) {

const variable = variable_declaration_symbol(stmt);

const value_code =

compile(variable_declaration_value(stmt), "val", "next");

return compile_assignment_returning(variable,

value_code, target, linkage, constant(undefined));

}

function compile_assignment_returning(

symbol, value_code, target, linkage, return_val) {

return end_with_linkage(target, linkage,

preserving(

608 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.2

list("env"),

value_code,

make_instruction_sequence(

list("env", "val"),

list(target),

list(perform(

list(op("assign_symbol_value"),

constant(symbol),

reg("val"),

reg("env"))),

assign(target, return_val)))));

}

The appended two-instruction sequence requires env and val and modi�es the target. Note

that although we preserve env for this sequence, we do not preserve val, because the get_value_code

is designed to explicitly place its result in val for use by this sequence. (In fact, if we did pre-

serve val, we would have a bug, because this would cause the previous contents of val to be

restored right after the get_value_code is run.)

Compiling conditional expressions

The code for a conditional expression compiled with a given target and linkage has the form

〈compilation o f predicate, tarдet val, linkaдe next〉

test(list(op("is_false"), reg("val"))),

branch(label("false_branch")),

"true_branch",

〈compilation o f consequent with дiven tarдet and дiven linkaдe or after_cond〉

"false_branch",

〈compilation o f alternative with дiven tarдet and linkaдe〉
"after_cond"

To generate this code, we compile the predicate, consequent, and alternative, and combine

the resulting code with instructions to test the predicate result and with newly generated labels

to mark the true and false branches and the end of the conditional.
36

In this arrangement of

36
We can’t just use the labels true_branch, false_branch, and after_cond as shown above, because there

might be more than one if in the program. The compiler uses the function make_label to generate labels. The

function make_label takes a symbol as argument and returns a new symbol that begins with the given symbol.

For example, successive calls to make_label("a") would return a1, a2, and so on. The function make_label can

be implemented similarly to the generation of unique variable names in the query language, as follows:

let label_counter = 0;

function new_label_number() {
label_counter = label_counter + 1;
return label_counter;

}

609 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.2

code, we must branch around the true branch if the test is false. The only slight complication

is in how the linkage for the true branch should be handled. If the linkage for the conditional

is "return" or a label, then the true and false branches will both use this same linkage. If the

linkage is "next", the true branch ends with a jump around the code for the false branch to

the label at the end of the conditional.

function compile_conditional_expression(stmt, target, linkage) {

let t_branch = make_label("true_branch");

let f_branch = make_label("false_branch");

let after_cond = make_label("after_cond");

let consequent_linkage =

linkage === "next" ? after_cond : linkage;

let p_code = compile(cond_expr_pred(stmt), "val", "next");

let c_code = compile(cond_expr_cons(stmt),

target, consequent_linkage);

let a_code = compile(cond_expr_alt(stmt),

target, linkage);

return preserving(

list("env", "continue"),

p_code,

append_instruction_sequences(

make_instruction_sequence(

list("val"),

list(),

list(test(list(op("is_false"), reg("val"))),

branch(label(f_branch)))),

append_instruction_sequences(

parallel_instruction_sequences(

append_instruction_sequences(t_branch, c_code),

append_instruction_sequences(f_branch, a_code)),

after_cond)));

}

The register env is preserved around the predicate code because it could be needed by the

true and false branches, and continue is preserved because it could be needed by the linkage

code in those branches. The code for the true and false branches (which are not executed se-

quentially) is appended using a special combiner parallel_instruction_sequences described

in section 5.5.4.

function make_label(name) {
return name + stringify(new_label_number());

}

610 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.2

Compiling sequences

The compilation of sequences (from function bodies or explicit begin expressions) parallels

their evaluation. Each expression of the sequence is compiled—the last expression with the

linkage speci�ed for the sequence, and the other expressions with linkage "next" (to execute

the rest of the sequence). The instruction sequences for the individual expressions are appended

to form a single instruction sequence, such that env (needed for the rest of the sequence) and

continue (possibly needed for the linkage at the end of the sequence) are preserved.

function compile_sequence(seq, target, linkage) {

return is_last_statement(seq)

? compile(first_statement(seq), target, linkage)

: preserving(

list("env", "continue"),

compile(first_statement(seq), target, "next"),

compile_sequence(rest_statements(seq), target, linkage));

}

Compiling lambda expressions

Lambda expressions construct functions. The object code for a lambda expression must have

the form

〈construct f unction object and assiдn it to tarдet reдister 〉
〈linkaдe〉

When we compile the lambda expression, we also generate the code for the function body.

Although the body won’t be executed at the time of function construction, it is convenient to

insert it into the object code right after the code for the lambda expression. If the linkage for

the lambda expression is a label or "return", this is �ne. But if the linkage is "next", we will

need to skip around the code for the function body by using a linkage that jumps to a label

that is inserted after the body. The object code thus has the form

〈construct f unction object and assiдn it to tarдet reдister 〉
〈code f or дiven linkaдe〉 or go_to(label("after_lambda"))

〈compilation o f f unction body〉
"after_lambda",

The function compile_lambda generates the code for constructing the function object fol-

lowed by the code for the function body. The function object will be constructed at run time

by combining the current environment (the environment at the point of de�nition) with the

entry point to the compiled function body (a newly generated label).
37

37
We need machine operations to implement a data structure for representing compiled functions, analogous

to the structure for compound functions described in section 4.1.3:

611 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.2

function compile_lambda_expression(exp, target, linkage) {

let fun_entry = make_label("entry");

let after_lambda = make_label("after_lambda");

let lambda_linkage =

linkage === "next" ? after_lambda : linkage;

return append_instruction_sequences(

tack_on_instruction_sequence(

end_with_linkage(target, lambda_linkage,

make_instruction_sequence(list("env"), list(target),

list(assign(target,

list(op("make_compiled_function"),

label(fun_entry), reg("env")))))),

compile_lambda_body(exp, fun_entry)),

after_lambda);

}

The function compile_lambda_expression uses the special combinertack_on_instruction_sequence

(section 5.5.4) rather than append_instruction_sequences to append the function body to the

lambda expression code, because the body is not part of the sequence of instructions that will

be executed when the combined sequence is entered; rather, it is in the sequence only because

that was a convenient place to put it.

The function compile_lambda_body constructs the code for the body of the function. This

code begins with a label for the entry point. Next come instructions that will cause the run-

time evaluation environment to switch to the correct environment for evaluating the function

body—namely, the de�nition environment of the function, extended to include the bindings of

the formal parameters to the arguments with which the function is called. After this comes the

code for the sequence of expressions that makes up the function body. The body is compiled

with linkage "return_undefined" so that it will end by returning from the function with

the return value undefined unless the compiled code runs code that stems from compiling a

return statement. The target is val so that the return value (or undefined) will be in val.

function make_compiled_function(entry, env) {
return list("compiled_function", entry, env);

}

function is_compiled_function(proc) {
return is_tagged_list(proc, "compiled_function");

}

function compiled_function_entry(c_proc) {
return head(tail(c_proc));

}

function compiled_function_env(c_proc) {
return head(tail(tail(c_proc)));

}

612 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.2

function compile_lambda_body(exp, fun_entry) {

let formals = lambda_parameters(exp);

return append_instruction_sequences(

make_instruction_sequence(

list("env", "fun", "argl"),

list("env"),

list(fun_entry,

assign("env", list(op("compiled_function_env"),

reg("fun"))),

assign("env", list(op("extend_environment"),

constant(formals),

reg("argl"),

reg("env"))))),

compile(lambda_body(exp), "val", "return_undefined"));

}

Compiling return statements

JavaScript’s return statements are compiled such that the compiled code returns to the caller

of the current function the result of running the code of the return expression, ignoring the

current linkage.

function compile_return_statement(stmt, target, linkage) {

return compile(return_expression(stmt), target, "return");

}

Compiling blocks

A block is compiled by prepending an assignment instruction to the compiled body of the

block. The assignment extends the current environment with bindings of the declared names

of the block to the value "*unassigned*". This a�ects neither target nor linkage.

function compile_block(stmt, target, linkage) {

const body = block_body(stmt);

const locals = scan_out_declarations(body);

const unassigneds = list_of_unassigned(locals);

return append_instruction_sequences(

make_instruction_sequence(

list("env", "fun", "argl"),

list("env"),

list(assign("env", list(op("extend_environment"),

constant(locals),

constant(unassigneds),

reg("env"))))),

compile(body(stmt), target, linkage));

613 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.3

}

5.5.3 Compiling Applications

The essence of the compilation process is the compilation of function applications. The code

for an application compiled with a given target and linkage has the form

〈compilation o f f unction expression, tarдet fun, linkaдe next〉

〈evaluate arд expressions and construct arд list in argl〉

〈compilation o f f unction call with дiven tarдet and linkaдe〉

The registers env, fun, and argl may have to be saved and restored during evaluation of the

function and argument expressions. Note that this is the only place in the compiler where a

target other than val is speci�ed.

The required code is generated by compile_application. This recursively compiles the op-

erator, to produce code that puts the function to be applied into fun, and compiles the operands,

to produce code that evaluates the individual operands of the application. The instruction se-

quences for the operands are combined (by construct_arglist) with code that constructs the

list of arguments in argl, and the resulting argument-list code is combined with the function

code and the code that performs the function call (produced by compile_function_call). In

appending the code sequences, the env register must be preserved around the evaluation of the

operator (since evaluating the operator might modify env, which will be needed to evaluate the

operands), and the fun register must be preserved around the construction of the argument list

(since evaluating the operands might modify fun, which will be needed for the actual function

application). Continue must also be preserved throughout, since it is needed for the linkage

in the function call.

function compile_application(exp, target, linkage) {

const fun_code = compile(function_expression(exp), "fun", "next");

const arguments_codes =

map(arg => compile(arg, "val", "next"),

args(exp));

return preserving(list("env", "continue"),

fun_code,

preserving(list("fun", "continue"),

construct_arglist(arguments_codes),

compile_function_call(target, linkage)));

}

The code to construct the argument list will evaluate each argument into val and then pair

that value onto the argument list being accumulated in argl. Since we pair the arguments

onto argl in sequence, we must start with the last argument and end with the �rst, so that

the arguments will appear in order from �rst to last in the resulting list. Rather than waste an

614 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.3

instruction by initializing argl to the empty list to set up for this sequence of evaluations, we

make the �rst code sequence construct the initial argl. The general form of the argument-list

construction is thus as follows:

〈compilation o f last arдument , tarдeted to val〉

assign("argl", list(op("list"), reg("val")));

〈compilation o f next arдument , tarдeted to val〉

assign("argl", list(op("pair"), reg("val"), reg("argl")));

. . .
〈compilation o f f irst arдument , tarдeted to val〉

assign("argl", list(op("pair"), reg("val"), reg("argl")));

The register argl must be preserved around each argument evaluation except the �rst (so

that arguments accumulated so far won’t be lost), and env must be preserved around each

subsequent operand evaluations).

Compiling this argument code is a bit tricky, because of the special treatment of the �rst

operand to be evaluated and the need to preserve argl and env in di�erent places. The

construct_arglist function takes as arguments the code that evaluates the individual operands.

If there are no operands at all, it simply emits the instruction

assign(argl, constant(null));

Otherwise, construct_arglist creates code that initializes argl with the last argument, and

appends code that evaluates the rest of the arguments and adjoins them to argl in succession.

In order to process the arguments from last to �rst, we must reverse the list of operand code

sequences from the order supplied by compile_application.

function construct_arglist(arg_codes) {

const rev_arg_codes = reverse(arg_codes);

if (is_null(arg_codes)) {

return make_instruction_sequence(

null,

list("argl"),

list(assign("argl", constant(null))));

} else {

const code_to_get_last_arg =

append_instruction_sequences(

head(rev_arg_codes),

make_instruction_sequence(

list("val"),

list("argl"),

list(assign("argl", list(op("list"),

reg("val"))))));

return is_null(tail(rev_arg_codes))

? code_to_get_last_arg

615 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.3

: preserving(

list("env"),

code_to_get_last_arg,

code_to_get_rest_args(tail(rev_arg_codes)));

}

}

function code_to_get_rest_args(arg_codes) {

const code_for_next_arg = preserving(

list("argl"),

head(arg_codes),

make_instruction_sequence(

list("val", "argl"),

list("argl"),

list(assign("argl", list(op("pair"),

reg("val"), reg("argl"))))));

return is_null(tail(arg_codes))

? code_for_next_arg

: preserving(list("env"),

code_for_next_arg,

code_to_get_rest_args(tail(arg_codes)));

}

Applying functions

After evaluating the elements of a combination, the compiled code must apply the func-

tion in fun to the arguments in argl. The code performs essentially the same dispatch as

the apply function in the meta-circular evaluator of section 4.1.1 or the apply_dispatch en-

try point in the explicit-control evaluator of section 5.4.1. It checks whether the function

to be applied is a primitive function or a compiled function. For a primitive function, it

uses apply_primitive_function; we will see shortly how it handles compiled functions. The

function-application code has the following form:

test(op("primitive_function"), reg("fun")),

branch(label("primitive_branch")),

"compiled_branch",

〈code to apply compiled f unction with дiven tarдet and appropriate linkaдe〉
"primitive_branch",

assign(tarдet,
list(op("apply_primitive_function"),

reg("fun"),

reg("argl")))

linkaдe
"after_call"

Observe that the compiled branch must skip around the primitive branch. Therefore, if the

616 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.3

linkage for the original function call was "next", the compound branch must use a linkage

that jumps to a label that is inserted after the primitive branch. (This is similar to the linkage

used for the true branch in compile_if.)

function compile_function_call(target, linkage) {

const primitive_branch = make_label("primitive_branch");

const compiled_branch = make_label("compiled_branch");

const after_call = make_label("after_call");

const compiled_linkage = linkage === "next" ? after_call : linkage;

return append_instruction_sequences(

make_instruction_sequence(

list("fun"),

list(),

list(test(list(op("is_primitive_function"), reg("fun"))),

branch(label(primitive_branch)))),

append_instruction_sequences(

parallel_instruction_sequences(

append_instruction_sequences(

compiled_branch,

compile_fun_appl(target, compiled_linkage)),

append_instruction_sequences(

primitive_branch,

end_with_linkage(target, linkage,

make_instruction_sequence(

list("fun", "argl"),

list(target),

list(assign(target,

list(op("apply_primitive_function"),

reg("fun"), reg("argl")))))))),

after_call));

}

The primitive and compound branches, like the true and false branches in compile_if, are ap-

pended using parallel_instruction_sequences rather than the ordinary append_instruction_sequences,

because they will not be executed sequentially.

Applying compiled functions

The code that handles function application is the most subtle part of the compiler, even though

the instruction sequences it generates are very short. A compiled function (as constructed by

compile_lambda) has an entry point, which is a label that designates where the code for the

function starts. The code at this entry point computes a result in val and returns by executing

the instruction go_to(reg("continue")). Thus, we might expect the code for a compiled-

function application (to be generated by compile_fun_appl) with a given target and linkage

to look like this if the linkage is a label

617 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.3

assign("continue", label("fun_return")),

assign("val", list(op("compiled_function_entry"), reg("fun"))),

go_to(reg("val")),

"fun_return",

assign(tarдet, reg("val")), // included if target is not val

go_to(label(linkaдe)), // linkage code

or like this if the linkage is "return".

save("continue"),

assign("continue", label("fun_return")),

assign("val", list(op("compiled_function_entry"), reg("fun"))),

go_to(reg("val")),

"fun_return",

assign(tarдet, reg("val")), // included if target is not val

restore("continue"),

go_to(reg("continue")), // linkage code

This code sets up continue so that the function will return to a label fun_return and jumps

to the function’s entry point. The code at fun_return transfers the function’s result from val

to the target register (if necessary) and then jumps to the location speci�ed by the linkage.

(The linkage is always "return" or a label, because compile_function_call replaces a "next"

linkage for the compound-function branch by an after_call label.)

In fact, if the target is not val, that is exactly the code our compiler will generate.
38

Usually,

however, the target is val (the only time the compiler speci�es a di�erent register is when

targeting the evaluation of an operator to fun), so the function result is put directly into the

target register and there is no need to return to a special location that copies it. Instead, we

simplify the code by setting up continue so that the function will “return” directly to the place

speci�ed by the caller’s linkage:

〈set up continue f or linkaдe〉
assign("val", list(op("compiled_function_entry"), reg("fun"))),

go_to(reg("val")),

If the linkage is a label, we set up continue so that the function will return to that la-

bel. (That is, the go_to(reg("continue")) the function ends with becomes equivalent to the

go_to(label(〈linkaдe〉)) at fun_return above.)

assign("continue", label(linkaдe)),
assign("val", list(op("compiled_function_entry"), reg("fun"))),

go_to(reg("val")),

If the linkage is "return", we don’t need to set up continue at all: It already holds the desired

38
Actually, we signal an error when the target is not val and the linkage is "return", since the only place we

request "return" linkages is in compiling functions, and our convention is that functions return their values in

val.

618 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.3

location. (That is, the go_to(reg("continue")) the function ends with goes directly to the

place where the go_to(reg("continue")) at fun_return would have gone.)

assign("val", list(op("compiled_function_entry"), reg("fun"))),

go_to(reg("val")),

With this implementation of the "return" linkage, the compiler generates tail-recursive

code. Calling a function as the �nal step in a function body does a direct transfer, without

saving any information on the stack.

Suppose instead that we had handled the case of a function call with a linkage of "return"

and a target of val as shown above for a non-val target. This would destroy tail recursion. Our

system would still give the same value for any expression. But each time we called a function,

we would save continue and return after the call to undo the (useless) save. These extra saves

would accumulate during a nest of function calls.
39

Compile_fun_appl generates the above function-application code by considering four cases,

depending on whether the target for the call is val and whether the linkage is "return". Ob-

serve that the instruction sequences are declared to modify all the registers, since executing the

function body can change the registers in arbitrary ways.
40

Also note that the code sequence

for the case with target val and linkage "return" is declared to need continue: Even though

continue is not explicitly used in the two-instruction sequence, we must be sure that continue

will have the correct value when we enter the compiled function.

function compile_fun_appl(target, linkage) {

if (target === "val" && linkage !== "return") {

return make_instruction_sequence(

list("fun"),

all_regs,

list(

assign("continue", label(linkage)),

assign("val", list(op("compiled_function_entry"),

reg("fun"))),

39
Making a compiler generate tail-recursive code might seem like a straightforward idea. But most compilers

for common languages, including C and Pascal, do not do this, and therefore these languages cannot represent

iterative processes in terms of function call alone. The di�culty with tail recursion in these languages is that

their implementations use the stack to store function arguments and local names as well as return addresses.

The JavaScript implementations described in this book store arguments and names in memory to be garbage-

collected. The reason for using the stack for names and arguments is that it avoids the need for garbage collection

in languages that would not otherwise require it, and is generally believed to be more e�cient. Sophisticated

JavaScript compilers can, in fact, use the stack for arguments without destroying tail recursion. (See Hanson

1990 for a description.) There is also some debate about whether stack allocation is actually more e�cient than

garbage collection in the �rst place, but the details seem to hinge on �ne points of computer architecture. (See

Appel 1987 and Miller and Rozas 1994 for opposing views on this issue.)

40
The constant all_regs is bound to the list of names of all the registers:

const all_regs = list("env", "fun", "val", "argl", "continue");

619 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.4

go_to(reg("val"))));

} else if (target !== "val" && linkage !== "return") {

const fun_return = make_label("fun_return");

return make_instruction_sequence(

list("fun"),

all_regs,

list(

assign("continue", label(fun_return)),

assign("val", list(op("compiled_function_entry"),

reg("fun"))),

go_to(reg("val")),

fun_return,

assign(target, reg("val")),

go_to(label(linkage))));

} else if (target === "val" && linkage === "return") {

return make_instruction_sequence(

list("fun", "continue"),

all_regs,

list(

assign("val", list(op("compiled_function_entry"),

reg("fun"))),

go_to(reg("val"))));

} else if (target !== "val" && linkage === "return") {

error(target, "return linkage, target not val -- compile");

} else {}

}

5.5.4 Combining Instruction Sequences

This section describes the details on how instruction sequences are represented and combined.

Recall from section 5.5.1 that an instruction sequence is represented as a list of the registers

needed, the registers modi�ed, and the actual instructions. We will also consider a label (symbol)

to be a degenerate case of an instruction sequence, which doesn’t need or modify any registers.

So to determine the registers needed and modi�ed by instruction sequences we use the selectors

function registers_needed(s) {

return is_string(s) ? null : head(s);

}

function registers_modified(s) {

return is_string(s) ? null : head(tail(s));

}

function instructions(s) {

return is_string(s) ? list(s) : head(tail(tail(s)));

620 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.4

}

and to determine whether a given sequence needs or modi�es a given register we use the

predicates

function needs_register(seq, reg) {

return ! is_null(member(reg, registers_needed(seq)));

}

function modifies_register(seq, reg) {

return ! is_null(member(reg, registers_modified(seq)));

}

In terms of these predicates and selectors, we can implement the various instruction sequence

combiners used throughout the compiler.

The basic combiner is append_instruction_sequences. This takes as arguments an arbitrary

number of instruction sequences that are to be executed sequentially and returns an instruction

sequence whose statements are the statements of all the sequences appended together. The

subtle point is to determine the registers that are needed and modi�ed by the resulting sequence.

It modi�es those registers that are modi�ed by any of the sequences; it needs those registers

that must be initialized before the �rst sequence can be run (the registers needed by the �rst

sequence), together with those registers needed by any of the other sequences that are not

initialized (modi�ed) by sequences preceding it.

The sequences are appended two at a time by append_2_sequences. This takes two instruc-

tion sequences seq1 and seq2 and returns the instruction sequence whose statements are the

statements of seq1 followed by the statements of seq2, whose modi�ed registers are those

registers that are modi�ed by either seq1 or seq2, and whose needed registers are the registers

needed by seq1 together with those registers needed by seq2 that are not modi�ed by seq1.

(In terms of set operations, the new set of needed registers is the union of the set of regis-

ters needed by seq1 with the set di�erence of the registers needed by seq2 and the registers

modi�ed by seq1.) Thus, append_instruction_sequences is implemented as follows:

function append_instruction_sequences(seq1, seq2) {

return make_instruction_sequence(

list_union(registers_needed(seq1),

list_difference(registers_needed(seq2),

registers_modified(seq1))),

list_union(registers_modified(seq1),

registers_modified(seq2)),

append(instructions(seq1), instructions(seq2)));

}

This function uses some simple operations for manipulating sets represented as lists, similar

to the (unordered) set representation described in section 2.3.3:

621 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.4

function list_union(s1, s2) {

return is_null(s1)

? s2

: is_null(member(head(s1), s2))

? pair(head(s1), list_union(tail(s1), s2))

: list_union(tail(s1), s2);

}

function list_difference(s1, s2) {

return is_null(s1)

? null

: is_null(member(head(s1), s2))

? pair(head(s1), list_difference(tail(s1), s2))

: list_difference(tail(s1), s2);

}

Preserving, the second major instruction sequence combiner, takes a list of registers regs

and two instruction sequences seq1 and seq2 that are to be executed sequentially. It returns an

instruction sequence whose statements are the statements of seq1 followed by the statements

of seq2, with appropriate save and restore instructions around seq1 to protect the registers

in regs that are modi�ed by seq1 but needed by seq2. To accomplish this, preserving �rst

creates a sequence that has the required saves followed by the statements of seq1 followed by

the required restores. This sequence needs the registers being saved and restored in addition

to the registers needed by seq1, and modi�es the registers modi�ed by seq1 except for the

ones being saved and restored. This augmented sequence and seq2 are then appended in the

usual way. The following function implements this strategy recursively, walking down the list

of registers to be preserved:
41

function preserving(regs, seq1, seq2) {

if (is_null(regs)) {

return append_instruction_sequences(seq1, seq2);

} else {

const first_reg = head(regs);

if (needs_register(seq2, first_reg) &&

modifies_register(seq1, first_reg)) {

return preserving(

tail(regs),

make_instruction_sequence(

list_union(list(first_reg),

registers_needed(seq1)),

list_difference(registers_modified(seq1),

list(first_reg)),

append(list(save(first_reg)),

41
Note that preserving calls append with three arguments. Though the de�nition of append shown in this

book accepts only two arguments, Scheme standardly provides an append function that takes an arbitrary number

of arguments.

622 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.5

append(instructions(seq1),

list(restore(first_reg))))),

seq2);

} else {

return preserving(tail(regs), seq1, seq2);

}

}

}

Another sequence combiner, tack_on_instruction_sequence, is used by compile_lambda

to append a function body to another sequence. Because the function body is not “in line” to

be executed as part of the combined sequence, its register use has no impact on the register use

of the sequence in which it is embedded. We thus ignore the function body’s sets of needed

and modi�ed registers when we tack it onto the other sequence.

function tack_on_instruction_sequence(seq, body_seq) {

return make_instruction_sequence(

registers_needed(seq),

registers_modified(seq),

append(instructions(seq), instructions(body_seq)));

}

The functions compile_conditional and compile_function_call use a special combiner

called parallel_instruction_sequences to append the two alternative branches that follow

a test. The two branches will never be executed sequentially; for any particular evaluation of

the test, one branch or the other will be entered. Because of this, the registers needed by the

second branch are still needed by the combined sequence, even if these are modi�ed by the

�rst branch.

function parallel_instruction_sequences(seq1, seq2) {

return make_instruction_sequence(

list_union(

registers_needed(seq1),

registers_needed(seq2)),

list_union(

registers_modified(seq1),

registers_modified(seq2)),

append(

instructions(seq1),

instructions(seq2)));

}

623 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.5

5.5.5 An Example of Compiled Code

Now that we have seen all the elements of the compiler, let us examine an example of compiled

code to see how things �t together. We will compile the declaration of a recursive factorial

function by calling compile:

compile(parse(" \

function factorial(n) { \

return n === 1 \

? 1" \

: n * factorial(n - 1);\

} "),

"val",

"next");

We have speci�ed that the value of the declaration should be placed in the val register. We

don’t care what the compiled code does after executing the declaration so our choice of next

as the linkage descriptor is arbitrary.

The function compile determines that the statement is a constant declaration so it calls

compile_constant_declaration to compile code to compute the value to be assigned (targeted

to val), followed by code to install the declaration, followed by code to put the value of the

declaration (which is the value undefined) into the target register, followed �nally by the

linkage code. Register env is preserved around the computation of the value, because it is

needed in order to install the declaration. Because the linkage is next, there is no linkage code

in this case. The skeleton of the compiled code is thus

〈save env i f modi f ied by code to compute value〉
〈compilation o f declaration value, tarдet val, linkaдe next〉

〈restore env i f saved above〉
perform(list(op("assign_symbol_value"),

constant("factorial"),

reg("val"),

reg("env")),

assign("val", constant(undefined))

The expression that is to be compiled to produce the value for the constant factorial is a

lambda expression whose value is the function that computes factorials. The function compile

handles this by calling compile_lambda, which compiles the function body, labels it as a new

entry point, and generates the instruction that will combine the function body at the new entry

point with the run-time environment and assign the result to val. The sequence then skips

around the compiled function code, which is inserted at this point. The function code itself

begins by extending the function’s declaration environment by a frame that binds the formal

parameter n to the function argument. Then comes the actual function body. Since this code

624 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.5

for the value of the constant doesn’t modify the env register, the optional save and restore

shown above aren’t generated. (The function code at entry2 isn’t executed at this point, so its

use of env is irrelevant.) Therefore, the skeleton for the compiled code becomes

assign("val", list(op("make_compiled_function"),

label(entry2),

reg("env"))),

go_to(label("after_lambda1")),

"entry2",

assign("env", list(op("compiled_function_env"), reg("fun"))),

assign("env", list(op("extend_environment"),

constant(n),

reg("argl"),

reg("env"))),

〈compilation o f f unction body〉
"after_lambda1",

perform(list(op("assign_symbol_value"),

constant("factorial"),

reg("val"),

reg("env"))),

assign("val", constant(undefined))

A function body is always compiled (by compile_lambda_body) with target val and linkage

return_undefined. The body in this case consists of a single return statement:

return n === 1

? 1

: factorial(n - 1) * n;

The function compile_return_statement compiles the return expression with the same

target val but with linkage return, because the return expression is the last expression to be

evaluated in the body, and its value is to be returned from the function. The return expression

is a conditional expression and thus compile_conditional_expression generates code that

�rst computes the predicate (targeted to val), then checks the result and branches around

the true branch if the predicate is false. Registers env and continue are preserved around the

predicate code, since they may be needed for the rest of the conditional expression. The true

and false branches are both compiled with target val and linkage return. (That is, the value

of the conditional, which is the value computed by either of its branches, is the value of the

function.)

I〈save continue, env i f modi f ied by predicate and needed by branches〉
〈compilation o f predicate, tarдet val, linkaдe next〉

〈restore continue, env i f saved above〉
test(list(op("is_false"), reg("val"))),

branch(label("false_branch4")),

"true_branch5",

625 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=CQHQNghgdg5mCmACAzhAbvYiDGB7KALgJZQCumANFvFGosEQGZbAC2uAJk0fBywEYBPFgAcATryLYIBTPWh96UeL14Dh9fmOjYAFvGSIQ22AmAAoRPXDQ4SPKxFFIxfC1zN64ydNlV6BBBiMPAEWGgQYMD+wGAkANYQIVjKAB5hxrZmltaQpkgSyAS4Elh4hCTk0dS09EwsqBiKwBD8uBhGJnYWVrJFABRxA7gi-QBERMgA+oyRyPBjAJQUiBIw4xFgS4vLOVo6uoOt8GDjs2DzU-tQegAs2xTmYwRi5FcmegCsY49WoHl2HC4RzOGRENz0DwsF5VTQfXQxQLBULhSLVehxKCJZLWWTpAgEADeEgIpDEUAAvpl8hYxudLtc7j8cv8svZgU4XOCoO5PMB6XJgIyEdCgiEwohNujYgkkoKQHiCUSSWTKdTuk8IIxZGIpuUOABmH5AA

Computing with Register Machines 5.5.5

〈compilation o f true branch, tarдet val, linkaдe return〉

"false_branch4",

〈compilation o f f alse branch, tarдet val, linkaдe return〉

"after_cond3",

The predicate n === 1 is a function call. This looks up the function expression (the symbol

"===") and places this value in fun. It then assembles the arguments 1 and the value of n

into argl. Then it tests whether fun contains a primitive or a compound function, and dis-

patches to a primitive branch or a compound branch accordingly. Both branches resume at

the after_call label. The requirements to preserve registers around the evaluation of the

function and argument expressions don’t result in any saving of registers, because in this case

those evaluations don’t modify the registers in question.

assign("fun", list(op("lookup_symbol_value"), constant("==="),

reg("env"))),

assign("val", constant(1)),

assign("argl", list(op("list"), reg("val"))),

assign("val", list(op("lookup_symbol_value"), constant(n),

reg("env"))),

assign("argl", list(op("pair"), reg("val"), reg("argl"))),

test(list(op("primitive_function"), reg("fun"))),

branch(label("primitive_branch17")),

"compiled_branch16",

assign("continue", label("after_call15")),

assign("val", list(op("compiled_function_entry"), reg("fun"))),

go_to(reg("val")),

"primitive_branch17",

assign("val", list(op("apply_primitive_function"), reg("fun"),

reg("argl"))),

"after_call15"

The true branch, which is the constant 1, compiles (with target val and linkage return) to

assign("val", constant(1)),

go_to(reg("continue"))

The code for the false branch is another a function call, where the function is the value

of the symbol "*", and the arguments are n and the result of another function call (a call to

factorial). Each of these calls sets up fun and argl and its own primitive and compound

branches. Figure 5.17 shows the complete compilation of the de�nition of the factorial

function. Notice that the possible save and restore of continue and env around the predicate,

shown above, are in fact generated, because these registers are modi�ed by the function call

in the predicate and needed for the function call and the return linkage in the branches.

626 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.5

Exercise 5.33

Consider the following de�nition of a factorial function, which is slightly di�erent from the

one given above:

function factorial_alt(n) {

return n === 1

? 1

: n * factorial_alt(n - 1);

}

Compile this function and compare the resulting code with that produced for factorial. Ex-

plain any di�erences you �nd. Does either program execute more e�ciently than the other?

Exercise 5.34

Compile the iterative factorial function

function factorial(n) {

function iter(product, counter) {

return counter > n

? product

: iter(product * counter, counter + 1);

}

return iter(1, 1);

}

Annotate the resulting code, showing the essential di�erence between the code for iterative

and recursive versions of factorial that makes one process build up stack space and the other

run in constant stack space.

627 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.5

// construct the function and skip over code for the function body

assign("val",

list(op("make-compiled-procedure"), label("entry2"), reg("env"))),

go_to(label("after_lambda1")),

"entry2", // calls to factorial will enter here

assign("env", list(op("compiled_function_env"), reg("fun"))),

assign("env",

list(op("extend_environment"), constant(list("n")),

reg("argl"), reg("env"))),

// begin actual procedure body

save("continue"),

save("env"),

// compute n === 1

assign("fun", list(op("lookup_symbol_value"),

constant("==="), reg("env"))),

assign("val", constant(1)),

assign("argl", list(op("list","), reg("val"))),

assign("val", list(op("lookup_symbol_value"),

constant(n), reg("env"))),

assign("argl, list(op("pair"), reg("val"), reg("argl"))),

test(list(op("is_primitive_function"), reg("fun"))),

branch(label("primitive_branch17")),

"compiled_branch16",

assign("continue", label("after_call15")),

assign(val, list(op("compiled_function_entry"),

reg("fun"))),

go_to(reg("val")),

"primitive_branch17",

assign("val",

list(op("apply_primitive_function"),

reg("fun"), reg("argl"))),

"after_call15", // val now contains result of n === 1

restore("env"),

restore("continue"),

test(list(op("is_false"), reg("val"))),

branch(label("false-branch4")),

"true_branch5", // return 1

assign("val", constant(1)),

go_to(reg("continue")),

"false_branch4",

// compute & return factorial(n - 1) * n

assign("fun", list(op("lookup_symbol_value"),

constant("*"), reg("env"))),

Figure 5.17: Compilation of the de�nition of the factorial function (continued on next page).

628 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.5

save("continue"),

save("fun"), // save * function

assign("val", list(op("lookup_symbol_value"),

constant(n), reg("env"))),

assign("argl", list(op("list"), reg("val"))),

save("argl"), // save partial argument list for *

// compute factorial(n - 1), which is the other argument for *

assign("fun",

list(op("lookup_symbol_value"), constant("factorial"), reg("env"))),

save("fun"), // factorial function

// compute n - 1, which is the argument for factorial

assign("fun", list(op("lookup_symbol_value"),

constant("-"), reg("env"))),

assign("val", constant(1)),

assign("argl", list(op("list","), reg("val"))),

assign("val", list(op("lookup_symbol_value"), constant(n),

reg("env"))),

assign("argl", list(op("pair"), reg("val"), reg("argl"))),

test(list(op("is_primitive_function"), reg("fun"))),

branch(label("primitive_branch8")),

"compiled_branch7"

assign("continue", label("after_call6")),

assign(val, list(op("compiled_function_entry"), reg("fun"))),

go_to(reg("val")),

"primitive_branch8",

assign("val", list(op("apply_primitive_function"),

reg("fun"), reg("argl"))),

"after_call6", // val now contains result of n - 1

assign("argl", list(op("list"), reg("val"))),

restore("fun"), // restore factorial

// apply factorial

test(list(op("is_primitive_function"), reg("fun"))),

branch(label("primitive_branch11")),

"compiled_branch10",

assign("continue", label("after_call9")),

assign(val, list(op("compiled_function_entry"), reg("fun"))),

go_to(reg("val")),

"primitive_branch11",

assign("val", list(op("apply_primitive_function"),

reg("fun"), reg("argl"))),

Figure 5.17: (continued)

629 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.5

"after_call9", // val now has result of factorial(n - 1)

restore("argl"), // restore partial argument list for *

assign("argl", list(op("pair"), reg("val"), reg("argl"))),

restore("fun"), // restore *

restore("continue"),

// apply * and return its value

test(list(op("is_primitive_function"), reg("fun"))),

branch(label("primitive_branch14")),

"compiled_branch13",

// note that compound function here is called tail-recursively

assign("val", list(op("compiled_function_entry"), reg("fun"))),

go_to(reg("val")),

"primitive_branch14",

assign("val", list(op("apply_primitive_function"),

reg("fun"), reg("argl"))),

go_to(reg("continue")),

"after_call12",

"after_cond3",

"after_lambda1",

// assign the function to the name factorial

perform(list(op("assign_symbol_value"),

constant("factorial"), reg("val"), reg("env"))),

assign("val", constant(undefined))

Figure 5.18: (continued)

Exercise 5.35

What expression was compiled to produce the code shown in �gure 5.18?

630 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.5

assign("val", list(op("make_compiled_function"),

label("entry16")),

reg env)),

go_to(label("after_lambda15")),

"entry16",

assign(env, list(op("compiled_function_env"),

reg("fun"))),

assign("env", list(op("extend_environment","),

constant("x"), reg("argl"), reg("env"))),

assign("fun", list(op("lookup_symbol_value"),

constant("+"), reg("env"))),

save("continue"),

save("fun"),

save("env"),

assign("fun", list(op("lookup_symbol_value"),

constant("g"), reg("env"))),

save("fun"),

assign("fun", list(op("lookup_symbol_value"),

constant("+"), reg("env"))),

assign("val", constant(2)),

assign("argl", list(op("list"), reg("val"))),

assign("val", list(op("lookup_symbol_value"),

constant("x"), reg("env"))),

assign("argl, list(op("pair"), reg("val"), reg("argl"))),

test(list(op("is_primitive_function"), reg("fun"))),

branch(label("primitive_branch19")),

"compiled_branch18",

assign("continue", label("after_call17")),

assign(val, list(op("compiled_function_entry"),

reg("fun"))),

go_to(reg("val")),

"primitive_branch19",

assign("val", list(op("apply_primitive_function"),

reg("fun"), reg("argl"))),

"after_call17",

assign("argl", list(op("list"), reg("val"))),

restore("fun"),

test(list(op("is_primitive_function"), reg("fun"))),

branch(label("primitive_branch22")),

"compiled_branch21",

assign("continue", label("after_call20")),

assign(val, list(op("compiled_function_entry"),

reg("fun"))),

go_to(reg("val")),

Figure 5.18: An example of compiler output (continued on next page). See exercise 5.35.

631 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.5

"primitive_branch22",

assign("val", list(op("apply_primitive_function"),

reg("fun"), reg("argl"))),

"after_call20",

assign("argl", list(op("list"), reg("val"))),

restore("env"),

assign("val", list(op("lookup_symbol_value"),

constant("x"), reg("env"))),

assign("argl", list(op("pair"), reg("val"), reg("argl"))),

restore("fun"),

restore("continue"),

test(list(op("is_primitive_function"), reg("fun"))),

branch(label("primitive_branch25")),

"compiled_branch24",

assign("val", list(op("compiled_function_entry"),

reg("fun"))),

go_to(reg("val")),

"primitive_branch25",

assign("val", list(op("apply_primitive_function"),

reg("fun"), reg("argl"))),

go_to(reg("continue")),

"after_call23",

"after_lambda15",

perform(list(op("assign_symbol_value"),

constant("f"), reg("val"), reg("env"))),

assign("val", constant(undefined))

Figure 5.18: (continued)

Exercise 5.36

What order of evaluation does our compiler produce for arguments of an application? Is it left-

to-right, right-to-left, or some other order? Where in the compiler is this order determined?

Modify the compiler so that it produces some other order of evaluation. (See the discussion of

order of evaluation for the explicit-control evaluator in section 5.4.1.) How does changing the

order of argument evaluation a�ect the e�ciency of the code that constructs the argument

list?

Exercise 5.37

One way to understand the compiler’s preserving mechanism for optimizing stack usage is to

see what extra operations would be generated if we did not use this idea. Modify preserving

so that it always generates the save and restore operations. Compile some simple expressions

632 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.5

and identify the unnecessary stack operations that are generated. Compare the code to that

generated with the preserving mechanism intact.

Exercise 5.38

Our compiler is clever about avoiding unnecessary stack operations, but it is not clever at

all when it comes to compiling calls to the primitive functions of the language in terms of

the primitive operations supplied by the machine. For example, consider how much code is

compiled to compute a + 1: The code sets up an argument list in argl, puts the primitive

addition function (which it �nds by looking up the symbol "+" in the environment) into fun,

and tests whether the function is primitive or compound. The compiler always generates code

to perform the test, as well as code for primitive and compound branches (only one of which

will be executed). We have not shown the part of the controller that implements primitives,

but we presume that these instructions make use of primitive arithmetic operations in the

machine’s data paths. Consider how much less code would be generated if the compiler could

open-code primitives—that is, if it could generate code to directly use these primitive machine

operations. The expression a + 1 might be compiled into something as simple as
42

assign("val", list(op("lookup_symbol_value"),

constant("a"), reg("env")),

assign("val", list(op("+"), reg("val"), constant(1))

In this exercise we will extend our compiler to support open coding of selected primitives.

Special-purpose code will be generated for calls to these primitive functions instead of the

general function-application code. In order to support this, we will augment our machine with

special argument registers arg1 and arg2. The primitive arithmetic operations of the machine

will take their inputs from arg1 and arg2. The results may be put into val, arg1, or arg2.

The compiler must be able to recognize the application of an open-coded primitive in the

source program. We will augment the dispatch in the compile function to recognize the names

of these primitives in addition to the syntactic forms it currently recognizes. For each syntactic

form our compiler has a code generator. In this exercise we will construct a family of code

generators for the open-coded primitives.

a. The open-coded primitives, unlike the syntactic forms, all need their arguments eval-

uated. Write a code generator spread_arguments for use by all the open-coding code

generators. The function spread_arguments should take an argument list and compile

the given arguments targeted to successive argument registers. Note that an argument

may contain a call to an open-coded primitive, so argument registers will have to be

42
We have used the same symbol + here to denote both the source-language function and the machine operation.

In general there will not be a one-to-one correspondence between primitives of the source language and primitives

of the machine.

633 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.6

preserved during argument evaluation.

b. The JavaScript operators ===, *, -, and +, among others, are implemented in the register

machine as primitive functions, and referred to in the global environment with the

symbols "===", "*", "-", and "+". In JavaScript, it is not possible to re-declare these

names, because they do not meet the syntactic restrictions for names. This means it

is safe to open-code them. For each of the primitive functions ===, *, -, and +, write a

code generator that takes an application with a function expression that names that

function, together with a target and a linkage descriptor, and produces code to spread

the arguments into the registers and then perform the operation targeted to the given

target with the given linkage. Make compile dispatch to these code generators.

c. Try your new compiler on the factorial example. Compare the resulting code with the

result produced without open coding.

5.5.6 Lexical Addressing

One of the most common optimizations performed by compilers is the optimization of name

lookup. Our compiler, as we have implemented it so far, generates code that uses the lookup_symbol_value

operation of the evaluator machine. This searches for a name by comparing it with each name

that is currently bound, working frame by frame outward through the run-time environment.

This search can be expensive if the frames are deeply nested or if there are many names. For

example, consider the problem of looking up the value of x while evaluating the expression

x * y * z in an application of the function that is returned by

I((x, y) =>

((a, b, c, d, e) =>

((y, z) => x * y * z)(a * b * x, c + d + x)))(3, 4)

Each time lookup_symbol_value searches for x, it must determine that the string "x" is not

=== to "y" or "z" (in the �rst frame), nor to "a", "b", "c", "d", or "e" (in the second frame).

Because our language is lexically scoped, the run-time environment for any expression will

have a structure that parallels the lexical structure of the program in which the expression

appears. Thus, the compiler can know, when it analyzes the above expression, that each time

the function is applied the name x in x * y * z will be found two frames out from the current

frame and will be the �rst name in that frame.

We can exploit this fact by inventing a new kind of name-lookup operation,lexical_address_lookup,

that takes as arguments an environment and a lexical address that consists of two numbers:

a frame number, which speci�es how many frames to pass over, and a displacement number,
which speci�es how many variables to pass over in that frame. The operation lexical_address_lookup

will produce the value of the name stored at that lexical address relative to the current environ-

634 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=BTAeBoAIE8EpILwD4BQl2RAQygIygMZQAmUApvMmhjSNFAF6VKSiQBUMHkTwW3ubhEgFIAakjFxrWLOABmKABZYQA

Computing with Register Machines 5.5.6

ment. If we add the lexical_address_lookup operation to our machine, we can make the com-

piler generate code that references names using this operation, rather than lookup_symbol_value.

Similarly, our compiled code can use a new lexical_address_assign operation instead of

assign_symbol_value.

In order to generate such code, the compiler must be able to determine the lexical address

of a name it is about to compile a reference to. The lexical address of a name in a program

depends on where one is in the code. For example, in the following program, the address of x

in expression e1 is (2,0)—two frames back and the �rst variable in the frame. At that point y is

at address (0,0) and c is at address (1,2). In expression e2, x is at (1,0), y is at (1,1), and c is at

(0,2).

((x, y) =>

((a, b, c, d, e) =>

((y, z) => e1)(e2, c + d + x)))(3, 4)

One way for the compiler to produce code that uses lexical addressing is to maintain a

data structure called a compile-time environment. This keeps track of which names will be at

which positions in which frames in the run-time environment when a particular name-access

operation is executed. The compile-time environment is a list of frames, each containing a

list of names. (There will of course be no values bound to the names, since values are not

computed at compile time.) The compile-time environment becomes an additional argument

to compile and is passed along to each code generator. The top-level call to compile uses

an empty compile-time environment. When the body of a lambda expression is compiled,

compile_body extends the compile-time environment by a frame containing the function’s

parameters, so that the statement making up the body is compiled with that extended environ-

ment. Similarly when the body of a block is compiled, compile_body extends the compile-time

environment by a frame containing the scanned-out local names of the body so that the body

is compiled with that extended environment. At each point in the compilation, compile_name

and compile_assignment_returning use the compile-time environment in order to generate

the appropriate lexical addresses.

Exercises 5.39 through 5.42 describe how to complete this sketch of the lexical-addressing

strategy in order to incorporate lexical lookup into the compiler. Exercises 5.43 and ?? describe

other uses for the compile-time environment.

Exercise 5.39

Write a function lexical_address_lookup that implements the new lookup operation. It

should take two arguments—a lexical address and a run-time environment—and return the

value of the symbol stored at the speci�ed lexical address. The function lexical_address_lookup

should signal an error if the value of the symbol is the string "*unassigned*". Also write a

635 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.6

function lexical_address_assign that implements the operation that changes the value of

the symbol at a speci�ed lexical address.

Exercise 5.40

Modify the compiler to maintain the compile-time environment as described above. That is,

add a compile-time-environment argument to compile and the various code generators, and

extend it in compile_lambda_body and compile_block.

Exercise 5.41

Write a function find_symbol that takes as arguments a symbol and a compile-time envi-

ronment and returns the lexical address of the symbol with respect to that environment. For

example, in the program fragment that is shown above, the compile-time environment during

the compilation of expression e1 is

Ilist(list("y", "z"),

list("a", "b", "c", "d", "e"),

list("x", "y"))

The function find_symbol should produce

Ifind_symbol("c", list(list("y", "z"),

list("a", "b", "c", "d", "e"),

list("x", "y")));

[1 , [2 , nu l l]]

Ifind_symbol("x", list(list("y", "z"),

list("a", "b", "c", "d", "e"),

list("x", "y")));

[2 , [0 , nu l l]]

Ifind_symbol("w", list(list("y", "z"),

list("a", "b", "c", "d", "e"),

list("x", "y")));

" not_found "

Exercise 5.42

Using find_symbol from exercise 5.41, rewrite compile_name and compile_assignment_returning

to output lexical-address instructions. In cases where find_symbol returns "not_found" (that

is, where the symbol is not in the compile-time environment), we can safely raise a compile-

636 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=DYSwzgLgFKlQRAT3gGgATwF7wJToFBpFGzTwCGqGARlfAMZ0AmdAprgcSeGQB53IcOIA
http://source-academy.github.io/playground#chap=4&prgrm=GYSwdgJg+gzgngWwEYHsA2AKARAYywGgAI0QYAXDE87OAwrALywEoiAoQzr7n340ilgCGdLElF4iWCKICmLdnyV8qggB6jazbQG4gA
http://source-academy.github.io/playground#chap=4&prgrm=GYSwdgJg+gzgngWwEYHsA2AKARADywGgAI0QYAXDE87OAwrALywEoiAoQzr7n340ilgCGdLElEBjURFEBTFuz5K+VQXiJZazbQG4gA
http://source-academy.github.io/playground#chap=4&prgrm=GYSwdgJg+gzgngWwEYHsA2AKARAdywGgAI0QYAXDE87OAwrALywEoiAoQzr7n340ilgCGdLElEBjURFEBTFvg59lvKoIAeo2sx0BuIA

Computing with Register Machines 5.5.7

time error, because we use lexical scoping for all names. Test the modi�ed compiler on a few

simple cases, such as the nested lambda combination at the beginning of this section.

Exercise 5.43

In JavaScript, any attempt to use assignment on a name that is declared as a constant leads to an

error. Exercise 4.12 shows how to detect such errors at runtime. With the techniques presented

in this section, we can detect these errors at compile-time and make sure only programs are

run in which no assignment to constants will ever occur. For this purpose, extend the function

compile_body to collect the information whether a name is declared as a variable (using let

or as a parameter), or as a constant (using const). Modify compile_assignment to generate an

appropriate error when it detects an assignment to a constant.

Exercise 5.44

We can apply the idea of the previous exercise to the technique of open-coding in exercise 5.38:

For this, our compile time environment can store for many constants what kinds of values

they will refer to at runtime. For example, if the expression on the right-hand side of the =

sign in a constant declaration is a number literal, we know that occurrences of the name on

the left-hand side within the scope of the declaration can only refer to a number at runtime.

Similarly, we can identify at compile time names that will surely refer to a compound function

object at runtime, and store this information in the compile-time environment. Use such an

extended compile-time environment in the compilation of function applications in order to

compile away the runtime distinction between primitive and compound functions whenever

possible.

5.5.7 Interfacing Compiled Code to the Evaluator

We have not yet explained how to load compiled code into the evaluator machine or how

to run it. We will assume that the explicit-control-evaluator machine has been de�ned as in

section 5.4.4, with the additional operations speci�ed in footnote 37. We will implement a

function compile_and_go that compiles a JavaScript program, loads the resulting object code

into the evaluator machine, and causes the machine to run the code in the evaluator global

environment, print the result, and enter the evaluator’s driver loop. We will also modify the

evaluator so that interpreted expressions can call compiled functions as well as interpreted

ones. We can then put a compiled function into the machine and use the evaluator to call it:

Icompile_and_go(

parse(

637 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQ1YBDaAfWSR4-ACYBTWABsemHh3QAKNPBzwAlKADezUHtCJwoRYjT804gI6RxccctUbNO-a9CxUKro4wBeLlY2dubw8uI4tvBoDmrqANy6bnqY4vCQmNAGZuEADvAAnuaBtrD2Kmpo6olJrgD8oNCQUlLVNXoAXKA8OTm2osq8AkIiEtKy8ihK4IiYKiFhEdDwMVHq6gA0rW3b3HyCwmKSMnIK0Tg8ANbiRdYl9lvbj08pcyoLkdHlq2vxrQC+oHEUgs2geyVS6Uypn4HnQoSWhzGJ0mKyqT1A9SkpmWsLeCNGxwmqHM+RwACNkFJUWinp1oQA3WSIHhkqTXAnjBSosE1THYxSMzDM1nso6cyYk8mU6k8pKdRrNBKuP7MFVsBCTUBYubIcD8GA8NBoRAAc2g4n60B4EUqoNcKTSGSy-AVVKtNppSXqrp5nRyPBmigARAAqA1G03m0QhoPrLXYwR68PGs0WxShRBu63iSprOIASFcquYIAgMA1niwuAIJHIVFojDoACZWOWFM6LFI9eJGVJIBNoCbUXb9A7Ic7GuTxJhh6AAD5z2V6aEqIWD2cLpfOimU8R8Yebp7Q12zvSHx7QmASaZR1EJNVtzXQ0Imk0W-ja5ZfOPwAAW1xfZxWjHJ1oX9QMvk0AAyKDQH-Hh+kg0BfBQ0A-wAngTXvVt2CfMx3TKRwgPtCFQLMF831ED9+W-UAgwIoNfgfXDODQUkKSkRMXWzYcXFHUjMng-oMypSCmJwisoTMQ0U2gRYvyIkdQBAqT+Ao99PxWOMgxkyN5MY7D1XbXSzXkyUON46oVLgvdhIDKkhPTezqTzYsjM1Ey5MifhexsSz+MdQTbKczMQtEojXOYyTnVxeERjFZFUH88FAuddSqM02ig1ivh4qRIloAMtzH04HL8QSgrzOlJC+OUgSbIQsLFEckSXPE9zSs8OLEUJBQfJ4PtCNiJTrJa5zWrE9qStUwVhTZHrxSSmqrPq59MMo6iVC0ujZpZeaOUSwqppYzJdpFBbDqq8Lhtq0bgtasbQsm47orO-aKr63yho0Eb6seqkJoil722hGRyVEHh+HEAAPHIXmNJbFNu1byPWjSaMcbSwbJCGodh+HJiKqL22x3H-TkCJ4GnT4kZW1LzhyZR2MpLiCLjf6XMM6atWtHHIYpUR8mSurUo5wHYkiiSQbMFT5ip+ThestbX3Rrastlt55ciImpc1WWYbhnMEegRW-vu5yxK5k6YtQUREAUAa8cNiNEZuunx2VjbMsx0AtzcbLbftyZHYNgnUB1jrMlhKjQ-4Q3ENpgLx0-fgUnAbaGGBzVo6dzAYU8U3UpTtPtqbLPOugGP8f4AaFLdpOnWL8R09ogBmcvVIsW47ELj3UZVjKMbUbSu6CUoI+584rhuMfvttZGi-5INR7uWNvAqDuAm70o5fCD5eP0d2nQ5y3iut6ZZhETW96WFZ56PoLGq+Soreil4r9CLWlhpjfftS8XViv2llDHAeRCgrx7s-YiKU+4uiaNdQBZ9oqg0NB-d4t8oF-1gSeABuYgF4X4KyZAsALjCxFrA9Km067wG0kQkhE9rZT2uHQ0hy0G6ZE0kGFha9IL4M4CwwhyBBZkLuo1ABktI7Om6DkLEvAuRsJgWRNSaNB5qx9jpHosiCoMOipHXORsUQKPIcfc2T0Ip8MyLIE0P8foL3HGLC2QMLENGQDXTA1jFDIByPfdhE54GeO8ZvC+cwrEBJ8Yox+-QvEvyQe2d+biPHROgcYzIrUknYRLGASOGBwDYDwEQMglBqD0CYK3XWnBnyYD8tDZJKTQDQ2QqheAVTxDOKYfwSOihybZiprMOMAt8hxlsPSWp1lOEeFAUISuHTpqxj9q4bplNqb9KEYMwE0ARnOOhBMnIUyqKdPAKMlGyiB5UMUOAbSOy9kzJOjo9sejFmpGpuco5i85glwuaATOzi9EDJeUpOpTd06fLLj86aUMNkzFQArQ5AKxkJg+XGdubTLjXFll9RQsIqZLFecnJe6KBo2DXliyIm9oQEsGgKQl4hcVKMoZpL62kKVEs3sy64JLb5fVpZEpqXLN4lCkMgY0g4IX0ihV5W+wzuVoWclKn5Mw5i5J4lKuFZtGpytiZqAVQrmFCyVREIZGznBFhIqlcCM59XiENZs4ssU0L-hAWA0V4r5LIQaPAhIkj2mWqZlKYEcYvrhIiaAc1vqOJoADdSmJxNNSWqutES1xrD6mvscFRNPyKbXEDeczNSa9DAXqq1dNmrOAw2xTHSF2AJVfmZv60AvYI2gDJIaa4KraqAtsCaP8YbKS2hQv4Nkg5u0Ns9G0eoobvWZp7XWkd-SW2itHTUTog6u2-mnbaAAPFqTtw6BqVHmfUac2AZxBgACrIGQKAc40B8hdHcZAeSGA0CQE0YgC0nQgygAANS+3RDsZpiBByGCFmxP1tof1r0-T++ZbRVyAZNMBqlwI1jzM6Ee5AJ7z2XvAOIAA7nek0D6PhcBfTIt9ogP3ft-X+mocGgPgBA7W8DdFtJUZg7RgD9GhYjs3oK5AFwX1XX6pS0DHFrW1MkcMj8F7GZtp5JI3YJtRO9sjchgFbQlb4X8cp5D7G6jrPpNJrxig9M1G1cKk0zqq0KylYumjnQdONP8I5HT+6aO8gav0EdpnXAOcGE1VzGwZWhR40qGoKo2iGGMMMpz9rW2gIKFZ6FpL1NmcwMe6d2kACq0AKRXgaNmIqbQARAhBO2todrLVuuCSIH1Gr0TWUUzm7M8bmsRA2D5pIcbs2Jt+MV-4BbUpSb47Jo1zjPJCYxTp1T4mAWSY2UZ0bIzUt6AU-51zqmg3bE03A5o667OPEPQtkbJn3NuHM-BpL1bFC2b0w52tsWXNMYO08eoFgRCOQbapl7jw-P7gms9n8zlQs8gBDyKLN2NmxfQo6xLwyXUpfK2ljL026I5by5XArERQAAFocddAjKZbWfXwuAmBOIFbbhKuZuqwq2rU76vPHqk1uNrm2s0s2Gdto3Wo3s9cv15Ug3xzDZk5Dm1KpMllhOjkvJNZCn1hKXQGg5TVJw0QDgIO9JrgHJgMknb9L+RsG0mrjXSAtd3M1CbzX1x1cyJvp-FEbA9dqrsqFJ34k7VW7N9r6afh4xbTBJwoSa99BCT-R1monCRIh70CJcPnOkicPNTHkNAZMDx8D0vT8KfPwZ8j0vY88C16F+aI8CPiel52zQDIng+Q15V5r7e7Y5e3CcPQ5gGP7f0Qt9cJw84f4a5kjQLGfvv5B8YDaD3-QnCv0p-0IoaGcZ8iaF8AAPnqVRpvU+9CcJx3PvQC+l8r-Xw0-HW+E+t6XjGOMSRD+gGX8hE-oAQz370Nv-3ywgzAH38YRf9-j8b5gDn6Z5bRBgACkP+d+D+a+G+YBr+oA7+nC-ac+UBABDS-a-+F+veS8AAhChCgX-tAU-ngf4MvlgdPkvBupAYQWgaAFunoGQSAZ-hur4PvqgY-hviwQwYgUvKvtQUfhwQ0uvtweQTvrwawTfq4OwTAUIf4JgUwcGDgT-hvq4DAXoDgfoDUmCL8J7kKKbogFrjcpJPGshDyAzM1LZHGF7gYT7tLjoV1CGnodbkYX1MgGSAAFaSBRCmFtDmFsAcFJ5OHe5rwczu7v5uDWGGHZL2FwiOHq7OFlTeEDr8icJXjNyAYWhrxpE3gWjhFc5tCcKEDQA3j2x1435FElEFB5H5EV6gGj78CkCEAx71GNHVE1HYF1HyBj4ACiKe9R3RbR7RYhoBAAcjwCMT-mMSMT9kMW-gkLofEd7vnHCLlCYb4GYd0OchwY5IclYUETYcsXiIggsfoYYYkcJjYH4BsYzEYDAaEWsHsYsQcYkTEpItIlIIUJEbYZJOcjAHGFYp+NKu8YUIBvqJXNOB8Zdu4TwIyNwEKHkKdu5l8fwLbmyPJAVL8dAIMa4ACdiPEG4CWpkO9oJvDtZpEIoNKmWn0FdgrOxtIn0F0vsVEeChttRu0ciecYFqIdsPSZXIyU8cySdIIB4V4Y2p1voByV1KsYGtibHg6rkHDpWsljithGyPAHFvwCaIKs2pxKScqeqf4MSTkDSeSb8CrqAG+CICkAhioNOIoOcLAL+BkXGNadxO1qqvTDwI6RkcGJaanOIDab0oxIoK6QRJvBNqGTxBNoBquJAJJNKhzNGXCFUvGeGYTgIF9E7IoEmbGfGdoGyXUg4qFDmc0nGQoD8M4nxgJsaSbplqAF4tOAVFtnar2G6jJMQnWQ2YdDEimk6K2RgdkRkaIDyIeulhhnWUGDlhcNAMgLhpkF2QVAYJYkaOECKO0IxL6J5rygNBItzFWYJjIGSECIoIeaVnGKeZxGGQCi2QNG2UaB2ReW6VajzEechmFsGv2ahIOVGCOYCGOTOI+WzGjuCTkaIC+UCEuQThYOSGyOuS9p0K1L2JvO0siQbDdrDHGA6U6eaOeSyKVrUhDtslKQiGhQbGsJTnarAG6ucQbBcfYGRe+W4NZBSRwbAIxSVuTgYEYCYGYI+aRbDORUjnoHajGUkVqBetWR+HhVSBeY2nxbDFJa+ehTkPzjUMxQAaJWgOxWTiCIRTLAGdiNOFmWRbUq4Haunv4H6daYZTOFhc6XVIGUZbRdacpapUkOpRwX6RylECGfif8DpRTkJX+RlgbNltANObOZkKHAYpwAUL0JBTJKubBUVvoCqDGpwO0guX1PxTkJhV6dhc+bJXGFlZMM2Q4V4m6vuTWXoQEo2dlQpcZmRcVb0N2STsJQ4d0NgLAH7uYRTjAShUya2rDDdnld6TheBchtyWdiVcSLRQuZXNECZYxR5TAcCSiQIGkZgJCSKtCbCbAPCcsOKfWblVepsTkBwYzEFp1cQngoSVBZGCGQZbaXnEBWgEIJgKUNKpwp5GvNZc9U+XGG9ekJ9SitPJ5CYHCKNQVbha+Y2jNegFYbALUnaqEO4qkG6lZU9b0vaflfZRGQGU+RDSoG5e4A4ZmQbHebJHRVmaJW1aTbEZmf4esZFmYPDVmeTQJb+ZlS1ZVGhRzSdXZeNUVcdXVaVfBaddPKhcNfzVDfZbJXTStevkFe9ssdij5ajZaapjYDchSXTTiaIIyMEDkLAF0kjXEAWX8ONgbXwDvMbabbUird5dEMbUDqFF5agGrc7UjXmL7OlZkO0lTFtKJbLULdJXDTzacHGOADICaIjcjQ4dHEHJwP4IHSIInVyLTYxXpYIBHRKGhenZMIJTyJRYHH1EzRLdcGzfnaXZMFNbMa4ILYVWHc1aLZ4Hrb4ixTAUFe5o7R7fvNHZhHGAXcSGwLrYxTUQhIbbbSbcbX5UMZbf5aVoFTyO3kTTQnRAAEIIRoQ5jqmiUpkgzLnQVrkpV6BpXmmp3KDFB2BfVLyp08LX0g13Wp3LF2xcgv371lmF0emppiLjS73rW5nlnIWoqEJyBwBrrB2nVjVN2w1R0x1x3XkOESBeD+BkjgOOmHBB1wh03Z3yWMwoNOAUUOGaWVUSUHnSUnnN0TVOyKXHmEMk29mZCd1K1HXLjcXu1LD90x1F312uC91cPfym1xiaXt1c4cVlZsNuCT023XB22z3j35ERbtEL3KgBWU6r1QNBhb1gXoM22-hLlANPhH1JXiBwXsV3V6MQNUOvm32gFWOOlrwXmbwONj6EOKCuOAOll5ntqiKu5UieOf2pnOIuVXm+P1ScLWlrxhlbL6WOV5w5XSqeyqzLChV0RROspY1OUKUuVkU-0mJ-2hRLV3WJFIY2B2Of6JFrxcqxOHHdSJP5OqQG5bRpMBwrFLAW4VxHG0MYp5PhOiymJUjFN+0TWKBhNC6NxZ7SXRPZhkq8XSXGUCWNNpQqJnKtMXmdMcILO0UXmuXLMczDPmntImiuLwDIBr0h2wNnkhpI1IOxGEMY2nOuLuOZ2tB4PbPDUMOmX6AiVwh+5VV0MyXUP4OAuKBfOKPBosMBBp191CMu2GOIJqNL1cXGDkpZMJOfO728M1DmUBkY2pD+nxM40wMunou0MuXgs8iK3Quq37zwucOe2PUmgk0SPL1tCaOQ2b3b0nNqSXpBOH1QWmPmMDYS6SI8tnM2NAgVO+lPNOPSWbzivPO72KCKteMH3f39O-3+MqtPNqtf2oC7nWy7KMxvAkLSqmukJBjGubMhqQBoBroWta00rLMWvBg5B2u-jBk1N3XtJoAwn2BQON2A2hAkKIPtq4smj4tWnovEvQ3eBekXBeOEuE200K31RQvd2PDuv2sOAJtxgMv7zWmMM0YyNG0z1m2mYL0jPtLvwYYBuctBvxuhs3Px2xHWlRuEs2Wxv2UWtJuRkRBr0k3UuZs7AEtO1MtWHGYWvFt-qlvT323m2VsZIKb+tMvSvLz+u-UBmZMqB1trvLORO711tbvMvOK9uiXJsES5skJ6s+MTM8qAwJu3vAPOLGbjNMMf7BheIzPta1NV3DV9P3vOihp5MwQrOnKaSORNV0Tfubz-vGnGbwcJmDMWGNRIeGvRTwc52NkLW1WXSAcftpK52zUCWg1yPTjgAYY4AXPQNxvC3w2Nqz13NeBentj+AtWUeYA4A1w-GvOuDZ3wfZmpnEOxGscSjl3c2t0CBoVieoCXN118NPD0fEfoBiN1IZsFkT3GGj34lztyPltz0qPaXItBUcsqDaQ6MhoUdUcIvqsVImMwXiCn2gDn2SIcdUdCflkHtLzudcdryydYnOK+fccBeDv7MoepuLvVugMwySDCDifTQ0fC2NtSNZuwDwOD1NsXDNVbZ+NhcYE6TplBhc2gPg2Bu42h1wPHWMdI2bmOS02xZBj30lfTyX3lcksTXh2NoD2x0tt1fBQNcFeuPFdjoV1gP6M0eNvC09dx39eNSDeoRBiKsjcebHNPOTcVdXN1qz1zf9ALf+Abvm4tfXB+ta4bcdeOt9dtCdD1c4ONe1spArdehjcPf1vme0c9shvZdXdLpbn7d0TBdPduD1AoXWdcfnd0fUPRKzfXfBXjlaNTkzlzm2f6upL5DxWAaCuOfCvRfTz8sohUzQy2JAehqE-r2uhkrJmo9qRlpheasFN7c4NbJU-GGxewDxcj0wB09AetSvMjMq348kdxdl1c9QNwzEIO0Eu8+cvi9m2+3mkvoQxUxePRCaUw3XON2tteDG0dt-XY2NtWuwDOeVYx268xsG89fG8OEWtuqN3BgWtW+xHRK2+bdfsqfD5pupScdQz5WIlJCiUcEC8s-1XC8Jcmx+zB1+ztJs8c8CCdJ6aC8CBk+DsKeJ7N16ZBt6Yu16Yzd6aOt6ZJLhGiNkeAsQrNJCyAXZgiN-PSqhqV8GoIvRrmllpyAICAvRBk+kulA2EEXcUl4AxlrYvuX1QpDd9neuhxgU-GecVBXWQt+sft9NRk9BZ+xr1yVh0AEjtU4OHmhE9eNuotSD8QvbbHJ0ZDi78iC03in1Cj-iA2Fr9xipd6ATqgN8VLCYBCwX9eOP+Kf12iM-+-9e8G-GYr9jqhj97AL-PHsHxRBf9aaAAwAX-xr7wCEBQA2GoZ0eB-A6arnbmIlUc6YoPa2AZoEZU74fdzQQEOfkT1b4iBZK+A9-pSDZB5xO+bDB-p1035P9FeYQFXiwOS6bc1OXOJWH82P40ZMBJfV1rUjVJZc3UroRim5w9YL5jUPIG3uxzTx35p2i7DTPVCDCiBUATnCxq4Dc7GZvm7DVFlpj2zTsjB52f8sGG6IJZb0FrToKQAADypAZzkixn5+wUaFVZzMFDUF+wlBwWcKAmz4G+IzmOQY-sozPqtBJEgGIOANEQAAAvewBYP8HSCqWmg7QeaCDB6D9AkiBvPIEdL2kjYmEZ1rP3qg2g-Wb4Rrtm09Z+xx0HrP2J0HKHFCqh37WoSGkMENCr0RQyoQVxiFIA4hiQoHqNz6HMgsQiQikp0NXqTlwqSPTICkFuBeBMe9gteE0LfBYCgOeQ+AI6RL5687S77afOjSdpupQwyYSMBaBjAyDuYmwgoasJKFpD6Y3Qvqot0tJDCPMTtTobcMa7vZXho3L6BwS0D01PabqL6ObQiG0g4etlR4cgPyLTCIqyPeYZcT3r+1QGuwzAMK0Fwftrhv4cbPeRNpXA1ko-DDKIFy7HITwhIzAMSJAH1BvyFoLcGhmsADRFA+I9mMFEcjkjKRKGP9PUDZGSAiRbmdEJ0HbJ4jxAayVqOyNuojMC2QjVEdKlRG+lUgNrARoy1RFOtZRMbZeAqPUBlMaUJfc0Lhn4B28te6pHXv4BrbqjjajvLwD1xd7Tw5RQYS3nTTtT+DfWX3CkoxQkEw5E+M8O4FII9StAPRDqZ3skS2icIRhAwk7l9zXhP958ABV1kGDDFjCnOFZf0ejVRHKIRQlVFIj5yN5x1zyS8S3hl2ZZml9BOA5oMQk4Fyj9h-vbikKLGZV8HKNldMWyBXxfkQKQ5CwSRHiZNi+qqeQMJpCApmiiWYZWUu0TTGhARQanVlpTlcCr0gKQYAALJNAkAMiW9NeCHINjnqH6ScfcPHBBg0xA0QVHIkyLZDVse5chsaUrGzMROXgfslBQ7JAUxxe0HUTuL7K3kBybYn8uiFHIZY5xiPSKhuN6RwVOhHMJCusJLHWwY+VMFikFV+YqA-cUonygo3Bx99TBVIURh2N8RaCdBWQ0HOoy35ejIJYfVDozzglrA3RfsCgcLySHhCBs4E6KFiMKFGhihFg6yJ8IK5vBMA8AH4cD2MCb8aW47eFp6OgHEgIET9WYpRPZ5QT8SYI2HmxMW6iUDxz7CUKJKc5tCu4-wjUl6JUluou4oIj4Y8Ma4HjyxyvVEdxP0xGSjxnbZ6vpKYk9DnhBLUyW0IBaoibJFQp4QdwUnNBsO3ZMyfoHqBBilaGpIMV0B6AMkYc0PartJNcnND2JkYtSV92il2SDuDHXyXoHqDhTvEkwqwbcLCpwi5hxQRYciJgbojUqGw0wP6C2HYifWoDO3mmIIhdch6BA+gcQMH7Md1SjdG0dcD1EGjXedNb3nuAKF1TswHBdjHbx0hljLJpkrUUNPazQiNBXY+qXTTGmeTOIKUrUeklaDLSViXkrSY-STFbhsyK5PAVikIEMCaeRPS5kOzKGbcz2qNZYJr2WZjSOJXErUQqwclktx2jbGaXcI-YITogmNIll9LJbDiz270rsZ9M26ksFp9YrlACiVH7wAZXbIGdDNmn1pqUnvXcRkN0ElNcAOQTMN9CBxo116WIcKsxOWYrggQ3YXyAOCHCQRfyOyfGUUC7BQxqZSAdcLRA1qpA8xpMtYZuWPA8Q6Zo3BmfNCvYcyrEXM+MDzJpR8yzA5xA6BiUFlvDcZjMuWR9EMQ+xOZxMwDBcGYkyz+oQoJ8RdAVlER6Zys+aG9FFD5R5EGs8WVrKlni1oQnkBWIrOe7CzrgTs8kmLKJncydZvM2HkRUrhJ0rQupfGDFSUwmyhZZs9lDXVQAhxQ5LscOcPBlTezJZvs6Wf7PmbgxIY0VBOdyEjmgJGZpMbOfHONjbRNZPs3WRnO9GQII5SsgufNBUlX1t4EY9BD5UgiEzNaqcyub92hAsI85dcvGfND7lezO5JMtOQ7P0qBRd4zs2ua7Kjn+kp518GeUnPLldy1hmnfQHSGkivo5E6s2IKbPrnuyd5xslebbIrl+zfuq9LKH+OR5LzIgaEdHhTjxyk1D5NrdpLtObljNxAFoRtDgCESGA30jaRPiSLeTLBzQP8zCv-OmA5hq+RjNus4gVIglhJAgRudKnfnILq5pQMZvAkn44L3UzQTeG7OohSynIKcseWTPp4cJtZMUxbipG4kg9QGH82eH7yU5LwsUgGFlHNLaAT8YMmkRVky2DDsLGgSYn4JuXIVJT0mAkMEmuKjD0KxuTCu4CwseDjIPaHCpMVwvzxbRNZspTSODVXmlMaRogB4p1n4UuU2mbMllKIth7iL3JdEC-r5MPS2ClJIkvaRMNAHoK4FKC1xRP3wVSANFBRfkPwt2Y2Kfg-KaZLhnthj4bFpC0edQrfCwLvGfUFSbXxeDTgxU64FRUsDUWMRU+R4DBSpNyWPAiF0S1eSEsIXzzOwVMwlDTOUodyJZIS5ZtSQiUD4SlZ8teValGmML8lrizrDwpqKaRtFhS2ossD0VtLSmJlZMaK25hEKr2aTUpXEp+m+ImlkS4hWnJiX1KFlQy+Rd0s-lt4NkOSz9oMs6y6L0y6y9etGMvxbRjMQYAFjpjoo5KLl2wcZQJShnBhhkjEUJeUsPk1x0yy89evMvtltSuAD2fwB7IRA6Y7wrQG8oNHzgSAfCf6N2YdNkhmQpsREbSL2Egz2KMZToIhWCujaBR4MmWdjJmQ8ASA6ldstOa8qDAYrJY5pIharKtl7z-lbShpeG2t4gr6a3TeWUktrSQqzKZNalLCr6owZEVDK3qBKFRWxB0VA0TFWWmc7WRcVvy7yCpEJXTZiVgq0lc+QBWUrOVcURQIYtpWSIiFFso2dbNPlkKFlRotGQbIzH+ATV3K5Sbyt4RQqBVMKzVfCvRCIr7Vas4kJKo0DSqpAsqonvKvqiKrkVyqgSISotlbKSVQiLVSys2W6rco+qj8bkXEh0r55eKheZCEJXzJUcsaslcnNiVSzSWU8pCo0vCUrLWlFqktexmdhpLc1-SpeO8pHGuAC1HSmoh4sSXKSel9dPZfSEgw0qtlASrRbbNbWaLlgwXJRYAM0jXKJsdyr6A8pQEVZiKNaP1OOtHEBlgwQ6x5SfyHBBgW1xihAaMpTkUpPlqpdGo+Q8AwBekbqAAAwJBzS3UwCg+iPIzhxBCza9Vwwso0Mv1t6n9AwGWoRNP1UyXpMu0niv9KGVYupARCoxn9EMz6hZpODfVj0cZ3y4esHP0S5yR5GywFe2g9HjcIGnU0Fk1xaSEbHGdNCQXqFcbEbdm9ovdMwgwaetKN6NHgOAF6Sv1aNlDHSOxqMrRxnOEg3ENfWoELKPV2wGxY13sUYgugvGvONHFADLoFl7o9GsaXdX+BRVtsXOHHBSAJwpVO0GVdpCxXKb1SsAIVdRSjm0Cq4cMQ4qiGHXbB9FngYTasuYnGaugZm9TRZpzixxa4tmp-tqpc0k9UlmAdJUOHmT9rIMQizhXWqFVbLeSVEBRXYGiCmYu1dnLxZ-OOVLwd1QxTSBuooJaLlWs6xmPGLMDgAGNBysxTSqPWKdXGkrKkNRqY2hK7NcW5xWltnhJaai3SIgZxAS2lB2t7RZrT1pzDphyNv4IekKty16ABtOytrechG3-FxtuWtjRxujiTKM13yxuV3HJXnzFlwaFBK8E-j24m5L2eoIipqzTzPZVgILP5ovlyhHCOYBteuD9jhbLkqi4RUuqeCna6c52jBJdq212K5VgxIhY3PiR3yhGXcK7QmvtkgNp4bs-ZIl0iAf9ZslCz9gHEPlw7bkhqcvuJnA3WwiKaOlwiiFl5JN+4XsfkLLxe347I4RMX2GtsHnvg9ECOoWKZqJ3hdCmVIZnV1UNXTKo56O1nhskxTaaJerO7Vq1A50S8MO7YYpbzFxg5zS5cyyHePIBRUaYAZfD-lxqUoHr3+deFjeqSW1GUi56u48jxo41FyDIBZCQUXOc09CntomgrlJvqB6684BuxTVLKA2pQptnizBUNp5BfdBAAgQbdOpnGVqWlCys5bhSzlW6O1TwFLdT0bnhagsAysdUMpOWyQw9G89ooVuDDtJYdBO8OBNqU6UM2Aqusgg5TeX7LPl1RKXRHr+RpMi9jOqrTUEd1SUs5Xyunc3r5iCJhEtelXfXqV3o1OO5wYEHoAHTS7IYjyXpItVI5AcPd3alxc3L61JAY9xhRuTbtALvLtIbASDACXe3KLm15e3JZpDr1a6mtpyzXQOrzFXKitOehnfvvT0oCzFm+n4CftT1n6nG-Ia5VSWmR6lq0By3dTi1XXnIqOe6fPe5jMXb6V+y64fvusPVP7i6Fmy3TXpeX6bA1TKKRYYo+XOIiFGsA7X8r+2sqgOiK-WCXKZUQ6U5e4gSDayIXDybZNaxXWytiIDI3UAiP5M6v5WxFDxe6HSYMH2B5RxVBcAZI6IcKnDUwxIzMTqCTBWh0yaYDg2+Wn2hTpkg2hfeiCX1JLe1+RZ7XRE33aRwDdm4Yp-hbW6HP24NV-RfuWAf6ie1Jb-fpAgOQGPtABmQ5UEMN8MDFkh2SD-JANDEzFMBhvZ6os0sG0VRa3DePNb2Mz3iiAXeUlHl20GKFLq2IkXrU0vy6dmJVnsQciNIH7RMAINS9PUE-MOq96R9EKquI0ZzCViVihZqsQBqsjO+9zFYkn0qVsVmQetcFsJUaHzF2Smw3+niNxqtlTRkLSeXzGZGXtWSt7R0bOyxQD6CSXRfkY+CFGPDRCvRLwD2zXaaUEu7OF1AmO4ktoViWY0CpSCGZtjmqv3Hsepj2ADjcamJG8xQm7YqQZxlBkPyYrXSoBnulfeiB8Wr7P8Oh940ioeo6R3EKBpNbfAp7Ji3BkjFdbEU1W8tNSBLGQCEncRibHgM+1LV7qUM0YeR+x9xLMd0MqGe16W2Ypwiy3Zal4nxvE-yGMPb7TDASYMNnlGO2Gmc+6yraEuP47YcEzkPYwklmMgDpNEJs5lCeoGoIEknQ3o42vczx7h13J1xH6RhMiAKjemcU7yf9KwmPEYonsOycOPAnSpUy62HKcxqKnogtxnMFaohPe8v+pR9jkFr6M8hvqfx3-W0Ecj6nHDGxJ47Pta2KKvj1KgzXRB0N36OiHx604MRT0-HyTn7a5cnhpO2GKtMqoLGAb9PnqgO-fJqPac5FKyJAHSDDC6DLQCnYeQpjJXvoHX56jTaZk0+4icOk0UzPJnU9KfcQd9nIiZ1Y51G+ULGDxae-A2we16DURthuqkFa3bPDdBD4JnnR2dNGQaNdOe3s4xTtRN7FjUgTs8GEnMHjLRJmgcxJuSJSzJNcq6TXOdLwu605bu8cIidj17SUT+gbE3PuYVunH9B+-kP6f5CX1M9xW7TQKW+IKBytW6jI0dB8N-oatuzZEq40a1379zy+w84HoiLjAutLW5E8BbaAAXVD8+yC3Yfx2uMnD8xlXe8TT056ylw66CziZm3ikfzTGpw8spD0kLljJZ4810ueNqHf+nCLQ56b9OkXhlZyjw5cpGWnLy5f+hi3Os0SfF2zVOpi-wNfMXnS9vxrUh8or25LNzUgSWBOa8nWl-muZyDDRfdP-HhLylyLUmM9Tc6GzKFzRM2ctUAoIcmsxrhitABgcJNJBSRYFEYiU5WJ5F5017rgt6HgwF5v2IpNkuXmA8Z2Yw2pblZKUMLemYwxiopPXLr94KRnTadpNCXH9H5p4KYtfMMmsB6jAy7bNADmWlLn6Uy6JtSt0KLBlWFXdZCHPTw6NRe7K4+o0GeknTSJl46wtALOX0QrlgMhGi+P+XT93l9XnVrysCRorCJ0-YFeDNX6BzN+8vuFdpMP7MjsBs7LFfpORnW1xVgSJhdYttKIzgarq9sCCWUMylLLRK9xUMsFdjLGV1cwV2yvWXHjNuaba6fRDUXBjdEby4MXqvWJ3Lh1Tyz1Y9N3mQrQpMK2Gfv0CWxrK1toJNe3XTXNryLJK0TJSuLc9rsEZc7QooMWDV6q88g4vBLWBH1SM5dUq2WfluznOU4rQNgOtioj8I38iQIhFMo7Yz+ygTQN6HgQKatyTfc0vjYNFQLyM5N9TKTc4y0yKbvi6myfC5247kFnwEm6fzZvM2+QasTQDdxQ4TRVtkicBcSKsnY1NtDlaVBoXjMRApwM4a0lDJsoE2LQaYcHTzeih-y7Y0CuJl2wVtFtlmyt1CYULVsTsAJ1MBm0baZt63wy8h+LWdcS1NyGAgNKwGXEem2XKrlF6qyIBgAoh6bMt3W1YEzi6GU4RtnDCkB7hh3CbEdywGXFIv03DbAC5O5nF+vMWwSod9FmYAzvQLEIkdkA+ncZvJ2y4spOLWvVS2fBS7CSuu03Kru8YEwIdpaF7a4C+3kd8ZtAJnF-JoAWwVck8KrZQ0uYo7XdpM6N1DTj2E9bd6AATwtgT3B7U937inHbsmwJoy90FMWHNIx3DAcdxRX3cBrd24zVtvu8dt8V6yR7q5O0rPZPur3nuM9nwRPf3vgBD7PcLe0FhXszFFNcwWO9OEUVf2H7QXc04SrctbxO7XcU+-xyuNkiGr9xj9lhdPN3B67lgKBz7YSsmc4DcRr7e228GNRZLanCHDLZNvPVm7UdPB9uxMtQQo+Fdsh-LcjuUPL4hLRB2pXqjZnQtZ2ZU9YlbUnmXTPccUuvYXtJRD9VD5lvRfmla30zOtku+g5zu77-7B9wBwnYLsO3M7cjqO+xeYvnJxHCjnkq7f6NqxV2Z2otnxcm2GPgFnt8xyOuWCvddHLDsx+NZ7qYPwheEiiRw7AfrgeHjhyB97ZTvbjBcIzX3cSAD0K2BkNwNBf7YPO4n2H8TbW0TaO1TVy7jt5O+ERrtWPwdjd1HtEAifO2guoFtkN1vdu9bPb-jmB74n4f2XLT89lEB4-icyPEnXcLRw1jUfh25HVdqasI7qetOGnRdp2w3fqfSP+nldlazXYj583rHuSzJ5g7rOZA7WRlNXLfHF4JYQga4Xrm4U8IIBkkkiHk2Tc2deEjBO2K5FeFz0mwDn2zmDPUCDAboTnlcHHJHD4IwYt5+cSnYlwucaArndEW5zzoefTQnn9mYDjxfecilLnNGa5xui+J-OToALv9C89DQfPOTaUuiAAG0oMaEVxGTcciIvNAEGbSOKR-R7OhbaSUF0QwgwABdVKZvO8DrPEMiLk8aAAbwyAhYQYPHGy-ZccvOXXLvfLkpWd5A1n8GKjEGAAA6hUKjES-WeeJSXuLuiKK5tZ8vasaZwDO62WDKuDgCrq1Wq4NKOFcZqr6ACq8F0JZcGcD-xFq7Yd6AmXteYMGy8BCsyMMO9LjoBjCBgU2XkGVwb4lSEgm2WNQS1yy+5f+uA3PLhPvq-Vd5I8gQruV1Ri1cRujoTJjh7IAsAQ0VX6wyUQS3F4mgKYJpW+NKhhxak3CIcJUtWlBkiB03mbqw+STkyuBc32pAt2KjJJLA3UwybCHakkA9hHYDHN1P6P5APBSwtRh4FaesSfp3M-xKs9vkuvvXUjYrqOqFcndjul4v4Q0C6FcTzViRQ7-QJP1cS1G53NVr7VYjXdtBmHip7d49ZqD3mpT3kvgKIDmRtBsyGlK261B4CP2ECohQ9rqa3a6mOsPb4AFYn7fdu2gB6pxZsa4lTVFA-AAAjloeDHvgLOkUQO4WQCgk93IH3sCO61IAEa7AJCk6BMg+bAv3gIWGMYGSW-ud3LD0HVxLcCHu0EX8f1UR8-wg6cDHwfd6AFJb7bW5Dphi2e-5Oke13IjeZix6o9QeNRzc77VEE-T+PZ4wnh07h7bfTnskVYPAJTB4A45YAMwdnscFtfVKzmmAGj8GApnMzpP-YNmSaCHc8emZVSvsDTIE-8yIgjHg9xOFmYvul4dy3UE+Rs+A1a0rMez9p55DjTLy2YVmnqHqnXuagdYj0BwXMJOeAv9Yxadh+0-3m8VNn8j1IiVU4oHPoBLNTpgS--FkvV8WtAJ6zWLrbP+X9Gal4+PplJs1KRj1l6poLrivsXgOVyp9VTubY7TXg4tCxIlfoPYqtr1dCC9JAuvl0HTDF4Yvef+vlURdVNVG+fRqUQ3nR-ee9WMrw4Jn+b3wfa9ef-3y37rxl6mobeBvtaGbz6eg87exvFX7b0yENkOrfV03pIHl7K81fBoxn+6maHK+DRLPmcjvbLsJhMfnQluj7waw6-efLd4+6mL19byj6444wJZLMH295bP8CB1ZAl70Dh6O9Ahjr-eewOtzRPzodH-x9R9EHnYxsbjykiw3GwoP3ngOW-WDghz8fhMKauT6DlxzqfqAaH45baYU-Y5nEeOJj683Vx44AnjDY7FxBc-NNscXEHz5jmYba4D37n9Ztrifv2PFM5ua547B7SBPvrPafu7yrTxklqP3uYeIuAI+vvuv4hBcAE-MH4fNQfpHr872MF2PimHg6atKoa+uA3B4YA77bpdPK8yAHMEu-xWQgeEHBHAjxUIR6-mbC4ZX5-NtBh+0Wi8+jxgmccHeblCYZz8IdkUW+P8XEFP7kR1-byyMERsV48BM9hG8-r3h86cSfOff13QLx82c7y9cXS-zhKnV97WrIlI4Jfu57zufOJe8duyU5639R8PIIfTyWYEr4H+ZoJ9Anm-XW-1KVepcfOqf9Wgn-goBkBvyv78lWQCfP9Faef-pDT+b+s31H9j96lmTohNf5fv78wDW+nvbl7n8bzyG2gqoYC1-v1HRWnQeeB27cgzHZgE9+lS31off2vB-9sADNz-9y3FL1i8VaX-245QA4DxpZIA-fzl83AUsDfBzQIUCop-wKQBao0AOr3IgWkYvBwDymbP2uM8A64xL9k8Ez3NQS-ZDWnBiAqgMwBa-XoErh-OV2wE8yA3sToCcPdjwVdUzPOC1c14LgO94zXVHwWc84JZxgDhAh8zAD2PX13rxypZl1V9QGN60kgVhBQIGtpoNv1UCMdG2DecToMX20C5-YlA0C5-XQLp0O-POi10DAvQOyotdAT2zxTDEv1K1ycNeHQJ18S2zUgWkeQVHQzSFt1KBewVWlOlpwUwk0gHgL8240qSDIALchrB4lABSwVxhzAUWa0VMBoWIsAeByDBCBZlHYUQMWwQfZ-jB5qOO8wTEEhFuXoR4-fQGMMvgN-Uv03WMN0VceAkNxelJHdqha9rBYgBxx9PMICXIVXOCmitbzd-SK1++F833VygkoL0AQgjXTaDNPMQGwlorYw3X0+reURLcgAst0LdrDaYOet-jO8zt9XfC73QABg+3kcBRLUQlO57AZeH2CgsUsHlhdkOQCFAPibwDrYMXdeHgAHgMoP2CgrIrRThk-VwzOEr3KMzitAbUQhmD9lV4LeULDL-WWDicfxTOwlrXYJOC1AaEJgNRCKdQ2C03RYJACwQjph+DoDcvWit7HGEPqCnglq1e0iUNqyqDAMaNmfQpAF6W3w1rMYN8CsRD5Q4D-YMIMw0wrBENyCjHMwz6CF7foUTF5gYoNWCX9WYLvNAA5AGACoAtEMpDt8Ly0JCnOYkO7NSQhUyXF6Qh4H+s0raKxSDMgl4EVDWQzAAH12QykyDBxA0QOqN3MUpiDBuiFoPGCKcL6DgoqVBk1EJzgy9BhJ4PMCkAxKiCnAAAlbolIAAAGWVD1uOjRSA0g6TwkDqBGTHpCadJIAPVaQ8qXyFPWUQh6DKg+80qV0g8z0M9jQukz2DYQ4YKbQmNWrTeVDMZMOk8lQpIATCOQnT3whCsDEMzCJQ0QlGCjdFUwYhorUsFPRAw9UjVJgAFGn-AuAbMAeBSw-UIZAzvc6G2D0wx4DMUhg6KzrCuzFUyO9nzboIK1eg8sLqZViYcNbUxw04InDcwujRVNJvQmDnCQxBcLi9svaEPHDt8ScPzCflcNXRDt8PsOuVo-SEGE8RwvdWrCDg4IM3DQgwzGytrw+cMTC6fB2Cp8w4I6GHU1wrMI3CJuLcMMx+NPcOWB8gt7xl1J3R8Pmlnw7MLPCow9vQhhiwtwBvC+gswBUljw9cNPC3wmkJuAMIqt2-Cyw+824Qqw3EJfCkgFCJVNKIr8P3CfwnPy0RZwqlRPDawwiPrD9jY+VnCqQ-0O40YAPKWJ8JQOKhEUGQ1wFQjZYXJFwBiI0QhxCbrCSP0ApIig3+DT9coKBCEbe8N+9AIoSw4i-Q3ljzCowx2DpCVrFIJVNCwwK3xCX9Xq2AjKQ0QhVCbrbfHMjDMBiDUibIgzRqdEwp-w4h7lKiKGCqVeEIMiJWMxScjRCFyLQieAbIMe8TYA0PNBz9OYJuUwfIH2H9-I-CPcifjDSMSi4fQWDwiQIyULWCKg8iKP9bkPizMUYAHsDyj6goSyCikgRyOlCSI5NEZCeI3P20RDg1djaMRjdqLO5X9AqJf0KohKLvNajKqJoi3AI4ODABo9MOeDYQzSIZ14ItKPyiMos0EEUGo2UJVN3iMQEQAqILKgwxGovQGpDuIkyJjDKpPaI3lUIjaLthtoiOl2j5Io9hSAJo+KIOVzgrsL7dh+XdnujeopaNiigzO80QVJjbEFGicSU-RosoQqIOeiKcOaMZ9oAXsLIj9Qhd3whl3HmgWoEIuJwejKo5CK4iuzNalMjt8caLfN0wiKI2iV3LIO6jjg4k2kZ1Il4MSiztPdyojJo7MKwjFw89xXcUYqAzRi8zUCOsZwImuE0QpKRU1Oi8YgwweA8Y+mK+iVo4YyJDRmc6N5ivSdnhwAmgTgVpj+IwyPAijo6vFjDTowmJljYAOWIVjleRDweAcQ0WMNi7o44KFi3ozTzJi6LayMDNrTTSIQg4PBD3cRWY0A1+DlrKlXAN+Qn40mjNI+JGGi6Yx6OzCDoqcJajVpJGIygwwtUMjD1o3mPPcDYpIClCJYmUKliY4mRB445YvmMrMjPaK2Dj8wtWIqkKNZyOjjQ49OIfRM4hJGiicQ8mKBiX9H6IPCHY+DwEBaYhoKEsh1IS09jt8HENqs3AXOI0QVxTaPViToqOP9hsY46McZ4w2GNvCzAFv1mRVw763fMCIsCO41kSYElOjGY+83b8znF2M7EnLH60XiuY7jU3jV4qCL1Cp415xMCt4ueP3UorfeIKE6NHPWPjlYiVjo0hI2YTOc1IR+SVD1Q9s1XixYtK3ti6-GeNKiIQ12OvixrEBJoxozES2zCFIhqKfjzmUKLgSi4-2CPiuLaKOMMfY6mPBQUoj3ipUb4v+MFCDwyfwRx0QvBL3iCEwEMSi9-aAOGtxJV81FjvTSENfMvTJ-i8MsQvqMyiqYu8zX9coqiPwSYYpiPIjtBb31Rts1DIG3j+IQYNODGpJoIcCLADGKXiNdGcjESBAXDDkAegeDFOjYEpOPTDe44MJxjRCeiFcRZYNROkRNEv+NasU44PV-BXfT8IciBImkPziNY4xRSCH4tBNuj3o44MUibY5aP-jEoxQKsDIgshIXj7EwyNBjkEySIsirAaKLxjvEhONP1MEpEKE9SPXBL0j0oi-2LivddBMpiZo6mK+0uPAOPRiT4mCJUSHwhaJrDXwxRO4jSkmSO44u4NeMnjsI8uIKSqVemM5i7498K91y4g2AFiOo42KSBBY-fR8TYoyxO5iVJVWnaN4EoyP0Sx45jQiTlIqJKE9WrE2M8Sy9PMw8TLY9mKmiEkx6N9iAGFJOhC2kqZLGT1fYeMiSCwvaW6TYYbJJf1Rk0IOsTbEmG2OT3wpxKHiEAyJIeSDgOhT-jerFwxkU01DZL3ZOoqLTqj1uRBJ0SzIzJO4Q-4rKLvMzfXhPYj0k+JI8j1gg8M2CDgbYNSS7Il8OFiOogKOiCwAU9FyAMMJkBuDPE+4INhhk58M0j3giQ08hMiKiLtCqUkwyoSQQrfxITqo1hLdjaEzw1fN8UrlMxCOYzuNNikI0JOfiXkziAMSHgCKP41SY0VIJTuwrXDw8oYiAHtcZAXpFxSeo82LGiOouJIpjbk1aJTiIIzTVGAto8SOZTYUg8P58OfHTRGig4hxMOjJU2ZPDDSwS0Liw7tO2CPFpUzJJzhTUiQEriRU4FPUUVkzZM+iQ0oFICiBE6CIPDKkThVbi-gypIPiiInOCE1u4eyO9Tmo1+hrgKQ6cCtBgiGFK4SrU8X0dhJfcpMBj9APROjDB4wuPCifUzTVTSggYDwtTC0xMOtTDiO1JziHUkONeSa0jNPOSLwvSG1g-4xJPrjsvHrzLTswkWMDi4wUsCODrVOaAhi1UsIC09kUzhNyShosdMXUJ06K0GT1kzVK8S4EixMNTuYrNQYBToytJ7S5kmdLAA3UvFTRlBoPtIWT9jMdLPTAUj6L1SSIVZLDSLYoFP6SIiNkI3TqvG-wq9ctcqOnT4092Jqj2EsVIQTXzMKMfS9AVCJnCafZlJHTEw5DJEla0CRN6ckIndL6TwM2dP9Z50p8VVT08dVOnBm09dIPCMMjMhAyW47FMnSOo7VP4ZdUw9OZS7koiJXDnkxxKdTq0q9IVS3U7YPvSbABDLogVTYcLfSD0iFMky1k9MKNjp0h4ERDR0oDOf8t0wwzAz0Y20MjNAo6DOZTfkgAwNUpk8FIsVzUpIBlTV1N30Khh03ZP8SLM7YPHT6MvlKRSdUnqIYTCMpVMSJSMnmA1TV03xMtTW0uzMa8-IxzKkTFo-dNkzcY1jOkz2M49M6SuMmDOmSq0guP4zXU1mQpwhMr6FEzSwbon-I4IS9xJkTQFINfjIqESOJAxIm5J+N9MpoLijhInSI-jegKGH-Jz0rtPt5IwEOCayzk5SOKy5yd+PKyZMoNKejSwaQD3B5nc6ht4c0asFHi+MuzACsPTU0O6y4+cFDEjGs49GayVY7jVkh2s1bM6zEMzbN1Ims7UN1C7zQ0LXA8QmolNDzQlMIhEbQiDPLT9olrNSCY4XwMyCRsTWOLiNPNMyxkhhLwIcJW3fsk2kapV3k4QsollL8T8Y0ixUsItQ1LijNM0zD+z23d3js14cziBOlmpOgI0trYeDQYwzkaGBAVsEfxFHs77YKFxzctb6iK5jcXIMgxv2LGGmZaEJjWiiYRZbhHhN2VA08TIMKJiGMjiUSy3BrnThCowJkc4CKBukKmH6AScoV3UBUpcW0agxciDGDB+c3AEFyLAYXLTBWoEnJldGIHCRGYBcyGCVzOQNMCBB7cPHKdBZYh9D1j7AZQH+IdY2MTZtgMFrWZsv0bRwPxZYxrk-RrnT9A-RWMH9FliQDIMDXgDcx9E3gscpBU8V5BcmRwihbGpHnA5wPxBttI8qPzMBDFUPPjzrjeQR5yaXeDEQwtCcESDycczeF9cWtVXj5tpUfqV95EAf4V9dgwHhBtzscxPhMB1c9YDN0-gJw2AUQjeaEvdNSc5iMRdVDFztwtcXzxtAuDPYC2DGvGxD7MvATP1ENgxEQA+D6U4SC8Q2QPvKfIeyfQAgCUQsUO39ySFejZT9-dMHnyewIECXy4wCfLFJ0Qat3zddScUJJpYJZpC91zNQ+W2gwckq1iNCpVcD9xcBEUFrscnWuy90bHQEB8CdyRihVo0xcdmRzKjRu2Xy9AIAo+lYWHylALNDGOjXhSyZ8Q-ZnpG7H-zJLZt0zVpkE5hYVyYRN289JEUrQQAMMUYTGY80GoGFd5kayEyAMCBgHcxKCrnHqA6CoYgYKzseUGfwIAVjhILGRTIHxxvkPQFYLwsDAyAA

Computing with Register Machines 5.5.7

"function factorial(n) { \

return n === 1 \

? 1 \

: n * factorial(n - 1); \

}"));

EC−eva lua te value :
undef ined

EC−eva lua te input :

factorial(5);

EC−eva lua te value :
120

To allow the evaluator to handle compiled functions (for example, to evaluate the call to

factorial above), we need to change the code at apply_dispatch (section 5.4.1) so that it

recognizes compiled functions (as distinct from compound or primitive functions) and transfers

control directly to the entry point of the compiled code:
43

"apply_dispatch",

test(op("primitive_function"), reg("fun")),

branch(label("primitive_apply")),

test(op("compound_function"), reg("fun")),

branch(label("compound_apply")),

test(op("is_compiled_function"), reg("fun")),

branch(label("compiled_apply")),

go_to(label("unknown_function_type")),

"compiled_apply",

restore("continue"),

assign("val", list(op("compiled_function_entry"), reg("fun"))),

go_to(reg("val")),

Note the restore of continue at compiled_apply. Recall that the evaluator was arranged so

that at apply_dispatch, the continuation would be at the top of the stack. The compiled code

entry point, on the other hand, expects the continuation to be in continue, so continue must

be restored before the compiled code is executed.

To enable us to run some compiled code when we start the evaluator machine, we add a

branch instruction at the beginning of the evaluator machine, which causes the machine to

go to a new entry point if the flag register is set.
44

43
Of course, compiled functions as well as interpreted functions are compound (nonprimitive). For compatibility

with the terminology used in the explicit-control evaluator, in this section we will use “compound” to mean

interpreted (as opposed to compiled).

44
Now that the evaluator machine starts with a branch, we must always initialize the flag register before

starting the evaluator machine. To start the machine at its ordinary read-eval-print loop, we could use

Ifunction start_eceval() {

638 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQ1YBDaAfWSR4-ACYBTWABsemHh3QAKNPBzwAlKADezUHtCJwoRYjT804gI6RxccctUbNO-a9CxUKro4wBeLlY2dubw8uI4tvBoDmrqANy6bnqY4vCQmNAGZuEADvAAnuaBtrD2Kmpo6olJrgD8oNCQUlLVNXoAXKA8OTm2osq8AkIiEtKy8ihK4IiYKiFhEdDwMVHq6gA0rW3b3HyCwmKSMnIK0Tg8ANbiRdYl9lvbj08pcyoLkdHlq2vxrQC+oHEUgs2geyVS6Uypn4HnQoSWhzGJ0mKyqT1A9SkpmWsLeCNGxwmqHM+RwACNkFJUWinp1oQA3WSIHhkqTXAnjBSosE1THYxSMzDM1nso6cyYk8mU6k8pKdRrNBKuP7MFVsBCTUBYubIcD8GA8NBoRAAc2g4n60B4EUqoNcKTSGSy-AVVKtNppSXqrp5nRyPBmigARAAqA1G03m0QhoPrLXYwR68PGs0WxShRBu63iSprOIASFcquYIAgMA1niwuAIJHIVFojDoACZWOWFM6LFI9eJGVJIBNoCbUXb9A7Ic7GuTxJhh6AAD5z2V6aEqIWD2cLpfOimU8R8Yebp7Q12zvSHx7QmASaZR1EJNVtzXQ0Imk0W-ja5ZfOPwAAW1xfZxWjHJ1oX9QMvk0AAyKDQH-Hh+kg0BfBQ0A-wAngTXvVt2CfMx3TKRwgPtCFQLMF831ED9+W-UAgwIoNfgfXDODQUkKSkRMXWzYcXFHUjMng-oMypSCmJwisoTMQ0U2gRYvyIkdQBAqT+Ao99PxWOMgxkyN5MY7D1XbXSzXkyUON46oVLgvdhIDKkhPTezqTzYsjM1Ey5MifhexsSz+MdQTbKczMQtEojXOYyTnVxeERjFZFUH88FAuddSqM02ig1ivh4qRIloAMtzH04HL8QSgrzOlJC+OUgSbIQsLFEckSXPE9zSs8OLEUJBQfJ4PtCNiJTrJa5zWrE9qStUwVhTZHrxSSmqrPq59MMo6iVC0ujZpZeaOUSwqppYzJdpFBbDqq8Lhtq0bgtasbQsm47orO-aKr63yho0Eb6seqkJoil722hGRyVEHh+HEAAPHIXmNJbFNu1byPWjSaMcbSwbJCGodh+HJiKqL22x3H-TkCJ4GnT4kZW1LzhyZR2MpLiCLjf6XMM6atWtHHIYpUR8mSurUo5wHYkiiSQbMFT5ip+ThestbX3Rrastlt55ciImpc1WWYbhnMEegRW-vu5yxK5k6YtQUREAUAa8cNiNEZuunx2VjbMsx0AtzcbLbftyZHYNgnUB1jrMlhKjQ-4Q3ENpgLx0-fgUnAbaGGBzVo6dzAYU8U3UpTtPtqbLPOugGP8f4AaFLdpOnWL8R09ogBmcvVIsW47ELj3UZVjKMbUbSu6CUoI+584rhuMfvttZGi-5INR7uWNvAqDuAm70o5fCD5eP0d2nQ5y3iut6ZZhETW96WFZ56PoLGq+Soreil4r9CLWlhpjfftS8XViv2llDHAeRCgrx7s-YiKU+4uiaNdQBZ9oqg0NB-d4t8oF-1gSeABuYgF4X4KyZAsALjCxFrA9Km067wG0kQkhE9rZT2uHQ0hy0G6ZE0kGFha9IL4M4CwwhyBBZkLuo1ABktI7Om6DkLEvAuRsJgWRNSaNB5qx9jpHosiCoMOipHXORsUQKPIcfc2T0Ip8MyLIE0P8foL3HGLC2QMLENGQDXTA1jFDIByPfdhE54GeO8ZvC+cwrEBJ8Yox+-QvEvyQe2d+biPHROgcYzIrUknYRLGASOGBwDYDwEQMglBqD0CYK3XWnBnyYD8tDZJKTQDQ2QqheAVTxDOKYfwSOihybZiprMOMAt8hxlsPSWp1lOEeFAUISuHTpqxj9q4bplNqb9KEYMwE0ARnOOhBMnIUyqKdPAKMlGyiB5UMUOAbSOy9kzJOjo9sejFmpGpuco5i85glwuaATOzi9EDJeUpOpTd06fLLj86aUMNkzFQArQ5AKxkJg+XGdubTLjXFll9RQsIqZLFecnJe6KBo2DXliyIm9oQEsGgKQl4hcVKMoZpL62kKVEs3sy64JLb5fVpZEpqXLN4lCkMgY0g4IX0ihV5W+wzuVoWclKn5Mw5i5J4lKuFZtGpytiZqAVQrmFCyVREIZGznBFhIqlcCM59XiENZs4ssU0L-hAWA0V4r5LIQaPAhIkj2mWqZlKYEcYvrhIiaAc1vqOJoADdSmJxNNSWqutES1xrD6mvscFRNPyKbXEDeczNSa9DAXqq1dNmrOAw2xTHSF2AJVfmZv60AvYI2gDJIaa4KraqAtsCaP8YbKS2hQv4Nkg5u0Ns9G0eoobvWZp7XWkd-SW2itHTUTog6u2-mnbaAAPFqTtw6BqVHmfUac2AZxBgACrIGQKAc40B8hdHcZAeSGA0CQE0YgC0nQgygAANS+3RDsZpiBByGCFmxP1tof1r0-T++ZbRVyAZNMBqlwI1jzM6Ee5AJ7z2XvAOIAA7nek0D6PhcBfTIt9ogP3ft-X+mocGgPgBA7W8DdFtJUZg7RgD9GhYjs3oK5AFwX1XX6pS0DHFrW1MkcMj8F7GZtp5JI3YJtRO9sjchgFbQlb4X8cp5D7G6jrPpNJrxig9M1G1cKk0zqq0KylYumjnQdONP8I5HT+6aO8gav0EdpnXAOcGE1VzGwZWhR40qGoKo2iGGMMMpz9rW2gIKFZ6FpL1NmcwMe6d2kACq0AKRXgaNmIqbQARAhBO2todrLVuuCSIH1Gr0TWUUzm7M8bmsRA2D5pIcbs2Jt+MV-4BbUpSb47Jo1zjPJCYxTp1T4mAWSY2UZ0bIzUt6AU-51zqmg3bE03A5o667OPEPQtkbJn3NuHM-BpL1bFC2b0w52tsWXNMYO08eoFgRCOQbapl7jw-P7gms9n8zlQs8gBDyKLN2NmxfQo6xLwyXUpfK2ljL026I5by5XArERQAAFocddAjKZbWfXwuAmBOIFbbhKuZuqwq2rU76vPHqk1uNrm2s0s2Gdto3Wo3s9cv15Ug3xzDZk5Dm1KpMllhOjkvJNZCn1hKXQGg5TVJw0QDgIO9JrgHJgMknb9L+RsG0mrjXSAtd3M1CbzX1x1cyJvp-FEbA9dqrsqFJ34k7VW7N9r6afh4xbTBJwoSa99BCT-R1monCRIh70CJcPnOkicPNTHkNAZMDx8D0vT8KfPwZ8j0vY88C16F+aI8CPiel52zQDIng+Q15V5r7e7Y5e3CcPQ5gGP7f0Qt9cJw84f4a5kjQLGfvv5B8YDaD3-QnCv0p-0IoaGcZ8iaF8AAPnqVRpvU+9CcJx3PvQC+l8r-Xw0-HW+E+t6XjGOMSRD+gGX8hE-oAQz370Nv-3ywgzAH38YRf9-j8b5gDn6Z5bRBgACkP+d+D+a+G+YBr+oA7+nC-ac+UBABDS-a-+F+veS8AAhChCgX-tAU-ngf4MvlgdPkvBupAYQWgaAFunoGQSAZ-hur4PvqgY-hviwQwYgUvKvtQUfhwQ0uvtweQTvrwawTfq4OwTAUIf4JgUwcGDgT-hvq4DAXoDgfoDUmCL8J7kKKbogFrjcpJPGshDyAzM1LZHGF7gYT7tLjoV1CGnodbkYX1MgGSAAFaSBRCmFtDmFsAcFJ5OHe5rwczu7v5uDWGGHZL2FwiOHq7OFlTeEDr8icJXjNyAYWhrxpE3gWjhFc5tCcKEDQA3j2x1435FElEFB5H5EV6gGj78CkCEAx71GNHVE1HYF1HyBj4ACiKe9R3RbR7RYhoBAAcjwCMT-mMSMT9kMW-gkLofEd7vnHCLlCYb4GYd0OchwY5IclYUETYcsXiIggsfoYYYkcJjYH4BsYzEYDAaEWsHsYsQcYkTEpItIlIIUJEbYZJOcjAHGFYp+NKu8YUIBvqJXNOB8Zdu4TwIyNwEKHkKdu5l8fwLbmyPJAVL8dAIMa4ACdiPEG4CWpkO9oJvDtZpEIoNKmWn0FdgrOxtIn0F0vsVEeChttRu0ciecYFqIdsPSZXIyU8cySdIIB4V4Y2p1voByV1KsYGtibHg6rkHDpWsljithGyPAHFvwCaIKs2pxKScqeqf4MSTkDSeSb8CrqAG+CICkAhioNOIoOcLAL+BkXGNadxO1qqvTDwI6RkcGJaanOIDab0oxIoK6QRJvBNqGTxBNoBquJAJJNKhzNGXCFUvGeGYTgIF9E7IoEmbGfGdoGyXUg4qFDmc0nGQoD8M4nxgJsaSbplqAF4tOAVFtnar2G6jJMQnWQ2YdDEimk6K2RgdkRkaIDyIeulhhnWUGDlhcNAMgLhpkF2QVAYJYkaOECKO0IxL6J5rygNBItzFWYJjIGSECIoIeaVnGKeZxGGQCi2QNG2UaB2ReW6VajzEechmFsGv2ahIOVGCOYCGOTOI+WzGjuCTkaIC+UCEuQThYOSGyOuS9p0K1L2JvO0siQbDdrDHGA6U6eaOeSyKVrUhDtslKQiGhQbGsJTnarAG6ucQbBcfYGRe+W4NZBSRwbAIxSVuTgYEYCYGYI+aRbDORUjnoHajGUkVqBetWR+HhVSBeY2nxbDFJa+ehTkPzjUMxQAaJWgOxWTiCIRTLAGdiNOFmWRbUq4Haunv4H6daYZTOFhc6XVIGUZbRdacpapUkOpRwX6RylECGfif8DpRTkJX+RlgbNltANObOZkKHAYpwAUL0JBTJKubBUVvoCqDGpwO0guX1PxTkJhV6dhc+bJXGFlZMM2Q4V4m6vuTWXoQEo2dlQpcZmRcVb0N2STsJQ4d0NgLAH7uYRTjAShUya2rDDdnld6TheBchtyWdiVcSLRQuZXNECZYxR5TAcCSiQIGkZgJCSKtCbCbAPCcsOKfWblVepsTkBwYzEFp1cQngoSVBZGCGQZbaXnEBWgEIJgKUNKpwp5GvNZc9U+XGG9ekJ9SitPJ5CYHCKNQVbha+Y2jNegFYbALUnaqEO4qkG6lZU9b0vaflfZRGQGU+RDSoG5e4A4ZmQbHebJHRVmaJW1aTbEZmf4esZFmYPDVmeTQJb+ZlS1ZVGhRzSdXZeNUVcdXVaVfBaddPKhcNfzVDfZbJXTStevkFe9ssdij5ajZaapjYDchSXTTiaIIyMEDkLAF0kjXEAWX8ONgbXwDvMbabbUird5dEMbUDqFF5agGrc7UjXmL7OlZkO0lTFtKJbLULdJXDTzacHGOADICaIjcjQ4dHEHJwP4IHSIInVyLTYxXpYIBHRKGhenZMIJTyJRYHH1EzRLdcGzfnaXZMFNbMa4ILYVWHc1aLZ4Hrb4ixTAUFe5o7R7fvNHZhHGAXcSGwLrYxTUQhIbbbSbcbX5UMZbf5aVoFTyO3kTTQnRAAEIIRoQ5jqmiUpkgzLnQVrkpV6BpXmmp3KDFB2BfVLyp08LX0g13Wp3LF2xcgv371lmF0emppiLjS73rW5nlnIWoqEJyBwBrrB2nVjVN2w1R0x1x3XkOESBeD+BkjgOOmHBB1wh03Z3yWMwoNOAUUOGaWVUSUHnSUnnN0TVOyKXHmEMk29mZCd1K1HXLjcXu1LD90x1F312uC91cPfym1xiaXt1c4cVlZsNuCT023XB22z3j35ERbtEL3KgBWU6r1QNBhb1gXoM22-hLlANPhH1JXiBwXsV3V6MQNUOvm32gFWOOlrwXmbwONj6EOKCuOAOll5ntqiKu5UieOf2pnOIuVXm+P1ScLWlrxhlbL6WOV5w5XSqeyqzLChV0RROspY1OUKUuVkU-0mJ-2hRLV3WJFIY2B2Of6JFrxcqxOHHdSJP5OqQG5bRpMBwrFLAW4VxHG0MYp5PhOiymJUjFN+0TWKBhNC6NxZ7SXRPZhkq8XSXGUCWNNpQqJnKtMXmdMcILO0UXmuXLMczDPmntImiuLwDIBr0h2wNnkhpI1IOxGEMY2nOuLuOZ2tB4PbPDUMOmX6AiVwh+5VV0MyXUP4OAuKBfOKPBosMBBp191CMu2GOIJqNL1cXGDkpZMJOfO728M1DmUBkY2pD+nxM40wMunou0MuXgs8iK3Quq37zwucOe2PUmgk0SPL1tCaOQ2b3b0nNqSXpBOH1QWmPmMDYS6SI8tnM2NAgVO+lPNOPSWbzivPO72KCKteMH3f39O-3+MqtPNqtf2oC7nWy7KMxvAkLSqmukJBjGubMhqQBoBroWta00rLMWvBg5B2u-jBk1N3XtJoAwn2BQON2A2hAkKIPtq4smj4tWnovEvQ3eBekXBeOEuE200K31RQvd2PDuv2sOAJtxgMv7zWmMM0YyNG0z1m2mYL0jPtLvwYYBuctBvxuhs3Px2xHWlRuEs2Wxv2UWtJuRkRBr0k3UuZs7AEtO1MtWHGYWvFt-qlvT323m2VsZIKb+tMvSvLz+u-UBmZMqB1trvLORO711tbvMvOK9uiXJsES5skJ6s+MTM8qAwJu3vAPOLGbjNMMf7BheIzPta1NV3DV9P3vOihp5MwQrOnKaSORNV0Tfubz-vGnGbwcJmDMWGNRIeGvRTwc52NkLW1WXSAcftpK52zUCWg1yPTjgAYY4AXPQNxvC3w2Nqz13NeBentj+AtWUeYA4A1w-GvOuDZ3wfZmpnEOxGscSjl3c2t0CBoVieoCXN118NPD0fEfoBiN1IZsFkT3GGj34lztyPltz0qPaXItBUcsqDaQ6MhoUdUcIvqsVImMwXiCn2gDn2SIcdUdCflkHtLzudcdryydYnOK+fccBeDv7MoepuLvVugMwySDCDifTQ0fC2NtSNZuwDwOD1NsXDNVbZ+NhcYE6TplBhc2gPg2Bu42h1wPHWMdI2bmOS02xZBj30lfTyX3lcksTXh2NoD2x0tt1fBQNcFeuPFdjoV1gP6M0eNvC09dx39eNSDeoRBiKsjcebHNPOTcVdXN1qz1zf9ALf+Abvm4tfXB+ta4bcdeOt9dtCdD1c4ONe1spArdehjcPf1vme0c9shvZdXdLpbn7d0TBdPduD1AoXWdcfnd0fUPRKzfXfBXjlaNTkzlzm2f6upL5DxWAaCuOfCvRfTz8sohUzQy2JAehqE-r2uhkrJmo9qRlpheasFN7c4NbJU-GGxewDxcj0wB09AetSvMjMq348kdxdl1c9QNwzEIO0Eu8+cvi9m2+3mkvoQxUxePRCaUw3XON2tteDG0dt-XY2NtWuwDOeVYx268xsG89fG8OEWtuqN3BgWtW+xHRK2+bdfsqfD5pupScdQz5WIlJCiUcEC8s-1XC8Jcmx+zB1+ztJs8c8CCdJ6aC8CBk+DsKeJ7N16ZBt6Yu16Yzd6aOt6ZJLhGiNkeAsQrNJCyAXZgiN-PSqhqV8GoIvRrmllpyAICAvRBk+kulA2EEXcUl4AxlrYvuX1QpDd9neuhxgU-GecVBXWQt+sft9NRk9BZ+xr1yVh0AEjtU4OHmhE9eNuotSD8QvbbHJ0ZDi78iC03in1Cj-iA2Fr9xipd6ATqgN8VLCYBCwX9eOP+Kf12iM-+-9e8G-GYr9jqhj97AL-PHsHxRBf9aaAAwAX-xr7wCEBQA2GoZ0eB-A6arnbmIlUc6YoPa2AZoEZU74fdzQQEOfkT1b4iBZK+A9-pSDZB5xO+bDB-p1035P9FeYQFXiwOS6bc1OXOJWH82P40ZMBJfV1rUjVJZc3UroRim5w9YL5jUPIG3uxzTx35p2i7DTPVCDCiBUATnCxq4Dc7GZvm7DVFlpj2zTsjB52f8sGG6IJZb0FrToKQAADypAZzkixn5+wUaFVZzMFDUF+wlBwWcKAmz4G+IzmOQY-sozPqtBJEgGIOANEQAAAvewBYP8HSCqWmg7QeaCDB6D9AkiBvPIEdL2kjYmEZ1rP3qg2g-Wb4Rrtm09Z+xx0HrP2J0HKHFCqh37WoSGkMENCr0RQyoQVxiFIA4hiQoHqNz6HMgsQiQikp0NXqTlwqSPTICkFuBeBMe9gteE0LfBYCgOeQ+AI6RL5687S77afOjSdpupQwyYSMBaBjAyDuYmwgoasJKFpD6Y3Qvqot0tJDCPMTtTobcMa7vZXho3L6BwS0D01PabqL6ObQiG0g4etlR4cgPyLTCIqyPeYZcT3r+1QGuwzAMK0Fwftrhv4cbPeRNpXA1ko-DDKIFy7HITwhIzAMSJAH1BvyFoLcGhmsADRFA+I9mMFEcjkjKRKGP9PUDZGSAiRbmdEJ0HbJ4jxAayVqOyNuojMC2QjVEdKlRG+lUgNrARoy1RFOtZRMbZeAqPUBlMaUJfc0Lhn4B28te6pHXv4BrbqjjajvLwD1xd7Tw5RQYS3nTTtT+DfWX3CkoxQkEw5E+M8O4FII9StAPRDqZ3skS2icIRhAwk7l9zXhP958ABV1kGDDFjCnOFZf0ejVRHKIRQlVFIj5yN5x1zyS8S3hl2ZZml9BOA5oMQk4Fyj9h-vbikKLGZV8HKNldMWyBXxfkQKQ5CwSRHiZNi+qqeQMJpCApmiiWYZWUu0TTGhARQanVlpTlcCr0gKQYAALJNAkAMiW9NeCHINjnqH6ScfcPHBBg0xA0QVHIkyLZDVse5chsaUrGzMROXgfslBQ7JAUxxe0HUTuL7K3kBybYn8uiFHIZY5xiPSKhuN6RwVOhHMJCusJLHWwY+VMFikFV+YqA-cUonygo3Bx99TBVIURh2N8RaCdBWQ0HOoy35ejIJYfVDozzglrA3RfsCgcLySHhCBs4E6KFiMKFGhihFg6yJ8IK5vBMA8AH4cD2MCb8aW47eFp6OgHEgIET9WYpRPZ5QT8SYI2HmxMW6iUDxz7CUKJKc5tCu4-wjUl6JUluou4oIj4Y8Ma4HjyxyvVEdxP0xGSjxnbZ6vpKYk9DnhBLUyW0IBaoibJFQp4QdwUnNBsO3ZMyfoHqBBilaGpIMV0B6AMkYc0PartJNcnND2JkYtSV92il2SDuDHXyXoHqDhTvEkwqwbcLCpwi5hxQRYciJgbojUqGw0wP6C2HYifWoDO3mmIIhdch6BA+gcQMH7Md1SjdG0dcD1EGjXedNb3nuAKF1TswHBdjHbx0hljLJpkrUUNPazQiNBXY+qXTTGmeTOIKUrUeklaDLSViXkrSY-STFbhsyK5PAVikIEMCaeRPS5kOzKGbcz2qNZYJr2WZjSOJXErUQqwclktx2jbGaXcI-YITogmNIll9LJbDiz270rsZ9M26ksFp9YrlACiVH7wAZXbIGdDNmn1pqUnvXcRkN0ElNcAOQTMN9CBxo116WIcKsxOWYrggQ3YXyAOCHCQRfyOyfGUUC7BQxqZSAdcLRA1qpA8xpMtYZuWPA8Q6Zo3BmfNCvYcyrEXM+MDzJpR8yzA5xA6BiUFlvDcZjMuWR9EMQ+xOZxMwDBcGYkyz+oQoJ8RdAVlER6Zys+aG9FFD5R5EGs8WVrKlni1oQnkBWIrOe7CzrgTs8kmLKJncydZvM2HkRUrhJ0rQupfGDFSUwmyhZZs9lDXVQAhxQ5LscOcPBlTezJZvs6Wf7PmbgxIY0VBOdyEjmgJGZpMbOfHONjbRNZPs3WRnO9GQII5SsgufNBUlX1t4EY9BD5UgiEzNaqcyub92hAsI85dcvGfND7lezO5JMtOQ7P0qBRd4zs2ua7Kjn+kp518GeUnPLldy1hmnfQHSGkivo5E6s2IKbPrnuyd5xslebbIrl+zfuq9LKH+OR5LzIgaEdHhTjxyk1D5NrdpLtObljNxAFoRtDgCESGA30jaRPiSLeTLBzQP8zCv-OmA5hq+RjNus4gVIglhJAgRudKnfnILq5pQMZvAkn44L3UzQTeG7OohSynIKcseWTPp4cJtZMUxbipG4kg9QGH82eH7yU5LwsUgGFlHNLaAT8YMmkRVky2DDsLGgSYn4JuXIVJT0mAkMEmuKjD0KxuTCu4CwseDjIPaHCpMVwvzxbRNZspTSODVXmlMaRogB4p1n4UuU2mbMllKIth7iL3JdEC-r5MPS2ClJIkvaRMNAHoK4FKC1xRP3wVSANFBRfkPwt2Y2Kfg-KaZLhnthj4bFpC0edQrfCwLvGfUFSbXxeDTgxU64FRUsDUWMRU+R4DBSpNyWPAiF0S1eSEsIXzzOwVMwlDTOUodyJZIS5ZtSQiUD4SlZ8teValGmML8lrizrDwpqKaRtFhS2ossD0VtLSmJlZMaK25hEKr2aTUpXEp+m+ImlkS4hWnJiX1KFlQy+Rd0s-lt4NkOSz9oMs6y6L0y6y9etGMvxbRjMQYAFjpjoo5KLl2wcZQJShnBhhkjEUJeUsPk1x0yy89evMvtltSuAD2fwB7IRA6Y7wrQG8oNHzgSAfCf6N2YdNkhmQpsREbSL2Egz2KMZToIhWCujaBR4MmWdjJmQ8ASA6ldstOa8qDAYrJY5pIharKtl7z-lbShpeG2t4gr6a3TeWUktrSQqzKZNalLCr6owZEVDK3qBKFRWxB0VA0TFWWmc7WRcVvy7yCpEJXTZiVgq0lc+QBWUrOVcURQIYtpWSIiFFso2dbNPlkKFlRotGQbIzH+ATV3K5Sbyt4RQqBVMKzVfCvRCIr7Vas4kJKo0DSqpAsqonvKvqiKrkVyqgSISotlbKSVQiLVSys2W6rco+qj8bkXEh0r55eKheZCEJXzJUcsaslcnNiVSzSWU8pCo0vCUrLWlFqktexmdhpLc1-SpeO8pHGuAC1HSmoh4sSXKSel9dPZfSEgw0qtlASrRbbNbWaLlgwXJRYAM0jXKJsdyr6A8pQEVZiKNaP1OOtHEBlgwQ6x5SfyHBBgW1xihAaMpTkUpPlqpdGo+Q8AwBekbqAAAwJBzS3UwCg+iPIzhxBCza9Vwwso0Mv1t6n9AwGWoRNP1UyXpMu0niv9KGVYupARCoxn9EMz6hZpODfVj0cZ3y4esHP0S5yR5GywFe2g9HjcIGnU0Fk1xaSEbHGdNCQXqFcbEbdm9ovdMwgwaetKN6NHgOAF6Sv1aNlDHSOxqMrRxnOEg3ENfWoELKPV2wGxY13sUYgugvGvONHFADLoFl7o9GsaXdX+BRVtsXOHHBSAJwpVO0GVdpCxXKb1SsAIVdRSjm0Cq4cMQ4qiGHXbB9FngYTasuYnGaugZm9TRZpzixxa4tmp-tqpc0k9UlmAdJUOHmT9rIMQizhXWqFVbLeSVEBRXYGiCmYu1dnLxZ-OOVLwd1QxTSBuooJaLlWs6xmPGLMDgAGNBysxTSqPWKdXGkrKkNRqY2hK7NcW5xWltnhJaai3SIgZxAS2lB2t7RZrT1pzDphyNv4IekKty16ABtOytrechG3-FxtuWtjRxujiTKM13yxuV3HJXnzFlwaFBK8E-j24m5L2eoIipqzTzPZVgILP5ovlyhHCOYBteuD9jhbLkqi4RUuqeCna6c52jBJdq212K5VgxIhY3PiR3yhGXcK7QmvtkgNp4bs-ZIl0iAf9ZslCz9gHEPlw7bkhqcvuJnA3WwiKaOlwiiFl5JN+4XsfkLLxe347I4RMX2GtsHnvg9ECOoWKZqJ3hdCmVIZnV1UNXTKo56O1nhskxTaaJerO7Vq1A50S8MO7YYpbzFxg5zS5cyyHePIBRUaYAZfD-lxqUoHr3+deFjeqSW1GUi56u48jxo41FyDIBZCQUXOc09CntomgrlJvqB6684BuxTVLKA2pQptnizBUNp5BfdBAAgQbdOpnGVqWlCys5bhSzlW6O1TwFLdT0bnhagsAysdUMpOWyQw9G89ooVuDDtJYdBO8OBNqU6UM2Aqusgg5TeX7LPl1RKXRHr+RpMi9jOqrTUEd1SUs5Xyunc3r5iCJhEtelXfXqV3o1OO5wYEHoAHTS7IYjyXpItVI5AcPd3alxc3L61JAY9xhRuTbtALvLtIbASDACXe3KLm15e3JZpDr1a6mtpyzXQOrzFXKitOehnfvvT0oCzFm+n4CftT1n6nG-Ia5VSWmR6lq0By3dTi1XXnIqOe6fPe5jMXb6V+y64fvusPVP7i6Fmy3TXpeX6bA1TKKRYYo+XOIiFGsA7X8r+2sqgOiK-WCXKZUQ6U5e4gSDayIXDybZNaxXWytiIDI3UAiP5M6v5WxFDxe6HSYMH2B5RxVBcAZI6IcKnDUwxIzMTqCTBWh0yaYDg2+Wn2hTpkg2hfeiCX1JLe1+RZ7XRE33aRwDdm4Yp-hbW6HP24NV-RfuWAf6ie1Jb-fpAgOQGPtABmQ5UEMN8MDFkh2SD-JANDEzFMBhvZ6os0sG0VRa3DePNb2Mz3iiAXeUlHl20GKFLq2IkXrU0vy6dmJVnsQciNIH7RMAINS9PUE-MOq96R9EKquI0ZzCViVihZqsQBqsjO+9zFYkn0qVsVmQetcFsJUaHzF2Smw3+niNxqtlTRkLSeXzGZGXtWSt7R0bOyxQD6CSXRfkY+CFGPDRCvRLwD2zXaaUEu7OF1AmO4ktoViWY0CpSCGZtjmqv3Hsepj2ADjcamJG8xQm7YqQZxlBkPyYrXSoBnulfeiB8Wr7P8Oh940ioeo6R3EKBpNbfAp7Ji3BkjFdbEU1W8tNSBLGQCEncRibHgM+1LV7qUM0YeR+x9xLMd0MqGe16W2Ypwiy3Zal4nxvE-yGMPb7TDASYMNnlGO2Gmc+6yraEuP47YcEzkPYwklmMgDpNEJs5lCeoGoIEknQ3o42vczx7h13J1xH6RhMiAKjemcU7yf9KwmPEYonsOycOPAnSpUy62HKcxqKnogtxnMFaohPe8v+pR9jkFr6M8hvqfx3-W0Ecj6nHDGxJ47Pta2KKvj1KgzXRB0N36OiHx604MRT0-HyTn7a5cnhpO2GKtMqoLGAb9PnqgO-fJqPac5FKyJAHSDDC6DLQCnYeQpjJXvoHX56jTaZk0+4icOk0UzPJnU9KfcQd9nIiZ1Y51G+ULGDxae-A2we16DURthuqkFa3bPDdBD4JnnR2dNGQaNdOe3s4xTtRN7FjUgTs8GEnMHjLRJmgcxJuSJSzJNcq6TXOdLwu605bu8cIidj17SUT+gbE3PuYVunH9B+-kP6f5CX1M9xW7TQKW+IKBytW6jI0dB8N-oatuzZEq40a1379zy+w84HoiLjAutLW5E8BbaAAXVD8+yC3Yfx2uMnD8xlXe8TT056ylw66CziZm3ikfzTGpw8spD0kLljJZ4810ueNqHf+nCLQ56b9OkXhlZyjw5cpGWnLy5f+hi3Os0SfF2zVOpi-wNfMXnS9vxrUh8or25LNzUgSWBOa8nWl-muZyDDRfdP-HhLylyLUmM9Tc6GzKFzRM2ctUAoIcmsxrhitABgcJNJBSRYFEYiU5WJ5F5017rgt6HgwF5v2IpNkuXmA8Z2Yw2pblZKUMLemYwxiopPXLr94KRnTadpNCXH9H5p4KYtfMMmsB6jAy7bNADmWlLn6Uy6JtSt0KLBlWFXdZCHPTw6NRe7K4+o0GeknTSJl46wtALOX0QrlgMhGi+P+XT93l9XnVrysCRorCJ0-YFeDNX6BzN+8vuFdpMP7MjsBs7LFfpORnW1xVgSJhdYttKIzgarq9sCCWUMylLLRK9xUMsFdjLGV1cwV2yvWXHjNuaba6fRDUXBjdEby4MXqvWJ3Lh1Tyz1Y9N3mQrQpMK2Gfv0CWxrK1toJNe3XTXNryLJK0TJSuLc9rsEZc7QooMWDV6q88g4vBLWBH1SM5dUq2WfluznOU4rQNgOtioj8I38iQIhFMo7Yz+ygTQN6HgQKatyTfc0vjYNFQLyM5N9TKTc4y0yKbvi6myfC5247kFnwEm6fzZvM2+QasTQDdxQ4TRVtkicBcSKsnY1NtDlaVBoXjMRApwM4a0lDJsoE2LQaYcHTzeih-y7Y0CuJl2wVtFtlmyt1CYULVsTsAJ1MBm0baZt63wy8h+LWdcS1NyGAgNKwGXEem2XKrlF6qyIBgAoh6bMt3W1YEzi6GU4RtnDCkB7hh3CbEdywGXFIv03DbAC5O5nF+vMWwSod9FmYAzvQLEIkdkA+ncZvJ2y4spOLWvVS2fBS7CSuu03Kru8YEwIdpaF7a4C+3kd8ZtAJnF-JoAWwVck8KrZQ0uYo7XdpM6N1DTj2E9bd6AATwtgT3B7U937inHbsmwJoy90FMWHNIx3DAcdxRX3cBrd24zVtvu8dt8V6yR7q5O0rPZPur3nuM9nwRPf3vgBD7PcLe0FhXszFFNcwWO9OEUVf2H7QXc04SrctbxO7XcU+-xyuNkiGr9xj9lhdPN3B67lgKBz7YSsmc4DcRr7e228GNRZLanCHDLZNvPVm7UdPB9uxMtQQo+Fdsh-LcjuUPL4hLRB2pXqjZnQtZ2ZU9YlbUnmXTPccUuvYXtJRD9VD5lvRfmla30zOtku+g5zu77-7B9wBwnYLsO3M7cjqO+xeYvnJxHCjnkq7f6NqxV2Z2otnxcm2GPgFnt8xyOuWCvddHLDsx+NZ7qYPwheEiiRw7AfrgeHjhyB97ZTvbjBcIzX3cSAD0K2BkNwNBf7YPO4n2H8TbW0TaO1TVy7jt5O+ERrtWPwdjd1HtEAifO2guoFtkN1vdu9bPb-jmB74n4f2XLT89lEB4-icyPEnXcLRw1jUfh25HVdqasI7qetOGnRdp2w3fqfSP+nldlazXYj583rHuSzJ5g7rOZA7WRlNXLfHF4JYQga4Xrm4U8IIBkkkiHk2Tc2deEjBO2K5FeFz0mwDn2zmDPUCDAboTnlcHHJHD4IwYt5+cSnYlwucaArndEW5zzoefTQnn9mYDjxfecilLnNGa5xui+J-OToALv9C89DQfPOTaUuiAAG0oMaEVxGTcciIvNAEGbSOKR-R7OhbaSUF0QwgwABdVKZvO8DrPEMiLk8aAAbwyAhYQYPHGy-ZccvOXXLvfLkpWd5A1n8GKjEGAAA6hUKjES-WeeJSXuLuiKK5tZ8vasaZwDO62WDKuDgCrq1Wq4NKOFcZqr6ACq8F0JZcGcD-xFq7Yd6AmXteYMGy8BCsyMMO9LjoBjCBgU2XkGVwb4lSEgm2WNQS1yy+5f+uA3PLhPvq-Vd5I8gQruV1Ri1cRujoTJjh7IAsAQ0VX6wyUQS3F4mgKYJpW+NKhhxak3CIcJUtWlBkiB03mbqw+STkyuBc32pAt2KjJJLA3UwybCHakkA9hHYDHN1P6P5APBSwtRh4FaesSfp3M-xKs9vkuvvXUjYrqOqFcndjul4v4Q0C6FcTzViRQ7-QJP1cS1G53NVr7VYjXdtBmHip7d49ZqD3mpT3kvgKIDmRtBsyGlK261B4CP2ECohQ9rqa3a6mOsPb4AFYn7fdu2gB6pxZsa4lTVFA-AAAjloeDHvgLOkUQO4WQCgk93IH3sCO61IAEa7AJCk6BMg+bAv3gIWGMYGSW-ud3LD0HVxLcCHu0EX8f1UR8-wg6cDHwfd6AFJb7bW5Dphi2e-5Oke13IjeZix6o9QeNRzc77VEE-T+PZ4wnh07h7bfTnskVYPAJTB4A45YAMwdnscFtfVKzmmAGj8GApnMzpP-YNmSaCHc8emZVSvsDTIE-8yIgjHg9xOFmYvul4dy3UE+Rs+A1a0rMez9p55DjTLy2YVmnqHqnXuagdYj0BwXMJOeAv9Yxadh+0-3m8VNn8j1IiVU4oHPoBLNTpgS--FkvV8WtAJ6zWLrbP+X9Gal4+PplJs1KRj1l6poLrivsXgOVyp9VTubY7TXg4tCxIlfoPYqtr1dCC9JAuvl0HTDF4Yvef+vlURdVNVG+fRqUQ3nR-ee9WMrw4Jn+b3wfa9ef-3y37rxl6mobeBvtaGbz6eg87exvFX7b0yENkOrfV03pIHl7K81fBoxn+6maHK+DRLPmcjvbLsJhMfnQluj7waw6-efLd4+6mL19byj6444wJZLMH295bP8CB1ZAl70Dh6O9Ahjr-eewOtzRPzodH-x9R9EHnYxsbjykiw3GwoP3ngOW-WDghz8fhMKauT6DlxzqfqAaH45baYU-Y5nEeOJj683Vx44AnjDY7FxBc-NNscXEHz5jmYba4D37n9Ztrifv2PFM5ua547B7SBPvrPafu7yrTxklqP3uYeIuAI+vvuv4hBcAE-MH4fNQfpHr872MF2PimHg6atKoa+uA3B4YA77bpdPK8yAHMEu-xWQgeEHBHAjxUIR6-mbC4ZX5-NtBh+0Wi8+jxgmccHeblCYZz8IdkUW+P8XEFP7kR1-byyMERsV48BM9hG8-r3h86cSfOff13QLx82c7y9cXS-zhKnV97WrIlI4Jfu57zufOJe8duyU5639R8PIIfTyWYEr4H+ZoJ9Anm-XW-1KVepcfOqf9Wgn-goBkBvyv78lWQCfP9Faef-pDT+b+s31H9j96lmTohNf5fv78wDW+nvbl7n8bzyG2gqoYC1-v1HRWnQeeB27cgzHZgE9+lS31off2vB-9sADNz-9y3FL1i8VaX-245QA4DxpZIA-fzl83AUsDfBzQIUCop-wKQBao0AOr3IgWkYvBwDymbP2uM8A64xL9k8Ez3NQS-ZDWnBiAqgMwBa-XoErh-OV2wE8yA3sToCcPdjwVdUzPOC1c14LgO94zXVHwWc84JZxgDhAh8zAD2PX13rxypZl1V9QGN60kgVhBQIGtpoNv1UCMdG2DecToMX20C5-YlA0C5-XQLp0O-POi10DAvQOyotdAT2zxTDEv1K1ycNeHQJ18S2zUgWkeQVHQzSFt1KBewVWlOlpwUwk0gHgL8240qSDIALchrB4lABSwVxhzAUWa0VMBoWIsAeByDBCBZlHYUQMWwQfZ-jB5qOO8wTEEhFuXoR4-fQGMMvgN-Uv03WMN0VceAkNxelJHdqha9rBYgBxx9PMICXIVXOCmitbzd-SK1++F833VygkoL0AQgjXTaDNPMQGwlorYw3X0+reURLcgAst0LdrDaYOet-jO8zt9XfC73QABg+3kcBRLUQlO57AZeH2CgsUsHlhdkOQCFAPibwDrYMXdeHgAHgMoP2CgrIrRThk-VwzOEr3KMzitAbUQhmD9lV4LeULDL-WWDicfxTOwlrXYJOC1AaEJgNRCKdQ2C03RYJACwQjph+DoDcvWit7HGEPqCnglq1e0iUNqyqDAMaNmfQpAF6W3w1rMYN8CsRD5Q4D-YMIMw0wrBENyCjHMwz6CF7foUTF5gYoNWCX9WYLvNAA5AGACoAtEMpDt8Ly0JCnOYkO7NSQhUyXF6Qh4H+s0raKxSDMgl4EVDWQzAAH12QykyDBxA0QOqN3MUpiDBuiFoPGCKcL6DgoqVBk1EJzgy9BhJ4PMCkAxKiCnAAAlbolIAAAGWVD1uOjRSA0g6TwkDqBGTHpCadJIAPVaQ8qXyFPWUQh6DKg+80qV0g8z0M9jQukz2DYQ4YKbQmNWrTeVDMZMOk8lQpIATCOQnT3whCsDEMzCJQ0QlGCjdFUwYhorUsFPRAw9UjVJgAFGn-AuAbMAeBSw-UIZAzvc6G2D0wx4DMUhg6KzrCuzFUyO9nzboIK1eg8sLqZViYcNbUxw04InDcwujRVNJvQmDnCQxBcLi9svaEPHDt8ScPzCflcNXRDt8PsOuVo-SEGE8RwvdWrCDg4IM3DQgwzGytrw+cMTC6fB2Cp8w4I6GHU1wrMI3CJuLcMMx+NPcOWB8gt7xl1J3R8Pmlnw7MLPCow9vQhhiwtwBvC+gswBUljw9cNPC3wmkJuAMIqt2-Cyw+824Qqw3EJfCkgFCJVNKIr8P3CfwnPy0RZwqlRPDawwiPrD9jY+VnCqQ-0O40YAPKWJ8JQOKhEUGQ1wFQjZYXJFwBiI0QhxCbrCSP0ApIig3+DT9coKBCEbe8N+9AIoSw4i-Q3ljzCowx2DpCVrFIJVNCwwK3xCX9Xq2AjKQ0QhVCbrbfHMjDMBiDUibIgzRqdEwp-w4h7lKiKGCqVeEIMiJWMxScjRCFyLQieAbIMe8TYA0PNBz9OYJuUwfIH2H9-I-CPcifjDSMSi4fQWDwiQIyULWCKg8iKP9bkPizMUYAHsDyj6goSyCikgRyOlCSI5NEZCeI3P20RDg1djaMRjdqLO5X9AqJf0KohKLvNajKqJoi3AI4ODABo9MOeDYQzSIZ14ItKPyiMos0EEUGo2UJVN3iMQEQAqILKgwxGovQGpDuIkyJjDKpPaI3lUIjaLthtoiOl2j5Io9hSAJo+KIOVzgrsL7dh+XdnujeopaNiigzO80QVJjbEFGicSU-RosoQqIOeiKcOaMZ9oAXsLIj9Qhd3whl3HmgWoEIuJwejKo5CK4iuzNalMjt8caLfN0wiKI2iV3LIO6jjg4k2kZ1Il4MSiztPdyojJo7MKwjFw89xXcUYqAzRi8zUCOsZwImuE0QpKRU1Oi8YgwweA8Y+mK+iVo4YyJDRmc6N5ivSdnhwAmgTgVpj+IwyPAijo6vFjDTowmJljYAOWIVjleRDweAcQ0WMNi7o44KFi3ozTzJi6LayMDNrTTSIQg4PBD3cRWY0A1+DlrKlXAN+Qn40mjNI+JGGi6Yx6OzCDoqcJajVpJGIygwwtUMjD1o3mPPcDYpIClCJYmUKliY4mRB445YvmMrMjPaK2Dj8wtWIqkKNZyOjjQ49OIfRM4hJGiicQ8mKBiX9H6IPCHY+DwEBaYhoKEsh1IS09jt8HENqs3AXOI0QVxTaPViToqOP9hsY46McZ4w2GNvCzAFv1mRVw763fMCIsCO41kSYElOjGY+83b8znF2M7EnLH60XiuY7jU3jV4qCL1Cp415xMCt4ueP3UorfeIKE6NHPWPjlYiVjo0hI2YTOc1IR+SVD1Q9s1XixYtK3ti6-GeNKiIQ12OvixrEBJoxozES2zCFIhqKfjzmUKLgSi4-2CPiuLaKOMMfY6mPBQUoj3ipUb4v+MFCDwyfwRx0QvBL3iCEwEMSi9-aAOGtxJV81FjvTSENfMvTJ-i8MsQvqMyiqYu8zX9coqiPwSYYpiPIjtBb31Rts1DIG3j+IQYNODGpJoIcCLADGKXiNdGcjESBAXDDkAegeDFOjYEpOPTDe44MJxjRCeiFcRZYNROkRNEv+NasU44PV-BXfT8IciBImkPziNY4xRSCH4tBNuj3o44MUibY5aP-jEoxQKsDIgshIXj7EwyNBjkEySIsirAaKLxjvEhONP1MEpEKE9SPXBL0j0oi-2LivddBMpiZo6mK+0uPAOPRiT4mCJUSHwhaJrDXwxRO4jSkmSO44u4NeMnjsI8uIKSqVemM5i7498K91y4g2AFiOo42KSBBY-fR8TYoyxO5iVJVWnaN4EoyP0Sx45jQiTlIqJKE9WrE2M8Sy9PMw8TLY9mKmiEkx6N9iAGFJOhC2kqZLGT1fYeMiSCwvaW6TYYbJJf1Rk0IOsTbEmG2OT3wpxKHiEAyJIeSDgOhT-jerFwxkU01DZL3ZOoqLTqj1uRBJ0SzIzJO4Q-4rKLvMzfXhPYj0k+JI8j1gg8M2CDgbYNSS7Il8OFiOogKOiCwAU9FyAMMJkBuDPE+4INhhk58M0j3giQ08hMiKiLtCqUkwyoSQQrfxITqo1hLdjaEzw1fN8UrlMxCOYzuNNikI0JOfiXkziAMSHgCKP41SY0VIJTuwrXDw8oYiAHtcZAXpFxSeo82LGiOouJIpjbk1aJTiIIzTVGAto8SOZTYUg8P58OfHTRGig4hxMOjJU2ZPDDSwS0Liw7tO2CPFpUzJJzhTUiQEriRU4FPUUVkzZM+iQ0oFICiBE6CIPDKkThVbi-gypIPiiInOCE1u4eyO9Tmo1+hrgKQ6cCtBgiGFK4SrU8X0dhJfcpMBj9APROjDB4wuPCifUzTVTSggYDwtTC0xMOtTDiO1JziHUkONeSa0jNPOSLwvSG1g-4xJPrjsvHrzLTswkWMDi4wUsCODrVOaAhi1UsIC09kUzhNyShosdMXUJ06K0GT1kzVK8S4EixMNTuYrNQYBToytJ7S5kmdLAA3UvFTRlBoPtIWT9jMdLPTAUj6L1SSIVZLDSLYoFP6SIiNkI3TqvG-wq9ctcqOnT4092Jqj2EsVIQTXzMKMfS9AVCJnCafZlJHTEw5DJEla0CRN6ckIndL6TwM2dP9Z50p8VVT08dVOnBm09dIPCMMjMhAyW47FMnSOo7VP4ZdUw9OZS7koiJXDnkxxKdTq0q9IVS3U7YPvSbABDLogVTYcLfSD0iFMky1k9MKNjp0h4ERDR0oDOf8t0wwzAz0Y20MjNAo6DOZTfkgAwNUpk8FIsVzUpIBlTV1N30Khh03ZP8SLM7YPHT6MvlKRSdUnqIYTCMpVMSJSMnmA1TV03xMtTW0uzMa8-IxzKkTFo-dNkzcY1jOkz2M49M6SuMmDOmSq0guP4zXU1mQpwhMr6FEzSwbon-I4IS9xJkTQFINfjIqESOJAxIm5J+N9MpoLijhInSI-jegKGH-Jz0rtPt5IwEOCayzk5SOKy5yd+PKyZMoNKejSwaQD3B5nc6ht4c0asFHi+MuzACsPTU0O6y4+cFDEjGs49GayVY7jVkh2s1bM6zEMzbN1Ims7UN1C7zQ0LXA8QmolNDzQlMIhEbQiDPLT9olrNSCY4XwMyCRsTWOLiNPNMyxkhhLwIcJW3fsk2kapV3k4QsollL8T8Y0ixUsItQ1LijNM0zD+z23d3js14cziBOlmpOgI0trYeDQYwzkaGBAVsEfxFHs77YKFxzctb6iK5jcXIMgxv2LGGmZaEJjWiiYRZbhHhN2VA08TIMKJiGMjiUSy3BrnThCowJkc4CKBukKmH6AScoV3UBUpcW0agxciDGDB+c3AEFyLAYXLTBWoEnJldGIHCRGYBcyGCVzOQNMCBB7cPHKdBZYh9D1j7AZQH+IdY2MTZtgMFrWZsv0bRwPxZYxrk-RrnT9A-RWMH9FliQDIMDXgDcx9E3gscpBU8V5BcmRwihbGpHnA5wPxBttI8qPzMBDFUPPjzrjeQR5yaXeDEQwtCcESDycczeF9cWtVXj5tpUfqV95EAf4V9dgwHhBtzscxPhMB1c9YDN0-gJw2AUQjeaEvdNSc5iMRdVDFztwtcXzxtAuDPYC2DGvGxD7MvATP1ENgxEQA+D6U4SC8Q2QPvKfIeyfQAgCUQsUO39ySFejZT9-dMHnyewIECXy4wCfLFJ0Qat3zddScUJJpYJZpC91zNQ+W2gwckq1iNCpVcD9xcBEUFrscnWuy90bHQEB8CdyRihVo0xcdmRzKjRu2Xy9AIAo+lYWHylALNDGOjXhSyZ8Q-ZnpG7H-zJLDJGYBcVaZBOYWFcmETdvPSRFK0EADDFGExmPNBqBhXeZGshMgDAgYB3MKgq5x6gegqGJGCs7HlBn8CAFY5SCxkUyB8cb5D0A2C8LAwMgAA

Computing with Register Machines 5.5.7

Ibranch(label("external_entry")), // branches if flag is set

"read_eval_print_loop",

perform(op("initialize_stack")),

〈. . .〉

External_entry assumes that the machine is started with val containing the location of

an instruction sequence that puts a result into val and ends with go_to(reg("continue")).

Starting at this entry point jumps to the location designated by val, but �rst assigns continue

so that execution will return to print_result, which prints the value in val and then goes to

the beginning of the evaluator’s read-eval-print loop.
45

"external_entry",

perform(op("initialize_stack")),

assign("env", list(op("get_program_environment"))),

assign("continue", label("print_result")),

go_to(reg("val")),

Now we can use the following function to compile a function declaration, execute the com-

piled code, and run the read-eval-print loop so we can try the function. For the interpreted

program to refer to the names that are declared at toplevel in the compiled program, we

scan out the toplevel names and extend the global environment by binding these names to

"*unassigned*", knowing that the compiled code will assign them to the correct values. Be-

cause we want the compiled code to return to the location in continue with its result in val,

we compile the statement with a target of val and a linkage of "return". In order to transform

the object code produced by the compiler into executable instructions for the evaluator register

machine, we use the function assemble from the register-machine simulator (section 5.2.2).

set_register_contents(eceval, "flag", false);
return start(eceval);

}

45
Since a compiled function is an object that the system may try to print, we also modify the system print

operation user_print (from section 4.1.4) so that it will not attempt to print the components of a compiled

function:

function user_print(string, object) {
function prepare(object) {

return is_compound_function(object)
? "< compound-function >"
: is_primitive_function(object)
? "< primitive-function >"
: is_compiled_function(object)
? "< compiled-function >"
: is_pair(object)
? pair(prepare(head(object)),

prepare(tail(object)))
: object;

}
display(prepare(object), string);

}

639 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=EYJwhgdgxgFgFAGzMApguAiFAPALikCMBAfRQlxAE8MBKWgGgAIB6Fp0SWFAZyYEsAZk0FIA5gL48UuAFAYQKMABMyAN2IkADiH4USCAPaGtGBrK0FBhkAFs4JzHv65+xfgC8UJHrjBQAazpGWQASAB0kCDEEFEjlQ1wecPBo2NCgA

Computing with Register Machines 5.5.7

We then initialize the val register to point to the list of instructions, set the flag so that the

evaluator will go to external_entry, and start the evaluator.

Ifunction compile_and_go(stmt) {

const toplevel_names = scan_out_declarations(stmt);

const unassigneds = list_of_unassigned(toplevel_names);

set_program_environment(

extend_environment(toplevel_names, unassigneds,

the_global_environment));

const instr_sequence = compile(stmt, "val", "return");

const instrs = assemble(instructions(instr_sequence),

eceval);

set_register_contents(eceval, "val", instrs);

set_register_contents(eceval, "flag", true);

return start(eceval);

}

If we have set up stack monitoring, as at the end of section 5.4.4, we can examine the stack

usage of compiled code:

compile_and_go(

parse(

"function factorial(n) { \

return n === 1 \

? 1 \

: factorial(n - 1) * n; \

}"));

(t o t a l −pushes = 0 maximum−depth = 0)
EC−eva lua te value :
undef ined

EC−eva lua te input :

factorial(5);

(t o t a l −pushes = 31 maximum−depth = 14)
EC−eva lua te value :
120

Compare this example with the evaluation of factorial(5) using the interpreted version

of the same function, shown at the end of section 5.4.4. The interpreted version required 144

pushes and a maximum stack depth of 28. This illustrates the optimization that results from

our compilation strategy.

640 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=PTAEDMFcDsGMBcCWB7aBnCAnZBbUBlASQGEAFUAKX1ABYA6ARkYCgo4lVQ1YBDaAfWSR4-ACYBTWABsemHh3QAKNPBzwAlKADezUHtCJwoRYjT804gI6RxccctUbNO-a9CxUKro4wBeLlY2dubw8uI4tvBoDmrqANy6bnqY4vCQmNAGZuEADvAAnuaBtrD2Kmpo6olJrgD8oNCQUlLVNXoAXKA8OTm2osq8AkIiEtKy8ihK4IiYKiFhEdDwMVHq6gA0rW3b3HyCwmKSMnIK0Tg8ANbiRdYl9lvbj08pcyoLkdHlq2vxrQC+oHEUgs2geyVS6Uypn4HnQoSWhzGJ0mKyqT1A9SkpmWsLeCNGxwmqHM+RwACNkFJUWinp1oQA3WSIHhkqTXAnjBSosE1THYxSMzDM1nso6cyYk8mU6k8pKdRrNBKuP7MFVsBCTUBYubIcD8GA8NBoRAAc2g4n60B4EUqoNcKTSGSy-AVVKtNppSXqrp5nRyPBmigARAAqA1G03m0QhoPrLXYwR68PGs0WxShRBu63iSprOIASFcquYIAgMA1niwuAIJHIVFojDoACZWOWFM6LFI9eJGVJIBNoCbUXb9A7Ic7GuTxJhh6AAD5z2V6aEqIWD2cLpfOimU8R8Yebp7Q12zvSHx7QmASaZR1EJNVtzXQ0Imk0W-ja5ZfOPwAAW1xfZxWjHJ1oX9QMvk0AAyKDQH-Hh+kg0BfBQ0A-wAngTXvVt2CfMx3TKRwgPtCFQLMF831ED9+W-UAgwIoNfgfXDODQUkKSkRMXWzYcXFHUjMng-oMypSCmJwisoTMQ0U2gRYvyIkdQBAqT+Ao99PxWOMgxkyN5MY7D1XbXSzXkyUON46oVLgvdhIDKkhPTezqTzYsjM1Ey5MifhexsSz+MdQTbKczMQtEojXOYyTnVxeERjFZFUH88FAuddSqM02ig1ivh4qRIloAMtzH04HL8QSgrzOlJC+OUgSbIQsLFEckSXPE9zSs8OLEUJBQfJ4PtCNiJTrJa5zWrE9qStUwVhTZHrxSSmqrPq59MMo6iVC0ujZpZeaOUSwqppYzJdpFBbDqq8Lhtq0bgtasbQsm47orO-aKr63yho0Eb6seqkJoil722hGRyVEHh+HEAAPHIXmNJbFNu1byPWjSaMcbSwbJCGodh+HJiKqL22x3H-TkCJ4GnT4kZW1LzhyZR2MpLiCLjf6XMM6atWtHHIYpUR8mSurUo5wHYkiiSQbMFT5ip+ThestbX3Rrastlt55ciImpc1WWYbhnMEegRW-vu5yxK5k6YtQUREAUAa8cNiNEZuunx2VjbMsx0AtzcbLbftyZHYNgnUB1jrMlhKjQ-4Q3ENpgLx0-fgUnAbaGGBzVo6dzAYU8U3UpTtPtqbLPOugGP8f4AaFLdpOnWL8R09ogBmcvVIsW47ELj3UZVjKMbUbSu6CUoI+584rhuMfvttZGi-5INR7uWNvAqDuAm70o5fCD5eP0d2nQ5y3iut6ZZhETW96WFZ56PoLGq+Soreil4r9CLWlhpjfftS8XViv2llDHAeRCgrx7s-YiKU+4uiaNdQBZ9oqg0NB-d4t8oF-1gSeABuYgF4X4KyZAsALjCxFrA9Km067wG0kQkhE9rZT2uHQ0hy0G6ZE0kGFha9IL4M4CwwhyBBZkLuo1ABktI7Om6DkLEvAuRsJgWRNSaNB5qx9jpHosiCoMOipHXORsUQKPIcfc2T0Ip8MyLIE0P8foL3HGLC2QMLENGQDXTA1jFDIByPfdhE54GeO8ZvC+cwrEBJ8Yox+-QvEvyQe2d+biPHROgcYzIrUknYRLGASOGBwDYDwEQMglBqD0CYK3XWnBnyYD8tDZJKTQDQ2QqheAVTxDOKYfwSOihybZiprMOMAt8hxlsPSWp1lOEeFAUISuHTpqxj9q4bplNqb9KEYMwE0ARnOOhBMnIUyqKdPAKMlGyiB5UMUOAbSOy9kzJOjo9sejFmpGpuco5i85glwuaATOzi9EDJeUpOpTd06fLLj86aUMNkzFQArQ5AKxkJg+XGdubTLjXFll9RQsIqZLFecnJe6KBo2DXliyIm9oQEsGgKQl4hcVKMoZpL62kKVEs3sy64JLb5fVpZEpqXLN4lCkMgY0g4IX0ihV5W+wzuVoWclKn5Mw5i5J4lKuFZtGpytiZqAVQrmFCyVREIZGznBFhIqlcCM59XiENZs4ssU0L-hAWA0V4r5LIQaPAhIkj2mWqZlKYEcYvrhIiaAc1vqOJoADdSmJxNNSWqutES1xrD6mvscFRNPyKbXEDeczNSa9DAXqq1dNmrOAw2xTHSF2AJVfmZv60AvYI2gDJIaa4KraqAtsCaP8YbKS2hQv4Nkg5u0Ns9G0eoobvWZp7XWkd-SW2itHTUTog6u2-mnbaAAPFqTtw6BqVHmfUac2AZxBgACrIGQKAc40B8hdHcZAeSGA0CQE0YgC0nQgygAANS+3RDsZpiBByGCFmxP1tof1r0-T++ZbRVyAZNMBqlwI1jzM6Ee5AJ7z2XvAOIAA7nek0D6PhcBfTIt9ogP3ft-X+mocGgPgBA7W8DdFtJUZg7RgD9GhYjs3oK5AFwX1XX6pS0DHFrW1MkcMj8F7GZtp5JI3YJtRO9sjchgFbQlb4X8cp5D7G6jrPpNJrxig9M1G1cKk0zqq0KylYumjnQdONP8I5HT+6aO8gav0EdpnXAOcGE1VzGwZWhR40qGoKo2iGGMMMpz9rW2gIKFZ6FpL1NmcwMe6d2kACq0AKRXgaNmIqbQARAhBO2todrLVuuCSIH1Gr0TWUUzm7M8bmsRA2D5pIcbs2Jt+MV-4BbUpSb47Jo1zjPJCYxTp1T4mAWSY2UZ0bIzUt6AU-51zqmg3bE03A5o667OPEPQtkbJn3NuHM-BpL1bFC2b0w52tsWXNMYO08eoFgRCOQbapl7jw-P7gms9n8zlQs8gBDyKLN2NmxfQo6xLwyXUpfK2ljL026I5by5XArERQAAFocddAjKZbWfXwuAmBOIFbbhKuZuqwq2rU76vPHqk1uNrm2s0s2Gdto3Wo3s9cv15Ug3xzDZk5Dm1KpMllhOjkvJNZCn1hKXQGg5TVJw0QDgIO9JrgHJgMknb9L+RsG0mrjXSAtd3M1CbzX1x1cyJvp-FEbA9dqrsqFJ34k7VW7N9r6afh4xbTBJwoSa99BCT-R1monCRIh70CJcPnOkicPNTHkNAZMDx8D0vT8KfPwZ8j0vY88C16F+aI8CPiel52zQDIng+Q15V5r7e7Y5e3CcPQ5gGP7f0Qt9cJw84f4a5kjQLGfvv5B8YDaD3-QnCv0p-0IoaGcZ8iaF8AAPnqVRpvU+9CcJx3PvQC+l8r-Xw0-HW+E+t6XjGOMSRD+gGX8hE-oAQz370Nv-3ywgzAH38YRf9-j8b5gDn6Z5bRBgACkP+d+D+a+G+YBr+oA7+nC-ac+UBABDS-a-+F+veS8AAhChCgX-tAU-ngf4MvlgdPkvBupAYQWgaAFunoGQSAZ-hur4PvqgY-hviwQwYgUvKvtQUfhwQ0uvtweQTvrwawTfq4OwTAUIf4JgUwcGDgT-hvq4DAXoDgfoDUmCL8J7kKKbogFrjcpJPGshDyAzM1LZHGF7gYT7tLjoV1CGnodbkYX1MgGSAAFaSBRCmFtDmFsAcFJ5OHe5rwczu7v5uDWGGHZL2FwiOHq7OFlTeEDr8icJXjNyAYWhrxpE3gWjhFc5tCcKEDQA3j2x1435FElEFB5H5EV6gGj78CkCEAx71GNHVE1HYF1HyBj4ACiKe9R3RbR7RYhoBAAcjwCMT-mMSMT9kMW-gkLofEd7vnHCLlCYb4GYd0OchwY5IclYUETYcsXiIggsfoYYYkcJjYH4BsYzEYDAaEWsHsYsQcYkTEpItIlIIUJEbYZJOcjAHGFYp+NKu8YUIBvqJXNOB8Zdu4TwIyNwEKHkKdu5l8fwLbmyPJAVL8dAIMa4ACdiPEG4CWpkO9oJvDtZpEIoNKmWn0FdgrOxtIn0F0vsVEeChttRu0ciecYFqIdsPSZXIyU8cySdIIB4V4Y2p1voByV1KsYGtibHg6rkHDpWsljithGyPAHFvwCaIKs2pxKScqeqf4MSTkDSeSb8CrqAG+CICkAhioNOIoOcLAL+BkXGNadxO1qqvTDwI6RkcGJaanOIDab0oxIoK6QRJvBNqGTxBNoBquJAJJNKhzNGXCFUvGeGYTgIF9E7IoEmbGfGdoGyXUg4qFDmc0nGQoD8M4nxgJsaSbplqAF4tOAVFtnar2G6jJMQnWQ2YdDEimk6K2RgdkRkaIDyIeulhhnWUGDlhcNAMgLhpkF2QVAYJYkaOECKO0IxL6J5rygNBItzFWYJjIGSECIoIeaVnGKeZxGGQCi2QNG2UaB2ReW6VajzEechmFsGv2ahIOVGCOYCGOTOI+WzGjuCTkaIC+UCEuQThYOSGyOuS9p0K1L2JvO0siQbDdrDHGA6U6eaOeSyKVrUhDtslKQiGhQbGsJTnarAG6ucQbBcfYGRe+W4NZBSRwbAIxSVuTgYEYCYGYI+aRbDORUjnoHajGUkVqBetWR+HhVSBeY2nxbDFJa+ehTkPzjUMxQAaJWgOxWTiCIRTLAGdiNOFmWRbUq4Haunv4H6daYZTOFhc6XVIGUZbRdacpapUkOpRwX6RylECGfif8DpRTkJX+RlgbNltANObOZkKHAYpwAUL0JBTJKubBUVvoCqDGpwO0guX1PxTkJhV6dhc+bJXGFlZMM2Q4V4m6vuTWXoQEo2dlQpcZmRcVb0N2STsJQ4d0NgLAH7uYRTjAShUya2rDDdnld6TheBchtyWdiVcSLRQuZXNECZYxR5TAcCSiQIGkZgJCSKtCbCbAPCcsOKfWblVepsTkBwYzEFp1cQngoSVBZGCGQZbaXnEBWgEIJgKUNKpwp5GvNZc9U+XGG9ekJ9SitPJ5CYHCKNQVbha+Y2jNegFYbALUnaqEO4qkG6lZU9b0vaflfZRGQGU+RDSoG5e4A4ZmQbHebJHRVmaJW1aTbEZmf4esZFmYPDVmeTQJb+ZlS1ZVGhRzSdXZeNUVcdXVaVfBaddPKhcNfzVDfZbJXTStevkFe9ssdij5ajZaapjYDchSXTTiaIIyMEDkLAF0kjXEAWX8ONgbXwDvMbabbUird5dEMbUDqFF5agGrc7UjXmL7OlZkO0lTFtKJbLULdJXDTzacHGOADICaIjcjQ4dHEHJwP4IHSIInVyLTYxXpYIBHRKGhenZMIJTyJRYHH1EzRLdcGzfnaXZMFNbMa4ILYVWHc1aLZ4Hrb4ixTAUFe5o7R7fvNHZhHGAXcSGwLrYxTUQhIbbbSbcbX5UMZbf5aVoFTyO3kTTQnRAAEIIRoQ5jqmiUpkgzLnQVrkpV6BpXmmp3KDFB2BfVLyp08LX0g13Wp3LF2xcgv371lmF0emppiLjS73rW5nlnIWoqEJyBwBrrB2nVjVN2w1R0x1x3XkOESBeD+BkjgOOmHBB1wh03Z3yWMwoNOAUUOGaWVUSUHnSUnnN0TVOyKXHmEMk29mZCd1K1HXLjcXu1LD90x1F312uC91cPfym1xiaXt1c4cVlZsNuCT023XB22z3j35ERbtEL3KgBWU6r1QNBhb1gXoM22-hLlANPhH1JXiBwXsV3V6MQNUOvm32gFWOOlrwXmbwONj6EOKCuOAOll5ntqiKu5UieOf2pnOIuVXm+P1ScLWlrxhlbL6WOV5w5XSqeyqzLChV0RROspY1OUKUuVkU-0mJ-2hRLV3WJFIY2B2Of6JFrxcqxOHHdSJP5OqQG5bRpMBwrFLAW4VxHG0MYp5PhOiymJUjFN+0TWKBhNC6NxZ7SXRPZhkq8XSXGUCWNNpQqJnKtMXmdMcILO0UXmuXLMczDPmntImiuLwDIBr0h2wNnkhpI1IOxGEMY2nOuLuOZ2tB4PbPDUMOmX6AiVwh+5VV0MyXUP4OAuKBfOKPBosMBBp191CMu2GOIJqNL1cXGDkpZMJOfO728M1DmUBkY2pD+nxM40wMunou0MuXgs8iK3Quq37zwucOe2PUmgk0SPL1tCaOQ2b3b0nNqSXpBOH1QWmPmMDYS6SI8tnM2NAgVO+lPNOPSWbzivPO72KCKteMH3f39O-3+MqtPNqtf2oC7nWy7KMxvAkLSqmukJBjGubMhqQBoBroWta00rLMWvBg5B2u-jBk1N3XtJoAwn2BQON2A2hAkKIPtq4smj4tWnovEvQ3eBekXBeOEuE200K31RQvd2PDuv2sOAJtxgMv7zWmMM0YyNG0z1m2mYL0jPtLvwYYBuctBvxuhs3Px2xHWlRuEs2Wxv2UWtJuRkRBr0k3UuZs7AEtO1MtWHGYWvFt-qlvT323m2VsZIKb+tMvSvLz+u-UBmZMqB1trvLORO711tbvMvOK9uiXJsES5skJ6s+MTM8qAwJu3vAPOLGbjNMMf7BheIzPta1NV3DV9P3vOihp5MwQrOnKaSORNV0Tfubz-vGnGbwcJmDMWGNRIeGvRTwc52NkLW1WXSAcftpK52zUCWg1yPTjgAYY4AXPQNxvC3w2Nqz13NeBentj+AtWUeYA4A1w-GvOuDZ3wfZmpnEOxGscSjl3c2t0CBoVieoCXN118NPD0fEfoBiN1IZsFkT3GGj34lztyPltz0qPaXItBUcsqDaQ6MhoUdUcIvqsVImMwXiCn2gDn2SIcdUdCflkHtLzudcdryydYnOK+fccBeDv7MoepuLvVugMwySDCDifTQ0fC2NtSNZuwDwOD1NsXDNVbZ+NhcYE6TplBhc2gPg2Bu42h1wPHWMdI2bmOS02xZBj30lfTyX3lcksTXh2NoD2x0tt1fBQNcFeuPFdjoV1gP6M0eNvC09dx39eNSDeoRBiKsjcebHNPOTcVdXN1qz1zf9ALf+Abvm4tfXB+ta4bcdeOt9dtCdD1c4ONe1spArdehjcPf1vme0c9shvZdXdLpbn7d0TBdPduD1AoXWdcfnd0fUPRKzfXfBXjlaNTkzlzm2f6upL5DxWAaCuOfCvRfTz8sohUzQy2JAehqE-r2uhkrJmo9qRlpheasFN7c4NbJU-GGxewDxcj0wB09AetSvMjMq348kdxdl1c9QNwzEIO0Eu8+cvi9m2+3mkvoQxUxePRCaUw3XON2tteDG0dt-XY2NtWuwDOeVYx268xsG89fG8OEWtuqN3BgWtW+xHRK2+bdfsqfD5pupScdQz5WIlJCiUcEC8s-1XC8Jcmx+zB1+ztJs8c8CCdJ6aC8CBk+DsKeJ7N16ZBt6Yu16Yzd6aOt6ZJLhGiNkeAsQrNJCyAXZgiN-PSqhqV8GoIvRrmllpyAICAvRBk+kulA2EEXcUl4AxlrYvuX1QpDd9neuhxgU-GecVBXWQt+sft9NRk9BZ+xr1yVh0AEjtU4OHmhE9eNuotSD8QvbbHJ0ZDi78iC03in1Cj-iA2Fr9xipd6ATqgN8VLCYBCwX9eOP+Kf12iM-+-9e8G-GYr9jqhj97AL-PHsHxRBf9aaAAwAX-xr7wCEBQA2GoZ0eB-A6arnbmIlUc6YoPa2AZoEZU74fdzQQEOfkT1b4iBZK+A9-pSDZB5xO+bDB-p1035P9FeYQFXiwOS6bc1OXOJWH82P40ZMBJfV1rUjVJZc3UroRim5w9YL5jUPIG3uxzTx35p2i7DTPVCDCiBUATnCxq4Dc7GZvm7DVFlpj2zTsjB52f8sGG6IJZb0FrToKQAADypAZzkixn5+wUaFVZzMFDUF+wlBwWcKAmz4G+IzmOQY-sozPqtBJEgGIOANEQAAAvewBYP8HSCqWmg7QeaCDB6D9AkiBvPIEdL2kjYmEZ1rP3qg2g-Wb4Rrtm09Z+xx0HrP2J0HKHFCqh37WoSGkMENCr0RQyoQVxiFIA4hiQoHqNz6HMgsQiQikp0NXqTlwqSPTICkFuBeBMe9gteE0LfBYCgOeQ+AI6RL5687S77afOjSdpupQwyYSMBaBjAyDuYmwgoasJKFpD6Y3Qvqot0tJDCPMTtTobcMa7vZXho3L6BwS0D01PabqL6ObQiG0g4etlR4cgPyLTCIqyPeYZcT3r+1QGuwzAMK0Fwftrhv4cbPeRNpXA1ko-DDKIFy7HITwhIzAMSJAH1BvyFoLcGhmsADRFA+I9mMFEcjkjKRKGP9PUDZGSAiRbmdEJ0HbJ4jxAayVqOyNuojMC2QjVEdKlRG+lUgNrARoy1RFOtZRMbZeAqPUBlMaUJfc0Lhn4B28te6pHXv4BrbqjjajvLwD1xd7Tw5RQYS3nTTtT+DfWX3CkoxQkEw5E+M8O4FII9StAPRDqZ3skS2icIRhAwk7l9zXhP958ABV1kGDDFjCnOFZf0ejVRHKIRQlVFIj5yN5x1zyS8S3hl2ZZml9BOA5oMQk4Fyj9h-vbikKLGZV8HKNldMWyBXxfkQKQ5CwSRHiZNi+qqeQMJpCApmiiWYZWUu0TTGhARQanVlpTlcCr0gKQYAALJNAkAMiW9NeCHINjnqH6ScfcPHBBg0xA0QVHIkyLZDVse5chsaUrGzMROXgfslBQ7JAUxxe0HUTuL7K3kBybYn8uiFHIZY5xiPSKhuN6RwVOhHMJCusJLHWwY+VMFikFV+YqA-cUonygo3Bx99TBVIURh2N8RaCdBWQ0HOoy35ejIJYfVDozzglrA3RfsCgcLySHhCBs4E6KFiMKFGhihFg6yJ8IK5vBMA8AH4cD2MCb8aW47eFp6OgHEgIET9WYpRPZ5QT8SYI2HmxMW6iUDxz7CUKJKc5tCu4-wjUl6JUluou4oIj4Y8Ma4HjyxyvVEdxP0xGSjxnbZ6vpKYk9DnhBLUyW0IBaoibJFQp4QdwUnNBsO3ZMyfoHqBBilaGpIMV0B6AMkYc0PartJNcnND2JkYtSV92il2SDuDHXyXoHqDhTvEkwqwbcLCpwi5hxQRYciJgbojUqGw0wP6C2HYifWoDO3mmIIhdch6BA+gcQMH7Md1SjdG0dcD1EGjXedNb3nuAKF1TswHBdjHbx0hljLJpkrUUNPazQiNBXY+qXTTGmeTOIKUrUeklaDLSViXkrSY-STFbhsyK5PAVikIEMCaeRPS5kOzKGbcz2qNZYJr2WZjSOJXErUQqwclktx2jbGaXcI-YITogmNIll9LJbDiz270rsZ9M26ksFp9YrlACiVH7wAZXbIGdDNmn1pqUnvXcRkN0ElNcAOQTMN9CBxo116WIcKsxOWYrggQ3YXyAOCHCQRfyOyfGUUC7BQxqZSAdcLRA1qpA8xpMtYZuWPA8Q6Zo3BmfNCvYcyrEXM+MDzJpR8yzA5xA6BiUFlvDcZjMuWR9EMQ+xOZxMwDBcGYkyz+oQoJ8RdAVlER6Zys+aG9FFD5R5EGs8WVrKlni1oQnkBWIrOe7CzrgTs8kmLKJncydZvM2HkRUrhJ0rQupfGDFSUwmyhZZs9lDXVQAhxQ5LscOcPBlTezJZvs6Wf7PmbgxIY0VBOdyEjmgJGZpMbOfHONjbRNZPs3WRnO9GQII5SsgufNBUlX1t4EY9BD5UgiEzNaqcyub92hAsI85dcvGfND7lezO5JMtOQ7P0qBRd4zs2ua7Kjn+kp518GeUnPLldy1hmnfQHSGkivo5E6s2IKbPrnuyd5xslebbIrl+zfuq9LKH+OR5LzIgaEdHhTjxyk1D5NrdpLtObljNxAFoRtDgCESGA30jaRPiSLeTLBzQP8zCv-OmA5hq+RjNus4gVIglhJAgRudKnfnILq5pQMZvAkn44L3UzQTeG7OohSynIKcseWTPp4cJtZMUxbipG4kg9QGH82eH7yU5LwsUgGFlHNLaAT8YMmkRVky2DDsLGgSYn4JuXIVJT0mAkMEmuKjD0KxuTCu4CwseDjIPaHCpMVwvzxbRNZspTSODVXmlMaRogB4p1n4UuU2mbMllKIth7iL3JdEC-r5MPS2ClJIkvaRMNAHoK4FKC1xRP3wVSANFBRfkPwt2Y2Kfg-KaZLhnthj4bFpC0edQrfCwLvGfUFSbXxeDTgxU64FRUsDUWMRU+R4DBSpNyWPAiF0S1eSEsIXzzOwVMwlDTOUodyJZIS5ZtSQiUD4SlZ8teValGmML8lrizrDwpqKaRtFhS2ossD0VtLSmJlZMaK25hEKr2aTUpXEp+m+ImlkS4hWnJiX1KFlQy+Rd0s-lt4NkOSz9oMs6y6L0y6y9etGMvxbRjMQYAFjpjoo5KLl2wcZQJShnBhhkjEUJeUsPk1x0yy89evMvtltSuAD2fwB7IRA6Y7wrQG8oNHzgSAfCf6N2YdNkhmQpsREbSL2Egz2KMZToIhWCujaBR4MmWdjJmQ8ASA6ldstOa8qDAYrJY5pIharKtl7z-lbShpeG2t4gr6a3TeWUktrSQqzKZNalLCr6owZEVDK3qBKFRWxB0VA0TFWWmc7WRcVvy7yCpEJXTZiVgq0lc+QBWUrOVcURQIYtpWSIiFFso2dbNPlkKFlRotGQbIzH+ATV3K5Sbyt4RQqBVMKzVfCvRCIr7Vas4kJKo0DSqpAsqonvKvqiKrkVyqgSISotlbKSVQiLVSys2W6rco+qj8bkXEh0r55eKheZCEJXzJUcsaslcnNiVSzSWU8pCo0vCUrLWlFqktexmdhpLc1-SpeO8pHGuAC1HSmoh4sSXKSel9dPZfSEgw0qtlASrRbbNbWaLlgwXJRYAM0jXKJsdyr6A8pQEVZiKNaP1OOtHEBlgwQ6x5SfyHBBgW1xihAaMpTkUpPlqpdGo+Q8AwBekbqAAAwJBzS3UwCg+iPIzhxBCza9Vwwso0Mv1t6n9AwGWoRNP1UyXpMu0niv9KGVYupARCoxn9EMz6hZpODfVj0cZ3y4esHP0S5yR5GywFe2g9HjcIGnU0Fk1xaSEbHGdNCQXqFcbEbdm9ovdMwgwaetKN6NHgOAF6Sv1aNlDHSOxqMrRxnOEg3ENfWoELKPV2wGxY13sUYgugvGvONHFADLoFl7o9GsaXdX+BRVtsXOHHBSAJwpVO0GVdpCxXKb1SsAIVdRSjm0Cq4cMQ4qiGHXbB9FngYTasuYnGaugZm9TRZpzixxa4tmp-tqpc0k9UlmAdJUOHmT9rIMQizhXWqFVbLeSVEBRXYGiCmYu1dnLxZ-OOVLwd1QxTSBuooJaLlWs6xmPGLMDgAGNBysxTSqPWKdXGkrKkNRqY2hK7NcW5xWltnhJaai3SIgZxAS2lB2t7RZrT1pzDphyNv4IekKty16ABtOytrechG3-FxtuWtjRxujiTKM13yxuV3HJXnzFlwaFBK8E-j24m5L2eoIipqzTzPZVgILP5ovlyhHCOYBteuD9jhbLkqi4RUuqeCna6c52jBJdq212K5VgxIhY3PiR3yhGXcK7QmvtkgNp4bs-ZIl0iAf9ZslCz9gHEPlw7bkhqcvuJnA3WwiKaOlwiiFl5JN+4XsfkLLxe347I4RMX2GtsHnvg9ECOoWKZqJ3hdCmVIZnV1UNXTKo56O1nhskxTaaJerO7Vq1A50S8MO7YYpbzFxg5zS5cyyHePIBRUaYAZfD-lxqUoHr3+deFjeqSW1GUi56u48jxo41FyDIBZCQUXOc09CntomgrlJvqB6684BuxTVLKA2pQptnizBUNp5BfdBAAgQbdOpnGVqWlCys5bhSzlW6O1TwFLdT0bnhagsAysdUMpOWyQw9G89ooVuDDtJYdBO8OBNqU6UM2Aqusgg5TeX7LPl1RKXRHr+RpMi9jOqrTUEd1SUs5Xyunc3r5iCJhEtelXfXqV3o1OO5wYEHoAHTS7IYjyXpItVI5AcPd3alxc3L61JAY9xhRuTbtALvLtIbASDACXe3KLm15e3JZpDr1a6mtpyzXQOrzFXKitOehnfvvT0oCzFm+n4CftT1n6nG-Ia5VSWmR6lq0By3dTi1XXnIqOe6fPe5jMXb6V+y64fvusPVP7i6Fmy3TXpeX6bA1TKKRYYo+XOIiFGsA7X8r+2sqgOiK-WCXKZUQ6U5e4gSDayIXDybZNaxXWytiIDI3UAiP5M6v5WxFDxe6HSYMH2B5RxVBcAZI6IcKnDUwxIzMTqCTBWh0yaYDg2+Wn2hTpkg2hfeiCX1JLe1+RZ7XRE33aRwDdm4Yp-hbW6HP24NV-RfuWAf6ie1Jb-fpAgOQGPtABmQ5UEMN8MDFkh2SD-JANDEzFMBhvZ6os0sG0VRa3DePNb2Mz3iiAXeUlHl20GKFLq2IkXrU0vy6dmJVnsQciNIH7RMAINS9PUE-MOq96R9EKquI0ZzCViVihZqsQBqsjO+9zFYkn0qVsVmQetcFsJUaHzF2Smw3+niNxqtlTRkLSeXzGZGXtWSt7R0bOyxQD6CSXRfkY+CFGPDRCvRLwD2zXaaUEu7OF1AmO4ktoViWY0CpSCGZtjmqv3Hsepj2ADjcamJG8xQm7YqQZxlBkPyYrXSoBnulfeiB8Wr7P8Oh940ioeo6R3EKBpNbfAp7Ji3BkjFdbEU1W8tNSBLGQCEncRibHgM+1LV7qUM0YeR+x9xLMd0MqGe16W2Ypwiy3Zal4nxvE-yGMPb7TDASYMNnlGO2Gmc+6yraEuP47YcEzkPYwklmMgDpNEJs5lCeoGoIEknQ3o42vczx7h13J1xH6RhMiAKjemcU7yf9KwmPEYonsOycOPAnSpUy62HKcxqKnogtxnMFaohPe8v+pR9jkFr6M8hvqfx3-W0Ecj6nHDGxJ47Pta2KKvj1KgzXRB0N36OiHx604MRT0-HyTn7a5cnhpO2GKtMqoLGAb9PnqgO-fJqPac5FKyJAHSDDC6DLQCnYeQpjJXvoHX56jTaZk0+4icOk0UzPJnU9KfcQd9nIiZ1Y51G+ULGDxae-A2we16DURthuqkFa3bPDdBD4JnnR2dNGQaNdOe3s4xTtRN7FjUgTs8GEnMHjLRJmgcxJuSJSzJNcq6TXOdLwu605bu8cIidj17SUT+gbE3PuYVunH9B+-kP6f5CX1M9xW7TQKW+IKBytW6jI0dB8N-oatuzZEq40a1379zy+w84HoiLjAutLW5E8BbaAAXVD8+yC3Yfx2uMnD8xlXe8TT056ylw66CziZm3ikfzTGpw8spD0kLljJZ4810ueNqHf+nCLQ56b9OkXhlZyjw5cpGWnLy5f+hi3Os0SfF2zVOpi-wNfMXnS9vxrUh8or25LNzUgSWBOa8nWl-muZyDDRfdP-HhLylyLUmM9Tc6GzKFzRM2ctUAoIcmsxrhitABgcJNJBSRYFEYiU5WJ5F5017rgt6HgwF5v2IpNkuXmA8Z2Yw2pblZKUMLemYwxiopPXLr94KRnTadpNCXH9H5p4KYtfMMmsB6jAy7bNADmWlLn6Uy6JtSt0KLBlWFXdZCHPTw6NRe7K4+o0GeknTSJl46wtALOX0QrlgMhGi+P+XT93l9XnVrysCRorCJ0-YFeDNX6BzN+8vuFdpMP7MjsBs7LFfpORnW1xVgSJhdYttKIzgarq9sCCWUMylLLRK9xUMsFdjLGV1cwV2yvWXHjNuaba6fRDUXBjdEby4MXqvWJ3Lh1Tyz1Y9N3mQrQpMK2Gfv0CWxrK1toJNe3XTXNryLJK0TJSuLc9rsEZc7QooMWDV6q88g4vBLWBH1SM5dUq2WfluznOU4rQNgOtioj8I38iQIhFMo7Yz+ygTQN6HgQKatyTfc0vjYNFQLyM5N9TKTc4y0yKbvi6myfC5247kFnwEm6fzZvM2+QasTQDdxQ4TRVtkicBcSKsnY1NtDlaVBoXjMRApwM4a0lDJsoE2LQaYcHTzeih-y7Y0CuJl2wVtFtlmyt1CYULVsTsAJ1MBm0baZt63wy8h+LWdcS1NyGAgNKwGXEem2XKrlF6qyIBgAoh6bMt3W1YEzi6GU4RtnDCkB7hh3CbEdywGXFIv03DbAC5O5nF+vMWwSod9FmYAzvQLEIkdkA+ncZvJ2y4spOLWvVS2fBS7CSuu03Kru8YEwIdpaF7a4C+3kd8ZtAJnF-JoAWwVck8KrZQ0uYo7XdpM6N1DTj2E9bd6AATwtgT3B7U937inHbsmwJoy90FMWHNIx3DAcdxRX3cBrd24zVtvu8dt8V6yR7q5O0rPZPur3nuM9nwRPf3vgBD7PcLe0FhXszFFNcwWO9OEUVf2H7QXc04SrctbxO7XcU+-xyuNkiGr9xj9lhdPN3B67lgKBz7YSsmc4DcRr7e228GNRZLanCHDLZNvPVm7UdPB9uxMtQQo+Fdsh-LcjuUPL4hLRB2pXqjZnQtZ2ZU9YlbUnmXTPccUuvYXtJRD9VD5lvRfmla30zOtku+g5zu77-7B9wBwnYLsO3M7cjqO+xeYvnJxHCjnkq7f6NqxV2Z2otnxcm2GPgFnt8xyOuWCvddHLDsx+NZ7qYPwheEiiRw7AfrgeHjhyB97ZTvbjBcIzX3cSAD0K2BkNwNBf7YPO4n2H8TbW0TaO1TVy7jt5O+ERrtWPwdjd1HtEAifO2guoFtkN1vdu9bPb-jmB74n4f2XLT89lEB4-icyPEnXcLRw1jUfh25HVdqasI7qetOGnRdp2w3fqfSP+nldlazXYj583rHuSzJ5g7rOZA7WRlNXLfHF4JYQga4Xrm4U8IIBkkkiHk2Tc2deEjBO2K5FeFz0mwDn2zmDPUCDAboTnlcHHJHD4IwYt5+cSnYlwucaArndEW5zzoefTQnn9mYDjxfecilLnNGa5xui+J-OToALv9C89DQfPOTaUuiAAG0oMaEVxGTcciIvNAEGbSOKR-R7OhbaSUF0QwgwABdVKZvO8DrPEMiLk8aAAbwyAhYQYPHGy-ZccvOXXLvfLkpWd5A1n8GKjEGAAA6hUKjES-WeeJSXuLuiKK5tZ8vasaZwDO62WDKuDgCrq1Wq4NKOFcZqr6ACq8F0JZcGcD-xFq7Yd6AmXteYMGy8BCsyMMO9LjoBjCBgU2XkGVwb4lSEgm2WNQS1yy+5f+uA3PLhPvq-Vd5I8gQruV1Ri1cRujoTJjh7IAsAQ0VX6wyUQS3F4mgKYJpW+NKhhxak3CIcJUtWlBkiB03mbqw+STkyuBc32pAt2KjJJLA3UwybCHakkA9hHYDHN1P6P5APBSwtRh4FaesSfp3M-xKs9vkuvvXUjYrqOqFcndjul4v4Q0C6FcTzViRQ7-QJP1cS1G53NVr7VYjXdtBmHip7d49ZqD3mpT3kvgKIDmRtBsyGlK261B4CP2ECohQ9rqa3a6mOsPb4AFYn7fdu2gB6pxZsa4lTVFA-AAAjloeDHvgLOkUQO4WQCgk93IH3sCO61IAEa7AJCk6BMg+bAv3gIWGMYGSW-ud3LD0HVxLcCHu0EX8f1UR8-wg6cDHwfd6AFJb7bW5Dphi2e-5Oke13IjeZix6o9QeNRzc77VEE-T+PZ4wnh07h7bfTnskVYPAJTB4A45YAMwdnscFtfVKzmmAGj8GApnMzpP-YNmSaCHc8emZVSvsDTIE-8yIgjHg9xOFmYvul4dy3UE+Rs+A1a0rMez9p55DjTLy2YVmnqHqnXuagdYj0BwXMJOeAv9Yxadh+0-3m8VNn8j1IiVU4oHPoBLNTpgS--FkvV8WtAJ6zWLrbP+X9Gal4+PplJs1KRj1l6poLrivsXgOVyp9VTubY7TXg4tCxIlfoPYqtr1dCC9JAuvl0HTDF4Yvef+vlURdVNVG+fRqUQ3nR-ee9WMrw4Jn+b3wfa9ef-3y37rxl6mobeBvtaGbz6eg87exvFX7b0yENkOrfV03pIHl7K81fBoxn+6maHK+DRLPmcjvbLsJhMfnQluj7waw6-efLd4+6mL19byj6444wJZLMH295bP8CB1ZAl70Dh6O9Ahjr-eewOtzRPzodH-x9R9EHnYxsbjykiw3GwoP3ngOW-WDghz8fhMKauT6DlxzqfqAaH45baYU-Y5nEeOJj683Vx44AnjDY7FxBc-NNscXEHz5jmYba4D37n9Ztrifv2PFM5ua547B7SBPvrPafu7yrTxklqP3uYeIuAI+vvuv4hBcAE-MH4fNQfpHr872MF2PimHg6atKoa+uA3B4YA77bpdPK8yAHMEu-xWQgeEHBHAjxUIR6-mbC4ZX5-NtBh+0Wi8+jxgmccHeblCYZz8IdkUW+P8XEFP7kR1-byyMERsV48BM9hG8-r3h86cSfOff13QLx82c7y9cXS-zhKnV97WrIlI4Jfu57zufOJe8duyU5639R8PIIfTyWYEr4H+ZoJ9Anm-XW-1KVepcfOqf9Wgn-goBkBvyv78lWQCfP9Faef-pDT+b+s31H9j96lmTohNf5fv78wDW+nvbl7n8bzyG2gqoYC1-v1HRWnQeeB27cgzHZgE9+lS31off2vB-9sADNz-9y3FL1i8VaX-245QA4DxpZIA-fzl83AUsDfBzQIUCop-wKQBao0AOr3IgWkYvBwDymbP2uM8A64xL9k8Ez3NQS-ZDWnBiAqgMwBa-XoErh-OV2wE8yA3sToCcPdjwVdUzPOC1c14LgO94zXVHwWc84JZxgDhAh8zAD2PX13rxypZl1V9QGN60kgVhBQIGtpoNv1UCMdG2DecToMX20C5-YlA0C5-XQLp0O-POi10DAvQOyotdAT2zxTDEv1K1ycNeHQJ18S2zUgWkeQVHQzSFt1KBewVWlOlpwUwk0gHgL8240qSDIALchrB4lABSwVxhzAUWa0VMBoWIsAeByDBCBZlHYUQMWwQfZ-jB5qOO8wTEEhFuXoR4-fQGMMvgN-Uv03WMN0VceAkNxelJHdqha9rBYgBxx9PMICXIVXOCmitbzd-SK1++F833VygkoL0AQgjXTaDNPMQGwlorYw3X0+reURLcgAst0LdrDaYOet-jO8zt9XfC73QABg+3kcBRLUQlO57AZeH2CgsUsHlhdkOQCFAPibwDrYMXdeHgAHgMoP2CgrIrRThk-VwzOEr3KMzitAbUQhmD9lV4LeULDL-WWDicfxTOwlrXYJOC1AaEJgNRCKdQ2C03RYJACwQjph+DoDcvWit7HGEPqCnglq1e0iUNqyqDAMaNmfQpAF6W3w1rMYN8CsRD5Q4D-YMIMw0wrBENyCjHMwz6CF7foUTF5gYoNWCX9WYLvNAA5AGACoAtEMpDt8Ly0JCnOYkO7NSQhUyXF6Qh4H+s0raKxSDMgl4EVDWQzAAH12QykyDBxA0QOqN3MUpiDBuiFoPGCKcL6DgoqVBk1EJzgy9BhJ4PMCkAxKiCnAAAlbolIAAAGWVD1uOjRSA0g6TwkDqBGTHpCadJIAPVaQ8qXyFPWUQh6DKg+80qV0g8z0M9jQukz2DYQ4YKbQmNWrTeVDMZMOk8lQpIATCOQnT3whCsDEMzCJQ0QlGCjdFUwYhorUsFPRAw9UjVJgAFGn-AuAbMAeBSw-UIZAzvc6G2D0wx4DMUhg6KzrCuzFUyO9nzboIK1eg8sLqZViYcNbUxw04InDcwujRVNJvQmDnCQxBcLi9svaEPHDt8ScPzCflcNXRDt8PsOuVo-SEGE8RwvdWrCDg4IM3DQgwzGytrw+cMTC6fB2Cp8w4I6GHU1wrMI3CJuLcMMx+NPcOWB8gt7xl1J3R8Pmlnw7MLPCow9vQhhiwtwBvC+gswBUljw9cNPC3wmkJuAMIqt2-Cyw+824Qqw3EJfCkgFCJVNKIr8P3CfwnPy0RZwqlRPDawwiPrD9jY+VnCqQ-0O40YAPKWJ8JQOKhEUGQ1wFQjZYXJFwBiI0QhxCbrCSP0ApIig3+DT9coKBCEbe8N+9AIoSw4i-Q3ljzCowx2DpCVrFIJVNCwwK3xCX9Xq2AjKQ0QhVCbrbfHMjDMBiDUibIgzRqdEwp-w4h7lKiKGCqVeEIMiJWMxScjRCFyLQieAbIMe8TYA0PNBz9OYJuUwfIH2H9-I-CPcifjDSMSi4fQWDwiQIyULWCKg8iKP9bkPizMUYAHsDyj6goSyCikgRyOlCSI5NEZCeI3P20RDg1djaMRjdqLO5X9AqJf0KohKLvNajKqJoi3AI4ODABo9MOeDYQzSIZ14ItKPyiMos0EEUGo2UJVN3iMQEQAqILKgwxGovQGpDuIkyJjDKpPaI3lUIjaLthtoiOl2j5Io9hSAJo+KIOVzgrsL7dh+XdnujeopaNiigzO80QVJjbEFGicSU-RosoQqIOeiKcOaMZ9oAXsLIj9Qhd3whl3HmgWoEIuJwejKo5CK4iuzNalMjt8caLfN0wiKI2iV3LIO6jjg4k2kZ1Il4MSiztPdyojJo7MKwjFw89xXcUYqAzRi8zUCOsZwImuE0QpKRU1Oi8YgwweA8Y+mK+iVo4YyJDRmc6N5ivSdnhwAmgTgVpj+IwyPAijo6vFjDTowmJljYAOWIVjleRDweAcQ0WMNi7o44KFi3ozTzJi6LayMDNrTTSIQg4PBD3cRWY0A1+DlrKlXAN+Qn40mjNI+JGGi6Yx6OzCDoqcJajVpJGIygwwtUMjD1o3mPPcDYpIClCJYmUKliY4mRB445YvmMrMjPaK2Dj8wtWIqkKNZyOjjQ49OIfRM4hJGiicQ8mKBiX9H6IPCHY+DwEBaYhoKEsh1IS09jt8HENqs3AXOI0QVxTaPViToqOP9hsY46McZ4w2GNvCzAFv1mRVw763fMCIsCO41kSYElOjGY+83b8znF2M7EnLH60XiuY7jU3jV4qCL1Cp415xMCt4ueP3UorfeIKE6NHPWPjlYiVjo0hI2YTOc1IR+SVD1Q9s1XixYtK3ti6-GeNKiIQ12OvixrEBJoxozES2zCFIhqKfjzmUKLgSi4-2CPiuLaKOMMfY6mPBQUoj3ipUb4v+MFCDwyfwRx0QvBL3iCEwEMSi9-aAOGtxJV81FjvTSENfMvTJ-i8MsQvqMyiqYu8zX9coqiPwSYYpiPIjtBb31Rts1DIG3j+IQYNODGpJoIcCLADGKXiNdGcjESBAXDDkAegeDFOjYEpOPTDe44MJxjRCeiFcRZYNROkRNEv+NasU44PV-BXfT8IciBImkPziNY4xRSCH4tBNuj3o44MUibY5aP-jEoxQKsDIgshIXj7EwyNBjkEySIsirAaKLxjvEhONP1MEpEKE9SPXBL0j0oi-2LivddBMpiZo6mK+0uPAOPRiT4mCJUSHwhaJrDXwxRO4jSkmSO44u4NeMnjsI8uIKSqVemM5i7498K91y4g2AFiOo42KSBBY-fR8TYoyxO5iVJVWnaN4EoyP0Sx45jQiTlIqJKE9WrE2M8Sy9PMw8TLY9mKmiEkx6N9iAGFJOhC2kqZLGT1fYeMiSCwvaW6TYYbJJf1Rk0IOsTbEmG2OT3wpxKHiEAyJIeSDgOhT-jerFwxkU01DZL3ZOoqLTqj1uRBJ0SzIzJO4Q-4rKLvMzfXhPYj0k+JI8j1gg8M2CDgbYNSS7Il8OFiOogKOiCwAU9FyAMMJkBuDPE+4INhhk58M0j3giQ08hMiKiLtCqUkwyoSQQrfxITqo1hLdjaEzw1fN8UrlMxCOYzuNNikI0JOfiXkziAMSHgCKP41SY0VIJTuwrXDw8oYiAHtcZAXpFxSeo82LGiOouJIpjbk1aJTiIIzTVGAto8SOZTYUg8P58OfHTRGig4hxMOjJU2ZPDDSwS0Liw7tO2CPFpUzJJzhTUiQEriRU4FPUUVkzZM+iQ0oFICiBE6CIPDKkThVbi-gypIPiiInOCE1u4eyO9Tmo1+hrgKQ6cCtBgiGFK4SrU8X0dhJfcpMBj9APROjDB4wuPCifUzTVTSggYDwtTC0xMOtTDiO1JziHUkONeSa0jNPOSLwvSG1g-4xJPrjsvHrzLTswkWMDi4wUsCODrVOaAhi1UsIC09kUzhNyShosdMXUJ06K0GT1kzVK8S4EixMNTuYrNQYBToytJ7S5kmdLAA3UvFTRlBoPtIWT9jMdLPTAUj6L1SSIVZLDSLYoFP6SIiNkI3TqvG-wq9ctcqOnT4092Jqj2EsVIQTXzMKMfS9AVCJnCafZlJHTEw5DJEla0CRN6ckIndL6TwM2dP9Z50p8VVT08dVOnBm09dIPCMMjMhAyW47FMnSOo7VP4ZdUw9OZS7koiJXDnkxxKdTq0q9IVS3U7YPvSbABDLogVTYcLfSD0iFMky1k9MKNjp0h4ERDR0oDOf8t0wwzAz0Y20MjNAo6DOZTfkgAwNUpk8FIsVzUpIBlTV1N30Khh03ZP8SLM7YPHT6MvlKRSdUnqIYTCMpVMSJSMnmA1TV03xMtTW0uzMa8-IxzKkTFo-dNkzcY1jOkz2M49M6SuMmDOmSq0guP4zXU1mQpwhMr6FEzSwbon-I4IS9xJkTQFINfjIqESOJAxIm5J+N9MpoLijhInSI-jegKGH-Jz0rtPt5IwEOCayzk5SOKy5yd+PKyZMoNKejSwaQD3B5nc6ht4c0asFHi+MuzACsPTU0O6y4+cFDEjGs49GayVY7jVkh2s1bM6zEMzbN1Ims7UN1C7zQ0LXA8QmolNDzQlMIhEbQiDPLT9olrNSCY4XwMyCRsTWOLiNPNMyxkhhLwIcJW3fsk2kapV3k4QsollL8T8Y0ixUsItQ1LijNM0zD+z23d3js14cziBOlmpOgI0trYeDQYwzkaGBAVsEfxFHs77YKFxzctb6iK5jcXIMgxv2LGGmZaEJjWiiYRZbhHhN2VA08TIMKJiGMjiUSy3BrnThCowJkc4CKBukKmH6AScoV3UBUpcW0agxciDGDB+c3AEFyLAYXLTBWoEnJldGIHCRGYBcyGCVzOQNMCBB7cPHKdBZYh9D1j7AZQH+IdY2MTZtgMFrWZsv0bRwPxZYxrk-RrnT9A-RWMH9FliQDIMDXgDcx9E3gscpBU8V5BcmRwihbGpHnA5wPxBttI8qPzMBDFUPPjzrjeQR5yaXeDEQwtCcESDycczeF9cWtVXj5tpUfqV95EAf4V9dgwHhBtzscxPhMB1c9YDN0-gJw2AUQjeaEvdNSc5iMRdVDFztwtcXzxtAuDPYC2DGvGxD7MvATP1ENgxEQA+D6U4SC8Q2QPvKfIeyfQAgCUQsUO39ySFejZT9-dMHnyewIECXy4wCfLFJ0Qat3zddScUJJpYJZpC91zNQ+W2gwckq1iNCpVcD9xcBEUFrscnWuy90bHQEB8CdyRihVo0xcdmRzKjRu2Xy9AIAo+lYWHylALNDGOjXhSyZ8Q-ZnpG7H-zJLDJFxVpkE5hYVyYRN289JEUrQQAMMUYTGY80GoGFd5kayEyAMCBgHcxKCrnHqA6CoYgYKzseUGfwIAVjhILGRTIHxxvkPQFYLwsDAyAA

Computing with Register Machines 5.5.7

Interpretation and compilation

With the programs in this section, we can now experiment with the alternative execution

strategies of interpretation and compilation.
46

An interpreter raises the machine to the level

of the user program; a compiler lowers the user program to the level of the machine language.

We can regard the Scheme language (or any programming language) as a coherent family of

abstractions erected on the machine language. Interpreters are good for interactive program

development and debugging because the steps of program execution are organized in terms of

these abstractions, and are therefore more intelligible to the programmer. Compiled code can

execute faster, because the steps of program execution are organized in terms of the machine

language, and the compiler is free to make optimizations that cut across the higher-level

abstractions.
47

Compilers for popular languages, such as C and C++, put hardly any error-checking op-

erations into running code, so as to make things run as fast as possible. As a result, it falls

to programmers to explicitly provide error checking. Unfortunately, people often neglect to

do this, even in critical applications where speed is not a constraint. Their programs lead

fast and dangerous lives. For example, the notorious “Worm” that paralyzed the Internet in

1988 exploited the UNIX
TM

operating system’s failure to check whether the input bu�er has

over�owed in the �nger daemon. (See Spa�ord 1989.)

The alternatives of interpretation and compilation also lead to di�erent strategies for porting

languages to new computers. Suppose that we wish to implement JavaScript for a new machine.

One strategy is to begin with the explicit-control evaluator of section 5.4 and translate its

instructions to instructions for the new machine. A di�erent strategy is to begin with the

compiler and change the code generators so that they generate code for the new machine.

The second strategy allows us to run any JavaScript program on the new machine by �rst

compiling it with the compiler running on our original JavaScript system, and linking it with

a compiled version of the run-time library.
48

Better yet, we can compile the compiler itself,

46
We can do even better by extending the compiler to allow compiled code to call interpreted functions. See

exercise 5.47.

47
Independent of the strategy of execution, we incur signi�cant overhead if we insist that errors encountered

in execution of a user program be detected and signaled, rather than being allowed to kill the system or produce

wrong answers. For example, an out-of-bounds array reference can be detected by checking the validity of the

reference before performing it. The overhead of checking, however, can be many times the cost of the array

reference itself, and a programmer should weigh speed against safety in determining whether such a check is

desirable. A good compiler should be able to produce code with such checks, should avoid redundant checks, and

should allow programmers to control the extent and type of error checking in the compiled code.

48
Of course, with either the interpretation or the compilation strategy we must also implement for the new

machine storage allocation, input and output, and all the various operations that we took as “primitive” in our

discussion of the evaluator and compiler. One strategy for minimizing work here is to write as many of these

operations as possible in JavaScript and then compile them for the new machine. Ultimately, everything reduces

to a small kernel (such as garbage collection and the mechanism for applying actual machine primitives) that is

hand-coded for the new machine.

641 Generated 2020-08-18 16:40:02Z

Computing with Register Machines 5.5.7

and run this on the new machine to compile other JavaScript programs.
49

Or we can compile

one of the interpreters of section 4.1 to produce an interpreter that runs on the new machine.

Exercise 5.45

By comparing the stack operations used by compiled code to the stack operations used by

the evaluator for the same computation, we can determine the extent to which the compiler

optimizes use of the stack, both in speed (reducing the total number of stack operations) and

in space (reducing the maximum stack depth). Comparing this optimized stack use to the

performance of a special-purpose machine for the same computation gives some indication of

the quality of the compiler.

a. Exercise 5.27 asked you to determine, as a function of n, the number of pushes and

the maximum stack depth needed by the evaluator to compute n! using the recursive

factorial function given above. Exercise 5.14 asked you to do the same measurements

for the special-purpose factorial machine shown in �gure 5.11. Now perform the same

analysis using the compiled factorial function.

Take the ratio of the number of pushes in the compiled version to the number of pushes

in the interpreted version, and do the same for the maximum stack depth. Since the

number of operations and the stack depth used to compute n! are linear in n, these ratios

should approach constants as n becomes large. What are these constants? Similarly,

�nd the ratios of the stack usage in the special-purpose machine to the usage in the

interpreted version.

Compare the ratios for special-purpose versus interpreted code to the ratios for compiled

versus interpreted code. You should �nd that the special-purpose machine does much

better than the compiled code, since the hand-tailored controller code should be much

better than what is produced by our rudimentary general-purpose compiler.

b. Can you suggest improvements to the compiler that would help it generate code that

would come closer in performance to the hand-tailored version?

Exercise 5.46

Carry out an analysis like the one in exercise 5.45 to determine the e�ectiveness of compiling

the tree-recursive Fibonacci function

Ifunction fib(n) {

return n < 2

49
This strategy leads to amusing tests of correctness of the compiler, such as checking whether the compilation

of a program on the new machine, using the compiled compiler, is identical with the compilation of the program

on the original JavaScript system. Tracking down the source of di�erences is fun but often frustrating, because

the results are extremely sensitive to minuscule details.

642 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=GYVwdgxgLglg9mABMGAjAFGAlIg3gKESMQCcBTKEEpJAHkQCZFDjWB+RMF1ogLmTSZEAWkQBGHAGoBGJKIZYA3PgC+QA

Computing with Register Machines 5.5.7

? n

: fib(n - 1) + fib(n - 2);

}

compared to the e�ectiveness of using the special-purpose Fibonacci machine of �gure 5.12.

(For measurement of the interpreted performance, see exercise 5.28.) For Fibonacci, the time

resource used is not linear inn; hence the ratios of stack operations will not approach a limiting

value that is independent of n.

Exercise 5.47

This section described how to modify the explicit-control evaluator so that interpreted code

can call compiled functions. Show how to modify the compiler so that compiled functions

can call not only primitive functions and compiled functions, but interpreted functions as

well. This requires modifying compile_function_call to handle the case of compound (in-

terpreted) functions. Be sure to handle all the same target and linkage combinations as in

compile_fun_appl. To do the actual function application, the code needs to jump to the eval-

uator’s compound_apply entry point. This label cannot be directly referenced in object code

(since the assembler requires that all labels referenced by the code it is assembling be de�ned

there), so we will add a register called compapp to the evaluator machine to hold this entry

point, and add an instruction to initialize it:

Iassign("compapp", label("compound_apply")),

branch(label("external_entry")), // branches if flag is set

"read_eval_print_loop"

. . .

To test your code, start by declaring a function f that takes a function as parameter and applies

it in its body. Use compile_and_go to compile the declaration of f and start the evaluator. Now,

typing at the evaluator, pass a lambda expression as argument to f.

Exercise 5.48

The compile_and_go interface implemented in this section is awkward, since the compiler can

be called only once (when the evaluator machine is started). Augment the compiler-interpreter

interface by providing a compile_and_run primitive that can be called from within the explicit-

control evaluator as follows:

EC−eva lua te input :

compile_and_run(

parse(

"function factorial(n) { \

643 Generated 2020-08-18 16:40:02Z

http://source-academy.github.io/playground#chap=4&prgrm=IYZxEsHMDsAoCIDGB7AtgB2O98A0ACAG2ACMBTQhFDZAV2gBMB9LdQgT3gEovcAofPhIAnYNEQALWMXKV4ZAB4AXMsOjBCTMtCXDOPAoMEB6Y0NHiJZEPnAAzfHeKRbNkGSV94wssGZkANw0mdGFwHSZCZGQcAXwAEgAdQgZkJRB4oA

return n === 1 \

? 1 \

: n * factorial(n - 1); \

} "));

EC−eva lua te value :
undef ined

EC−eva lua te input :

Ifactorial(5)

EC−Eval value :
120

Exercise 5.49

As an alternative to using the explicit-control evaluator’s read-eval-print loop, design a register

machine that performs a read-compile-execute-print loop. That is, the machine should run

a loop that reads an expression, compiles it, assembles and executes the resulting code, and

prints the result. This is easy to run in our simulated setup, since we can arrange to call the

functions compile and assemble as “register-machine operations.”

Exercise 5.50

Use the compiler to compile the metacircular evaluator of section 4.1 and run this program

using the register-machine simulator. The resulting interpreter will run very slowly because

of the multiple levels of interpretation, but getting all the details to work is an instructive

exercise.

Exercise 5.51

Develop a rudimentary implementation of JavaScript in C (or some other low-level language

of your choice) by translating the explicit-control evaluator of section 5.4 into C. In order to

run this code you will need to also provide appropriate storage-allocation routines and other

run-time support.

Exercise 5.52

As a counterpoint to exercise 5.51, modify the compiler so that it compiles JavaScript functions

into sequences of C instructions. Compile the metacircular evaluator of section 4.1 to produce

a JavaScript interpreter written in C.

644

http://source-academy.github.io/playground#chap=4&prgrm=GYQwxgLg9gTgliANgCgKwEog

List of exercises

Exercise 1.1 . 36

Exercise 1.2 . 38

Exercise 1.3 . 38

Exercise 1.4 . 38

Exercise 1.5 . 38

Exercise 1.6 . 41

Exercise 1.7 . 42

Exercise 1.8 . 42

Exercise 1.9 . 52

Exercise 1.10 . 52

Exercise 1.11 . 57

Exercise 1.12 . 58

Exercise 1.13 . 58

Exercise 1.14 . 59

Exercise 1.15 . 59

Exercise 1.16 . 62

Exercise 1.17 . 62

Exercise 1.18 . 63

Exercise 1.19 . 63

Exercise 1.20 . 65

Exercise 1.21 . 69

Exercise 1.22 . 69

Exercise 1.23 . 70

Exercise 1.24 . 70

Exercise 1.25 . 71

Exercise 1.26 . 71

Exercise 1.27 . 71

Exercise 1.28 . 71

Exercise 1.29 . 76

Exercise 1.30 . 76

Exercise 1.31 . 77

Exercise 1.32 . 77

Exercise 1.33 . 78

Exercise 1.34 . 83

Exercise 1.35 . 87

Exercise 1.36 . 87

Exercise 1.37 . 87

645

Exercise 1.38 . 88

Exercise 1.39 . 88

Exercise 1.40 . 93

Exercise 1.41 . 93

Exercise 1.42 . 93

Exercise 1.43 . 93

Exercise 1.44 . 94

Exercise 1.45 . 94

Exercise 1.46 . 94

Exercise 2.1 . 104

Exercise 2.2 . 106

Exercise 2.3 . 107

Exercise 2.4 . 109

Exercise 2.5 . 109

Exercise 2.6 . 110

Exercise 2.7 . 111

Exercise 2.8 . 112

Exercise 2.9 . 112

Exercise 2.10 . 112

Exercise 2.11 . 112

Exercise 2.12 . 113

Exercise 2.13 . 113

Exercise 2.14 . 114

Exercise 2.15 . 114

Exercise 2.16 . 114

Exercise 2.17 . 119

Exercise 2.18 . 119

Exercise 2.19 . 119

Exercise 2.20 . 120

Exercise 2.21 . 122

Exercise 2.22 . 122

Exercise 2.23 . 123

Exercise 2.24 . 126

Exercise 2.25 . 126

Exercise 2.26 . 126

Exercise 2.27 . 126

Exercise 2.28 . 127

Exercise 2.29 . 127

Exercise 2.30 . 129

646

Exercise 2.31 . 129

Exercise 2.32 . 129

Exercise 2.33 . 135

Exercise 2.34 . 136

Exercise 2.35 . 136

Exercise 2.36 . 137

Exercise 2.37 . 137

Exercise 2.38 . 138

Exercise 2.39 . 139

Exercise 2.40 . 141

Exercise 2.41 . 141

Exercise 2.42 . 142

Exercise 2.43 . 143

Exercise 2.44 . 151

Exercise 2.45 . 152

Exercise 2.46 . 154

Exercise 2.47 . 154

Exercise 2.48 . 155

Exercise 2.49 . 155

Exercise 2.50 . 158

Exercise 2.51 . 158

Exercise 2.52 . 159

Exercise 2.53 . 161

Exercise 2.54 . 161

Exercise 2.55 . 162

Exercise 2.56 . 168

Exercise 2.57 . 168

Exercise 2.58 . 168

Exercise 2.59 . 171

Exercise 2.60 . 171

Exercise 2.61 . 173

Exercise 2.62 . 173

Exercise 2.63 . 176

Exercise 2.64 . 177

Exercise 2.65 . 178

Exercise 2.66 . 179

Exercise 2.67 . 186

Exercise 2.68 . 186

Exercise 2.69 . 186

647

Exercise 2.70 . 187

Exercise 2.71 . 187

Exercise 2.72 . 187

Exercise 2.73 . 203

Exercise 2.74 . 204

Exercise 2.75 . 206

Exercise 2.76 . 206

Exercise 2.77 . 212

Exercise 2.78 . 212

Exercise 2.79 . 213

Exercise 2.80 . 213

Exercise 2.81 . 219

Exercise 2.82 . 220

Exercise 2.83 . 220

Exercise 2.84 . 220

Exercise 2.85 . 220

Exercise 2.86 . 221

Exercise 2.87 . 228

Exercise 2.88 . 228

Exercise 2.89 . 228

Exercise 2.90 . 228

Exercise 2.91 . 228

Exercise 2.92 . 230

Exercise 2.93 . 231

Exercise 2.94 . 232

Exercise 2.95 . 232

Exercise 2.96 . 233

Exercise 2.97 . 234

Exercise 3.1 . 244

Exercise 3.2 . 244

Exercise 3.3 . 245

Exercise 3.4 . 245

Exercise 3.5 . 248

Exercise 3.6 . 249

Exercise 3.7 . 255

Exercise 3.8 . 255

Exercise 3.9 . 263

Exercise 3.10 . 269

Exercise 3.11 . 273

648

Exercise 3.12 . 277

Exercise 3.13 . 278

Exercise 3.14 . 278

Exercise 3.15 . 281

Exercise 3.16 . 281

Exercise 3.17 . 282

Exercise 3.18 . 282

Exercise 3.19 . 282

Exercise 3.20 . 284

Exercise 3.21 . 288

Exercise 3.22 . 289

Exercise 3.23 . 289

Exercise 3.24 . 294

Exercise 3.25 . 295

Exercise 3.26 . 295

Exercise 3.27 . 295

Exercise 3.28 . 301

Exercise 3.29 . 301

Exercise 3.30 . 301

Exercise 3.31 . 306

Exercise 3.32 . 309

Exercise 3.33 . 319

Exercise 3.34 . 319

Exercise 3.35 . 319

Exercise 3.36 . 320

Exercise 3.37 . 320

Exercise 3.38 . 327

Exercise 3.39 . 330

Exercise 3.40 . 330

Exercise 3.41 . 331

Exercise 3.42 . 331

Exercise 3.43 . 334

Exercise 3.44 . 335

Exercise 3.45 . 335

Exercise 3.46 . 338

Exercise 3.47 . 338

Exercise 3.48 . 339

Exercise 3.49 . 340

Exercise 3.50 . 348

649

Exercise 3.51 . 348

Exercise 3.52 . 349

Exercise 3.53 . 354

Exercise 3.54 . 354

Exercise 3.55 . 354

Exercise 3.56 . 354

Exercise 3.57 . 355

Exercise 3.58 . 355

Exercise 3.59 . 356

Exercise 3.60 . 356

Exercise 3.61 . 357

Exercise 3.62 . 357

Exercise 3.63 . 361

Exercise 3.64 . 361

Exercise 3.65 . 362

Exercise 3.66 . 364

Exercise 3.67 . 364

Exercise 3.68 . 365

Exercise 3.69 . 365

Exercise 3.70 . 365

Exercise 3.71 . 366

Exercise 3.72 . 366

Exercise 3.73 . 367

Exercise 3.74 . 368

Exercise 3.75 . 369

Exercise 3.76 . 369

Exercise 3.77 . 372

Exercise 3.78 . 372

Exercise 3.79 . 373

Exercise 3.80 . 373

Exercise 3.81 . 377

Exercise 3.82 . 377

Exercise 4.1 . 392

Exercise 4.2 . 396

Exercise 4.3 . 397

Exercise 4.4 . 397

Exercise 4.5 . 398

Exercise 4.6 . 398

Exercise 4.7 . 399

650

Exercise 4.8 . 400

Exercise 4.9 . 401

Exercise 4.10 . 406

Exercise 4.11 . 406

Exercise 4.12 . 406

Exercise 4.13 . 407

Exercise 4.14 . 411

Exercise 4.15 . 414

Exercise 4.16 . 415

Exercise 4.17 . 416

Exercise 4.18 . 416

Exercise 4.19 . 417

Exercise 4.20 . 417

Exercise 4.21 . 418

Exercise 4.22 . 424

Exercise 4.23 . 424

Exercise 4.24 . 425

Exercise 4.25 . 427

Exercise 4.26 . 427

Exercise 4.27 . 432

Exercise 4.28 . 433

Exercise 4.29 . 433

Exercise 4.30 . 434

Exercise 4.31 . 436

Exercise 4.32 . 438

Exercise 4.33 . 439

Exercise 4.34 . 439

Exercise 4.35 . 444

Exercise 4.36 . 444

Exercise 4.37 . 444

Exercise 4.38 . 446

Exercise 4.39 . 446

Exercise 4.40 . 446

Exercise 4.41 . 447

Exercise 4.42 . 447

Exercise 4.43 . 447

Exercise 4.44 . 448

Exercise 4.45 . 452

Exercise 4.46 . 452

651

Exercise 4.47 . 453

Exercise 4.48 . 453

Exercise 4.49 . 453

Exercise 4.50 . 464

Exercise 4.51 . 464

Exercise 4.52 . 465

Exercise 4.53 . 466

Exercise 4.54 . 466

Exercise 4.55 . 474

Exercise 4.56 . 476

Exercise 4.57 . 477

Exercise 4.58 . 477

Exercise 4.59 . 478

Exercise 4.60 . 478

Exercise 4.61 . 480

Exercise 4.62 . 480

Exercise 4.63 . 480

Exercise 4.64 . 493

Exercise 4.65 . 494

Exercise 4.66 . 494

Exercise 4.67 . 495

Exercise 4.68 . 495

Exercise 4.69 . 495

Exercise 4.70 . 509

Exercise 4.71 . 514

Exercise 4.72 . 515

Exercise 4.73 . 515

Exercise 4.74 . 515

Exercise 4.75 . 515

Exercise 4.76 . 516

Exercise 4.77 . 517

Exercise 4.78 . 517

Exercise 4.79 . 517

Exercise 5.1 . 523

Exercise 5.2 . 527

Exercise 5.3 . 531

Exercise 5.4 . 542

Exercise 5.5 . 543

Exercise 5.6 . 543

652

Exercise 5.7 . 546

Exercise 5.8 . 554

Exercise 5.9 . 561

Exercise 5.10 . 561

Exercise 5.11 . 561

Exercise 5.12 . 562

Exercise 5.13 . 562

Exercise 5.14 . 564

Exercise 5.15 . 564

Exercise 5.16 . 564

Exercise 5.17 . 564

Exercise 5.18 . 565

Exercise 5.19 . 565

Exercise 5.20 . 570

Exercise 5.21 . 571

Exercise 5.22 . 572

Exercise 5.23 . 592

Exercise 5.24 . 592

Exercise 5.25 . 592

Exercise 5.26 . 596

Exercise 5.27 . 596

Exercise 5.28 . 597

Exercise 5.29 . 597

Exercise 5.30 . 598

Exercise 5.31 . 605

Exercise 5.32 . 606

Exercise 5.33 . 627

Exercise 5.34 . 627

Exercise 5.35 . 630

Exercise 5.36 . 632

Exercise 5.37 . 632

Exercise 5.38 . 633

Exercise 5.39 . 635

Exercise 5.40 . 636

Exercise 5.41 . 636

Exercise 5.42 . 636

Exercise 5.43 . 637

Exercise 5.44 . 637

Exercise 5.45 . 642

653

Exercise 5.46 . 642

Exercise 5.47 . 643

Exercise 5.48 . 643

Exercise 5.49 . 644

Exercise 5.50 . 644

Exercise 5.51 . 644

Exercise 5.52 . 644

654

References

Abelson, Harold, Andrew Berlin, Jacob Katzenelson, William McAllister, Guillermo Rozas, Ger-

ald Jay Sussman, and Jack Wisdom. 1992. The Supercomputer Toolkit: A general framework

for special-purpose computing. International Journal of High-Speed Electronics 3(3):337-361.

Allen, John. 1978. Anatomy of Lisp. New York: McGraw-Hill.

ANSI X3.226-1994. American National Standard for Information Systems—Programming Lan-
guage—Common Lisp.

Appel, Andrew W. 1987. Garbage collection can be faster than stack allocation. Information
Processing Letters 25(4):275-279.

Backus, John. 1978. Can programming be liberated from the von Neumann style? Commu-
nications of the ACM 21(8):613-641.

Baker, Henry G., Jr. 1978. List processing in real time on a serial computer. Communications
of the ACM 21(4):280-293.

Batali, John, Neil Mayle, Howard Shrobe, Gerald Jay Sussman, and Daniel Weise. 1982. The

Scheme-81 architecture—System and chip. In Proceedings of the MIT Conference on Advanced
Research in VLSI, edited by Paul Pen�eld, Jr. Dedham, MA: Artech House.

Borning, Alan. 1977. ThingLab—An object-oriented system for building simulations using

constraints. In Proceedings of the 5th International Joint Conference on Arti�cial Intelligence.

Borodin, Alan, and Ian Munro. 1975. The Computational Complexity of Algebraic and Numeric
Problems. New York: American Elsevier.

Chaitin, Gregory J. 1975. Randomness and mathematical proof. Scienti�c American 232(5):47-

52.

Church, Alonzo. 1941. The Calculi of Lambda-Conversion. Princeton, N.J.: Princeton Univer-

sity Press.

Clark, Keith L. 1978. Negation as failure. In Logic and Data Bases. New York: Plenum Press,

pp. 293-322.

655

Clinger, William. 1982. Nondeterministic call by need is neither lazy nor by name. In Pro-
ceedings of the ACM Symposium on Lisp and Functional Programming, pp. 226-234.

Clinger, William, and Jonathan Rees. 1991. Macros that work. In Proceedings of the 1991 ACM
Conference on Principles of Programming Languages, pp. 155-162.

Colmerauer A., H. Kanoui, R. Pasero, and P. Roussel. 1973. Un système de communication

homme-machine en français. Technical report, Groupe Intelligence Arti�cielle, Université

d’Aix Marseille, Luminy.

Cormen, Thomas, Charles Leiserson, and Ronald Rivest. 1990. Introduction to Algorithms.
Cambridge, MA: MIT Press.

Darlington, John, Peter Henderson, and David Turner. 1982. Functional Programming and Its
Applications. New York: Cambridge University Press.

Dijkstra, Edsger W. 1968a. The structure of the “THE” multiprogramming system. Commu-
nications of the ACM 11(5):341-346.

Dijkstra, Edsger W. 1968b. Cooperating sequential processes. In Programming Languages,
edited by F. Genuys. New York: Academic Press, pp. 43-112.

Dinesman, Howard P. 1968. Superior Mathematical Puzzles. New York: Simon and Schuster.

deKleer, Johan, Jon Doyle, Guy Steele, and Gerald J. Sussman. 1977. AMORD: Explicit control

of reasoning. In Proceedings of the ACM Symposium on Arti�cial Intelligence and Programming
Languages, pp. 116-125.

Doyle, Jon. 1979. A truth maintenance system. Arti�cial Intelligence 12:231-272.

Feigenbaum, Edward, and Howard Shrobe. 1993. The Japanese National Fifth Generation

Project: Introduction, survey, and evaluation. In Future Generation Computer Systems, vol. 9,

pp. 105-117.

Feeley, Marc. 1986. Deux approches à l’implantation du language Scheme. Masters thesis,

Université de Montréal.

Feeley, Marc and Guy Lapalme. 1987. Using closures for code generation. Journal of Computer
Languages 12(1):47-66.

Feller, William. 1957. An Introduction to Probability Theory and Its Applications, volume 1.

New York: John Wiley & Sons.

Fenichel, R., and J. Yochelson. 1969. A Lisp garbage collector for virtual memory computer

systems. Communications of the ACM 12(11):611-612.

Floyd, Robert. 1967. Nondeterministic algorithms. JACM, 14(4):636-644.

656

Forbus, Kenneth D., and Johan deKleer. 1993. Building Problem Solvers. Cambridge, MA: MIT

Press.

Friedman, Daniel P., and David S. Wise. 1976. CONS should not evaluate its arguments. In

Automata, Languages, and Programming: Third International Colloquium, edited by S. Michael-

son and R. Milner, pp. 257-284.

Friedman, Daniel P., Mitchell Wand, and Christopher T. Haynes. 1992. Essentials of Program-
ming Languages. Cambridge, MA: MIT Press/McGraw-Hill.

Gabriel, Richard P. 1988. The Why of Y. Lisp Pointers 2(2):15-25.

Goldberg, Adele, and David Robson. 1983. Smalltalk-80: The Language and Its Implementa-
tion. Reading, MA: Addison-Wesley.

Gordon, Michael, Robin Milner, and Christopher Wadsworth. 1979. Edinburgh LCF. Lecture

Notes in Computer Science, volume 78. New York: Springer-Verlag.

Gray, Jim, and Andreas Reuter. 1993. Transaction Processing: Concepts and Models. San Mateo,

CA: Morgan-Kaufman.

Green, Cordell. 1969. Application of theorem proving to problem solving. In Proceedings of
the International Joint Conference on Arti�cial Intelligence, pp. 219-240.

Green, Cordell, and Bertram Raphael. 1968. The use of theorem-proving techniques in

question-answering systems. In Proceedings of the ACM National Conference, pp. 169-181.

Griss, Martin L. 1981. Portable Standard Lisp, a brief overview. Utah Symbolic Computation

Group Operating Note 58, University of Utah.

Guttag, John V. 1977. Abstract data types and the development of data structures. Commu-
nications of the ACM 20(6):397-404.

Hamming, Richard W. 1980. Coding and Information Theory. Englewood Cli�s, N.J.: Prentice-

Hall.

Hanson, Christopher P. 1990. E�cient stack allocation for tail-recursive languages. In Pro-
ceedings of ACM Conference on Lisp and Functional Programming, pp. 106-118.

Hanson, Christopher P. 1991. A syntactic closures macro facility. Lisp Pointers, 4(3).

Hardy, Godfrey H. 1921. Srinivasa Ramanujan. Proceedings of the London Mathematical So-
ciety XIX(2).

Hardy, Godfrey H., and E. M. Wright. 1960. An Introduction to the Theory of Numbers. 4th

edition. New York: Oxford University Press.

657

Havender, J. 1968. Avoiding deadlocks in multi-tasking systems. IBM Systems Journal 7(2):74-

84.

Hearn, Anthony C. 1969. Standard Lisp. Technical report AIM-90, Arti�cial Intelligence

Project, Stanford University.

Henderson, Peter. 1980. Functional Programming: Application and Implementation. Engle-

wood Cli�s, N.J.: Prentice-Hall.

Henderson. Peter. 1982. Functional Geometry. In Conference Record of the 1982 ACM Sympo-
sium on Lisp and Functional Programming, pp. 179-187.

Hewitt, Carl E. 1969. PLANNER: A language for proving theorems in robots. In Proceedings
of the International Joint Conference on Arti�cial Intelligence, pp. 295-301.

Hewitt, Carl E. 1977. Viewing control structures as patterns of passing messages. Journal of
Arti�cial Intelligence 8(3):323-364.

Hoare, C. A. R. 1972. Proof of correctness of data representations. Acta Informatica 1(1).

Hodges, Andrew. 1983. Alan Turing: The Enigma. New York: Simon and Schuster.

Hofstadter, Douglas R. 1979. Gödel, Escher, Bach: An Eternal Golden Braid. New York: Basic

Books.

Hughes, R. J. M. 1990. Why functional programming matters. In Research Topics in Functional
Programming, edited by David Turner. Reading, MA: Addison-Wesley, pp. 17-42.

IEEE Std 1178-1990. 1990. IEEE Standard for the Scheme Programming Language.

Ingerman, Peter, Edgar Irons, Kirk Sattley, and Wallace Feurzeig; assisted by M. Lind, Herbert

Kanner, and Robert Floyd. 1960. THUNKS: A way of compiling procedure statements, with

some comments on procedure declarations. Unpublished manuscript. (Also, private communi-

cation from Wallace Feurzeig.)

Kaldewaij, Anne. 1990. Programming: The Derivation of Algorithms. New York: Prentice-Hall.

Kohlbecker, Eugene Edmund, Jr. 1986. Syntactic extensions in the programming language

Lisp. Ph.D. thesis, Indiana University.

Konopasek, Milos, and Sundaresan Jayaraman. 1984. The TK!Solver Book: A Guide to Problem-
Solving in Science, Engineering, Business, and Education. Berkeley, CA: Osborne/McGraw-Hill.

Knuth, Donald E. 1973. Fundamental Algorithms. Volume 1 of The Art of Computer Program-
ming. 2nd edition. Reading, MA: Addison-Wesley.

Knuth, Donald E. 1981. Seminumerical Algorithms. Volume 2 of The Art of Computer Pro-
gramming. 2nd edition. Reading, MA: Addison-Wesley.

658

Kowalski, Robert. 1973. Predicate logic as a programming language. Technical report 70,

Department of Computational Logic, School of Arti�cial Intelligence, University of Edinburgh.

Kowalski, Robert. 1979. Logic for Problem Solving. New York: North-Holland.

Lamport, Leslie. 1978. Time, clocks, and the ordering of events in a distributed system. Com-
munications of the ACM 21(7):558-565.

Lampson, Butler, J. J. Horning, R. London, J. G. Mitchell, and G. K. Popek. 1981. Report

on the programming language Euclid. Technical report, Computer Systems Research Group,

University of Toronto.

Landin, Peter. 1965. A correspondence between Algol 60 and Church’s lambda notation: Part

I. Communications of the ACM 8(2):89-101.

Lieberman, Henry, and Carl E. Hewitt. 1983. A real-time garbage collector based on the

lifetimes of objects. Communications of the ACM 26(6):419-429.

Liskov, Barbara H., and Stephen N. Zilles. 1975. Speci�cation techniques for data abstractions.

IEEE Transactions on Software Engineering 1(1):7-19.

McAllester, David Allen. 1978. A three-valued truth-maintenance system. Memo 473, MIT

Arti�cial Intelligence Laboratory.

McAllester, David Allen. 1980. An outlook on truth maintenance. Memo 551, MIT Arti�cial

Intelligence Laboratory.

McCarthy, John. 1960. Recursive functions of symbolic expressions and their computation

by machine. Communications of the ACM 3(4):184-195.

McCarthy, John. 1967. A basis for a mathematical theory of computation. In Computer Pro-
graming and Formal Systems, edited by P. Bra�ort and D. Hirschberg. North-Holland.

McCarthy, John. 1978. The history of Lisp. In Proceedings of the ACM SIGPLAN Conference
on the History of Programming Languages.

McCarthy, John, P. W. Abrahams, D. J. Edwards, T. P. Hart, and M. I. Levin. 1965. Lisp 1.5
Programmer’s Manual. 2nd edition. Cambridge, MA: MIT Press.

McDermott, Drew, and Gerald Jay Sussman. 1972. Conniver reference manual. Memo 259,

MIT Arti�cial Intelligence Laboratory.

Miller, Gary L. 1976. Riemann’s Hypothesis and tests for primality. Journal of Computer and
System Sciences 13(3):300-317.

Miller, James S., and Guillermo J. Rozas. 1994. Garbage collection is fast, but a stack is faster.

Memo 1462, MIT Arti�cial Intelligence Laboratory.

659

Moon, David. 1978. MacLisp reference manual, Version 0. Technical report, MIT Laboratory

for Computer Science.

Moon, David, and Daniel Weinreb. 1981. Lisp machine manual. Technical report, MIT Arti�-

cial Intelligence Laboratory.

Morris, J. H., Eric Schmidt, and Philip Wadler. 1980. Experience with an applicative string

processing language. In Proceedings of the 7th Annual ACM SIGACT/SIGPLAN Symposium on
the Principles of Programming Languages.

Phillips, Hubert. 1934. The Sphinx Problem Book. London: Faber and Faber.

Pitman, Kent. 1983. The revised MacLisp Manual (Saturday evening edition). Technical report

295, MIT Laboratory for Computer Science.

Rabin, Michael O. 1980. Probabilistic algorithm for testing primality. Journal of Number
Theory 12:128-138.

Raymond, Eric. 1993. The New Hacker’s Dictionary. 2nd edition. Cambridge, MA: MIT Press.

Raynal, Michel. 1986. Algorithms for Mutual Exclusion. Cambridge, MA: MIT Press.

Rees, Jonathan A., and Norman I. Adams IV. 1982. T: A dialect of Lisp or, lambda: The

ultimate software tool. InConference Record of the 1982 ACM Symposium on Lisp and Functional
Programming, pp. 114-122.

Rees, Jonathan, and William Clinger (eds). 1991. The revised
4

report on the algorithmic

language Scheme. Lisp Pointers, 4(3).

Rivest, Ronald, Adi Shamir, and Leonard Adleman. 1977. A method for obtaining digital

signatures and public-key cryptosystems. Technical memo LCS/TM82, MIT Laboratory for

Computer Science.

Robinson, J. A. 1965. A machine-oriented logic based on the resolution principle. Journal of
the ACM 12(1):23.

Robinson, J. A. 1983. Logic programming—Past, present, and future. New Generation Com-
puting 1:107-124.

Sagade, Y. 2015. SICP exercise 1.14

Spa�ord, Eugene H. 1989. The Internet Worm: Crisis and aftermath. Communications of the
ACM 32(6):678-688.

Steele, Guy Lewis, Jr. 1977. Debunking the “expensive procedure call” myth. In Proceedings
of the National Conference of the ACM, pp. 153-62.

660

http://www.ysagade.nl/2015/04/12/sicp-change-growth/

Steele, Guy Lewis, Jr. 1982. An overview of Common Lisp. In Proceedings of the ACM Sym-
posium on Lisp and Functional Programming, pp. 98-107.

Steele, Guy Lewis, Jr. 1990. Common Lisp: The Language. 2nd edition. Digital Press.

Steele, Guy Lewis, Jr., and Gerald Jay Sussman. 1975. Scheme: An interpreter for the extended

lambda calculus. Memo 349, MIT Arti�cial Intelligence Laboratory.

Steele, Guy Lewis, Jr., Donald R. Woods, Raphael A. Finkel, Mark R. Crispin, Richard M.

Stallman, and Geo�rey S. Goodfellow. 1983. The Hacker’s Dictionary. New York: Harper &

Row.

Stoy, Joseph E. 1977. Denotational Semantics. Cambridge, MA: MIT Press.

Sussman, Gerald Jay, and Richard M. Stallman. 1975. Heuristic techniques in computer-aided

circuit analysis. IEEE Transactions on Circuits and Systems CAS-22(11):857-865.

Sussman, Gerald Jay, and Guy Lewis Steele Jr. 1980. Constraints—A language for expressing

almost-hierarchical descriptions. AI Journal 14:1-39.

Sussman, Gerald Jay, and Jack Wisdom. 1992. Chaotic evolution of the solar system. Science
257:256-262.

Sussman, Gerald Jay, Terry Winograd, and Eugene Charniak. 1971. Microplanner reference

manual. Memo 203A, MIT Arti�cial Intelligence Laboratory.

Sutherland, Ivan E. 1963. SKETCHPAD: A man-machine graphical communication system.

Technical report 296, MIT Lincoln Laboratory.

Teitelman, Warren. 1974. Interlisp reference manual. Technical report, Xerox Palo Alto Re-

search Center.

Thatcher, James W., Eric G. Wagner, and Jesse B. Wright. 1978. Data type speci�cation:

Parameterization and the power of speci�cation techniques. In Conference Record of the Tenth
Annual ACM Symposium on Theory of Computing, pp. 119-132. Turner, David. 1981. The future

of applicative languages. In Proceedings of the 3rd European Conference on Informatics, Lecture

Notes in Computer Science, volume 123. New York: Springer-Verlag, pp. 334-348.

Wand, Mitchell. 1980. Continuation-based program transformation strategies. Journal of the
ACM 27(1):164-180.

Waters, Richard C. 1979. A method for analyzing loop programs. IEEE Transactions on Soft-
ware Engineering 5(3):237-247.

Winograd, Terry. 1971. Procedures as a representation for data in a computer program

for understanding natural language. Technical report AI TR-17, MIT Arti�cial Intelligence

Laboratory.

661

Winston, Patrick. 1992. Arti�cial Intelligence. 3rd edition. Reading, MA: Addison-Wesley.

Zabih, Ramin, David McAllester, and David Chapman. 1987. Non-deterministic Lisp with

dependency-directed backtracking. AAAI-87, pp. 59-64.

Zippel, Richard. 1979. Probabilistic algorithms for sparse polynomials. Ph.D. dissertation,

Department of Electrical Engineering and Computer Science, MIT.

Zippel, Richard. 1993. E�ective Polynomial Computation. Boston, MA: Kluwer Academic Pub-

lishers.

662

Index

Any inaccuracies in this index may be explained by the fact that it has

been prepared with the help of a computer.

— Donald E. Knuth, Fundamental Algorithms (Volume 1 of The Art of

Computer Programming)

Page numbers for code de�nitions are in italics.

Page numbers followed by n indicate footnotes.

absolute value, 34

abstract data, 100

abstract models for data, 108

abstract syntax

in metacircular evaluator, 386

in query interpreter, 496

abstraction

common pattern and, 74

functional, 43

metalinguistic, 382

abstraction

in register-machine design, 529–531

of search in nondeterministic

programming, 445

abstraction barriers, 99, 105–107, 188

abstraction barriers

in complex-number system, 189

in generic arithmetic system, 207

accumulator, 131, 244

Áchárya, Bháscara, 58

Ackermann’s function, 52

acquire a mutex, 336

actions, in register machine, 527–529

Ada, 480

recursive functions, 51

Adams, Norman I., IV, 419

adder

full, 298

half, 297

ripple-carry, 301

additivity, 100, 189, 198–205, 210

address, 566

address arithmetic, 566

Adleman, Leonard, 69

A’h-mose, 63

algebraic expression, 221

di�erentiating, 162–169

representing, 165–169

simplifying, 166–168

algebraic speci�cation for data, 108

Algol

block structure, 47

663

call-by-name argument passing, 348,

428

thunks, 348, 427

Algol

weakness in handling compound

objects, 321

algorithm

optimal, 136

probabilistic, 68–69, 235

aliasing, 253

Allen, John, 573

alternative of if, 35

analyzing evaluator, 419–425

analyzing evaluator

as basis for nondeterministic evaluator,

454

conditional statements, 424

and-gate, 296

APL, 135

Appel, Andrew W., 619

applicative-order evaluation, 34

applicative-order evaluation

in JavaScript, 34

normal order vs., 38, 65, 425–427

arbiter, 338

arctangent, 192

argument(s), 25

delayed, 371

Aristotle’s De caelo (Buridan’s commentary

on), 338

arithmetic

address arithmetic, 566

generic, 206

on complex numbers, 189

on intervals, 110–114

on power series, 356, 357

on rational numbers, 101–104

ASCII code, 179

assembler, 546, 550–554

assertion, 470

implicit, 477

assignment, 238–255

bene�ts of, 245–249

bugs associated with, 253, 254

costs of, 249–255

assignment operator, 239

atomic operations supported in hardware,

338

atomic requirement for test_and_set, 337

automagically, 442

automatic search, 439

history of, 442

automatic storage allocation, 566

average damping, 87

B-tree, 175

backtracking, 442

Backus, John, 379

Baker, Henry G., Jr., 573

balanced binary tree, 175

balanced mobile, 128

bank account, 239, 273

joint, 252, 255

joint, with concurrent access, 322

password-protected, 245

stream model, 378

transferring money, 335

barrier synchronization, 340

Barth, John, 381

Basic

weakness in handling compound

objects, 321

Batali, John Dean, 578

Bertrand’s Hypothesis, 353

bignum, 568

binary search, 173

binary tree, 173

balanced, 175

664

converting a list to a, 177

converting to a list, 176

for Hu�man encoding, 180

represented with lists, 174

sets represented as, 173–178

table structured as, 295

bind, 45

binding, 256

deep, 406

binomial coe�cients, 58

black box, 43

block structure, 22, 46–47

in query language, 518

block structure

in environment model, 270–273

blocked process, 337

body of a function, 30

Borning, Alan, 310

Borodin, Alan, 136

bound name, 45

box notation, 116

box-and-pointer notation, 114

box-and-pointer notation

end-of-list marker, 116

branch

branch of a tree, 28

breakpoint, 565

broken heart, 574

browser, 23

bug, 21

capturing a free name, 45

order of assignments, 254

side e�ect with aliasing, 253

bureaucracy, 490

Buridan, Jean, 338

busy-waiting, 337

C, 22

compiling Scheme into, 644

error handling, 641

recursive functions, 51

Scheme interpreter written in, 644

cache-coherence protocols, 323

calculator, �xed points with, 86

call-by-name argument passing, 348, 428

call-by-need argument passing, 348, 428

call-by-need argument passing

memoization and, 355

canonical form, for polynomials, 230

capturing a free name, 45

Carmichael numbers, 68, 71

case analysis

data-directed programming vs., 387

cell, in serializer implementation, 337

Cesàro, Ernesto, 246

Chaitin, Gregory, 246

Chandah-sutra, 62

change and sameness

meaning of, 251–253

shared data and, 279

Chapman, David, 443

character, ASCII encoding, 179

Charniak, Eugene, 443

Chebyshev, Pafnutii L’vovich, 353

chess, eight-queens puzzle, 142, 448

chip implementation of Scheme, 578

chronological backtracking, 442

Chu Shih-chieh, 58

Church numerals, 110

Church, Alonzo, 79, 110

Church-Turing thesis, 413

circuit

modeled with streams, 367, 373

Clark, Keith L., 493

Clinger, William, 428

closed world assumption, 493

closure, 99

in abstract algebra, 115

665

closure property of pair, 115

closure

closure property of picture-language

operations, 144, 147

coal, bituminous, 145

code

ASCII, 179

�xed-length, 179

Morse, 179

pre�x, 180

variable-length, 179

code generator, 602

arguments of, 603

value of, 603

coercion, 214–221

function, 214

in algebraic manipulation, 230

in polynomial arithmetic, 225

table, 214

Colmerauer, Alain, 467

combination, 24, 25

combination as operator of, 89

evaluation of, 27, 28

lambda expression as operator of, 79

as a tree, 28

combination

compound expression as operator of,

38

as operator of combination, 89

combination, means of, 23

comments in programs, 141

compacting garbage collector, 573

compile-time environment, 635, 636

compiler, 598–600

interpreter vs., 599–600, 641

compiler

tail recursion, stack allocation, and

garbage-collection, 619

compiler for JavaScript

example compilation, 626

order of argument evaluation, 632

return statements, 613

compiler for Scheme, 600–644

assignments, 608

combinations, 614–620

conditionals, 609

de�nitions, 608

e�ciency, 600–601

example compilation, 624

expression-syntax functions, 602

label generation, 609

lexical addressing, 634–635

linkage code, 606

machine-operation use, 599

quotations, 607

register use, 599, 600, 619

running compiled code, 644

stack usage, 604, 605, 632

structure of, 602–605

variables, 607

compiler for Scheme

function applications, 614–620

analyzing evaluator vs., 600, 602

explicit-control evaluator vs., 600–601,

606, 640

interfacing to evaluator, 637–644

lambda expressions, 611

monitoring performance (stack use) of

compiled code, 640, 642

open coding of primitives, 633

running compiled code, 637

self-evaluating expressions, 607

sequences of expressions, 611

tail-recursive code generated by, 619

complex numbers

polar representation, 193

complex numbers

rectangular representation, 192

666

rectangular vs. polar form, 190

represented as tagged data, 194–198

complex-number arithmetic, 189

complex-number arithmetic

interfaced to generic arithmetic

system, 210

composition of functions, 93

compound data, need for, 97–99

compound expression, 24

compound expression

as operator of combination, 38

compound function, 29

compound query, 474–476

processing, 483–486, 498–500, 515–517

computability, 413, 414

computer science, 382, 413

mathematics vs., 39, 467

concrete data representation, 100

concurrency, 321–341

deadlock, 339–340

functional programming and, 379

mechanisms for controlling, 327–341

concurrency

correctness of concurrent programs,

324–327

conditional statements, 81

congruent modulo n, 67

connector(s), in constraint system, 310

operations on, 313

connector(s), in constraint system

representing, 316

Conniver, 443

consciousness, expansion of, 389

consequent

of if, 35

constant, specifying in register machine,

544

constraint network, 310

constraint(s)

primitive, 310

propagation of, 309–320

constructor, 100

as abstraction barrier, 105

continuation

in nondeterministic evaluator, 454–456

in register-machine simulator, 552

continuation

in nondeterministic evaluator, 455

continued fraction, 87

golden ratio as, 87

tangent as, 88

continued fraction

e as, 88

control structure, 490

controller for register machine, 520–523

controller for register machine

controller diagram, 522

conventional interface, 99

sequence as, 130–143

Cormen, Thomas H., 175

correctness of a program, 39

cosine

�xed point of, 86

power series for, 356

cosmic radiation, 68

counting change, 56–57, 119

credit-card accounts, international, 341

Cressey, David, 574

cross-type operations, 213

cryptography, 69

cube root

as �xed point, 90

by Newton’s method, 42

current time, for simulation agenda, 307

cycle in list, 278

detecting, 282

Darlington, John, 379

667

data, 23

abstract, 100

abstract models for, 108

algebraic speci�cation for, 108

compound, 97–99

concrete representation of, 100

functional representation of, 108–110

hierarchical, 115, 124–128

list-structured, 103

meaning of, 107–110

numerical, 24

as program, 411–413

shared, 279–282

symbolic, 160

tagged, 194–198, 567

data abstraction, 98, 100, 188, 191, 392

for queue, 284

data base

data-directed programming and, 204

logic programming and, 469

Microshaft personnel, 470–472

as set of records, 178

data base

indexing, 483, 506

Insatiable Enterprises personnel, 204

data paths for register machine, 520–523

data paths for register machine

data-path diagram, 521

data types

in Lisp, 212

in strongly typed languages, 375

data-directed programming, 189, 198–205

data-directed programming

case analysis vs., 387

in metacircular evaluator, 397

in query interpreter, 497

data-directed recursion, 226

deadlock, 339–340

avoidance, 339

recovery, 339

declarative vs. imperative knowledge, 39,

467

declarative vs. imperative knowledge

logic programming and, 467–469, 490

nondeterministic computing and, 440

decomposition of program into parts, 43

deep binding, 406

deferred operations, 50

de�nite integral, 75–76

de�nite integral

estimated with Monte Carlo

simulation, 248, 377

deKleer, Johan, 443, 492

delay, in digital circuit, 296

delayed argument, 371

delayed evaluation, 238, 342

assignment and, 349

in lazy evaluator, 425–439

printing and, 348

streams and, 370–375

delayed evaluation

explicit vs. automatic, 438

normal-order evaluation and, 375

dense polynomial, 226

dependency-directed backtracking, 443

depth-�rst search, 442

deque, 289

derivative of a function, 90

derived expressions in evaluator

adding to explicit-control evaluator,

592

design, strati�ed, 158

di�erential equation, 370

second-order, 373

di�erentiation

numerical, 90

rules for, 163, 168

symbolic, 162–169, 203

668

di�usion, simulation of, 327

digital signal, 296

digital-circuit simulation, 296–309

agenda, 303–304

digital-circuit simulation

agenda implementation, 306–309

primitive function boxes, 299–301

representing wires, 302–303

sample simulation, 304–306

Dijkstra, Edsger Wybe, 336

Dinesman, Howard P., 445

Diophantus’s Arithmetic, Fermat’s copy of,

67

dispatching

comparing di�erent styles, 206

on type, 198

dog, perfectly rational, behavior of, 338

Doyle, Jon, 443

driver loop

in lazy evaluator, 430

in query interpreter, 489, 496

driver loop

in explicit-control evaluator, 593

in metacircular evaluator, 409

in nondeterministic evaluator, 443, 463

dynamic typing, 22, 23

e

as continued fraction, 88

as solution to di�erential equation, 371

ex , power series for, 356

Earth, measuring circumference of, 350

e�ciency

of compilation, 600

of data-base access, 482

of query processing, 485

of tree-recursive process, 57

e�ciency

of evaluation, 419

Eich, Brendan, 22

EIEIO, 340

eight-queens puzzle, 142, 448

electrical circuits, modeled with streams,

367, 373

embedded language, language design

using, 425

empty list, 117

recognizing with null?, 118

encapsulated name, 241

enclosing environment, 256

end-of-list marker, 116

engineering vs. mathematics, 68

enumerator, 131

environment, 27, 256

as context for evaluation, 28

enclosing, 256

lexical scoping and, 47

in query interpreter, 518

renaming vs., 517

environment model of evaluation, 238,

256–273

environment model of evaluation

function -application example,

261–264

environment structure, 256

internal de�nitions, 270–273

local state, 264–270

message passing, 273

metacircular evaluator and, 384

rules for evaluation, 257–261

tail recursion and, 264

equality

of lists, 161

of numbers, 35, 568

referential transparency and, 252

equality

in generic arithmetic system, 213

Eratosthenes, 350

669

error handling

in compiled code, 641

error handling

in explicit-control evaluator, 593, 598

Escher, Maurits Cornelis, 144

Euclid’s Algorithm, 64–65, 520

order of growth, 65

Euclid’s Algorithm

for polynomials, 231

Euclid’s Elements, 64

Euclid’s proof of in�nite number of primes,

353

Euclidean ring, 231

Euler, Leonhard, 88

series accelerator, 359

Euler, Leonhard

proof of Fermat’s Little Theorem, 67

evaluation

models of, 592

of a combination, 27, 28

of or, 35

of primitive expressions, 28

evaluator, 382

as abstract machine, 412

metacircular, 384

as universal machine, 412

event-driven simulation, 296

evlis tail recursion, 583

execution function

in analyzing evaluator, 420

in nondeterministic evaluator, 454, 456

in register-machine simulator, 548,

554–562

explicit-control evaluator

assignments, 590

de�nitions, 590, 591

explicit-control evaluator for JavaScript

argument evaluation, 582–584

combinations, 581–586

controller, 580

expressions with no subexpressions to

evaluate, 581

function application, 581–586

explicit-control evaluator for Scheme,

578–598

compound functions, 585

primitive functions, 584

as universal machine, 598

explicit-control evaluator for Scheme

conditionals, 589

controller, 594

data paths, 578–579

driver loop, 593

error handling, 593, 598

as machine-language program, 599

machine model, 594

modi�ed for compiled code, 637–639

monitoring performance (stack use),

595–597

normal-order evaluation, 592

operations, 578

optimizations (additional), 606

registers, 579

running, 592–595

sequences of expressions, 586–589

special forms (additional), 592

stack usage, 581

tail recursion, 587–589, 596, 597

exponential growth, 59

of tree-recursive Fibonacci-number

computation, 54

exponentiation, 60–62

exponentiation

modulo n, 67

expression

self-evaluating, 386

symbolic, 99

expression-oriented vs. imperative

670

programming style, 321

factorial, 48

in�nite stream, 354

without letrec or define, 418

failure continuation (nondeterministic

evaluator), 454, 456

failure continuation (nondeterministic

evaluator)

constructed by amb, 462

constructed by assignment, 459

constructed by driver loop, 463

failure, in nondeterministic computation,

441

failure, in nondeterministic computation

bug vs., 457

searching and, 442

false, 35

feedback loop, modeled with streams, 370

Feeley, Marc, 419

Feigenbaum, Edward, 469

Fenichel, Robert, 573

Fermat, Pierre de, 67

Fermat test for primality, 67–69

variant of, 71

Fermat’s Little Theorem, 67

Fermat’s Little Theorem

alternate form, 71

proof, 67

Fibonacci numbers, 53

Fibonacci numbers

Euclid’s GCD algorithm and, 65

FIFO bu�er, 284

�lter, 78, 131

�rst-class elements in language, 92

�xed point, 85–87

computing with calculator, 86

of cosine, 86

cube root as, 90

fourth root as, 94

golden ratio as, 87

square root as, 86, 89, 92

uni�cation and, 504

�xed point

as iterative improvement, 94

in Newton’s method, 90

nth root as, 94

of transformed function, 91

�xed-length code, 179

flatmap, 140

Floyd, Robert, 443

Forbus, Kenneth D., 443

force a thunk, 428

formal parameters, 30

names of, 45

Fortran, 135

inventor of, 379

forwarding address, 574

fourth root, as �xed point, 94

frame (environment model), 256

global, 256

frame (environment model)

as repository of local state, 264–270

frame (picture language), 144, 152

coordinate map, 153

frame (query interpreter), 482

representation, 514

framed-stack discipline, 581

free list, 570

free name, 45

capturing, 45

free name

in internal declaration, 46

Friedman, Daniel P., 348, 383

full-adder, 298

function, 23

anonymous, 79

as black box, 43–44

671

body of, 30

compound, 29

creating with function, 29

declaration of, 29

formal parameters of, 30

as general method, 83

memoized, 295

name of, 30

naming (with function), 29

scope of parameters, 45

function

as argument, 73–78

creating with function, 260

creating with lambda, 257

�rst-class in Lisp, 93

as general method, 89

generic, 184, 189

lexically scoped, �rst-class, 22, 23

monitored, 244

as pattern for local evolution of a

process, 48

as returned value, 95

returning multiple values, 552

special form vs., 427, 436

function (computer)

mathematical function vs., 39

function (mathematical)

Ackermann’s, 52

composition of, 93

computer function vs., 39

derivative of, 90

�xed point of, 85–87

procedure vs., 39

rational, 230–235

smoothing of, 94

function (mathematical)

7→ notation for, 86

repeated application of, 93

function application

environment model of, 261–264

function box, in digital circuit, 296

functional abstraction, 43

functional programming, 249, 376–380

concurrency and, 379

time and, 377–380

functional programming

functional programming languages,

379

functional representation of data, 108–110

Gabriel, Richard P., 418

garbage collection, 572–577

memoization and, 432

mutation and, 276

tail recursion and, 619

garbage collector

compacting, 573

mark-sweep, 573

stop-and-copy, 572–577

general-purpose computer, as universal

machine, 599

generating sentences, 453

generic arithmetic operations, 207–213

generic function, 184, 189

generic function

generic selector, 196, 198

generic operation, 100

Genesis, 480

glitch, 22

global environment, 27, 257

global environment

in metacircular evaluator, 407

global frame, 256

Goguen, Joseph, 108

golden ratio, 54

as �xed point, 87

golden ratio

as continued fraction, 87

672

Gordon, Michael, 375

grammar, 448

Gray, Jim, 339

greatest common divisor, 64–65

generic, 232

of polynomials, 231

greatest common divisor

used to estimate π , 246

used in rational-number arithmetic,

104

Green, Cordell, 467

Guttag, John Vogel, 108

half-adder, 297

simulation of, 304–306

half-interval method, 83–85

half_interval_method, 85

half-interval method

Newton’s method vs., 90

halting problem, 414

Halting Theorem, 414

Hamming, Richard Wesley, 182, 354

Hanson, Christopher P., 619

Hardy, Godfrey Harold, 353, 366

Hassle, 426

Havender, J., 339

Haynes, Christopher T., 383

headed list, 290, 307

Henderson, Peter, 144, 351, 379

Henderson diagram, 351

Heraclitus, 237

Heron of Alexandria, 40

Hewitt, Carl Eddie, 51, 443, 467, 573

hiding principle, 241

hierarchical data structures, 115, 124–128

hierarchy of types, 216–221

in symbolic algebra, 229–230

inadequacy of, 218

high-level language, machine language vs.,

381

higher-order functions, 73

higher-order functions

function as argument, 73–78

function as general method, 83–89

function as returned value, 95

in metacircular evaluator, 388

strong typing and, 375

Hil�nger, Paul, 178

Hoare, Charles Antony Richard, 108

Hodges, Andrew, 413

Hofstadter, Douglas R., 413

Horner, W. G., 136

Horner’s rule, 136

Hu�man code, 179–188

optimality of, 182

order of growth of encoding, 187

Hu�man, David, 180

Hughes, R. J. M., 438

imperative programming, 254

imperative vs. declarative knowledge, 39,

467

imperative vs. declarative knowledge

logic programming and, 467–469, 490

nondeterministic computing and, 440

imperative vs. expression-oriented

programming style, 321

implementation dependencies

order of subexpression evaluation, 257

incremental development of programs, 27

indeterminate of a polynomial, 222

indexing a data base, 483, 506

inference, method of, 490

in�nite series, 505

in�nite stream(s), 349–357

merging, 354, 363, 365, 380

merging as a relation, 380

of factorials, 354

673

of pairs, 362–366

of random numbers, 376

representing power series, 356

to model signals, 366–369

to sum a series, 358

in�x notation, 25

in�x notation, pre�x notation vs., 168

Ingerman, Peter, 427

instantiate a pattern, 473

instruction counting, 564

instruction execution function, 548

instruction sequence, 603–605, 620–623

instruction tracing, 564

integer vs. real number, 24

integer(s), 24

integerizing factor, 233

integral

of a power series, 356

integrated-circuit implementation of

Scheme, 578

integrator, for signals, 366

internal declaration, 46–47

free name in, 46

position of, 47

scope of name, 414

internal de�nition

scope of name, 414–415

internal de�nition

in environment model, 270–273

in nondeterministic evaluator, 459

Internet “Worm”, 641

Internet Explorer, 23

interning symbols, 569

interpreter, 22

compiler vs., 599–600, 641

read-eval-print loop, 26

interval arithmetic, 110–114

invariant quantity of an iterative process,

62

inverter, 296

iterative improvement, 94

iterative process, 51

as a stream process, 358–362

design of algorithm, 62

implemented by function call, 589

linear, 51, 59

recursive process vs., 48–627

register machine for, 537

iterative process

implemented by function call, 41–52

implemented by procedure call, 41

recursive process vs., 52

Java, 22

JavaScript

history of, 22

JavaScript

applicative-order evaluation in, 34

Jayaraman, Sundaresan, 310

JScript, 23

Kaldewaij, Anne, 63

Karr, Alphonse, 237

Kepler, Johannes, 519

key of a record

in a data base, 178

in a table, 289

testing equality of, 294

Khayyam, Omar, 58

Knuth, Donald E., 58, 62, 64, 136, 246

Kolmogorov, A. N., 246

Konopasek, Milos, 310

Kowalski, Robert, 467

KRC, 139, 364

Lagrange interpolation formula, 222

λ calculus (lambda calculus), 79

Lambert, J.H., 88

Lamé, Gabriel, 65

674

Lamé’s Theorem, 65

Lamport, Leslie, 341

Lampson, Butler, 253

Landin, Peter, 52, 348

Lapalme, Guy, 419

lazy evaluation, 425

lazy evaluator, 425–436

lazy list, 436–439

lazy pair, 436–439

lazy tree, 438

least commitment, principle of, 194

lecture, something to do during, 86

Leibniz, Baron Gottfried Wilhelm von

proof of Fermat’s Little Theorem, 67

series for π , 73, 358

Leiserson, Charles E., 175, 366

lexical addressing, 634–635

lexical address, 634

lexical scoping, 46

environment structure and, 634

Lieberman, Henry, 573

line segment

represented as pair of points, 106

line segment

represented as pair of vectors, 155

linear growth, 50, 59

linear iterative process, 51

order of growth, 59

linear recursive process, 50

order of growth, 59

linkage descriptor, 603

Liskov, Barbara Huberman, 108

Lisp, 22

on DEC PDP-1, 573

�rst-class functions in, 93

internal type system, 212

suitability for writing evaluators, 383

Lisp dialects

MDL, 574

list structure, 103

list vs., 116

mutable, 274–279

represented using vectors, 567–572

list(s), 116

pair ing up, 118

converting a binary tree to a, 176

converting to a binary tree, 177

equality of, 161

headed, 290, 307

last pair of, 119

lazy, 436–439

length of, 118

list structure vs., 116

mapping over, 121–123

operations on, 117

reversing, 119

techniques for manipulating, 117

list(s)

tail ing down, 117

combining with append, 118

manipulation with head , tail , and

pair, 116

nth element of, 117

list-structured memory, 566–577

LiveScript, 22

local evolution of a process, 48

local name, 44–45, 80

local state, 238–255

maintained in frames, 264–270

local state variable, 239–245

local variable, 80

location, 566

Locke, John, 21

logarithm, approximating ln 2, 362

logarithmic growth, 59, 61, 174

logic programming, 467–469

computers for, 469

history of, 467, 469

675

in Japan, 469

mathematical logic vs., 490–495

logic programming

logic programming languages, 468

logic puzzles, 445–448

logical and, 296

logical or, 297

looping constructs, 41, 51

machine language, 599

high-level language vs., 381

mapping

over lists, 121–123

nested, 139–143, 362–366

as a transducer, 131

over trees, 128–130

7→ notation for mathematical function, 86

mark-sweep garbage collector, 573

mathematics

computer science vs., 39, 467

engineering vs., 68

matrix, represented as sequence, 137

McAllester, David Allen, 443

McCarthy, John, 441

McDermott, Drew, 443

MDL, 574

means of abstraction, 23

define, 27

means of combination, 23

measure in a Euclidean ring, 231

memoization, 57, 295

call-by-need and, 355

garbage collection and, 432

of thunks, 428

memoization

by delay, 347

memory

in 1964, 442

list-structured, 566–577

message passing, 109, 205–207

environment model and, 273

in bank account, 243

tail recursion and, 51

message passing

in digital-circuit simulation, 302

metacircular evaluator, 384

metacircular evaluator for JavaScript

driver loop, 409

evaluate and apply, 385

evaluate– apply cycle, 384

primitive functions, 407

undefined, 407

metacircular evaluator for Scheme,

384–414

higher-order functions in, 388

job of, 384

representation of functions, 402

running, 411

metacircular evaluator for Scheme

analyzing version, 419–425

compilation of, 644

data abstraction in, 385, 386, 405

data-directed eval, 397

e�ciency of, 419

environment model of evaluation in,

384

environment operations, 403

eval and apply, 392

expression representation, 386, 392

global environment, 407

implemented language

vs. implementation language, 389

order of operand evaluation, 392

primitive functions, 409

representation of environments,

403–406

representation of true and false, 402

running, 407

676

special forms (additional), 397

symbolic di�erentiation and, 392

syntax of evaluated language, 392

tail recursiveness unspeci�ed in, 587

metalinguistic abstraction, 382

MicroPlanner, 443

Microshaft, 469

Microsoft, 23

Miller, Gary L., 71

Miller, James S., 619

Miller-Rabin test for primality, 71

Milner, Robin, 375

Minsky, Marvin Lee, 573

Miranda, 139

MIT, 468

early history of, 145

Research Laboratory of Electronics,

573

ML, 375

mobile, 127

Mocha, 22

modeling

as a design strategy, 237

in science and engineering, 33

models of evaluation, 592

modularity, 134, 237

along object boundaries, 380

hiding principle, 241

streams and, 357

through dispatching on type, 198

through in�nite streams, 377

through modeling with objects, 245

modularity

functional programs vs. objects,

376–380

modulo n, 67

modus ponens, 490

monitored function, 244

Monte Carlo integration, 248

stream formulation, 377

Monte Carlo simulation, 246

stream formulation, 376

Moon, David A., 573

Morris, J. H., 253

Morse code, 179

Mouse, Minnie and Mickey, 491

Multics time-sharing system, 573

multiplication by Russian peasant method,

63

Munro, Ian, 136

mutable data objects, 274–284

list structure, 274–279

pairs, 274–279

shared data, 281

mutable data objects

implemented with assignment,

282–284

procedural representation of, 282–284

mutator, 274

mutex, 336

mutual exclusion, 336

name

bound, 45

encapsulated, 241

of a formal parameter, 45

free, 45

of a function, 30

scope of, 45

naming

of computational objects, 26

of functions, 29

native language of machine, 599

Netscape Communications Corporation, 22

Netscape Navigator, 22

Newton’s method

for cube roots, 42

Newton’s method

677

for di�erentiable functions, 90–91

half-interval method vs., 90

for square roots, 39–41, 91, 92

node of a tree, 28

non-computable, 414

non-strict, 426

nondeterminism, in behavior of concurrent

programs, 326, 380

nondeterministic choice point, 442

nondeterministic computing, 439–453

nondeterministic evaluator, 454–466

nondeterministic evaluator

order of operand evaluation, 452

nondeterministic programming vs. Scheme

programming, 439, 447, 448, 517

nondeterministic programs

logic puzzles, 445–446

nondeterministic programs

pairs with prime sums, 439

parsing natural language, 448–452

Pythagorean triples, 444

normal-order evaluation, 34

normal-order evaluation

applicative order vs., 38, 65, 425–427

delayed evaluation and, 375

in explicit-control evaluator, 592

of if, 39

notation in this book

slanted characters for interpreter

response, 24

notation in this book

italic symbols in expression syntax, 30

nth root, as �xed point, 94

number theory, 67

number(s), 24

comparison of, 35

equality of, 35, 568

number(s)

in generic arithmetic system, 208

numerical analysis, 24

numerical analyst, 84

numerical data, 24

obarray, 569

object program, 599

object(s), 238

bene�ts of modeling with, 245

with time-varying state, 239

object-oriented programming languages,

219

open coding of primitives, 633

operands, 25

operation

cross-type, 213

generic, 100

in register machine, 520–523

operation-and-type table, 199

operation-and-type table

assignment needed for, 239

operator, 25

operator of a combination

combination as, 89

operator of a combination

compound expression as, 38

lambda expression as, 79

optimality

of Horner’s rule, 136

of Hu�man code, 182

or-gate, 297

or_gate, 301

order notation, 59

order of evaluation

assignment and, 255

in compiler, 632

in Scheme, 255

order of evaluation

implementation-dependent, 257

in explicit-control evaluator, 584

678

in metacircular evaluator, 392

order of events

decoupling apparent from actual, 347

indeterminacy in concurrent systems,

322

order of growth, 58–59

linear iterative process, 59

linear recursive process, 59

logarithmic, 61

tree-recursive process, 59

ordered-list representation of sets, 171–173

ordinary numbers (in generic arithmetic

system), 208

Ostrowski, A. M., 136

P operation on semaphore, 336

package, 200

complex-number, 210

polar representation, 201

polynomial, 223

rational-number, 209

rectangular representation, 200

Scheme-number, 208

painter(s), 144

higher-order operations, 151

operations, 146

represented as functions, 154

transforming and combining, 156

pair(s), 102

axiomatic de�nition of, 108

box-and-pointer notation for, 114

functional representation of, 109

in�nite stream of, 362–366

lazy, 436–439

mutable, 274–279

procedural representation of, 282–284,

436

represented using vectors, 567–572

used to represent sequence, 116

used to represent tree, 124–128

pair(s)

procedural representation of, 108

Pan, V. Y., 136

parameters

scope of, 45

parentheses

in function declaration, 30

parsing natural language, 448–453

parsing natural language

real language understanding vs. toy

parser, 453

Pascal

lack of higher-order functions, 375

recursive functions, 51

Pascal, Blaise, 58

Pascal

weakness in handling compound

objects, 321

Pascal’s triangle, 58

password-protected bank account, 245

pattern, 472–473

pattern matching, 482

implementation, 500

uni�cation vs., 487, 489

pattern variable, 472

representation of, 496

pattern variable

representation of, 511

Perlis, Alan J.

quips, 52

permutations of a set, 141

Phillips, Hubert, 447

π (pi)

approximation with Monte Carlo

integration, 377

π (pi)

approximation with half-interval

method, 85

679

approximation with Monte Carlo

integration, 248

Cesàro estimate for, 246, 376

Leibniz’s series for, 73, 358

stream of approximations, 358–361

Wallis’s formula for, 77

picture language, 144–159

Pingala, Áchárya, 62

pipelining, 322

Planner, 443

point, represented as a pair, 106

pointer

in box-and-pointer notation, 114

typed, 567

poly, 223

polynomial arithmetic, 222–235

addition, 223–226

division, 228

greatest common divisor, 231

multiplication, 223–226

rational functions, 230

subtraction, 228

polynomial arithmetic

Euclid’s Algorithm, 231

greatest common divisor, 233, 235

interfaced to generic arithmetic

system, 223

probabilistic algorithm for GCD, 235

rational functions, 235

polynomial(s), 222–235

canonical form, 230

dense, 226

hierarchy of types, 229–230

indeterminate of, 222

sparse, 226

univariate, 222

polynomial(s)

evaluating with Horner’s rule, 136

porting a language, 641

power series, as stream, 356

adding, 356

dividing, 357

integrating, 356

multiplying, 356

PowerPC, 340

predicate, 35

of if, 35

pre�x code, 180

pre�x notation

in�x notation vs., 168

prime number(s), 66–69

cryptography and, 69

Fermat test for, 67–69

Miller-Rabin test for, 71

testing for, 66–72

prime number(s)

Eratosthenes’s sieve for, 350

primitive constraints, 310

primitive expression, 23

evaluation of, 28

name of variable, 26

principle of least commitment, 194

probabilistic algorithm, 68–69, 235, 350

procedural representation of data

mutable data, 282–284

procedure

de�nition of, 30

mathematical function vs., 39

process, 21

iterative, 51

linear iterative, 51

linear recursive, 50

local evolution of, 48

order of growth of, 58

recursive, 50

resources required by, 58

shape of, 50

tree-recursive, 53–57

680

program

as abstract machine, 411

comments in, 141

as data, 411–413

incremental development of, 27

structure of, 43, 45–47

structured with subroutines, 413

program

structure of, 27

program counter, 548

programming

demand-driven, 347

elements of, 23, 24

imperative, 254

odious style, 348

programming language, 21

design of, 425

functional, 379

logic, 468

object-oriented, 219

strongly typed, 375

very high-level, 39

Prolog, 443, 467

prompts, 409

explicit-control evaluator, 593

lazy evaluator, 430

nondeterministic evaluator, 463

query interpreter, 496

propagation of constraints, 309–320

proving programs correct, 39

pseudo-random sequence, 246

pseudodivision of polynomials, 233

pseudoremainder of polynomials, 233

puzzles

eight-queens puzzle, 142, 448

logic puzzles, 445–448

Pythagorean triples

with streams, 365

Pythagorean triples

with nondeterministic programs, 444

quantum mechanics, 380

query, 469

query interpreter, 469

JavaScript interpreter vs., 517

adding rule or assertion, 489

data base, 506–509

driver loop, 489, 496–497

frame, 482, 514

improvements to, 495, 516, 517

in�nite loops, 491–492, 495

instantiation, 497

overview, 481–490

pattern matching, 482, 500

query evaluator, 489, 497–500

stream operations, 509–510

streams of frames, 482, 489

uni�cation, 486–487, 503–506

query interpreter

JavaScript interpreter vs., 488, 489

environment structure in, 518

pattern-variable representation, 496,

511

problems with not and lisp-value,

492–493, 517

syntax of query language, 510

query language, 469–481

abstraction in, 476

data base, 470–472

equality testing in, 475

extensions to, 494, 515

logical deductions, 479–481

mathematical logic vs., 490–495

queue, 284–289

double-ended, 289

front of, 284

operations on, 284

procedural implementation of, 289

681

rear of, 284

in simulation agenda, 306

Rabin, Michael O., 71

radicand, 40

Ramanujan numbers, 366

Ramanujan, Srinivasa, 366

random-number generator, 239, 245

with reset, 249

random-number generator

in Monte Carlo simulation, 246

in primality testing, 67

with reset, stream version, 377

Raphael, Bertram, 467

rational function, 230–235

rational function

reducing to lowest terms, 233–234

rational number(s)

printing, 103

rational number(s)

arithmetic operations on, 101–104

reducing to lowest terms, 104, 106

represented as pairs, 103

rational-number arithmetic, 101–104

rational-number arithmetic

interfaced to generic arithmetic

system, 209

need for compound data, 98

Raymond, Eric, 425, 442

RC circuit, 367

read-eval-print loop, 26

real number, 24

record, in a data base, 178

rectangle, representing, 107

recursion, 27

data-directed, 226

expressing complicated process, 27

in rules, 477

in working with trees, 124

recursion theory, 413

recursive function

recursive function declaration, 43

recursive process vs., 51

recursive process, 50

iterative process vs., 48–627

linear, 50, 59

register machine for, 537–543

tree, 53–57, 59

recursive process

iterative process vs., 52

recursive function vs., 51

red-black tree, 175

reducing to lowest terms, 104, 106, 233–234

Rees, Jonathan A., 419

referential transparency, 252

register machine, 519

actions, 527–529

controller, 520–523

controller diagram, 522

data paths, 520–523

data-path diagram, 521

design of, 520–544

language for describing, 524–529

monitoring performance, 562–565

simulator, 544–565

stack, 537–543

subroutine, 532–537

test operation, 521

register table, in simulator, 548

register(s), 519

representing, 546

tracing, 565

register-machine language

entry point, 524

instructions, 524, 543

label, 524

register-machine language

assign, 525, 543

682

branch, 524, 543

const, 526, 543, 544

go_to, 524, 543

label, 524, 543

op, 525, 543

perform, 527, 543

reg, 525, 543

restore, 538, 544

save, 538, 544

test, 524, 543

register-machine simulator, 544–565

relations, computing in terms of, 310, 467

relatively prime, 78

relativity, theory of, 341

release a mutex, 336

remainder modulo n, 67

resistance

formula for parallel resistors, 110, 113

tolerance of resistors, 110

resolution principle, 467

resolution, Horn-clause, 468

returning multiple values, 552

Reuter, Andreas, 339

Rhind Papyrus, 63

ripple-carry adder, 301

Rivest, Ronald L., 69, 175

RLC circuit, 373

Robinson, J. A., 468

robustness, 159

rock songs, 1950s, 187

Rogers, William Barton, 145

roundo� error, 24, 190

Rozas, Guillermo Juan, 619

RSA algorithm, 69

rule (query language), 476–481

applying, 488, 502–503, 518

without body, 476, 479, 500

Runkle, John Daniel, 145

Russian peasant method of multiplication,

63

sameness and change

meaning of, 251–253

shared data and, 279

satisfy a compound query, 474–475

satisfy a pattern (simple query), 473

Scheme

as precursor of JavaScript, 22

Scheme chip, 578

Schmidt, Eric, 253

scope of a name, 45

internal declaration, 414

scope of a name

function’s parameters, 45

scope of a variable

internal define, 414

search

of binary tree, 173

depth-�rst, 442

search

systematic, 442

secretary, importance of, 471

selector, 100

as abstraction barrier, 105

generic, 196, 198

Self, 22

self-evaluating expression, 386

semaphore, 336

semaphore

of size n, 338

semicolon

comment introduced by, 141

separator code, 180

sequence accelerator, 359

sequence of statements

in function body, 30

sequence(s), 116

as conventional interface, 130–143

683

as source of modularity, 134

operations on, 132–139

represented by pairs, 116

serializer, 328–332

implementing, 336–338

with multiple shared resources,

332–336

series, summation of, 74

with streams, 358

series, summation of

accelerating sequence of

approximations, 359

set, 169

data base as, 178

operations on, 169

permutations of, 141

represented as binary tree, 173–178

represented as ordered list, 171–173

represented as unordered list, 170–171

subsets of, 129

shadow a binding, 257

Shamir, Adi, 69

shape of a process, 50

shared data, 279–282

shared resources, 332–336

shared state, 323

Shrobe, Howard E., 469

side-e�ect bug, 253

sieve of Eratosthenes, 350

signal processing

smoothing a function, 94

smoothing a signal, 369

stream model of, 366–369

signal processing

zero crossings of a signal, 368, 369

signal, digital, 296

signal-�ow diagram, 131

signal-processing view of computation, 131

simple query, 472–474

processing, 482, 483, 489, 498

simpli�cation of algebraic expressions, 166

Simpson’s Rule for numerical integration,

76

simulation

event-driven, 296

as machine-design tool, 595

simulation

for monitoring performance of register

machine, 562

sine

approximation for small angle, 59

power series for, 356

SKETCHPAD, 310

Smalltalk, 310

smoothing a function, 94

smoothing a signal, 369

snarf, 425

Solomono�, Ray, 246

source language, 599

source program, 599

Spa�ord, Eugene H., 641

sparse polynomial, 226

special form

need for, 41

special form

function vs., 427, 436

square, 29

square root, 39–41

stream of approximations, 358

stack, 51

framed, 581

representing, 547, 570

stack

for recursion in register machine,

537–543

stack allocation and tail recursion, 619

Stallman, Richard M., 310, 443

state

684

shared, 323

vanishes in stream formulation, 378

state variable, 51, 238

local, 239–245

Steele, Guy Lewis Jr., 51, 255, 310, 425, 442

stop-and-copy garbage collector, 572–577

Stoy, Joseph E., 33, 63, 418

Strachey, Christopher, 92

strati�ed design, 158

stream(s), 238, 341–380

delayed evaluation and, 370–375

implemented as delayed lists, 342

implemented as lazy lists, 436–439

implicit de�nition, 352–353

used in query interpreter, 482, 489

stream(s)

implemented as delayed lists, 344

strict, 426

strings, 160–162

strongly typed language, 375

subroutine in register machine, 532–537

substitution model of function application,

32–34, 256

inadequacy of, 249–251

shape of process, 51

subtype, 216

multiple, 218

success continuation (nondeterministic

evaluator), 454, 456

successive squaring, 61

summation of a series, 74

with streams, 358

Sun Microsystems, 22

supertype, 216

multiple, 218

Sussman, Gerald Jay, 51, 310, 443

Sussman, Julie Esther Mazel, nieces of, 160

Sutherland, Ivan, 310

symbol(s), 160

interning, 569

quotation of, 160

representation of, 568

symbolic algebra, 221–235

symbolic di�erentiation, 162–169, 203

symbolic expression, 99

SYNC, 340

syntactic analysis, separated from

execution

in metacircular evaluator, 419–425

in register-machine simulator, 550, 556

syntactic sugar, 52

function vs. data as, 303

looping constructs as, 52

syntactic sugar

define, 393

syntax

of a programming language, 29

syntax

of expressions, describing, 30

syntax interface, 303

systematic search, 442

table, 289–296

backbone of, 289

for coercion, 214

for data-directed programming, 199

local, 293–294

one-dimensional, 289–291

testing equality of keys, 294

two-dimensional, 291–293

used in simulation agenda, 306

used to store computed values, 295

table

n-dimensional, 295

represented as binary tree

vs. unordered list, 295

tableau, 360

tabulation, 57, 295

685

tagged architecture, 567

tagged data, 194–198, 567

tail recursion, 51

compiler and, 619

garbage collection and, 619

metacircular evaluator and, 587

in Scheme, 52

tail recursion

environment model of evaluation, 264

explicit-control evaluator and,

587–589, 596, 597

tail-recursive evaluator, 587

tangent

as continued fraction, 88

power series for, 357

target register, 603

Technological University of Eindhoven,

336

term list of polynomial, 223

representing, 226–228

terminal node of a tree, 28

test operation in register machine, 521

Thatcher, James W., 108

THE Multiprogramming System, 336

theorem proving (automatic), 467

θ (f (n)) (theta of f (n)), 59

thunk, 427–428

call-by-name, 348

call-by-need, 348

forcing, 428

implementation of, 431–432

origin of name, 427

time

assignment and, 321

communication and, 341

in concurrent systems, 322

functional programming and, 377–380

in nondeterministic computing, 440,

442

purpose of, 322

time

in concurrent systems, 327

time segment, in agenda, 306

time slicing, 338

TK

Solver, 310

tower of types, 217

tracing

instruction execution, 564

register assignment, 565

transparency, referential, 252

tree

B-tree, 175

binary, 173

combination viewed as, 28

counting leaves of, 124

enumerating leaves of, 133

fringe of, 127

Hu�man, 180

lazy, 438

mapping over, 128–130

red-black, 175

represented as pairs, 124–128

reversing at all levels, 126

tree accumulation, 28

tree-recursive process, 53–57

order of growth, 59

trigonometric relations, 193

true, 35

truncation error, 24

truth maintenance, 443

Turing machine, 413

Turing, Alan M., 413, 414

Turner, David, 139, 364, 379

type �eld, 567

type tag, 189, 194

two-level, 211

type(s)

686

cross-type operations, 213

dispatching on, 198

hierarchy in symbolic algebra, 229–230

hierarchy of, 216–221

lowering, 217, 220

multiple subtype and supertype, 218

raising, 217, 220

subtype, 216

supertype, 216

tower of, 217

type-inferencing mechanism, 375

typed pointer, 567

typing

dynamic, 22, 23

unbound variable, 256

uni�cation, 486–487

discovery of algorithm, 467

implementation, 503–506

pattern matching vs., 487, 489

unit square, 153

univariate polynomial, 222

universal machine, 412

universal machine

explicit-control evaluator as, 598

general-purpose computer as, 599

University of Edinburgh, 468

University of Marseille, 468

UNIX, 641

unordered-list representation of sets,

170–171

unspeci�ed values

if without alternative, 308

set_tail, 276

unspeci�ed values

display, 103

newline, 103

set_head, 276

upward compatibility, 436

V operation on semaphore, 336

variable, 26

unbound, 256

value of, 26, 256

variable-length code, 179

vector (data structure), 566

vector (mathematical)

operations on, 137, 154

represented as pair, 154

vector (mathematical)

in picture-language frame, 152

represented as sequence, 137

very high-level language, 39

Wadler, Philip, 253

Wadsworth, Christopher, 375

Wagner, Eric G., 108

Walker, Francis Amasa, 145

Wallis, John, 77

Wand, Mitchell, 383, 583

Waters, Richard C., 135

Weyl, Hermann, 97

width of an interval, 112

Wiles, Andrew, 67

Winograd, Terry, 443

Winston, Patrick Henry, 443, 453

wire, in digital circuit, 296

Wise, David S., 348

wishful thinking, 101, 163

world line of a particle, 341, 379

Wright, E. M., 353

Wright, Jesse B., 108

Xerox Palo Alto Research Center, 310

Y operator, 418

Yochelson, Jerome C., 573

Zabih, Ramin, 443

zero crossings of a signal, 368, 369

zero test (generic), 213

687

for polynomials, 228

Zilles, Stephen N., 108

Zippel, Richard E., 235

688

	Foreword
	Prefaces
	Acknowledgments
	Building Abstractions with Functions
	The Elements of Programming
	Expressions
	Naming and the Environment
	Evaluating Operator Combinations
	Compound Functions
	The Substitution Model for Function Application
	Conditional Expressions and Predicates
	Example: Square Roots by Newton's Method
	Functions as Black-Box Abstractions

	Functions and the Processes They Generate
	Linear Recursion and Iteration
	Tree Recursion
	Orders of Growth
	Exponentiation
	Greatest Common Divisors
	Example: Testing for Primality

	Formulating Abstractions with Higher-Order Functions
	Functions as Arguments
	Constructing Functions using Lambda Expressions
	Functions as General Methods
	Functions as Returned Values

	Building Abstractions with Data
	Introduction to Data Abstraction
	Example: Arithmetic Operations for Rational Numbers
	Abstraction Barriers
	What Is Meant by Data?
	Extended Exercise: Interval Arithmetic

	Hierarchical Data and the Closure Property
	Representing Sequences
	Hierarchical Structures
	Sequences as Conventional Interfaces
	Example: A Picture Language

	Symbolic Data
	Strings
	Example: Symbolic Differentiation
	Example: Representing Sets
	Example: Huffman Encoding Trees

	Multiple Representations for Abstract Data
	Representations for Complex Numbers
	Tagged data
	Data-Directed Programming and Additivity

	Systems with Generic Operations
	Generic Arithmetic Operations
	Combining Data of Different Types
	Example: Symbolic Algebra

	Modularity, Objects, and State
	Assignment and Local State
	Local State Variables
	The Benefits of Introducing Assignment
	The Costs of Introducing Assignment

	The Environment Model of Evaluation
	The Rules for Evaluation
	Applying Simple Functions
	Frames as the Repository of Local State
	Internal Declarations

	Modeling with Mutable Data
	Mutable List Structure
	Representing Queues
	Representing Tables
	A Simulator for Digital Circuits
	Propagation of Constraints

	Concurrency: Time Is of the Essence
	The Nature of Time in Concurrent Systems
	Mechanisms for Controlling Concurrency

	Streams
	Streams Are Delayed Lists
	Infinite Streams
	Exploiting the Stream Paradigm
	Streams and Delayed Evaluation
	Modularity of Functional Programs and Modularity of Objects

	Metalinguistic Abstraction
	The Metacircular Evaluator
	The Core of the Evaluator
	Representing Statements and Expressions
	Evaluator Data Structures
	Running the Evaluator as a Program
	Data as Programs
	Internal Declarations
	Separating Syntactic Analysis from Execution

	Lazy Evaluation
	Normal Order and Applicative Order
	An Interpreter with Lazy Evaluation
	Streams as Lazy Lists

	Nondeterministic Computing
	Search and [mathescape=true]amb
	Examples of Nondeterministic Programs
	Implementing the [mathescape=true]amb Evaluator

	Logic Programming
	Deductive Information Retrieval
	How the Query System Works
	Is Logic Programming Mathematical Logic?
	Implementing the Query System

	Computing with Register Machines
	Designing Register Machines
	A Language for Describing Register Machines
	Abstraction in Machine Design
	Subroutines
	Using a Stack to Implement Recursion
	Instruction Summary

	A Register-Machine Simulator
	The Machine Model
	The Assembler
	Generating Execution Functions for Instructions
	Monitoring Machine Performance

	Storage Allocation and Garbage Collection
	Memory as Vectors
	Maintaining the Illusion of Infinite Memory

	The Explicit-Control Evaluator
	The Core of the Explicit-Control Evaluator
	Sequence Evaluation and Tail Recursion
	Conditionals, Assignments, and Declarations and Blocks
	Running the Evaluator

	Compilation
	Structure of the Compiler
	Compiling Statements and Expressions
	Compiling Applications
	Combining Instruction Sequences
	An Example of Compiled Code
	Lexical Addressing
	Interfacing Compiled Code to the Evaluator

	List Of Exercises
	References
	Index

